WorldWideScience

Sample records for enriched uranium metal

  1. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  2. Transformations of highly enriched uranium into metal or oxide

    International Nuclear Information System (INIS)

    Nollet, P.; Sarrat, P.

    1964-01-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  3. Standard specification for uranium metal enriched to more than 15 % and less Than 20 % 235U

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This specification covers nuclear grade uranium metal that has either been processed through an enrichment plant, or has been produced by the blending of highly enriched uranium with other uranium, to obtain uranium of any 235U concentration below 20 % (and greater than 15 %) and that is intended for research reactor fuel fabrication. The scope of this specification includes specifications for enriched uranium metal derived from commercial natural uranium, recovered uranium, or highly enriched uranium. Commercial natural uranium, recovered uranium and highly enriched uranium are defined in Section 3. The objectives of this specification are to define the impurity and uranium isotope limits for commercial grade enriched uranium metal. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched uranium metal which is to be used in the production of research reactor fuel. In addition to this specification, the parties concerned may agree to other appropriate conditions. ...

  4. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  5. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  6. Active method of neutron time correlation coincidence measurement to authenticate mass and enrichment of uranium metal

    International Nuclear Information System (INIS)

    Zhang Songbai; Wu Jun; Zhu Jianyu; Tian Dongfeng; Xie Dong

    2011-01-01

    The active methodology of time correlation coincidence measurement of neutron is an effective verification means to authenticate uranium metal. A collimated 252 Cf neutron source was used to investigate mass and enrichment of uranium metal through the neutron transport simulation for different enrichments and different masses of uranium metal, then time correlation coincidence counts of them were obtained. By analyzing the characteristic of time correlation coincidence counts, the monotone relationships were founded between FWTH of time correlation coincidence and multiplication factor, between the total coincidence counts in FWTH for time correlation coincidence and mass of 235 U multiplied by multiplication factor, and between the ratio of neutron source penetration and mass of uranium metal. Thus the methodology to authenticate mass and enrichment of uranium metal was established with time correlation coincidence by active neutron investigation. (authors)

  7. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    Science.gov (United States)

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  8. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    Science.gov (United States)

    McLean, II, William; Miller, Philip E.; Horton, James A.

    1995-01-01

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  9. AEC determines uranium enrichment policy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Advisory Committee on Uranium Enrichment of the Atomic Energy Commission (AEC) has submitted a report to AEC chairman concerning the promotion of the introduction of advanced material, high performance centrifuges to replace conventional metallic drum centrifuges, and the development of next generation advanced centrifuges. The report also called for the postponement until around 1997 of the decision whether the development should be continued or not on atomic vapor laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS) processes, as well as the virtual freezing of the construction of a chemical process demonstration plant. The report was approved by the AEC chairman in August. The uranium enrichment service market in the world will continue to be characterized by oversupply. The domestic situation of uranium enrichment supply-demand trend, progress of the expansion of Rokkasho enrichment plant, the trend in the development of gas centrifuge process and the basic philosophy of commercializing domestic uranium enrichment are reported. (K.I.)

  10. Enriched uranium recovery at Los Alamos

    International Nuclear Information System (INIS)

    Herrick, C.C.

    1984-01-01

    Graphite casting scrap, fuel elements and nongraphite combustibles are calcined to impure oxides. These materials along with zircaloy fuel elements and refractory solids are leach-dissolved separately in HF-HNO 3 acid to solubilize the contained enriched uranium. The resulting slurry is filtered and the clear filtrate (to which mineral acid solutions bearing enriched uranium may be added) are passed through solvent extraction. The solvent extraction product is filtered, precipitated with H 2 O 2 and the precipitate calcined to U 3 O 8 . Metal is made from U 3 O 8 by conversion to UO 2 , hydrofluorination and reduction to metal. Throughput is 150 to 900 kg uranium per year depending on the type of scrap

  11. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  12. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  13. The outline of clearance plan for Rokkasho uranium enrichment plant

    International Nuclear Information System (INIS)

    Kojima, Takuo; Sasaki, Hitoshi; Shouno, Shuuzou; Nozawa, Kenji

    2011-01-01

    Japan Nuclear Fuel Limited (JNFL) started operation of uranium enrichment by metal cylinder centrifuge at Rokkasho Uranium Enrichment Plant in 1992. Since operation start, JNFL has extended the plant capacity sequentially, but metal cylinder centrifuges ceased operation gradually with time. Replacement to advanced centrifuge is under construction now. Generally, Uranium Enrichment Plant continues operation by replacing centrifuges after a certain period of operation. So, many used centrifuges (metal waste) are generated through the operation period. JNFL is now considering the disposal plan. We can reduce the radioactivity level that is not necessary to treat as the radioactive waste by decontaminating the radioactive material sticking to the surface of metal materials of used centrifuge. And JNFL plants to recycle (reuse) metal material by making much of the clearance system. (author)

  14. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  15. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  16. Calculated NWIS signatures for enriched uranium metal

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.; Koehler, P.E.

    1995-01-01

    Nuclear Weapons Identification System (NWIS) signatures have been calculated using a Monte Carlo transport code for measurement configurations of a 252 Cf source, detectors, and a uranium metal casting. NWIS signatures consist of a wide variety of time-and frequency-analysis signatures such as the time distribution of neutrons after californium fission, the time distribution of counts in a detector after a previous count, the number of times n pulses occur in a time interval, and various frequency-analysis signatures, such as auto-power and cross-power spectral densities, coherences, and a ratio of spectral densities. This ratio is independent of detection efficiency. The analysis presented here, using the MCNP-DSP code, evaluates the applicability of this method for measurement of the 235 U content of 19-kg castings of depleted uranium and uranium with enrichments of 20, 40, 60, 80, 90, and 93.2 wt % 235 U. The dependence of the wide variety of NWIS signatures on 235 U content and possible configurations of a measurement system are presented. These preliminary calculations indicate short measurement times. Additional calculations are being performed to optimize the source-detector-moderator-casting configuration for the shortest measurement time. Although the NWIS method was developed for nuclear weapons identification, the development of a small processor now allows it to be also applied in a practical way to subcriticality measurements, nuclear fuel process monitoring and qualitative nondestructive assay of special nuclear material

  17. 77 FR 51579 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-08-24

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken metal to the Atomic Energy of Canada...

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  19. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  20. Choice and utilization of slightly enriched uranium fuel for high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-01-01

    Problems relating to the replacement of highly enriched (90% or 93% U 235 ) uranium fuel: by moderately enriched (20% or 40% in U 235 ) metallic uranium fuel and slightly enriched (3% or 8% in U 235 ) uranium oxide fuel are discussed

  1. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  2. Development of dissolution process for metal foil target containing low enriched uranium

    International Nuclear Information System (INIS)

    Srinivasan, B.; Hutter, J.C.; Johnson, G.K.; Vandegrift, G.F.

    1994-01-01

    About six times more low enriched uranium (LEU) metal is needed to produce the same quantity of 99 Mo as from a high enriched uranium (HEU) oxide target, under similar conditions of neutron irradiation. In view of this, the post-irradiation processing procedures of the LEU target are likely to be different from the Cintichem process procedures now in use for the HEU target. The authors have begun a systematic study to develop modified procedures for LEU target dissolution and 99 Mo separation. The dissolution studies include determination of the dissolution rate, chemical state of uranium in the solution, and the heat evolved in the dissolution reaction. From these results the authors conclude that a mixture of nitric and sulfuric acid is a suitable dissolver solution, albeit at higher concentration of nitric acid than in use for the HEU targets. Also, the dissolver vessel now in use for HEU targets is inadequate for the LEU target, since higher temperature and higher pressure will be encountered in the dissolution of LEU targets. The desire is to keep the modifications to the Cintichem process to a minimum, so that the switch from HEU to LEU can be achieved easily

  3. Status report on the cost and availability of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, Hans; Laucht, Juergen

    2005-01-01

    Availability and price development of enriched uranium contained in fuel elements for research reactors plays an important role with regard to reliability and economic and planning reasons. The leading price factors of LEU (19.75% enriched uranium metal), are the contained natural uranium equivalent in the form of UF6 (feed component), the separative work of the enrichment (SWU), conversion of the enriched uranium into metal form and associated services, such as transportation. World market price of feed material for enrichment was more or less stable in the last decades. After very moderate feed price increases between 2001 and mid-2003, the price gained momentum and almost doubled in the short period between the 2nd half of 2003 and year-end 2004. (author)

  4. Transformations of highly enriched uranium into metal or oxide; Etudes des procedes de transformation des composes d'uranium a fort enrichissement isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Nollet, P; Sarrat, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  5. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  6. Blueprint for domestic uranium enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    The AEC advisory committee on domestic production of uranium enrichment has studied for more than a year how to achieve the domestic enrichment of uranium by the construction and operation of a commercial enriching plant using centrifugal separation method, and the report was submitted to the Atomic Energy Commission on August 18, 1980. Japan has depended wholly on overseas services for her uranium enrichment needs, but the development of domestic enrichment has been carried on in parallel. The AEC decided to construct a uranium enrichment pilot plant using centrifuges, and it has been forwarded as a national project. The plant is operated by the Power Reactor and Nuclear Fuel Development Corp. since 1979. The capacity of the plant will be raised to approximately 75 ton SWU a year. The centrifuges already operated have provided the first delivery of fuel of about 1 ton for the ATR ''Fugen''. The demand-supply balance of uranium enrichment service, the significance of the domestic enrichment of uranium, the evaluation of uranium enrichment technology, the target for domestic enrichment plan, the measures to promote domestic uranium enrichment, and the promotion of the construction of a demonstration plant are reported. (Kako, I.)

  7. Promotion of uranium enrichment business

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1981-01-01

    The Committee on Nuclear Power has studied on the basic nuclear power policy, establishing its five subcommittees, entrusted by the Ministry of Nternational Trade and Industry. The results of examination by the subcommittee on uranium enrichment business are given along with a report in this connection by the Committee. In order to establish the nuclear fuel cycle, the aspect of uranium enrichment is essential. The uranium enrichment by centrifugal process has proceeded steadily in Power Reactor and Nuclear Fuel Development Corporation. The following matters are described: the need for domestic uranium enrichment, the outlook for overseas enrichment services and the schedule for establishing domestic enrichment business, the current state of technology development, the position of the prototype enrichment plant, the course to be taken to establish enrichment business the main organization operating the prototype and commercial plants, the system of supplying centrifuges, the domestic conversion of natural uranium the subsidies for uranium enrichment business. (J.P.N.)

  8. Uranium metal production by molten salt electrolysis

    International Nuclear Information System (INIS)

    Takasawa, Yutaka

    1999-01-01

    Atomic vapor laser isotope separation (AVLIS) is a promising uranium enrichment technology in the next generation. Electrolytic reduction of uranium oxides into uranium metal is proposed for the preparation of uranium metal as a feed material for AVLIS plant. Considering economical performance, continuos process concept and minimizing the amount of radioactive waste, an electrolytic process for producing uranium metal directly from uranium oxides will offer potential advantages over the existing commercial process. Studies of uranium metal by electrolysis in fluoride salts (BaF 2 -LiF-UF 4 (74-11-15 w/o) at 1150-1200degC, using both a laboratory scale apparatus and an engineering scale one, and continuous casting of uranium metal were carried out in order to decide the optimum operating conditions and the design of the industrial electrolytic cells. (author)

  9. Development of on-line uranium enrichment monitor of gaseous UF6 for uranium enrichment plant

    International Nuclear Information System (INIS)

    Lu Xuesheng; Liu Guorong; Jin Huimin; Zhao Yonggang; Li Jinghuai; Hao Xueyuan; Ying Bin; Yu Zhaofei

    2013-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF 6 , flowing through the processing pipes in uranium enrichment plant. A Nal (Tl) detector was used to measure the count rates of the 185.7 keV γ-ray emitted from 235 U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade can be monitored continuously by using the device. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant. (authors)

  10. United States uranium enrichment policies

    International Nuclear Information System (INIS)

    Roberts, R.W.

    1977-01-01

    ERDA's uranium enrichment program policies governing the manner in which ERDA's enrichment complex is being operated and expanded to meet customer requirements for separative work, research and development activities directed at providing technology alternatives for future enrichment capacity, and establishing the framework for additional domestic uranium enrichment capacity to meet the domestic and foreign nuclear industry's growing demand for enrichment services are considered. The ERDA enrichment complex consists of three gaseous diffusion plants located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Today, these plants provide uranium enrichment services for commercial nuclear power generation. These enrichment services are provided under contracts between the Government and the utility customers. ERDA's program involves a major pilot plant cascade, and pursues an advanced isotope separation technique for the late 1980's. That the United States must develop additional domestic uranium enrichment capacity is discussed

  11. Beta activity of enriched uranium

    International Nuclear Information System (INIS)

    Nambiar, P.P.V.J.; Ramachandran, V.

    1975-01-01

    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  12. Uranium Enrichment, an overview

    International Nuclear Information System (INIS)

    Coates, J.H.

    1994-01-01

    This general presentation on uranium enrichment will be followed by lectures on more specific topics including descriptions of enrichment processes and assessments of the prevailing commercial and industrial situations. I shall therefore avoid as much as possible duplications with these other lectures, and rather dwell on: some theoretical aspects of enrichment in general, underlying the differences between statistical and selective processes, a review and comparison between enrichment processes, remarks of general order regarding applications, the proliferation potential of enrichment. It is noteworthy that enrichment: may occur twice in the LWR fuel cycle: first by enriching natural uranium, second by reenriching uranium recovered from reprocessing, must meet LWR requirements, and in particular higher assays required by high burn up fuel elements, bears on the structure of the entire front part of the fuel cycle, namely in the conversion/reconversion steps only involving UF 6 for the moment. (author). tabs., figs., 4 refs

  13. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  14. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA's ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future

  15. Present state of development of uranium enrichment

    International Nuclear Information System (INIS)

    1979-01-01

    The pilot plant for uranium enrichment started the operation on September 12, 1979. The pilot plant has been constructed by the Power Reactor and Nuclear Fuel Development Corp. in Ningyo Pass, Okayama Prefecture. 7000 centrifugal separators will be installed by mid 1981, and yearly production of 70 t SWU is expected. The Uranium Enrichment Committee of Japan Atomic Industrial Forum has made the proposal on the method of forwarding the development of uranium enrichment in Japan to Atomic Energy Commission and related government offices in December, 1978. This survey summarized the trends of uranium enrichment in Japan and foreign countries and the problems about nuclear non-proliferation, and provides with the reference materials. The demand and supply of uranium enrichment in the world, the present states and plans in USA, Europe, USSR and others, the demand and supply of uranium enrichment and the measures for securing it in Japan, the present state and future plan of uranium enrichment project in Japan, the international regulation of uranium enrichment, the recent policy of USA and INFCE, and the trend of the regulation of utilizing enriched uranium are described. Moreover, the concept of separation works in uranium enrichment and the various technologies of separation are explained. (Kako, I.)

  16. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs

  17. Report of the Subcommittee on Domestic Uranium Enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Subcommittee on Domestic Uranium Enrichment to the Atomic Energy Commission is described; which covers the procedure of the domestic uranium enrichment by centrifugal process up to the commercial production, reviewing the current situation in this field. Domestic uranium enrichment is important in the aspects of securing stable enrichment service, establishing sound fuel cycle, and others. As the future target, the production around the year 2000 is set at 3,000 tons SWU per year at least. The business of uranium enrichment, which is now developed in the Power Reactor and Nuclear Fuel Development Corporation, is to be carried out by private enterprise. The contents are as follows: demand and supply balance of uranium enrichment service, significance of domestic uranium enrichment, evaluation of centrifugal uranium enrichment technology, the target of domestic uranium enrichment, the policy of domestic uranium enrichment promotion. (J.P.N.)

  18. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  19. Measurement of highly enriched uranium metal buttons with the high-level neutron coincidence counter operating in the active mode

    International Nuclear Information System (INIS)

    Foley, J.E.

    1980-10-01

    The portable High-Level Neutron Coincidence Counter is used in the active mode with the addition of AmLi neutron sources to assay the 235 U content of highly enriched metal pieces or buttons. It is concluded that the portable instrument is a practical instrument for assaying uranium metal buttons with masses in the range 1.5 to 4 kg

  20. 31 CFR 540.316 - Uranium enrichment.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium enrichment. 540.316 Section 540.316 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...

  1. Prospects and problems of uranium enrichment

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1974-01-01

    The problem of uranium enrichment now concerns principally peaceful nuclear power generation. With the current oil crisis, energy resources assume unprecedented importance. However, the requirements for enriched uranium vary with the vicissitude of the world situation in nuclear power generation; the enterprise of uranium enrichment is related to economic aspect. The following matters are described: dimension of enrichment problem, political factors, changes in requirements, projects in each country, and strategy of enrichment in Japan. (Mori, K.)

  2. Development of empirical relation for isotope of uranium in enriched uranium matrix

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Vidyasagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Uranium enriched in 235 U is required in commercial light water reactors to produce a controlled nuclear reaction. Enrichment allows the 235 U isotopes to be increased from 0.71% to a range between 2% to 5% depending upon requirement. The enriched uranium in the form of sintered UO 2 pellet is used for any commercially operating boiling light water reactors. The enriched uranium fuel bundle surface swipes sample is being analysed to assess the tramp uranium as a quality control parameter. It is known that the 234 U isotope also enriched along with 235 U isotope in conventional gaseous diffusion enrichment process. The information about enrichment percentage of 234 U helps to characterize isotopic properties of enriched uranium. A few reports provide the empirical equation and graphs for finding out the specific activity, activity percentage, activity ratio of 234 U isotopes for enriched uranium. Most of them have not provided the reference for the data used and their source. An attempt has been made to model the relationship between 234 U and 235 U as a function of uranium enrichment at low level

  3. Uranium-enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by the anatexis of continental crust or processes occurring at a much greater depth. They commonly show enrichment in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (author)

  4. Uranium enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by (1) the anatexis of continental crust (2) processes occurring at a much greater depth. They commonly show enrichement in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (Authors)

  5. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  6. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  7. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  8. Uranium fluoride and metallic uranium as target materials for heavy-element experiments at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, Birgit [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)], E-mail: b.kindler@gsi.de; Ackermann, Dieter; Hartmann, Willi; Hessberger, Fritz Peter; Hofmann, Sigurd; Huebner, Annett; Lommel, Bettina; Mann, Rido; Steiner, Jutta [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)

    2008-06-01

    In this contribution we describe the production and application of uranium targets for synthesis of heavy elements. The targets are prepared from uranium fluoride (UF{sub 4}) and from metallic uranium with thin carbon foils as backing. Targets of UF{sub 4} were produced by thermal evaporation in a similar way as the frequently applied targets out of Bi, Bi{sub 2}O{sub 3}, Pb, PbS, SmF{sub 3}, and NdF{sub 3,} prepared mostly from isotopically enriched material [Birgit Kindler, et al., Nucl. Instr. and Meth. A 561 (2006) 107; Bettina Lommel, et al., Nucl. Instr. and Meth. A 561 (2006) 100]. In order to use more intensive beams and to avoid scattering of the reaction products in the target, metallic uranium is favorable. However, evaporation of metallic uranium is not feasible at a sustainable yield. Therefore, we established magnetron sputtering of metallic uranium. We describe production and properties of these targets. First irradiation tests show promising results.

  9. Uranium enrichment in the United States

    International Nuclear Information System (INIS)

    Hill, J.H.; Parks, J.W.

    1975-01-01

    History, improvement programs, status of electrical power availability, demands for uranium enrichment, operating plan for the U. S. enriching facilities, working inventory of enriched uranium, possible factors affecting deviations in the operating plan, status of gaseous diffusion technology, status of U. S. gas centrifuge advances, transfer of enrichment technology, gaseous diffusion--gas centrifuge comparison, new enrichment capacity, U. S. separative work pricing, and investment in nuclear energy are discussed. (LK)

  10. Uranium enrichment. Enrichment processes

    International Nuclear Information System (INIS)

    Alexandre, M.; Quaegebeur, J.P.

    2009-01-01

    Despite the remarkable progresses made in the diversity and the efficiency of the different uranium enrichment processes, only two industrial processes remain today which satisfy all of enriched uranium needs: the gaseous diffusion and the centrifugation. This article describes both processes and some others still at the demonstration or at the laboratory stage of development: 1 - general considerations; 2 - gaseous diffusion: physical principles, implementation, utilisation in the world; 3 - centrifugation: principles, elementary separation factor, flows inside a centrifuge, modeling of separation efficiencies, mechanical design, types of industrial centrifuges, realisation of cascades, main characteristics of the centrifugation process; 4 - aerodynamic processes: vortex process, nozzle process; 5 - chemical exchange separation processes: Japanese ASAHI process, French CHEMEX process; 6 - laser-based processes: SILVA process, SILMO process; 7 - electromagnetic and ionic processes: mass spectrometer and calutron, ion cyclotron resonance, rotating plasmas; 8 - thermal diffusion; 9 - conclusion. (J.S.)

  11. U.S. forms uranium enrichment corporation

    International Nuclear Information System (INIS)

    Seltzer, R.

    1993-01-01

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel

  12. Uranium enrichment techniques

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    This article includes an introduction about the isotopes of natural uranium, their existence and the difficulty of the separation between them. Then it goes to the details of a number of methods used to enrich uranium: Gaseous Diffusion method, Electromagnetic method, Jet method, Centrifugal method, Chemical method, Laser method and Plasma method.

  13. Study on the radiotoxicology of enriched uranium

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Guolin; Wang Chongdao; Cao Genfa

    1987-12-01

    A study on the retentive peculiarity of soluble enriched uranium UO 2 F 2 were observed after iv once or consecutive ip qd x 3d to Wistar male rats. The dynamic retention of radioactivity in the body showed that the enriched uranium UO 2 F 2 was chiefly localized in kidney, and then in skeleton and liver. The radioactivity of the enriched uranium UO 2 F 2 in skeleton rose steadily while the concentratoin in kidney and liver droped. When enriched uranium UO 2 F 2 was accumulated in organism, it caused chromosome aberrations on bone marrow cells. Results indicated that the chromosome aberration rates were elevated when the dose of the enriched uranium UO 2 F 2 was increased, at the same time, the cell division was depressed. Accumulation of insoluble enriched uranium U 3 O 8 in gastrointestinal tract was well described by a two exponential expression. Values of retention estimate for fast component, T 1 = 0.34 d, and for relatively long term component, T 2 = 4.05 d. The deposition of UO 2 F 2 in the intact skin was only 0.16 to 0.18% of the total contaminated UO 2 F 2 . Penetration of the enriched uranium UO 2 F 2 was dominantly increased in abraded skin. This value is about 25 to 32 times as compaired with that in intact skin. Retention of the enriched uranium UO 2 F 2 through abraded skins was dominantly localized in kidney and skeleton

  14. 31 CFR 540.308 - Low Enriched Uranium (LEU).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Low Enriched Uranium (LEU). 540.308... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.308 Low Enriched Uranium (LEU). The term low enriched...

  15. Detection of uranium enrichment activities using environmental monitoring techniques

    International Nuclear Information System (INIS)

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-01-01

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF 6 gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques

  16. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  17. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  18. Long term assurance of supply of uranium enrichment

    International Nuclear Information System (INIS)

    1978-01-01

    After elaborating a number of key questions on uranium enrichment, the representatives of 10 countries and of the EC commission present their answers. Attention is paid to the assurance of uranium supply, to uranium enrichment, market trends and flexibility in enrichment agreements

  19. Source-driven noise analysis measurements with neptunium metal reflected by high enriched uranium

    International Nuclear Information System (INIS)

    Valentine, Timothy E.; Mattingly, John K.

    2003-01-01

    Subcritical noise analysis measurements have been performed with neptunium ( 237 Np) sphere reflected by highly enriched uranium. These measurements were performed at the Los Alamos Critical Experiment Facility in December 2002 to provide an estimate of the subcriticality of 237 Np reflected by various amounts of high-enriched uranium. This paper provides a description of the measurements and presents some preliminary results of the analysis of the measurements. The measured and calculated spectral ratios differ by 15% whereas the 'interpreted' and calculated k eff values differ by approximately 1%. (author)

  20. Evaluation of the uranium enrichment demonstration plant project

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the organization system of the uranium enrichment business is evaluated, based on the operation of the uranium enrichment demonstration plant. As a result, in uranium enrichment technology development or business, it was acknowledged that maintenance of the organization which has the Trinity of a research/engineering/operation was necessary in an industrialization stage by exceptional R and D cycle. Japan Nuclear Fuel Ltd. (JNFL) set up the Rokkashomura Aomori Uranium Enrichment Research and Development Center in November 2000. As a result, the system that company directly engaged in engineering development was prepared. And results obtained in this place is expected toward certain establishment of the uranium enrichment business of Japan. (author)

  1. 31 CFR 540.306 - Highly Enriched Uranium (HEU).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Highly Enriched Uranium (HEU). 540...) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.306 Highly Enriched Uranium (HEU). The term highly...

  2. Current perspective of the uranium enrichment market

    International Nuclear Information System (INIS)

    Laughon, K.O.

    1986-01-01

    Over the past several years, developments in the uranium enrichment market have required the Department of Energy (DOE) to make a number of changes in the U.S. enrichment enterprise. These changes have been made to allow DOE to conduct our enrichment business so as to be more responsive to changing market forces. Needless to say, some of these changes have been difficult, but they have been necessary if they are to conduct a healthy and competitive uranium enrichment business in the United States. This paper discusses several topics, including: The Uranium Enrichment Market, Utility Services (US) Contracts, Reduced Prices, Incentive Pricing, Better Customer Services, and Advanced Technology. In addition to these topics, information is provided on the recent court action regarding the US Contracts and the viability finding on the uranium mining industry

  3. Development of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.

    1997-01-01

    The Reduced Enrichment Research and Test Reactor Program has continued its effort in the past 3 yr to develop use of low-enriched uranium (LEU) to produce the fission product 99 Mo. This work comprises both target and chemical processing development and demonstration. Two major target systems are now being used to produce 99 Mo with highly enriched uranium-one employing research reactor fuel technology (either uranium-aluminum alloy or uranium aluminide-aluminum dispersion) and the other using a thin deposit of UO 2 on the inside of a stainless steel (SST) tube. This paper summarizes progress in irradiation testing of targets based on LEU uranium metal foils. Several targets of this type have been irradiated in the Indonesian RSG-GAS reactor operating at 22.5 MW

  4. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  5. Computational fluid mechanics in R and D on uranium enrichment

    International Nuclear Information System (INIS)

    Soubbaramayer, O.

    1988-01-01

    Uranium enrichment represents an essential link in the cycle of nuclear fuels for power production. There are many processes of uranium enrichment, but three of them dominate the nuclear history as well in the past (Gaseous diffusion and centrifugation) as in the present (Laser process). The important role played by the Numerical Fluid Mechanics in the three processes is pointed out. The type of problem raised by Gaseous Diffusion is Channel Flow with wall suction, by Centrifugation, flow of a Compressible gas in a strongly rotating cylinder (Stewartson and Ekman layers) and by Laser process, Thermocapillary-buoyancy flow of a molten metal in an evaporation crucible. The methods and results in these problems are reviewed. 18 refs, 11 figs

  6. U3O8 obtained from metallic uranium

    International Nuclear Information System (INIS)

    Lopez, Marisol; Gonzalez, Alfredo; Pasqualini, Enrique E.

    2003-01-01

    Enriched uranium oxide, U 3 O 8 , used as nuclear powder in MTR's, can be obtained by direct oxidation of metallic uranium at 800 C degrees. Maximum density, 8.2 gr/cm 3 , is achieved after grinding and a high temperature treatment at 1400 C degrees. All the process is highly controllable and performed in dry environments. (author)

  7. Review of uranium enrichment prospects in Canada, 1976

    International Nuclear Information System (INIS)

    Developments since 1971 which affect the prospects for uranium enrichment in Canada from the federal government point of view are reviewed. The market for enriched uranium to the year 2000 is similar to that projected in 1971. The committed enrichment capacity of the world will be sufficient until 1990. The Canadian uranium mining capability may be adequate to supply an enrichment plant, but the present reserves policy along with the currently known resources are likely to restrict exports of its products during the plant life. Prices for enriched uranium produced in Canada would be higher than those reported by other proposed new plants; however, newer enrichment techniques have some potential for cost reductions. Application of enrichment with U235 (or plutonium and U233/thorium) to CANDU offers some uranium resource conservation and possible slight power cost reductions. Construction of an enrichment plant in Canada to supply the export market is less attractive in 1976 than in 1971, but there is potential for such a business in the future. (L.L.)

  8. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of 99m Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). This paper presents the results of our continuing studies on the effects of substituting low enriched uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or zircaloy. Included is a cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminium alloy or uranium aluminide dispersed fuel used in current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to 1) the insolubility of uranium silicides in alkaline solutions and 2) the presence of significant quantities of silicate in solution. Results to date suggest that substitution of LEU for HEU can be achieved. (Author)

  9. Mid-crustal uranium and rare metal mineralisation in the Mount Isa Inlier: a genetic model for formation of orogenic uranium deposits

    OpenAIRE

    McGloin, Matthew

    2017-01-01

    Uranium mineralisation near Mount Isa in northwest Queensland, Australia, is widespread yet poorly understood. Within this region in the Western Fold Belt, one hundred and ninety uranium-rare metal occurrences are known. This uranium mineralisation is similar to worldwide examples of albitite-hosted or sodium-metasomatic uranium deposits, which host albite-carbonate ore zones enriched in incompatible elements. Various metal sources and ore-forming processes have been sugg...

  10. Equations of state for enriched uranium and uranium alloy to 3500 MPa

    International Nuclear Information System (INIS)

    Bai Chaomao; Hai Yuying; Liu Jenlong; Li Zhenrong

    1990-04-01

    The volume compressions of 6 kinds of cast materials including enriched uranium, poor uranium, U-0.57 wt% Ti, U-0.33 wt% Nb, U-2.85 wt% Nb and U-7.5 wt% Nb-3.3 wt% Zr have been determined by monitoring piston displacements in a piston cylinder apparatus with double strengthening rings to 3500 MPa at room temperature. The dilation of the cylinder vessel and the press deformation were corrected by some experiments. The calculational data free from using the standard sample closed with used standard sample. The volume compressions of enriched uranium and poor uranium are nearly coincident. Pure uranium is more compressible than uranium alloys. These values of enriched uranium are in close agreement with values of Bridgman's pure uranium. The fitting coefficients of Bridgman's polynomial and Anderson's equation of state and isothermal bulk modules for the above materials are given

  11. The isotopic enrichment of uranium in 1979

    International Nuclear Information System (INIS)

    Baron, M.

    1979-01-01

    The Eurodif uranium enrichment plant built on the Tricastin site is described. The uranium isotope separation plants in service abroad are presented. The main characteristics of the international enrichment market are defined [fr

  12. Enriched uranium recovery flowsheet improvements

    International Nuclear Information System (INIS)

    Holt, D.L.

    1986-01-01

    Savannah River uses 7.5% TBP to recover and purify enriched uranium. Adequate decontamination from fission products is necessary to reduce personnel exposure and to ensure that the enriched uranium product meets specifications. Initial decontamination of the enriched uranium from the fission products is carried out in the 1A bank, 16 stages of mixer-settlers. Separation of the enriched uranium from the fission product, 95 Zr, has been adequate, but excessive solvent degradation caused by the long phase contact times in the mixer-settlers has limited the 95 Zr decontamination factor (DF). An experimental program is investigating the replacement of the current 1A bank with either centrifugal contactors or a combination of centrifugal contactors and mixer-settlers. Experimental work completed has compared laboratory-scale centrifugal contactors and mixer-settlers for 95 Zr removal efficiencies. Feed solutions spiked with actual plant solutions were used. The 95 Zr DF was significantly better in the mixer-settlers than in the centrifugal contactors. As a result of this experimental study, a hybrid equipment flowsheet has been proposed for plant use. The hybrid equipment flowsheet combines the advantages of both types of solvent extraction equipment. Centrifugal contactors would be utilized in the extraction and initial scrub sections, followed by additional scrub stages of mixer-settlers

  13. Uranium enrichment. Technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Saire, D.E.; Gestson, D.K.; Peske, S.E.; Vanstrum, P.R.

    1983-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R+D efforts on various processes. (author)

  14. Uranium enrichment: technology, economics, capacity

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Jr., W. R.; Vanstrum, P. R.; Saire, D. E.; Gestson, D. K.; Peske, S. E.

    1982-08-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes.

  15. Uranium enrichment: technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Vanstrum, P.R.; Saire, D.E.; Gestson, D.K.; Peske, S.E.

    1982-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes

  16. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.; Slater, J.B.

    1986-05-01

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  17. Uranium enrichment plans and policies

    International Nuclear Information System (INIS)

    Schwennesen, J.L.

    1981-01-01

    Significant progress has been made in US efforts to expand its enrichment capacity. The Cascade Improvement Program (CIP) and Cascade Upgrading Program (CUP) are now complete at Oak Ridge and Paducah and almost complete at Portsmouth. Considerable progress has also been made in constructing the Gas Centrifuge Enrichment Plant (GCEP), and physical construction of the first process building is well under way. Current plans are to have two process buildings on-line by 1989 with the remaining six buildings to be added sequentially as needed to meet demand. The status of DOE enrichment services contracts is essentially unchanged from that reported at last year's seminar. The OUEA latest forecast of nuclear power growth, however, is considerably lower than reported last year, although a leveling trend is becoming apparent. The Variable Tails Assay Option (VTAO) of the AFC contract was made available for the third time for FY 1983. The DOE inventories of natural uranium still remain high. The Department of Energy will dispose of this material by using it for Government programs and for enrichment plant operations. It appears that Government inventories of uranium are adequate through at least the mid-1990s. It remains DOE policy not to dispose of its natural uranium stocks through direct sales in the marketplace, except for very small quantities or if an emergency situation would exist and all reasonable attempts had been made, without success, to obtain natural uranium from commercial sources. Finally, with regard to DOE plans on future transaction tails assays, it still appears likely that the current 0.20 percent uranium-235 reference tails assay will be maintained until well into the 1990s, at which time it might be increased up to 0.25 percent uranium-235

  18. Some economic aspects of the low enriched uranium production

    International Nuclear Information System (INIS)

    1990-05-01

    At the Technical Committee Meeting on Economics of Low Enriched Uranium 14 papers were presented. A separate abstract was prepared for each of these papers. The five technical sessions covered several economic aspects of uranium concentrates production, conversion into uranium hexafluoride and uranium enrichment and the recycling of U and Pu in LWR. Four Panel discussions were held to discuss the uranium market trends, the situation of conversion industry, the reprocessing and the uranium market, the future trends of enrichment and the economics of LWRs compared with other reactors. Refs, figs and tabs

  19. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  20. Ningyo Toge uranium enrichment pilot plant comes into full

    International Nuclear Information System (INIS)

    1982-01-01

    The uranium enrichment pilot plant of the Power Reactor and Nuclear Fuel Development Corporation at Ningyo Toge went into full operation on March 26, 1982. This signifies that the front end of the nuclear fuel cycle in Japan, from uranium ore to enrichment, is only a step away from commercialization. On the same day, the pilot plant of uranium processing and conversion to UF 6 , the direct purification of uranium ore into uranium hexafluoride, began batch operation at the same works. The construction of the uranium enrichment pilot plant has been advanced in three stages: i.e. OP-1A with 1000 centrifuges, OP-1B with 3000 centrifuges and OP-2 with 3000 centrifuges. With a total of 7000 centrifuges, the pilot plant, the first enrichment plant in Japan, has now a capacity of supplying enriched uranium for six months operation of a 1,000 MW nuclear power plant. (J.P.N.)

  1. NRC licensing of uranium enrichment plants

    International Nuclear Information System (INIS)

    Moran, B.W.

    1991-01-01

    The US Nuclear Regulatory Commission (NRC) is preparing a rule making that establishes the licensing requirements for low-enriched uranium enrichment plants. Although implementation of this rule making is timed to correspond with receipt of a license application for the Louisiana Energy Services centrifuge enrichment plant, the rule making is applicable to all uranium enrichment technologies. If ownership of the US gaseous diffusion plants and/or atomic vapor laser isotope separation is transferred to a private or government corporation, these plants also would be licensable under the new rule making. The Safeguards Studies Department was tasked by the NRC to provide technical assistance in support of the rule making and guidance preparation process. The initial and primary effort of this task involved the characterization of the potential safeguards concerns associated with a commercial enrichment plant, and the licensing issues associated with these concerns. The primary safeguards considerations were identified as detection of the loss of special nuclear material, detection of unauthorized production of material of low strategic significance, and detection of production of uranium enriched to >10% 235 U. The primary safeguards concerns identified were (1) large absolute limit of error associated with the material balance closing, (2) the inability to shutdown some technologies to perform a cleanout inventory of the process system, and (3) the flexibility of some technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could prevent conventional material control and accounting programs from detecting the production and removal of 5 kg 235 U as highly enriched uranium. Safeguards techniques were identified to mitigate these concerns

  2. The case for enrichment of uranium in Australia

    International Nuclear Information System (INIS)

    George, D.W.

    1981-01-01

    Information is presented on the number of nuclear power plants in operation and under construction and on the extent of the use of uranium. The case for enrichment of uranium in Australia is then considered in detail and the status of feasbility studies being carried out is discussed. Arguments to support an enrichment industry include: the need for additional enrichment capacity; added value; potential profitability; increased employment and industrial opportunities; and retention of depleted uranium

  3. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  4. Development of uranium metal targets for 99Mo production

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade 99 Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of 99 Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets

  5. Smoking in uranium enrichment research building in Tokai Research Establishment, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1990-01-01

    On the smoking occurred on May 30, 1989 in the uranium enrichment research building, the investigation has been carried out about the presumed cause and the countermeasures for preventing the recurrence, and the following report was presented. In the uranium scrap after the oxidation treatment of vapor-deposited metallic uranium was carried out, a small quantity of unoxidized part having reactivity remained. This unoxidized part existing locally reacts with air in a container, and there is the possibility of generating heat after about one day. In this accident, unoxidized part existed near the wall of a polyethylene vessel, and the oxidation and heat generation reaction advanced. The vessel broke, air supply increased, and heat generation spread. After the temperature reached 300degC, the oxidation of UO 2 to U 3 O 8 took part, thus the polyethylene vessel and others generated smoke. As the countermeasures, for the preservation of uranium scrap, metallic vessels are used, and the atmosphere of inert gas or vacuum is maintained. The uranium scrap containing unoxidized part is rapidly oxidized. The uranium enrichment research building was decontamination. (K.I.)

  6. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  7. Future of uranium enrichment

    International Nuclear Information System (INIS)

    Hosmer, C.

    1981-01-01

    The increasing amount of separative work being done in government facilities to produce low-enriched uranium fuel for nuclear utilities again raises the question: should this business-type, industrial function be burned over the private industry. The idea is being looked at by the Reagan administration, but faces problems of national security as well as from the unique nature of the business. This article suggests that a joint government-private venture combining enriching, reprocessing, and waste disposal could be the answer. Further, a separate entity using advanced laser technology to deplete existing uranium tails and lease them for fertile blankets in breeder reactors might earn substantial revenues to help reduce the national debt

  8. Low-resolution gamma-ray measurements of uranium enrichment

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Christiansen, A.; Cole, R.; Collins, M.L.

    1996-01-01

    Facilities that process special nuclear material perform periodic inventories. In bulk facilities that process low-enriched uranium, these inventories and their audits are based primarily on weight and enrichment measurements. Enrichment measurements determine the 211 U weight fraction of the uranium compound from the passive gamma-ray emissions of the sample. Both international inspectors and facility operators rely on the capability to make in-field gamma-ray measurements of uranium enrichment. These users require rapid, portable measurement capability. Some in-field measurements have been biased, forcing the inspectors to resort to high-resolution measurements or mass spectrometry to accomplish their goals

  9. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-13

    ... Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment Facility, Wilmington, North Carolina... a license to General Electric-Hitachi Global Laser Enrichment LLC (GLE or the applicant) to authorize construction of a laser-based uranium enrichment facility and possession and use of byproduct...

  10. Method for converting uranium oxides to uranium metal

    Science.gov (United States)

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  11. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched Uranium] targets

    International Nuclear Information System (INIS)

    Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01

    Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of 99 Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved

  12. Investigation of the fire at the Uranium Enrichment Laboratory. Analysis of samples and pressurization experiment/analysis of container

    International Nuclear Information System (INIS)

    Akabori, Mitsuo; Minato, Kazuo; Watanabe, Kazuo

    1998-05-01

    To investigate the cause of the fire at the Uranium Enrichment Laboratory of the Tokai Research Establishment on November 20, 1997, samples of uranium metal waste and scattered residues were analyzed. At the same time the container lid that had been blown off was closely inspected, and the pressurization effects of the container were tested and analyzed. It was found that 1) the uranium metal waste mainly consisted of uranium metal, carbides and oxides, whose relative amounts were dependent on the particle size, 2) the uranium metal waste hydrolyzed to produce combustible gases such as methane and hydrogen, and 3) the lid of the outer container could be blown off by an explosive rise of the inner pressure caused by combustion of inflammable gas mixture. (author)

  13. The future cost of uranium enrichment

    International Nuclear Information System (INIS)

    Pouris, A.

    1986-01-01

    The cost of uranium enrichment is the most important factor determining the fuel cost of nuclear energy. This paper attempts to forecast the future direction of the price of separative work by examining the forces that determine it. It is argued that the interplay among the characteristics of enrichment technologies, the structure of the international market, and the balance of supply and demand determine the enrichment price. The analysis indicates that all forces point towards a price much lower than the current one. It is predicted that, depending on the technological advances, the price of separative work unit for uranium enrichment will range between $40 and $90 by the year 2000. (author)

  14. The assisting system for uranium enrichment plant operation

    International Nuclear Information System (INIS)

    Nakazawa, Hiroaki; Yamamoto, Fumio

    1990-01-01

    We have been developing an operation assisting system, partially supported by AI system, for uranium enrichment plant. The AI system is a proto-type system aiming a final one which can be applied to any future large uranium enrichment plant and also not only to specific operational area but also to complex and multi-phenomenon operational area. An existing AI system, for example facility diagnostic system that utilizes the result of CCT analysis as knowledge base, has weakness in flexibility and potentiality. To build AI system, we have developed the most suitable knowledge representations using deep knowledge for each facility or operation of uranium enrichment plant. This paper describes our AI proto-type system adopting several knowledge representations that can represent an uranium enrichment plant's operation with deep knowledge. (author)

  15. Uranium enrichment: an overview

    International Nuclear Information System (INIS)

    Cazalet, J.

    1995-01-01

    This paper is a general presentation of uranium enrichment processes and assessments of the prevailing commercial and industrial situations. It gives first some theoretical aspects of enrichment in general and explains the differences between statistical and selective processes in particular. Then a review of the different processes is made with a comparison between them. Finally, some general remarks concerning applications are given and the risks of proliferation related to enrichment are mentioned. (J.S.). 4 refs., 5 figs., 8 tabs

  16. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    International Nuclear Information System (INIS)

    Myers, Astasia

    2011-01-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  17. Evaluation of economical at a uranium enrichment demonstration plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the economy of technical achievement apply in the uranium enrichment demonstration plant is evaluated. From the evaluation, it can be concluded that the expected purpose was achieved because there was a definite economic prospect to commercial plant. The benefit analysis of thirteen years operation of the uranium enrichment demonstration plant also provides a financial aspect of the uranium enrichment business. Therefore, the performance, price and reliability of the centrifuge is an important factor in the uranium enrichment business. And the continuous development of a centrifuge while considering balance with the development cost is necessary for the business in the future. (author)

  18. Profile of World Uranium Enrichment Programs - 2007

    International Nuclear Information System (INIS)

    Laughter, Mark D.

    2007-01-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring weapons grade fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, while HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use in fuel for nuclear reactors. However, the same equipment used to produce LEU for nuclear fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is only enriched to LEU, no undeclared LEU is produced, and no uranium is enriched to HEU or secretly diverted. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity, but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 53 million kg-separative work units (SWU) per year, with 22 million in gaseous diffusion and 31 million in gas centrifuge plants. Another 23 million SWU/year of capacity are under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique

  19. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    International Nuclear Information System (INIS)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    2007-01-01

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated

  20. Evaluating the effectiveness of dilution of the recovered uranium with depleted uranium and low-enriched uranium to obtain fuel for VVER reactors

    International Nuclear Information System (INIS)

    Smirnov, A Yu; Sulaberidze, G A; Dudnikov, A A; Nevinitsa, V A

    2016-01-01

    The possibility of the recovered uranium enrichment in a cascade of gas centrifuges with three feed flows (depleted uranium, low-enriched uranium, recovered uranium) with simultaneous dilution of U-232,234,236 isotopes was shown. A series of numerical experiments were performed for different content of U-235 in low-enriched uranium. It has been demonstrated that the selected combination of diluents can simultaneously reduce the cost of separative work and the consumption of natural uranium, not only with respect to the previously used multi-flow cascade schemes, but also in comparison to the standard cascade for uranium enrichment. (paper)

  1. Uranium enrichment capacity: public versus private ownership

    International Nuclear Information System (INIS)

    Fraser, J.T.

    1977-01-01

    Continual growth of conventional nuclear capacity requires an assured supply of enriched uranium and, hence, potential expansion of domestic uranium enrichment capacity. The question of ownership of new enrichment capacity, i.e., public or private, entails not only the social-opportunity costs of alternative investments but also technical parameters of uranium utilization and advanced reactor development. Inclusion of risk preferences in both the public and private sectors produces interesting results in terms of optimal investment strategies with respect to choice of technology and scale of investment. Utilization of a nuclear fuel cycle requirements process model allows explicit specification of production technology. Integration of process model output with a least-cost investment model permits flexibility in parametric analysis. Results indicate minimum incentive for Government subsidy of a private enrichment sector through 2000 given moderate to low nuclear growth assumptions. The long-run scenario, to 2020, exhibits potentially greater incentives for private enrichment investment

  2. The evolution of the enriched uranium markets

    International Nuclear Information System (INIS)

    Arnaiz, J.; Moleres, C.; Tarin, F.

    2004-01-01

    This paper deals with the evolution of the enriched uranium component markets (uranium concentrates, conversion and enrichment), starting with the situation of historically low prices that occurred during 2000. The situation that has been reached as on December 2003, when the concentrates and conversion markets were 44% and 70% (current US$) respectively, and the enrichment prices 30%, higher, is analysed. Finally, the negative impact of the 90's depressed prices, due to abundant alternative sources of uranium components, on the primary production of all three components and, as a conclusion, the impact of the new situation on the transport logistics, and the need of appropriate economic conditions to make the future primary production sustainable, is commented. (Author)

  3. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-11-01

    This paper analyzes under four different scenarios the adequacy of a $500 million annual deposit into a fund to pay for the cost of cleaning up the Department of Energy's (DOE) three aging uranium enrichment plants. These plants are located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. In summary the following was found: A fixed annual $500 million deposit made into a cleanup fund would not be adequate to cover total expected cleanup costs, nor would it be adequate to cover expected decontamination and decommissioning (D and D) costs. A $500 million annual deposit indexed to an inflation rate would likely be adequate to pay for all expected cleanup costs, including D and D costs, remedial action, and depleted uranium costs

  4. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Hutter, J.C.; Srinivasan, B.; Vicek, M.; Vandegrift, G.F.

    1994-01-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl x alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U 3 Si 2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  5. Report of Sectional Committee on Industrialization of Uranium Enrichment

    International Nuclear Information System (INIS)

    1981-01-01

    In order to accelerate the development and utilization of atomic energy which is the core of the substitute energies for petroleum, it is indispensable requirement to establish independent fuel cycle as the base. In particular, the domestic production of enriched uranium is necessary to eliminate the obstacles to secure the energy supply in Japan. The construction and operation of the pilot plant for uranium enrichment by centrifugal separation method have progressed smoothly, and the technical base for the domestic production of enriched uranium is being consolidated. For the time being, the service of uranium enrichment is given by USA and France, but it is expected that the short supply will arise around 1990. The start of operation of the uranium enrichment plant in Japan is scheduled around 1990, and the scale of the plant will be expanded stepwise thereafter. The scale of production is assumed as 3000 t SWU/year in 2000. Prior to this commercial plant, the prototype plant of up to 250 t SWU/year capacity will be operated in 1986, starting the production of centrifugal separators in 1983. The production line for centrifugal separators will have the capacity of up to 125 t SWU/year. The organization for operating these plants, the home production of natural uranium conversion, the uranium enrichment by chemical method and others are described. (Kako, I.)

  6. Supply of low enriched (LEU) and highly enriched uranium (HEU) for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Enriched uranium for research reactors in the form of LEU /= low enriched uranium at 19.75% U-235) and HEU (= highly enriched uranium at 90 to 93% U-235) was and is - due to its high U-235 enrichment - a political fuel other than enriched uranium for power reactors. The sufficient availability of LEU and HEU is a vital question for research reactors, especially in Europe, in order to perform their peaceful research reactor programs. In the past the USA were in the Western hemisphere sole supplier of LEU and HEU. Today the USA have de facto stopped the supply of LEU and HEU, for HEU mainly due to political reasons. This paper deals, among others, with the present availability of LEU and HEU for European research reactors and touches the following topics: - historical US supplies, - influence of the RERTR-program, - characteristics of LEU and HEU, - military HEU enters the civil market, -what is the supply situation for LEU and HEU today? - outlook for safe supplies of LEU and HEU. (author)

  7. Development of an On-Line Uranium Enrichment Monitor

    International Nuclear Information System (INIS)

    Xuesheng, L.; Guorong, L.; Yonggang, Z.; Xueyuan, H. X.-Y.

    2015-01-01

    An on-line enrichment monitor was developed to measure the enrichment of UF6 flowing through the processing pipes in centrifuge uranium enrichment plant. A NaI(Tl) detector was used to measure the count rates of the 186 keV gamma ray emitted from 235U, and the total quantity of uranium was determined from thermodynamic characteristics of gaseous uranium hexafluoride. The results show that the maximum relative standard deviation is less than 1% when the measurement time is 120 s or more and the pressure is more than 2 kPa in the measurement chamber. There are two working models for the monitor. The monitor works normally in the continuous model, When the gas's pressure in the pipe fluctuates greatly, it can work in the intermittent model, and the measurement result is very well. The background of the monitor can be measured automatically periodically. It can control automatically electromagnetic valves open and close, so as to change the gas's quantity in the chamber. It is a kind of unattended and remote monitor, all of data can be transfer to central control room. It should be effective for nuclear materials accountability verifications and materials balance verification at uranium enrichment plant by using the monitor to monitor Uranium enrichment of gaseous uranium hexafluoride in the output end of cascade continuously. (author)

  8. EURODIF: the uranium enrichment by gaseous diffusion

    International Nuclear Information System (INIS)

    Rougeau, J.P.

    1981-01-01

    During the seventies the nuclear power programme had an extremely rapid growth rate which entailed to increase the world uranium enrichment capacity. EURODIF is the largest undertaking in this field. This multinational joint venture built and now operates and enrichment plant using the gaseous diffusion process at Tricastin (France). This plant is delivering low enriched uranium since two years and has contracted about 110 million SWU's till 1990. Description, current activity and prospects are given in the paper. (Author) [pt

  9. Purification of uranium metal

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shikama, Tatsuo; Ochiai, Akira.

    1993-01-01

    We developed the system for purifying uranium metal and its metallic compounds and for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. The degree of the purity of uranium metal was examined by the conventional electrical resistivity measurement and by the chemical analysis using the inductive coupled plasma emission spectrometry (ICP). The results show that some metallic impurities evaporated by the r.f. heating and other usual metallic impurities moved to the end of a rod with a molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained high purified uranium metal of 99.99% up with regarding to metallic impurities. The maximum residual resistivity ratio, the r.r.r., so far obtained was about 17-20. Using the purified uranium, we are attempting to grow a highly pure uranium-titanium single crystals. (author)

  10. Safety criteria of uranium enrichment plants

    International Nuclear Information System (INIS)

    Nardocci, A.C.; Oliveira Neto, J.M. de

    1994-01-01

    The applicability of nuclear reactor safety criteria applied to uranium enrichment plants is discussed, and a new criterion based on the soluble uranium compounds and hexafluoride chemical toxicities is presented. (L.C.J.A.). 21 refs, 4 tabs

  11. Perspectives for the uranium enrichment in Brazil

    International Nuclear Information System (INIS)

    Senna, J.G.S.M.

    1991-01-01

    Through an analysis of the electrical energy future in Brazil, the needs for enriched uranium are discussed, and therefore the importance of developing local capability for self-production. A description of the production processes that are well established is given first, then the analysis itself is performed and finally a visualization of the International Market for enriched uranium is shown. (author)

  12. Insights from the Genomes of Microbes Thriving in Uranium-Enriched Sediments.

    Science.gov (United States)

    Sutcliffe, Brodie; Chariton, Anthony A; Harford, Andrew J; Hose, Grant C; Stephenson, Sarah; Greenfield, Paul; Midgley, David J; Paulsen, Ian T

    2018-05-01

    Elevated uranium dose (4 g kg -1 ) causes a shift in billabong sediment communities that result in the enrichment of five bacterial species. These taxa include Geobacter, Geothrix and Dyella species, as well as a novel-potentially predatory-Bacteroidetes species, and a new member of class Anaerolineae (Chloroflexi). Additionally, a population of methanogenic Methanocella species was also identified. Genomic reconstruction and metabolic examination of these taxa reveal a host of divergent life strategies and putative niche partitioning. Resistance-nodulation-division heavy metal efflux (RND-HME) transporters are implicated as potential uranium tolerance strategies among the bacterial taxa. Potential interactions, uranium tolerance and ecologically relevant catabolism are presented in a conceptual model of life in this environment.

  13. Use of enriched uranium in Canada's power reactors

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Jackson, D.P.

    2011-01-01

    Recent trends in Canadian nuclear power reactor design and proposed development of nuclear power in Canada have indicated the possibility that Canada will break with its tradition of natural uranium fuelled systems, designed for superior neutron economy and, hence, superior uranium utilization. For instance, the Darlington B new reactor project procurement process included three reactor designs, all employing enriched fuel, although a natural uranium reactor design was included at a late stage in the ensuing environmental assessment for the project as an alternative technology. An evaluation of the alternative designs should include an assessment of the environmental implications through the entire fuel cycle, which unfortunately is not required by the environmental assessment process. Examples of comparative environmental implications of the reactor designs throughout the fuel cycle indicate the importance of these considerations when making a design selection. As Canada does not have enrichment capability, a move toward the use of enriched fuel would mean that Canada would be exporting natural uranium and buying back enriched uranium with value added. From a waste management perspective, Canada would need to deal with mill, refinery, and conversion tailings, as well as with the used fuel from its own reactors, while the enrichment supplier would retain depleted uranium with some commercial value. On the basis of reasoned estimates based on publicly available information, it is expected that enrichment in Canada is likely to be more profitable than exporting natural uranium and buying back enriched uranium. Further, on the basis of environmental assessments for enrichment facilities in other countries, it is expected that an environmental assessment of a properly sited enrichment facility would result in approval. (author)

  14. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  15. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  16. Proposal of new 235U nuclear data to improve keff biases on 235U enrichment and temperature for low enriched uranium fueled lattices moderated by light water

    International Nuclear Information System (INIS)

    Wu, Haicheng; Okumura, Keisuke; Shibata, Keiichi

    2005-06-01

    The under prediction of k eff depending on 235 U enrichment in low enriched uranium fueled systems, which had been a long-standing puzzle especially for slightly enriched ones, was studied in this report. Benchmark testing was carried out with several evaluated nuclear data files, including the new uranium evaluations from preliminary ENDF/B-VII and CENDL-3.1. Another problem reviewed here was k eff underestimation vs. temperature increase, which was observed in the sightly enriched system with recent JENDL and ENDF/B uranium evaluations. Through the substitute analysis of nuclear data of 235 U and 238 U, we propose a new evaluation of 235 U data to solve both of the problems. The new evaluation was tested for various uranium fueled systems including low or highly enriched metal and solution benchmarks in the ICSBEP handbook. As a result, it was found that the combination of the new evaluation of 235 U and the 238 U data from the preliminary ENDF/B-VII gives quite good results for most of benchmark problems. (author)

  17. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  18. Profile of World Uranium Enrichment Programs-2009

    International Nuclear Information System (INIS)

    Laughter, Mark D.

    2009-01-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  19. South Australia, uranium enrichment

    International Nuclear Information System (INIS)

    1976-02-01

    The Report sets out the salient data relating to the establishment of a uranium processing centre at Redcliff in South Australia. It is conceived as a major development project for the Commonwealth, the South Australian Government and Australian Industry comprising the refining and enrichment of uranium produced from Australian mines. Using the data currently available in respect of markets, demand, technology and possible financial return from overseas sales, the project could be initiated immediately with hexafluoride production, followed rapidly in stages by enrichment production using the centrifuge process. A conceptual development plan is presented, involving a growth pattern that would be closely synchronised with the mining and production of yellowcake. The proposed development is presented in the form of an eight-and-half-year programme. Costs in this Report are based on 1975 values, unless otherwise stated. (Author)

  20. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-12-01

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments

  1. Critical experiments on low-enriched uranium oxide system with H/U=1.25

    International Nuclear Information System (INIS)

    Oh, I.; Rothe, R.E.; Tuck, G.

    1982-01-01

    Fifteen (15) critical experiments were performed on a horizontal split table machine using 4.48%-enriched sup(235)U uranium oxide(U 3 O 8 ). The oxide was compacted to a density of 4.68g/cm 3 and placed in 152 mm cubical aluminum cans. Water was added to achive an H/U of 1.25. Various arrays of oxide cans were distributed on each half of the split table, and the separation between halves reduced until criticality occurred. The critical table separation varied from 3.59 mm to 18.40 mm. Twelve (12) experiments required the addition of a high-enriched(-93 %sup(235)U) metal or solution driver to achieve criticality. These experiments were performed in a plastic, concrete, or thin steel reflector. Three additional experiments in the plastic reflector contained either 9.3-mm- or 24.3-mm-thick plastic moderator material between the oxide cans and did not require a driver to achieve criticality. Critical uranium driver masses ranged from 9.999 kg to 14.000 kg (solution driver), and from 25.378 kg to 29.278 kg (metal driver) for 5X5X5 arrays of uranium oxide cans. Always, one or four of these 125 cans had to be removed to make room for the drivers. Therefore, the uranium oxide masses used were 1823.8 kg and 1863.5 kg. For the moderated experiments, the uranium oxide mass ranged between 574.4 kg and 1210.0 kg. (Author)

  2. NWIS Measurements for uranium metal annular castings

    International Nuclear Information System (INIS)

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1998-01-01

    This report describes measurements performed with annular uranium metal castings of different enrichments to investigate the use of 252 Cf-source-driven noise analysis measurements as a means to quantify the amount of special nuclear material (SNM) in the casting. This work in FY 97 was sponsored by the Oak Ridge Y-12 Plant and the DOE Office of Technology Development Programs. Previous measurements and calculational studies have shown that many of the signatures obtained from the source-driven measurement are very sensitive to fissile mass. Measurements were performed to assess the applicability of this method to standard annular uranium metal castings at the Oak Ridge Y-12 plant under verification by the International Atomic Energy Agency (IAEA) using the Nuclear Weapons Identification System (NWIS) processor. Before the measurements with different enrichments, a limited study of source-detector-casting moderator configurations was performed to enhance the correlated information. These configurations consisted of a casting with no reflector and with various thicknesses of polyethylene reflectors up to 10.16 cm in 2.54 cm steps. The polyethylene moderator thickness of 7.62 cm was used for measurements with castings of different enrichments reported here. The sensitivity of the measured parameters to fissile mass was investigated using four castings each with a different enrichment. The high sensitivity of this measurement method to fissile mass and to other material and configurations provides some advantages over existing safeguards methods

  3. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  4. The uranium enrichment industry and the SILEX process

    International Nuclear Information System (INIS)

    Goldsworthy, M.

    1999-01-01

    Silex Systems Limited has been developing a new laser isotope separation process since 1992. The principle application of the SILEX Technology is Uranium Enrichment, the key step in the production of fuel for nuclear power plants. The Uranium Enrichment industry, today worth ∼ US$3.5 Billion p.a., is dominated by four major players, the largest being USEC with almost 40% of the market. In 1996, an agreement was signed between Silex and USEC to develop SILEX Technology for potential application to Uranium Enrichment. The SILEX process is a low cost, energy efficient scheme which may provide significant commercial advantage over current technology and competing laser processes. Silex is also investigating possible application to the enrichment of Silicon, Carbon and other materials. Significant markets may develop for such materials, particularly in the semiconductor industry

  5. How is uranium supply affecting enrichment?

    International Nuclear Information System (INIS)

    Steve Kidd

    2007-01-01

    As a result of the enlivened uranium market, momentum has in turn picked up in the enrichment sector. What are the consequences of higher uranium prices? There is, of course, a link between uranium and enrichment supply to the extent that they are at least partial substitutes. On the enrichment supply side, the most obvious feature is the gradual replacement of the old gas diffusion facilities of Usec in the USA and EURODIF in France with more modern and economical centrifuge plants. Assuming Usec can overcome the financing and technical issues surrounding its plans, the last gas diffusion capacity should disappear around 2015 and the entire enrichment market should then be using centrifuges. On the commercial side, the key anticipated developments are mostly in Russia. Although there should still continue to be substantial quantities of surplus Russian HEU available for down blending in the period beyond 2013, it is now reasonable to expect that it will be mostly consumed by internal needs, to fuel Russian-origin reactors both at home and in export markets such as China and India. Finally, as a key sensitive area for the non-proliferation of nuclear weapons, the enrichment sector is likely to be a central point of the new international arrangements which must be developed to support a buoyant nuclear sector throughout this century.

  6. Uranium enrichment: heading for the abyss

    International Nuclear Information System (INIS)

    Norman, C.

    1983-01-01

    This article discusses the federal government's $2.3 billion a year business enriching uranium for nuclear power plants which is heading toward a major crisis. Due to miscalculations by the Department of Energy, it is caught with billions of dollars of construction in progress just as projected demand for enriched uranium is decreasing. At the center of the controversy is the Gas Centrifuge Plant at Portsmouth, Ohio - estimated to cost $10 billion dollars. A review of how DOE got into this situation and how they plan to solve it is presented

  7. Determination of uranium enrichment by using gamma-spectrometric methods

    International Nuclear Information System (INIS)

    Kutnyj, D.V.; Telegin, Yu.N.; Odejchuk, N.P.; Mikhailov, V.A.; Tovkanets, V.E.

    2009-01-01

    By using commercial analysis programs MGAU (LLNL, USA) and FRAM (LANL, USA) the summary error of gamma-spectrometric uranium enrichment measurements was investigated. Uranium samples with enrichments of 0,71; 4,46 and 20,1 % were measured. The coaxial high purity germanium detector (type GC) and the planar germanium detector (type LEGe) were used as gamma-radiation detectors. It was shown that experimental equipment and mathematical software available in NSC KIPT allow us to measure uranium enrichment by nondestructive method with accuracy of not worse than 2%.

  8. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  9. Enriched uranium cycles in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Mazzola, A.

    1994-01-01

    A study was made on the substitution of natural uranium with enriched and on plutonium recycle in unmodified PHWRs (pressure vessel reactor). Results clearly show the usefulness of enriched fuel utilisation for both uranium ore consumption (savings of 30% around 1.3% enrichment) and decreasing fuel cycle coasts. This is also due to a better plutonium exploitation during the cycle. On the other hand plutonium recycle in these reactors via MOX-type fuel appears economically unfavourable under any condition

  10. Highly Enriched Uranium Metal Annuli and Cylinders with Polyethylene Reflectors and/or Internal Polyethylene Moderator

    International Nuclear Information System (INIS)

    Tyler Sumner; J. Blair Briggs; Leland Montierth

    2007-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, experiments of uranium metal annuli with and without polyethylene reflectors and with the central void region either empty or filled with polyethylene were evaluated under ICSBEP Identifier HEU-MET-FAST-076. The outer diameter of the uranium annuli varied from 9 to 15 inches in two-inch increments. In addition, there were uranium metal cylinders with diameters varying from 7 to 15 inches with complete reflection and reflection on one flat surface to simulate floor reflection. Most of the experiments were performed between February 1964 and April 1964. Five partially reflected (reflected on the top only) experiments were assembled in November 1967, but are judged by the evaluators not to be of benchmark quality. Twenty-four of the twenty-five experiments have been determined to have fast spectra. The only exception has a mixed spectrum. Analyses were performed in which uncertainty associated with five different parameters associated with the uranium parts and three associated with the polyethylene parts was evaluated. Included were uranium mass, height, diameter, isotopic content, and impurity content and polyethylene mass, diameter, and impurity content. There were additional uncertainties associated with assembly alignment, support structure, and the value

  11. Slightly enriched uranium fuel for a PHWR

    International Nuclear Information System (INIS)

    Notari, C.; Marajofsky, A.

    1997-01-01

    An improved fuel element design for a PHWR using slightly enriched uranium fuel is presented. It maintains the general geometric disposition of the currently used in the argentine NPP's reactors, replacing the outer ring of rods by rods containing annular pellets. Power density reduction is achieved with modest burnup losses and the void volume in the pellets can be used to balance these two opposite effects. The results show that with this new design, the fuel can be operated at higher powers without violating thermohydraulic limits and this means an improvement in fuel management flexibility, particularly in the transition from natural uranium to slightly enriched uranium cycle. (author)

  12. Uranium enrichment services in the United States

    International Nuclear Information System (INIS)

    Jelinek, P.; Lenders, M.

    1994-01-01

    The United States of America is the world's largest market for uranium enrichment services. After the disintegration of the Soviet Union, Russian uranium is entering the world market on an increasing scale. The U.S. tries to protect its market and, in this connection, also the European market from excessive price drops by taking anti-dumping measures. In order to become more competitive, American companies have adapted modern enrichment techniques from Europe. European - U.S. joint ventures are to help, also technically and economically, to integrate military uranium, accumulating as a consequence of worldwide disarmament, into the commercial fuel cycle for the peaceful use of nuclear power. (orig.) [de

  13. A comparison between thorium-uranium and low enrichment uranium cycles in the high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cerles, J M

    1973-03-15

    In a previous report, it was shown that the Uranium cycle could be used as well with multi-hole block (GGA type) as with tubular elements. Now, in a F.S.V. geometry, a comparison is made between Thorium cycle and Uranium cycle. This comparison will be concerned with the physical properties of the materials, the needs of natural Uranium, the fissile material inventory and, at last, an attempt of economical considerations. In this report the cycle will be characterizd by the fertile material. So, we write ''Thorium cycle'' for Highly Enriched Uranium - Thorium cycle and ''Uranium cycle'' for low Enrichment Uranium cycle.

  14. Uranium enrichment: a vital new industry

    International Nuclear Information System (INIS)

    1975-10-01

    The energy problem facing the nation and the need for nuclear power are pointed out. Uranium enrichment and the demand for it are discussed. Reasons for, and obstacles to, private enrichment are outlined. The President's plan (including the Nuclear Fuel Assurance Act) is summarized

  15. On the theory system of hydrothermal uranium metallization in China

    International Nuclear Information System (INIS)

    Du Letian

    2011-01-01

    Based on summarizing the mass of research outcome of the predecessors, the author attempts to make a brief generalization on the theory system of hydrothermal uranium mineralization in China. The system of uranium metallization is founded in the basic way of uranium source-migration-transportation-richment-reservation. The system mainly consists of the following frames: (1) mineralization type of silification zone; (2) age gap of mineralization to host rock; (3) alkli metasomatism; (4) metallogenic layer of crust; (5)integratation of 4 types mineralization (granite, volcanics, carbonaceous-siliceous-argilaceous rock and sandstone) in tectonic-hydrothermal process; (6) pre-enrichment process of metallization; (7) decouplement of granite magma evolution; (8) types of rich ore by high tempreture sericitization; (9)basalt event;(10) rock and ore formation by HARCON. (authors)

  16. Criticality analysis in uranium enrichment plant

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Kiyose, Ryohei

    1977-01-01

    In a large scale uranium enrichment plant, uranium inventory in cascade rooms is not very large in quantity, but the facilities dealing with the largest quantity of uranium in that process are the UF 6 gas supply system and the blending system for controlling the product concentration. When UF 6 spills out of these systems, the enriched uranium is accumulated, and the danger of criticality accident is feared. If a NaF trap is placed at the forestage of waste gas treatment system, plenty of UF 6 and HF are adsorbed together in the NaF trap. Thus, here is the necessity of checking the safety against criticality. Various assumptions were made to perform the computation surveying the criticality of the system composed of UF 6 and HF adsorbed on NaF traps with WIMS code (transport analysis). The minimum critical radius resulted in about 53 cm in case of 3.5% enriched fuel for light water reactors. The optimum volume ratio of fissile material in the double salt UF 6 .2NaF and NaF.HF is about 40 vol. %. While, criticality survey computation was also made for the annular NaF trap having the central cooling tube, and it was found that the effect of cooling tube radius did not decrease the multiplication factor up to the cooling tube radius of about 5 cm. (Wakatsuki, Y.)

  17. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  18. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  19. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  20. Experiments of JRR-4 low-enriched-uranium-silicied fuel core

    International Nuclear Information System (INIS)

    Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; Kashima, Yoichi

    2006-03-01

    JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998. (author)

  1. The Passive Neutron Enrichment Meter for Uranium Cylinder Assay

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A.; Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johanna B. [Safeguards Science and Technology Group (N-1), Los Alamos National Laboratory, Los Alamos (United States)

    2011-12-15

    As fuel cycle technology becomes more prevalent around the world, international safeguards have become increasingly important in verifying that nuclear materials have not been diverted. Uranium enrichment technology is a critical pathway to nuclear weapons development, making safeguards of enrichment facilities especially important. Independently-verifiable material accountancy is a fundamental measure in detecting diversion of nuclear materials. This paper is about a new instrument for uranium cylinder assay for enrichment plant safeguards called the Passive Neutron Enrichment Meter (PNEM). The measurement objective is to simultaneously verify uranium mass and enrichment in Uf6 cylinders. It can be used with feed, product, and tails cylinders. Here, we consider the enrichment range up to 5% {sup 235}U. The concept is to use the Doubles-to-Singles count rate to give a measure of the {sup 235}U enrichment and the Singles count rate to provide a measure of the total uranium mass. The cadmium ratio is an additional signature for the enrichment that is especially useful for feed and tails cylinders. PNEM is a {sup 3}He-based system that consists of two portable detector pods. Uranium enrichment in UF{sub 6} cylinders is typically determined using a gamma-ray-based method that only samples a tiny volume of the cylinder's content and requires knowledge of the cylinder wall thickness. The PNEM approach has several advantages over gamma-ray-based methods including a deeper penetration depth into the cylinder, meaning it can be used with heterogeneous isotopic mixtures of UF{sub 6}. In this paper, we describe a Monte Carlo modelling study where we have examined the sensitivity of the system to systematic uncertainties such as the distribution of UF{sub 6} within the cylinder. We also compare characterization measurements of the PNEM prototype to the expected measurements calculated with Monte Carlo simulations.

  2. Enriched uranium sales: effect on supply industry

    International Nuclear Information System (INIS)

    Andersen, R.K.

    1985-01-01

    The subject is covered in sections: introduction (combined effect of low-enriched uranium (LEU) inventory sales and utility services enrichment contract terms); enrichment market overview; enrichment market dynamics; the reaction of the US Department of Energy; elimination of artificial demand; draw down of inventories; purchase and sale of LEU inventories; tails assay option; unfulfilled requirements for U 3 O 8 ; conclusions. (U.K.)

  3. Automated assay of uranium solution concentration and enrichment

    International Nuclear Information System (INIS)

    Horley, E.C.; Gainer, K.; Hansen, W.J.; Kelley, T.A.; Parker, J.L.; Sampson, T.E.; Walton, G.; Jones, S.A.

    1992-01-01

    For the first time, the concentration and enrichment of uranium solutions can be measured in one step. We have developed a new instrument to automatically measure the concentration and enrichment of uranium solutions through the adaptation of a commercial robot. Two identical solution enrichment systems are being installed in the Portsmouth Gaseous Diffusion Plant. These automated systems will reduce radiation exposure to personnel and increase the reliability and repeatability of the measurements. Each robotic system can process up to 40 batch and 8 priority samples in an unattended mode. Both passive gamma-ray and x-ray fluorescence (XRF) analyses are performed to determine total uranium concentration and 235 U enrichment. Coded samples are read by a bar-code reader to determine measurement requirements, then assayed by either or both of the gamma-ray and XRF instruments. The robot moves the sample containers and operates all shield doors and shutters, reducing hardware complexity. If the robots is out of service, an operator can manually perform all operations

  4. Standard specification for uranium hexafluoride enriched to less than 5 % 235U

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers nuclear grade uranium hexafluoride (UF6) that either has been processed through an enrichment plant, or has been produced by the blending of Highly Enriched Uranium with other uranium to obtain uranium of any 235U concentration below 5 % and that is intended for fuel fabrication. The objectives of this specification are twofold: (1) To define the impurity and uranium isotope limits for Enriched Commercial Grade UF6 so that, with respect to fuel design and manufacture, it is essentially equivalent to enriched uranium made from natural UF6; and (2) To define limits for Enriched Reprocessed UF6 to be expected if Reprocessed UF6 is to be enriched without dilution with Commercial Natural UF6. For such UF6, special provisions, not defined herein, may be needed to ensure fuel performance and to protect the work force, process equipment, and the environment. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched UF6 that is to be used in the pro...

  5. Energy consumption of chemical uranium enrichment

    International Nuclear Information System (INIS)

    Miyake, T.; Takeda, K.; Obanawa, H.

    1987-01-01

    A quantitative study of chemical separation energy for enriching uranium-235 by the redox chromatography was conducted. Isotope exchange reactions between U 4+ -UO 2 2+ ions in the enrichment column are maintained by the redox reactions. The chemical separation energy is ultimately supplied by hydrogen and oxygen gas for regenerating redox agents. The redox energy for the isotope separation is theoretically predicted as a function of the dynamic enrichment factor observed in the chromatographic development of uranium adsorption band. Thermodynamic treatments of the equilibrium reactions implies and inverse redox reaction which can be enhanced by the chemical potential of the ion-exchange reaction of oxidant. Experimental results showed 30 to 90% recovery of the redox energy by the inverse reaction. These results will devise a simplified redox chromatography process where a number of columns in one module is reduced

  6. Material control and accounting requirements for uranium enrichment facilities

    International Nuclear Information System (INIS)

    Ting, P.

    1991-01-01

    This paper reports that the U.S. Nuclear Regulatory Commission has defined material control and accounting (MC and A) requirement for low-enriched uranium enrichment plants licensed under 10 CFR parts 40 and 70. Following detailed assessment of potential safeguards issues relevant to these facilities, a new MC and A rule was developed. The primary safeguards considerations are detection of the loss of special nuclear material, detection of clandestine production of special nuclear material of low strategic significance for unauthorized use or distribution, and detection of unauthorized production of uranium enriched to ≥10 wt % U-235. The primary safeguards concerns identified were the large absolute limit of error associated with the material balance closing, the inability to shutdown some uranium enrichment technologies to perform a cleanout inventory of the process system, and the flexibility of some of these technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could circumvent the detection of the production and removal of 5 kilograms of U-235 as high-enriched uranium through conventional material control and accounting programs. Safeguards techniques, including the use of production and process control information, measurements, and technical surveillance, were identified to compensate for these concerns

  7. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M L; Perkins, W C; Thompson, M C; Burney, G A; Russell, E R; Holcomb, H P; Landon, L F

    1979-04-01

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.

  8. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hyder, M.L.; Perkins, W.C.; Thompson, M.C.; Burney, G.A.; Russell, E.R.; Holcomb, H.P.; Landon, L.F.

    1979-04-01

    Uranium fuels containing 235 U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of 238 Pu is high enough to make its recovery desirable. Most of the 238 Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, 239 Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse

  9. Materials safeguards and accountability in the low enriched uranium conversion-fabrication sector of the fuel cycle

    International Nuclear Information System (INIS)

    Schneider, R.A.; Nilson, R.; Jaech, J.L.

    1978-01-01

    Today materials accounting in the low enriched conversion-fabrication sector of the LWR fuel cycle is of increased importance. Low enriched uranium is rapidly becoming a precious metal with current dollar values in the range of one dollar per gram comparing with gold and platinum at 7-8 dollars per gram. In fact, people argue that its dollar value exceeds its safeguards value. Along with this increased financial incentive for better material control, the nuclear industry is faced with the impending implementation of international safeguards and increased public attention over its ability to control nuclear materials. Although no quantity of low enriched uranium (LEU) constitutes a practical nuclear explosive, its control is important to international safeguards because of plutonium production or further enrichment to an explosive grade material. The purpose of the paper is to examine and discuss some factors in the area of materials safeguards and accountability as they apply to the low enriched uranium conversion-fabrication sector. The paper treats four main topics: basis for materials accounting; our assessment of the proposed new IAEA requirements; adequacy of current practices; and timing and direction of future modifications

  10. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  11. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  12. Uranium mineralization in fluorine-enriched volcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  13. Benchmark critical experiments on low-enriched uranium oxide systems with H/U = 0.77

    International Nuclear Information System (INIS)

    Tuck, G.; Oh, I.

    1979-08-01

    Ten benchmark experiments were performed at the Critical Mass Laboratory at Rockwell International's Rocky Flats Plant, Golden, Colorado, for the US Nuclear Regulatory Commission. They provide accurate criticality data for low-enriched damp uranium oxide (U 3 O 8 ) systems. The core studied consisted of 152 mm cubical aluminum cans containing an average of 15,129 g of low-enriched (4.46% 235 U) uranium oxide compacted to a density of 4.68 g/cm 3 and with an H/U atomic ratio of 0.77. One hundred twenty five (125) of these cans were arranged in an approx. 770 mm cubical array. Since the oxide alone cannot be made critical in an array of this size, an enriched (approx. 93% 235 U) metal or solution driver was used to achieve criticality. Measurements are reported for systems having the least practical reflection and for systems reflected by approx. 254-mm-thick concrete or plastic. Under the three reflection conditions, the mass of the uranium metal driver ranged from 29.87 kg to 33.54 kg for an oxide core of 1864.6 kg. For an oxide core of 1824.9 kg, the weight of the high concentration (351.2 kg U/m 3 ) solution driver varied from 14.07 kg to 16.14 kg, and the weight of the low concentration (86.4 kg U/m 3 ) solution driver from 12.4 kg to 14.0 kg

  14. Uranium enrichment by centrifuge in Japan

    International Nuclear Information System (INIS)

    Watanabe, T.; Murase, T.

    1977-01-01

    The demand for enriched uranium is on the increase with nuclear power capacity in which the LWR predominates and is estimated to exceed the supply from the present facilities in the world in less than ten years. Therefore, the basic strategy for enriched uranium is investigated on the following three-point long-range program in Japan: 1. To continue negotiations to extend the current allocation by the long-term contract; 2. To seek active participation in international enrichment projects; and 3. To make efforts to develop uranium enrichment technology and to construct inland facilities. On this basis, a vigorous development program of gas centrigue process for industrialization was launched out in 1972 as a national project. Ever since substantial progress in this field has been made and development works have been increased year after year. At present, a concrete plan of a pilot plant is taking shape. Up to now, several types of centrifuges were developed, of which some were completed as prototype models, and subjected to life tests and also to extensive earthquake-resistivity tests for the characteristics of Japanese geological condition. An enrichment plant is composed of so many centrifuges that the installation and piping system of centrifuges is an important factor which has an effect on plant economy and reliability. Two types of the experimental cascade were constructed in Japan. One has been in operation since 1973, and the other since 1975. Valuable empirical data have been accumulated on cascade characteristics, maintenance scheme and so on. It will be important for the coming plants to have a flexibility to escalation of labor and energy cost, or to variation of the separative work requirement and further. An economic prospect of centrifuge enrichment process is presented

  15. A PHWR with slightly enriched uranium about the first core

    International Nuclear Information System (INIS)

    Notari, C.

    1997-01-01

    Many different studies have been performed in Argentina regarding the use of slightly enriched uranium in the PHWR nuclear plants. These referred mainly to operating plants so that a transition had to be considered from the present natural uranium fuel cycle to the slightly enriched one. In this analysis, technical and economical arguments are presented which favor the use of a natural uranium initial core. The levelized fuel costs are shown to be practically insensitive to the first core and a fast transition is more influential than an initially enriched core. (author)

  16. The supply of the European community countries with enriched uranium

    International Nuclear Information System (INIS)

    1975-02-01

    A discussion is given of a survey regarding the supply of enriched uranium to the countries of the European Community. Costs of enriched uranium imports were not available but import values were calculated using world market prices. (R.L.)

  17. Uranium enrichment: an evolving market

    International Nuclear Information System (INIS)

    Longenecker, J.; Witzel, R.

    1997-01-01

    With over half of the world uranium enrichment market uncommitted to any supplier early in the next century, competition is certain to be fierce. In the meantime the outlood remains unclear, with the market dominated by a number of developments -privatisation of the United States Enrichment Corp (USEC), increasing availability of Russian and US military inventories, the deployment of advanced technology and the closure of nuclear power plants due to deregulation. (author)

  18. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  19. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  20. Safety of uranium enrichment plant

    International Nuclear Information System (INIS)

    Yonekawa, Shigeru; Morikami, Yoshio; Morita, Minoru; Takahashi, Tsukasa; Tokuyasu, Takashi.

    1991-01-01

    With respect to safety evaluation of the gas centrifuge enrichment facility, several characteristic problems are described as follows. Criticality safety in the cascade equipments can be obtained to maintain the enrichment of UF 6 below 5 %. External radiation dose equivalent rate of the 30B cylinder is low enough, the shield is not necessary. Penetration ratio of the two-stage HEPA filters for UF 6 aerosol is estimated at 10 -9 . From the experimental investigation, vacuum tightness is not damaged by destruction of gas centrifuge rotor. Carbon steel can be used for uranium enrichment equipments under the condition below 100degC. (author)

  1. The world market-situation for uranium and its enrichment

    International Nuclear Information System (INIS)

    Lurf, G.

    1977-01-01

    The development of the uranium market is described as well as all pertinent facts which may have contributed to the strong rise in uranium prices of the past three years. The policies of countries which may in the future become major uranium exporters are discussed. For the conversion of uranium there is sufficient capacity. However, if construction of new plants is not started soon shortages could occur in the early 80ies. The market for enrichment has characterized in past years by substantial overcapacities. If new enrichment plants are constructed according to present schedules this overcapacity may prevail into the early 90ies. (orig.) [de

  2. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook

    International Nuclear Information System (INIS)

    1980-08-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this document has been prepared to assist reactor operators in determining whether conversion to the use of low enriched uranium (LEU) fuel designs is technically feasible for their specific reactor, and to assist in making a smooth transition to the use of LEU fuel designs where appropriate

  3. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  4. Valence-associated uranium isotope fractionation of uranium enriched phosphate in a shallow aquifer, Lee County, Florida

    International Nuclear Information System (INIS)

    Weinberg, J.M.; Levine, B.R.; Cowart, J.B.

    1993-01-01

    The source of anomalously high concentrations of uranium, characterized by U-234/U-238 activity ratios significantly less than unity, in shallow groundwaters of Lee County, Florida, was investigated. Uranium in cores samples was separated into U(IV) and U(VI) oxidation state fractions, and uranium analyses were conducted by alpha spectrometry. Uranium mobility was also studied in selected leaching experiments. Results indicate that mobilization of unusually soluble uranium, present in uranium enriched phosphate of the Pliocene age Tamiami Formation at determined concentrations of up to 729 ppm, is the source for high uranium concentrations in groundwater. In leaching experiments, approximately one-third of the uranium present in the uranium enriched phosphate was mobilized into the aqueous phase. Results of previous investigations suggest that U-234, produced in rock by U-238 decay, is selectively oxidized to U(VI). The uranium enriched phosphate studied in this investigation is characterized by selective reduction of U-234, with a pattern of increasing isotopic fractionation with core depth. As a consequence, U-234/U-238 activity ratios greater than 1.0 in the U(IV) fraction, and less than 1.0 in the U(VI) fraction have developed in the rock phase. In leaching experiments, the U(VI) fraction from the rock was preferentially mobilized into the aqueous phase, suggesting that U-234/U-238 activity ratios of leaching groundwaters are strongly influenced by the isotopic characteristics of the U(VI) fraction of rock. It is suggested that preferential leaching of U(VI), present in selectivity reduced uranium enriched phosphate, is the source for low activity ratio groundwaters in Lee County

  5. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  6. Uranium enrichment: investment options for the long term

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables

  7. Long-term outlook for global natural uranium and uranium enrichment supply and demand situations after the impact of Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Murakami, Tomoko

    2012-01-01

    In this paper, the authors propose long-term projections of global nuclear power generation, uranium production, and uranium enrichment capacities by region, and estimate the trade flows of natural uranium and uranium enrichment activities in 2020 and 2035. In spite of the rapid nuclear power generation capacity growth expected especially in Asia, the natural uranium and uranium enrichment trade will not be tightened by 2020 due to the projected increase in both natural uranium production and uranium enrichment capacities, which may cause a drop in natural uranium and uranium enrichment prices. Thus, there is a great possibility that the current projects for capacity expansion will be delayed considerably. However, in the 'high-demand scenario', where nuclear expansion will be accelerated due to growing concerns about global warming and energy security issues, additional investments in uranium production and enrichment facilities will be needed by 2035. In Asia, the self-sufficiency ratio for both natural uranium supply and uranium enrichment activities will remain relatively low until 2035. However, the Herfindahl-Hirschman (HH) index of natural uranium and uranium enrichment activity trade to Asia will be lowered considerably up to 2035, indicating that nuclear capacity expansion can contribute to enhancing energy security in Asia. (author)

  8. Electrically Cooled Germanium System for Measurements of Uranium Enrichments in UF6 Cylinders

    International Nuclear Information System (INIS)

    Dvornyak, P.; Koestlbauer, M.; Lebrun, A.; Murray, M.; Nizhnik, V.; Saidler, C.; Twomey, T.

    2010-01-01

    Measurements of Uranium enrichment in UF6 cylinders is a significant part of the IAEA Safeguards verification activities at enrichment and conversion plants. Nowadays, one of the main tools for verification of Uranium enrichment in UF6 cylinders used by Safeguards inspectors is the gamma spectroscopy system with HPGe detector cooled with liquid nitrogen. Electrically Cooled Germanium System (ECGS) is a new compact and portable high resolution gamma spectrometric system free from liquid nitrogen cooling, which can be used for the same safeguards applications. It consists of the ORTEC Micro-trans-SPEC HPGe Portable Spectrometer, a special tungsten collimator and UF6 enrichment measurement software. The enrichment of uranium is determined by of quantifying the area of the 185.7 keV peak provided that the measurement is performed with a detector viewing an infinite thickness of material. Prior starting the verification of uranium enrichment at the facility, the ECGS has to be calibrated with a sample of known uranium enrichment, material matrix, container wall thickness and container material. Evaluation of the ECGS capabilities was performed by carrying out a field test on actual enrichment verification of uranium in UF6 cylinder or other forms of uranium under infinite thickness conditions. The results of these evaluations allow to say that the use of ECGS will enhance practicality of the enrichment measurements and support unannounced inspection activities at enrichment and conversion plants. (author)

  9. Uranium enrichment activities: the SILVA program

    International Nuclear Information System (INIS)

    Guyot, J.; Cazalet, J.; Camarcat, N.; Figuet, J.

    1994-01-01

    Through its commitment to a nuclear electricity generation policy, France holds today a specific position in the uranium enrichment market thanks to the modern multinational EURODIF gaseous diffusion plant. France has, altogether, a long-term goal in developing SILVA, a laser uranium enrichment process, based on the selective photo-ionization of U-235. After reviewing the fundamentals of SILVA (the laser system with copper vapor lasers and dye lasers and the separator system), a description of the general organization of the R and D program is provided going through basic research, subsystems assessment, production demonstrations and simulations (with the LACAN code), plant design and economics. The general schedule of SILVA is outlined, leading to the possible construction of a commercial plant. 7 figs., 11 refs

  10. Use of Savannah River Site facilities for blend down of highly enriched uranium

    International Nuclear Information System (INIS)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO 3 ) powder, uranyl nitrate [UO 2 (NO 3 ) 2 ] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO 2 ) or uranium hexafluoride (UF 3 ), the normal inputs for commercial fuel fabrication. This study's scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO 2 or UF 6 , blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM)

  11. Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal

    International Nuclear Information System (INIS)

    West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

    1995-09-01

    Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO 2 ) laser is used to initiate the reaction between uranium tetrafluoride (UF 4 ) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I 2 ) as a chemical booster. The results of five reductions of UF 4 , spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area

  12. 10 CFR 40.33 - Issuance of a license for a uranium enrichment facility.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Issuance of a license for a uranium enrichment facility... License Applications § 40.33 Issuance of a license for a uranium enrichment facility. (a) The Commission... the licensing of the construction and operation of a uranium enrichment facility. The Commission will...

  13. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  14. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Clerc, M.; Plurien, P.

    1986-01-01

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  15. URENCO. Uranium enrichment with advanced technology

    International Nuclear Information System (INIS)

    2011-01-01

    URENCO Deutschland is a subsidiary of URENCO Enrichment Company Limited, an international enterprise founded in 1970 in the State Treaty of Almelo, which offers uranium enrichment for nuclear power plants all over the world with the use of advanced technology. URENCO facilities at present are operated in the United Kingdom, the Netherlands, USA, and in Germany. The German URENCO location is Gronau, Westphalia, where cascades have been in operation since 1985 using centrifuge technology to enrich nuclear fuel to up to 5% uranium-235. The URENCO Group supplies nuclear power plants in Europe and overseas countries with a world market share, at present, of more than 25% with a rising tendency. The first uranium separation plant in Gronau (UTA-1) attained its full separation performance of 1,800 t USW/a in late 2005. In February 2005, construction and operation of another plant had been licensed, which can raise the aggregate capacity on site to 4,500 t USW per annum. Construction of the new plant (UTA-2) was begun in summer 2005. UTA-2 will use the latest, most powerful URENCO centrifuge. URENCO has more than 3,500 visitors a year at its German location alone, thus demonstrating its pro-active information policy and offering to the public a maximum of opportunities to acquire information by attending presentations and tours of the plant. (orig.)

  16. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  17. Distribution of uranium supply and enrichment

    International Nuclear Information System (INIS)

    Bamford, F.W.

    1982-01-01

    Uranium supply and demand is examined from the perspective of companies in the uranium hexafluoride (UF6) conversion business whose main interest is their sources of uranium supply and UF6 destinations because of transportation costs. Because of the variations in yellowcake transport, charges for conversion, and UF6 transport costs, most converters don't have standard prices. Companies try to look ahead to determine patterns of supplies and delivery points when they analyze the market and estimate future prices. Market analyses must take into account the purchasing policies of utilities around the world. The presentation shows North America supplying about 40% of world uranium, with about 13% of the enrichment done elsewhere. It also shows North American converters getting 53% of the business, but that will require importing uranium from outside North America. 6 tables

  18. Uranium enrichment: a competitive market in the future?

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Andre Ferreira; Honaiser, Eduardo Henrique Rangel [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)]. E-mail: 20-1@ctemsp.mar.mil.br

    2005-07-01

    Uranium enrichment is the costly step in the nuclear fuel cycle. It has born as a an activity for the military in the 40s, financed by governments, such as the United States (US) and the former Soviet Union. Later, other major nations have joined them in the nuclear weapons development. The activity of enrichment was done in each country that developed nuclear weapons, and the nuclear weapons countries, especially the US and Soviet Union, dictated the mined uranium market. In the 70s, with the growth of the commercial use of nuclear energy, uranium enrichment started to be treated as a market, which gradually have structured itself, strongly influenced by the historical background. Today, the market is an oligopoly of four major government-owned (or government-influenced) companies. In this paper, the trends in the enrichment market are identified, focusing on competitiveness. Through the conduction of a market analysis (past and future), and the study of the market structure evolution, a more competitive market is shown, but still influenced by the governmental participation. Competitiveness is dictated by government support, verticalization capacity, and, mainly by technological advantages. (author)

  19. Uranium enrichment: a competitive market in the future?

    International Nuclear Information System (INIS)

    Marques, Andre Ferreira; Honaiser, Eduardo Henrique Rangel

    2005-01-01

    Uranium enrichment is the costly step in the nuclear fuel cycle. It has born as a an activity for the military in the 40s, financed by governments, such as the United States (US) and the former Soviet Union. Later, other major nations have joined them in the nuclear weapons development. The activity of enrichment was done in each country that developed nuclear weapons, and the nuclear weapons countries, especially the US and Soviet Union, dictated the mined uranium market. In the 70s, with the growth of the commercial use of nuclear energy, uranium enrichment started to be treated as a market, which gradually have structured itself, strongly influenced by the historical background. Today, the market is an oligopoly of four major government-owned (or government-influenced) companies. In this paper, the trends in the enrichment market are identified, focusing on competitiveness. Through the conduction of a market analysis (past and future), and the study of the market structure evolution, a more competitive market is shown, but still influenced by the governmental participation. Competitiveness is dictated by government support, verticalization capacity, and, mainly by technological advantages. (author)

  20. R and D on laser uranium enrichment

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    An AEC Advisory Committee on Uranium Enrichment has completed investigations into the actual condition of laser isotope separation. The working group set up for the purpose has issued a report on the series of investigations made on its development and measures for promoting it. The report says that the development of the process in Japan is at a fundamental stage. Noting that further efforts are needed before its future can be predicted, the report proposes a cource of research and development for the immediate future. For the atomic vapor laser isotope separation (AVLIS), government organizations are engaged in data base buildup and conducting basis engineering tests, and Japan Atomic Energy Research Institute will consider the re-enrichment of uranium recovered from reprocessing. Non-governmental unions of researchers will promote the combination of copper-vapor laser and dye laser. For the molecular laser isotope separation (MLIS), the Institute of Physical and Chemical Research will take up studies with the cooperation of the Power Reactor and Nuclear Fuel Development Corporation. In chapters covering the philosophy of laser uranium enrichment technology development, the report deals with its significance, actual conditions and tasks, and goals and measures for its promotion. (Nogami, K.)

  1. 76 FR 72984 - Revised Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2011-11-28

    ... NUCLEAR REGULATORY COMMISSION Revised Application for a License To Export High-Enriched Uranium The application for a license to export high-enriched Uranium has been revised as noted below. Notice... fabricate fuel France. Security Complex; October 18, Uranium (93.35%). uranium (174.0 elements in France...

  2. Technical problems in case of utilizing uranium of medium enrichment for a research reactor

    International Nuclear Information System (INIS)

    Kanda, Keiji; Shibata, Shun-ichi

    1979-01-01

    Usually, highly enriched uranium of 90 - 93% is used for research reactors, but the US government proposed the strong policy to use low enriched uranium of the uranium of medium enrichment in unavoidable case from the viewpoint of the resistance to nuclear proliferation in November, 1977. This policy is naturally applied to Japan also. The export of highly enriched uranium will be permitted only when the President approves it after the technical and economical evaluations by the government. The Kyoto University high flux reactor has the features which are not seen in other research reactors, such as medical irradiation, and it is hard to attain the objectives of researches unless HEU is used. The application for the export of HEU was accepted in February, 1978. The nuclear characteristics of the KUHFR when medium or low enriched uranium is used, the criticality experiment in the KUCA using the uranium of medium enrichment, and the burning test on the uranium fuel plates of medium enrichment are described. The research project to lower the degree of enrichment in the fuel for research and test reactors is expected to be continued down to less than 20%. The MEU of 45% enrichment will be actually used in 1983. (Kako, I.)

  3. 75 FR 15743 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-03-30

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the...-Enriched 160.0 kilograms To fabricate fuel France. Complex, March 3, 2010. Uranium (93.35%). uranium (149...

  4. Environmental Development Plan: uranium enrichment

    International Nuclear Information System (INIS)

    1979-09-01

    This Environmental Development Plan identifies and examines the environmental, health, safety, and socioeconomic concerns and corresponding requirements associated with the DOE research, development, demonstration, and operation of the Uranium Enrichment program, including the gaseous diffusion process, the centrifuge process, centrifuge rotor fabrication, and related research and development activities

  5. Optimal set of selected uranium enrichments that minimizes blending consequences

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Lobber, J.S. Jr.

    1977-01-01

    Identities, quantities, and costs associated with producing a set of selected enrichments and blending them to provide fuel for existing reactors are investigated using an optimization model constructed with appropriate constraints. Selected enrichments are required for either nuclear reactor fuel standardization or potential uranium enrichment alternatives such as the gas centrifuge. Using a mixed-integer linear program, the model minimizes present worth costs for a 39-product-enrichment reference case. For four ingredients, the marginal blending cost is only 0.18% of the total direct production cost. Natural uranium is not an optimal blending ingredient. Optimal values reappear in most sets of ingredient enrichments

  6. 77 FR 13367 - General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-06

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0157] General Electric-Hitachi Global Laser Enrichment, LLC, Proposed Laser-Based Uranium Enrichment Facility, Wilmington, NC AGENCY: Nuclear Regulatory... Impact Statement (EIS) for the proposed General Electric- Hitachi Global Laser Enrichment, LLC (GLE...

  7. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  8. Multinational uranium enrichment in the Middle East

    International Nuclear Information System (INIS)

    Ahmad, Ali; Salahieh, Sidra; Snyder, Ryan

    2017-01-01

    The Joint Comprehensive Plan of Action (JCPOA) agreed to by Iran and the P5+1 in July 2015 placed restrictions on Iran’s nuclear program while other Middle Eastern countries– Egypt, Jordan, Saudi Arabia, Turkey, and the United Arab Emirates–are planning to build their own nuclear power plants to meet increasing electricity demands. Although the JCPOA restricts Iran's uranium enrichment program for 10–15 years, Iran's neighbors may choose to develop their own national enrichment programs giving them a potential nuclear weapons capability. This paper argues that converting Iran's national enrichment program to a more proliferation-resistant multinational arrangement could offer significant economic benefits–reduced capital and operational costs–due to economies of scale and the utilization of more efficient enrichment technologies. In addition, the paper examines policy aspects related to financing, governance, and how multinational enrichment could fit into the political and security context of the Middle East. A multinational enrichment facility managed by regional and international partners would provide more assurance that it remains peaceful and could help build confidence between Iran and its neighbors to cooperate in managing other regional security challenges. - Highlights: • Freezing Iran's nuclear program is an opportunity to launch joint initiatives in ME. • A joint uranium enrichment program in the Middle East offers economic benefits. • Other benefits include improved nuclear security and transparency in the region.

  9. Uranium enrichment. 1980 annual report

    International Nuclear Information System (INIS)

    1981-05-01

    This report contains data and related information on the production of enriched uranium at the gaseous diffusion plants and an update on the construction and project control center for the gas centrifuge plant. Power usage at the gaseous diffusion plants is illustrated. The report contains several glossy color pictures of the plants and processes described. In addition to gaseous diffusion and the centrifuge process, three advanced isotope separation process are now being developed. The business operation of the enrichment plants is described; charts on revenue, balance sheets, and income statements are included

  10. Criticality of moderated and undermoderated low-enriched uranium oxide systems

    International Nuclear Information System (INIS)

    Goebel, G.R.

    1980-06-01

    Uranium oxide was enriched to 4.46 wt % 235 U compacted to a density of 4.68 g/cm 3 . The uranium oxide was packed into cubical aluminum cans and water added to the oxide until an H/U atomic ratio of 0.77 was achieved. A 5 x 5 x 5 array of uranium oxide cans for the experiments were used when no plastic moderator material was placed between cans. High enriched uranium drivers were used to achieve criticality. Criticality was achieved for smaller arrays without a driver when 24.5 mm plastic moderator material was placed between the cans. Twelve critical experiments are reported, six in each reflector

  11. Uranium enrichment management review. Final report

    International Nuclear Information System (INIS)

    Ellett, J.D.; Rieke, W.B.; Simpson, J.W.; Sullivan, P.E.

    1980-01-01

    The uranium enrichment enterprise of the US Department of Energy (DOE) provides enriched nuclear fuel for private and government utilities domestically and abroad. The enterprise, in effect, provides a commercial service and represents a signficant business operation within the US government: more than $1 billion in revenues annually and future capital expenditures estimated at several billions of dollars. As a result, in May 1980, the Assistant Secretary for Resource Applications within DOE requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. The review group was specifically asked to focus on the management activities to which sound business practices could be applied. The group developed findings and recommendations in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. The chapters of this report present first the management review group's recommendations in the six areas evaluated and then the findings and issues in each area. An appendix provides the group's calendar of meetings. A list of major reference sources used in the course of the study is also included. 12 references

  12. Converting targets and processes for fission-product molybdenum-99 from high- to low-enriched uranium

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Snelgrove, J.L.; Aase, S.

    1999-01-01

    Most of the world's supply of 99 Mo is produced by the fissioning of 235 U in high-enriched uranium targets (HEU, generally 93% 235 U). To reduce nuclear-proliferation concerns, the U.S. Reduced Enrichment for Research and Test Reactor Program is working to convert the current HEU targets to low-enriched uranium (LEU, 235 U). Switching to LEU targets also requires modifying the separation processes. Current HEU processes can be classified into two main groups based on whether the irradiated target is dissolved in acid or base. Our program has been working on both fronts, with development of targets for acid-side processes being the furthest along. However, using an LEU metal foil target may allow the facile replacement of HEU for both acid and basic dissolution processes. Demonstration of the irradiation and 99 Mo separation processes for the LEU metal-foil targets is being done in cooperation with researchers at the Indonesian PUSPIPTEK facility. We are also developing LEU UO 2 /Al dispersion plates as substitutes for HEU UA1 x /A1 dispersion plates for base-side processes. Results show that conversion to LEU is technically feasible; working with producers is essential to lowering any economic penalty associated with conversion. (author)

  13. Mortality (1968-2008) in a French cohort of uranium enrichment workers potentially exposed to rapidly soluble uranium compounds.

    Science.gov (United States)

    Zhivin, Sergey; Guseva Canu, Irina; Samson, Eric; Laurent, Olivier; Grellier, James; Collomb, Philippe; Zablotska, Lydia B; Laurier, Dominique

    2016-03-01

    Until recently, enrichment of uranium for civil and military purposes in France was carried out by gaseous diffusion using rapidly soluble uranium compounds. We analysed the relationship between exposure to soluble uranium compounds and exposure to external γ-radiation and mortality in a cohort of 4688 French uranium enrichment workers who were employed between 1964 and 2006. Data on individual annual exposure to radiological and non-radiological hazards were collected for workers of the AREVA NC, CEA and Eurodif uranium enrichment plants from job-exposure matrixes and external dosimetry records, differentiating between natural, enriched and depleted uranium. Cause-specific mortality was compared with the French general population via standardised mortality ratios (SMR), and was analysed via Poisson regression using log-linear and linear excess relative risk models. Over the period of follow-up, 131 161 person-years at risk were accrued and 21% of the subjects had died. A strong healthy worker effect was observed: all causes SMR=0.69, 95% CI 0.65 to 0.74. SMR for pleural cancer was significantly increased (2.3, 95% CI 1.06 to 4.4), but was only based on nine cases. Internal uranium and external γ-radiation exposures were not significantly associated with any cause of mortality. This is the first study of French uranium enrichment workers. Although limited in statistical power, further follow-up of this cohort, estimation of internal uranium doses and pooling with similar cohorts should elucidate potential risks associated with exposure to soluble uranium compounds. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  15. Uranium enrichment management review: summary of analysis

    International Nuclear Information System (INIS)

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices

  16. Uranium enrichment management review: summary of analysis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

  17. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  18. Process for electrolytically preparing uranium metal

    Science.gov (United States)

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  19. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  20. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  1. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  2. Uranium-236 in light water reactor spent fuel recycled to an enriching plant

    International Nuclear Information System (INIS)

    de la Garza, A.

    1977-01-01

    The introduction of 236 U to an enriching plant by recycling spent fuel uranium results in enriched products containing 236 U, a parasitic neutron absorber in reactor fuel. Convenient approximate methodology determines 235 236 U, and total uranium flowsheets with associated separative work requirements in enriching plant operations for use by investigators of the light water reactor fuel cycle not having recourse to specialized multicomponent cascade technology. Application of the methodology has been made to compensation of an enriching plant product for 236 U content and to the value at an enriching plant of spent fuel uranium. The approximate methodology was also confirmed with more exact calculations and with some experience with 236 U in an enriching plant

  3. Active interrogation of highly enriched uranium

    Science.gov (United States)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  4. Developments in uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1995-01-01

    The enrichment services market is still characterized by overcapacities. While consumption worldwide will rise by some 15% to 39,000 t SWU/a over the next ten years, capacities amount to nearly 50,000 t SWU/a. The price for enrichment services probably has reached its all time low. Prices below U.S. $ 100/kg SWU are not likely to cover costs even of the economically most advanced enrichment processes. Urenco has prepared for the difficult enrichment business in the years to come by streamlining and cost cutting measures. The company intends to hold and increase its share of more than 10% in the world market. The uranium enrichment plant of Gronau will be expanded further. Expansion beyond 1000 t is subject to another permit being granted under the Atomic Energy Act, an application for which was filed in December 1994. Centrifuge technology is the superior enrichment technology, i.e., there is still considerable potential for further development. Construction of enrichment plants employing the centrifuge technology in the United States and in France is being pursued in various phases, from feasibility studies to licensing procedures. Before these plants could be implemented, however, considerable problems of organization would have to be solved, and the market would have to change greatly, respectively. The laser process, at the present time, does not seem to be able to develop into a major industrial competitor. (orig.) [de

  5. A confirmatory measurement technique for highly enriched uranium

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.

    1987-07-01

    This report describes a confirmatory measurement technique for measuring uranium items in their shipping containers. The measurement consists of a weight verification and the detection of three gamma rays. The weight can be determined very precisely, thus it severely constrains the options of the diverter who might want to imitate the gamma signal with a bogus item. The 185.7-keV gamma ray originates from 235 U, the 1001 keV originates from a daughter of 238 U, and the 2614 keV originates from a daughter of 232 U. These three gamma rays exhibit widely different attenuation properties, they correlate with enrichment and total uranium mass, and they rigorously discriminate against a likely diversion scenario (low-enriched uranium substitution). These four measured quantities, when combined, provide a signature that is very difficult to counterfeit

  6. Competitiveness through change: institutional restructuring of the United States uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    The position of the United States programme of uranium enrichment under the Department of Energy is explained. Its competitiveness has improved over the past few years by normalising supply and demand and by streamlining the costs of gaseous diffusion plant production. The historical aspects of the uranium enrichment service are explained. Revised criteria to describe the guidelines to cover pricing, contracting and other crucial functions are under discussion. Two aspects of the new criteria of particular interest -restrictions on foreign-origin uranium and recovery of Government costs - are noted. Possible private sector involvement in uranium enrichment is discussed. Technological innovations are explained and equipment illustrated. These should improve the industry's competitiveness. (U.K.)

  7. 78 FR 16303 - Request To Amend a License To Export; High-Enriched Uranium

    Science.gov (United States)

    2013-03-14

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export; High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the... Application No. Docket No. U.S. Department of Energy, High-Enriched Uranium 10 kilograms uranium To...

  8. Use of highly enriched uranium at the FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Boening, K. [Forschungs-Neutronenquelle FRM-II, Technische Universitaet Muenchen, D-85747 Garching bei Muenchen (Germany)

    2002-07-01

    The new FRM-II research reactor in Munich, Germany, provides a high flux of thermal neutrons outside of the core at only 20 MW power. This is achieved by using a single compact, cylindrical fuel element with highly enriched uranium (HEU) which is cooled by light water and placed in the center of a large heavy water tank. The paper outlines the arguments which have led to this core concept and summarizes its performance. It also reports on alternative studies which have been performed for the case of low enriched uranium (LEU) and compares the data of the two concepts, with the conclusion that the FRM-II cannot be converted to LEU. A concept using medium enriched uranium (MEU) is described as well as plans to develop such a fuel element in the future. Finally, it is argued that the use of HEU fuel elements at the FRM-II does not - realistically -involve any risk of proliferation. (author)

  9. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Science.gov (United States)

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... and is applicable to the Paducah GDP and other uranium enrichment facilities that have been licensed...

  10. Consequences of the new ICRP recommendations on uranium enrichment and uranium chemistry

    International Nuclear Information System (INIS)

    Bonnefoy-Claudet, J.

    1991-01-01

    From the first available information on the draft of new recommendations of the International Commission Radiological Protection, consequences should be very different depending upon industry type and handled products. That is to say: negligible for uranium enrichment by gaseous diffusion and important for future laser isotope separation techniques and for uranium chemistry especially for oxide treatment. This is enhanced when the products are coming from reprocessing [fr

  11. 78 FR 17942 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-03-25

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant... Administration. Enriched Uranium contained in 99.7 Reactor in the be processed for March 6, 2013 (93.35%)) kilograms Czech Republic to medical isotope March 11, 2013 uranium) the list of production at the XSNM3622...

  12. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  13. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    Science.gov (United States)

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  14. Recent developments in the United States uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    In the near term, DOE is reducing production costs at the gaseous diffusion plants (GDPs), and we've made significant progress already. GDP production costs are expected to decline even further in the near future. DOE is also negotiating new power contracts for the GDPs. The new power contracts, capital improvements, and the use of more unfirm power should reduce our GDP average cost of production to about $60/SWU in the 1990s. Significant technical progress on the Atomic Vapor Laser Isotope Separation (AVLIS) advanced enrichment technology has been made recently. The highlight has been a series of half-scale integrated enrichment experiments using the Laser Demonstration Facility and the Mars separator. We are also ready to initiate testing in the full-scale Separator Demonstration Facility, including a 100 hour run that will vaporize over 5 tons of uranium. DOE is developing plans to restructure the enterprise into a more businesslike entity. The key objective in 1987 is to work with Congress to advance the restructuring of the U.S. uranium enrichment enterprise, to assure its long term competitiveness. We hope to establish in law the charter, objectives, and goals for the restructured enterprise. DOE expects that the world price for enrichment services will continue to decrease in the future. There should be sufficient excess enrichment capacity in the future to assure that competition will be keen. Such a healthy, competitive, world enrichment market will be beneficial to both suppliers and consumers of uranium enrichment services. (J.P.N.)

  15. DOE hands over uranium enrichment duties to government corporation

    International Nuclear Information System (INIS)

    Simpson, J.

    1993-01-01

    In an effort to renew the United States' competitiveness in the world market for uranium enrichment services, the Department of Energy (DOE) is turning over control of its Paducah, KY, and Portsmouth, OH, enrichment facilities to a for-profit organization, the United States Enrichment Corp. (USEC), which was created by last year's Energy Policy Act. William H. Timbers, Jr., a former investment banker who was appointed acting CEO in March, said the Act's mandate will mean more competitive prices for enriched reactor fuel and greater responsiveness to utility customers. As a government corporation, USEC, with current annual revenues estimated at $1.5 billion, will no longer be part of the federal budget appropriations process, but will use business management techniques, set market-based prices for enriched uranium, and pay annual dividends to the US Treasury-its sole stockholder-from earnings. The goal is to finish privatizing the corporation within two years, and to sell its stock to investors for an estimated $1 to $3 billion. USEC's success will depend in part on developing short- and long-term marketing plants to help stanch the flow of enriched-uranium customers to foreign suppliers. (DOE already has received notice from a number of US utilities that they want to be let out of their long-term enrichment contracts as they expire over the next several years).USEC's plans likely will include exploring new joint ventures with other businesses in the nuclear fuel cycle-such as suppliers, fabricators, and converters-and offering a broader range of enrichment services than DOE provided. The corporation will have to be responsive to utilities on an individual basis

  16. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    2004-01-01

    Since the RERTR-Meeting in Newport/USA in 1990 recommended in several papers to the research reactor community to agree upon a worldwide unified technical specification for low enriched uranium (LEU) and high enriched uranium (HEU) in order to facilitate supplies of LEU and HEU to fabricators for acceptance and for fabrication of fresh fuel elements. This target for unified and simplified specification has only been partially reached due to different interests of the fabricators because they want to receive the uranium as pure as possible. As a result of various investigations, however, it became clear that both LEU and HEU received from the United States since the late fifties had different qualities which we have to deal with today due to the availability of stocks. We are now one step forward to know more precisely the properties of LEU and HEU we have received in the past. This uranium was never virgin and we have to cope with this situation. Therefore in my present paper I have concentrated on the documentation of analytical work performed on samples of LEU and HEU received in the past. I propose furthermore a frame of unified specifications for so-called virgin LEU and HEU including uranium from a Zero-experiment. In addition I am giving a recommendation for specifications of LEU obtained by blending of reprocessed HEU. Finally I am touching the question of secure supplies of fresh LEU. (author)

  17. Use of enriched uranium as a fuel in CANDU reactors

    International Nuclear Information System (INIS)

    Zech, H.J.

    1976-08-01

    The use of slightly enriched uranium as a fuel in CANDU-reactors is studied in a simple parametric way. The results show the possibility of 1) about 30% savings in natural uranium consumption 2) about 35% increase in the utilization of the natural uranium 3) a decrease in fuelling costs to about 70 - 80% of the normal case of natural uranium fuelling. (orig.) [de

  18. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., National Enrichment Facility in Eunice, New Mexico, and has authorized the introduction of uranium...

  19. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    International Nuclear Information System (INIS)

    Dolan, J.L.; Marcath, M.J.; Flaska, M.; Pozzi, S.A.; Chichester, D.L.; Tomanin, A.; Peerani, P.

    2014-01-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and 235 U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators

  20. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, J.L., E-mail: jldolan@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Marcath, M.J.; Flaska, M.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Tomanin, A.; Peerani, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Ispra (Italy)

    2014-02-21

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and {sup 235}U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators.

  1. Inventory control through gamma spectrometry at the enriched uranium laboratory

    International Nuclear Information System (INIS)

    Vicens, H.E.; Korob, R.O.; Goldschmidt, A.E.

    1987-01-01

    The enriched uranium laboratory processes alternatively uranium 90% and 20% enriched in U-235. The control of the isotopic composition of lots is made through mass spectrometry. In the laboratory operation wastes of both enrichments are generated and the recovery is performed with a time delay. To strengthen the administrative controls, avoid errors related to personnel replacement and/or deferred operations, it seemed suitable to adjust the gamma spectrometry as a fast, simple and available method to determine the enrichment. The laboratory work includes a wet and a dry process. The waste recovery necessarily involves the handling of liquid samples. For this reason, it was decided to determine the calibration curve for uranyl nitrate samples of fixed concentration and geometry. The samples were prepared from material purified through double precipitation of uranium peroxide and subsequent ignition to U 3 O 8 in platinum crucible, in tubular oven during 8 hours at 720 deg C. The preparation of samples, the measurement description, the discussion of results and the analysis of errors due to the presence of insoluble material and concentration changes are included. (Author)

  2. Conversion of the University of Missouri-Rolla Reactor from high-enriched uranium to low-enriched uranium fuel

    International Nuclear Information System (INIS)

    Bolon, A.E.; Straka, M.; Freeman, D.W.

    1997-01-01

    The objectives of this project were to convert the UMR Reactor fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel and to ship the HEU fuel back to the Department of Energy Savannah River Site. The actual core conversion was completed in the summer of 1992. The HEU fuel was offloaded to an onsite storage pit where it remained until July, 1996. In July, 1996, the HEU fuel was shipped to the DOE Savannah River Site. The objectives of the project have been achieved. DOE provided the following funding for the project. Several papers were published regarding the conversion project and are listed in the Attachment. In retrospect, the conversion project required much more time and effort than originally thought. Several difficulties were encountered including the unavailability of a shipping cask for several years. The authors are grateful for the generous funding provided by DOE for this project but wish to point out that much of their efforts on the conversion project went unfunded

  3. Status report on uranium enrichment associates

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; O'Donnell, A.J.; Garrett, G.A.

    1977-01-01

    Uranium Enrichment Associates (UEA) had as its priority project financing, an approach in which the total project is financially self-liquidating. UEA worked with financial institutions to define the combination of assurances and guarantees required by lenders in order to provide the required debt funding. UEA's assets against which the debt liability for the plant would be balanced would be the facilities under construction and the equipment on order. On the customer side, there was major concern on the part of the utilities of whether private industry would be able to complete and operate the plant owing to many of the same possibilities which concerned financial institutions. The disparity between the conditions under which financing could be obtained and the terms acceptable to utilities was a significant element in EUA's choice of process to use for its enrichment plants. UEA's technical staff then began to parallel conceptual designs of gaseous diffusion and gas cenrifuge plants. UEA negotiated with ERDA on the terms of a Cooperative Arrangement, within the provisions of the NFAA, providing the minimum conditions necessary to obtain financing and contracts with utilities for enrichment sources. The UEA plant has several features different from the ERDA plants. The UEA plant used only two basic stage sizes. The UEA design employed four main process buildings. The partners in UEA have mutually agreed to follow the private uranium enrichment project to a logical conclusion. 6 figures

  4. A new era in U.S. uranium enrichment

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1984-01-01

    Complex market conditions, including lower than anticipated electrical growth rates, creation of a large spot market of enriched uranium, fluctuations in currency exchange rates, and certain political considerations, have created an unstable market for all primary producers, including the United States. In response to these conditions, the Department of Energy made significant changes to the U.S. program including the issuance of the Utility Services contract on January 18, 1984. Other major changes include redirecting research and development efforts on the advanced gas centrifuge and atomic vapor laser isotope separation processes, rescoping of the Gas Centrifuge Enrichment Plant project, and reevaluation of the operational mode of the three gaseous diffusion plants. Taken together, we believe these actions will retain the U.S. position of leadership in uranium enrichment. In summary, we plan to compete--through introduction of the world's most advanced, lowest cost technology and through responsiveness to our customers' needs

  5. Uranium Metal Analysis via Selective Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  6. 50 years of uranium metal production in Uranium Metal Plant, BARC, Trombay

    International Nuclear Information System (INIS)

    2009-01-01

    The Atomic Energy Programme in India, from the very beginning, has laid emphasis on indigenous capabilities in all aspects of nuclear technology. This meant keeping pace with developments abroad and recognizing the potentials of indigenous technologies. With the development of nuclear programme in India, the importance of uranium was growing at a rapid pace. The production of reactor grade uranium in India started in January 1959 when the first ingot of nuclear pure uranium was discharged using CTR process at Trombay. The decision to set up a uranium refinery to purify the crude uranium fluoride, obtained as a by-product of the DAE's Thorium Plant at Trombay, and to produce nuclear grade pure uranium metal was taken at the end of 1956. The task was assigned to the 'Project Fire Wood Group'. The main objective of the plant was to produce pure uranium metal for use in the Canada India Reactor and Zerlina. Besides this, it was to function as a pilot plant to collect operational data and to train personnel for larger plants to be set up in future. The plant designing and erection work was entrusted to Messrs. Indian Rare Earths Ltd.

  7. Chapter 1. General information about uranium. 1.10. Uranium application

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2011-01-01

    Full text: Metallic uranium or its compounds are used as nuclear fuel in nuclear reactors. A natural or low-enriched admixture of uranium isotopes is applied in stationery reactors of nuclear power plants, and products of a high enrichment degree are used in nuclear power plants or in reactors that operates with fast neutrons. 235 U is a source of nuclear energy in nuclear weapons. Depleted uranium is used as armour-piercing core in bombshells. 238 U serves as a source of secondary nuclear fuel - plutonium. (author)

  8. Chapter 1. General information about uranium. 1.10. Uranium application

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Full text: Metallic uranium or its compounds are used as nuclear fuel in nuclear reactors. A natural or low-enriched admixture of uranium isotopes is applied in stationery reactors of nuclear power plants, and products of a high enrichment degree are used in nuclear power plants or in reactors that operates with fast neutrons. 235 U is a source of nuclear energy in nuclear weapons. Depleted uranium is used as armour-piercing core in bombshells. 238 U serves as a source of secondary nuclear fuel - plutonium.

  9. Update on international uranium and enrichment supply

    International Nuclear Information System (INIS)

    Cleveland, J.M.

    1987-01-01

    Commercial nuclear power generation came upon us in the late 1950s and should have been relatively uneventful due to its similarities to fossil-powered electrical generation. Procurement of nuclear fuel appears to have been treated totally different from the procurement of fossil fuel, however, and only recently have these practices started to change. The degree of utility reliance on US-mined uranium and US Dept. of Energy (DOE)-produced enrichment services has changed since the 1970s as federal government uncertainty, international fuel market opportunity, and public service commission scrutiny has increased. Accordingly, the uranium and enrichment market has recognized that it is international just like the fossil fuel market. There is now oversupply-driven competition in the international nuclear fuel market. Competition is increasing daily, as third-world countries develop their own nuclear resources. American utilities are now diversifying their fuel supply arrangements, as they do with their oil, coal, and gas supply. The degree of foreign fuel arrangements depends on each utility's risk posture and commitment to long-term contracts. In an era of rising capital, retrofit, operating, and maintenance costs, economical nuclear fuel supply is even more important. This economic advantage, however, may be nullified by congressional and judicial actions limiting uranium importation and access to foreign enrichment. Such artificial trade barriers will only defeat US nuclear generation and the US nuclear fuel industry in the long term

  10. Apparatus for enrichment of uranium by double photoionization

    International Nuclear Information System (INIS)

    Laude, J.P.

    1983-11-01

    The present invention concerns enrichment of uranium by double photoionization. The use of a beam from a dye laser for excitation of gaseous uranium is known and the present invention concerns an apparatus of this type. The purpose of the invention is essentially to produce an apparatus having high energy efficiency. This is achieved according to the invention by using a continuous wave laser

  11. Gamma-ray measurements for uranium enrichment standards

    International Nuclear Information System (INIS)

    Reilly, T.D.

    1979-01-01

    The gamma-ray spectroscopic measurement of uranium enrichment is one of the most widely used nondestructive analysis techniques. A study has been started of the precision and accuracy achievable with this technique and the physical parameters which affect it. The study was prompted by questions raised during the ongoing ESARDA-NBS experiment to produce uranium oxide reference counting materials for the technique. Results reported using a high-quality Ge(Li) spectrometer system show reproducibility comparable to that attainable with mass spectrometry

  12. The US uranium and enrichment industries: their fall and rise?

    International Nuclear Information System (INIS)

    Sewell, P.G.

    1988-01-01

    Strong government influence, monopolistic practices, free market forces and market orientation to customer needs are the conflicting forces which have shaped the evolution of the uranium and the uranium enrichment industries in the United States. These same factors are likely to continue to dictate to a large extent the future for each of these industries. Both the uranium and the uranium enrichment industries in the USA enjoyed the benefits and suffered the consequences of a monopolistic environment until the dynamics of a free market became prevalent in the 1980s. This resulted in the deterioration of both industries with respect to market share, sales and supply capacity needs. The history and environment of the two industries, the road to recovery for both, and the status and scope of legal and legislative initiatives to address the problems of each industry, are reviewed. (author)

  13. Low enrichment of uranium in the light of the nuclear weapon problem

    International Nuclear Information System (INIS)

    Barstad, G.

    1979-09-01

    A difficult problem in the immediate future will be to direct civil nuclear technology in such a way that the ability to produce nuclear weapons by additional countries is prevented. There are two main problems. First, enrichment plants can be used to produce high enriched uranium, which can be used in nuclear weapons, as well as low enriched reactor fuel. Second, plutonium produced during reactor operation can be used as nuclear weapon material, as well as for nuclear fuel. The problem discussed here is particularly the development of an enrichment process which is economic for low enriched reactor fuel, but which may not easily be adapted to produce high enriched uranium. (JIW)

  14. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided; if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly

  15. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided: if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly. (author)

  16. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Science.gov (United States)

    2010-01-01

    ... enrichment facilities. 140.13b Section 140.13b Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  17. Disposition of surplus highly enriched uranium: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1995-10-01

    This document assesses the environmental impacts at four potential sites that may result from alternatives for the disposition of United States-origin weapons-usable highly enriched uranium (HEU) that has been or may be declared surplus to national defense or defense-related program needs. In addition to the no action alternative, it assesses four alternatives that would eliminate the weapons-usability of HEU by blending it with depleted uranium, natural uranium, or low-enriched uranium (LEU) to create low-enriched uranium, either as commercial reactor fuel feedstock or as low-level radioactive waste. The potential blending sites are DOE's Y-12 Plant at Oak Ridge Reservation in Oak Ridge, Tennessee; DOE's Savannah River Site in Aiken, South Carolina; the Babcock ampersand Wilcox Naval Nuclear Fuel Division Facility in Lynchburg, Virginia; and the Nuclear Fuel Services Fuel Fabrication Plant in Erwin, Tennessee. Evaluations of impacts on site infrastructure, water resources, air quality and noise, socioeconomic resources, waste management, public and occupational health, and environmental justice for the potential blending sites are included in the assessment. The intersite transportation of nuclear and hazardous materials is also assessed. The preferred alternative is to blend down surplus HEU to LEU for maximum commercial use as reactor fuel feed which would likely be done at a combination of DOE and commercial sites

  18. 78 FR 33448 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-06-04

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Security Complex, May 13, Uranium (93.35%). uranium-235 at the National 2013, May 21, 2013, XSNM3745, contained in 7.5 Research Universal 11006098. kilograms reactor in Canada for uranium. ultimate use in...

  19. Volatile behaviour of enrichment uranium in the total nuclear fuel price

    International Nuclear Information System (INIS)

    Arnaiz, J.; Inchausti, J. M.; Tarin, F.

    2004-01-01

    In this article the historical high volatile behaviour of the total nuclear fuel price is evaluated quantitatively and it is concluded that it has been due mainly to the fluctuations of the price of the principal components of enriched uranium (concentrates and enrichment). In order to avoid the negative effects of this volatiles behaviour as far as possible, a basic strategy in the uranium procurement activities is recommended (union of buyers, diversification of supplier, stock management, optimisation of contract portfolio and suitable currency management that guarantees a reliable uranium supply at reasonable prices. These guidelines are those that ENUSA has been following on behalf of the Spanish Utilities in the Commission of Uranium Procurement (CAU in Spanish). (Author) 11 refs

  20. Uranium enrichment. Industrial and commercial aspect

    International Nuclear Information System (INIS)

    Lamorlette, G.

    1983-01-01

    The uranium enrichment, a key stage in the fuel cycle of light-water nuclear power stations, applies sophisticated and protected techniques in installations on a very large scale. This article shows how there was a sudden change from a monopoly position in production to a severe competition in a market which is depressed today but offers good prospects for the future. It indicates how the enrichment industrialist have adapted themselves to the fluctuations of the demand, while safeguarding the reliability of the rendered service and the necessary security of supplies for the proper development of the nuclear electric power [fr

  1. Comments on Smith Barney's uranium enrichment analysis

    International Nuclear Information System (INIS)

    Rezendes, V.S.

    1990-07-01

    In a May 1990 report, Smith Barney, Harris Upham and Co. concluded that DOE's uranium enrichment program should be restructured as a government corporation; all past costs have been recovered, and DOE's customers have been overcharged about $1.2 billion; the government should retain responsibility for environment and decommissioning costs associated with enriched uranium production before the corporation's formation; and at some future time the corporation could be sold to the private sector. This report agrees with Smith Barney's recommendation to restructure the enrichment program as a government corporation, but disagrees that DOE's customers have paid for all past costs. According to the author, Smith Barney did not identify the total environmental or decommissioning costs between the government and the corporation. Since these costs are largely undefined, but could amount to billions, Congress should immediately require the program to begin setting aside funds for these costs. DOE estimates that government purchases are responsible for 50 percent of the decommissioning costs; therefore, the government should share these costs by matching the corporation's fund contributions. This requirement should continue until the existing plants have been decommissioned

  2. 77 FR 73056 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant... Complex. Uranium (93.2%). uranium-235 at CERCA AREVA Romans October 10, 2012 contained in 6.2 in France and to October 12, 2012 kilograms irradiate targets at XSNM3729 uranium. the BR-2 Research 11006053...

  3. 77 FR 73055 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-12-07

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Security Complex. Uranium uranium-235 at CERCA AREVA October 10, 2012 (93.35%). contained in Romans in France October 12, 2012 10.1 kilograms and to irradiate XSNM3730 uranium. targets at the HFR 11006054...

  4. Gasket for uranium enrichment plant

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, S; Aiyoshi, H

    1977-02-08

    A gasket to be inserted between flange joints in the equipments and pipe lines of an uranium enrichment plant having neither permeability nor adsorptivity to water while maintaining mechanical, physical and chemical properties of an elastomer gasket is described. A gasket made of an elastomeric material such as a polymer is integratedly formed at its surface with anti-slip projections. The gasket is further surrounded at its upper and lower peripheral sides, as well as outer circumferential portion with a U-sectioned cover (enclosure) made of fluoro-plastics. In this arrangement, the gasket main body shows a gas-tightness for uranium hexafluoride gas and the cover exhibits a gas-tightness for other component gases such as moisture to thereby prevent degradation of the gasket due to absorption and permeation of the moisture.

  5. Nuclear criticality safety for warehousing of 55-gal drums containing highly enriched uranium metal

    International Nuclear Information System (INIS)

    Robinson, R.C.; Dodds, H.L.

    1989-01-01

    Subcritical data for six separate arrays of 55-gal 17H steel shipping/storage containers is calculated and used to determine safe storage limits for U(97.5)-metal in a warehouse environment at the Oak Ridge Y-12 Plant. Results are presented for three different forms of fissile material: 97.5 wt% 235 U enriched metal (ρ 0 = 18.76 g/cm 3 ) cylinders, metal spheres, and low density (ρ = 0.25 ρ 0 ) metal cylinders

  6. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  7. Achievements of the French laser uranium enrichment program and final demonstrations

    International Nuclear Information System (INIS)

    Bordier, G.

    2006-01-01

    The research on Atomic Vapor Laser Isotope Separation (SILVA in French) started in France during the seventies at the Commissariat a l'Energie Atomique (CEA) through basic experiments on uranium spectroscopy and evaporation. The program gained momentum rapidly with the decision in 1985 to focus on SILVA while decreasing the research on chemical exchange process, centrifugation and laser molecular route. Similar orientations were taken during the same period in the US and in Japan. The French need in uranium enrichment service, around 5 MSWU (million Separation Work Units) for 45 electronuclear reactors in 1985, was fulfilled by gaseous diffusion in EURODIF (multinational consortium). But the expected increase in the international need, especially in Asia, and the high cost of the energy power supply necessary for gaseous diffusion were the main reasons to search for a very efficient and selective new generation enrichment process like SILVA. The scientific demonstration of the SILVA process was completed in the mid 1990's with grams of separated uranium at both the requested industrial enriched and tail assays simultaneously. However, in the late 90's, some technical difficulties appeared in the scaling up of the process to produce kilograms of enriched uranium. In 1998 a scientific peer review defined some general goals and improvements to be performed, partly reached on the Pelleas facility in Saclay, two years later. In parallel the centrifugation technology made important progress (in Europe, URENCO consortium and in Japan) related to the emergence of high performance carbon fibers. In September 2000, a French ministerial nuclear committee chose the centrifugation as the reference industrial technology to substitute for gaseous diffusion in 2010-2015: SILVA was not enough mature and competitive to be developed at an industrial scale within such a delay. In order to save properly the knowledge and to account for potential future uses, the committee settled on a

  8. Topical papers on uranium conversion and enrichment

    International Nuclear Information System (INIS)

    Uranium conversion and enrichment are discussed in 5 papers by representatives of the USA, Great Britain and Switzerland. The state of the art is reviewed, and future prospects are given. Supply assurance is directly related to the necessary production capacities and the supply agreements

  9. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  10. METHOD OF DISSOLVING URANIUM METAL

    Science.gov (United States)

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  11. SIGMA: the novel approach of a new non-proliferating uranium enrichment technology

    International Nuclear Information System (INIS)

    Rivarola, M.; Florido, P.; Brasnarof, D.; Bergallo, E.

    2000-01-01

    The SIGMA concept, under development by Argentina, represents the evolution of the Uranium Enrichment Gaseous Diffusion technology, updated to face the challenge of the new economic-based and competitive world frame. The Enrichment technology has been historically considered as a highly proliferating activity in the nuclear field, and central countries limited the access of the developing countries to this technology. The SIGMA concept incorporates innovative proliferation resistant criteria at the beginning of the design process, and inherits all the non-proliferation features of the gaseous diffusion plants (GDPs). The radical new proliferation resistance approach of the SIGMA technology suggests a new kind of global control of the uranium enrichment market, where some developing countries might access an Enrichment plant without access to the technology itself. In this paper, we investigate the economy of the SIGMA plants, and the implications of this technology on the Uranium Global Market. (authors)

  12. SIGMA, the novel approach of a new non-proliferating uranium enrichment technology

    International Nuclear Information System (INIS)

    Rivarola, M.; Florido, P.; Brasnarof, D.; Bergallo, J.

    2001-01-01

    The SIGMA concept, under development by Argentina, represents the evolution of the Uranium Enrichment Gaseous Diffusion technology, updated to face the challenge of the new economic-based and competitive world frame. The Enrichment technology has been historically considered as a highly proliferating activity in the nuclear field, and central countries have limited the access of the developing countries to this technology. The SIGMA concept incorporates innovative proliferation resistant criteria at the beginning of the design process, and inherits all the non-proliferation features of the Gaseous Diffusion Plants (GDPs). The radical new proliferation resistant approach of the SIGMA technology, suggest a new kind of global control of the Uranium Enrichment Market, were some developing countries might access to an Enrichment plant without accessing to the technology itself. In this paper, we analyse the economy of the SIGMA plants, and the implications of this technology on the Uranium Global Market. (authors)

  13. Criteria for the safe storage of enriched uranium at the Y-12 Plant

    International Nuclear Information System (INIS)

    Cox, S.O.

    1995-07-01

    Uranium storage practices at US Department of Energy (DOE) facilities have evolved over a period spanning five decades of programmatic work in support of the nuclear deterrent mission. During this period, the Y-12 Plant in Oak Ridge, Tennessee has served as the principal enriched uranium facility for fabrication, chemical processing, metallurgical processing and storage. Recent curtailment of new nuclear weapons production and stockpile reduction has created significant amounts of enriched uranium available as a strategic resource which must be properly and safely stored. This standard specifies criteria associated with the safe storage of enriched uranium at the Y-12 Plant. Because programmatic needs, compliance regulations and desirable materials of construction change with time, it is recommended that these standards be reviewed and amended periodically to ensure that they continue to serve their intended purpose

  14. Accumulation of enriched uranium UO2F2 in ultrastructure as studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Yuanchang

    1992-01-01

    A study was made on the retention of soluble enriched uranium UO 2 F 2 in ultrastructure by electron microscopic autoradiography. The early dynamic accumulation of radioactivity in the body showed that enriched uranium UO 2 F 2 was mainly localized in kidneys, especially accumulated in epithelial cells of proximal convoluted tubules leading to degeneration and necrosis of the tubules. In liver cells, enriched uranium UO 2 F 2 at first deposited in nuclei of the cells and in soluble proteins of the plasma, and later accumulated selectively in mitochondria and lysosomes. On electron microscopic autoradiographic study it was shown that the dynamic retention of radioactivity of enriched uranium UO 2 F 2 in skeleton increased steadily through the time period of exposure. Enriched uranium UO 2 F 2 chiefly deposited in nuclei and mitochondria of osteoblasts as well as of osteoclasts

  15. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  16. Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts

    International Nuclear Information System (INIS)

    Thomas, W.E.

    1976-04-01

    This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U 3 O 8 to UF 6 conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent 235 U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent 235 U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor

  17. Feasibility of uranium enrichment in Australia

    International Nuclear Information System (INIS)

    1979-10-01

    The Council considered that provided the balance between costs and markets was found to be acceptable, there was no valid reason against the Government proceeding with a study on the feasibility of, and perhaps participating in the establishment of a commercial uranium enrichment industry in Australia. Areas covered include technical expertise and industrial structure in Australia, environmental aspects and safeguards

  18. Use of minor uranium isotope measurements as an aid in safeguarding a uranium enrichment cascade

    International Nuclear Information System (INIS)

    Levin, S.A.; Blumkin, S.; Von Halle, E.

    1979-01-01

    Surveillance and containment, which are indispensable supporting measures for material accountability, do not provide those charged with safeguarding an installation with the assurance beyond the shadow of a doubt that all the input and output uranium will in fact be measured. Those who are concerned with developing non-intrusive techniques for safeguarding uranium enrichment plants under the Nuclear Non-Proliferation Treaty have perceived the possibility that data on the minor uranium isotope concentrations in an enrichment cascade withdrawal and feed streams may provide a means either to corroborate or to contradict the material accountability results. A basic theoretical study has been conducted to determine whether complete isotopic measurements on enrichment cascade streams may be useful for safeguards purposes. The results of the calculations made to determine the behaviour of the minor uranium isotopes ( 234 U and 236 U) in separation cascades, and the results of three plant tests made to substantiate the validity of the calculations, are reviewed briefly. Based on the fact that the 234 U and 236 U concentrations relative to that of 235 U in cascade withdrawal streams reflect the cascade flow-sheet, the authors conclude that the use of the minor isotope concentration measurements (MIST) in cascade withdrawal streams is a potentially valuable adjunct to material accounting for safeguarding a 235 U enrichment cascade. A characteristic of MIST, which qualifies it particularly for safeguards application under the NPT, is the fact that its use is entirely non-intrusive with regard to process technology and proprietary information. The usefulness of MIST and how it may be applied are discussed briefly. (author)

  19. Selected nondestructive assay instrumentation for an international safeguards system at uranium enrichment plants

    International Nuclear Information System (INIS)

    Tape, J.W.; Baker, M.P.; Strittmatter, R.; Jain, M.; Evans, M.L.

    1979-01-01

    A selected set of nondestructive assay instruments for an international safeguards system at uranium enrichment plants is currently under development. These instruments are of three types: in-line enrichment meters for feed, product, and tails streams; area radiation monitors for direct detection of high-enriched uranium production, and an enrichment meter for spent alumina trap material. The current status of the development of each of these instruments is discussed, with supporting data, as well as the role each would play in a total international safeguards system. 5 figures

  20. Uranium recovering from slags generated in the metallic uranium by magnesiothermic reduction

    International Nuclear Information System (INIS)

    Fornarolo, F.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G.

    2008-01-01

    The Nuclear Fuel Center of IPEN/CNEN-SP has recent/y concluded a program for developing the fabrication technology of the nuclear fuel based on the U 3 Si 2 -Al dispersion, which is being used in the IEA-R1 research reactor. The uranium silicide (U 3 Si 2 ) fuel production starts with the uranium hexafluoride (UF 6 ) processing and uranium tetrafluoride (UF 4 ) precipitation. Then, the UF 4 is converted to metallic uranium by magnesiothermic reduction. The UF 4 reduction by magnesium generates MgF 2 slag containing considerable concentrations of uranium, which could reach 20 wt%. The uranium contained in that slag should be recovered and this work presents the results obtained in recovering the uranium from that slag. The uranium recovery is accomplished by acidic leaching of the calcined slag. The calcination transforms the metallic uranium in U 3 O 8 , promoting the pulverization of the pieces of metallic uranium and facilitating the leaching operation. As process variables, have been considered the nitric molar concentration, the acid excess regarding the stoichiometry and the leaching temperature. As result, the uranium recovery reached a 96% yield. (author)

  1. Radiological chronometry of uranium metal samples

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; Glover, S.E.; Spitz, H.B.; LaMont, S.P.

    2014-01-01

    Radiological chronometry is an important tool in nuclear forensics that uses several methods to determine the length of time that has elapsed since a material was last purified. One of the chronometers used in determining the age of metallic uranium involves measuring the fractional ingrowth of 230 Th from its parent 234 U with the assumption that the uranium metal contained no impurities, especially thorium, when it was purified. The affects of different etching procedures were evaluated for the removal of surface oxidation with three different types of uranium metal samples to determine whether the etching procedure affects the radiological age. The sample treated with a rigorous etching procedure had exhibited the most reliable radiological age while less rigorous etching yields a radiological age from 15 years to hundreds of years older than the known age. Any excess thorium on the surface of a uranium metal sample presents a bias in age determination and the sample will appear older than the true age. Although this research demonstrates the need for rigorous surface etching, a bias in the radiological age could have arisen if the uranium in the metal was heterogeneously distributed. (author)

  2. Strategic outlook for the US Dept. of Energy uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    Mounting problems in the early 1980s resulted in a business crisis for the US uranium enrichment enterprise. To address these problems, the US Dept. of Energy (DOE) developed and announced in 1984 a plan for reestablishing its competitive position in the world marketplace. This recovery plan has been very successful. The US DOE is now implementing the third phase of that strategy, institutional restructuring. Maintaining a healthy, stable, and competitive uranium enrichment capability in the US is a high-priority effort for DOE, whose uranium enrichment enterprise has two major goals: in the near term, DOE's goal is to provide reliable, competitive enrichment services to commercial and defense customers in a manner that assures a reasonable return on the government's investment. In the future, to assure adequate supplies of competitively priced nuclear fuel, DOE must adapt to the changing needs of the marketplace. Thus, we must stabilize and maintain the long-term vitality of the US enrichment enterprise by restructuring it and by providing the means by which the private sector can become involved in the business. Restructuring and private ownership obviously will require the approval of Congress. To achieve these goals, DOE has developed strategic objectives, which are briefly described

  3. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  4. Development of uranium enrichment technology by gas centrifugation

    International Nuclear Information System (INIS)

    Sibata, Tomofumi; Kai, Tsunetoshi

    1996-01-01

    The development of a gas-centrifuge for uranium enrichment has been conducted by Power Reactor and Nuclear Fuel Development Corporation in Japan after the first several years' fruitless works, the R and D works came to the point and continuing rapid improvements of centrifuges have started, Cascade tests were given with C-1 and C-2 cascade experimental facilities. Life, reliability and feasibility tests were given with the pilot plant and the demonstration plant. As a result of these works, the private commercial plant has started the operation. Although the main efforts were devoted to the development of metal rotor centrifuges in the course mentioned above, composite material rotor centrifuges have also been developed in parallel to achieve higher performance. Promising results have been being obtained with cascade test facilities on the pilot plant scale. Furthermore, R and D works are being proceeded on more excellent and advanced centrifuges. (author)

  5. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  6. Feasibility of Low Enriched Uranium Fuel for Space Nuclear Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The purpose of this initial study is to create a baseline with which to perform further analysis and to build a solid understanding of the neutronic characteristics of a solid core for the nuclear thermal rocket. Once consistency with work done at Idaho National Laboratory (INL) is established, this paper will provide a study of other fuel types, such as low and medium-enriched uranium fuels. This paper will examine how the implementation of each fuel type affects the multiplication factor of the reactor, and will then explore different possibilities for alterations needed to accommodate their successful usage. The reactor core analysis was done using the MCNP5 code. While this study has not shown that the SNRE can be easily retrofitted for low-enriched U fuel, it has made a detailed study of the SNRE, and identified the difficulties of the implementation of low-enriched fuels in small nuclear rockets. These difficulties are the need for additional moderation and fuel mass in order to achieve a critical mass. Neither of these is insurmountable. Future work includes finding the best method by which to increase the internal moderation of the reactor balanced with appropriate sizing to prevent neutron leakage. Both of these are currently being studied. This paper will present a study of the Small Nuclear Rocket Engine (SNRE) and the feasibility of using low enriched Uranium (LEU) instead of the traditional high enriched Uranium (HEU) fuels.

  7. Feasibility of nondestructive assay measurements in uranium enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Walton, R.B.

    1978-04-01

    Applications of nondestructive assay methods to measurement problems in uranium enrichment facilities are reviewed. The results of a number of test and evaluation projects that were performed over the last decade at ORGDP and Portsmouth are presented. Measurements of the residual holdup in the top enrichment portion of the shut-down K-25 cascade were made with portable neutron and gamma-ray detectors, and inventory estimates based on these data were in good agreement with ORGDP estimates. In the operating cascade, the tests showed that portable NaI detectors are effective for monitoring NaF and alumina media for gaseous effluent traps and that gas phase enrichments and inventories, as well as large deposits of uranium, can be detected with portable neutron and gamma-ray instrumentation. A wide variety of scrap and waste materials, including barrier and compressor blades, incinerator ash and trapping media, and miscellaneous waste, were measured using passive gamma-ray and neutron methods and 14-MeV neutron interrogation. Methods developed for rapid verification of UF/sub 6/ in shipping containers with portable neutron and gamma-ray instruments are now used routinely by safeguards inspectors. Passive assay methods can also be used to measure continuously the enrichments of /sup 235/U and /sup 234/U in the UF/sub 6/ product and tails withdrawals of a gaseous diffusion plant. A system that was developed and installed in the extended-range product withdrawal station of the Portsmouth facility measures enrichment with a relative accuracy of 0.5%. A stand-alone neutron detector has also been successfully evaluated for the measurement of the isotopic abundance of /sup 234/U in UF/sub 6/ in sample cylinders, an application of potential importance to Minor Isotope Safeguards Technology. Recommendations are made on the role of NDA measurements for enrichment plant safeguards, including additional tests and evaluations that may be needed, particularly for advanced uranium

  8. Uranium enrichment by laser: a technology for the future

    International Nuclear Information System (INIS)

    Cazalet, J.

    1999-01-01

    The SILVA (Isotopic Separation by Laser on atomic Vapor of uranium) process, developed by CEA and COGEMA, is an innovative system of production of enriched uranium, to be used as the fuel of nuclear reactors. It is a sound research program, calling on advanced technologies that are quickly changing. The goal is to cut drastically the production cost in comparison with the operating cost of the present plants based on gaseous diffusion. its industrialization is forecast for the beginning of next century. The SILVA process consists in putting a vapor of uranium through a beam of photons emitted by finely tuned lasers capable of ionising selectively the isotopes 235. The ionised isotopes are attracted on plates by an electric field, they are condensed and collected on these plates. The very high selectivity of enrichment technologies by laser, which are quite new, pave the way for compact and modular plants, which will consume little energy. Accordingly their production cost will be very low. So a new process could take a significant part of the uranium enrichment market after 2010. Even if the multinational EURODIF gaseous diffusion plant is modern and performing, it will be necessary to strengthen the French industry of uranium enrichment to maintain or improve its competitive position on the world market. This could be achieved by smoothly replacing EURODIF by a high performance laser plant. This is the common goal of CEA and COGEMA: all the efforts are concentrated on SILVA, the qualities of which (high selectivity, separation in one single step) have been demonstrated in the facilities of Saclay and Pierrelatte. 400 researchers and technicians are involved, as well as many industrial firms. The budget is equally by CEA and COGEMA through a cooperation agreement. The program includes: a phase of scientific and technical research, which has been highlighted in 1997-1998 by a demonstration of feasibility of the process; a phase of technological development, with

  9. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  10. Effect of spermidine in PC12 cells on the cell apoptosis induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2003-01-01

    This is a study on injurious effects of cellular spermidine to PC12 cells irradiated by enriched uranium. PC12 cells were cultured in DMEM/F12 medium with enriched uranium, and the exposure doses were calculated. The contents of free spermidine PC12 cells were examined with Dansyl-chloride reaction and thin-layer chromatography. Viability of the cells treated with enriched uranium reduced rapidly and DNA strand break increased significantly with increasing time of the irradiation. Autoradiographic tracks showed that the radionuclide located in the nucleus predominantly. The content of free spermidine in PC12 cells could markedly decrease as the irradiation time increased. The results suggested that PC12 cells exposured to enriched uranium were apoptotic and the free spermidine in cells might play some role in this process

  11. 75 FR 6223 - Application For a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION Application For a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the..., Uranium (93.35%). uranium (16.3 targets for December 28, 2009, XSNM3623, kilograms U-235). irradiation in...

  12. 77 FR 1956 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-01-12

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the.... Security Complex. Uranium uranium (9.3 targets at December 21, 2011 (93.35%). kilograms U- CERCA AREVA...

  13. 75 FR 7525 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-02-19

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the..., February 2, Uranium (93.35%). uranium (87.3 elements in 2010, February 2, 2010, kilograms U-235). France...

  14. Candidate processes for diluting the 235U isotope in weapons-capable highly enriched uranium

    International Nuclear Information System (INIS)

    Snider, J.D.

    1996-02-01

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile 235 U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile 235 U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel

  15. Uranium mineralization in fluorine-enriched volcanic rocks

    International Nuclear Information System (INIS)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements

  16. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    Science.gov (United States)

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Development of metallic uranium recovery technology from uranium oxide by Li reduction and electrorefining

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kawabe, Akihiro; Yuda, Ryouichi; Usami, Tsuyoshi; Fujita, Reiko; Nakamura, Hitoshi; Yahata, Hidetsugu

    2002-01-01

    The purpose of the study is to develop technology for pre-treatment of oxide fuel reprocessing through pyroprocess. In the pre-treatment process, it is necessary to reduce actinide oxide to metallic form. This paper outlines some experimental results of uranium oxide reduction and recovery of refined metallic uranium in electrorefining. Both uranium oxide granules and pellets were used for the experiments. Uranium oxide granules was completely reduced by lithium in several hours at 650degC. Reduced uranium pellets by about 70% provided a simulation of partial reduction for the process flow design. Almost all adherent residues of Li and Li 2 O were successfully washed out with fresh LiCl salt. During electrorefining, metallic uranium deposited on the iron cathode as expected. The recovery efficiencies of metallic uranium from reduced uranium oxide granules and from pellets were about 90% and 50%, respectively. The mass balance data provided the technical bases of Li reduction and refining process flow for design. (author)

  18. Application of a method to measure uranium enrichment without use of standards

    International Nuclear Information System (INIS)

    Saule, F.A.; Righetti, M.A.

    1998-01-01

    Full text: The determination of uranium enrichment in the many different stages present at a gaseous diffusion enrichment plant (diffusers, cisterns, deposits in pipes, drums with rests of process), or materials of deposit (plates of fuel elements not irradiated and recipients with uranium oxide), that have several geometries and physics properties of the containers, is very important for safeguards inspections. In this work is tested a non destructive analysis technique to determine the value of uranium enrichment of different samples with uranium materials without use of standards, to apply in safeguards inspections. It was used a hyper pure germanium detector with efficiency of 20% to obtain the gamma spectrum of the samples. In each spectrum, were used the net area values corresponding to four lines of U-235 (at 143, 163, 186 and 205 keV) and three lines of U-238 (258, 766 and 1001 keV); these values were analysed with two different methods. The comparison of the calculated and declared values showed a discrepancy of about 10%. (author) [es

  19. Uranium Enrichment Determination of the InSTEC Sub Critical Ensemble Fuel by Gamma Spectrometry

    International Nuclear Information System (INIS)

    Borrell Munnoz, Jose L.; LopezPino, Neivy; Diaz Rizo, Oscar; D'Alessandro Rodriguez, Katia; Padilla Cabal, Fatima; Arbelo Penna, Yunieski; Garcia Rios, Aczel R.; Quintas Munn, Ernesto L.; Casanova Diaz, Amaya O.

    2009-01-01

    Low background gamma spectrometry was applied to analyze the uranium enrichment of the nuclear fuel used in the InSTEC Sub Critical ensemble. The enrichment was calculated by two variants: an absolute method using the Monte Carlo method to simulated detector volumetric efficiency, and an iterative procedure without using standard sources. The results confirm that the nuclear fuel of the ensemble is natural uranium without any additional degree of enrichment. (author)

  20. Present status of centrifuge method for uranium enrichment and PNC plant

    International Nuclear Information System (INIS)

    Nishikido, Yoshikazu

    1977-01-01

    Recentry, the tendency to adopt atomic energy owing to the oil shock, the delay in the construction of nuclear power stations worldwide, the uncertainty in the utilization of plutonium, and the prospect of supplying natural uranium are the situations affecting uranium enrichment. Anyway, the enrichment capacity in the world must be increased by the early years of 1980 s. The uranium enrichment technology by centrifugal method is being developed in various countries under strict control of informations, therefore the details are not known, but the general state in Great Britain, F.R. of Germany, Netherlands, U.S.A. and Japan is explained. The development of the centrifugal enrichment method in Japan was designated in 1972 as the national project aiming at operating the enriching plant with international competitive power by 1985. The PNC undertook the development work, and the research and development include the development of a centrifuge, cascade test, life span test, the development of the mass production technology, and safety test. The especially notable matter in this period was the rapid progress of a supercritical type centrifuge. It is judged that the technical basis for constructing a pilot plant has been established. The site for the pilot plant is being prepared now in the Ningyo Pass Mine, PNC, and the enrichment plant with 7000 centrifuges will be constructed there. The outline of the plant and the schedule for the construction are described. (Kako, I.)

  1. Uranium enrichment by jet nozzle separation process in the German-Brazil cooperation program

    International Nuclear Information System (INIS)

    Becker, E.W.

    1991-01-01

    It presents a lecture on technical and commercial aspects of uranium isotopic enrichment by the Get Lozzle Method in Brazil. The analysis is presented regarding the context of bilateral agreement German-Brazil it discusses the technical problems of a demonstration plant design as well as the commercial exportation viability of enriched uranium produced in Brazil by the Jet Nozzle Method. (author)

  2. Energies and media nr 32. Conditions for the nuclear sector. Uranium and its enrichment for EDF. The role of Russia

    International Nuclear Information System (INIS)

    2010-07-01

    After some comments on recent events in the nuclear sector in different countries (international conference, agreement between Rosatom and the IAEA, energy policy and projects in India, Turkey, Vietnam, France, Finland, UK, Sweden, USA, Germany), this publication discusses the uranium enrichment issue for EDF and the role of Russia. It refers to a report by the French High committee for transparency and information on nuclear safety (HCTISN) and to a hearing by the French Parliament. Different aspects are discussed: the national and international legal contexts and their relationship, the EDF reactor supply (enriched uranium of MOX, fixed elements in enrichment contracts, supply security), enrichment processes and installations (in France, natural uranium enrichment, use of reprocessed or recycle uranium, use of depleted uranium as a by-product of enrichment), how EDF and AREVA are working with Russia (enrichment of recycled uranium, use of depleted uranium)

  3. Expansion of U.S. uranium enrichment capacity. Final environmental statement

    International Nuclear Information System (INIS)

    1976-04-01

    Reasonably foreseeable environmental, social, economic, and technological costs and benefits of postulated expansion of U. S. enrichment capacity through the year 2000 and reasonably available alternatives to such expansion are described. Both the gas centrifuge and gaseous diffusion methods for the enrichment of uranium are considered in this impact assessment

  4. Expansion of U. S. uranium enrichment capacity. Final environmental statement

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    Reasonably foreseeable environmental, social, economic, and technological costs and benefits of postulated expansion of U. S. enrichment capacity through the year 2000 and reasonably available alternatives to such expansion are described. Both the gas centrifuge and gaseous diffusion methods for the enrichment of uranium are considered in this impact assessment. (JGB)

  5. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    International Nuclear Information System (INIS)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-01-01

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project

  6. 78 FR 72123 - Request To Amend a License to Export High-Enriched Uranium

    Science.gov (United States)

    2013-12-02

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License to Export High-Enriched Uranium Pursuant... manufacture HEU targets in Belgium. National Nuclear Security Uranium (HEU) uranium France for irradiation in... 5.8 kg of U- 235 contained in 6.2 kg uranium to a new cumulative total of 12.615 kg of U-235...

  7. Radiation damage of metal uranium

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-01-01

    This report is concerned with the role of dispersion second phase in uranium and burnup rate. The role of dispersion phases in radiation stability of metal uranium was studies by three methods: variation of electric conductivity dependent on the neutron flux and temperature of pure uranium for different states of dispersion second phase; influence of dispersion phase on the radiation creep; transmission electron microscopy of fresh and irradiated uranium

  8. Simulation of transportation of low enriched uranium solutions

    International Nuclear Information System (INIS)

    Hope, E.P.; Ades, M.J.

    1996-01-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes

  9. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  10. MCNP5 CRITICALITY VALIDATION AND BIAS FOR INTERMEDIATE ENRICHED URANIUM SYSTEMS

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    2009-01-01

    The purpose of this analysis is to validate the Monte Carlo N-Particle 5 (MCNP5) code Version 1.40 (LA-UR-03-1987, 2005) and its cross-section database for k-code calculations of intermediate enriched uranium systems on INTEL(reg s ign) processor based PC's running any version of the WINDOWS operating system. Configurations with intermediate enriched uranium were modeled with the moderator range of 39 (le) H/Fissile (le) 1438. See Table 2-1 for brief descriptions of selected cases and Table 3-1 for the range of applicability for this validation. A total of 167 input cases were evaluated including bare and reflected systems in a single body or arrays. The 167 cases were taken directly from the previous (Version 4C [Lan 2005]) validation database. Section 2.0 list data used to calculate k-effective (k eff ) for the 167 experimental criticality benchmark cases using the MCNP5 code v1.40 and its cross section database. Appendix B lists the MCNP cross-section database entries validated for use in evaluating the intermediate enriched uranium systems for criticality safety. The dimensions and atom densities for the intermediate enriched uranium experiments were taken from NEA/NSC/DOC(95)03, September 2005, which will be referred to as the benchmark handbook throughout the report. For these input values, the experimental benchmark k eff is approximately 1.0. The MCNP validation computer runs ran to an accuracy of approximately ± 0.001. For the cases where the reported benchmark k eff was not equal to 1.0000 the MCNP calculational results were normalized. The difference between the MCNP validation computer runs and the experimentally measured k eff is the MCNP5 v1.40 bias. The USLSTATS code (ORNL 1998) was utilized to perform the statistical analysis and generate an acceptable maximum k eff limit for calculations of the intermediate enriched uranium type systems.

  11. 78 FR 60928 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-10-02

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant... manufacture HEU The Netherlands. National Nuclear Security Uranium uranium (17.1 targets in France... export from 9.4 kg of U-235 contained in 10.1 kg uranium to a new cumulative total of 17.1 kg of U-235...

  12. Improved locations of reactivity devices in future CANDU reactors fuelled with natural uranium or enriched fuels

    International Nuclear Information System (INIS)

    Boczar, P.G.; Van Dyk, M.T.

    1987-02-01

    A new configuration of reactivity devices is proposed for future CANDU reactors which improves the core characteristics with enriched fuels, while still allowing the use of natural uranium fuel. Physics calculations for this new configuration are presented for four fuel types: natural uranium, mixed plutonium - uranium oxide (MOX) having a burnup of 21 MWd/kg, and slightly enriched uranium (SEU) having burnups of either 21 or 31 MWd/kg

  13. The life of some metallic uranium based fuel elements; Duree de vie de quelques combustibles a base d'uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J A; Englander, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Description of some theoretical and experimental data concerning the design and most economic preparation of metallic uranium based fuel elements, which are intended to produce an energy of 3 kW days/g of uranium in a thermal reactor, at a sufficiently high mean temperature. Experimental results obtained by testing by analogy or by actually trying out fuel elements obtained by alloying uranium with other metals in proportions such that the resistance to deformation of the alloy produced is much higher than that of pure metallic uranium and that the thermal utilisation factor is only slightly different from that of the uranium. (author) [French] Description de quelques donnees theoriques et experimentales concernant la conception et la preparation la plus economique d'elements combustibles a base d'uranium metallique naturel, destines a degager dans un reacteur thermique une energie de l'ordre de 3 kWj/g d'uranium a une temperature moyenne suffisamment elevee. Resultats experimentaux acquis par tests analogiques ou reels sur combustibles obtenus par alliage de l'uranium avec des elements metalliques en proportions telles que la resistance a la deformation soit bien superieure a celle de l'uranium metal pur et que le facteur propre d'utilisation thermique n ne soit que peu affecte. (auteur)

  14. Chapter 3. Classical method of uranium leaching from ores and reasons for incomplete recovery at dumps of State Enterprise 'VOSTOKREDMET'. 3.3. Basic regularities of uranium ores leaching

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    Present article is devoted to basic regularities of uranium ores leaching. It was found that the basic method of uranium ores enrichment and producing of reasonably rich and pure uranium concentrates (usually technical uranium oxide) is a chemical concentration concluded in selective uranium leaching from ore raw materials with further, uranium compounds - so called uranium chemical concentrates. Such reprocessing of uranium ores with the purpose of uranium chemical concentrates production, currently, are produced everywhere by hydrometallurgical methods. This method in comparison with enrichment and thermal reprocessing is a universal one. Hydrometallurgy - the part of chemical technology covering so called moist methods of metals and their compounds (in the current case, uranium) extraction from raw materials, where they are contained. It can be ores or ore concentrates produced by radiometric, gravitational, floatation enrichment, sometimes passed through high-temperature reprocessing or even industry wastes. The basic operation in hydrometallurgy is its important industrial element - metal or metals leaching as one or another compound. Leaching is conversion of one or several components to solution under impact of relevant technical solvents: water, water solutions, acids, alkali or base, solution of some salts and etc. The basic purpose of leaching in uranium technology is to obtain the most full and selective solution of uranium.

  15. Air strikes on uranium enrichment plants as potential sources of radioecological danger

    Directory of Open Access Journals (Sweden)

    Živanov Dragan

    2007-01-01

    Full Text Available According to the Non Proliferation Treaty (NPT, the signatory countries are not forbidden to preform uranium enrichment for peaceful purposes. However, if there is a justified doubt that the uranium enrichment is performed with the aim to produce nuclear weapons, this certainly causes great concern. In this case, the international community can apply pressure to a certain country if it determines that the country does not want to cease activities of making its own nuclear weapons. The international community pressure on the country can be intesified until its political leadership is not made to question and cease all activities of producing nuclear weapons. This pressure can be political, economic, and as a last resort-military. As a gesture of goodwill the country can stop the uranium enrichment process. In this way, the country shows that it finally gives up the intention to produce nuclear weapons. However, when military pressure is applied, i.e. military strikes (air strikes for example on nuclear plants used for uranium enrichment, this certainly creates a risk of releasing radioactivity into the environment. That is why the aim of this paper is to signal this very fact. Using military force in these cases leads to additional radioactive contamination of the environment, so this way of solving conflicts should be avoided within the international community.

  16. A view of the uranium enrichment market of the late 1990's and beyond

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1991-01-01

    The author discusses the following topics related to the international uranium enrichment market: a market overview from the early 1980's, including price projections and the impact of new technologies; outlook for the market over the next decade, including military versus commercial requirements, supply and demand for enrichment services, uranium enrichment prices for the 1990's, utility procurement practices, new technologies, and an update on development and design activities related to laser isotope separation at CRISLA Technologies, Inc

  17. Continuous monitoring of variations in the 235U enrichment of uranium in the header pipework of a centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.

    1991-01-01

    Non-destructive assay equipment, based on gamma-ray spectrometry and x-ray fluorescence analysis has previously been developed for confirming the presence of low enriched uranium in the header pipework of UF 6 gas centrifuge enrichment plants. However inspections can only be carried out occasionally on a limited number of pipes. With the development of centrifuge enrichment technology it has been suggested that more frequent, or ideally, continuous measurements should be made in order to improve safeguards assurance between inspections. For this purpose we have developed non-destructive assay equipment based on continuous gamma-ray spectrometry and x-ray transmission measurements. This equipment is suitable for detecting significant changes in the 235 U enrichment of uranium in the header pipework of new centrifuge enrichment plants. Results are given in this paper of continuous measurements made in the laboratory and also on header pipework of a centrifuge enrichment plant at Capenhurst

  18. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  19. The contribution of radioisotopes in secular equilibrium in the transport index of fissile uranium compounds in different enrichments

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da; Sordi, Gian M.A.A.

    2008-01-01

    Full text: This work shows the contribution of radioisotopes in secular equilibrium in the transport index (TI) of some fissile uranium compounds: uranium oxides UO 2 , U 3 O 8 and uranium silicide U 3 Si 2 , taking into account the different enrichment grades.The range of enrichment (E%) studied was 3,4,5,7,10,20,30,40,50,93 and 100. Initially, the cell of optimum moderation ratio was built, since it represents the most reactive of the system (consisting of uranium), with maximum infinitive multiplication factor k∞, in certain concentration of uranium for each enrichment. This was made using the computer program Gamtec II. The critical radius of a sphere was calculated for a cell of optimum moderation ratio, in order to calculate the critical mass of the uranium compound or of the uranium element for each specific enrichment. For this the program Citation was used. In this study it was calculated the smallest critical mass of the uranium compound or the smallest critical mass of the uranium element. The objective was to match the largest mass of the uranium with each specific enrichment. The largest safety mass corresponds to 45% the critical mass the compound uranium or uranium element. Then, we calculated the uranium element safety mass, which it related to a fifth of this mass to the value 50, which corresponds to criticality safety index (CSI). That is, 20% of the safety mass is the value where the transport is carried out with subcritical mass, going in favor of the security. From the uranium element safety mass (USM) was determined for each enrichment , and it was calculated the mass of 235 U, activity 235 U and dose rate of 235 U, the same items were calculated for the isotope 238 U. The total dose rate was calculated for two isotopes, and applying the transport index definition as the gamma dose rate for the distance of 1 m from the packed, it was determined the TI for 20% of the safety mass for each enrichment of the compound studied. The study of

  20. International safeguards at the feed and withdrawal area of a gas centrifuge uranium enrichment plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Sanborn, J.B.

    1980-01-01

    This paper discusses the application of International Atomic Energy Agency (IAEA) safeguards at a model gas centrifuge uranium enrichment plant designed for the production of low-enriched uranium; particular emphasis is placed upon the verification by the IAEA of the facility material balance accounting. 13 refs

  1. Preparation of the pur uranium-metal; La preparation de l'uranium-metal pur

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B; Vertes, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [French] Description detaillee des procedes chimiques mis en jeu pour preparer a l'Usine du Bouchet du Commissariat a l'Energie Atomique (Seine-et-Oise) l'uranium metal pur a partir soit de minerais relativement riches, soit de concentres provenant de traitement physique ou chimique de minerais pauvres. Le traitement nitrique des minerais aboutit a la production d'uranate de soude impur. Ce dernier est a son tour dissous dans l'acide nitrique et le nitrate d'uranyle est extrait par du tributyl-phosphate dilue par un solvant inerte. Le nitrate d'uranyle pur reextrait est transforme successivement en peroxyde d'uranium, en oxyde orange puis en oxyde brun qui est transforme en fluorure par l'acide fluorhydrique anhydre. Le fluorure uraneux est reduit en metal par le calcium pur avec un rendement superieur a 99 %. (auteurs)

  2. Validation of the Monte Carlo Criticality Program KENO V. a for highly-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Knight, J.R.

    1984-11-01

    A series of calculations based on critical experiments have been performed using the KENO V.a Monte Carlo Criticality Program for the purpose of validating KENO V.a for use in evaluating Y-12 Plant criticality problems. The experiments were reflected and unreflected systems of single units and arrays containing highly enriched uranium metal or uranium compounds. Various geometrical shapes were used in the experiments. The SCALE control module CSAS25 with the 27-group ENDF/B-4 cross-section library was used to perform the calculations. Some of the experiments were also calculated using the 16-group Hansen-Roach Library. Results are presented in a series of tables and discussed. Results show that the criteria established for the safe application of the KENO IV program may also be used for KENO V.a results.

  3. Validation of the Monte Carlo Criticality Program KENO V.a for highly-enriched uranium systems

    International Nuclear Information System (INIS)

    Knight, J.R.

    1984-11-01

    A series of calculations based on critical experiments have been performed using the KENO V.a Monte Carlo Criticality Program for the purpose of validating KENO V.a for use in evaluating Y-12 Plant criticality problems. The experiments were reflected and unreflected systems of single units and arrays containing highly enriched uranium metal or uranium compounds. Various geometrical shapes were used in the experiments. The SCALE control module CSAS25 with the 27-group ENDF/B-4 cross-section library was used to perform the calculations. Some of the experiments were also calculated using the 16-group Hansen-Roach Library. Results are presented in a series of tables and discussed. Results show that the criteria established for the safe application of the KENO IV program may also be used for KENO V.a results

  4. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    Science.gov (United States)

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  5. ELECTROCHEMICAL STUDIES OF URANIUM METAL CORROSION MECHANISM AND KINETICS IN WATER

    International Nuclear Information System (INIS)

    Boudanova, Natalya; Maslennikov, Alexander; Peretroukhine, Vladimir F.; Delegard, Calvin H.

    2006-01-01

    During long-term underwater storage of low burn-up uranium metal fuel, a corrosion product sludge forms containing uranium metal grains, uranium dioxide, uranates and, in some cases, uranium peroxide. Literature data on the corrosion of non-irradiated uranium metal and its alloys do not allow unequivocal prediction of the paragenesis of irradiated uranium in water. The goal of the present work conducted under the program 'CORROSION OF IRRADIATED URANIUM ALLOYS FUEL IN WATER' is to study the corrosion of uranium and uranium alloys and the paragenesis of the corrosion products during long-term underwater storage of uranium alloy fuel irradiated at the Hanford Site. The elucidation of the physico-chemical nature of the corrosion of irradiated uranium alloys in comparison with non-irradiated uranium metal and its alloys is one of the most important aspects of this work. Electrochemical methods are being used to study uranium metal corrosion mechanism and kinetics. The present part of work aims to examine and revise, where appropriate, the understanding of uranium metal corrosion mechanism and kinetics in water

  6. Enriched but not depleted uranium affects central nervous system in long-term exposed rat.

    Science.gov (United States)

    Houpert, Pascale; Lestaevel, Philippe; Bussy, Cyrill; Paquet, François; Gourmelon, Patrick

    2005-12-01

    Uranium is well known to induce chemical toxicity in kidneys, but several other target organs, such as central nervous system, could be also affected. Thus in the present study, the effects on sleep-wake cycle and behavior were studied after chronic oral exposure to enriched or depleted uranium. Rats exposed to 4% enriched uranium for 1.5 months through drinking water, accumulated twice as much uranium in some key areas such as the hippocampus, hypothalamus and adrenals than did control rats. This accumulation was correlated with an increase of about 38% of the amount of paradoxical sleep, a reduction of their spatial working memory capacities and an increase in their anxiety. Exposure to depleted uranium for 1.5 months did not induce these effects, suggesting that the radiological activity induces the primary events of these effects of uranium.

  7. Japan-IAEA sefeguards demonstration programme in the gas centrifuge uranium enrichment facility

    International Nuclear Information System (INIS)

    Akiba, Mitsunori; Iwamoto, Tomonori; Omae, Masayoshi

    1985-01-01

    The Hexa-partite Safequard Project was started for the purpose of examining the effective techniques of safeguards for gas centrifuge uranium enrichment facilities. By the proposal of respective participating countries, it was decided to carry out the verifying test of various safeguard techniques at the actual plants. Japan carried out the verifying test of safeguard techniques at the Ningyotoge uranium enrichment pilot plant in June, 1982, and from November, 1983, to August, 1984. The contents of this test is reported. In Japan, this verifying test was positioned as a part of JASPAS (Japanese project of supporting IAEA safeguards). The verifying test of realtime and in-operation inventories, the verifying test of IAEA load cell type weighing machines for UF 6 cylinders, the verifying test of the measurement of the degree of enrichment in UF 6 cylinders by nondestructive test, the verifying test of confinement/watch system, and the verifying test of IAEA gas phase uranium enrichment monitors were carried out. The results were presented as the data for examination in the HSP, and evaluated as useful, informative and well compiled. It is necessary to pursue more cost-effective approaches. (Kako, I.)

  8. Measurement of the enrichment of uranium-hexafluoride gas in product pipes in the centrifuge enrichment plant at Almelo

    International Nuclear Information System (INIS)

    Packer, T.W.; Lees, E.W.; Aaldijk, J.K.; Harry, R.J.S.

    1987-09-01

    One of the objectives of safeguarding centrifuge enrichment plants is to apply non-destructive measurements inside the cascade area to confirm that the enrichment level is in the low enriched uranium range. Research in the UK and USA has developed a NDA instrument which can confirm the presence of low enriched uranium on a rapid go/no go basis in cascade header pipework of their centrifuge enrichment plants. The instrument is based on a gamma spectroscopic measurement coupled with an X-ray fluorescence analysis. This report gives the results of measurements carried out at Almelo by the UKAEA Harwell, ECN Petten and KFA Juelich to determine if these techniques could be employed at Almelo and Gronau. The energy dispersive X-ray fluorescence analysis has been applied to determine the total mass of uranium in the gas phase, and the deposit correction technique and the two geometry technique have been applied at Almelo to correct the measured gamma intensities for those emitted by the deposit. After an executive summary the report discusses the principles of the two correction methods. A short description of the equipment precedes the presentation of the results of the measurements and the discussion. After the conclusions the report contains two appendices which contain the derivation of the formulae for the deposit correction technique and a discussion of the systematic errors of this technique. 8 figs.; 11 refs.; 6 tables

  9. The measurement of metallic uranium solubility in lithium chloride molten salt

    International Nuclear Information System (INIS)

    Park, K. K.; Choi, I. K.; Yeon, J. W.; Choi, K. S.; Park, Y. J.

    2002-01-01

    For the purpose of more precise solubility measurement of metallic uranium in lithium chloride melt, the effect of lithium chloride on uranium determination and and the change of oxidation state of metallic uranium in the media were investigated. Uranium of higher than 10 μg/g could be directly determined by ICP-AES. In the case of the lower concentration, the separation and concentration of uranium by anion exchanger was followed by ICP-AES, thereby extending the measurable concentration to 0.1 μg/g. The effects of lithium oxide, uranium oxides(UO 2 or U 3 O 8 ) and metallic lithium on the solubility of metallic uranium were individually investigated in glassy carbon or stainless steel crucibles under argon gas atmosphere. Since metallic uranium is oxidized to uranium(III) in the absence of metallic lithium, causing an increase in the solubility, metallic lithium as reducing agent should be present in the reaction media to obtain the more precise solubility. The metallic uranium solubilities measured at 660 and 690 .deg. C were both lower than 10 μg/g

  10. World nuclear-fuel procurement: relationships between uranium and enrichment markets. Final report. International energies studies program

    International Nuclear Information System (INIS)

    Neff, T.L.

    1982-03-01

    This article explores the relationships between international uranium and enrichment markets under current contracting and equity arrangements and in comparison with actual feed requirements for existing and committed reactors. We begin with an overview of the world situation, examining current and prospective conditions. We then consider enrichment and uranium supply and demand situations of the three consumer nations outside the United States with the largest nuclear programs: France, Japan, and the Federal Republic of Germany. We conclude with an evaluation of likely directions of change in the coupled markets for uranium and enrichment services

  11. Comparative analysis of calculations and experiment for uranium-graphite lattices with natural and slightly-enriched uranium

    International Nuclear Information System (INIS)

    Khrennikov, N.N.; Shchukin, A.V.

    1988-01-01

    Three sets of experiments carried out at different times and in different laboratories on measuring the material parameter for uranium-graphite lattices using natural and slightly enriched uranium are analyzed. Comparison with the calculations by the TRIFOGR and MCU (the Monte Carlo method) codes reveals resonable agreement between the calculation and experiment (of the order of 0.4% in K eff ). 17 refs.; 3 tabs

  12. Metallization of uranium oxide powders by lithium reduction

    International Nuclear Information System (INIS)

    Kim, I. S.; Seo, J. S.; Oh, S. C.; Hong, S. S.; Lee, W. K.

    2002-01-01

    Laboratory scale experiments on the reduction of uranium oxide powders into metal by lithium were performed in order to determine the equipment setup and optimum operation conditions. The method of filtration using the porous magnesia filter was introduced to recover uranium metal powders produced. Based on the laboratory scale experimental results, mock-up scale (20 kg U/batch) metallizer was designed and made. The applicability to the metallization process was estimated with respect to the thermal stability of the porous magnesia filter in the high temperature molten salt, the filtration of the fine uranium metal powders, and the operability of the equipment

  13. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  14. Development and industrial application of gas centrifuges to uranium enrichment in the USSR

    International Nuclear Information System (INIS)

    Abbakumov, E.I.; Bazhenov, V.A.; Verbin, Yu.V.

    1989-01-01

    Review of state and studies in the field of gaseous diffusion technology and centrifugal method of uranium enrichment in the USSR is given. Domestic industrial gas centrifuges, forming to-day the main part of separation capacities in the USSR, are noted for low specific energy consumption and high reliability. Centrifugal technology in the USSR is applied both to uranium enrichment (including one for export) and to separation of isotopes of other chemical elements

  15. A study on chlorination of uranium metal using ammonium chloride

    International Nuclear Information System (INIS)

    Eun, H.C.; Kim, T.J.; Jang, J.H.; Kim, G.Y.; Lee, S.J.; Hur, J.M.

    2017-01-01

    In this study, the chlorination of uranium metal using ammonium chloride (NH 4 Cl) was conducted to derive an easy and simple uranium chloride production method without impurities. In thermodynamic equilibrium calculations, it was predicted that only uranium chlorides can be produced by the reactions between uranium metal and NH 4 Cl. Experimental conditions for the chlorination of uranium metal were determined using a chlorination test of cerium metal using NH 4 Cl. It was confirmed that UCl 3 and UCl 4 in the form of particles as uranium chlorination products can be obtained from the chlorination method using NH 4 Cl. (author)

  16. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.; Wrighton, Kelly C.; Wilkins, Michael J.; Thompson, Courtney A.; Roper, Thomas J.; Long, Philip E.; Lovley, Derek

    2013-07-28

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growth of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.

  17. Uranium decontamination of common metals by smelting, a review (handbook)

    International Nuclear Information System (INIS)

    Mautz, E.W.; Briggs, G.G.; Shaw, W.E.; Cavendish, J.H.

    1975-01-01

    The published and unpublished literature relating to the smelting of common metals scrap contaminated with uranium-bearing compounds has been searched and reviewed. In general, standard smelting practice produces ingots having a low uranium content, particularly for ferrous, nickel, and copper metals or alloys. Aluminum recovered from uranium contaminated scrap shows some decontamination by smelting but the uranium content is not as low as for other metals. Due to the heterogeneous nature and origin of scrap metals contaminated with uranium, information is frequently missing as to the extent of the initial contamination and the degree of decontamination obtained. The uranium content of the final cast ingots is generally all that is available. Results are summarized below by the primary composition of the uranium contaminated scrap metal. (U.S.)

  18. Technical and economic aspects of new gaseous diffusion uranium enrichment capacity

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; O'Donnell, A.J.

    1977-01-01

    Work is well advanced on design and construction of the next major increment of U.S. uranium enrichment capacity. The plant will use the gaseous diffusion process to provide the required capacity and reliability at a competitive enrichment services cost. Gaseous diffusion technology is the base against which other processes are compared in order to assess their commercial viability. While it has generally been described as a mature technology with limited future development potential, work on design of the new U.S. plant has resulted in major improvement in plant design with corresponding decreases in plant capacity and operating costs. The paper describes major technological advances incorporated into the new plant design and their impact on enrichment costs. These include the effects of: - advanced barrier technology; - tandem compressor drive systems; - optimization of number of equipment sizes; - single level plant design; - development of rapid power level change capability; - electrical system simplification; - plant arrangement and layout. Resulting capital costs and projected enrichment costs are summarized. Enrichment costs are placed in the context of total nuclear fuel cycle costs. Trade-offs between uranium feed material quantities and enrichment plant tails assays are described, and optimization of this aspect of the nuclear fuel cycle is discussed. The effect on enrichment plant characteristics is described. Flexibility and capability of the new U.S. enrichment plant to meet these changing optimization conditions are described

  19. Natural uranium/conversion services/enrichment services

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This article is the 1993 uranium market summary. During this reporting period, there were 50 deals in the concentrates market, 26 deals in the UF6 market, and 14 deals for enrichment services. In the concentrates market, the restricted value closed $0.15 higher at $9.85, and the unrestricted value closed down $0.65 at $7.00. In the UF6 market, restricted prices fluctuated and closed higher at $31.00, and unrestricted prices closed at their initial value of $24.75. The restricted transaction value closed at $10.25 and the unrestricted value closed at $7.15. In the enrichment services market, the restricted value moved steadily higher to close at $84.00 per SWU, and the unrestricted value closed at its initial value of $68.00 per SWU

  20. Calculation of the fissile mass of a graphite moderated critical assembly using 93% enriched uranium

    International Nuclear Information System (INIS)

    Correa, F.; Marzo, M.A.S.; Collussi, I.; Ferreira, A.C.A.

    1976-01-01

    The critical mass of uranium has been calculated for a graphite moderated set fueled with 93% enriched uranium to be mounted on the Instituto de Energia Atomica split table Zero Power Reactor. The core composition was optimized to permit the maximum number of configurations to be studied. Analysis of three core compositions shows that 8 Kg of uranium enriched to 93% - U-235 (by weight) and 100 Kg of thorium would be sufficient for criticality experiments [pt

  1. An assessment of the effectiveness of personal visual observation for a uranium enrichment facility

    International Nuclear Information System (INIS)

    Ohno, Fubito; Okamoto, Tsuyoshi; Yokochi, Akira; Nidaira, Kazuo

    2002-01-01

    In a centrifuge uranium enrichment facility, a cascade producing low enriched uranium is composed of a large number of UF 6 gas centrifuges interconnected with pipes. If new advanced centrifuges are developed and they are installed in the facility, the number of centrifuges in the unit cascade will decrease. This means that the number of pipes connecting centrifuges will decrease also. In addition, if integrated type centrifuges containing a few tens of centrifuges are adopted for economical reasons, the number of pipes will further decrease. The smaller the number of pipes, the less the labor required to reconstruct the cascade by changing the piping arrangement so that it can produce highly enriched uranium. Because personal visual observation by inspectors is considered as one of safeguards measures against changing the piping arrangement, its effectiveness is assessed in this study. An inspection in a cascade area is modeled as a two-person non-cooperative game between an inspector and a facility operator. As a result, it is suggested that personal visual observation of the piping arrangement is worth carrying out in an advanced centrifuge uranium enrichment facility. (author)

  2. Adaptive control theory of concentration in the uranium enrichment plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake; Miyagawa, Hiroshi; Yokoyama, Kaoru; Nakakura, Hiroyuki

    1999-01-01

    This paper presents the new adaptive control of concentration in the uranium enrichment plant. The purpose of this control system is average concentration control in production tram. As a result the accuracy and practical use of this control system have already been confirmed by the operation of the uranium enrichment demonstration plant. Three elements of technology are required to this method. The first is the measurement of the concentration using product flow quantity change. This technology shall be called 'Qp difference to Xp transform method'. The second is the relationship between temperature change and flow quantity using G.M.D.H. (Groupe Method of Data Handling) and the third is the estimation of temperature change using AR (Auto-regressive) model. (author)

  3. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, Hans; Laucht, Juergen

    1996-01-01

    Since the RERTR meeting in 1990 at Newport/USA, NUKEM recommended that the research reactor community agree upon a worldwide unified technical specification for low enriched uranium (LEU) and high enriched uranium (HEU) since there existed numerous specifications both from suppliers/fabricators and research reactors. The target recommended by NUKEM is to arrive at a worldwide unified standard specification in order to facilitate supplies of LEU and HEU to fabricators for fabrication of research reactor fuel elements. In our paper presented at the RERTR meeting at Paris in September 1995, we pointed out that LEU and HEU supplied by the U.S. Department of Energy (DOE) in the past was never 'virgin' material, i.e., it was mixed with reprocessed uranium. Our recommendation was to include this fact in the proposed unified specification. Since the RERTR meeting in 1995 progress on a unified standard specification has been made and we would like to provide more specific information about that in this paper. Furthermore, we will deal with the question whether there is a secure supply of LEU for converted research reactors. We list current and potential suppliers of LEU, noting however, that the DOE has for a number of years been unable to supply any LEU due to production problems. The future availability of LEU of U.S. origin is, of course, essential for those research reactor operators which have converted their reactors from HEU to LEU and which are intending to return spent fuel of U.S. origin to the U.S.A. (author)

  4. Soviet supplies of enriched uranium to capitalist countries

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1977-01-01

    The Soviet supplies of enriched uranium to the following capitalist countries are surveyed: Belgium, Finland, France, FRG, Austria, Spain, Sweden, and the United Kingdom. The time period, total supplies, average annual supplies, estimated average price per separation work unit, and the date of the conclusion of the contract are reported. (J.B.)

  5. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  6. Sequential extraction of uranium metal contamination

    International Nuclear Information System (INIS)

    Murry, M.M.; Spitz, H.B.; Connick, W.B.

    2016-01-01

    Samples of uranium contaminated dirt collected from the dirt floor of an abandoned metal rolling mill were analyzed for uranium using a sequential extraction protocol involving a series of five increasingly aggressive solvents. The quantity of uranium extracted from the contaminated dirt by each reagent can aid in predicting the fate and transport of the uranium contamination in the environment. Uranium was separated from each fraction using anion exchange, electrodeposition and analyzed by alpha spectroscopy analysis. Results demonstrate that approximately 77 % of the uranium was extracted using NH 4 Ac in 25 % acetic acid. (author)

  7. A study of the material accountancy procedure at the uranium enrichment facility

    International Nuclear Information System (INIS)

    Shirahashi, J.; Akiba, M.; Omae, M.

    1984-01-01

    This paper describes an evaluation of material accountancy based on total uranium (U element MUF) to detect diversions of significant quantity in the uranium enrichment facility operating at a stated maximum enrichment level of 5%. Verification that material production is within the declared enrichment can be achieved by the inspection activities associated with limited - frequency unannounced access (LFUA) to cascade areas as treated extensively in HSP. According to the experience of the material accountancy at our facility, the reduction of the material accountancy capability by changing from U-235 isotope MUF to U element MUF is only about half. However, still the U element MUF approach can meet the current IAEA detection goals for the up to about 1000 tswu/a plant

  8. Nickel container of highly-enriched uranium bodies and sodium

    Science.gov (United States)

    Zinn, Walter H.

    1976-01-01

    A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.

  9. The jet nozzle process for uranium 235 isotopic enrichment

    International Nuclear Information System (INIS)

    Jordan, I.; Umeda, K.; Brown, A.E.P.

    1979-01-01

    A general survey of the isotopic enrichment of Uranium - 235, principally by jet nozzle process, is made. Theoretical treatment of a single stage and cascade of separation stages of the above process with its development in Germany until 1976 is presented [pt

  10. Nickel container of highly-enriched uranium bodies and sodium

    International Nuclear Information System (INIS)

    Zinn, W.H.

    1976-01-01

    A fuel element comprises highly enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel

  11. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    Science.gov (United States)

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  12. PROCESS FOR PREPARING URANIUM METAL

    Science.gov (United States)

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  13. The uranium enrichment market and long-term technological options

    International Nuclear Information System (INIS)

    Schneider-Maunoury, A.

    1992-01-01

    The world enrichment market situation is clearly delineated up to the year 2000. Including the East European countries, worldwide enriched uranium requirements should reach 40 million separative work units (SWUs) a year and production capacity should reach 44 millions SWUs. Two-thirds of this capacity will be supplied by the gaseous diffusion process and one-third by the centrifuge process. The enrichment processes currently considered are: (i) the gaseous diffusion process, (ii) the centrifuge process, (iii) the chemical treatment process and (iv) the laser processes, long-term assessment of the enrichment market up to the year 2015. Two scenarios may be envisioned for the (i) Public opinion will continue to block the development of nuclear power, and requirements will level off at 40 million SWUs. (ii) Changing attitudes will favor a reasonable approach enabling a revival of nuclear power expansion around 1995. Requirements should then increase starting in 2005 and would readily attain 60 million SWUs a year by 2015. Depending on market conditions, enrichment process options will be influenced either entirely by cost considerations, without allowance for the time factor, or by need to meet demand. Demonstrations of the industrial validity of laser processes are expected by 1992 - 1995 and, if interest in nuclear power makes a comeback, decisions should be made between 1995 and 2000 to build new large-capacity enrichment plants. The gaseous diffusion process may still be used for a long time if nuclear power is judiciously employed. The centrifuge process will be fully mature by the year 2000. The uranium vapor laser processes offer the most promise and should ultimately prevail. the chemical processes, though outsiders, deserve watching. (author)

  14. Idaho National Engineering Laboratory materials in inventory natural and enriched uranium management and storage costs

    International Nuclear Information System (INIS)

    Nebeker, R.L.

    1995-11-01

    On July 13, 1994, the Office of Environmental Management (EM) was requested to develop a planning process that would result in management policies for dealing with nuclear materials in inventory. In response to this request, EM launched the Materials In Inventory (MIN) Initiative. A Headquarters Working Group was established to develop the broad policy framework for developing MIN management policies. MIN activities cover essentially all nuclear materials within the DOE complex, including such items as spent nuclear fuel, depleted uranium, plutonium, natural and enriched uranium, and other materials. In August 1995, a report discussing the natural and enriched uranium portion of the Initiative for the Idaho National Engineering Laboratory (INEL) was published. That report, 'Idaho National Engineering Laboratory Materials-in-Inventory, Natural and Enriched Uranium'.' identified MIN under the control of Lockheed Idaho Technologies Company at the INEL. Later, additional information related to the costs associated with the storage of MIN materials was requested to supplement this report. This report provides the cost information for storing, disposing, or consolidating the natural and enriched uranium portion of the MIN materials at the INEL. The information consists of eight specific tables which detail present management costs and estimated costs of future activities

  15. Uranium enrichment export control guide: Gaseous diffusion

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  16. Some potential strategies for the treatment of waste uranium metal and uranium alloys

    International Nuclear Information System (INIS)

    Burns, C.J.; Frankcom, T.M.; Gordon, P.L.; Sauer, N.N.

    1993-01-01

    Large quantities of uranium metal chips and turnings stored throughout the DOE Complex represent a potential hazard, due to the reactivity of this material toward air and water. Methods are being sought to mitigate this by conversion of the metal, via room temperature solutions routes, to a more inert oxide form. In addition, the recycling of uranium and concomitant recovery of alloying metals is a desirable goal. The emphasis of the authors' research is to explore a variety of oxidation and reduction pathways for uranium and its compounds, and to investigate how these reactions might be applied to the treatment of bulk wastes

  17. Energies and media nr 28. Uranium mining exploitations and residues. Uranium mines in Niger. Depleted uranium as a by-product of enrichment

    International Nuclear Information System (INIS)

    2009-02-01

    After some comments on recent events in the nuclear sector in different countries (USA, China, India, UK, Sweden, Italy and France), this publication addresses the issue of uranium mining exploitations and of their residues. It comments the radioactivity in mining areas, briefly discusses the issue of low doses, describes the uranium ore and its processing, indicates which are the various residues of the mining activity (sterile uncovered tailings, non exploitable mineralized rocks, ore and residue processing, residue radioactivity, mine closing down, witnesses on health in ancient mines). Some reflections are stated about uranium mines in Niger, and about depleted uranium as a by-product of the enrichment activity

  18. Heavy metal enrichment in mine drainage:III

    International Nuclear Information System (INIS)

    Wittmann, G.T.W.; Forstner, U.

    1977-01-01

    Mine drainage from gold and uranium recovery is characterized by low pH and high metal values. Attention is drawn to the potential environmental hazards caused by vast losses of uranium-bearing minerals [af

  19. 78 FR 63518 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico... Louisiana Energy Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has authorized...

  20. Implementation of the ICRP 66 respiratory tract model: example of occupational exposure to uranium oxides formed in a new laser enrichment process

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Henge-Napoli, M.H.; Hodgson, A.; Stradling, G.N.; Birchall, A.

    1996-01-01

    A new uranium enrichment facility using laser isotopic separation generates aerosols consisting of U metal + UO 2 : with traces of UPON. Results of lung absorption to blood showed that the U metal + UO 2 transportability was appreciably greater than for other industrial forms of UO 2 . Taking into account the new ICRP human respiratory tract model, the data were used as a basis for assessing the dose coefficient, for the dust sampled at the workplace. (author)

  1. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  2. Safeguarding uranium enrichment facilities. Review and analysis of the status of safeguards technology for uranium enrichment facilities

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this paper is to examine critically the diversion potential at uranium enrichment facilities and to outline a basic safeguards strategy which counters all identified hazards as completely as possible yet with a minimum of non-essential redundancy. Where existing technology does not appear to be adequate for effective safeguards, the limitations are examined, and suggestions for further R and D effort are made. Parts of this report are generally applicable to all currently known enrichment processes, while other parts are specifically directed toward facilities based on the gas centrifuge process. It is hoped that additional sections discussing a safeguards strategy for gas diffusion facilities can be added later. It should be emphasized that this is a technical report, and does not reflect any legal positions. The safeguards strategy and subsequent inspection procedures are intended as guidelines, not as negotiating positions

  3. Development of very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    Following a hiatus of several years and following its successful development and qualification of 4.8 g U cm -3 U 3 Si 2 -Al dispersion fuel for application with low-enriched uranium in research and test reactors, the US Reduced Enrichment for Research and Test Reactors program has embarked on the development of even-higher-density fuels. Our goal is to achieve uranium densities of 8-9 g cm -3 in aluminum-based dispersion fuels. Achieving this goal will require the use of high-density, γ-stabilized uranium alloy powders in conjunction with the most-advanced fuel fabrication techniques. Key issues being addressed are the reaction of the fuel alloys with aluminum and the irradiation behavior of the fuel alloys and any reaction products. Test irradiations of candidate fuels in very-small (micro) plates are scheduled to begin in the Advanced Test Reactor during June, 1997. Initial results are expected to be available in early 1998. We are performing out-of-reactor studies on the phase structure of the candidate alloys on diffusion of the matrix material into the aluminum. In addition, we are modifying our current dispersion fuel irradiation behavior model to accommodate the new fuels. Several international partners are participating in various phases of this work. (orig.)

  4. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  5. Technology for down-blending weapons grade uranium into commercial reactor-usable uranium

    International Nuclear Information System (INIS)

    Arbital, J.G.; Snider, J.D.

    1996-01-01

    The US Department of Energy (DOE) is evaluating options for rendering surplus inventories of highly enriched uranium (HEU) incapable of being used in nuclear weapons. Weapons-capable HEU was earlier produced by enriching the uranium isotope 235 U from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by permanently diluting the concentration of the 235 U isotope, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope re-enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended, low-enriched uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel. The DOE has evaluated three candidate processes for down blending surplus HEU. These candidate processes are: (1) uranium hexafluoride blending; (2) molten uranium metal blending; and (3) uranyl nitrate solution blending. This paper describes each of these candidate processes. It also compares the relative advantages and disadvantages of each process with respect to: (1) the various forms and compounds of HEU comprising the surplus inventory, (2) the use of down-blended product as commercial reactor fuel, or (3) its disposal as waste

  6. Research on evolutionary laws of Sr, Nd, Pb isotopes of uranium metallization and volcanic rocks in south china

    International Nuclear Information System (INIS)

    Ying Junlong

    1998-01-01

    According to research on evolutionary tracer of Sr, Nd, Pb isotopes, the author proposes that isotopic evolution of Mesozoic volcanics in south China is controlled by regionally metamorphic rocks of ancient land basement, early reformed derivates and recycled continental crust. Isotopic composition of uranium metallization shows the characteristics of crust sources, and Yanshanian accretion of continental margin caused the crust movement such as magmatic activity in lower crust within continent, extension-down-faulting, etc., promoting the migration, enrichment and ore formation of uranium

  7. Improvements in process technology for uranium metal production

    International Nuclear Information System (INIS)

    Meghal, A.M.; Singh, H.; Koppiker, K.S.

    1991-01-01

    The research reactors in Trombay use uranium metal as a fuel. The plant to produce nuclear grade uranium metal ingots has been in operation at Trombay since 1959. Recently, the capacity of the plant has been expanded to meet the additional demand of the uranium metal. The operation of the expanded plant, has brought to the surface various shortcomings. This paper identifies various problems and describes the measures to be taken to upgrade the technology. Some comments are made on the necessity for development of technology for future requirement. (author). 6 refs., 1 fig

  8. Preparation of the pur uranium-metal; La preparation de l'uranium-metal pur

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.; Vertes, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [French] Description detaillee des procedes chimiques mis en jeu pour preparer a l'Usine du Bouchet du Commissariat a l'Energie Atomique (Seine-et-Oise) l'uranium metal pur a partir soit de minerais relativement riches, soit de concentres provenant de traitement physique ou chimique de minerais pauvres. Le traitement nitrique des minerais aboutit a la production d'uranate de soude impur. Ce dernier est a son tour dissous dans l'acide nitrique et le nitrate d'uranyle est extrait par du tributyl-phosphate dilue par un solvant inerte. Le nitrate d'uranyle pur reextrait est transforme successivement en peroxyde d'uranium, en oxyde orange puis en oxyde brun qui est transforme en fluorure par l'acide fluorhydrique anhydre. Le fluorure uraneux est reduit en metal par le calcium pur avec un rendement superieur a 99 %. (auteurs)

  9. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    Science.gov (United States)

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  10. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  11. Enriching services and uranium markets from an international supplier's perspective

    International Nuclear Information System (INIS)

    Guais, J.C.; Peterson, C.H.

    1987-01-01

    In the past 10 yr, the international market for nuclear fuel cycle products and services, mainly yellowcake and separative work units (SWUs), has been characterized by shifting patterns in global demand and resource allocation. For suppliers as well as buyers, the analysis of the supply and demand pattern over the next 10 yr can be a useful exercise, especially if it highlights geopolitical realities and the influence of new technologies. This paper will attempt to answer two questions related to the marketing of natural uranium and enrichment services: (1) on a global basis (i.e., for the Western World), are uranium and enrichment capacities now on line sufficient to meet long-term demand. (2) On a regional basis (the US, Europe, and Far East), what is the short-to-medium term pattern of the supply-and-demand balance

  12. Examination of long-stored uranium metal

    International Nuclear Information System (INIS)

    Gate, A.M.; Hambley, D.I.

    2013-01-01

    A small quantity of unirradiated uranium from Magnox fuel elements is currently held in archive storage. Some of these samples date back to the late fifties. This material has been stored, untreated, in unsealed containers in air at ambient temperature, humidity and pressure conditions. Such conditions are relevant to those that may exist in a passive storage facility. A sample of this material has been subject to optical, electron-optical and Raman spectroscopic examination to determine the extent of corrosion and the composition of corrosion product arising from long-term, low-temperature oxidation of uranium metal in air. The examinations have established that, even after a period in excess of 40 years, there was no observable spalling of uranium oxide from the sample during storage. The extent of oxidation of the metal, derived by SEM analysis, was slight and insignificant in relation to overall structural stability of the material. Raman spectroscopy data showed that the bulk of the oxide layer was comprised of hyper-stoichiometric UO 2 , with U 4 O 9 being the dominant component. The oxygen/uranium ratio was observed to be decreased at the metal/oxide interface, with a very thin layer that consisted of mainly UO 2 at the metal surface. At the oxide/air interface, a very thin U 3 O 8 layer was detected. U 4 O 9 is relatively mechanically stable, due to a significantly higher density than UO 2 and U 3 O 8 . It is likely that the lower internal stresses in the thick U 4 O 9 layer have resulted in less oxide film cracking than would be expected from UO 2 or U 3 O 8 and hence the low oxidation rate observed. These results suggest that storage of uranium metal in air over decades is a safe and credible option. (authors)

  13. Process development study on production of uranium metal from monazite sourced crude uranium tetra-fluoride

    International Nuclear Information System (INIS)

    Chowdhury, S; Satpati, S.K.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    Development of an economic process for recovery, process flow sheet development, purification and further conversion to nuclear grade uranium metal from the crude UF 4 has been a technological challenge and the present paper, discusses the same.The developed flow-sheet is a combination of hydrometallurgical and pyrometallurgical processes. Crude UF 4 is converted to uranium di-oxide (UO 2 ) by chemical conversion route and UO 2 produced is made fluoride-free by repeated repulping, followed by solid liquid separation. Uranium di-oxide is then purified by two stages of dissolution and suitable solvent extraction methods to get uranium nitrate pure solution (UNPS). UNPS is then precipitated with air diluted ammonia in a leak tight stirred vessel under controlled operational conditions to obtain ammonium di-uranate (ADU). The ADU is then calcined and reduced to produce metal grade UO 2 followed by hydro-fluorination using anhydrous hydrofluoric acid to obtain metal grade UF 4 with ammonium oxalate insoluble (AOI) content of 4 is essential for critical upstream conversion process. Nuclear grade uranium metal ingot is finally produced by metallothermic reduction process at 650℃ in a closed vessel, called bomb reactor. In the process, metal-slag separation plays an important role for attaining metal purity as well as process yield. Technological as well economic feasibility of indigenously developed process for large scale production of uranium metal from the crude UF 4 has been established in Bhabha Atomic Research Centre (BARC), India

  14. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  15. Assay of low-enriched uranium using spontaneous fission neutrons

    International Nuclear Information System (INIS)

    Zucker, M.S.; Fainberg, A.

    1980-01-01

    Low-enriched uranium oxide in bulk containers can be assayed for safeguards purposes, using the neutrons from spontaneous fission of 238 U as a signature, to complement enrichment and mass measurement. The penetrability of the fast fission neutrons allows the inner portion of bulk samples to register. The measurement may also be useful for measuring moisture content, of significance in process control. The apparatus used can be the same as for neutron correlation counting for Pu assay. The neutron multiplication observed in 238 U is of intrinsic interest

  16. Development of very-high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snegrove, J.L.; Hofmann, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    The RERTR (=Reduced Enrichment for Research and Test Reactors) program has begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place, and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and the first results should be available by the end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun. (author)

  17. Development of IAEA safeguards at low enrichment uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Badawy, I.

    1988-01-01

    In this report the nuclear material at low enrichment uranium fuel fabrication plants under IAEA safeguards is studied. The current verification practices of the nuclear material and future improvements are also considered. The problems met during the implementation of the the verification measures of the nuclear material - particularly for the fuel assemblies are discussed. The additional verification activities as proposed for future improvements are also discussed including the physical inventory verification and the verification of receipts and shipments. It is concluded that the future development of the present IAEA verification practices at low enrichment uranium fuel fabrication plants would necessitate the application of quantitative measures of the nuclear material and the implementation of advanced measurement techniques and instruments. 2 fig., 4 tab

  18. Environmental assessment: Transfer of normal and low-enriched uranium billets to the United Kingdom, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-11-01

    Under the auspices of an agreement between the U.S. and the United Kingdom, the U.S. Department of Energy (DOE) has an opportunity to transfer approximately 710,000 kilograms (1,562,000 pounds) of unneeded normal and low-enriched uranium (LEU) to the United Kingdom; thus, reducing long-term surveillance and maintenance burdens at the Hanford Site. The material, in the form of billets, is controlled by DOE's Defense Programs, and is presently stored as surplus material in the 300 Area of the Hanford Site. The United Kingdom has expressed a need for the billets. The surplus uranium billets are currently stored in wooden shipping containers in secured facilities in the 300 Area at the Hanford Site (the 303-B and 303-G storage facilities). There are 482 billets at an enrichment level (based on uranium-235 content) of 0.71 weight-percent. This enrichment level is normal uranium; that is, uranium having 0.711 as the percentage by weight of uranium-235 as occurring in nature. There are 3,242 billets at an enrichment level of 0.95 weight-percent (i.e., low-enriched uranium). This inventory represents a total of approximately 532 curies. The facilities are routinely monitored. The dose rate on contact of a uranium billet is approximately 8 millirem per hour. The dose rate on contact of a wooden shipping container containing 4 billets is approximately 4 millirem per hour. The dose rate at the exterior of the storage facilities is indistinguishable from background levels

  19. U.S. Non-proliferation policy and programs regarding use of high-enriched uranium in research reactors

    International Nuclear Information System (INIS)

    Lewis, R.A.

    1993-01-01

    Uranium enriched to 90-93%, supplied by the U.S., is now used in 141 research and test reactors in 35 countries around the world with a cumulative power of 1714 mw. Since of the order of 3 kg of 235 U is involved annually in fuel fabrication, fresh fuel transport and storage, reactor operation, and spent fuel cooling and return per megawatt of research reactor power, it is estimated that more than 5000 kg of very high-enriched uranium is handled each year to operate these reactors. Recent U.S. assessments have led to the tentative conclusion that in only approximately 11 of these reactors, generally those of highest power or power density, is the use of 90-93% enriched uranium currently a technical necessity. Universal use of the best state-of-the-art fuel technology would permit an estimated 90 of these reactors to use 20% enriched fuel, and estimated 40 others to use 45% enriched fuel, without significant performance degradation. If advanced research reactor fuel development programs currently under way in the U.S. and elsewhere are successful, it may, in fact, be possible to operate virtually all of these reactors on less than 20% enriched uranium in the longer term. The physical and economic practicality of these developmental fuels must, of course, await future assessments

  20. Uranium enrichment in South Africa

    International Nuclear Information System (INIS)

    Roux, A.J.A.; Grant, W.L.

    1976-01-01

    It is stated that the South African process is of an aerodynamic type, the separating element being in effect a high performance stationary-walled centrifuge using UF 6 in hydrogen as process fluid. Some details of the very low uranium inventory and high separation factor achievable are given. A new cascade technique is described, based on the principle that an axial flow compressor can simultaneously transmit several streams of different isotopic composition without there being significant mixing between them. The research and development programme is discussed. It is expected that an enrichment plant of 5000 t/a SW capacity, with provision for expansion up to 10,000 t/a SW capacity, will come into operation by 1984. (U.K.)

  1. A study of industrial exposure to uranium aerosols from the laser enrichment procedure - methods and results

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Claraz, M.; Henge-Napoli, M.H.; Metivier, H.

    1995-01-01

    Comprehensive studies of the radiotoxicological risk at new uranium enrichment processing facilities using laser isotopic separation, were particularly motivated by the generation of a uranium oxide aerosol identified as UO 2 + U metal . Taking the new ICRP 66 recommendations into account, the following study on this uranium oxide mixture, was aimed at determining the physico-chemical and biokinetic specific parameters required in order to calculate the effective dose. The activity median aerodynamic diameters (AMAD) ranged between 5.2 and 10 μm with, in some cases, up to 20% of submicron size particles, while concentration values at the workplace ranged from 1.8 to 125 Bq m -3 and biological half-time calculations gave a 48 d period with in vitro dissolution test and a 77 d period with in vivo inhalation experiments. Transfer rates and dissolution rates obtained from both in vitro and vivo experiments intend to emphasize a class W behaviour in term of ICRP 30 and M in term of ICRP 66. (authors). 3 figs., 4 tabs., 22 refs

  2. Proposal for Monitoring Within the Centrifuge Cascades of Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, David R.

    2017-04-01

    Safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to independently verify that nuclear material is not diverted from peaceful purposes to weapons (IAEA, 2017a). Safeguards implemented at uranium enrichment facilities (facilities hereafter) include enrichment monitors (IAEA, 2011). Figure 1 shows a diagram of how a facility could be monitored. The use of a system for monitoring within centrifuge cascades is proposed.

  3. METHOD OF PURIFYING URANIUM METAL

    Science.gov (United States)

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  4. Management of high enriched uranium for peaceful purposes: Status and trends

    International Nuclear Information System (INIS)

    2005-06-01

    Arms control agreements between some Nuclear Weapon States have led to the dismantling of many of the nuclear weapons in their military stockpiles, which in turn have produced stockpiles of excess weapons-grade high enriched uranium (HEU) from the dismantled weapons. Considering the proliferation potential of HEU, the management, control and disposition of this fissile material has become a primary focus of nuclear non-proliferation efforts worldwide. To lessen the proliferation threat of excess HEU stockpiles, the USA agreed to purchase several tonnes of excess Russian HEU down-blended to low enriched uranium (LEU). Proliferation concerns about HEU have also resulted in a global effort to convert research reactors from HEU to LEU fuel and to minimize civilian use of HEU. This publication addresses HEU management declared excesses, non-proliferation programmes and options for the use of HEU stockpiles, including disposition programmes. Also addressed are the influence of LEU derived from surplus HEU on the global market for uranium, technical issues associated with utilization and the disposition of HEU

  5. 77 FR 18272 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-03-27

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Louisiana Energy Services (LES), LLC, National enrichment Facility in Eunice, New Mexico, and has verified...

  6. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has verified that cascades...

  7. Determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions by potentiometric titration

    International Nuclear Information System (INIS)

    Tucker, H.L.; McElhaney, R.J.

    1983-01-01

    A simple, fast method for the determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions has been adapted from the Davies-Gray volumetric method to meet the needs of Y-12. One-gram duplicate aliquots of uranium metal or uranium oxide are dissolved in 1:1 HNO 3 and concentrated H 2 SO 4 to sulfur trioxide fumes, and then diluted to 100-mL volume. Duplicate aliquots are then weighed for analysis. For uranyl nitrate samples, duplicate aliquots containing between 50 and 150 mg of U are weighed and analyzed directly. The weighed aliquot is transferred to a Berzelius beaker; 1.5 M sulfamic acid is added, followed in order by concentrated phosphoric acid, 1 M ferrous sulfate, and (after a 30-second interval) the oxidizing reagent. After a timed 3-minute waiting period, 100 mL of the 0.1% vanadyl sulfate-sulfuric acid mixture is added. The sample is then titrated past its endpoint with standard potassium dichromate, and the endpoint is determined by second derivative techniques on a mV/weight basis

  8. Role of organic carbon in uranium enrichment in the black shales of Jhamarkotra formation of Aravalli Supergroup - a case study

    International Nuclear Information System (INIS)

    Purohit, Ritesh

    2010-01-01

    An illustration on role of TOC (Total organic carbon) in uranium enrichment is examined in present study from the Jhamarkotra Formation of the Palaeoproterozoic Aravalli Supergroup. The study unravels uranium ion mobility during secondary enrichment process which is governed by the depositional environment. Contrasting black shales facies, though coeval, show selective uranium mineralization. This variability is in discordance with the TOC content of the black shale facies, which in turn are governed by the different microenvironmental conditions. Uranium concentrations in the studied black shales are found to be independent of the TOC. The concentration is dependent on uranium ion carrier during secondary enrichment. (author)

  9. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jaluvka, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States); Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States); McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States); Peters, N. J. [Univ. of Missouri, Columbia, MO (United States)

    2017-02-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members in the Research and Test Reactor Department at the Argonne National Laboratory (ANL) and the MURR Facility. MURR LEU conversion is part of an overall effort to develop and qualify high-density fuel within the U.S. High Performance Research Reactor Conversion (USHPRR) program conducted by the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization (M3).

  10. Open / Unipede 1995 survey on uranium and enrichment requirements and supplies in Western Europe

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This report describes the current global situation with respect to uranium and enrichment supply and demand in Europe, as well as future prospects, based upon a survey conducted in mid-1995 by Unipede and Open among their member companies. The nuclear fuel cycle committees of Unipede and Open maintain an interest in all aspects of the nuclear fuel cycle from uranium procurement up to final disposal of radioactive waste. Regarding the front-end of the fuel cycle, the work within those committees currently concentrates of uranium and enrichment supply and demand in Europe, including the recycling of uranium and of plutonium recovered from reprocessing. For the past fifteen years, the nuclear fuel cycle committees of Unipede and Open have jointly conducted an annual survey among their members about uranium and enrichment requirements and supplies. The 1995 survey involved all nuclear electric utilities in Belgium, Finland, France, Germany, the Netherlands, Spain, Sweden, Switzerland and the United Kingdom. Exclusively electric utilities are surveyed, i.e. excluding national procurement organizations, traders, brokers, financial institutions, etc. The data obtained from the individual utilities in the same format, are aggregated and form the basis of the report. The quality of these data is guaranteed by the fact that the respondents are generally those people who are responsible for the day-to-day management of the nuclear fuel cycle in their company

  11. Report of the Working Party on the conversion of HIFAR to low enrichment uranium fuel

    International Nuclear Information System (INIS)

    1986-06-01

    This report states the effect on research reactor operations and applications of international and national political decisions relating to fuel enrichment. Technical work done in Australia and overseas to establish parameters for conversion of research reactors from High Enrichment Uranium (HEU) to Low Enrichment Uranium (LEU) have been considered in developing a strategy for HIFAR. The requirements of the research groups, isotope production group and reactor operating staff have been considered. For HIFAR to continue to provide the required facilities in support of the national need, it is concluded these should be no reduction of neutron flux

  12. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  13. Influence of uncertainties of isotopic composition of the reprocessed uranium on effectiveness of its enrichment in gas centrifuge cascades

    Science.gov (United States)

    Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.

    2017-01-01

    The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.

  14. Data base for a CANDU-PHW operating on a once-through, slightly enriched uranium cycle (AECL-6594)

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, gives data for an extrapolated 1000 MW(e) CANDU-PHW design operating on a once-through fuel cycle with a feed fuel of slightly enriched uranium - 1.2 weight % U-235 in uranium. The effects of varying fuel enrichment, maximum channel power, and economic parameters are also discussed

  15. Research and economic evaluation on uranium enrichment by gaseous diffusion process in Japan

    International Nuclear Information System (INIS)

    Aochi, T.; Takahashi, S.

    1977-01-01

    Research and development works on uranium enrichment by gaseous diffusion process were carried out by JAERI, IPCR and industries since 1965. There are two important keys to reduce the uranium separation cost. One is the characteristics of the barrier and the other is financing and/or political planning. The technics to prepare the barrier with pore diameter of 40A have been developed with polytetrafluoroethylene, alumina and nickel. The experiment on corrosion behavior of PTFE barriers has shown better characteristics than the others. In the field of engineering research, the adiabatic efficiency of axial compressor for UF 6 was resulted to as high as 90% by long term operation tests. Based on these experimental data, techno-economic evaluation on a uranium enrichment plant was carried out with regard to the optimization of separation efficiency, numbers of step and operating conditions of the plant. Sensitivity in the separation cost were calculated as a function of pore diameter, uranium hexafluoride cost, plant capacity, electric power cost, and the plant annual expenditure. A financing plan must be such as to achieve 1. maximization of debt in a percentage of total capitalization 2. off-take contracts to utilities as security for financing 3. minimization of risks to equity and achievable cost of capital. Therefore the cash flow analysis and the schedule for construction and operation are very important for a economical feasibility of a uranium enrichment plant. To minimize the risk, not only economical but also political environment are important. The governmental supports and international agreements will be necessary

  16. Conversion of research reactors to low-enrichment uranium fuels

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1983-01-01

    There are at present approximately 350 research reactors in 52 countries ranging in power from less than 1 watt to 100 Megawatt and over. In the 1970's, many people became concerned about the possibility that some fuels and fuel cycles could provide an easy route to the acquisition of nuclear weapons. Since enrichment to less than 20% is internationally recognized as a fully adequate barrier to weapons usability, certain Member States have moved to minimize the international trade in highly enriched uranium and have established programmes to develop the technical means to help convert research reactors to the use of low-enrichment fuels with minimum penalties. This could involve modifications in the design of the reactor and development of new fuels. As a result of these programmes, it is expected that most research reactors can be converted to the use of low-enriched fuel

  17. Uranium enrichment in South Africa: from the world-unique Z-plant to the use of high-technology lasers

    International Nuclear Information System (INIS)

    McDowell, M.W.

    1995-01-01

    A historical discussion of the technology used in South Africa for the enrichment of uranium, as well as other technological spin-offs for the country that followed from the construction of the Z-plant. The national energy strategy and objectives of the government during the Apartheid years resulted in the development of several large-scale energy projects. The pressure of sanctions forced the Z-plant to be rushed into operation at an uneconomical capacity of 250 000 SWU per annum. In 1994 this implied that enriched uranium was produced at a cost of $200 per SWU while the world market price was below $90. While the production of enriched uranium at the Z-plant ceased early in 1995, the expertise gained will not be lost entirely. As a result of the high energy and financial capital intensive current methods of producing enriched uranium, research started in the early 1970's into alternative production processes making use of lasers. South Africa has opted for the MLIS (molecular laser isotope separation) process, as a result of its vast experience gained from the Z-plant in the handling of the molecular input gas UF6 (uranium hexafluoride), and this has been under development since the early 1980's. During 1994 significant progress was made with MLIS, in particular with single-step enrichment from natural uranium to better than 4% uranium 235 on a macro scale. The Atomic Energy Corporation of South Africa's strategy is to licence the process internationally. 3 tabs., 3 figs

  18. Measurement system analysis (MSA) of the isotopic ratio for uranium isotope enrichment process control

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josue C. de; Barbosa, Rodrigo A.; Carnaval, Joao Paulo R., E-mail: josue@inb.gov.br, E-mail: rodrigobarbosa@inb.gov.br, E-mail: joaocarnaval@inb.gov.br [Industrias Nucleares do Brasil (INB), Rezende, RJ (Brazil)

    2013-07-01

    Currently, one of the stages in nuclear fuel cycle development is the process of uranium isotope enrichment, which will provide the amount of low enriched uranium for the nuclear fuel production to supply 100% Angra 1 and 20% Angra 2 demands. Determination of isotopic ration n({sup 235}U)/n({sup 238}U) in uranium hexafluoride (UF{sub 6} - used as process gas) is essential in order to control of enrichment process of isotopic separation by gaseous centrifugation cascades. The uranium hexafluoride process is performed by gas continuous feeding in separation unit which uses the centrifuge force principle, establishing a density gradient in a gas containing components of different molecular weights. The elemental separation effect occurs in a single ultracentrifuge that results in a partial separation of the feed in two fractions: an enriched on (product) and another depleted (waste) in the desired isotope ({sup 235}UF{sub 6}). Industrias Nucleares do Brasil (INB) has used quadrupole mass spectrometry (QMS) by electron impact (EI) to perform isotopic ratio n({sup 235}U)/n({sup 238}U) analysis in the process. The decision of adjustments and change te input variables are based on the results presented in these analysis. A study of stability, bias and linearity determination has been performed in order to evaluate the applied method, variations and systematic errors in the measurement system. The software used to analyze the techniques above was the Minitab 15. (author)

  19. Examination of long-stored uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Gate, A.M.; Hambley, D.I. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2013-07-01

    A small quantity of unirradiated uranium from Magnox fuel elements is currently held in archive storage. Some of these samples date back to the late fifties. This material has been stored, untreated, in unsealed containers in air at ambient temperature, humidity and pressure conditions. Such conditions are relevant to those that may exist in a passive storage facility. A sample of this material has been subject to optical, electron-optical and Raman spectroscopic examination to determine the extent of corrosion and the composition of corrosion product arising from long-term, low-temperature oxidation of uranium metal in air. The examinations have established that, even after a period in excess of 40 years, there was no observable spalling of uranium oxide from the sample during storage. The extent of oxidation of the metal, derived by SEM analysis, was slight and insignificant in relation to overall structural stability of the material. Raman spectroscopy data showed that the bulk of the oxide layer was comprised of hyper-stoichiometric UO{sub 2}, with U{sub 4}O{sub 9} being the dominant component. The oxygen/uranium ratio was observed to be decreased at the metal/oxide interface, with a very thin layer that consisted of mainly UO{sub 2} at the metal surface. At the oxide/air interface, a very thin U{sub 3}O{sub 8} layer was detected. U{sub 4}O{sub 9} is relatively mechanically stable, due to a significantly higher density than UO{sub 2} and U{sub 3}O{sub 8}. It is likely that the lower internal stresses in the thick U{sub 4}O{sub 9} layer have resulted in less oxide film cracking than would be expected from UO{sub 2} or U{sub 3}O{sub 8} and hence the low oxidation rate observed. These results suggest that storage of uranium metal in air over decades is a safe and credible option. (authors)

  20. Minimizing civilian use of highly enriched uranium - FRM II and global developments

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [Oeko-Institut e.V., Darmstadt (Germany)

    2016-07-01

    The need to use highly enriched uranium (HEU) in civil nuclear applications is shrinking due to international efforts worldwide in the last three decades. Today low enriched uranium (LEU) that is not suitable for nuclear weapon purposes can be used instead in almost all civil applications. An overview of the current HEU use worldwide will be presented before focusing more on the use of HEU in research reactors and the conversion of existing reactors to LEU. Specifically interesting is the case of the German research reactor in Munich, the FRM-II. The reactor operates since ten years after intense national and international discussions over the use of weapon usable HEU to fuel the reactor. Since its construction the reactor is therefore obliged to convert to lower enrichment levels as soon as a suitable fuel becomes available. Despite huge international efforts to develop new fuels it is still not clear if and when the reactor can be converted.

  1. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  2. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  3. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  4. Determination of uranium metal concentration in irradiated fuel storage basin sludge using selective dissolution

    International Nuclear Information System (INIS)

    Delegard, C.H.; Sinkov, S.I.; Chenault, J.W.; Schmidt, A.J.; Pool, K.N.; Welsh, T.L.

    2014-01-01

    Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %. (author)

  5. Improvements to the properties of uranium by addition of small quantities of other metals

    International Nuclear Information System (INIS)

    Englander, M.

    1960-01-01

    The most economical nuclear fuel used in power reaction which produce energy for industrial purposes is metallic uranium, either in natural form or slightly enriched in the 235 U isotope. Under optimum working conditions any fuel should produce a minimum of 3,000 MW days/tonne, i.e. 72 x 10 6 kWh per tonne of natural uranium, while at the same lime being maintained at a temperature sufficiently high for it to fulfil its role of heat-source (at a minimum of between 350 and 550 deg. C). Now it is rather surprising to note that polycrystalline aggregates in uranium billets, obtained either by casting under vacuum or by extrusion at high temperature, are made up of course grains having broken-up, irregular contours and exhibit numerous signs of intergranular deformation (twin crystals, slip-lines) as well as a pronounced sub-structure. As well as this, the range of grain diameters extends from a few microns up to a few millimeters, according to the micrographic zones examined. Under the influence of irradiation at these temperatures, pure cylindrical metallic uranium bars of about 1 inch diameter are deformed: cracks appear in the metal and changes in the length and diameter occur (these produce an 'orange-peel' texture on the surface). These changes are caused either by growths which are more or less oriented, or else by surface distortions which can cause faults in the material and in the canning and can produce bending which may be sufficiently pronounced to interfere with the cooling circuits. It has since been realised that this instability under the effects of thermal stresses of nuclear origin is due to the heterogeneous morphology of uranium and to its anisotropic crystalline structure (U α or U β ). (author) [fr

  6. Legal and regulatory framework of Uranium's enrichment

    International Nuclear Information System (INIS)

    Antelo, Josefina; Figueredo, Micaela S.; Mangone, Gisela P.; Manin, Maria L.; Pota, Luciana F.

    2009-01-01

    The object of this paper is to develop the legal aspects referred to the activities of uranium's enrichment, in order to achieve the pacific use of nuclear energy and to obey treatments, agreements and international conventions in which Argentine is party and through them assumes the non proliferation's commitment. In this context, we will develop the rights and obligations established in those legal instruments, as well as the juridical concerns of the eventual subscription of Argentine to the Additional Protocol approved by the Board of Governors in 1997. (author)

  7. Research on and economic evaluation of uranium enrichment by gaseous diffusion in Japan

    International Nuclear Information System (INIS)

    Aochi, T.; Takahashi, S.

    1977-01-01

    Research and development on uranium enrichment by the gaseous diffusion process have been carried out by the Japan Atomic Energy Research Institute, the Institute of Physical and Chemical Research, and industries since 1965. The paper describes the two important keys to reducing the cost of uranium separation. One is the characteristics of barriers and the other is financing and/or political planning. The techniques of preparing a barrier with pore diameter 40A have been developed with polytetrafluoroethylene (PTFE), alumina and nickel. Experiments on corrosion behaviour have indicated that PTFE barriers are the most favourable. In the field of engineering research, the adiabatic efficiency of the axial compressor for UF 6 was raised to as high as 90% by long-term operation tests. Based on these experimental data, technico-economic evaluation of a uranium enrichment plant was carried out for optimization of separation efficiency, number of steps and plant operating conditions. Sensitivity in the separation cost was calculated as a function of pore diameter, cost of uranium hexafluoride, plant capacity, cost of electric power, and annual expenditure of the plant. A finance plan must be such as to achieve: (a) maximization of debt in a percentage of total capital; (b) off-take contracts to utilities as security for financing; (c) minimization of risks to equity and achievable cost of capital. Therefore, the cash flow analysis and the schedule for construction and operation are very important for the economic feasibility of a uranium enrichment plant. To minimize the risk, the economic as well as the political environment is important. Government support and international agreements are necessary. (author)

  8. METHOD OF HOT ROLLING URANIUM METAL

    Science.gov (United States)

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  9. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  10. recovery of enriched uranium from waste solution obtained from fuel fabrication laboratories

    International Nuclear Information System (INIS)

    Othman, S.H.A.

    2003-01-01

    reversed-phase partition chromatography is shown to be a convenient and applicable method for the quantitative recovery of uranium (19.7% enriched with 235 U) from highly impure solution . the processing of uranium compounds for atomic energy project especially in FMPP(Egyptian fuel manufacture pilot plant) gives rise to a variety of wastes in which the uranium content is of considerable importance. the recovery of uranium from concentrated mother liquors produced from ADU (ammonium diuranate ) precipitation, as well as those due to ADU washing is studied in this work. column of poly-trifluoro-monochloro-ethilene (Kel-F) supporting tri-n-butyl-phosphate (TBP) retains uranium .impurities are eluted with 6.5 M HCl, and the uranium is eluted with water and the recovery of uranium is better than 94%. A mathematical model was suggested to stimulate the sorption process of uranium ions (or any other ion ) by column of solvent impregnated resin containing organic extractant (the same as the previous column) . An excellent agreement was founded between the experimental results and the mathematical model

  11. Dissolution of metallic uranium and its alloys. Part II. Screening study results: Identification of an effective non-thermal uranium dissolution method

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    Screening experiments were performed to evaluate reagent systems that deactivate pyrophoric, metallic depleted uranium waste streams at ambient temperature. The results presented led to the selection of two systems, which would be investigated further, for the design of the LLNL onsite treatment process of metallic depleted uranium wastes. The two feasible systems are: (a) 7.5 mol/l H 2 SO 4 - 1 mol/l HNO 3 and (b) 3 mol/l HCl - 1 mol/l H 3 PO 4 . The sulfuric acid system dissolves uranium metal completely, while the hydrochloric-phosphoric acid system converts the metal completely into a solid, which might be suitable for direct disposal. Both systems combine oxidation of metallic uranium with complexation of the uranium ions formed to effectively deactivate uranium.s pyrophoricity at ambient temperature. (author)

  12. Interim report of working group on development and examination of new material, high performance centrifuge technology, Advisory Committee on Nuclear Uranium Enrichment

    International Nuclear Information System (INIS)

    1988-01-01

    The industrialization of uranium enrichment in Japan has been advanced by the Power Reactor and Nuclear Fuel Development Corp. by centrifugal separation technology. In April, 1988, the partial operation of the uranium enrichment prototype plant by centrifugal separation process (200 t SWU/year) was begun in Ningyo Pass, Okayama Prefecture, and its full operation is expected in January, 1989. Based on this achievement, Japan Nuclear Fuel Industry Co., Ltd. advances the construction of a commercial uranium enrichment plant in Rokkasho Village, Aomori Prefecture, aiming at the start of operation around 1991. On the other hand, the environment surrounding the uranium enrichment business in Japan is extremely severe at present, and due to the excessive supply capacity of world uranium enrichment service and the recent rapid appreciation of yen, the further improvement of the economical efficiency of Japanese uranium enrichment business is demanded. The working group held four meetings since May, 1988, and evaluated the present status of the research and development of new material, high performance centrifuges, and investigated and discussed the method of advancing the research and development hereafter. The results are reported. (Kako, I.)

  13. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    Science.gov (United States)

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  14. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE and AFTER IRRADIATION

    International Nuclear Information System (INIS)

    SCHWINKENDORF, K.N.

    2006-01-01

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  15. Association of igneous phophate and uranium

    International Nuclear Information System (INIS)

    Loureiro, F.E.V.L.

    1980-10-01

    Data from Catalao permit some brief comments about the association of igneous phosphate and uranium, and on the possible economic importance of this type of mineralization in spite of the low grades of metals observed. Chemical and mineralogical analyses of carbonatites, phosphate ore and different phosphate concentrates, reveal the existence of important low-grade reserves of Th, Nb, Zr, U and La, and possibly of other metals such as V and Cu. Uranium is enriched 1.6 and 1.2 times, respectively, in the residual muds and flotation wastes produced at the processing plant of Goiasfertil operating in the area. The uranium is associated with two types of minerals, the first one comprised primarily of phosphates of the gorceixite group and secondarily of apatite and dahllite. THe second association is with pyrochlore, or rather barium-pyrochlore. Further investigations of similar occurences may define more clearly and specifically the various factors controlling the observed enrichment in heavy elements. (Author) [pt

  16. Historical review of CEA researches on uranium enrichment

    International Nuclear Information System (INIS)

    Camarcat, N.

    1997-01-01

    The various uranium enrichment processes that have been studied at the CEA since 1953 are briefly reviewed: gaseous diffusion (which led to the construction of EURODIF plant), chemical treatments (which were abandoned in 1988 for cost reasons), gaseous ultracentrifugation, electromagnetic processes, laser techniques (since 1980) and especially the SILVA technique (atomic vapour laser isotopic separation) which could take the place of the gaseous diffusion technique when the EURODIF plant will need to be renewed before 2010

  17. An automated solution enrichment system for uranium analysis

    International Nuclear Information System (INIS)

    Jones, S.A.; Sparks, R.; Sampson, T.; Parker, J.; Horley, E.; Kelly, T.

    1993-01-01

    An automated Solution Enrichment system (SES) for analysis of Uranium and U-235 isotopes in process samples has been developed through a joint effort between Los Alamos National Laboratory and Martin Marietta Energy systems, Portsmouth Gaseous Diffusion Plant. This device features an advanced robotics system which in conjuction with stabilized passive gamma-ray and X-ray fluorescence detectors provides for rapid, non-destructive analyses of process samples for improved special nuclear material accountability and process control

  18. Alpha spectrometry enriched uranium urinalysis results from IPEN

    International Nuclear Information System (INIS)

    Lima, Marina Ferreira

    2008-01-01

    Full text: IPEN (Instituto de Pesquisas Energeticas e Nucleares) manufactures the nuclear fuel to its research reactor, the IEA-R1. The CCN (Centro do Ciclo do Combustivel) facility produces the fuel cermets from UF 6 (uranium hexafluoride) enriched to 19.75% in 235 U. The production involves the transformation of the gaseous form in oxides and silicates by ceramic and metallurgical processing. The workers act in more than one step that involves exposition to types F, S and M compounds of uranium. Until 2003, only fluorimetric analysis was carried out by the LRT (Laboratorio de Radiotoxicologia - IPEN) in order to evaluate the intake of uranium, in spite of the sub estimation of the 234 U contribution to the internal doses. Isotopic uranium determination in urine by alpha spectrometry is the current method to monitoring the contribution of 234 U, 235 U and 238 U. Alpha spectrometry data of 164 samples from 84 individuals separate in three categories of workers: routinely work group; special operation group and control group - were analyzed how the isotopic composition excreted by urinary tract corresponds with the level of enrichment and isotopic composition of the plant products. Results show that is hard to estimate these intakes of 234 U and 235 U since these isotopes alpha activities are below the limit of detection or minimum detectable activity (MAD) of this method in the most part of the samples. Only in 22 samples it was possibly to measure the three radionuclides. Not expected high contribution of 234 U activity was found in samples of the control group. No one result over the 234 U and 235 U MAD was found in the samples from the special operation group. Only in 5 samples from the routinely group the levels of 235 U was higher than the levels of others groups. In a complementary study, 3 solid samples of UF 6 , U 2 O 8 and U 3 Si 2 from CCN plant were analyzed to determinate the isotopic uranium composition in these salts, since this composition varies

  19. A feasibility study concerning the conversion of the TR-2 reactor from using highly enriched uranium to light enriched uranium

    International Nuclear Information System (INIS)

    Aldemir, T.; Turgut, H.M.; Bretscher, M.M.; Snelgrove, L.J.

    1983-01-01

    A study has been made of the feasibility of converting the 5-MW TR-2 reactor at CNAEM to use fuel with uranium enrichment of 3 O 8 -Al fuel meat with a uranium density in the range 2.3 to 3.0 g/cm 3 in the fuel meat with meat thickness varying between 0.9 and 1.00 mm, the number of plates in the LEU element being reduced from 23 in the HEU element to 19 to 20 to maintain adequate cooling. Fuels within this density range are expected to be commercially available within the next two years. From the results of the study it appears to be feasible to safely operate the TR-2 reactor using LEU fuel without increased fuel cycle costs or decreased performance using U 2 O 8 fuels with densities in the 2.3 to 3.0 gU/cm 3 range. (author)

  20. Correlation between induced embryo toxicity and absorption dose of enriched uranium in testes

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Lun Mingyue

    1996-01-01

    Doses of enriched uranium in testes inducing dominant lethality and skeletal abnormalities in offsprings are estimated. When intra-testicular injection dose is 0.4∼60 μg enriched uranium; from intake to insemination, testes could receive 9.14 x 10 -5 ∼1.38 x 10 -2 Gy radiation dose. Experimental results show that with the increase in the absorption dose, the number of living fetuses in a litter decreases, dominant lethality and skeletal abnormalities rise. It should be noted that relationship between the injected dose (I in μg) and the incidence of dominant skeletal abnormalities (S in %) in the offsprings can be represented by equation: S = 28.84 + 0.84I

  1. Correlation between induced embryo toxicity and absorption dose of enriched uranium in testes

    Energy Technology Data Exchange (ETDEWEB)

    Shoupeng, Zhu; Mingyue, Lun [Suzhou Medical Coll., JS (China)

    1996-08-01

    Doses of enriched uranium in testes inducing dominant lethality and skeletal abnormalities in offsprings are estimated. When intra-testicular injection dose is 0.4{approx}60 {mu}g enriched uranium; from intake to insemination, testes could receive 9.14 x 10{sup -5}{approx}1.38 x 10{sup -2} Gy radiation dose. Experimental results show that with the increase in the absorption dose, the number of living fetuses in a litter decreases, dominant lethality and skeletal abnormalities rise. It should be noted that relationship between the injected dose (I in {mu}g) and the incidence of dominant skeletal abnormalities (S in %) in the offsprings can be represented by equation: S = 28.84 + 0.84I.

  2. Minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    A parametric calculational analysis has been performed in order to estimate the minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems. The analysis was performed using a version of the SCALE-4.0 code system and the 27-group ENDF/B-IV cross-section library. Water-moderated uranyl fluoride (UO{sub 2}F{sub 2} and H{sub 2}O) and hydrofluoric-acid-moderated uranium hexaflouride (UF{sub 6} and HF) systems were considered in the analysis over enrichments of 1.4 to 5 wt % {sup 235}U. Estimates of the minimum critical volume, minimum critical mass of uranium, and the minimum mass of moderator required for criticality are presented. There was significant disagreement between the values generated in this study when compared with a similar undocumented study performed in 1983 using ANISN and the Knight-modified Hansen-Roach cross sections. An investigation into the cause of the disagreement was made, and the results are presented.

  3. Minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    A parametric calculational analysis has been performed in order to estimate the minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems. The analysis was performed using a version of the SCALE-4.0 code system and the 27-group ENDF/B-IV cross-section library. Water-moderated uranyl fluoride (UO[sub 2]F[sub 2] and H[sub 2]O) and hydrofluoric-acid-moderated uranium hexaflouride (UF[sub 6] and HF) systems were considered in the analysis over enrichments of 1.4 to 5 wt % [sup 235]U. Estimates of the minimum critical volume, minimum critical mass of uranium, and the minimum mass of moderator required for criticality are presented. There was significant disagreement between the values generated in this study when compared with a similar undocumented study performed in 1983 using ANISN and the Knight-modified Hansen-Roach cross sections. An investigation into the cause of the disagreement was made, and the results are presented.

  4. Uranium metal and uranium dioxide powder and pellets - Determination of nitrogen content - Method using ammonia-sensing electrode. 1. ed.

    International Nuclear Information System (INIS)

    1994-01-01

    This International Standard specifies an analytical method for determining the nitrogen content in uranium metal and uranium dioxide powder and pellets. It is applicable to the determination of nitrogen, present as nitride, in uranium metal and uranium dioxide powder and pellets. The concentration range within which the method can be used is between 9 μg and 600 μg of nitrogen per gram. Interference can occur from metals which form complex ammines, but these are not normally present in significant amounts

  5. Radioactive effluents, Portsmouth Uranium Enrichment Complex, calendar year 1983

    International Nuclear Information System (INIS)

    Acox, T.A.; Klein, L.S.

    1984-03-01

    Radioactive discharges from the Portsmouth Uranium Enrichment Complex are discussed and tabulated. Tables indicate both the location of the discharge and the nuclides discharged. Routine discharges for 1983 are well below the Radioactive Concentration Guide limits specified in DOE Order 5480.1, Chapter XI. There was, however, an unplanned release in December from the X-326 Building Side Purge which exceeded the limits. 1 figure

  6. Effect of CO on surface oxidation of uranium metal

    International Nuclear Information System (INIS)

    Wang, X.; Fu, Y.; Xie, R.

    1997-01-01

    The surface reactions of uranium metal with carbon monoxide at 25 and 200 deg C have been studied by X-ray photoelectron spectroscopy (XPS);respectively. Adsorption of carbon monoxide on the surface layer of uranium metal leads to partial reduction of surface oxide and results in U4f photoelectron peak shifting to the lower binding energy. The content of oxygen in the surface oxide is decreased and O1s/O4f ratio decreases with increasing the exposure of carbon monoxide. The investigation indicates the surface layer of uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide. (author)

  7. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

  8. Radiochronological age of a uranium metal sample from an abandoned facility

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; Glover, S.E.; Spitz, H.B.

    2013-01-01

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940 and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230 Th from the decay of 234 U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years. (author)

  9. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    International Nuclear Information System (INIS)

    Meyers, L.A.; Williams, R.W.; Glover, S.E.; LaMont, S.P.; Stalcup, A.M.; Spitz, H.B.

    2012-01-01

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230 Th from the decay of 234 U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years.

  10. Release of gases from uranium metal at high temperatures

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Yadav, C.S.; Shankaran, P.S.; Chhapru, G.C.; Ramakumar, K.L.; Venugopal, V.

    2008-01-01

    Depending on the ambient environmental conditions, different gaseous species could get entrapped in uranium metal ingots or pellets. On heating, melting or vapourising uranium metal, these get released and depending on the composition, may cause detrimental effects either within the metal matrix itself or on the surrounding materials/environment. For instance, these gases may affect the performance of the uranium metal, which is used as fuel in the heavy water moderated research reactors, CIRUS and DHRUVA. Hence, detailed investigations have been carried out on the release of gases over a temperature range 875-1500 K employing hot vacuum extraction technique, in specimen uranium pellets made from uranium rods/ingots. Employing an on-line quadrupole mass spectrometer, the analysis of released gases was carried out. The isobaric interference between carbon monoxide and nitrogen at m/e = 28 in the mass spectrometric analysis has been resolved by considering their fragmentation patterns. Since no standards are available to evaluate the results, only the reproducibility is tested. The precision (relative standard deviation at 3σ level) of the method is ±5%. The minimum detectable gas content employing the method is 5.00 x 10 -09 m 3 . About 4 x 10 -04 m 3 /kg of gas is released from uranium pellets, with hydrogen as the main constituent. The gas content increases with storage in air

  11. The Resonance Absorption of Uranium Metal and Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, E; Lundgren, G

    1962-06-15

    The resonance integrals for uranium metal and uranium oxide have been determined for a 1/E flux. The following results were obtained Metal RI 2.95 + 25.8{radical}(S/M); Oxide RI = 4.15 + 26.6{radical}(S/M). The oxide value agrees with the expression found earlier at this laboratory. But the result for the metal is 4. 5 % larger than the earlier one. In addition, the resonance absorption in a R1 fuel rod has been compared with that for a cadmium-covered rod placed in an approximate cell boundary flux. The former came out 3 % larger than the latter. A comparison of the fuel rod absorption with that for a 1/E flux yields a corresponding figure of 7 %. The neutron flux was monitored below the lowest resonance in uranium.

  12. Comparison of heavy metals and uranium removal using adsorbent in soil

    Science.gov (United States)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  13. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Carter, R.E.

    1985-01-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  14. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R E

    1985-07-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  15. Uranium enrichment decontamination and decommissioning fund

    International Nuclear Information System (INIS)

    1994-01-01

    One of the most challenging issues facing the Department of Energy's Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge

  16. The passivation of uranium metal surfaces by nitrogen bombardment - the formation of uranium nitride

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1987-08-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced however by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterised by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air. (author)

  17. The passivation of uranium metal surfaces by nitrogen bombardment - the formation of uranium nitride

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1988-01-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air. (orig.)

  18. Preliminary uranium enrichment analysis results using cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Lavietes, A.D.; McQuaid, J.H.; Paulus, T.J.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) and EG ampersand G ORTEC have jointly developed a portable ambient-temperature detection system that can be used in a number of application scenarios. The detection system uses a planar cadmium zinc telluride (CZT) detector with custom-designed detector support electronics developed at LLNL and is based on the recently released MicroNOMAD multichannel analyzer (MCA) produced by ORTEC. Spectral analysis is performed using software developed at LLNL that was originally designed for use with high-purity germanium (HPGe) detector systems. In one application, the CZT detection system determines uranium enrichments ranging from less than 3% to over 75% to within accuracies of 20%. The analysis was performed using sample sizes of 200 g or larger and acquisition times of 30 min. The authors have demonstrated the capabilities of this system by analyzing the spectra gathered by the CZT detection system from uranium sources of several enrichments. These experiments demonstrate that current CZT detectors can, in some cases, approach performance criteria that were previously the exclusive domain of larger HPGe detector systems

  19. Using low-enriched uranium in research reactors: The RERTR program

    International Nuclear Information System (INIS)

    Travelli, A.

    1994-01-01

    The goal of the RERTR program is to minimize and eventually eliminate use of highway enriched uranium (HEU) in research and test reactors. The program has been very successful, and has developed low-enriched uranium (LEU) fuel materials and designs which can be used effectively in approximately 90 percent of the research and test reactors which used HEU when the program began. This progress would not have been possible without active international cooperation among fuel developers, commercial vendors, and reactor operators. The new tasks which the RERTR program is undertaking at this time include development of new and better fuels that will allow use of LEU fuels in all research and test reactors; cooperation with Russian laboratories, which will make it possible to minimize and eventually eliminate use of HEU in research reactors throughout the world, irrespective of its origin; and development of an LEU-based process for the production of 99 Mo. Continuation and intensification of international cooperation are essential to the achievement of the ultimate goals of the RERTR program

  20. Uranium enrichment services activity. Financial statements for fiscal year ended June 30, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Financial statements for the Uranium Enrichment Services Activity, covering both ERDA and its contractors, are presented to provide information concerning the operations and financial position of this operation

  1. Characterization of highly enriched uranium in a nuclear forensic exercise

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Marcos R.L. do; Quinelato, Antonio L.; Silva, Nivaldo C. da, E-mail: pmarcos@cnen.gov.br [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil); Sarkis, Jorge E.S., E-mail: jesarkis@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the characterization of two metal samples of highly enriched uranium as a contribution of Pocos de Caldas Laboratory, LAPOC, a branch of Brazilian National Commission for Nuclear Energy, CNEN, to the Round Robin 3, R R3, coordinated by the Nuclear Forensics International Technical Working Group. A scenario was constructed in which two separate seizures of nuclear material occurred and forensics analysis was requested to help discern whether these incidents were related and whether these incidents exceeded country statutes. Laboratories were instructed to submit assessment reports in 24 hours, one week, and two month time frames. Besides preliminary evaluations for categorization of the material, our laboratory applied high resolution gamma spectrometry, optical emission spectrometry by inductively coupled plasma, and potentiometric titration for quantitative characterization of the samples. Concerning our technical reports answers for the three main forensics questions formulated by R R3, one of them was inconclusive, considering that LAPOC does not yet have all essential equipment for a fully satisfactory forensics nuclear analysis. (author)

  2. Characterization of highly enriched uranium in a nuclear forensic exercise

    International Nuclear Information System (INIS)

    Nascimento, Marcos R.L. do; Quinelato, Antonio L.; Silva, Nivaldo C. da; Sarkis, Jorge E.S.

    2011-01-01

    This paper presents the characterization of two metal samples of highly enriched uranium as a contribution of Pocos de Caldas Laboratory, LAPOC, a branch of Brazilian National Commission for Nuclear Energy, CNEN, to the Round Robin 3, R R3, coordinated by the Nuclear Forensics International Technical Working Group. A scenario was constructed in which two separate seizures of nuclear material occurred and forensics analysis was requested to help discern whether these incidents were related and whether these incidents exceeded country statutes. Laboratories were instructed to submit assessment reports in 24 hours, one week, and two month time frames. Besides preliminary evaluations for categorization of the material, our laboratory applied high resolution gamma spectrometry, optical emission spectrometry by inductively coupled plasma, and potentiometric titration for quantitative characterization of the samples. Concerning our technical reports answers for the three main forensics questions formulated by R R3, one of them was inconclusive, considering that LAPOC does not yet have all essential equipment for a fully satisfactory forensics nuclear analysis. (author)

  3. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  4. Possibilities of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-11-01

    There are serious economic reasons for using metal uranium in heavy water reactors, because of its high density, i.e. high conversion factor, and low cost of fuel elements production. Most important disadvantages are swelling at high burnup and corrosion risk. Some design concepts and application of improved uranium obtained by alloying are promising for achievement of satisfactory stability of metal uranium under reactor operation conditions [sr

  5. Video monitoring system for enriched uranium casting furnaces

    International Nuclear Information System (INIS)

    Turner, P.C.

    1978-03-01

    A closed-circuit television (CCTV) system was developed to upgrade the remote-viewing capability on two oralloy (highly enriched uranium) casting furnaces in the Y-12 Plant. A silicon vidicon CCTV camera with a remotely controlled lens and infrared filtering was provided to yield a good-quality video presentation of the furnace crucible as the oralloy material is heated from 25 to 1300 0 C. Existing tube-type CCTV monochrome monitors were replaced with solid-state monitors to increase the system reliability

  6. How can Korea secure uranium enrichment and spent fuel reprocessing rights?

    International Nuclear Information System (INIS)

    Roh, Seungkook; Kim, Wonjoon

    2014-01-01

    South Korea is heavily dependent on energy resources from other countries and nuclear energy accounts for 31% of Korea's electric power generation as a major energy. However, Korea has many limitations in uranium enrichment and spent fuel reprocessing under the current Korea-U.S. nuclear agreement, although they are economically and politically important to Korea due to a significant problems in nuclear fuel storages. Therefore, in this paper, we first examine those example countries – Japan, Vietnam, and Iran – that have made nuclear agreements with the U.S. or have changed their agreements to allow the enrichment of uranium and the reprocessing of spent fuel. Then, we analyze those countries' nuclear energy policies and review their strategic repositioning in the relationship with the U.S. We find that a strong political stance for peaceful usage of nuclear energy including the legislation of nuclear laws as was the case of Japan. In addition, it is important for Korea to acquire advanced technological capability such as sodium-cooled fast reactor (SFR) because SFR technologies require plutonium to be used as fuel rather than uranium-235. In addition, Korea needs to leverage its position in nuclear agreement between China and the U.S. as was the case of Vietnam

  7. Surplus Highly Enriched Uranium Disposition Program plan

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of this document is to provide upper level guidance for the program that will downblend surplus highly enriched uranium for use as commercial nuclear reactor fuel or low-level radioactive waste. The intent of this document is to outline the overall mission and program objectives. The document is also intended to provide a general basis for integration of disposition efforts among all applicable sites. This plan provides background information, establishes the scope of disposition activities, provides an approach to the mission and objectives, identifies programmatic assumptions, defines major roles, provides summary level schedules and milestones, and addresses budget requirements

  8. Uranium enrichment measurement by X- and γ-ray spectrometry with the 'URADOS' process

    International Nuclear Information System (INIS)

    Morel, Jean; Etcheverry, Michel; Riazuelo, Gilles

    1998-01-01

    The methods used for the uranium enrichment measurement require in general prior instrument calibration with several standards. Thus, it is possible to avoid the constraints involved in calibration by considering the complex spectral region called XK α . This spectral region is sufficiently limited so that the variation of the detector efficiency response is small enough to facilitate a self-calibration. Processing this region is critical and requires taking into account 3 elemental images, one corresponding to 235 U, one to 238 U and one to the X-ray fluorescence induced in the sample by radiation above 100 keV. A process called 'URADOS' based on this principle has been developed. Six uranium oxide standards with different enrichments and infinite thicknesses were counted several times to test this process; other samples, some highly enriched, were also used. The results obtained are compared to the declared values. From these measurements, it has been possible to improve the photon emission probability values

  9. Implementation trial of high performance trace analysis/environmental sampling (HPTA/ES) in uranium centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Nackaerts, H.; Kloeckner, W.; Landresse, G.; MacLean, F.; Betti, M.; Forcina, V.; Hiernaut, T.; Tamborini, G.; Koch, L.; Schenkel, R.

    1999-01-01

    Field trials have demonstrated that the analysis of particles upon swipes obtained from inside nuclear installations provides clear signatures of past operations in that installation. This can offer a valuable tool for gaining assurance regarding the compliance with declared activities and the absence of undeclared activities (e.g. enrichment, reprocessing, and reactor operation) at such sites. This method, known as 'Environmental Sampling' (ES) or 'High Performance Trace Analysis' (HPTA) in EURATOM terminology, is at present being evaluated by the EURATOM Safeguards Directorate (ESD) in order to assess its possible use in nuclear installations within the European Union. It is expected that incorporation of HPTA/ES of sample collection and analysis into routine inspection activities will allow EURATOM to improve the effectiveness of safeguards in these installations and hopefully save inspection resources as well. The EURATOM Safeguards Directorate has therefore performed implementation trials involving the collection of particles by the so-called swipe sampling method in uranium centrifuge enrichment plants and hot cells in the European Union. These samples were subsequently analysed by the Joint Research Centre, Institute for Transuranium Elements (ITU) in Karlsruhe. Sampling points were chosen on the basis of the activities performed in the vicinity and by considering the possible ways through which particles are released, diffused and transported. The aim was to test the efficiency of the method as regards: the collection of enough representative material; the identification of a large enough number of uranium particles; the accurate measurement of the enrichment of the uranium particles found on the swipe; the representativity of the results in respect of past activities in the plant; the capability of detecting whether highly enriched uranium has been produced, used or occasionally transported in a location where low enriched uranium is routinely produced in

  10. Development of ISA procedure for uranium fuel fabrication and enrichment facilities

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Arakawa, Tomoyuki; Yamashita, Masahiro; Sasaki, Noriaki; Hirano, Mitsumasa

    2011-01-01

    The integrated safety analysis (ISA) procedure has been developed to apply risk-informed regulation to uranium fuel fabrication and enrichment facilities. The major development efforts are as follows: (a) preparing the risk level matrix as an index for items-relied-on-for-safety (IROFS) identification, (b) defining requirements of IROFS, and (c) determining methods of IROFS importance based on the results of risk- and scenario-based analyses. For the risk level matrix, the consequence and likelihood categories have been defined by taking into account the Japanese regulatory laws, rules, and safety standards. The trial analyses using the developed procedure have been performed for several representative processes of the reference uranium fuel fabrication and enrichment facilities. This paper presents the results of the ISA for the sintering process of the reference fabrication facility. The results of the trial analyses have demonstrated the applicability of the procedure to the risk-informed regulation of these facilities. (author)

  11. Development of metal uranium fuel and testing of construction materials (I-VI); Part I

    International Nuclear Information System (INIS)

    Mihajlovic, A.

    1965-11-01

    This project includes the following tasks: Study of crystallisation of metal melt and beta-alpha transforms in uranium and uranium alloys; Study of the thermal treatment influence on phase transformations and texture in uranium alloys; Radiation damage of metal uranium; Project related to irradiation of metal uranium in the reactor; Development of fuel element for nuclear reactors

  12. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 6 consisted of six phases, A through F. In each phase a critical configuration was constructed to simulate a very simple shape such as a slab, cylinder or sphere that could be analyzed with the limited analytical tools available in the 1950s. In each case the configuration consisted of a core region of metal plates surrounded by a thick depleted uranium metal reflector. The average compositions of the core configurations were essentially identical in phases A - F. ZPR-3

  13. A new methodology using mathematical treatment in uranium recovery of slags from U-metal production

    International Nuclear Information System (INIS)

    Ferreto, Helio Fernando Rodrigues; Araujo, Berta Floh de

    1999-01-01

    U 3 Si 2 fuel was developed by the Fuel Cycle Department of IPEN/CNEN - SP in order to provide high density fuel elements for the IEA-R1m swimming pool reactor. Uranium containing magnesium fluoride slags are produced during the reduction of U F 4 to metallic uranium, the first step of U 3 Si 2 production. Since enriched uranium is used and taking in account process economics and environmental impacts, the recovery of uranium from the slags is highly recommended. This work deals with the uranium recovery from magnesium fluoride slag via nitric acid leaching process using a new methodology for the study. A statistical procedure for process optimization was applied using a fractional factorial design at two levels and four variables represented as 2 4-1 . Variance analysis followed by multiple regression was used, setting up a first order polygonal model, as follow: y 92,409 +3,825 x 1 - 0,875 x 3 + 1,65 x 4 - 0,95 x 3 x 4 Standard error 1,04572. This equation represents the variables and the most suitable interactions in the uranium recovery process. By using this equation, one can obtain in advance and without making experiments the values from the process variables for a giving process yield. (author)

  14. Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-21

    The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

  15. Nuclear characteristics evaluation for Kyoto University Research Reactor with low-enriched uranium core

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken; Unesaki, Hironobu [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun Osaka (Japan)

    2008-07-01

    A project to convert the fuel of Kyoto University Research Reactor (KUR) from highly enriched uranium (HEU) to low-enriched uranium (LEU) is in progress as a part of RERTR program. Prior to the operation of LEU core, the nuclear characteristics of the core have been evaluated to confirm the safety operation. In the evaluation, nuclear parameters, such as the excess reactivity, shut down margin control rod worth, reactivity coefficients, were calculated, and they were compared with the safety limits. The results of evaluation show that the LEU core is able to satisfy the safety requirements for operation, i.e. all the parameters satisfy the safety limits. Consequently, it was confirmed that the LEU fuel core has the proper nuclear characteristics for the safety operation. (authors)

  16. Radioimmunotoxicological effect of enriched uranium on central and peripheral immune cells and the protective action of IL-1 and IL-2

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Lai Guanhua; Wang Liuyi

    1993-01-01

    With accumulation of enriched uranium 235 U-UO 2 F 2 in organism, it was found that enriched uranium had injurious effect on the immune function of central and peripheral immune cells. After intravenous injection of enriched uranium the spontaneous 3 H-TdR incorporation in thymocytes and bone marrow cells decreased. Though the sensitivity of immune cells to 235 U-UO 2 F 2 was different, the thymocytes were destroyed more markedly. Also the proliferation ability of T and B lymphocytes were both inhibited by enriched uranium 235 U. As compared with them, spleen B lymphocytes were inhibited more markedly than T lymphocytes. At the same time spleen lymphocytes IL-1 production and IL 2 consumption were diminished. It should be noted that the inhibition of spleen B lymphocytes proliferation by enriched uranium 235 U-UO 2 F 2 was partially restored by exogenous IL-1 or IL-2. The recovery rate of protective action at the very most was 67.1 +- 11.2% with exogenous IL-1 and 50.2 +- 8.0% with IL-2. Moreover, both exogenous IL-1 and IL-2 had synergetic effect, and the recovery rate was elevated to 83.1 +-12.3%

  17. Conversion of research and test reactors to low enriched uranium fuel: technical overview and program status

    International Nuclear Information System (INIS)

    Roglans-Ribas, J.

    2008-01-01

    Many of the nuclear research and test reactors worldwide operate with high enriched uranium fuel. In response to worries over the potential use of HEU from research reactors in nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel by converting research reactors to low enriched uranium (LEU) fuel. The Reactor Conversion program is currently under the DOE's National Nuclear Security Administration's Global Threat Reduction Initiative (GTRI). 55 of the 129 reactors included in the scope have been already converted to LEU fuel or have shutdown prior to conversion. The major technical activities of the Conversion Program include: (1) the development of advanced LEU fuels; (2) conversion analysis and conversion support; and (3) technology development for the production of Molybdenum-99 (Mo 99 ) with LEU targets. The paper provides an overview of the status of the program, the technical challenges and accomplishments, and the role of international collaborations in the accomplishment of the Conversion Program objectives. Nuclear research and test reactors worldwide have been in operation for over 60 years. Many of these facilities operate with high enriched uranium fuel. In response to increased worries over the potential use of HEU from research reactors in the manufacturing of nuclear weapons, the U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of HEU fuel in research reactors by converting them to low enriched uranium (LEU) fuel. The reactor conversion program was initially focused on U.S.-supplied reactors, but in the early 1990s it expanded and began to collaborate with Russian institutes with the objective of converting Russian supplied reactors to the use of LEU fuel.

  18. Integrated design of SIGMA uranium enrichment plants

    International Nuclear Information System (INIS)

    Rivarola, Martin E.; Brasnarof, Daniel O.

    1999-01-01

    In the present work, we describe a preliminary analysis of the design feedbacks in a Uranium Enrichment Plant, using the SIGMA concept. Starting from the result of this analysis, a computer code has been generated, which allows finding the optimal configurations of plants, for a fixed production rate. The computer code developed includes the model of the Thermohydraulic loop of a SIGMA module. The model contains numerical calculations of the main components of the circuit. During the calculations, the main components are dimensioned, for a posterior cost compute. The program also makes an estimation of the enrichment gain of the porous membrane, for each separation stage. Once the dimensions of the main components are known, using the enrichment cascade calculation, the capital and operation costs of the plant could be determined. At this point it is simple to calculate a leveled cost of the Separative Work Unit (SWU). A numerical optimizer is also included in the program. This optimizer finds the optimal cascade configuration, for a given set of design parameters. The whole-integrated program permits to investigate in detail the feedback in the component design. Therefore, the sensibility of the more relevant parameters can be computed, with respect of the economical variables of the plant. (author)

  19. Critical experiments on enriched uranium graphite moderated cores

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Akino, Fujiyoshi; Kitadate, Kenji; Kurokawa, Ryosuke

    1978-07-01

    A variety of 20 % enriched uranium loaded and graphite-moderated cores consisting of the different lattice cells in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments systematically. In the present report, the experimental results for homogeneously or heterogeneously fuel loaded cores and for simulation core of the experimental reactor for a multi-purpose high temperature reactor are filed so as to be utilized for evaluating the accuracy of core design calculation for the experimental reactor. The filed experimental data are composed of critical masses of uranium, kinetic parameters, reactivity worths of the experimental control rods and power distributions in the cores with those rods. Theoretical analyses are made for the experimental data by adopting a simple ''homogenized cylindrical core model'' using the nuclear data of ENDF/B-III, which treats the neutron behaviour after smearing the lattice cell structure. It is made clear from a comparison between the measurement and the calculation that the group constants and fundamental methods of calculations, based on this theoretical model, are valid for the homogeneously fuel loaded cores, but not for both of the heterogeneously fuel loaded cores and the core for simulation of the experimental reactor. Then, it is pointed out that consideration to semi-homogeneous property of the lattice cells for reactor neutrons is essential for high temperature graphite-moderated reactors using dispersion fuel elements of graphite and uranium. (author)

  20. Quality assurance in the enriched uranium operations NDA facility

    Energy Technology Data Exchange (ETDEWEB)

    May, P.K.; Ceo, R.N. [Oak Ridge Y-12 Plant, TN (United States)

    1997-11-01

    The Nondestructive Analysis (NDA) Facility at the Oak Ridge Y-12 Plant has characterized process wastes for Enriched Uranium Operations since 1978. Since that time, over 50,000 items have been analyzed. Analysis results are used to determine whether or not recovery of uranium from process wastes is economically feasible. Our instrument complement includes one large segmented gamma scanner (SGS), two smaller SGS, two solution assay systems (SAS), and Active Well Coincidence Counter (AWCC). The large SGS is used for analyzing High Efficiency Particulate Air (HEPA) filters ant 208-L drums filled with combustible contaminated waste. The smaller SGS are used to analyze 4-L containers of ash and leached residues. The SAS are used to analyze 125 ml bottles of aqueous or organic waste solutions that may contain uranium. The gamma-based NDA techniques are used to identify which process wastes can be discarded, and which must be recycled. The AWCC is used to analyze high-density materials which are not amenable to gamma-ray analysis. 1 ref., 4 figs.

  1. Preparation and Purification of natural uranium metal by Iodine method

    International Nuclear Information System (INIS)

    Taies, J.A.

    2008-01-01

    In this work ,glass-metal apparatus was designed and manufactured which used for preparing a high purity uranium.The reaction is simply take place between iodine vapour and uranium metal at 500C in closed system to form uranium tetra iodide which is decomposed on hot wire at high temperature around 1100C.Also another apparatus was made from Glass and used for preparing a high purity of UI 4 more than 99.9%purity

  2. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...

  3. Decontamination and decommissioning of laboratory solutions enriched uranium (IR-01 b)

    International Nuclear Information System (INIS)

    Diaz Arocas, P. P.; Sama Colao, J.; Garcia Diaz, A.; Torre Rodriguez, J.; Martinez, A.; Argiles, E.; Garrido Delgado, C.

    2010-01-01

    Completed actions decontamination and decommissioning of the Laboratory of Enriched Uranium Solutions, attached to the Radioactivity lR-0l CIEMAT, was carried out final radiological control of the laboratory. From the documentation generated proceeded to request modification of the IR-01 installation by closing its laboratory IR-01 b.

  4. High-sensitive detection by direct interrogation of 14 MeV Acc neutrons, (1). Uranium-contained metal matrix in a waste dram

    International Nuclear Information System (INIS)

    Haruyama, Mitsuo; Takase, Misao; Tobita, Hiroshi; Mori, Takamasa

    2004-01-01

    Previously, authors reported that the 14 MeV-neutron direct interrogation method has made possible measure for the discrimination of clearance levels of concrete solidification uranium waste. In this paper, applicability of the method to metal waste matrix is discussed based on the results of simulation experiments by the continuation energy Monte Carlo calculation code (MVP). The problem is that self-neutron moderation effect in a waste cannot be expected when a waste matrix is metal. To solve this, a moderator is adopted so as to surround a metal waste drum and to slow down suitably a 14 MeV neutrons. The simulation calculation showed that this effect is satisfactorily large. The detection limit of radioactivity concentration to 4.5% enriched uranium has been found to be 0.0973 Bq/g in the metal waste model of 215.59 kg gross weight, in which 61 pipes are stuffed into its drum. Moreover, the position-dependent sensitivity difference in a metal waste drum can be settled as small as to ±13.5%. In conclusion, it can be said that 14 MeV-neutron direct interrogation method can be applied to the waste of a metal system: the detection sensitivity is high enough and the position-dependent sensitivity difference is small admittedly. Hence the method can be applied also to discrimination measurement of the clearance level of metal uranium waste. (author)

  5. Simulating cosmic metal enrichment by the first galaxies

    NARCIS (Netherlands)

    Pallottini, A.; Ferrara, A.; Gallerani, S.; Salvadori, S.; D'Odorico, V.

    We study cosmic metal enrichment via adaptive mesh refinement hydrodynamical simulations in a (10 Mpc h-1)3 volume following the Population III (PopIII)-PopII transition and for different PopIII initial mass function (IMFs). We have analysed the joint evolution of metal enrichment on galactic and

  6. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    Science.gov (United States)

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  7. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Foyto, L [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Kutikkad, K [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; McKibben, J C [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Peters, N. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Stevens, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  8. Estimation of uranium and cobalt-60 distribution coefficients and uranium-235 enrichment at the Combustion Engineering Company site in Windsor, Connecticut

    International Nuclear Information System (INIS)

    Wang, Y.; Orlandini, K.A.; Yu, C.

    1996-05-01

    Site-specific distribution coefficients for uranium isotopes and cobalt-60 (Co-60) and the fraction of uranium-235 (U-235) enrichment by mass were estimated for environmental samples collected from the Combustion Engineering Company site in Windsor, CT. This site has been identified for remedial action under the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program. The authority of DOE at the Combustion Engineering site is limited to (1) Building 3; (2) other activities or areas associated exclusively with Building 3 (such as sewer lines); or (3) contamination that is exclusively highly enriched uranium. In this study, 16 samples were collected from the Combustion Engineering site, including 8 soil, 4 sediment, 3 water, and 1 water plus sludge sample. These samples were analyzed for isotopic uranium by alpha spectrometry and for Co-60 by gamma spectrometry. The site-specific distribution coefficient for each isotope was estimated as the ratio of extractable radionuclide activity in the solid phase to the activity in the contact solution following a 19-day equilibration. The uranium activity measurements indicate that uranium-234 (U-234) and uranium-238 (U-238) were in secular equilibrium in two soil samples and that soil and sediment samples collected from other sampling locations had higher U-234 activity than U-238 activity in both the solid and solution phases. The site-specific distribution coefficient (Kd) ranged from 82 to 44,600 mL/g for U-238 and from 102 to 65,900 mL/g for U-234. Calculation of U-235 enrichment by mass indicated that four soil samples had values greater than 0.20; these values were 0.37, 0.38, 0.46, and 0.68. Cobalt-60 activity was detected in only three sediment samples. The measured Co-60 activity in the solid phase ranged from 0.15 to 0.45 pCi/g and that in the water phase of all three samples combined was 4 pCi/L. The Kd value for Co-60 in the site brook sediment was calculated to be 70 mL/g

  9. The passivation of uranium metal surfaces by nitrogen bombardment — the formation of uranium nitride

    Science.gov (United States)

    Allen, Geoffrey C.; Holmes, Nigel R.

    1988-05-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air.

  10. Deployable nuclear fleet based on available quantities of uranium and reactor types – the case of fast reactors started up with enriched uranium

    Directory of Open Access Journals (Sweden)

    Baschwitz Anne

    2016-01-01

    Full Text Available International organizations regularly produce global energy demand scenarios. To account for the increasing population and GDP trends, as well as to encompass evolving energy uses while satisfying constraints on greenhouse gas emissions, long-term installed nuclear power capacity scenarios tend to be more ambitious, even after the Fukushima accident. Thus, the amounts of uranium or plutonium needed to deploy such capacities could be limiting factors. This study first considers light-water reactors (LWR, GEN III using enriched uranium, like most of the current reactor technologies. It then examines the contribution of future fast reactors (FR, GEN IV operating with an initial fissile load and then using depleted uranium and recycling their own plutonium. However, as plutonium is only available in limited quantity since it is only produced in nuclear reactors, the possibility of starting up these Generation IV reactors with a fissile load of enriched uranium is also explored. In one of our previous studies, the uranium consumption of a third-generation reactor like an EPR™ was compared with that of a fast reactor started up with enriched uranium (U5-FR. For a reactor lifespan of 60 years, the U5-FR consumes three times less uranium than the EPR and represents a 60% reduction in terms of separative work units (SWU, though its requirements are concentrated over the first few years of operation. The purpose of this study is to investigate the relevance of U5-FRs in a nuclear fleet deployment configuration. Considering several power demand scenarios and assuming different finite quantities of available natural uranium, this paper examines what types of reactors must be deployed to meet the demand. The deployment of light-water reactors only is not sustainable in the long run. Generation IV reactors are therefore essential. Yet when started up with plutonium, the number of reactors that can be deployed is also limited. In a fleet deployment

  11. Role of modern analytical techniques in the production of uranium metal

    International Nuclear Information System (INIS)

    Hareendran, K.N.; Roy, S.B.

    2009-01-01

    Production of nuclear grade uranium metal conforming to its stringent specification with respect to metallic and non metallic impurities necessitates implementation of a comprehensive quality control regime. Founding members of Uranium Metal Plant realised the importance of this aspect of metal production and a quality control laboratory was set up as part of the production plant. In the initial stages of its existence, the laboratory mainly catered to the process control analysis of the plant process samples and Spectroscopy Division and Analytical Division of BARC provided analysis of trace metallic impurities in the intermediates as well as in the product uranium metal. This laboratory also provided invaluable R and D support for the optimization of the process involving both calciothermy and magnesiothermy. Prior to 1985, analytical procedures used were limited to classical methods of analysis with minimal instrumental procedures. The first major analytical instrument, a Flame AAS was installed in 1985 and a beginning to the trace analysis was made. However during the last 15 years the Quality Control Section has modernized the analytical set up by acquiring appropriate instruments. Presently the facility has implemented a complete quality control and quality assurance program required to cover all aspects of uranium metal production viz analysis of raw materials, process samples, waste disposal samples and also determination of all the specification elements in uranium metal. The current analytical practices followed in QCS are presented here

  12. Uranium enrichment measurement task with a connectionist architecture

    International Nuclear Information System (INIS)

    Vigneron, V.; Martinez, J.M.; Morel, J.; Lepy, M.C.

    1995-01-01

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ration 235 U/( 235 U+ 236 U+ 238 U). The usual methods consider a limited number of γ-ray and X-ray peaks, and requires previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above conventional methods is to reduce the region of interest: this is possible by focusing on the region called K α X where the three elementary components are present. The measurement of these components in mixtures leads to the desired ratio. Real data are used to study its performance. Training is done with a Maximum Likelihood method. We show the encoding of data by Neural Networks is a promising method to measure uranium 235 U and 238 U quantities in infinitely thick samples. (authors). 7 refs., 2 figs., 1 tab

  13. Chemical Separation of Fission Products in Uranium Metal Ingots from Electrolytic Reduction Process

    International Nuclear Information System (INIS)

    Lee, Chang-Heon; Kim, Min-Jae; Choi, Kwang-Soon; Jee, Kwang-Yong; Kim, Won-Ho

    2006-01-01

    Chemical characterization of various process materials is required for the optimization of the electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. In the uranium metal ingots of interest in this study, residual process materials and corrosion products as well as fission products are involved to some extent, which further adds difficulties to the determination of trace fission products. Besides it, direct inductively coupled plasma atomic emission spectrometric (ICP-AES) analysis of uranium bearing materials such as the uranium metal ingots is not possible because a severe spectral interference is found in the intensely complex atomic emission spectra of uranium. Thus an adequate separation procedure for the fission products should be employed prior to their determinations. In present study ion exchange and extraction chromatographic methods were adopted for selective separation of the fission products from residual process materials, corrosion products and uranium matrix. The sorption behaviour of anion and tri-nbutylphosphate (TBP) extraction chromatographic resins for the metals in acidic solutions simulated for the uranium metal ingot solutions was investigated. Then the validity of the separation procedure for its reliability and applicability was evaluated by measuring recoveries of the metals added

  14. Natural uranium utilization without enrichment and reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H.; Toshinsky, V.; Ryu, K. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    2001-07-01

    Two types of fast reactor are investigated to utilize the natural uranium without enrichment and reprocessing in an equilibrium state. The first trial is SFPR. Its fuel-shuffling pattern is optimized. An obtained result gives its peak fuel burnup of 22,5%, power peaking factor of 1.5 and peak excess reactivity of 2,15%. The second trial is CANDLE burnup scheme, where distribution shapes of neutron flux and nuclide densities are constant but move in axial direction with a constant velocity. A feasible solution gives the speed of burning region of 4,1 cm/year, k{sub eff} of 1,02 and average spent fuel burnup of 41%. (author)

  15. Report of the Uranium Enrichment Technology Evaluation Committee

    International Nuclear Information System (INIS)

    1977-01-01

    The centrifuge method of uranium enrichment is being pushed forward in Japan as a national project. The results of the technology evaluation are described regarding the efforts heretofore, the plan for pilot plant construction, internationally competitive ability, and the schedule after the pilot plant. In conclusion, the basic technology for proceeding to a pilot plant is now mature, and the pilot plant planning by PNC (Power Reactor and Nuclear Fuel Development Corporation) is generally appropriate. The outlook for constructing and internationally competitive practical plant is reasonably good. (Mori, K.)

  16. Progress on the IPNS Enriched Uranium Booster Target

    International Nuclear Information System (INIS)

    Knox, A.E.; Carpenter, J.M.; Bailey, J.L.

    1986-09-01

    We describe the Enriched Uranium Booster Target designed for use in Argonne's Intense Pulsed Neutron Source. This report contains a general description of the system, and descriptions of the thermal-hydraulic and loss-of-coolant accident analyses, of the neutronic, criticality and power density calculations, of the assessment of radiation and thermal cycling growth, and of the disk fabrication methods. We also describe the calculations of radionuclide buildup and the related hazards analysis and our calculations of the temperature and stress profiles in the disks, and briefly allude to considerations of security and safeguards

  17. Experimental critical parameters of enriched uranium solution in annular tank geometries

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  18. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  19. Liquid uranium contaimment in refractories metals

    International Nuclear Information System (INIS)

    Duarte, J.L.; Padilha, A.F.

    1982-01-01

    Tests were performed on metalic materials for liquid uranium containment up to 2100 0 C. The materials Nb, Mo, Ta and W in the form of crucibles were tested at 2100 0 C for one hour in the presence of flowing argon. After testing, the crucibles were etched using HCl and analysed by optical metallography and electron proble microanalysis. The results are discussed in terms of Berthoud equation and indicated that the solubility limit of the crucible material in uranium at the temperature controlls the crucible dissolution by liquid uranium. The various phases formed, the mechanism of dissolution and the possible material for future use are presented and discussed. (Author) [pt

  20. Study on uranium metallization yield of spent Pressurized Water Reactor fuels and oxidation behavior of fission products in uranium metals

    International Nuclear Information System (INIS)

    Choi, Ke Chon; Lee, Chang Heon; Kim, Won Ho

    2003-01-01

    Metallization yield of uranium oxide to uranium metal from lithium reduction process of spent Pressurized Water Reactor (PWR) fuels was measured using thermogravimetric analyzer. A reduced metal produced in the process was divided into a solid and a powder part, and each metallization yield was measured. Metallization yield of the solid part was 90.7∼95.9 wt%, and the powder being 77.8∼71.5 wt% individually. Oxidation behaviour of the quarternary alloy was investigated to take data on the thermal oxidation stability necessary for the study on dry storage of the reduced metal. At 600∼700 .deg. C, weight increments of allow of No, Ru, Rh and Pd was 0.40∼0.55 wt%. Phase change on the surface of the allow was started at 750 .deg. C. In particular, Mo was rapidly oxidized and then the alloy lost 0.76∼25.22 wt% in weight

  1. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    International Nuclear Information System (INIS)

    Fonnesbeck, J.

    2000-01-01

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H 2 formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO 2 and UH 3

  2. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Fonnesbeck, J.

    2000-03-20

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H{sub 2} formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO{sub 2} and UH{sub 3}.

  3. Preparation of the pur uranium-metal

    International Nuclear Information System (INIS)

    Goldschmidt, B.; Vertes, P.

    1955-01-01

    A detailed description of the chemical processes used to prepare in the factory of Bouchet of the CEA (Seine-Et-Oise) pur metal uranium with either relatively rich ores, or extracts coming of physical or chemical treatment of poor ores. The nitric treatment of ores succeeds to the production of uranate of impure sodium carbonate. This last last product is dissolved in nitric acid and the uranyl nitrate is extracted by tributyl-phosphate diluted in an inert solvent. The uranyl nitrate pure is re-extracted and successively transformed in uranium peroxide, in orange oxide then in brown oxide which is transformed in fluoride by the anhydrous hydrofluoric acid. Uranate fluoride is then reduced in metal by the pure calcium with an yield superior to 99%. (authors) [fr

  4. Uranium enrichment with lasers - will South Africa lead or lag?

    International Nuclear Information System (INIS)

    Du Toit, G.

    1992-01-01

    Over 30 percent of the cost of locally made nuclear fuel in South Africa is associated with increasing the concentration of uranium 235. Cheaper enrichment technologies and, in particular, the decision by the Atomic Energy Corporation of South Africa to concentrate its research efforts on laser techniques are therefore of considerable significance. The laser isotope separation programme in South Africa is reviewed. 1 ill

  5. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida.

    Science.gov (United States)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-15

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI)>Pb>Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters.

  6. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-01

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI) > Pb > Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters

  7. Criticality safety concerns of uranium deposits in cascade equipment

    International Nuclear Information System (INIS)

    Plaster, M.J.

    1996-01-01

    The Paducah and Portsmouth Gaseous Diffusion Plants enrich uranium in the 235 U isotope by diffusing gaseous uranium hexafluoride (UF 6 ) through a porous barrier. The UF 6 gaseous diffusion cascade utilized several thousand open-quotes stagesclose quotes of barrier to produce highly enriched uranium (HEU). Historically, Portsmouth has enriched the Paducah Gaseous Diffusion Plant's product (typically 1.8 wt% 235 U) as well as natural enrichment feed stock up to 97 wt%. Due to the chemical reactivity of UF 6 , particularly with water, the formation of solid uranium deposits occur at a gaseous diffusion plant. Much of the equipment operates below atmospheric pressure, and deposits are formed when atmospheric air enters the cascade. Deposits may also be formed from UF 6 reactions with oil, UF 6 reactions with the metallic surfaces of equipment, and desublimation of UF 6 . The major deposits form as a result of moist air in leakage due to failure of compressor casing flanges, blow-off plates, seals, expansion joint convolutions, and instrument lines. This report describes criticality concerns and deposit disposition

  8. Radiation damage of metal uranium; Radijaciono ostecenje metalnog urana

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report is concerned with the role of dispersion second phase in uranium and burnup rate. The role of dispersion phases in radiation stability of metal uranium was studies by three methods: variation of electric conductivity dependent on the neutron flux and temperature of pure uranium for different states of dispersion second phase; influence of dispersion phase on the radiation creep; transmission electron microscopy of fresh and irradiated uranium.

  9. Laser and gas centrifuge enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  10. Iran to sign additional protocol and suspend uranium enrichment and reprocessing

    International Nuclear Information System (INIS)

    2003-01-01

    Full text: Iran's representative to the IAEA, Ambassador Ali Akbar Salehi, today delivered a letter to IAEA Director General, Mohamed ElBaradei conveying his Government's acceptance of the Additional Protocol. Mr. Salehi also informed the Director General that Iran had decided, as of today, to suspend all uranium enrichment-related and reprocessing activities in Iran - specifically, to suspend all activities on the site of Natanz, not to produce feed material for enrichment processes and not to import enrichment-related items. 'This is a welcome and positive development,' IAEA Director General Mohamed ElBaradei said. The IAEA intends to verify, in the context of the Safeguards Agreement and the Additional Protocol, the implementation by Iran of these decisions. At its meeting on 12 September, the IAEA Board of Governors adopted a resolution calling on Iran to sign, ratify and fully implement the Additional Protocol promptly and unconditionally, and as a confidence building measure to act henceforth in accordance with the Additional Protocol. The Board also called on Iran to suspend all further uranium enrichment and reprocessing activities, pending provision by the Director General of the assurances required by Member States and pending satisfactory application of the provisions of the Additional Protocol. Also today, Mr. ElBaradei has released his report to IAEA Member States on the 'Implementation of the NPT Safeguards Agreement in the Islamic Republic of Iran' for consideration at the 20 November Board of Governors' meeting. Unless the IAEA Board decides otherwise, the document's circulation is restricted and it cannot be released to the press. (IAEA)

  11. A 2000-2010 years outlook of isotopic uranium enrichment

    International Nuclear Information System (INIS)

    Vasaru, G.

    1998-01-01

    The increase of the installed power in nuclear plants implies the following steps to be achieved: - developing a parallel industry for the nuclear fuel cycle able to ensure a rhythmic supply of natural uranium, possibly an isotopic enrichment of 235 U of around 1.2 - 3.2%, depending on the reactor system; - manufacturing the fuel elements and the operation of cycle back-end, which may, possibly, include a temporary storage of the irradiated fuel; - reprocessing the spend fuel; - radioactive waste processing in view of final disposal, as well as the recovery of un-spent uranium and of plutonium formed. The heavy water reactors of CANDU-PHW does not imply any isotopic enrichment but provides a lower burnup of only 7,000 MW day/tone. An enrichment to 1.2% in 235 U for this type of reactors could increase the burnup up to 20,000 MW day/tone. An advanced method of enriching 235 U is based on the Atomic Vapor Laser Isotop Separation (AVLIS). This procedure called AVLIS has several advantages which are pointed out in this paper, among which: a very high selectivity; high separation factors; a low energy consumption due to the fact that in the conditions of a selective photo ionization, the energy necessary to the process is only 6.2 eV for the separated 235 U atom vs 0.3 MeV in case of inertial separators or 3 MeV in case of gaseous diffusion procedure. With the current laser yields an energy consumption of 100 kWh/SWU is estimated for AVLIS procedures as compared with 2,400 kWh/SWU in case of gaseous diffusion; an almost entire extraction of 235 U, what ensures a more efficient utilisation of nuclear fuel. Due to its modular character and to potential improvement in the equipment which could be achieved, this procedure will ensure a reduction in the investment costs in the construction stage what will make AVLIS a substitute of the classical separation procedures

  12. Thermal simulation of the magnesium thermal of metallic uranium reduction

    International Nuclear Information System (INIS)

    Borges, W.A.; Saliba-Silva, A.M.

    2008-01-01

    Metallic uranium production is vital to fabricate fuel elements for nuclear research reactors and to produce radioisotopes and radiopharmaceuticals. Metallic uranium is got via magnesiothermal reduction of UF 4 . This reaction is carried out inside a closed graphite crucible inserted in a metallic reactor adequately sealed without any outside contact. The assembled set is gradually heated up inside a pit furnace up to reach the reaction ignition temperature (between 600-650 deg C). The optimization of the reactive system depends on the mathematical modeling using simulation by finite elements and computational calculation with specialized programs. In this way, the reactants' thermal behavior is forecast until they reach the ignition temperature. The optimization of the uranium production reaction is based on minimization of thermal losses using better the exo thermal reaction heat. As lower the thermal losses, as higher would be the heat amount to raise the temperature of reaction products. This promotes the adequate melting of uranium and slag, so allowing better metal/slag separation with higher metallic yield. This work shows how the mathematical simulation is made and supplies some preliminary results. (author)

  13. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  14. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Science.gov (United States)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  15. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse-Helmreich, Carissa J., E-mail: carissahelmreich@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States); Corbin, Rob, E-mail: rcorbin@terrapower.com [TerraPower, LLC, 330 120th Ave NE, Suite 100, Bellevue, WA 98005 (United States); McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States)

    2014-03-15

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  16. Measurement of thermal diffusivity of depleted uranium metal microspheres

    International Nuclear Information System (INIS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-01-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal

  17. PRETREATING URANIUM FOR METAL PLATING

    Science.gov (United States)

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  18. Replacement of highly enriched uranium by medium or low-enriched uranium in fuels for research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    To exclude the possibility of an explosive use of the uranium obtained from an elementary chemical process, one needs to use a fuel less enriched than 20 weight percent in U 235 . This goal can be reached by two ways: 1. The low density fuels, i.e. U or U 3 O 8 /Al fuels. One has to increase their U content from 1.3 g U/cm 3 presently qualified under normal operation conditions. Several manufacturers such as CERCA in France developed these fuels with a near-term objective of about 2 g U/cm 3 and a long-term objective of 3 g U/cm 3 . 2. The high density fuels. They are the UO 2 Caramel plate type fuels now under consideration, and U 3 Si and UMo as a long-term potential

  19. Chemical uranium enrichment with ion exchanger

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Onitsuka, Hatsuki; Obanawa, Heiichiro

    1991-01-01

    The uranium enrichment by using ion-exchange has been studied and developed since 1972. The ion-exchange rate has been improved approx. 3000 times and the electron exchange reaction, which occurs with ion-exchange reaction, was also accelerated with catalyst. Flow disturbance in a ion-exchange column has been fully studied and the value of turbulence has been reduced to 150μm. These results allowed us to design a very fine separation column, in which about 10000 stages can be obtained even when the column is more than 1 m in diameter. In the course of the development, a self-regenerating reaction between the redox agents was discovered and incorporated into the process, and has resulted in a reduction of 70 % in the separation energy requirement. (author)

  20. Thermal-hydraulic calculations for KUHFR with reduced enrichment uranium fuel

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Shibata, Toshikazu.

    1982-01-01

    This report provides the preliminary results of the thermal-hydraulic calculations to study the safety aspects in fueling the KUHFR with reduced enrichment uranium. The calculations were based on what was outlined in the Safety Analysis Report for the KUHFR and the guidebook for research reactor core conversion, IAEA-TECDOC-233, published by the International Atomic Energy Agency. No significant differences in the thermal-hydraulic operating conditions have been found between HEU and MEU fuels. However, in LEU cases, the combination of three factors - larger power peaking with LEU fuel, smaller thermal conductivity of U 3 O 8 -Al fuel with high uranium densities, and thicker fuel meat - resulted in higher maximum fuel and surface temperatures with the LEU oxide fuel. (author)

  1. The behaviour of uranium metal in hydrogen atmospheres

    International Nuclear Information System (INIS)

    Allen, G.C.; Stevens, J.C.H.

    1988-01-01

    The reaction between commercial H 2 and uranium metal leads to the formation of UO 2 due to traces of water vapour or oxygen. When extremely pure H 2 is used uranium hydride may be formed but, even with 99.9999% H 2 , uranium dioxide forms preferentially. The present work identifies the presence of UH 3 in the X-ray photoelectron spectrum of a uranium sample which has been exposed to ca. 10 10 L† H 2 at ca. 200 0 C. This spectrum indicates that the hydride possesses a high degree of covalency, since the oxidation state of uranium in UH 3 appears to be ca. 1.4. (author)

  2. Research reactor preparations for the air shipment of highly enriched uranium from Romania

    International Nuclear Information System (INIS)

    Bolshinsky, I.; Allen, K.J.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.; Paunoiu, C.; Ciocanescu, M.

    2010-01-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation (RF) for conversion to low enriched uranium (LEU). The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR-S research reactor at Magurele, Romania, to Ozersk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation for Atomic Energy Rosatom and the International Atomic Energy Agency (IAEA). Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel. (author)

  3. Performance and economic penalties of some LEU [low enriched uranium] conversion options for the Australian Reactor HIFAR

    International Nuclear Information System (INIS)

    McCulloch, D.B.; Robinson, G.S.

    1987-01-01

    Performance calculations for the conversion of HIFAR to low enriched uranium (LEU) fuel have been extended to a wide range of 235 U loadings per fuel element. Using a simple approximate algorithm for the likely costs of LEU compared with highly enriched uranium (HEU) fuel elements, the increases in annual fuelling costs for LEU compared with HEU fuel are examined for a range of conversion options involving different performance penalties. No significant operational/safety problems were found for any of the options canvassed. (Author)

  4. Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.

    2009-05-27

    This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

  5. Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.

    2008-09-25

    This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.

  6. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    International Nuclear Information System (INIS)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E.

    1994-01-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO 2 feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF 4 to produce CF 4 in addition to the reduction of UO 2 , but the fraction of metal from the reduction of UF 4 can be decreased by increasing the concentration of dissolved UO 2 . Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF 4

  7. Possibility of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-01-01

    The review of metal uranium properties including irradiation in the reactor core lead to the following conclusions. Using metal uranium in the heavy water reactors would be favourable from economic point of view for ita high density, i.e. high conversion factor and low cost of fuel elements fabrication. Most important constraint is swelling during burnup and corrosion

  8. X-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide

    International Nuclear Information System (INIS)

    Dillard, J.G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H.J.

    1984-01-01

    The adsorption of molecular iodine on uranium metal and on uranium dioxide has been investigated at 25 0 C. Clean surfaces were prepared in an ultrahigh vacuum apparatus and were characterized by X-ray photoelectron (XPS) and X-ray and electron-induced Auger electron spectroscopies (AES). Adsorption of I 2 was studied for exposures up to 100 langmuirs (1 langmuir = 10 -6 torr s) on uranium metal and to 75 langmuirs on uranium dioxide. Above about 2-langmuir I 2 exposure on uranium, spectroscopic evidence is obtained to indicate the beginning of UI 3 formation. Saturation coverage for I 2 adsorption on uranium dioxide occurs at approximately 10-15 langmuirs. Analysis of the XPS and AES results as well as studies of spectra as a function of temperature lead to the conclusions that a dissociative chemisorption/reaction process occurs on uranium metal while nondissociative adsorption occurs on uranium dioxide. Variations in the iodine Auger kinetic energy and in the Auger parameter are interpreted in light of extra-atomic relaxation processes. 42 references, 10 figures, 1 table

  9. Investigations on the enrichment behaviour of toxic heavy metals in the mass flows of a coal power station

    International Nuclear Information System (INIS)

    Biehusen, U.

    1980-01-01

    In the present work solid sample material from a coal power plant has been analyzed, and by means of establishing a mass balance and calculating enrichment factors the question of how the heavy-metals having entered the power plant via the coal are distributed over the individual mass flows leaving the plant has been explained. Radioactive substances that get into the plant with the uranium and thorium contained in the coal have been considered in the same way. (orig./EF) [de

  10. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  11. Preliminary investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chaiko, D.J.; Heinrich, R.R.; Kucera, E.T.; Jensen, K.J.; Poa, D.S.; Varma, R.; Vissers, D.R.

    1986-11-01

    This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product 99 Mo. Issues that were addressed are: (1) purity and yield of the 99 Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for 99 Mo production. 37 refs., 1 fig., 5 tabs

  12. Initial and transition cycle development for KALIMER uranium fueled core

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Kim, Young In; Kim, Young Jin; Park, Chang Kue

    1998-01-01

    An economic and safe equilibrium Uranium metallic fuelled core having been established, strategic loading schemes for initial and transition cycles to early reach target equilibrium cycles are suggested for U-U and U-Pu transition cycles. An iterative method to find initial core enrichment splits is developed. With non-uniform feed enrichments at the initial core adopted, this iterative method shows KALIMER can reach Uranium equilibrium cycles just after 4 reloads, keeping feed enrichment unchanged from cycle 2. Recycling of self-generated Pu is not sufficient to make KALIMER a pure Pu equilibrium core even after 56 reloads. equilibrium cycles are suggested for U-U and U-Pu transition cycles. An iterative method to find initial core enrichment splits is developed. With non-uniform feed enrichments at the initial core adopted, this iterative method shows KALIMER can reach Uranium equilibrium cycles just after 4 reloads, keeping feed enrichment unchanged from cycle 2. Recycling of self-generated Pu is not sufficient to make KALIMER a pure Pu equilibrium core even after 56 reloads

  13. Uranium enrichment measurement task with a connectionist architecture

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V; Martinez, J M [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Morel, J; Lepy, M C [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants

    1996-12-31

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ration {sup 235} U/({sup 235} U+{sup 236} U+{sup 238} U). The usual methods consider a limited number of {gamma}-ray and X-ray peaks, and requires previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above conventional methods is to reduce the region of interest: this is possible by focusing on the region called K{sub {alpha}}X where the three elementary components are present. The measurement of these components in mixtures leads to the desired ratio. Real data are used to study its performance. Training is done with a Maximum Likelihood method. We show the encoding of data by Neural Networks is a promising method to measure uranium {sup 235} U and {sup 238} U quantities in infinitely thick samples. (authors). 7 refs., 2 figs., 1 tab.

  14. An assessment of the effectiveness of personal visual observation for a uranium enrichment facility (2)

    International Nuclear Information System (INIS)

    Bando, Masatsugu; Okamoto, Tsuyoshi

    2003-01-01

    In a centrifuge uranium enrichment facility, a large number of unit cascades are operated to produce low enriched uranium for nuclear power reactors. Some thousands of UF 6 gas centrifuges are installed in unit cascade. If a new type of advanced centrifuge is developed in the near future, the number of stages and UF 6 gas centrifuges in the unit cascade would decrease dramatically. Furthermore, an integrated type of centrifuge, which is composed of a few tens of centrifuges, is adopted from the point of economic view, the piping arrangement among UF 6 gas centrifuges can be more simplified. It can be said that the simpler the piping arrangement, the less the operation time we are required to make any diverted cascade with the help of re-arrangement of the unit cascade piping. When two type of centrifuge, conventional and advanced centrifuge are used in the uranium enrichment facility, we predicted an inspection effort of personal visual observation for inspector by Game Theory. In our mathematical model, an activity of inspection in a cascade area is simplified into two-person non-cooperative game between inspector and facility operator. As a result of our calculation, it became clear that total inspection effort is likely to increase unless the integrated type of centrifuge is installed. (author)

  15. Uranium price reporting systems

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes the systems for uranium price reporting currently available to the uranium industry. The report restricts itself to prices for U 3 O 8 natural uranium concentrates. Most purchases of natural uranium by utilities, and sales by producers, are conducted in this form. The bulk of uranium in electricity generation is enriched before use, and is converted to uranium hexafluoride, UF 6 , prior to enrichment. Some uranium is traded as UF 6 or as enriched uranium, particularly in the 'secondary' market. Prices for UF 6 and enriched uranium are not considered directly in this report. However, where transactions in UF 6 influence the reported price of U 3 O 8 this influence is taken into account. Unless otherwise indicated, the terms uranium and natural uranium used here refer exclusively to U 3 O 8 . (author)

  16. Operational experience in the production of 131Molybdenum and 99Iodine with high and low uranium enrichment

    International Nuclear Information System (INIS)

    Bravo, C.; Cristini, Pablo R..; Novello, A.; Bronca, M.; Cestau, Daniel; Centurion, R.; Bavaro, R.; Cestau, J.; Gualda, E.; Bronca, P.; Carranza, Eduardo C.

    2009-01-01

    In 1992, in an effort to curtail use of Highly Enriched Uranium (HEU), hoping to alleviate nuclear security concerns, United States passed the Schumer amendment to the Energy Policy Act. This legislation conditioned U.S. export of HEU to foreign companies, understanding that these companies would switch as soon as possible to Lowly Enriched Uranium (LEU). This paper describes 99 Mo production flow chart, characteristics of process cells, shielding, systems of manipulation at distance, cell ventilation system and the method for personal dose monitoring. Production evolution for the span of years 1998 to 2007 is given by indicators, keeping in mind enrichment proportion change. Evolution shown on the indicators is directly related to the application of Safety Culture concepts adopted by personnel. (author)

  17. Advanced fuel cycles: a rationale and strategy for adopting the low-enriched-uranium fuel cycle

    International Nuclear Information System (INIS)

    James, R.A.

    1980-01-01

    A two-year study of alternatives to the natural uranium fuel cycle in CANDU reactors is summarized. The possible advanced cycles are briefly described. Selection criteria for choosing a cycle for development include resource utilization, economics, ease of implementaton, and social acceptability. It is recommended that a detailed study should be made with a view to the early implementation of the low-enriched uranium cycle. (LL)

  18. Uranium enrichment using gas centrifugation. An analysis focusing export control; Urananrikning med gascentrifugering. En analys med fokus paa exportkontroll

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defense Research Inst., Stockholm (Sweden)

    2005-08-01

    The Swedish Defence Research Agency, FOI, has performed a study on uranium enrichment by gas centrifugation. The theory and principles of gas centrifugation is described in this report and relevant equipment used in the process has been identified. Different aspects of operating a gas centrifuge facility - and its indicators - are also presented. The separation efficiency and the flow of material through a centrifuge are very small, and therefore, a large number of centrifuges in cascades is needed to produce a larger amount of enriched uranium within a reasonable time. Countries with nuclear weapons ambitions often show an interest in gas centrifuges to produce weapons grade uranium - if they have managed to acquire the technology - because of the efficiency of the process and since it is relatively easy to conceal. Most equipment used in gas centrifuge facilities is under export control to prevent clandestine uranium enrichment. The Nuclear Suppliers' Group has compiled lists of nuclear related equipment and components that are of importance to export control. The control lists have also been included in the EU legislation.

  19. Measurement of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    a non-destructive technique for the determination of uranium in UO 2 samples was developed, making use of the change in the fission cross section of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and further detection of delayed fission neutrons. In order to discriminate U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of known enrichment. Enrichment detection limit, obtained with 95% confidence level by the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (author) [pt

  20. Measure of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Rezende, H.R.

    1987-01-01

    A non-destructive technique for the determination of uranium in UO 2 samples was developed, marking use of the change in the fission cross of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and furtherdetection of delayed fission neutrons. In order to descriminated U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF 3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO 2 pellets of Known enrichment. Enrichment detection limit, obtained with 95% confidence level by the the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (Author) [pt