WorldWideScience

Sample records for enhancing gas exchange

  1. Hibernation and gas exchange.

    Science.gov (United States)

    Milsom, William K; Jackson, Donald C

    2011-01-01

    Hibernation in endotherms and ectotherms is characterized by an energy-conserving metabolic depression due to low body temperatures and poorly understood temperature-independent mechanisms. Rates of gas exchange are correspondly reduced. In hibernating mammals, ventilation falls even more than metabolic rate leading to a relative respiratory acidosis that may contribute to metabolic depression. Breathing in some mammals becomes episodic and in some small mammals significant apneic gas exchange may occur by passive diffusion via airways or skin. In ectothermic vertebrates, extrapulmonary gas exchange predominates and in reptiles and amphibians hibernating underwater accounts for all gas exchange. In aerated water diffusive exchange permits amphibians and many species of turtles to remain fully aerobic, but hypoxic conditions can challenge many of these animals. Oxygen uptake into blood in both endotherms and ectotherms is enhanced by increased affinity of hemoglobin for O₂ at low temperature. Regulation of gas exchange in hibernating mammals is predominately linked to CO₂/pH, and in episodic breathers, control is principally directed at the duration of the apneic period. Control in submerged hibernating ectotherms is poorly understood, although skin-diffusing capacity may increase under hypoxic conditions. In aerated water blood pH of frogs and turtles either adheres to alphastat regulation (pH ∼8.0) or may even exhibit respiratory alkalosis. Arousal in hibernating mammals leads to restoration of euthermic temperature, metabolic rate, and gas exchange and occurs periodically even as ambient temperatures remain low, whereas body temperature, metabolic rate, and gas exchange of hibernating ectotherms are tightly linked to ambient temperature. © 2011 American Physiological Society.

  2. Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Mehrabipour, Reza

    2012-01-01

    A simple gas turbine cycle namely as the Kraftwerk Union AG unit including a Siemens gas turbine model V93.1 with 60 MW nominal power and 26.0% thermal efficiency utilized in the Fars power plant located is considered for the efficiency enhancement. A typical tubular vertical recuperative heat exchanger is designed in order to integrate into the cycle as an air pre-heater for thermal efficiency improvement. Thermal and geometric specifications of the recuperative heat exchanger are obtained in a multi-objective optimization process. The exergetic efficiency of the gas cycle is maximized while the payback time for the capital investment of the recuperator is minimized. Combination of these objectives and decision variables with suitable engineering and physical constraints makes a set of the MINLP optimization problem. Optimization programming is performed using the NSGA-II algorithm and Pareto optimal frontiers are obtained in three cases including the minimum, average and maximum ambient air temperatures. In each case, the final optimal solution has been selected using three decision-making approaches including the fuzzy Bellman-Zadeh, LINMAP and TOPSIS methods. It has been shown that the TOPSIS and LINMAP decision-makers when applied on the Pareto frontier which is obtained at average ambient air temperature yields best results in comparison to other cases. -- Highlights: ► A simple Brayton gas cycle is considered for the efficiency improvement by integrating of a recuperator. ► Objective functions based on thermodynamic and economic analysis are obtained. ► The payback time for the capital investment is minimized and the exergetic efficiency of the system is maximized. ► Pareto optimal frontiers at various site conditions are obtained. ► A final optimal configuration is found using various decision-making approaches.

  3. Gas exchange measurements in natural systems

    International Nuclear Information System (INIS)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes 14 C, 222 Rn and 3 He. The distribution of natural radiocarbon has yielded the average rate of CO 2 exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The 222 Rn to 226 Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess 3 He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with 226 Ra and 3 H in order to allow the use of the 222 Rn and 3 He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO 2 exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables

  4. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes.

    Science.gov (United States)

    Santos, C A; Ferreira, M E; da Silva, T Lopes; Gouveia, L; Novais, J M; Reis, A

    2011-08-01

    This paper describes the association of two bioreactors: one photoautotrophic and the other heterotrophic, connected by the gas phase and allowing an exchange of O(2) and CO(2) gases between them, benefiting from a symbiotic effect. The association of two bioreactors was proposed with the aim of improving the microalgae oil productivity for biodiesel production. The outlet gas flow from the autotrophic (O(2) enriched) bioreactor was used as the inlet gas flow for the heterotrophic bioreactor. In parallel, the outlet gas flow from another heterotrophic (CO(2) enriched) bioreactor was used as the inlet gas flow for the autotrophic bioreactor. Aside from using the air supplied from the auto- and hetero-trophic bioreactors as controls, one mixotrophic bioreactor was also studied and used as a model, for its claimed advantage of CO(2) and organic carbon being simultaneously assimilated. The microalga Chlorella protothecoides was chosen as a model due to its ability to grow under different nutritional modes (auto, hetero, and mixotrophic), and its ability to attain a high biomass productivity and lipid content, suitable for biodiesel production. The comparison between heterotrophic, autotrophic, and mixotrophic Chlorella protothecoides growth for lipid production revealed that heterotrophic growth achieved the highest biomass productivity and lipid content (>22%), and furthermore showed that these lipids had the most suitable fatty acid profile in order to produce high quality biodiesel. Both associations showed a higher biomass productivity (10-20%), when comparing the two separately operated bioreactors (controls) which occurred on the fourth day. A more remarkable result would have been seen if in actuality the two bioreactors had been inter-connected in a closed loop. The biomass productivity gain would have been 30% and the lipid productivity gain would have been 100%, as seen by comparing the productivities of the symbiotic assemblage with the sum of the two

  5. [Phylogeny of gas exchange systems].

    Science.gov (United States)

    Jürgens, K D; Gros, G

    2002-04-01

    Several systems of gas transport have developed during evolution, all of which are able to sufficiently supply oxygen to the tissues and eliminate the CO2 produced by the metabolism, in spite of great distances between the environment and the individual cells of the tissues. Almost all these systems utilize a combination of convection and diffusion steps. Convection achieves an efficient transport of gas over large distances, but requires energy and cannot occur across tissue barriers. Diffusion, on the other hand, achieves gas transport across barriers, but requires optimization of diffusion paths and diffusion areas. When two convectional gas flows are linked via a diffusional barrier (gas/fluid in the case of the avian lung, fluid/fluid in the case of gills), the directions in which the respective convectional movements pass each other are important determinants of gas exchange efficiency (concurrent, countercurrent and cross-current systems). The tracheal respiration found in insects has the advantage of circumventing the convective gas transport step in the blood, thereby avoiding the high energy expenditure of circulatory systems. This is made possible by a system of tracheae, ending in tracheoles, that reaches from the body surface to every cell within the body. The last step of gas transfer in these animals occurs by diffusion from the tracheoles ("air capillaries") to the mitochondria of cells. The disadvantage is that the tracheal system occupies a substantial fraction of body volume and that, due to limited mechanical stability of tracheal walls, this system would not be able to operate under conditions of high hydrostatic pressures, i. e. in large animals. Respiration in an "open" system, i. e. direct exposure of the diffusional barrier to the environmental air, eliminates the problem of bringing the oxygen to the barrier by convection, as is necessary in the avian and mammalian lung, in the insects' tracheal system and in the gills. An open system is

  6. Gas exchange in avian embryos and hatchlings.

    Science.gov (United States)

    Mortola, Jacopo P

    2009-08-01

    The avian egg has been proven to be an excellent model for the study of the physical principles and the physiological characteristics of embryonic gas exchange. In recent years, it has become a model for the studies of the prenatal development of pulmonary ventilation, its chemical control and its interaction with extra-pulmonary gas exchange. Differently from mammals, in birds the initiation of pulmonary ventilation and the transition from diffusive to convective gas exchange are gradual and slow-occurring events amenable to detailed investigations. The absence of the placenta and of the mother permits the study of the mechanisms of embryonic adaptation to prenatal perturbations in a way that would be impossible with mammalian preparations. First, this review summarises the general aspects of the natural history of the avian egg that are pertinent to embryonic metabolism, growth and gas exchange and the characteristics of the structures participating in gas exchange. Then, the review focuses on the embryonic development of pulmonary ventilation, its regulation in relation to the embryo's environment and metabolic state, the effects that acute or sustained changes in embryonic temperature or oxygenation can have on growth, metabolism and ventilatory control.

  7. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.

    Science.gov (United States)

    Lo, Justin H; Bassett, Erik K; Penson, Elliot J N; Hoganson, David M; Vacanti, Joseph P

    2015-08-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.

  8. Exercise: Kinetic considerations for gas exchange.

    Science.gov (United States)

    Rossiter, Harry B

    2011-01-01

    The activities of daily living typically occur at metabolic rates below the maximum rate of aerobic energy production. Such activity is characteristic of the nonsteady state, where energy demands, and consequential physiological responses, are in constant flux. The dynamics of the integrated physiological processes during these activities determine the degree to which exercise can be supported through rates of O₂ utilization and CO₂ clearance appropriate for their demands and, as such, provide a physiological framework for the notion of exercise intensity. The rate at which O₂ exchange responds to meet the changing energy demands of exercise--its kinetics--is dependent on the ability of the pulmonary, circulatory, and muscle bioenergetic systems to respond appropriately. Slow response kinetics in pulmonary O₂ uptake predispose toward a greater necessity for substrate-level energy supply, processes that are limited in their capacity, challenge system homeostasis and hence contribute to exercise intolerance. This review provides a physiological systems perspective of pulmonary gas exchange kinetics: from an integrative view on the control of muscle oxygen consumption kinetics to the dissociation of cellular respiration from its pulmonary expression by the circulatory dynamics and the gas capacitance of the lungs, blood, and tissues. The intensity dependence of gas exchange kinetics is discussed in relation to constant, intermittent, and ramped work rate changes. The influence of heterogeneity in the kinetic matching of O₂ delivery to utilization is presented in reference to exercise tolerance in endurance-trained athletes, the elderly, and patients with chronic heart or lung disease. © 2011 American Physiological Society.

  9. BOREAS TE-11 Leaf Gas Exchange Measurements

    Science.gov (United States)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Saugier, Bernard; Pontailler, J. Y.

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-11 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the sap flow, gas exchange, and lichen photosynthesis of boreal vegetation and meteorological data of the area studied. This data set contains measurements of assimilation and transpiration conducted at the Old Jack Pine (OJP) site during the growing seasons of 1993 and 1994. The data are stored in ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Improving respiration measurements with gas exchange analyzers.

    Science.gov (United States)

    Montero, R; Ribas-Carbó, M; Del Saz, N F; El Aou-Ouad, H; Berry, J A; Flexas, J; Bota, J

    2016-12-01

    Dark respiration measurements with open-flow gas exchange analyzers are often questioned for their low accuracy as their low values often reach the precision limit of the instrument. Respiration was measured in five species, two hypostomatous (Vitis Vinifera L. and Acanthus mollis) and three amphistomatous, one with similar amount of stomata in both sides (Eucalyptus citriodora) and two with different stomata density (Brassica oleracea and Vicia faba). CO 2 differential (ΔCO 2 ) increased two-fold with no change in apparent R d , when the two leaves with higher stomatal density faced outside. These results showed a clear effect of the position of stomata on ΔCO 2 . Therefore, it can be concluded that leaf position is important to guarantee the improvement of respiration measurements increasing ΔCO 2 without affecting the respiration results by leaf or mass units. This method will help to increase the accuracy of leaf respiration measurements using gas exchange analyzers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Carbon cycling and gas exchange in soils

    International Nuclear Information System (INIS)

    Trumbore, S.E.

    1989-01-01

    This thesis summaries three independent projects, each of which describes a method which can be used to study the role of soils in regulating the atmospheric concentrations of CO 2 and other trace gases. The first chapter uses the distribution of natural and bomb produced radiocarbon in fractionated soil organic matter to quantify the turnover of carbon in soils. A comparison of 137 Cs and 14 C in the modern soil profiles indicates that carbon is transported vertically in the soil as dissolved organic material. The remainder of the work reported is concerned with the use of inert trace gases to explore the physical factors which control the seasonal to diel variability in the fluxes of CO 2 and other trace gases from soils. Chapter 2 introduces a method for measuring soil gas exchange rates in situ using sulfur hexafluoride as a purposeful tracer. The measurement method uses standard flux box technology, and includes simultaneous determination of the fluxes and soil atmosphere concentrations of CO 2 and CH 4 . In Chapter 3, the natural tracer 222 Rn is used as an inert analog for exchange both in the soils and forest canopy of the Amazon rain forest

  12. Noble Gas signatures of Enhanced Oil Recovery

    Science.gov (United States)

    Barry, P. H.; Kulongoski, J. T.; Tyne, R. L.; Hillegonds, D.; Byrne, D. J.; Landon, M. K.; Ballentine, C. J.

    2017-12-01

    Noble gases are powerful tracers of fluids from various oil and gas production activities in hydrocarbon reservoirs and nearby groundwater. Non-radiogenic noble gases are introduced into undisturbed oil and natural gas reservoirs through exchange with formation waters [1-3]. Reservoirs with extensive hydraulic fracturing, injection for enhanced oil recovery (EOR), and/or waste disposal also show evidence for a component of noble gases introduced from air [4]. Isotopic and elemental ratios of noble gases can be used to 1) assess the migration history of the injected and formation fluids, and 2) determine the extent of exchange between multiphase fluids in different reservoirs. We present noble gas isotope and abundance data from casing, separator and injectate gases of the Lost Hills and Fruitvale oil fields in the San Joaquin basin, California. Samples were collected as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program. Lost Hills (n=7) and Fruitvale (n=2) gases are geochemically distinct and duplicate samples are highly reproducible. Lost Hills casing gas samples were collected from areas where EOR and hydraulic fracturing has occurred in the past several years, and from areas where EOR is absent. The Fruitvale samples were collected from a re-injection port. All samples are radiogenic in their He isotopes, typical of a crustal environment, and show enrichments in heavy noble gases, resulting from preferential adsorption on sediments. Fruitvale samples reflect air-like surface conditions, with higher air-derived noble gas concentrations. Lost Hills gases show a gradation from pristine crustal signatures - indicative of closed-system exchange with formation fluids - to strongly air-contaminated signatures in the EOR region. Pristine samples can be used to determine the extent of hydrocarbon exchange with fluids, whereas samples with excess air can be used to quantify the extent of EOR. Determining noble

  13. Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas diffusion layer

    CSIR Research Space (South Africa)

    Hou, S

    2017-11-01

    Full Text Available The performance of the proton exchange membrane fuel cell (PEMFC) is significantly improved through introducing nitrogen-doped carbon nanotubes (NCNTs) into the catalyst layer (CL) and microporous layer (MPL) of the membrane electrode assembly (MEA...

  14. Exchange energy in the local Airy gas approximation

    DEFF Research Database (Denmark)

    Vitos, Levente; Johansson, B.; Kollár, J.

    2000-01-01

    The Airy gas model of the edge electron gas is used to construct an exchange-energy functional that is an alternative to those obtained in the local-density and generalized-gradient approximations. Test calculations for rare-gas atoms, molecules, solids, and surfaces show that the Airy gas...

  15. The Effect of Rain on Air-Water Gas Exchange

    Science.gov (United States)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  16. Gas exchange between the forest and the atmosphere

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1985-01-01

    Forest gas exchange is discussed in terms of the processes that control the rate of exchange with the atmosphere. Examples are presented to show how vegetative uptake control is varied for gases with different characteristics. The prediction of uptake for large areas and over long periods of time is discussed in terms of quantitative models of the gas exchange processes. Finally, remote sensing is suggested as a means of obtaining the parameters needed to make the model predictions. 46 refs., 6 figs

  17. Tracers of air-sea gas exchange

    International Nuclear Information System (INIS)

    Liss, P.S.

    1988-01-01

    The flux of gas across the air-sea interface is determined by the product of the interfacial concentration difference driving the exchange and a rate constant, often termed the transfer velocity. The concentration-difference term is generally obtained by direct measurement, whereas more indirect approaches are required to estimate the transfer velocity and its variation as a function of controlling parameters such as wind and sea state. Radioactive tracers have proved particularly useful in the estimation of air-sea transfer velocities and, recently, stable purposeful tracers have also started to be used. In this paper the use of the following tracers to determine transfer velocities at the sea surface is discussed: natural and bomb-produced 14 C, dissolved oxygen, 222 Rn and sulphur hexafluoride. Other topics covered include the relation between transfer velocity and wind speed as deduced from tracer and wind-tunnel studies, and the discrepancy between transfer velocities determined by using tracers and from eddy correlation measurements in the atmosphere. (author)

  18. LES of Gas Exchange in IC Engines

    Directory of Open Access Journals (Sweden)

    Mittal V.

    2013-10-01

    Full Text Available As engine technologies become increasingly complex and engines are driven to new operating points, understanding transient phenomena is important to ensure reliable engine operation. Unlike Reynolds Averaged Navier-Stokes (RANS studies that only provide cycle-averaged information, Large Eddy Simulation (LES studies are capable of simulating cycle-to-cycle dynamics. In this work, a finite difference based structured methodology for LES of IC engines is presented. This structured approach allows for an efficient mesh generation process and provides potential for higher order numerical accuracy. An efficient parallel scalable block decomposition is done to overcome the challenges associated with the low ratio of fluid elements to overall mesh elements. The motion of the valves and piston is handled using a dynamic cell blanking approach and the Arbitrary Lagrangian Eulerian (ALE method, respectively. Modified three-dimensional Navier-Stokes Characteristic Boundary Conditions (NSCBC are used in the simulation to prescribe conditions in the manifolds. The accuracy of the simulation framework is validated using various canonical configurations. Flow bench simulations of an axisymmetric configuration and an actual engine geometry are done with the LES methodology. Simulations of the gas exchange in an engine under motored conditions are also performed. Overall, good agreement is obtained with experiments for all the cases. Therefore, this framework can be used for LES of engine simulations. In the future, reactive LES simulations will be performed using this framework.

  19. BOREAS TE-04 Gas Exchange Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains TE-04 data on gas exchange studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the MPH-1000 system.

  20. Gas exchanges in annonaceae species under different crop protections

    Directory of Open Access Journals (Sweden)

    Daniel Baron

    2014-01-01

    Full Text Available This study aims to investigate the gas exchanges of different species of Annonaceae due to environmental variations provided by different types of crop protection. 'Araticum-de-terra-fria', 'araticum-mirim', 'biribá' and atemoya seedlings were cultived in three different crop protections: nursery, greenhouse and warm house. Gas exchanges were obtained in six plants, from 9:00 am to 11:00 am, with IRGA, LI-6400, at 180 Days After Transplanting. The different types of crop protection had a direct influence on gas exchanges of these species. Thus, nursery provided suitable conditions for 'araticum-de-terra-fria', 'araticum-mirim' and 'biribá', increasing their gas exchanges. To atemoya the best crop protection was the greenhouse.

  1. Metabolism and gas exchange patterns in Rhodnius prolixus.

    Science.gov (United States)

    Schilman, Pablo E

    Insect's metabolic rate and patterns of gas-exchange varies according to different factors such as: species, activity, mass, and temperature among others. One particular striking pattern of gas-exchange in insects is discontinuous gas-exchange cycles, for which many different hypotheses regarding their evolution have been stated. This article does not pretend to be an extensive review on the subject, rather to focus on the work performed on the haematophagous bug Rhodnius prolixus, a model organism used from the mid XX century until present days, with the great influence of Wigglesworth and his students/collaborator's work. I have no doubt that the renovated field of insect gas-exchange has a bright future and will advance at large gaits thank to the help of this model organism, R. prolixus, whose entire genome has recently being unraveled. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Factors controlling sulfur gas exchange in Sphagnum-dominated wetlands

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in fen in NH, and in an artificially-acidified fen at the Experimental Lakes Area (ELA) in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates as high as 400 nmol/m(sup -2)hr(sup -1). DMS fluxes measured using enclosures were much higher than those calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these gases to the atmosphere were not affected. However, emission data from sites experiencing large differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate inputs enhance DMS emissions from northern wetlands.

  3. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    Science.gov (United States)

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  4. Reactive oxygen species production and discontinuous gas exchange in insects

    OpenAIRE

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2011-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS produ...

  5. Surface modification of gas diffusion layers by inorganic nanomaterials for performance enhancement of proton exchange membrane fuel cells at low RH conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, 7001 E Williams Field Rd., Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, 7001 E Williams Field Rd., Mesa, AZ 85212 (United States); Ahmad, R.; Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2009-08-15

    Prompted by our earlier study that fumed silica on gas diffusion layer (GDL) favored a performance improvement of the single fuel cell at lower RH conditions, the present study has been carried out with inorganic oxides in the nanoscale such as TiO{sub 2}, Al{sub 2}O{sub 3}, commercially available mixed oxides, hydrophilic silica and aerosil silica. The structure of each of the oxide coating on the GDL surface has resulted in refinement with graded pore dimension as seen from the Hg porosimetry data. The fuel cell evaluation at various RH conditions (50-100%) revealed that the performance of all the inorganic oxides loaded GDL is very high compared to that of pristine GDL. The results confirm our earlier observation that inorganic oxides on GDL bring about structural refinement favorable for the transport of gases, and their water retaining capacity enable a high performance of the fuel cell even at low RH conditions. (author)

  6. Reversible brain inactivation induces discontinuous gas exchange in cockroaches.

    Science.gov (United States)

    Matthews, Philip G D; White, Craig R

    2013-06-01

    Many insects at rest breathe discontinuously, alternating between brief bouts of gas exchange and extended periods of breath-holding. The association between discontinuous gas exchange cycles (DGCs) and inactivity has long been recognised, leading to speculation that DGCs lie at one end of a continuum of gas exchange patterns, from continuous to discontinuous, linked to metabolic rate (MR). However, the neural hypothesis posits that it is the downregulation of brain activity and a change in the neural control of gas exchange, rather than low MR per se, which is responsible for the emergence of DGCs during inactivity. To test this, Nauphoeta cinerea cockroaches had their brains inactivated by applying a Peltier-chilled cold probe to the head. Once brain temperature fell to 8°C, cockroaches switched from a continuous to a discontinuous breathing pattern. Re-warming the brain abolished the DGC and re-established a continuous breathing pattern. Chilling the brain did not significantly reduce the cockroaches' MR and there was no association between the gas exchange pattern displayed by the insect and its MR. This demonstrates that DGCs can arise due to a decrease in brain activity and a change in the underlying regulation of gas exchange, and are not necessarily a simple consequence of low respiratory demand.

  7. Heat exchangers for automotive gas turbine power plants

    International Nuclear Information System (INIS)

    Penny, R.N.

    1974-01-01

    Automotive gas turbine power plants are now in the final stages of development for quantity manufacture. A crucial factor in this development is the regenerative heat exchanger. The relative merits of the rotary regenerative and static recuperative heat exchanger are compared. Thermal efficiency and initial cost are two vital issues involved in the design of small gas turbines for the commercial establishment of gas turbine vehicles. The selection of a material for the rotaty regenerator is essentially related to resolving the two vital issues of future small gas turbines and is, therefore, analysed. The account of the pioneering work involved in engineering the glass ceramic and other non-metal regenerators includes a complete failure analysis based on running experience with over 200 ceramic regenerators. The problems of sealing, supporting and manufacturing the ceramic regenerator are discussed and future practical designs are outlined. Heat exchange theory applied to small gas turbines is also reviewed

  8. Leaf gas exchange of mature bottomland oak trees

    Science.gov (United States)

    Rico M. Gazal; Mark E. Kubiske; Kristina F. Connor

    2009-01-01

    We determined how changes in environmental moisture affected leaf gas exchange in Nuttall (Quercus texana Buckley), overcup (Q. lyrata Walt.), and dominant and codominant swamp chestnut (Q. michauxii Nutt.) oak trees in Mississippi and Louisiana. We used canopy access towers to measure leaf level gas...

  9. Efficient gas exchange between a boreal river and the atmosphere

    Science.gov (United States)

    Huotari, Jussi; Haapanala, Sami; Pumpanen, Jukka; Vesala, Timo; Ojala, Anne

    2013-11-01

    largest uncertainties in accurately resolving the role of rivers and streams in carbon cycling stem from difficulties in determining gas exchange between water and the atmosphere. So far, estimates for river-atmosphere gas exchange have lacked direct ecosystem-scale flux measurements not disturbing gas exchange across the air-water interface. We conducted the first direct riverine gas exchange measurements with eddy covariance in tandem with continuous surface water CO2 measurements in a large boreal river for 30 days. Our measured gas transfer velocity was, on average, 20.8 cm h-1, which is clearly higher than the model estimates based on river channel morphology and water velocity, whereas our floating chambers gave comparable values at 17.3 cm h-1. These results demonstrate that present estimates for riverine CO2 emissions are very likely too low. This result is also relevant to any other gases emitted, as their diffusive exchange rates are similarly proportional to gas transfer velocity.

  10. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange

    DEFF Research Database (Denmark)

    Colmer, Timothy David; Pedersen, Ole

    2007-01-01

    (N) was enhanced up to sixfold. Gas films on submerged leaves enable continued gas exchange via stomata and thus bypassing of cuticle resistance, enhancing exchange of O(2) and CO(2) with the surrounding water, and therefore underwater P(N) and respiration.......Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films......, and two species that do not, were used. Gas films were also experimentally removed by brushing with 0.05% (v/v) Triton X. Net O(2) production in light, or O(2) consumption in darkness, was measured at various CO(2) and O(2) concentrations. When gas films were removed, O(2) uptake in darkness was already...

  11. Impact of airway gas exchange on the multiple inert gas elimination technique: theory.

    Science.gov (United States)

    Anderson, Joseph C; Hlastala, Michael P

    2010-03-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.

  12. Enhancement of isotope exchange reactions over ceramic breeder material by deposition of catalyst metal

    International Nuclear Information System (INIS)

    Narisato, Y.; Munakata, K.; Koga, A.; Yokoyama, Y.; Takata, T.; Okabe, H.

    2004-01-01

    The deposition of catalyst metals in ceramic breeders could enhance the release rate of tritium due to the promotion of isotope exchange reactions taking place at the interface of the breeder surface and the sweep gas. In this work, the authors examined the effects of catalytic active metal deposited on lithium titanate on the isotope exchange reactions. With respect to the virgin lithium titanate, it was found that the rate of the isotope exchange reactions taking place on the surface is quite low. However, the deposition of palladium greatly increased the exchange reaction rate. The effect of the amounts of deposited palladium on the isotope exchange reaction rate was also investigated. The results indicate that the exchange reactions are still enhanced even if the amounts of deposited palladium are as low as 0.04%

  13. Heat exchanger network retrofit optimization involving heat transfer enhancement

    International Nuclear Information System (INIS)

    Wang Yufei; Smith, Robin; Kim, Jin-Kuk

    2012-01-01

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.

  14. Gas exchange under water. Acclimation of terrestrial plants to submergence

    NARCIS (Netherlands)

    Mommer, L.

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little

  15. Gas exchange and chlorophyll a fluorescence parameters of ornamental bromeliads

    Directory of Open Access Journals (Sweden)

    Karina Gonçalves da Silva

    2017-10-01

    Full Text Available Gas exchange and chlorophyll a fluorescence are widely used in physiological and ecological studies; however, few studies have used these techniques with ornamental plants. This study tested the potential contribution of gas exchange and chlorophyll a fluorescence to evaluate the water and nutrients uptake by the tank and root system of epiphyte bromeliad Guzmania lingulata. For this purpose, we conducted an experiment with different water regime and another with different concentrations of nitrogen. The experiments were: 1 - Watering: Control (application of water into Tank and Root, Tank (watering into Tank, Root (watering Root and Drought (water suspension during the 90 days of experimentation and 2 - Nitrogen: Plants fertilized with Hoagland and Arnon nutrient solution exclusively into Tank or Root with nitrogen concentrations of control and 2.62 or 5.34 mM N applied as urea. The Fv /Fm ratio allowed comparing the treatments between experiments, demonstrating that Root and Tank both have the capacity to maintain G. lingulata photosynthetic activity and growth, while Drought treatment (water suspension was the limiting factor for energy conversion efficiency of PSII. However, gas exchange was more permissive as a parameter for comparing treatments in the nitrogen experiment, providing important information about the general aspects of the photosynthetic process in the watering experiment. Both gas exchange and chlorophyll a fluorescence can support the evaluation of G. lingulata physiological status and can be useful tools in ornamental horticultural studies.

  16. Lung Structure and the Intrinsic Challenges of Gas Exchange

    Science.gov (United States)

    Hsia, Connie C.W.; Hyde, Dallas M.; Weibel, Ewald R.

    2016-01-01

    Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints. PMID:27065169

  17. Respiratory Mechanics and Gas Exchange: The Effect of Surfactants

    Science.gov (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    The purpose of the lung is to exchange gases, primarily oxygen and carbon dioxide, between the atmosphere and the circulatory system. To enable this exchange, the airways in the lungs terminate in some 300 million alveoli that provide adequate surface area for transport. During breathing, work must be done to stretch various tissues to accommodate a greater volume of gas. Considerable work must also be done to expand the liquid lining (hypophase) that coats the interior surfaces of the alveoli. This is enabled by a surface active lipo-protein complex, known as pulmonary surfactant, that modifies the surface tension at the hypophase-air interface. Surfactants also serve as physical barriers that modify the rate of gas transfer across interfaces. We develop a mathematical model to study the action of pulmonary surfactant and its determinative contributions to breathing. The model is used to explore the influence of surfactants on alveolar mechanics and on gas exchange: it relates the work of respiration at the level of the alveolus to the gas exchange rate through the changing influence of pulmonary surfactant over the breathing cycle. This work is motivated by a need to develop improved surfactant replacement therapies to treat serious medical conditions.

  18. Low light availability affects leaf gas exchange, growth and survival ...

    African Journals Online (AJOL)

    The values of dark respiration rate (Rd) and photosynthetic compensation irradiance (Ic) were sufficiently low for a positive carbon balance. Notwithstanding, the interpretation of results of microclimate variables together with leaf gas exchange and growth variables indicated that seedlings at all sites were in a suboptimal ...

  19. Liquid-metal-gas heat exchanger for HTGR type reactors

    International Nuclear Information System (INIS)

    Werth, G.

    1980-01-01

    The aim of this study is to investigate the heat transfer characteristics of a liquid metal heat exchanger (HE) for a helium-cooled high temperature reactor. A tube-type heat exchanger is considered as well as two direct exchangers: a bubble-type heat exchanger and a heat exchanger according to the spray principle. Experiments are made in order to determine the gas content of bubble-type heat exchangers, the dependence of the droplet diameter on the nozzle diameter, the falling speed of the droplets, the velocity of the liquid jet, and the temperature variation of liquid jets. The computer codes developed for HE calculation are structured so that they may be used for gas/liquid HE, too. Each type of HE that is dealt with is designed by accousting for a technical and an economic assessment. The liquid-lead jet spray is preferred to all other types because of its small space occupied and its simple design. It shall be used in near future in the HTR by the name of lead/helium HE. (GL) [de

  20. Fundamental structural aspects and features in the bioengineering of the gas exchangers: comparative perspectives.

    Science.gov (United States)

    Maina, J N

    2002-01-01

    reptiles, the pneumocytes are not differentiated into type I and II cells, as is the case in the lungs of the higher vertebrates-birds and mammals. It is envisaged that in endotherms, the overall numerical density of the pneumocytes and hence the O2 consumption of the gas exchangers may be reduced and a thin blood-gas (tissue) barrier generated, factors that enhance respiratory efficiency. The thin blood-gas (tissue) barriers, for example, those of the mammalian (in the respiratory sections of the interalveolar septum) and avian lungs, consist of an epithelial cell and an endothelial cell with a common basement membrane. An interstitial space occurs in the blood-air/water (tissue) barriers of the gas exchangers of fish gills and lungs of lungfishes, amphibians, reptiles and in the supportive parts of the interalveolar septum of the mammalian lung. Collagen, elastic tissue, nerves, lymphatic vessels and smooth muscle elements are found in the interstitial space. The thickness of the blood-air/water (tissue) barrier allometrically changes very little. This suggests that the thicknesses of the blood-water/air (tissue) barriers have been optimized. The presentation and exposure to the gas exchange media (water/air to blood), features dictated by the geometry and arrangements of the structural components of the gas exchangers, contribute greatly to respiratory efficiency. The countercurrent presentation between water and blood in fish gills is the most efficient design in the evolved gas exchangers: It was imperative for survival in water, a medium that contains relatively less O2 and is more expensive to breathe. In the evolved vertebrate gas exchangers, the exposure of blood to air is best manifested in the diffuse design of the avian lung, where the capillary blood is literally suspended in a three-dimensional air space, the blood being exposed to air virtually across the entire blood-gas (tissue) barrier. A double capillary design occurs in the lungs of amphibians and

  1. The performance of a new gas to gas heat exchanger with strip fin

    NARCIS (Netherlands)

    Wang, J.; Hirs, Gerard; Rollmann, P.

    1999-01-01

    A compact gas to gas heat exchanger needs large heat transfer areas on both fluid sides. This can be realised by adding secondary surfaces. The secondary surfaces are plate fin, strip fin, and louvered fin, etc. The fins extend the heat transfer surfaces and promote turbulence. This paper presents a

  2. Auxiliary heat exchanger for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Ecker, H.; Gasch, K.; Lischer, R.; Spilker, H.

    1978-01-01

    The proposal concerns the design configuration of the individual components of a heat exchanger with circular cross-section, being placed within a lined pod of the concrete shell of the pressure vessel. The heat exchanger has got a vertical cooler installed below the circulator. The components are arranged in such manner that the access to the pipe lines for in-service inspections is assured. Uniform velocity distribution of the gas streaming into the cooler from below is to be achieved. (GL) 891 GL/GL 892 MKO [de

  3. Lung Structure and the Intrinsic Challenges of Gas Exchange.

    Science.gov (United States)

    Hsia, Connie C W; Hyde, Dallas M; Weibel, Ewald R

    2016-03-15

    Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints. Copyright © 2016 John Wiley & Sons, Inc.

  4. Optimal allocation of leaf epidermal area for gas exchange

    OpenAIRE

    de Boer, Hugo J.; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2016-01-01

    Summary A long?standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of ...

  5. Risk Based Inspection of Gas-Cooling Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Dwi Priyanta

    2017-09-01

    Full Text Available On October 2013, Pertamina Hulu Energi Offshore North West Java (PHE – ONWJ platform personnel found 93 leaking tubes locations in the finfan coolers/ gas-cooling heat exchanger. After analysis had been performed, the crack in the tube strongly indicate that stress corrosion cracking was occurred by chloride. Chloride stress corrosion cracking (CLSCC is the cracking occurred by the combined influence of tensile stress and a corrosive environment. CLSCC is the one of the most common reasons why austenitic stainless steel pipework or tube and vessels deteriorate in the chemical processing, petrochemical industries and maritime industries. In this thesis purpose to determine the appropriate inspection planning for two main items (tubes and header box in the gas-cooling heat exchanger using risk based inspection (RBI method. The result, inspection of the tubes must be performed on July 6, 2024 and for the header box inspection must be performed on July 6, 2025. In the end, RBI method can be applicated to gas-cooling heat exchanger. Because, risk on the tubes can be reduced from 4.537 m2/year to 0.453 m2/year. And inspection planning for header box can be reduced from 4.528 m2/year to 0.563 m2/year.

  6. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Science.gov (United States)

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  7. Hydraulic and thermal design of a gas microchannel heat exchanger

    International Nuclear Information System (INIS)

    Yang Yahui; Brandner, Juergen J; Morini, Gian Luca

    2012-01-01

    In this paper investigations on the design of a gas flow microchannel heat exchanger are described in terms of hydrodynamic and thermal aspects. The optimal choice for thermal conductivity of the solid material is discussed by analysis of its influences on the thermal performance of a micro heat exchanger. Two numerical models are built by means of a commercial CFD code (Fluent). The simulation results provide the distribution of mass flow rate, inlet pressure and pressure loss, outlet pressure and pressure loss, subjected to various feeding pressure values. Based on the thermal and hydrodynamic analysis, a micro heat exchanger made of polymer (PEEK) is designed and manufactured for flow and heat transfer measurements in air flows. Sensors are integrated into the micro heat exchanger in order to measure the local pressure and temperature in an accurate way. Finally, combined with numerical simulation, an operating range is suggested for the present micro heat exchanger in order to guarantee uniform flow distribution and best thermal and hydraulic performances.

  8. Gas storage carbon with enhanced thermal conductivity

    Science.gov (United States)

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  9. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  10. A new method for noninvasive measurement of pulmonary gas exchange using expired gas.

    Science.gov (United States)

    West, John B; Prisk, G Kim

    2018-01-01

    Measurement of the gas exchange efficiency of the lung is often required in the practice of pulmonary medicine and in other settings. The traditional standard is the values of the PO2, PCO2, and pH of arterial blood. However arterial puncture requires technical expertise, is invasive, uncomfortable for the patient, and expensive. Here we describe how the composition of expired gas can be used in conjunction with pulse oximetry to obtain useful measures of gas exchange efficiency. The new procedure is noninvasive, well tolerated by the patient, and takes only a few minutes. It could be particularly useful when repeated measurements of pulmonary gas exchange are required. One product of the procedure is the difference between the PO2 of end-tidal alveolar gas and the calculated PO2 of arterial blood. This measurement is related to the classical alveolar-arterial PO2 difference based on ideal alveolar gas. However that traditional index is heavily influenced by lung units with low ventilation-perfusion ratios, whereas the new index has a broader physiological basis because it includes contributions from the whole lung. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Universal model for water costs of gas exchange by animals and plants

    OpenAIRE

    Woods, H. Arthur; Smith, Jennifer N.

    2010-01-01

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface t...

  12. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    DEFF Research Database (Denmark)

    Mommer, L.; Pedersen, O.; Visser, E. J. W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants...... of this terrestrial plant species to submergence for gas exchange capacity is also shown. Shoot acclimation to submergence involved a reduction of the diffusion resistance to gases, which was not only functional by increasing diffusion of oxygen into the plant, but also by increasing influx of CO2, which enhances...... maintain relatively high internal oxygen pressures under water, and even may release oxygen via the roots into the sediment, also in dark. Based on these results, we challenge the dogma that oxygen pressures in submerged terrestrial plants immediately drop to levels at which aerobic respiration is impaired...

  13. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    Energy Technology Data Exchange (ETDEWEB)

    Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and

  14. Improved spacers for high temperature gas-cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, L A [Swiss Federal Institute for Reactor Research, Wuerenlingen (Switzerland)

    1984-07-01

    Experimental and analytical investigations in the field of heat exchanger thermohydraulics have been performed at EIR for many years, Basic studies have been carried out on heat transfer and pressure loss for tube bundles of different geometries and tube surfaces. As a part of this overall R+D programme for heat exchangers, investigations have been carried out on spacer pressure loss in bundles with longitudinal flow. An analytical spacer pressure loss model was developed which could handle different types of subchannel within the bundle. The model has been evaluated against experiments, using about 25 spacers of widely differing geometries. In a gas-cooled reactor it is important to keep the pressure loss over the primary circuit heat exchangers to a minimum. In exchangers with grid spacers these contribute a significant proportion of the overall bundle losses. For example, in the HHT Recuperator, with a shell-side pressure loss of 3.5 % of the inlet pressure, the spacers cause about one half of this loss. Reducing the loss to, say, 2.5 % results in an overall increase in plant efficiency by more than 1 % - a significant improvement Preliminary analysis identified 5 geometries in particular which were chosen for experimental evaluation as part of a joint project with the SULZER Company, to develop a low pressure-loss spacer for HHT heat exchangers (longitudinal counter-flow He/He and He/H{sub 2}O designs). The aim of the tests was to verify the low pressure-loss characteristics of these spacer grid types, as well as the quality of the results calculated by the computer code analytical model. The experimental and analytical results are compared in this report.

  15. Vibrations in water-gas heat exchangers. Design and tests

    International Nuclear Information System (INIS)

    Alexandre, M.; Allard, G.; Vangedhen, A.

    1981-01-01

    It is shown on an example how to make a complete list of the possible vibrations and how to use the data of tests and technical literature to predict damaging vibrations. The water-heavy gas tubular heat-exchanger in case is briefly described. The sources of mechanical excitations are a compressor and earthquake loadings. The various eigenmodes are described and it is shown that no resonance is possible with the compressor and that the effect of the earthquake is negligible. The excitation of the tubes by the gas flow is examined by means of Connors stability criterion; and there is no resonance with the Benard-von Karman vortices. The magnification of this latter excitation by acoustical waves is not to be feared. Satisfactory tests have been carried successively on tubes, on the casing, on the casing plus part of the tubes, on a complete prototype in workshop and in operation on site [fr

  16. Measurements of pulmonary gas exchange efficiency using expired gas and oximetry: results in normal subjects.

    Science.gov (United States)

    West, John B; Wang, Daniel L; Prisk, G Kim

    2018-04-01

    We are developing a novel, noninvasive method for measuring the efficiency of pulmonary gas exchange in patients with lung disease. The patient wears an oximeter, and we measure the partial pressures of oxygen and carbon dioxide in inspired and expired gas using miniature analyzers. The arterial Po 2 is then calculated from the oximeter reading and the oxygen dissociation curve, using the end-tidal Pco 2 to allow for the Bohr effect. This calculation is only accurate when the oxygen saturation is ideal alveolar Po 2 minus the measured arterial Po 2 . That measurement requires an arterial blood sample. The present study suggests that this noninvasive procedure will be valuable in assessing the degree of impaired gas exchange in patients with lung disease.

  17. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  18. Leaf gas exchange and yield of three upland rice cultivars

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2015-03-01

    Full Text Available Studies of physiological parameters associated with crop performance and growth in different groups of upland rice (Oryza sativa L. may support plant breeding programs. We evaluated the role of gas exchange rates and dry matter accumulation (DMA as traits responsible for yields in a traditional (cv. ‘Caiapó’, intermediate (cv. ‘Primavera’ and modern (cv. ‘Maravilha’ upland rice cultivars. Leaf gas exchange rates, DMA, leaf area index (LAI, harvest indexes (HI and yield components were measured on these genotypes in the field, under sprinkler irrigation. Panicles per m2 and DMA at flowering (FL and heading, as well as CO2 assimilation rates (A were similar across these cultivars. The highest yield was found in ‘Primavera’, which may be explained by (i a two-fold higher HI compared to the other cultivars, (ii greater rates of DMA during spikelet formation and grain-filling, as well as (iii a slow natural decrease of A in this cultivar, at the end of the season (between FL and maturation.

  19. Optimal allocation of leaf epidermal area for gas exchange.

    Science.gov (United States)

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  20. Using Riverboat-Mounted Eddy Covariance for Direct Measurements of Air-water Gas Exchange in Amazonia

    Science.gov (United States)

    Miller, S. D.; Freitas, H.; Read, E.; Goulden, M. L.; Rocha, H.

    2007-12-01

    Gas evasion from Amazonian rivers and lakes to the atmosphere has been estimated to play an important role in the regional budget of carbon dioxide (Richey et al., 2002) and the global budget of methane (Melack et al., 2004). These flux estimates were calculated by combining remote sensing estimates of inundation area with water-side concentration gradients and gas transfer rates (piston velocities) estimated primarily from floating chamber measurements (footprint ~1 m2). The uncertainty in these fluxes was large, attributed primarily to uncertainty in the gas exchange parameterization. Direct measurements of the gas exchange coefficient are needed to improve the parameterizations in these environments, and therefore reduce the uncertainty in fluxes. The micrometeorological technique of eddy covariance is attractive since it is a direct measurement of gas exchange that samples over a much larger area than floating chambers, and is amenable to use from a moving platform. We present eddy covariance carbon dioxide exchange measurements made using a small riverboat in rivers and lakes in the central Amazon near Santarem, Para, Brazil. Water-side carbon dioxide concentration was measured in situ, and the gas exchange coefficient was calculated. We found the piston velocity at a site on the Amazon River to be similar to existing ocean-based parameterizations, whereas the piston velocity at a site on the Tapajos River was roughly a factor 5 higher. We hypothesize that the enhanced gas exchange at the Tapajos site was due to a shallow upwind fetch. Our results demonstrate the feasibility of boat-based eddy covariance on these rivers, and also the utility of a mobile platform to investigate spatial variability of gas exchange.

  1. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

    Directory of Open Access Journals (Sweden)

    R. Amirante

    2014-04-01

    Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

  2. Use of argon to measure gas exchange in turbulent mountain streams

    Science.gov (United States)

    Hall, Robert O., Jr.; Madinger, Hilary L.

    2018-05-01

    Gas exchange is a parameter needed in stream metabolism and trace gas emissions models. One way to estimate gas exchange is via measuring the decline of added tracer gases such as sulfur hexafluoride (SF6). Estimates of oxygen (O2) gas exchange derived from SF6 additions require scaling via Schmidt number (Sc) ratio, but this scaling is uncertain under conditions of high gas exchange via bubbles because scaling depends on gas solubility as well as Sc. Because argon (Ar) and O2 have nearly identical Schmidt numbers and solubility, Ar may be a useful tracer gas for estimating stream O2 exchange. Here we compared rates of gas exchange measured via Ar and SF6 for turbulent mountain streams in Wyoming, USA. We measured Ar as the ratio of Ar : N2 using a membrane inlet mass spectrometer (MIMS). Normalizing to N2 confers higher precision than simply measuring [Ar] alone. We consistently enriched streams with Ar from 1 to 18 % of ambient Ar concentration and could estimate gas exchange rate using an exponential decline model. The mean ratio of gas exchange of Ar relative to SF6 was 1.8 (credible interval 1.1 to 2.5) compared to the theoretical estimate 1.35, showing that using SF6 would have underestimated exchange of Ar. Steep streams (slopes 11-12 %) had high rates of gas exchange velocity normalized to Sc = 600 (k600, 57-210 m d-1), and slope strongly predicted variation in k600 among all streams. We suggest that Ar is a useful tracer because it is easily measured, requires no scaling assumptions to estimate rates of O2 exchange, and is not an intense greenhouse gas as is SF6. We caution that scaling from rates of either Ar or SF6 gas exchange to CO2 is uncertain due to solubility effects in conditions of bubble-mediated gas transfer.

  3. Study of regional pulmonary gas exchange using radiotracers

    International Nuclear Information System (INIS)

    Hichwa, R.D.

    1981-01-01

    Respiration involves the exchange of gases between the environment and the blood across the alveolar membrane. Four processes characterize the dynamics of gas exchange: ventilation, diffusion, perfusion and chemical binding with hemoglobin. A study was undertaken to investigate each of these processes, utilizing accelerator production and high yield synthesis of four gaseous radiotracers (/sup 81m/Kr, Ch 3 18 F, 11 CO, 15 O 2 ). Conventional gamma camera images and ancillary physiological data were acquired. Mathematical models were developed to predict the tracer clearance from the lungs during a breath hold and during washout post breath hold. Images of the insoluble /sup 81m/Kr synchronized with the tidal breathing maneuver depict regional ventilation. Tracer bolus inhalation, relative compliance and regional phase information are obtained from krypton dCynamic studies. More soluble CH 3 18 F is used to determine regional pulmonary perfusion during a breath hold. Respiratory clearance of seven, inert, positron-emitting radiotracers define the tracer volume of distribution. The tight-binding of 11 CO to hemoglobin permits the regional measurement of carbon monoxide pulmonary diffusion capacity. A relative CO blood:gas partition coefficient is calculated from the washout of no-carrier-added levels of 11 CO and verified by in vitro radiometric measurements. Regional oxygen pulmonary diffusion capacity determined from 15 O 2 clearance during a breath hold reveals results similar to those obtained with CO. All experimental data are in good agreement with the predictions of a two-compartment open model. A more advanced oxygen model is presented that incorporates radioactive oxygen exchange with stable oxygen on the hemoglobin molecule and metabolic removal of the tracer at the tissues

  4. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process this well data and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway

  5. Theoretical study of inspiratory flow waveforms during mechanical ventilation on pulmonary blood flow and gas exchange.

    Science.gov (United States)

    Niranjan, S C; Bidani, A; Ghorbel, F; Zwischenberger, J B; Clark, J W

    1999-08-01

    A lumped two-compartment mathematical model of respiratory mechanics incorporating gas exchange and pulmonary circulation is utilized to analyze the effects of square, descending and ascending inspiratory flow waveforms during mechanical ventilation. The effects on alveolar volume variation, alveolar pressure, airway pressure, gas exchange rate, and expired gas species concentration are evaluated. Advantages in ventilation employing a certain inspiratory flow profile are offset by corresponding reduction in perfusion rates, leading to marginal effects on net gas exchange rates. The descending profile provides better CO2 exchange, whereas the ascending profile is more advantageous for O2 exchange. Regional disparities in airway/lung properties create maldistribution of ventilation and a concomitant inequality in regional alveolar gas composition and gas exchange rates. When minute ventilation is maintained constant, for identical time constant disparities, inequalities in compliance yield pronounced effects on net gas exchange rates at low frequencies, whereas the adverse effects of inequalities in resistance are more pronounced at higher frequencies. Reduction in expiratory air flow (via increased airway resistance) reduces the magnitude of upstroke slope of capnogram and oxigram time courses without significantly affecting end-tidal expired gas compositions, whereas alterations in mechanical factors that result in increased gas exchanges rates yield increases in CO2 and decreases in O2 end-tidal composition values. The model provides a template for assessing the dynamics of cardiopulmonary interactions during mechanical ventilation by combining concurrent descriptions of ventilation, capillary perfusion, and gas exchange. Copyright 1999 Academic Press.

  6. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod

    Science.gov (United States)

    Krauss, Ken W.; Twilley, Robert R.; Doyle, Thomas W.; Gardiner, Emile S.

    2006-01-01

    We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation–light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings..

  7. An innovative plate heat exchanger of enhanced compactness

    International Nuclear Information System (INIS)

    Vitillo, Francesco; Cachon, Lionel; Reulet, Philippe; Laroche, Emmanuel; Millan, Pierre

    2015-01-01

    In the framework of CEA R&D program to develop the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID), the present work aims to demonstrate the industrial interest of an innovative compact heat exchanger technology. In fact, one of the main innovations of the ASTRID reactor could be the use of a Brayton Gas-power conversion system, in order to avoid the energetic sodium–water interaction that might occur if a traditional Rankine cycle was used. The present work aims to study the thermal-hydraulic performance of the innovative compact heat exchanger concept. Hence, thanks to a trustful numerical model, friction factor and heat transfer correlations are obtained. Then, a global compactness comparison strategy is proposed, taking into account design constraints. Finally, it is demonstrated that the innovative heat exchanger concept is more compact then other already industrial technologies of interest, showing that is can be considered to warrant serious consideration for future ASTRID design as well as for any industrial application that needs very compact heat exchanger technologies. - Highlights: • We propose a new innovative compact heat exchanger technology. • We provide thermal-hydraulic correlations for designers. • We provide a comparison strategy with existing technologies. • We demonstrate the industrial interest of the innovative concept

  8. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2001-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We are currently in the final stages of developing and testing our new Microsoft(trademark) Access/Excel based software. We will be processing this well data and identifying potential candidate wells that can be used in Phase 2 to validate these methodologies. Preparation of the final technical report is underway

  9. Enhancement of particle-wave energy exchange by resonance sweeping

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.

    1995-10-01

    It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation

  10. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    Science.gov (United States)

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  11. Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands

    NARCIS (Netherlands)

    Mengistu, T.; Sterck, F.J.; Fetene, M.; Tadesse, W.; Bongers, F.

    2011-01-01

    A conceptual model was tested for explaining environmental and physiological effects on leaf gas exchange in the deciduous dry tropical woodland tree Boswellia papyrifera (Del.) Hochst. For this species we aimed at (i) understanding diurnal patterns in leaf gas exchange, (ii) exploring cause–effect

  12. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    International Nuclear Information System (INIS)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft(trademark) Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States

  13. Specialists' meeting on heat exchanging components of gas-cooled reactors

    International Nuclear Information System (INIS)

    1984-01-01

    The objective of the Meeting sponsored by IAEA was to provide a forum for the exchange and discussion of technical information related to heat exchanging and heat conducting components for gas-cooled reactors. The technical part of the meeting covered eight subjects: Heat exchanging components for process heat applications, design and requirements, and research and development programs; Status of the design and construction of intermediate He/He exchangers; Design, construction and performance of steam generators; Metallic materials and design codes; Design and construction of valves and hot gas ducts; Description of component test facilities and test results; Manufacturing of heat exchanging components

  14. Specialists' meeting on heat exchanging components of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-07-01

    The objective of the Meeting sponsored by IAEA was to provide a forum for the exchange and discussion of technical information related to heat exchanging and heat conducting components for gas-cooled reactors. The technical part of the meeting covered eight subjects: Heat exchanging components for process heat applications, design and requirements, and research and development programs; Status of the design and construction of intermediate He/He exchangers; Design, construction and performance of steam generators; Metallic materials and design codes; Design and construction of valves and hot gas ducts; Description of component test facilities and test results; Manufacturing of heat exchanging components.

  15. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    Science.gov (United States)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  16. Fifty Years of Research in ARDS. Gas Exchange in Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Radermacher, Peter; Maggiore, Salvatore Maurizio; Mercat, Alain

    2017-10-15

    Acute respiratory distress syndrome (ARDS) is characterized by severe impairment of gas exchange. Hypoxemia is mainly due to intrapulmonary shunt, whereas increased alveolar dead space explains the alteration of CO 2 clearance. Assessment of the severity of gas exchange impairment is a requisite for the characterization of the syndrome and the evaluation of its severity. Confounding factors linked to hemodynamic status can greatly influence the relationship between the severity of lung injury and the degree of hypoxemia and/or the effects of ventilator settings on gas exchange. Apart from situations of rescue treatment, targeting optimal gas exchange in ARDS has become less of a priority compared with prevention of injury. A complex question for clinicians is to understand when improvement in oxygenation and alveolar ventilation is related to a lower degree or risk of injury for the lungs. In this regard, a full understanding of gas exchange mechanism in ARDS is imperative for individualized symptomatic support of patients with ARDS.

  17. Modelling Age- and Density-Related Gas Exchange of Picea abies Canopies in the Fichtelgebirge, Germany

    OpenAIRE

    Falge, Eva; Tennhunen, John D.; Ryel, Ronald J.; Alsheimer, Martina; Köstner, Barbara

    2000-01-01

    International audience; Differences in canopy exchange of water and carbon dioxide that occur due to changes in tree structure and density in montane Norway spruce stands of Central Germany were analyzed with a three dimensional microclimate and gas exchange model STANDFLUX. The model was used to calculate forest radiation absorption, the net photosynthesis and transpiration of single trees, and gas exchange of tree canopies. Model parameterizations were derived for six stands of Picea abies ...

  18. Universal model for water costs of gas exchange by animals and plants.

    Science.gov (United States)

    Woods, H Arthur; Smith, Jennifer N

    2010-05-04

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface temperature of the respiratory system near the outside of the organism, the gas consumed (oxygen or carbon dioxide), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model predictions were largely confirmed by data on 202 species in five taxa--insects, birds, bird eggs, mammals, and plants--spanning nine orders of magnitude in rate of gas exchange. Discrepancies between model predictions and data seemed to arise from biologically interesting violations of model assumptions, which emphasizes how poorly we understand gas exchange in some taxa. The universal model provides a unified conceptual framework for analyzing exchange-associated water losses across taxa with radically different metabolic and exchange systems.

  19. Ventilation and gas exchange management after cardiac arrest.

    Science.gov (United States)

    Sutherasan, Yuda; Raimondo, Pasquale; Pelosi, Paolo

    2015-12-01

    For several decades, physicians had integrated several interventions aiming to improve the outcomes in post-cardiac arrest patients. However, the mortality rate after cardiac arrest is still as high as 50%. Post-cardiac arrest syndrome is associated with high morbidity and mortality due to not only poor neurological outcome and cardiovascular failure but also respiratory dysfunction. To minimize ventilator-associated lung injury, protective mechanical ventilation by using low tidal volume ventilation and driving pressure may decrease pulmonary complications and improve survival. Low level of positive end-expiratory pressure (PEEP) can be initiated and titrated with careful cardiac output and respiratory mechanics monitoring. Furthermore, optimizing gas exchange by avoiding hypoxia and hyperoxia as well as maintaining normocarbia may improve neurological and survival outcome. Early multidisciplinary cardiac rehabilitation intervention is recommended. Minimally invasive monitoring techniques, that is, echocardiography, transpulmonary thermodilution method measuring extravascular lung water, as well as transcranial Doppler ultrasound, might be useful to improve appropriate management of post-cardiac arrest patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. HTO deposition through gas exchange between soil and atmosphere

    International Nuclear Information System (INIS)

    Feinhals, J.

    1988-06-01

    Theoretical considerations show that the ratio of HTO/H 2 O molecules, i.e. the specific activity, is not the same in atmospheric humidity and moisture absorption but differs by the so-called specific activity coefficient k. On this basis a computer model (ATHOS) was developed which allowed the calculation of both the surface contamination of the soil due to the gas exchange with a contaminated atmosphere and the depth-specific distribution of the soil acitvity. On the one hand the equations base on a modified Philip-de Vries theory, and on the other hand on a large number of soil column experiments which served the examination of the influence of parameters of microclimate and soil physics on the absorption and diffusion of tritiated water vapour under simulated conditions Above all the individual capability of each soil type to absorb moisture must be taken into consideration in connection with the HTO transfer. In this context theoretical and experimental examinations were carried out indicating a practice-related possibility to determine the soil-specific absorption capability. (orig./DG) [de

  1. On factors influencing air-water gas exchange in emergent wetlands

    Science.gov (United States)

    Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.

    2018-01-01

    Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

  2. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  3. Gas exchange across the air - water interface determined with man-made and natural tracers

    International Nuclear Information System (INIS)

    Wanninkhof, R.H.

    1986-01-01

    Gas exchange coefficients were determined on Rockland Lake, NY; Crowley Lake, CA; and Mono Lake, CA which have surface areas of 1 km 2 , 20 km 2 , and 190 km 2 , respectively, by injecting a small amount of man made tracer gas, sulfur hexafluoride (SF 6 ) into the lake and measuring the rate of concentration decrease in the water column with time. The dependency of gas exchange on wind speed is similar for the three lakes indicating that wind fetch is not a critical parameter for the gas exchange coefficient for lakes with sizes greater than 1 km 2 . Little gas exchange occurs for wind speeds less than 2.5 m/s and gas exchange increases linearly with wind speed from 2.5 to 6 m/s. The relationship of gas exchange and wind speed for the lakes agrees well with a compilation of earlier single wind speed - exchange coefficient measurements on lakes and oceans but they are lower than most results obtained in wind tunnels

  4. Water use in forest canopy black cherry trees and its relationship to leaf gas exchange and environment

    Science.gov (United States)

    B. J. Joyce; K. C. Steiner; J. M. Skelly

    1996-01-01

    Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.

  5. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  6. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    Science.gov (United States)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  7. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system

    International Nuclear Information System (INIS)

    Kim, Dae Yeon; Sung, Tae Hong; Kim, Kyung Chun

    2016-01-01

    The intermediate fluid vaporizer has wide applications in the regasification of LNG (liquefied natural gas). The heat exchanger performance is one of the main contributors to the thermodynamic and cost effectiveness of the entire LNG regasification system. Within the paper, the authors discuss a new concept for a compact heat exchanger with a micro-cellular structure medium to minimize volume and mass and to increase thermal efficiency. Numerical calculations have been conducted to design a metal-foam filled plate heat exchanger and a shell-and-tube heat exchanger using published experimental correlations. The geometry of both heat exchangers was optimized using the conditions of thermolators in LNG regasification systems. The heat transfer and pressure drop performance was predicted to compare the heat exchangers. The results show that the metal-foam plate heat exchanger has the best performance at different channel heights and mass flow rates of fluid. In the optimized configurations, the metal-foam plate heat exchanger has a higher heat transfer rate and lower pressure drop than the shell-and-tube heat exchanger as the mass flow rate of natural gas is increased. - Highlights: • A metal foam heat exchanger is proposed for LNG regasification system. • Comparison was made with a shell and tube heat exchanger. • Heat transfer and pressure drop characteristics were estimated. • The geometry of both heat exchangers is optimized for thermolators. • It can be used as a compact and high performance thermolators.

  8. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    Science.gov (United States)

    Wang, Binbin

    . Comparison between the turbulence structures measured during the wind wave initiation period and those obtained during the growing period was presented. Significant wave effects on near surface turbulence were found. A universal scaling law was proposed to parameterize turbulent dissipation rate immediately below the air-water interface with friction velocity, significant wave height and wave age. Finally, the gas transfer velocity was measured with a floating chamber (FC) system, along with simultaneously FPIV measurements. Turbulent dissipation rate both at the interface and at a short distance away from the interface (~ 10 cm) were analyzed and used to examine the small scale eddy model. The model coefficient was found to be dependent on the level of turbulence, instead of being a constant. An empirical relationship between the model coefficient and turbulent dissipation rate was provided, which improved the accuracy of the gas transfer velocity estimation by more than 100% for data acquired. Other data from the literature also supported this empirical relation. Furthermore, the relationship between model coefficient and turbulent Reynolds number was also investigated. In addition to physical control of gas exchange, the disturbance on near surface hydrodynamics by the FC was also discussed. Turbulent dissipation rates are enhanced at the short distance away from the interface, while the surface dissipation rates do not change significantly.

  9. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B. [Kongju National University, Kong Ju (Republic of Korea). Dept. for Mechanical Engineering

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

  10. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.

    Science.gov (United States)

    West, J. B.; Maloney, J. E.; Castle, B. L.

    1972-01-01

    This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.

  11. Oxo-exchange of gas-phase uranyl, neptunyl, and plutonyl with water and methanol.

    Science.gov (United States)

    Lucena, Ana F; Odoh, Samuel O; Zhao, Jing; Marçalo, Joaquim; Schreckenbach, Georg; Gibson, John K

    2014-02-17

    A challenge in actinide chemistry is activation of the strong bonds in the actinyl ions, AnO2(+) and AnO2(2+), where An = U, Np, or Pu. Actinyl activation in oxo-exchange with water in solution is well established, but the exchange mechanisms are unknown. Gas-phase actinyl oxo-exchange is a means to probe these processes in detail for simple systems, which are amenable to computational modeling. Gas-phase exchange reactions of UO2(+), NpO2(+), PuO2(+), and UO2(2+) with water and methanol were studied by experiment and density functional theory (DFT); reported for the first time are experimental results for UO2(2+) and for methanol exchange, as well as exchange rate constants. Key findings are faster exchange of UO2(2+) versus UO2(+) and faster exchange with methanol versus water; faster exchange of UO2(+) versus PuO2(+) was quantified. Computed potential energy profiles (PEPs) are in accord with the observed kinetics, validating the utility of DFT to model these exchange processes. The seemingly enigmatic result of faster exchange for uranyl, which has the strongest oxo-bonds, may reflect reduced covalency in uranyl as compared with plutonyl.

  12. Spume Drops: Their Potential Role in Air-Sea Gas Exchange

    Science.gov (United States)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny

    2017-12-01

    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in air sea exchange models. Based on these the contribution of spume drops to overall air sea gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.

  13. Radon gas-exchange rate through the interface sea atmosphere in the coast

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Perez Martinez, M.

    1985-01-01

    The Rn gas exchange velocity through the interface sea atmosphere has been estimated. Our measurements have been made in a sampler station located in Malaga bay, obtaining a mean value of 0.45 m/d. The corresponding magnitude of the thickness of boundary layer is 316μ. Experimental results are discussed. No clear relationship can be found between the gas exchange rate and wind speed. (author)

  14. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).

    Science.gov (United States)

    Groenewald, Berlizé; Bazelet, Corinna S; Potter, C Paige; Terblanche, John S

    2013-10-15

    The importance of metabolic rate and/or spiracle modulation for saving respiratory water is contentious. One major explanation for gas exchange pattern variation in terrestrial insects is to effect a respiratory water loss (RWL) saving. To test this, we measured the rates of CO2 and H2O release ( and , respectively) in a previously unstudied, mesic cockroach, Aptera fusca, and compared gas exchange and water loss parameters among the major gas exchange patterns (continuous, cyclic, discontinuous gas exchange) at a range of temperatures. Mean , and per unit did not differ among the gas exchange patterns at all temperatures (P>0.09). There was no significant association between temperature and gas exchange pattern type (P=0.63). Percentage of RWL (relative to total water loss) was typically low (9.79±1.84%) and did not differ significantly among gas exchange patterns at 15°C (P=0.26). The method of estimation had a large impact on the percentage of RWL, and of the three techniques investigated (traditional, regression and hyperoxic switch), the traditional method generally performed best. In many respects, A. fusca has typical gas exchange for what might be expected from other insects studied to date (e.g. , , RWL and cuticular water loss). However, we found for A. fusca that expressed as a function of metabolic rate was significantly higher than the expected consensus relationship for insects, suggesting it is under considerable pressure to save water. Despite this, we found no consistent evidence supporting the conclusion that transitions in pattern type yield reductions in RWL in this mesic cockroach.

  15. The mechanisms underlying the production of discontinuous gas exchange cycles in insects.

    Science.gov (United States)

    Matthews, Philip G D

    2018-03-01

    This review examines the control of gas exchange in insects, specifically examining what mechanisms could explain the emergence of discontinuous gas exchange cycles (DGCs). DGCs are gas exchange patterns consisting of alternating breath-hold periods and bouts of gas exchange. While all insects are capable of displaying a continuous pattern of gas exchange, this episodic pattern is known to occur within only some groups of insects and then only sporadically or during certain phases of their life cycle. Investigations into DGCs have tended to emphasise the role of chemosensory thresholds in triggering spiracle opening as critical for producing these gas exchange patterns. However, a chemosensory basis for episodic breathing also requires an as-of-yet unidentified hysteresis between internal respiratory stimuli, chemoreceptors, and the spiracles. What has been less appreciated is the role that the insect's central nervous system (CNS) might play in generating episodic patterns of ventilation. The active ventilation displayed by many insects during DGCs suggests that this pattern could be the product of directed control by the CNS rather than arising passively as a result of self-sustaining oscillations in internal oxygen and carbon dioxide levels. This paper attempts to summarise what is currently known about insect gas exchange regulation, examining the location and control of ventilatory pattern generators in the CNS, the influence of chemoreceptor feedback in the form of O 2 and CO 2 /pH fluctuations in the haemolymph, and the role of state-dependent changes in CNS activity on ventilatory control. This information is placed in the context of what is currently known regarding the production of discontinuous gas exchange patterns.

  16. The influence of gas-to-particle conversion on measurements of ammonia exchange over forest

    NARCIS (Netherlands)

    Oss, R. van; Duyzer, J.; Wyers, P.

    1998-01-01

    Measurements of vertical gradients of ammonium nitrate aerosol and NH3 are used together with HNO3 concentrations to study the influence of gas-to-particle conversion (gtpc) on surface exchange processes above a forest. A numerical model of surface exchange, in which a description of gtpc was

  17. The role of the spiracles in gas exchange during development of Samia cynthia (Lepidoptera, Saturniidae).

    Science.gov (United States)

    Hetz, Stefan K

    2007-12-01

    Spiracles and the tracheal system of insects allow effective delivery of respiratory gases. During development, holometabolous insects encounter large changes in the functional morphology of gas exchange structures. To investigate changes in respiratory patterns during development, CO2-release was measured in larvae, pre-pupae and pupae of Samia cynthia (Lepidoptera, Saturniidae). Gas exchange patterns showed great variability. Caterpillars had high metabolic rates and released carbon dioxide continuously. Pre-pupae and pupae showed typical discontinuous gas exchange cycles (DGC) at reduced metabolic rates. Changes in gas exchange patterns can partly be explained with low metabolic rates during pupation. Sequential blocking of spiracles in pre-pupae and pupae reduced spiracle conductance with tracheal conductance remaining unaffected. Analysis of gas exchange patterns indicates that caterpillars and pre-pupae use more than 14 spiracles simultaneously while pupae only use 8 to 10 spiracles. Total conductance is not a simple multiple of single spiracles, but may be gradually adaptable to gas exchange demands. Surprisingly, moth pupae showed a DGC if all except one spiracle were blocked. The huge conductance of single spiracles is discussed as a pre-adaptation to high metabolic demands at the beginning and the end of the pupal as well as in the adult stage.

  18. Influence of heat exchange of reservoir with rocks on hot gas injection via a single well

    Science.gov (United States)

    Nikolaev, Vladimir E.; Ivanov, Gavril I.

    2017-11-01

    In the computational experiment the influence of heat exchange through top and bottom of the gas-bearing reservoir on the dynamics of temperature and pressure fields during hot gas injection via a single well is investigated. The experiment was carried out within the framework of modified mathematical model of non-isothermal real gas filtration, obtained from the energy and mass conservation laws and the Darcy law. The physical and caloric equations of state together with the Newton-Riemann law of heat exchange of gas reservoir with surrounding rocks, are used as closing relations. It is shown that the influence of the heat exchange with environment on temperature field of the gas-bearing reservoir is localized in a narrow zone near its top and bottom, though the size of this zone is increased with time.

  19. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  20. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  1. Enhancement of plate heat exchanger performance using electric fields

    International Nuclear Information System (INIS)

    Down, E.M.

    2000-12-01

    The falling film plate evaporator is often used in the food processing industry to remove large amounts of water from liquids, pulps and slurries. Although a compact efficient device with high heat transfer rates, there is a requirement for even greater performance, particularly when fuelled by the low grade energy from many renewable sources. Electrohydrodynamics (EHD) has been shown to give large heat transfer enhancements under many conditions, but most of this previous research has been with working fluids having much lower electrical conductivities than the water-based fluids that are the main concern of this study. The liquid flow in falling film plate evaporators is in the form of a very thin (less than a millimetre) film falling down a heated plate under the effect of gravity. The film surface exhibits waviness over much of the operating range of industrial heat exchangers, and the degree of waviness has previously been shown to have a large effect on the rate of heat transfer. A theoretical model was developed which suggested that significant increases in waviness, and therefore heat transfer, could be stimulated using high voltage electrodes, and these were subsequently observed on the surface of a pool of water during bench-top experiments. An experimental falling film rig was designed to study this EHD effect but the 2.5 kV maximum voltage attainable was thought to be too low to stimulate wave enlargement and no heat transfer enhancement was seen. Significant heat transfer enhancement was observed in the falling film rig when utilising corona discharge electrodes. This was thought to be due to a thinning of the film in the vicinity of the electrode via the corona wind and increased fluid mixing downstream of the electrode. Both point and wire electrodes improved heat transfer rates but wire electrodes were thought to have more potential for integration into existing industrial heat exchanger designs, so were studied more closely. Heat transfer rates

  2. Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry

    International Nuclear Information System (INIS)

    Oyama, V.I.; Berdahl, B.J.; Carle, G.C.

    1977-01-01

    It is stated that O 2 and CO 2 were evolved from humidified Martian soil in the gas exchange experiment on Viking Lander 1. Small changes in N 2 gas were also recorded. A model of the morphology and a hypothesis of the mechanistics of the Martian surface are proposed. (author)

  3. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  4. Development of gas-solid direct contact heat exchanger by use of axial flow cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akihiko; Yokomine, Takehiko [Kyushu University (Japan). Interdisciplinary Graduate School of Engineering Sciences; Nagafuchi, Tatsuro [Miura Co. Ltd., Matsuyamashi (Japan)

    2004-10-01

    A heat exchanger between particulate or granular materials and gas is developed. It makes use of a swirling gas flow similar to the usual cyclone separators but the difference from them is that the swirl making gas is issued into the cyclone chamber with downward axial velocity component. After it turns the flow direction near the bottom of the chamber, the low temperature gas receives heat from high temperature particles supplied from above at the chamber's center. Through this configuration, a direct contact and quasi counter-flow heat exchange pattern is realized so that the effective recovery of heat carried by particles is achieved. A model heat exchanger was manufactured via several numerical experiments and its performances of heat exchange as well as particle recovery were examined. Attaching a small particle diffuser below the particle-feeding nozzle brought about a drastic improvement of the heat exchange performance without deteriorating the particle recovery efficiency. The outlet gas temperature much higher than the particle outlet temperature was finally obtained, which is never realized in the parallel flow heat exchanger. (author)

  5. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  6. Setting an Upper Limit on Gas Exchange Through Sea-Spray

    Science.gov (United States)

    Vlahos, P.; Monahan, E. C.; Andreas, E. L.

    2016-02-01

    Air-sea gas exchange parameterization is critical to understanding both climate forcing and feedbacks and is key in biogeochemistry cycles. Models based on wind speed have provided empirical estimates of gas exchange that are useful though it is likely that at high wind speeds of over 10 m/s there are important gas exchange parameters including bubbles and sea spray that have not been well constrained. Here we address the sea-spray component of gas exchange at these high wind speeds to set sn upper boundary condition for the gas exchange of the six model gases including; nobel gases helium, neon and argon, diatomic gases nitrogen and oxygen and finally, the more complex gas carbon dioxide. Estimates are based on the spray generation function of Andreas and Monahan and the gases are tested under three scenarios including 100 percent saturation and complete droplet evaporation, 100 percent saturation and a more realistic scenario in which a fraction of droplets evaporate completely, a fraction evaporate to some degree and a fraction returns to the water side without significant evaporation. Finally the latter scenario is applied to representative under saturated concentrations of the gases.

  7. Enhanced diffie-hellman algorithm for reliable key exchange

    Science.gov (United States)

    Aryan; Kumar, Chaithanya; Vincent, P. M. Durai Raj

    2017-11-01

    The Diffie -Hellman is one of the first public-key procedure and is a certain way of exchanging the cryptographic keys securely. This concept was introduced by Ralph Markel and it is named after Whitfield Diffie and Martin Hellman. Sender and Receiver make a common secret key in Diffie-Hellman algorithm and then they start communicating with each other over the public channel which is known to everyone. A number of internet services are secured by Diffie -Hellman. In Public key cryptosystem, the sender has to trust while receiving the public key of the receiver and vice-versa and this is the challenge of public key cryptosystem. Man-in-the-Middle attack is very much possible on the existing Diffie-Hellman algorithm. In man-in-the-middle attack, the attacker exists in the public channel, the attacker receives the public key of both sender and receiver and sends public keys to sender and receiver which is generated by his own. This is how man-in-the-middle attack is possible on Diffie-Hellman algorithm. Denial of service attack is another attack which is found common on Diffie-Hellman. In this attack, the attacker tries to stop the communication happening between sender and receiver and attacker can do this by deleting messages or by confusing the parties with miscommunication. Some more attacks like Insider attack, Outsider attack, etc are possible on Diffie-Hellman. To reduce the possibility of attacks on Diffie-Hellman algorithm, we have enhanced the Diffie-Hellman algorithm to a next level. In this paper, we are extending the Diffie -Hellman algorithm by using the concept of the Diffie -Hellman algorithm to get a stronger secret key and that secret key is further exchanged between the sender and the receiver so that for each message, a new secret shared key would be generated. The second secret key will be generated by taking primitive root of the first secret key.

  8. Discontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae).

    Science.gov (United States)

    Matthews, Philip G D; White, Craig R

    2012-01-01

    Insects are at high risk of desiccation because of their small size, high surface-area-to-volume ratio, and air-filled tracheal system that ramifies throughout their bodies to transport O(2) and CO(2) to and from respiring cells. Although the tracheal system offers a high-conductance pathway for the movement of respiratory gases, it has the unintended consequence of allowing respiratory transpiration to the atmosphere. When resting, many species exchange respiratory gases discontinuously, and an early hypothesis for the origin of these discontinuous gas exchange cycles (DGCs) is that they serve to reduce respiratory water loss. In this study, we test this "hygric" hypothesis by comparing rates of CO(2) exchange and water loss among flower beetles Protaetia cretica (Cetoniinae, Scarabaeidae) breathing either continuously or discontinuously. We show that, consistent with the expectations of the hygric hypothesis, rates of total water loss are higher during continuous gas exchange than during discontinuous gas exchange and that the ratio of respiratory water loss to CO(2) exchange is lower during discontinuous gas exchange. This conclusion is in agreement with other studies of beetles and cockroaches that also support the hygric hypothesis. However, this result does not exclude other adaptive hypotheses supported by work on ants and moth pupae. This ambiguity may arise because there are multiple independent evolutionary origins of DGCs and no single adaptive function underlying their genesis. Alternatively, the observed reduction in water loss during DGCs may be a side effect of a nonadaptive gas exchange pattern that is elicited during periods of inactivity.

  9. A meta-analysis of leaf gas exchange and water status responses to drought.

    Science.gov (United States)

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2016-02-12

    Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Our results were as follows: 1) drought negatively impacted gas exchange and water status, and stomatal conductance (gs) decreased more than other physiological traits and declined to the greatest extent in shrubs and C3 plants. Furthermore, C4 plants had an advantage compared to C3 plants under the same drought conditions. 2) The decrease in gs mainly reduced the transpiration rate (Tr), and gs could explain 55% of the decrease in the photosynthesis (A) and 74% of the decline in Tr. 3). Finally, gas exchange showed a close relationship with the leaf water status. Our study provides comprehensive information about the changes in plant gas exchange and water status under drought.

  10. Integrated Heat Exchange For Recuperation In Gas Turbine Engines

    Science.gov (United States)

    2016-12-01

    combustion engines conduct heat transfer in the exhaust system. The exhaust valves have hollow stems containing sodium, which act as heat pipes with...is the use of heat pipes in internal combustion engines . Internal combustion engines have combustion chambers with temperatures as high as 2700 K...accomplished using evaporative heat pipes . This study explores the feasibility of embedding this heat exchange system within engines using a

  11. Preoperative gender differences in pulmonary gas exchange in morbidly obese subjects.

    Science.gov (United States)

    Zavorsky, Gerald S; Christou, Nicolas V; Kim, Do Jun; Carli, Franco; Mayo, Nancy E

    2008-12-01

    Morbidly obese men may have poorer pulmonary gas exchange compared to morbidly obese women (see Zavorsky et al., Chest 131:362-367, 2007). The purpose was to compare pulmonary gas exchange in morbidly obese men and women at rest and throughout exercise. Twenty-five women (age=38+/-10 years, 164+/-7 cm, body mass index or BMI = 51+/-7 kg/m(2), peak oxygen consumption or VO(2peak)=2.0+/-0.4 l/min) and 17 men (age=43+/-9 years, 178+/-7 cm, BMI=50+/-10 kg/m(2), VO(2peak)=2.6+/-0.8 l/min) were recruited to perform a graded exercise test on a cycle ergometer with temperature-corrected arterial blood-gas samples taken at rest and every minute of exercise, including peak exercise. At rest, women were 98% predicted for pulmonary diffusion compared to 88% predicted in men. At rest, women had better pulmonary gas exchange compared to the men which was related to women having a lower waist-to-hip ratio (WHR; por=25 mmHg) at peak exercise, but 75% of the subjects showed inadequate compensatory hyperventilation at peak exercise (arterial carbon dioxide pressure >35 mmHg), and both were not different between genders. At rest, morbidly obese men have poorer pulmonary gas exchange and pulmonary diffusion compared to morbidly obese women. The better gas exchange in women is related to the lower WHR in the women. During exercise, few subjects showed disturbances in pulmonary gas exchange despite demonstrating poor compensatory hyperventilation at peak exercise.

  12. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion......, and the major challenge for its accurate measurement is avoiding disturbing small-scale gradients in O2 concentration and demand in the pathway. Small O2 sensors with rapid response times and high spatial resolution are the most popular methods for quantifying O2 transport and rhizosphere oxidation...... such as stirring of solutions. In some species, pressurized gas flows develop in shoots and rhizomes, and their contribution to gas fluxes can be assessed with pressure transducers and flow meters. Other gases produced in wetlands (e.g., CO2, CH4, and N2O) are also transported in aerenchyma. Their fluxes...

  13. Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler

    Science.gov (United States)

    Cao, Weixue; Liu, Fengguo; You, Xue-yi

    2018-01-01

    Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.

  14. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...

  15. Continuous measurement of air-water gas exchange by underwater eddy covariance

    Science.gov (United States)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent

  16. Continuous measurement of air–water gas exchange by underwater eddy covariance

    Directory of Open Access Journals (Sweden)

    P. Berg

    2017-12-01

    Full Text Available Exchange of gases, such as O2, CO2, and CH4, over the air–water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique – originally developed for benthic O2 flux measurements – right below the air–water interface (∼ 4 cm to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2–temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz. By combining these data, concurrent vertical fluxes of O2 and heat across the air–water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600 in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air–water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air–water heat fluxes and not by biological activity (primary production and respiration. This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds – two main drivers of lotic gas exchange – but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature–density gradients in the surface water driven by the heat flux into or

  17. Pulmonary gas exchange impairment following tourniquet deflation: a prospective, single-blind clinical trial.

    Science.gov (United States)

    Lin, Lina; Wang, Liangrong; Bai, Yu; Zheng, Liupu; Zhao, Xiyue; Xiong, Xiangqing; Jin, Lida; Ji, Wei; Wang, Wantie

    2010-06-09

    The tourniquet has been considered as a recognized cause of limb ischemia/reperfusion injury in orthopedic surgery resulting in a transient neutrophil, monocyte activation, and enhanced neutrophil transendothelial migration with potential remote tissue injury. This study investigated the effect of unilateral tourniquet application within a safe time limit on pulmonary function and the roles of lipid peroxidation and systemic inflammatory response. Thirty patients undergoing unilateral lower extremity surgery with or without tourniquet were equally divided into a control group with no tourniquet (Group C) and a tourniquet (Group T). Arterial partial pressure of oxygen (P(a)O(2)), arterial-alveolar oxygen tension ratio (a/A ratio), alveolar-arterial oxygen difference (A-aDO(2)) and respiratory index, plasma malondialdehyde, serum interleukin (IL) -6 and IL-8 levels were measured immediately before and 1 hour after tourniquet inflation/operation beginning, 0.5, 2, 6, and 24 hours after tourniquet deflation/operation ending. The results represented no significant changes in Group C with regard to either blood gas variables or levels of circulating mediators, while blood gas variable changes of greater A-aDO(2) and respiratory index and lower PaO2 and a/A ratio were shown at 6 hours following tourniquet deflation. The levels of malondialdehyde, IL-6, and IL-8 were increased over baseline values from 2 to 24 hours following tourniquet deflation in Group T. We concluded that tourniquet application within a safe time limit may cause pulmonary gas exchange impairment several hours after tourniquet deflation, where lipid peroxidation and systemic inflammatory response may be involved. Copyright 2010, SLACK Incorporated.

  18. Heat exchanger for transfering heat produced in a high temperature reactor to an intermediate circuit gas

    International Nuclear Information System (INIS)

    Barchewitz, E.; Baumgaertner, H.

    1985-01-01

    The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)

  19. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  20. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  1. Magnetic behavior of Van Vleck ions and an electron gas interacting by exchange

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. da.

    1980-01-01

    The magnetic behavior of a model in which Van Vleck ions, under the action of a crystal field, interacting by exchange with an electron gas is investigated. The condition of onset of ferromagnetism and the behavior of the critical temperature, band and ionic magnetizations (and susceptibilities) versus temperature, as a function of the band width, exchange interaction and the crystal field splitting energy parameters are obtained within an approximation equivalent to a molecular field formulation. (Author) [pt

  2. Numerical analysis of exhaust gas flow during the gas exchange process and the design optimization; Haiki manihorudonai no hiteijo nagare kaiseki gijutsu to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, K; Takeyama, S; Sakai, E; Tanzawa, K [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    A simulation method was developed to estimate exhaust gas flow during the gas exchange process. In this simulation, one dimensional in-cylinder gas flow calculation and three dimensional exhaust gas flow calculation were combined. Gas flow inside the exhaust manifold catalyst during gas exchange was agreed in experiments. A simulation method was applied to select oxygen sensor location. A prediction of the oxygen sensor sensitivity of each cylinder gas was presented. The possibility of selecting oxygen sensor location in the exhaust manifold using calculation was proved. 5 refs., 10 figs., 1 tab.

  3. A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach.

    Science.gov (United States)

    Grieshaber, Beverley J; Terblanche, John S

    2015-06-07

    The insect gas exchange system is characterised by branching air-filled tubes (tracheae/tracheoles) and valve-like structures in their outer integument (spiracles) which allow for a periodic gas exchange pattern known as the discontinuous gas exchange cycle (DGC). The DGC facilitates the temporal decoupling of whole animal gas exchange from cellular respiration rates and may confer several physiological benefits, which are nevertheless highly controversial (primarily reduction of cellular oxidative damage and/or respiratory water saving). The intrinsic and extrinsic factors influencing DGCs are the focus of extensive ongoing research and little consensus has been reached on the evolutionary genesis or mechanistic costs and benefits of the pattern. Despite several hypotheses and much experimental and evolutionary biology research, a mechanistic physical model, which captures various key elements of the DGC pattern, is currently lacking. Here, we present a biologically realistic computational, two-sensor DGC model (pH/carbon dioxide and oxygen setpoints) for an Orthopteran gas exchange system, and show computationally for the first time that a control system of two interacting feedback loops is capable of generating a full DGC pattern with outputs which are physiologically realistic, quantitatively matching experimental results found in this taxonomic model elsewhere. A finite-element mathematical approach is employed and various trigger sets are considered. Parameter sensitivity analyses suggest that various aspects of insect DGC are adequately captured in this model. In particular, with physiologically relevant input parameters, the full DGC pattern is induced; and the phase durations, endotracheal carbon dioxide partial pressure ranges, and pH fluctuations which arise are physically realistic. The model results support the emergent property hypothesis for the existence of DGC, and indicate that asymmetric loading and off-loading (hysteresis) in one of the sensor

  4. Gamma radiation effect on gas production in anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Traboulsi, A. [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France); Labed, V., E-mail: veronique.labed@cea.fr [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91191 Gif sur Yvette Cedex (France); Dupuy, N.; Rebufa, C. [E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France)

    2013-10-01

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H{sub 2g}) and carbon dioxide (CO{sub 2g}). TMA and H{sub 2g} are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMA{sub aq} was associated with aqueous dimethylamine (DMA{sub aq}), monomethylamine (MMA{sub aq}) and ammonia (NH{sub 4}{sup +}{sub aq}). CO{sub 2g} is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMA{sub g}.

  5. Features of gas exchange of healthy people of working age

    OpenAIRE

    Noreiko S.B.

    2011-01-01

    The purpose of this study was to improve the accuracy of determining the basal metabolism of healthy people. Comparative studies of basal metabolism of healthy men and women on probation and respiratory physical factors are considered. Surveyed 30 healthy men and women aged 21-56 years. Determination of the volume of absorbed oxygen and produces carbon dioxide carried by the gas analyzer "Spirolit-2" were defined. Calculate the actual respiratory rate. It is established that the actual value ...

  6. Effects of Anti-G Measures on Gas Exchange.

    Science.gov (United States)

    1981-05-01

    position (+lGz), and the endotracheal tube was connected to a Rudolf valve arranged so that expired gas passed through a heated pneumotachograph and a... Steiner , 1960; Peterson, Bishop and Erickson, 1977). Data presented in Table 111-I suggest that application of the G-sult abdominal bladder tended to...accelerations. Aerospace Med. 31: 213-219, 1960. 18. Hershgold, E.J. and S.H. Steiner . Cardiovascular changes during acceleration stress in dogs. J

  7. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real-time human respiration process analysis method using a high-time-sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC-MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas-mask-type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high-speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  8. A quantitative approach to developing more mechanistic gas exchange models for field grown potato

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup

    2009-01-01

    In this study we introduce new gas exchange models that are developed under natural conditions of field grown potato. The new models could explain about 85% of the stomatal conductance variations, which was much higher than the well-known gas exchange models such as the Ball-Berry model [Ball...... of chemical and hydraulic signalling on stomatal conductance as exp(-β[ABA])exp(-δ|ψ|) in which [ABA] and |ψ| are xylem ABA concentration and absolute value of leaf or stem water potential. In this study we found that stem water potential could be a very reliable indicator of how plant water status affects...

  9. Impact of Detoxification Techniques on Pulmonary Gas Exchange Function in Patients with Generalized Peritonitis

    Directory of Open Access Journals (Sweden)

    R. A. Mlinnik

    2012-01-01

    Full Text Available Objective: to analyze the impact of different detoxification techniques on pulmonary gas exchange function in patients with generalized peritonitis complicated by multiple organ failure. Subjects and methods. One hundred and thirty patients with generalized peritonitis were examined. According to the used detoxification techniques, the patients were divided into 5 groups. All the patients underwent a comprehensive examination, the key element of which was the evaluation of gas exchange parameters. Results. Membrane plasmapheresis and plasmapheresis with sodium hypochlorite infusion to the plasma filter in patients with peritonitis are shown to improve pulmonary blood oxygenation.

  10. Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

    1980-02-01

    Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed

  11. The efficacy of fluid-gas exchange for the treatment of postvitrectomy retinal detachment.

    Science.gov (United States)

    Jang, Ji Hye; Kim, Yu Cheol; Kim, Kwang Soo

    2009-12-01

    This study was designed to evaluate the efficacy of fluid-gas exchange for the treatment of postvitrectomy retinal detachment. We retrospectively reviewed the records of 33 consecutive patients (35 eyes) who underwent fluid-gas exchange treatment for postvitrectomy retinal detachment using the two-needle pars plana approach technique. The retinal reattachment rate was 80.0% after complete intravitreal gas disappearance following the fluid-gas exchange; the overall success rate was 65.7%. Visual acuity was improved or stable in 80.0% of cases; a two-line or greater vision improvement or a best-corrected visual acuity of 0.4 or better occurred in 62.9% of cases. The success rates for superior retinal detachments and posterior pole retinal detachments were 76.5% and 85.7%, respectively. Fluid-gas exchange represents a simple and cost-effective alternative outpatient procedure for retinal reattachment without reoperation for the treatment of superior and posterior pole retinal detachments.

  12. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  13. Thermoneutral isotope exchange reactions of cations in the gas phase

    International Nuclear Information System (INIS)

    Ausloos, P.; Lias, S.G.

    1981-01-01

    Rate constants have been measured for reactions of the type AD 2 + + MH → MD + ADH + , where AD 2 + is CD 3 CND + , CD 3 CDOD + , (CD 3 COCD 3 )D + , or (C 2 D 5 ) 2 OD + and the MH molecules are alcohols, acids, mercaptans, H 2 S, AsH 3 , PH 3 , or aromatic molecules. Rate constants are also presented for the reactions Ar/sub H/D + + D 2 O → Ar/sub d/D + + HDO, where Ar/sub H/D + is a deuteronated aromatic molecule and Ar/sub D/D + is the same species with a D atom incorporated on the ring. In all but two cases, the competing deuteron transfer is sufficiently endothermic that it cannot be observed under the conditions of the ICR experiments at 320 to 420 K. The efficiencies of the isotope exchange reactions are interpreted in terms of estimated potential surface cross sections for the reactions AD 2 + + MH → [AD 2 + MH] → [ADMHD + ] → [ADH + MD] → ADH + + MD. When the formation of the [ADMHD + ] complex is estimated to be thermoneutral or slightly endothermic, the isotope exchange process is inefficient (probability of a reactive collision 2 + MH] → [ADMHD + ] is exothermic. For most of the systems, trends in reaction efficiency appear to be related to factors such as dipole moments of reactant species (or for aromatic compounds, the electron-donating or -withdrawing properties of ring substituents) which influence the relative orientation of the two reactant species in the complex

  14. Steel reinforced composite silicone membranes and its integration to microfluidic oxygenators for high performance gas exchange.

    Science.gov (United States)

    Matharoo, Harpreet; Dabaghi, Mohammadhossein; Rochow, Niels; Fusch, Gerhard; Saraei, Neda; Tauhiduzzaman, Mohammed; Veldhuis, Stephen; Brash, John; Fusch, Christoph; Selvaganapathy, P Ravi

    2018-01-01

    Respiratory distress syndrome (RDS) is one of the main causes of fatality in newborn infants, particularly in neonates with low birth-weight. Commercial extracorporeal oxygenators have been used for low-birth-weight neonates in neonatal intensive care units. However, these oxygenators require high blood volumes to prime. In the last decade, microfluidics oxygenators using enriched oxygen have been developed for this purpose. Some of these oxygenators use thin polydimethylsiloxane (PDMS) membranes to facilitate gas exchange between the blood flowing in the microchannels and the ambient air outside. However, PDMS is elastic and the thin membranes exhibit significant deformation and delamination under pressure which alters the architecture of the devices causing poor oxygenation or device failure. Therefore, an alternate membrane with high stability, low deformation under pressure, and high gas exchange was desired. In this paper, we present a novel composite membrane consisting of an ultra-thin stainless-steel mesh embedded in PDMS, designed specifically for a microfluidic single oxygenator unit (SOU). In comparison to homogeneous PDMS membranes, this composite membrane demonstrated high stability, low deformation under pressure, and high gas exchange. In addition, a new design for oxygenator with sloping profile and tapered inlet configuration has been introduced to achieve the same gas exchange at lower pressure drops. SOUs were tested by bovine blood to evaluate gas exchange properties. Among all tested SOUs, the flat design SOU with composite membrane has the highest oxygen exchange of 40.32 ml/min m 2 . The superior performance of the new device with composite membrane was demonstrated by constructing a lung assist device (LAD) with a low priming volume of 10 ml. The LAD was achieved by the oxygen uptake of 0.48-0.90 ml/min and the CO 2 release of 1.05-2.27 ml/min at blood flow rates ranging between 8 and 48 ml/min. This LAD was shown to increase the

  15. Effects of stomata clustering on leaf gas exchange.

    Science.gov (United States)

    Lehmann, Peter; Or, Dani

    2015-09-01

    A general theoretical framework for quantifying the stomatal clustering effects on leaf gaseous diffusive conductance was developed and tested. The theory accounts for stomatal spacing and interactions among 'gaseous concentration shells'. The theory was tested using the unique measurements of Dow et al. (2014) that have shown lower leaf diffusive conductance for a genotype of Arabidopsis thaliana with clustered stomata relative to uniformly distributed stomata of similar size and density. The model accounts for gaseous diffusion: through stomatal pores; via concentration shells forming at pore apertures that vary with stomata spacing and are thus altered by clustering; and across the adjacent air boundary layer. Analytical approximations were derived and validated using a numerical model for 3D diffusion equation. Stomata clustering increases the interactions among concentration shells resulting in larger diffusive resistance that may reduce fluxes by 5-15%. A similar reduction in conductance was found for clusters formed by networks of veins. The study resolves ambiguities found in the literature concerning stomata end-corrections and stomatal shape, and provides a new stomata density threshold for diffusive interactions of overlapping vapor shells. The predicted reduction in gaseous exchange due to clustering, suggests that guard cell function is impaired, limiting stomatal aperture opening. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Extracorporeal gas exchange and spontaneous breathing for the treatment of acute respiratory distress syndrome: an alternative to mechanical ventilation?*.

    Science.gov (United States)

    Langer, Thomas; Vecchi, Vittoria; Belenkiy, Slava M; Cannon, Jeremy W; Chung, Kevin K; Cancio, Leopoldo C; Gattinoni, Luciano; Batchinsky, Andriy I

    2014-03-01

    Venovenous extracorporeal gas exchange is increasingly used in awake, spontaneously breathing patients as a bridge to lung transplantation. Limited data are available on a similar use of extracorporeal gas exchange in patients with acute respiratory distress syndrome. The aim of this study was to investigate the use of extracorporeal gas exchange in awake, spontaneously breathing sheep with healthy lungs and with acute respiratory distress syndrome and describe the interactions between the native lung (healthy and diseased) and the artificial lung (extracorporeal gas exchange) in this setting. Laboratory investigation. Animal ICU of a governmental laboratory. Eleven awake, spontaneously breathing sheep on extracorporeal gas exchange. Sheep were studied before (healthy lungs) and after the induction of acute respiratory distress syndrome via IV injection of oleic acid. Six gas flow settings (1-10 L/min), resulting in different amounts of extracorporeal CO2 removal (20-100% of total CO2 production), were tested in each animal before and after the injury. Respiratory variables and gas exchange were measured for every gas flow setting. Both healthy and injured sheep reduced minute ventilation according to the amount of extracorporeal CO2 removal, up to complete apnea. However, compared with healthy sheep, sheep with acute respiratory distress syndrome presented significantly increased esophageal pressure variations (25 ± 9 vs 6 ± 3 cm H2O; p 80% of total CO2 production). Spontaneous ventilation of both healthy sheep and sheep with acute respiratory distress syndrome can be controlled via extracorporeal gas exchange. If this holds true in humans, extracorporeal gas exchange could be used in awake, spontaneously breathing patients with acute respiratory distress syndrome to support gas exchange. A deeper understanding of the pathophysiology of spontaneous breathing during acute respiratory distress syndrome is however warranted in order to be able to propose

  17. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water

    NARCIS (Netherlands)

    Mommer, L.; Pedersen, O.; Visser, E.J.W.

    2004-01-01

    Flooding imposes stress upon terrestrial plants since it severely hampers gas exchange rates between the shoot and the environment. The resulting oxygen deficiency is considered to be the major problem for submerged plants. Oxygen microelectrode studies have, however, shown that aquatic plants

  18. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing

    NARCIS (Netherlands)

    Langensiepen, M.; Kupisch, M.; Wijk, van M.T.; Ewert, F.

    2012-01-01

    Transient type canopy chambers are still the only currently available practical solution for rapid screening of gas-exchange in agricultural fields. The technique has been criticized for its effect on canopy microclimate during measurement which affects the transport regime and regulation of plant

  19. Tradeoffs between metabolic rate and spiracular conductance in discontinuous gas exchange of Samia cynthia (Lepidoptera, Saturniidae).

    Science.gov (United States)

    Moerbitz, Christian; Hetz, Stefan K

    2010-05-01

    The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange ((cyc)GE) was significantly higher in animals with unblocked spiracles (18.7 nmol g(-1) min(-1) vs. 7.9 nmol g(-1) min(-1)). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Laparoscopic cholecystectomy using abdominal wall retraction. Hemodynamics and gas exchange, a comparison with conventional pneumoperitoneum

    NARCIS (Netherlands)

    Meijer, D. W.; Rademaker, B. P.; Schlooz, S.; Bemelman, W. A.; de Wit, L. T.; Bannenberg, J. J.; Stijnen, T.; Gouma, D. F.

    1997-01-01

    BACKGROUND: Disadvantages related to CO2 pneumoperitoneum have led to development of the abdominal wall retractor (AWR), a device designed to facilitate laparoscopic surgery without conventional pneumoperitoneum (15 mmHg CO2). We investigated the effects of the AWR on hemodynamics and gas exchange

  1. [Effects of drought stress on leaf gas exchange and chlorophyll fluorescence of Salvia miltiorrhiza].

    Science.gov (United States)

    Luo, Ming-Hua; Hu, Jin-Yao; Wu, Qing-Gui; Yang, Jing-Tian; Su, Zhi-Xian

    2010-03-01

    Taking the seedlings of Salvia miltiorrhiza cv. Sativa (SA) and S. miltiorrhiza cv. Silcestris (SI) as test materials, this paper studied the effects of drought stress on their leaf gas exchange and chlorophyll fluorescence parameters. After 15 days of drought stress, the net photosynthetic rate (P(n)) and the maximal photochemical efficiency of PS II (F(v)/F(m)) of SA were decreased by 66.42% and 10.98%, whereas those of SI were decreased by 29.32% and 5.47%, respectively, compared with the control, suggesting that drought stress had more obvious effects on the P(n) and F(v)/F(m) of SA than of SI. For SI, the reduction of P, under drought stress was mainly due to stomatal limitation; while for SA, it was mainly due to non-stomatal limitation. Drought led to a decrease of leaf stomatal conductance (G(s)), but induced the increase of water use efficiency (WUE), non-photochemical quenching coefficient (q(N)), and the ratio of photorespiration rate to net photosynthetic rate (P(r)/P(n)), resulting in the enhancement of drought resistance. The increment of WUE, q(N), and P(r)/P(n) was larger for SI than for SA, indicating that SI had a higher drought resistance capacity than SA.

  2. Greenhouse gas exchange in grasslands: impacts of climate, intensity of management and other factors

    Science.gov (United States)

    Smith, K. A.

    2003-04-01

    several Western European countries, very high rates of N application to both grazed grassland and to grass crops grown for winter feed have made these lands the principal source of N_2O. It has been estimated that 40% of global emissions of NO, a precursor of tropospheric ozone, come from grasslands and savannas. Global warming is expected to bring about substantial changes in the overall greenhouse gas exchange of grasslands, with a net loss of soil C as CO_2, and possibly enhanced N_2O emissions. Increased rainfall is predicted for some regions, and this can also be expected to give rise to increases in N_2O.

  3. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    Science.gov (United States)

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (prate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Wave Attenuation and Gas Exchange Velocity in Marginal Sea Ice Zone

    Science.gov (United States)

    Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.

    2018-03-01

    The gas transfer velocity in marginal sea ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a sea state-dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas exchange parametrization in fetch-unlimited, fully developed seas. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas exchange with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in sea ice zones using an empirical relation between the sea ice cover and the effective fetch, while accounting for the sea ice motion effect that is unique to sea ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.

  5. A New, Noninvasive Method of Measuring Impaired Pulmonary Gas Exchange in Lung Disease: An Outpatient Study.

    Science.gov (United States)

    West, John B; Crouch, Daniel R; Fine, Janelle M; Makadia, Dipen; Wang, Daniel L; Prisk, G Kim

    2018-02-13

    It would be valuable to have a noninvasive method of measuring impaired pulmonary gas exchange in patients with lung disease and thus reduce the need for repeated arterial punctures. This study reports the results of using a new test in a group of outpatients attending a pulmonary clinic. Inspired and expired partial pressure of oxygen (PO 2 ) and Pco 2 are continually measured by small, rapidly responding analyzers. The arterial PO 2 is calculated from the oximeter blood oxygen saturation level and the oxygen dissociation curve. The PO 2 difference between the end-tidal gas and the calculated arterial value is called the oxygen deficit. Studies on 17 patients with a variety of pulmonary diseases are reported. The mean ± SE oxygen deficit was 48.7 ± 3.1 mm Hg. This finding can be contrasted with a mean oxygen deficit of 4.0 ± 0.88 mm Hg in a group of 31 normal subjects who were previously studied (P gas in determining ventilation-perfusion ratio inequality. This factor is largely ignored in the classic index of impaired pulmonary gas exchange using the ideal alveolar PO 2 to calculate the alveolar-arterial oxygen gradient. The results previously reported in normal subjects and the present studies suggest that this new noninvasive test will be valuable in assessing abnormal gas exchange in the clinical setting. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  6. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  7. Preheating of manure utilizing heat exchanger and flue gas. Forvarmning af gylle ved varmeveksling med roeggas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.

    1987-07-15

    It has been shown that preheating of manures in biomass conversion plants to a temperature of 50-60 deg. C, before the anaerobic digestion takes place at a temperature of 35-45 deg. C, results in an increase of methane production. But the method normally involves an increase in energy consumption. The aim of the project was to develope methods of utilizing heat from flue gas emitted from the boiler connected to the plant, with the help of a heat exchanger. The heat thus recovered would be used to preheat the manure. The chosen method was to inject the flue gas directly into the manure mass, following this up with heat exchanging and condensing. In order to mix the flue gas thoroughly into the manure an ejector was used, this was driven by the manure flow. Results were satisfactory. (AB).

  8. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2017-11-01

    Full Text Available The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF, namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  9. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Sandfort, Vincenz; Trabold, Barbara M; Abdolvand, Amir; Bolwien, Carsten; Russell, Philip St. J; Wöllenstein, Jürgen; Palzer, Stefan

    2017-11-24

    The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF), namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm -1 , which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  10. Gas exchange in fruits related to skin condition and fruit ripening studied with diode laser spectroscopy.

    Science.gov (United States)

    Huang, Jing; Zhang, Hao; Lin, Huiying; Li, Tianqi; Mei, Liang; Svanberg, Katarina; Svanberg, Sune

    2016-12-01

    The concentration of the biologically active molecular oxygen gas is of crucial importance for fruits in the metabolic respiration, maturation, and ripening processes. In our study, oxygen content and oxygen transport in fruits, exemplified by apples and guavas, were studied noninvasively by gas in scattering media absorption spectroscopy. The technique is based on the fact that free gases typically have 10,000 times narrower absorption features than the bulk material. The technique was demonstrated in studies of the influence of the fruit skin in regulating the internal oxygen balance, by observing the signal response of the internal oxygen gas to a transient change in the ambient gas concentration on peeled and unpeeled fruits. In addition, the gas exchange rate at different ripening stages was also studied in intact guavas.

  11. Gas exchange in fruits related to skin condition and fruit ripening studied with diode laser spectroscopy

    Science.gov (United States)

    Huang, Jing; Zhang, Hao; Lin, Huiying; Li, Tianqi; Mei, Liang; Svanberg, Katarina; Svanberg, Sune

    2016-12-01

    The concentration of the biologically active molecular oxygen gas is of crucial importance for fruits in the metabolic respiration, maturation, and ripening processes. In our study, oxygen content and oxygen transport in fruits, exemplified by apples and guavas, were studied noninvasively by gas in scattering media absorption spectroscopy. The technique is based on the fact that free gases typically have 10,000 times narrower absorption features than the bulk material. The technique was demonstrated in studies of the influence of the fruit skin in regulating the internal oxygen balance, by observing the signal response of the internal oxygen gas to a transient change in the ambient gas concentration on peeled and unpeeled fruits. In addition, the gas exchange rate at different ripening stages was also studied in intact guavas.

  12. An optioneering and concept design study for the Astrid sodium-gas heat exchanger matrix

    International Nuclear Information System (INIS)

    Hattrell, T.; Lopez-Ramirez, S.; Pilatis, N.

    2014-01-01

    The ASTRID generation IV sodium cooled fast reactor design being developed by the CEA requires a component to transfer heat from the core to the power cycle. One of the ASTRID configurations currently being developed by the CEA uses a sodium to gas heat exchanger (SGHE) to fulfil this function. The design of the SGHE is challenging because of the high temperature of the sodium coolant and the significant pressure differential between the sodium and gas sides of the heat exchanger. This paper presents a study of the options examined for the ASTRID SGHE. A compact, superplastic formed diffusion bonded (SPF-DB) heat exchanger matrix (e.g. SGHE core) is proposed, based on the aerospace technology used by Rolls-Royce to manufacture light and strong wide chord fan blades for gas turbines. The in-house code CHESS is used to examine a number of feasible configurations for the matrix of the heat exchanger component and an optimisation study to maximise the thermal and mechanical performance of the most promising configurations is reported. The optimal matrix geometry identified by the study has a power density for the heat transfer region 157%1 greater than the baseline geometry (authors)

  13. Soil-atmosphere trace gas exchange in semiarid and arid zones.

    Science.gov (United States)

    Galbally, Ian E; Kirstine, Wayne V; Meyer, C P Mick; Wang, Ying Ping

    2008-01-01

    A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.

  14. Catalytic isotope exchange reaction between deuterium gas and water pre-adsorbed on platinum/alumina

    International Nuclear Information System (INIS)

    Iida, Itsuo; Kato, Junko; Tamaru, Kenzi.

    1976-01-01

    The catalytic isotope exchange reaction between deuterium gas and the water pre-adsorbed on Pt/Al 2 O 3 was studied. At reaction temperatures above 273 K, the exchange rate was proportional to the deuterium pressure and independent of the amount of adsorbed water, which suggests that the rate determining step is the supply of deuterium from the gas phase. Its apparent activation energy was 38 kJ mol -1 . Below freezing point of water, the kinetic behaviour was different from that above freezing point. At higher deuterium pressures the rate dropped abruptly at 273 K. Below the temperature the apparent activation energy was 54 kJ mol -1 and the exchange rate depended not on the deuterium pressure but on the amount of the pre-adsorbed water. At lower pressures, however, the kinetic behaviour was the same as the above 273 K, till the rate of the supply of deuterium from the gas phase exceeded the supply of hydrogen from adsorbed water to platinum surface. These results suggest that below 273 K the supply of hydrogen is markedly retarded, the state of the adsorbed water differing from that above 273 K. It was also demonstrated that when the adsorbed water is in the state of capillary condensation, the exchange rate becomes very small. (auth.)

  15. Optical methods to study the gas exchange processes in large diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S.; Hattar, C. [Wartsila Diesel International Oy, Vaasa (Finland); Hernberg, R.; Vattulainen, J. [Tampere Univ. of Technology, Tampere (Finland). Plasma Technology Lab.

    1996-12-01

    To be able to study the gas exchange processes in realistic conditions for a single cylinder of a large production-line-type diesel engine, a fast optical absorption spectroscopic method was developed. With this method line-of-sight UV-absorption of SO{sub 2} contained in the exhaust gas was measured as a function of time in the exhaust port area in a continuously fired medium speed diesel engine type Waertsilae 6L20. SO{sub 2} formed during the combustion from the fuel contained sulphur was used as a tracer to study the gas exchange as a function of time in the exhaust channel. In this case of a 4-stroke diesel engine by assuming a known concentration of SO{sub 2} in the exhaust gas after exhaust valve opening and before inlet and exhaust valve overlap period, the measured optical absorption was used to determine the gas density and further the instantaneous exhaust gas temperature during the exhaust cycle. (author)

  16. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2009-01-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  17. Plant mineral nutrition, gas exchange and photosynthesis in space: A review

    Science.gov (United States)

    Wolff, S. A.; Coelho, L. H.; Zabrodina, M.; Brinckmann, E.; Kittang, A.-I.

    2013-02-01

    Successful growth and development of higher plants in space rely on adequate availability and uptake of water and nutrients, and efficient energy distribution through photosynthesis and gas exchange. In the present review, literature has been reviewed to assemble the relevant knowledge within space plant research for future planetary missions. Focus has been on fractional gravity, space radiation, magnetic fields and ultimately a combined effect of these factors on gas exchange, photosynthesis and transport of water and solutes. Reduced gravity prevents buoyancy driven thermal convection in the physical environment around the plant and alters transport and exchange of gases and liquids between the plant and its surroundings. In space experiments, indications of root zone hypoxia have frequently been reported, but studies on the influences of the space environment on plant nutrition and water transport are limited or inconclusive. Some studies indicate that uptake of potassium is elevated when plants are grown under microgravity conditions. Based on the current knowledge, gas exchange, metabolism and photosynthesis seem to work properly in space when plants are provided with a well stirred atmosphere and grown at moderate light levels. Effects of space radiation on plant metabolism, however, have not been studied so far in orbit. Ground experiments indicated that shielding from the Earth's magnetic field alters plant gas exchange and metabolism, though more studies are required to understand the effects of magnetic fields on plant growth. It has been shown that plants can grow and reproduce in the space environment and adapt to space conditions. However, the influences of the space environment may result in a long term effect over multiple generations or have an impact on the plants' role as food and part of a regenerative life support system. Suggestions for future plant biology research in space are discussed.

  18. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst

    International Nuclear Information System (INIS)

    Morishita, T.; Isomura, S.; Izawa, H.; Nakane, R.

    1980-01-01

    Many kinds of the hydrophobic catalysts for hydrogen isotopic exchange between hydrogen gas and water have been prepared. The carriers are the hydrophobic organic materials such as polytetrafluoroethylene(PTFE), monofluorocarbon-PTFE mixture(PTFE-FC), and styrene-divinylbenzene copolymer(SDB). 0.1 to 2 wt % Pt is deposited on the carriers. The Pt/SDB catalyst has much higher activity than the Pt/PTFE catalyst and the Pt/PTFE-FC catalyst shows the intermediate value of catalytic activity. The observation of electron microscope shows that the degrees of dispersion of Pt particles on the hydrophobic carriers result in the difference of catalytic activities. A gas-liquid separated type column containing ten stages is constructed. Each stage is composed of both the hydrophobic catalyst bed for the hydrogen gas/water vapor isotopic exchange and the packed column type bed for the water vapor/liquid water isotopic exchange. In the column hydrogen gas and water flow countercurrently and hydrogen isotopes are separated

  19. Exchange between the stagnant and flowing zone in gas-flowing solids-fixed bed contactors

    Directory of Open Access Journals (Sweden)

    ALEKSANDAR P. DUDUKOVIC

    2005-02-01

    Full Text Available In countercurrent gas – flowing solids – fixed bed contactors, a fraction of the flowing solids is in motion (dynamic holdup, while the other fraction is resting on the fixed bed elements. In this study it was experimentally proved that the stagnant zone should not be considered as a dead part of the column, but that there is a dynamic exchange between these two portions of flowing solids particles. Combining a mathematical model with tracer experiments, the rate of exchange was determined and it was shown that only a small part (ca. 20 % of the stagnant region should be considered as a dead one.

  20. The external respiration and gas exchange in space missions

    Science.gov (United States)

    Baranov, V. M.; Tikhonov, M. A.; Kotov, A. N.

    Literature data and results of our own studies into an effect of micro- and macro-gravity on an external respiration function of man are presented. It is found that in cosmonauts following the 7-366 day space missions there is an enhanced tendency associated with an increased flight duration toward a decrease in the lung volume and breathing mechanics parameters: forced vital capacity of the lungs (FVC) by 5-25 percent, peak inspiratory and expiratory (air) flows (PIF, PEF) by 5-40 percent. A decrease in FVC appears to be explained by a new balance of elastic forces of the lungs, chest and abdomen occuring in microgravity as well as by an increased blood filling and pulmonary hydration. A decline of PIF and PEF is probalbly resulted from antigravitational deconditioning of the respiratory muscles with which a postflight decreased physical performance can in part be associated. The ventilation/perfusion ratios during orthostasis and +G Z and +G X accelerations are estimated. The biophysical nature of developing the absorption atelectases on a combined exposure to accelerations and 100% oxygen breathing is confirmed. A hypothesis that hypervolemia and pulmonary congestion can increase the tendency toward the development of atelectases in space in particular during pure oxygen breathing is suggested. Respiratory physiology problem area which is of interest for space medicine is defined. It is well known that due to present-day technologic progress and accomplishments in applied physiology including applied respiration physiology there currently exist sophisticated technical facilities in operation maintaining the life and professional working capacity of a man in various natural environments: on Earth, under water and in space. By the way, the biomedical involvement in developing and constructing such facilities has enabled an accumulation of a great body of information from experimental studies and full-scale trails to examine the effects of the changed environments

  1. Radiology utilizing a gas multiwire detector with resolution enhancement

    Science.gov (United States)

    Majewski, Stanislaw; Majewski, Lucasz A.

    1999-09-28

    This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

  2. Numerical Study of Compact Plate-Fin Heat Exchanger for Rotary-Vane Gas Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2017-10-01

    Full Text Available Plate-fin heat exchangers are widely used in refrigeration technique. They are popular because of their compactness and excellent heat transfer performance. Here we present a numerical model for the development, research and optimization of a plate-fin heat exchanger for a rotary-vane gas refrigeration machine. The method of analysis by graphic method of plate - fin heat exchanger is proposed. The model describes the effects of secondary parameters such as axial thermal conductivity through a metal matrix of the heat exchanger. The influence of geometric parameters and heat transfer coefficient is studied. Graphs of dependences of length, efficiency of a fin and pressure drop in a heat exchanger on the thickness of the fin and the number of fins per meter are obtained. To analyze the results of numerical simulation, the heat exchanger was designed in the Aspen HYSYS program. The simulation results show that the total deviation from the proposed numerical model is not more than 15%. 

  3. Polarization of stable and radioactive noble gas nuclei by spin exchange with laser pumped alkali atoms

    International Nuclear Information System (INIS)

    Calaprice, F.; Happer, W.; Schreiber, D.

    1984-01-01

    The nuclei of noble gases can be strongly polarized by spin exchange with sufficiently dense optically pumped alkali vapors. Only a small fraction of the spin angular momentum of the alkali atoms is transferred to the nuclear spin of the noble gas. Most of the spin angular momentum is lost to translational angular momentum of the alkali and noble gas atoms about each other. For heavy noble gases most of the angular momentum transfer occurs in alkali-noble-gas van der Waals molecules. The transfer efficiency depends on the formation and breakup rates of the van der Waals molecules in the ambient gas. Experimental methods to measure the spin transfer efficiencies have been developed. Nuclei of radioactive noble gases have been polarized by these methods, and the polarization has been detected by observing the anisotropy of the radioactive decay products. Very precise measurements of the magnetic moments of the radioactive nuclei have been made. 12 references, 9 figures

  4. Heat Exchange and Fouling Analysis on a Set of Hydrogen Sulphide Gas Coolers

    Directory of Open Access Journals (Sweden)

    Andrés Adrian Sánchez-Escalona

    2017-07-01

    Full Text Available The sulphide acid coolers are tube and shell jacketed heat exchangers designed to cool down the produced gas from 416,15 K to 310,15 K in addition to separate the sulphur carried over by the outlet gas from the reactor tower. The investigation was carried out by applying the passive experimentation process in an online cooler set in order to determine the heat transfer rates and fouling based on heat resistance. It was corroborated that the operation of this equipment outside design parameters increases outlet gas temperature and liquid sulphur carryovers. Efficiency loss is caused by fouling elements in the fluid, which results in changes in the overall heat transfer rate. The linear tendency of the fouling heat resistance based on time for three gas flowrates.

  5. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  6. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    Science.gov (United States)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  7. Enhanced biodegradation of polyaromatic hydrocarbons in manufactured gas plant wastes

    International Nuclear Information System (INIS)

    Gauger, W.K.; Srivastava, V.J.; Hayes, T.D.; Linz, D.G.

    1991-01-01

    Scientists at the Institute of Gas Technology (IGT) have focused on enhancing destruction of polyaromatic hydrocarbons (PAHs) present as pollutants in manufactured gas plant (MGP) soils. The factor that bears the most restrictive influence on successful biological PAH degradation is low pollutant transfer from soil into an aqueous environment where biotreatment processes can take place. Physical and chemical enhancements were used in conjunction with biological processes. Physical enhancements overcame the mass transfer problem and made possible the biological destruction of aromatic hydrocarbons. One- to three-ring aromatic hydrocarbons were readily biodegraded in liquid, soil slurry, and - to a lesser degree - composted soil systems. Four- to six-ring PAHs remained persistent but were effectively destroyed when chemical co-treatments were used. Combined biological/chemical/physical processes are currently being tested to achieve the most extensive PAH degradation possible for MGP soils

  8. Enhanced biodegradation of polyaromatic hydrocarbons in manufactured gas plant wastes

    International Nuclear Information System (INIS)

    Gauger, W.K.; Srivastava, V.J.; Hayes, T.D.; Linz, D.G.

    1990-01-01

    Scientists at the Institute of Gas Technology (IGT) have focused on enhancing destruction of polyaromatic hydrocarbons (PAHs) present as pollutants in manufactured gas plant (MGP) soils. The factor that bears the most restrictive influence on successful biological PAH degradation is low pollutant transfer from soil into an aqueous environment where biotreatment processes can take place. Physical and chemical enhancements were used in conjunction with biological processes. Physical enhancements overcame the mass transfer problem and made possible the biological destruction of aromatic hydrocarbons. One- to three-ring aromatic hydrocarbons were readily biodegraded in liquid, soil slurry, and -- to a lesser degree -- composted soil systems. Four- to six-ring PAHs remained persistent but were effectively destroyed when chemical co-treatments were used. Combined biological/chemical/physical processes are currently being tested to achieve the most extensive PAH degradation possible for MGP soils. 8 refs., 9 figs., 2 tabs

  9. Gas exchange of four woody species under salinity and soil waterlogging

    Directory of Open Access Journals (Sweden)

    Alan D. Lima

    Full Text Available ABSTRACT The objective of this study was to evaluate gas exchanges in seedlings of forest species grown in saline soils and subjected to soil waterlogging cycles. The experimental design was completely randomized in a factorial arrangement, with four forest species: Myracrodruon urundeuva Fr Allemão, Mimosa caesalpiniifolia Benth, Tabebuia impetiginosa (Mart. ex. DC. Standl and Azadirachta indica A. Juss, two soil salinity levels (1.2 and 8.6 dS m-1 and two water regimes (with and without waterlogging. Measurements of stomatal conductance, transpiration and CO2 assimilation rate were performed before and after each waterlogging period. The interaction of the highest saline level (8.6 dS m-1 and waterlogging caused greater reductions in leaf gas exchange, except for Mimosa caesalpiniifolia Benth. Tabebuia impetiginosa (Mart. ex. DC. Standl was the species with highest sensitivity to both studied factors of stress.

  10. Gas exchange rates measured using a dual-tracer (SF6 and3he) method in the coastal waters of Korea

    Science.gov (United States)

    Lee, Hyun-Woo; Lee, Kitack; Kaown, Duk-In

    2008-03-01

    Over a period of 5 days between August 12 and 17, 2005, we performed a gas exchange experiment using the dual tracer method in a tidal coastal ocean located off the southern coast of Korea. The gas exchange rate was determined from temporal changes in the ratio of3He to SF6 measured daily in the surface mixed layer. The measured gas exchange rate ( k CO 2), normalized to a Schmidt number of 600 for CO2 in fresh water at 20°C, was approximately 5.0 cm h-1 at a mean wind speed of 3.9 m s-1 during the study period. This value is significantly less than those obtained from floating chamber-based experiments performed previously in estuarine environments, but is similar in magnitude to values obtained using the dual tracer method in river and tidal coastal waters and values predicted on the basis of the relationship between the gas exchange rate and wind speed (Wanninkhof 1992), which is generally applicable to the open ocean. Our result is also consistent with the relationship of Raymond and Cole (2001), which was derived from experiments carried out in estuarine environments using222Rn and chlorofluorocarbons along with measurements undertaken in the Hudson River, Canada, using SF6 and3He. Our results indicate that tidal action in a microtidal region did not discernibly enhance the measured k CO 2 value.

  11. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  12. Technical Of The Heat Exchanger System Of RSG-GAS Maintenance

    International Nuclear Information System (INIS)

    Murjati, Bambang; Tarigan, Alim; Saepudin C, Aep

    2001-01-01

    This first overhaul of RSG-GAS heat exchanger (HE 01) after 13 years operation had been done in May 29 until June 2, 2000. The result showed that the dimension of the some holes at the inlet side of HE 01 has shrunk but not at the outlet side. The shrank holes, then were cleaned using jet cleaner and aluminium pipe. The overhaul of HE 02 will be performed in the next period

  13. GROWTH, GAS EXCHANGE AND YIELD OF CORN WHEN FERTIGATED WITH BOVINE BIOFERTILIZER

    OpenAIRE

    THALES VINÍCIUS DE ARAÚJO VIANA; JOÃO GUILHERME ARAÚJO LIMA; GEOCLEBER GOMES DE SOUSA; LUIS GONZAGA PINHEIRO NETO; BENITO MOREIRA DE AZEVEDO

    2014-01-01

    The bovine biofertilizer applied through irrigation water in the soil (bio fertigation), can be a viable organic source to maintain fertility levels in agricultural production systems. So, this work was aimed at evaluating the effects of different concentrations of bovine biofertilizer applied by fertigation on corn growth, gas exchange and yield. The experiment was conducted under full sun exposure, in Fortaleza, Ceara, in 100 liter (100 L) vessels. The experimental design was that of random...

  14. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem

    Science.gov (United States)

    Knohl, Alexander; Baldocchi, Dennis D.

    2008-06-01

    Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.

  15. Gas Exchange and Mechanical Properties of the Lung in Miners with Severe Concomitant Injury

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2007-01-01

    Full Text Available Objective: to study the specific features of pulmonary gas exchange and mechanical properties in various manifestations of respiratory failure in miners with severe concomitant injury, who have a service length of 10 years or more, in order to optimize respiratory support.Subjects and methods. Pulmonary gas exchange and mechanical properties were studied over time in the presence of respiratory failure (acute lung injury/acute respiratory distress syndrome in 34 miners and 36 victims (a control group with severe concomitant injury who had no underground service length. Both groups were matched in age, severity and nature of traumatic lesions and surgical interventions. Pulmonary gas exchange and mechanical properties were evaluated by the following indices: oxygen fraction in an inspired gas mixture; hemoglobin saturation and partial arterial blood oxygen and carbon dioxide tension with the alveolar-arterial gradient being calculated by the oxygen level; oxygenation index; intrapulmonary shunting; statistical compliance and airways resistance.Results. The studies demonstrated that the miners, as compared with the controls, had more pronounced gas exchange changes within 5—7 post-traumatic days; later on (days 7—9 the above differences were undetectable. Impaired pulmonary mechanical properties in the miners persisted throughout the study while in the control group, their recovery started just on day 3. The course of respiratory failure in the miners was attributable to the baseline external respiratory function. Their respiratory support was performed during 14.5±1.4 days versus 9.5±1.9 days in the controls. In the miners, the mean bed-days at an intensive care unit were 18.5±2.2 whereas in the controls those were 12.3±2.1.Conclusion. More significant impairments of pulmonary gas exchange and mechanical properties are seen in the miners due to the background changes in external respiratory function in the development of respiratory

  16. Organic iodine removal from simulated dissolver off-gas systems utilizing silver-exchanged mordenite

    International Nuclear Information System (INIS)

    Jubin, R.T.

    1981-01-01

    The removal of methyl iodide by adsorption onto silver mordenite was studied using a simulated off-gas from the fuel dissolution step of a nuclear fuel reprocessing plant. The adsorption of methyl iodide on silver mordenite was examined for the effect of NO/sub x/, humidity, iodine concentration, filter temperature, silver loadings and filter pretreatment. The highest iodine loading achieved in these tests was 142 mg CH 3 I per g of substrate on fully exchanged zeolite, approximately the same as elemental iodine loadings. A filter using fully exchanged silver mordenite operating at 200 0 C obtained higher iodine loadings than a similar filter operating at 150 0 C. Pretreatment of the sorbent bed with hydrogen rather than dry air, at a temperature of 200 0 C, also improved the loading. Variations in the methyl iodide concentration had minimal effects on the overall loading. Filters exposed to moist air streams attained higher loadings than those in contact with dry air. Partially exchanged silver mordenite achieved higher silver utilizations than the fully exchanged material. The partially exchanged mordenite also achieved higher loadings at 200 0 C than at 250 0 C. The iodine loaded onto these beds was not stripped at 500 0 C by either 4.5% hydrogen or 100% hydrogen; however, the iodine could be removed by air at 500 0 C, and the bed could be reloaded. A study of the regeneration characteristics of fully exchanged silver mordenite indicates limited adsorbent capacity after complete removal of the iodine with 4.5% hydrogen in the regeneration gas stream at 500 0 C. The loss of adsorbent capacity is much higher for silver mordenite regenerated in a stainless steel filter housing than in a glass filter housing

  17. Non-isothermal compositional gas flow during carbon dioxide storage and enhanced gas recovery

    DEFF Research Database (Denmark)

    Singh, Ashok; Böettcher, N.; Wang, W.

    2011-01-01

    In this work we present the conceptual modeling and the numerical scheme for carbon dioxide storage into nearly depleted gas reservoirs for enhanced gas recovery reasons. For this we develop non-isothermal compositional gas flow model. We used a combined monolithic / staggered coupling scheme...... to solve mass balance equation for the gaseous mixture with heat and fractional mass transport equations. Temperature change resulting from fluid expansion and viscous heat dissipation is included in heat transport in addition to advection and conduction. We have used a modified version of the Peng...

  18. The impact of gas exchange measurement during exercise in pulmonary sarcoidosis.

    Science.gov (United States)

    Kollert, Florian; Geck, Barbara; Suchy, Rolf; Jörres, Rudolf A; Arzt, Michael; Heidinger, Dominic; Hamer, Okka W; Prasse, Antje; Müller-Quernheim, Joachim; Pfeifer, Michael; Budweiser, Stephan

    2011-01-01

    Pulmonary sarcoidosis shows a remarkable heterogeneity of phenotypes ranging from bihilar lymphadenopathy to progressive fibrosis. Individual disease assessment is demanding and requires sensible, practical measures. We tested whether gas exchange measurements during exercise reflects disease activity and clinical course in sarcoidosis. In 149 patients with proven pulmonary sarcoidosis the alveolar-arterial oxygen pressure gradient (P(A-a)O(2)) during exercise was assessed and compared with chest X-ray typing, pulmonary function, single breath-diffusing capacity for carbon monoxide (DL(CO)), serological markers, cell composition of bronchoalveolar lavage fluid (BALF) and clinical course. Patients were categorized according to thresholds of P(A-a)O(2) during exercise. Chest X-ray typing, pulmonary function, DL(CO) and the need for immunosuppressive treatment differed between the disease categories based on P(A-a)O(2) during exercise (p 1 year), but not DL(CO). About 50% (n = 75) of the study population showed a normal spirometry. Even in this subgroup 23% had an impaired gas exchange during exercise, which correlated with chest X-ray types (p < 0.0001) and the need for immunosuppressive treatment (p < 0.005). Impaired gas exchange during exercise reflects disease activity and its extent and is associated with a prolonged need for immunosuppressive treatment during follow-up in patients with pulmonary sarcoidosis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss.

    Science.gov (United States)

    Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Lawson, Tracy

    2017-06-01

    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO 2 diffusion into the leaf to maintain photosynthetic rates ( A ). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Effects of Fusarium circinatum on Disease Development and Gas Exchange in the Seedlings of Pinus spp.

    Directory of Open Access Journals (Sweden)

    Kwan-Soo Woo

    2011-08-01

    Full Text Available Four-year-old seedlings of Pinus thunbergii, Pinus densiflora and Pinus rigida were inoculated with Fusarium circinatum isolate (FT-7, the pitch canker fungus, from P. thunbergii, to evaluate the effects of the pathogen on disease development and gas exchange rate. Needle dehydration was evident on 2 of 10 seedlings of P. thunbergii and P. rigida at 18 and 21 days after inoculation, respectively, while no symptoms were observed in P. densiflora seedlings throughout the experiment. Gas exchange stopped completely in 4 of 5 measured seedlings of P. thunbergii and 2 of 5 measured seedlings of P. rigida at 25 days after inoculation, and in the remaining 3 seedlings of P. rigida at 39 days after inoculation. Disease development in P. thunbergii seedlings was faster than that in P. rigida seedlings. By the time, the experiment was ended at 78 days after inoculation, 9 of 10 seedlings of P. rigida and 8 of 10 seedlings of P. thunbergii seedlings treated with FT-7 was almost dead, but all seedlings of P. densiflora were still healthy. We suggest that P. densiflora is resistant to F. circinatum in the current study, and gas exchange rate of the species after inoculation does not differ significantly compared to that of untreated control.

  1. Pulmonary hemodynamics and gas exchange in off pump coronary artery bypass grafting.

    Science.gov (United States)

    Vedin, Jenny; Jensen, Ulf; Ericsson, Anders; Samuelsson, Sten; Vaage, Jarle

    2005-10-01

    To investigate the influence of cardiopulmonary bypass on pulmonary hemodynamics and gas exchange. Low risk patients admitted for elective coronary artery bypass grafting were randomized to either on (n=25) or off pump (n=25) surgery. Central hemodynamics, gas exchange, and venous admixture were studied during and up to 20 h after surgery. There was no difference in pulmonary vascular resistance index (P=0.16), right ventricular stroke work index (P>0.2), mean pulmonary artery pressure (P>0.2) or pulmonary capillary wedge pressure (P>0.2) between groups. Soon after surgery there was a tendency towards higher cardiac index (P=0.07) in the off pump group. Arterial oxygen tension (P>0.2), hematocrit (P>0.2), venous admixture (P>0.2), and arterial-venous oxygen content difference (P=0.12) did not differ between groups. This prospective, randomized study showed no difference in pulmonary hemodynamics, pulmonary gas exchange, and venous admixture, in low risk patients undergoing off pump compared to on pump coronary artery bypass surgery.

  2. Analysis of oxygen-enhanced combustion of gas power cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Cristiano Frandalozo; Carotenuto, Adriano; Schneider, Paulo Smith [Universidade Federal do Rio Grande do Sul (GESTE/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Termicos e Energeticos], E-mails: cristiano.maidana@ufrgs.br, pss@mecanica.ufrgs.br

    2010-07-01

    The majority of combustion processes use air as oxidant, roughly taken as 21% O{sub 2} and 79% N{sub 2}, by volume. In many cases, these processes can be enhanced by using an oxidant that contains higher proportion of O{sub 2} than in air. This is known as oxygen-enhanced combustion or OEC, and can bring important benefits like higher thermal efficiencies, lower exhaust gas volumes, higher heat transfer efficiency, reduction fuel consumption, reduced equipment costs and substantially pollutant emissions reduction. Within this scenario, this paper aims to investigate the influence of 21-30% oxygen concentration on the performance of a air-fired natural gas fueled power plant. This power plant operates under a Brayton cycle with models with the help of an air flow splitter after the compressor output in order to dose the oxygen rate of combustion and to keep the flue gas intake of the turbine at a prescribed temperature. Simulations shows that the enhancing of the oxidant stream reduced fuel consumption of about 10%, driven by higher adiabatic flame temperatures, which improves thermal and heat transfer efficiencies. A conclusion obtained is that the use of oxygen in higher proportions can be a challenge to retrofit existing air-fired natural gas power turbine cycles, because of the technological limitation of its materials with higher flame temperatures. (author)

  3. Enhanced exchange bias fields for CoO/Co bilayers: influence of antiferromagnetic grains and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Hsun-Tony; Chang, Shin-Chen [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Tsay, Jyh-Shen, E-mail: jstsay@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Yao, Yeong-Der [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)

    2017-05-31

    Highlights: • An antiferromagnetic grain model on exchange bias phenomena is proposed. • Grain size and grain density are considered. • For smaller grain size, the dependence of t{sub CoO} on T{sub B} showed a less pronounced variation. • An increased grain density is responsible for the enhancement in the exchange bias fields. - Abstract: The emergence and optimization of devices that can be applied to spintronics have attracted considerable interest, and both experimental and theoretical approaches have been used in studies of exchange bias phenomena. A survey of the literature indicates that great efforts have been devoted to improving exchange bias fields, while only limited attempts have been made to control the temperature dependence of exchange bias. In this study, the influence of antiferromagnetic grains on exchange bias phenomena in CoO/Co bilayers on a semiconductor surface was investigated. Based on an antiferromagnetic grain model, a correlation between grain size, grain density, blocking temperature, and the exchange bias field was established. For crystallites with a smaller median diameter, the dependence of the thickness of the CoO layer on blocking temperature showed a less pronounced variation. This is due to the larger thermal agitation of the atomic spin moments in the grain, which causes a weaker exchange coupling between atomic spin moments. The enhanced density of antiferromagnetic/ferromagnetic pinning sites resulting from an increased grain density is responsible for the enhancement in the exchange bias fields. The results reported herein provide insights into our knowledge related to controlling the temperature dependence of exchange bias and related mechanisms.

  4. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  5. Probing the Binding Interfaces of Protein Complexes Using Gas-Phase H/D Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F

    2016-01-01

    Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-milliseco......Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub......-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution...

  6. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur

    2011-07-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation for this study is the investigation of a gas storage system with internal thermal control. We employed a fin-tube type heat exchanger that is placed in a pressurized cylinder. A distributed-parameter model is used for the theoretical modeling and simulations are conducted at assorted charging and discharging conditions. These studies included the transient thermal behaviours of the elements within the ANG-charged cylinder and parameters such as pressure and temperature profiles of adsorbent have been obtained during charge and discharge cycles, and results are compared with a conventional compressed methane vessel. © 2011 Elsevier Ltd. All rights reserved.

  7. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    Science.gov (United States)

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Experimental studies on hydrogen isotopic deuterium from gas to liquid phase by catalytic exchange

    International Nuclear Information System (INIS)

    Luo Yangming; Wang Heyi; Liu Jun; Fu Zhonghua; Wang Changbin; Han Jun; Xia Xiulong; Tang Lei

    2005-01-01

    The experimental studies on hydrogen isotopic deuterium from gas to liquid phase were completed by mixed ratio 1:4 of Pt-SDB hydrophobic catalyst and hydrophilic packing. The influencing factors on number of transfer units (NTU) and transformation efficiencies of deuterium were researched. The results show that preferable NTU can be obtained by choosing suitable operational temperature and flux of exchange gas. The transformation rate increases with increasing liquid flux, but it cannot obviously be improved when liquid flux attains some level. The length of catalytic column has an obvious influence on transformation rate and 90% of transformation rate is obtained by 4 m column length at gas flux with 2 m 3 /h, liquid flux with 1-2 kg/h and 45 degree C. (author)

  9. State sells oil and gas shares in Norway - Statoil to stock exchange list

    International Nuclear Information System (INIS)

    Kimpanpaeae, M.

    2001-01-01

    After several months debate the government of Norway has decided to sell parts of the national oil-company Staoil as well as state-owned gas and oil shares. The government has stated that in the first stage it would be possible to privatize 20% of the Statoil. The market value of Staoil in summer 1999 was estimated to 120 billion NOK and the value has been estimated to increase ever since. The same proposal includes selling 20% of the national oil and gas shares SDOEE. 15 % would be sold to Statoil before listing the company into the stock exchange and the rest to Norsk Hydro and other national and international companies. The remaining share, the value of which is about 500 billion NOK, will become a part of a new state-owned company. The oil and energy ministry of Norway has estimated that the market value of SDOEE is about 600 billion NOK. Advisory committee decided to increase the share to be sold of SDOEE to 21.5%, the share of other companies being 6.5%. SDOEE was grounded in 1985. Since then a part of the oil and gas income of Statoil has gone into the balances of Statoil and another part directly to the state. Statoil has been responsible for the oil and gas sales of SDOEE. SDOEE's gas and oil reserves have been estimated to be about 9.8 billion barrels, 35% of which is oil and the rest natural gas. A new independent state owned company will be founded for transport of natural gas as a part of the change process. Oil companies and other energy companies will deliver the natural gas also in the future. In addition to the national arrangements, the EU's gas market directive will lead to changes in the Norwegian gas sales. As a part of the European Economic Area Norway will put the EU's gas markets directive into force without any transition period. The directive will decrease the price of natural gas and hence the income of Norway from natural gas is estimated to decrease significantly. At the moment the sales company GFU is responsible for organizing the

  10. Appearance of enhancement effect in adsorption of binary gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, T. [Ajinomoto General Foods, Inc., Tokyo (Japan); Tamon, H.; Okazaki, M. [Kyoto University, Kyoto (Japan)

    1997-10-20

    The properties of adsorbents and adsorbates contributing to the enhancement in adsorption of binary gas mixtures were experimentally investigated. It is found that adsorbent is required to maintain the phenolic hydroxyl group and the carbonyl group as acidic surface oxides on the carbon surface, and to have a microporous structure for the main adsorption sites. Each gas component is required to be chemisorbed on the phenolic hydroxyl group or the carbonyl group on the adsorbent, and that both components are adsorbed in the micropores together. From the characterization of adsorbents after adsorption-desorption runs, it is demonstrated that the adsorbates in the micropores exist at a higher density than in the bulk state through the promotion of micropore filling when adsorption enhancement appears. 17 refs., 7 figs., 5 tabs.

  11. Evaluation of off-gas characteristics in vitrification process of ion-exchange resin

    International Nuclear Information System (INIS)

    Park, S. C.; Kim, H. S.; Yang, K. H.; Yun, C. H.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9 Nm 3 /h at the burning rate of 40 kg/h. And the composition of off-gas was evaluated as CO 2 (41.4%), Steam (40.0%), O 2 (13.3%), NO (3.6%), and SO 2 (1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3 Nm 3 /h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin. (author)

  12. Atmospheric deposition and air-sea gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China Sea

    Science.gov (United States)

    Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang

    2017-07-01

    The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and air-sea gas exchange fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the air-water interface under the influences of river input and atmospheric transport. The air-sea gas exchange of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the air-sea gas exchange reached equilibrium because of low HCH levels in the air and seawater after the long-term banning of HCH and the degradation. The gas exchange flux of HCH was comparable to the dry and wet deposition fluxes at the air-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas exchange flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.

  13. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.

    2003-01-01

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  14. Use of a combined oxygen and carbon dioxide transcutaneous electrode in the estimation of gas exchange during exercise.

    OpenAIRE

    Sridhar, M K; Carter, R; Moran, F; Banham, S W

    1993-01-01

    BACKGROUND--Accurate and reliable measurement of gas exchange during exercise has traditionally involved arterial cannulation. Non-invasive devices to estimate arterial oxygen (O2) and carbon dioxide (CO2) tensions are now available. A method has been devised and evaluated for measuring gas exchange during exercise with a combined transcutaneous O2 and CO2 electrode. METHODS--Symptom limited exercise tests were carried out in 24 patients reporting effort intolerance and breathlessness. Exerci...

  15. Comparative gas-exchange in leaves of intact and clipped, natural and planted cherrybark oak (Quercus pagoda Raf.) seedlings

    Science.gov (United States)

    Brian R. Lockhart; John D. Hodges

    2005-01-01

    Gas-exchange measurements, including C022-exchange rate (net photosynthesis), stomatal conductance, and transpiration, were conducted on intact and clipped cherrybark oak (Quercus pagoda Raf.) seedlings growing in the field and in a nursery bed. Seedlings in the field, released from midstory and understory woody competition,...

  16. Test results from a helium gas-cooled porous metal heat exchanger

    International Nuclear Information System (INIS)

    North, M.T.; Rosenfeld, J.H.; Youchison, D.L.

    1996-01-01

    A helium-cooled porous metal heat exchanger was built and tested, which successfully absorbed heat fluxes exceeding all previously tested gas-cooled designs. Helium-cooled plasma-facing components are being evaluated for fusion applications. Helium is a favorable coolant for fusion devices because it is not a plasma contaminant, it is not easily activated, and it is easily removed from the device in the event of a leak. The main drawback of gas coolants is their relatively poor thermal transport properties. This limitation can be removed through use of a highly efficient heat exchanger design. A low flow resistance porous metal heat exchanger design was developed, based on the requirements for the Faraday shield for the International Thermonuclear Experimental Reactor (ITER) device. High heat flux tests were conducted on two representative test articles at the Plasma Materials Test Facility (PMTF) at Sandia National Laboratories. Absorbed heat fluxes as high as 40 MW/m 2 were successfully removed during these tests without failure of the devices. Commercial applications for electronics cooling and other high heat flux applications are being identified

  17. Influence of a Gas Exchange Correction Procedure on Resting Metabolic Rate and Respiratory Quotient in Humans.

    Science.gov (United States)

    Galgani, Jose E; Castro-Sepulveda, Mauricio A

    2017-11-01

    The aim of this study was to determine the influence of a gas exchange correction protocol on resting metabolic rate (RMR) and respiratory quotient (RQ), assessed by a Vmax Encore 29n metabolic cart (SensorMedics Co., Yorba Linda, California) in overnight fasted and fed humans, and to assess the predictive power of body size for corrected and uncorrected RMR. Healthy participants (23 M/29 F; 34 ± 9 years old; 26.3 ± 3.7 kg/m 2 ) ingested two 3-hour-apart glucose loads (75 g). Indirect calorimetry was conducted before and hourly over a 6-hour period. Immediately after indirect calorimetry assessment, gas exchange was simulated through high-precision mass-flow regulators, which permitted the correction of RMR and RQ values. Uncorrected and corrected RMR and RQ were directly related at each time over the 6-hour period. However, uncorrected versus corrected RMR was 6.9% ± 0.5% higher (128 ± 7 kcal/d; P exchange in humans over a 6-hour period is feasible and provides information of improved accuracy. © 2017 The Obesity Society.

  18. Online Simultaneous Hydrogen/Deuterium Exchange of Multitarget Gas-Phase Molecules by Electrospray Ionization Mass Spectrometry Coupled with Gas Chromatography.

    Science.gov (United States)

    Jeong, Eun Sook; Cha, Eunju; Cha, Sangwon; Kim, Sunghwan; Oh, Han Bin; Kwon, Oh-Seung; Lee, Jaeick

    2017-11-21

    In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 μL min -1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.

  19. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.

    Science.gov (United States)

    Pincebourde, Sylvain; Casas, Jérôme

    2016-01-01

    Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors

  20. A novel pump-driven veno-venous gas exchange system during extracorporeal CO2-removal.

    Science.gov (United States)

    Hermann, Alexander; Riss, Katharina; Schellongowski, Peter; Bojic, Andja; Wohlfarth, Philipp; Robak, Oliver; Sperr, Wolfgang R; Staudinger, Thomas

    2015-10-01

    Pump-driven veno-venous extracorporeal CO2-removal (ECCO2-R) increasingly takes root in hypercapnic lung failure to minimize ventilation invasiveness or to avoid intubation. A recently developed device (iLA activve(®), Novalung, Germany) allows effective decarboxylation via a 22 French double lumen cannula. To assess determinants of gas exchange, we prospectively evaluated the performance of ECCO2-R in ten patients receiving iLA activve(®) due to hypercapnic respiratory failure. Sweep gas flow was increased in steps from 1 to 14 L/min at constant blood flow (phase 1). Similarly, blood flow was gradually increased at constant sweep gas flow (phase 2). At each step gas transfer via the membrane as well as arterial blood gas samples were analyzed. During phase 1, we observed a significant increase in CO2 transfer together with a decrease in PaCO2 levels from a median of 66 mmHg (range 46-85) to 49 (31-65) mmHg from 1 to 14 L/min sweep gas flow (p gas flow rates. During phase 2, oxygen transfer significantly increased leading to an increase in PaO2 from 67 (49-87) at 0.5 L/min to 117 (66-305) mmHg at 2.0 L/min (p gas flow results in effective CO2-removal, which can be further reinforced by raising blood flow. The clinically relevant oxygenation effect in this setting could broaden the range of indications of the system and help to set up an individually tailored configuration.

  1. Analysis of Ion-Exchange Resin Capability of the RSG-GAS Demineralized Water System (GCA01)

    International Nuclear Information System (INIS)

    Diyah Erlina Lestari; Setyo Budi Utomo; Harsono

    2012-01-01

    The Demineralized water system (GCA01) is a system which is function to process raw water to be demineralized water using ion exchange resin unit consisting of a column of cation exchange resins, anion exchange resin column and the column resin mix bed. After certain time the ion exchange resins to be saturated so that is needed regeneration. The RSG-GAS demineralized water system (GCA01) not operated continuously and indication of when does an ion exchange resin regeneration on The RSG-GAS demineralized water system (GCA01) is the water conductivity from anion exchange resin column output indicates ≥ 5μS/cm. Analysis of capability of the ion exchange resin demineralized water system (GCA01) line I has been performed. The analysis was done by comparing the time required in the system operating cycle of regeneration to the next regeneration during the period 2011 and 2012. From the results of the analysis showed the cycle regeneration time is varies. This shows that ion exchange resin capability of the RSG-GAS demineralized water system (GCA01) is varies depending on the raw water quality and success of the regeneration ion exchange resin. (author)

  2. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.

    Science.gov (United States)

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-04-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas-water interface to promote O₂ uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O₂ from floodwaters when in darkness and CO₂ entry when in light. O₂ microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water-gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O₂ deficiency and oxidative stress. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  3. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation

    Directory of Open Access Journals (Sweden)

    Ricardo López Antón

    2017-03-01

    Full Text Available Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h. The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased and soft (unbiased components; however, the precise origin of the soft phase is as yet unresolved.

  4. Effect of multi-stream heat exchanger on performance of natural gas liquefaction with mixed refrigerant

    Science.gov (United States)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2012-12-01

    A thermodynamic study is carried out to investigate the effect of multi-stream heat exchanger on the performance of natural gas (NG) liquefaction with mixed refrigerant (MR). A cold stream (low-pressure MR) is in thermal contact with opposite flow of two hot streams (high-pressure MR and NG feed) at the same time. In typical process simulation with commercial software (such as Aspen HYSYS®), the liquefaction performance is estimated with a method of minimum temperature approach, simply assuming that two hot streams have the same temperature. In this study, local energy balance equations are rigorously solved with temperature-dependent properties of MR and NG feed, and are linked to the thermodynamic cycle analysis. The figure of merit (FOM) is quantitatively examined in terms of UA (the product of overall heat transfer coefficient and heat exchange area) between respective streams. In a single-stage MR process, it is concluded that the temperature profile from HYSYS is difficult to realize in practice, and the FOM value from HYSYS is an over-estimate, but can be closely achieved with a proper heat-exchanger design. It is also demonstrated that there exists a unique optimal ratio in three UA's, and no direct heat exchanger between hot streams is recommended.

  5. Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp.

    Science.gov (United States)

    Warren, Charles R; Aranda, Ismael; Cano, F Javier

    2011-10-01

    Studies of water stress commonly examine either gas exchange or leaf metabolites, and many fail to quantify the concentration of CO₂ in the chloroplasts (C(c)). We redress these limitations by quantifying C(c) from discrimination against ¹³CO₂ and using gas chromatography-mass spectrometry (GC-MS) for leaf metabolite profiling. Five Eucalyptus and two Acacia species from semi-arid to mesic habitats were subjected to a 2 month water stress treatment (Ψ(pre-dawn) = -1.7 to -2.3 MPa). Carbohydrates dominated the leaf metabolite profiles of species from dry areas, whereas organic acids dominated the metabolite profiles of species from wet areas. Water stress caused large decreases in photosynthesis and C(c), increases in 17-33 metabolites and decreases in 0-9 metabolites. In most species, fructose, glucose and sucrose made major contributions to osmotic adjustment. In Acacia, significant osmotic adjustment was also caused by increases in pinitol, pipecolic acid and trans-4-hydroxypipecolic acid. There were also increases in low-abundance metabolites (e.g. proline and erythritol), and metabolites that are indicative of stress-induced changes in metabolism [e.g. γ-aminobutyric acid (GABA) shunt, photorespiration, phenylpropanoid pathway]. The response of gas exchange to water stress and rewatering is rather consistent among species originating from mesic to semi-arid habitats, and the general response of metabolites to water stress is rather similar, although the specific metabolites involved may vary. © 2011 Blackwell Publishing Ltd.

  6. Oxygen isotope exchange between refractory inclusion in allende and solar nebula Gas

    Science.gov (United States)

    Yurimoto; Ito; Nagasawa

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope compositions ( approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  7. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  8. Trace gas exchange above the floor of a deciduous forest: 1. Evaporation and CO2 efflux

    Science.gov (United States)

    Baldocchi, Dennis D.; Meyers, Tilden P.

    1991-04-01

    The eddy correlation method has great potential for directly measuring trace gas fluxes at the floor of a forest canopy, but a thorough validation study has not been yet conducted. Another appeal of the eddy correlation method is its ability to study processes that regulate and modulate gas exchange between the soil/litter complex and the atmosphere that cannot be probed with chambers. In this paper we report on eddy correlation measurements of water vapor, sensible heat, and carbon dioxide exchange that were made at the floor of a deciduous forest. The validity of the eddy correlation method to measure the emission of water vapor and CO2 from a deciduous forest floor is demonstrated by our ability to close the surface energy budget during periods that meet the requirements of the technique. Water vapor fluxes from a dry forest floor are strongly influenced by large-scale turbulent events that penetrate deep into the canopy. The frequency of these turbulent events prevents equilibrium evaporation rates from being achieved because the dynamic time constant for water vapor exchange is longer. Consequently, maximal evaporation rates are capped to rates defined by the product of the driving potential of the atmosphere and the surface conductance. On the other hand, evaporation from a wet forest floor proceeds at rates reaching or exceeding equilibrium evaporation and are highly correlated with static pressure fluctuations. CO2 efflux rates are governed by litter and soil temperature, as expected. But we also find a significant correlation between static pressure fluctuations and soil/litter CO2 exchange rates.

  9. Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery.

    Science.gov (United States)

    Chen, Jun-Wen; Zhang, Qiang; Li, Xiao-Shuang; Cao, Kun-Fang

    2010-07-01

    The response of plants to drought has received significant attention, but far less attention has been given to the dynamic response of plants during recovery from drought. Photosynthetic performance and hydraulic capacity were monitored in seedlings of Hevea brasiliensis under water stress and during recovery following rewatering. Leaf water relation, gas exchange rate and hydraulic conductivity decreased gradually after water stress fell below a threshold, whereas instantaneous water use efficiency and osmolytes increased significantly. After 5 days of rewatering, leaf water relation, maximum stomatal conductance (g(s-max)) and plant hydraulic conductivity had recovered to the control levels except for sapwood area-specific hydraulic conductivity, photosynthetic assimilation rate and osmolytes. During the phase of water stress, stomata were almost completely closed before water transport efficiency decreased substantially, and moreover, the leaf hydraulic pathway was more vulnerable to water stress-induced embolism than the stem hydraulic pathway. Meanwhile, g(s-max) was linearly correlated with hydraulic capacity when water stress exceeded a threshold. In addition, a positive relationship was shown to occur between the recovery of g(s-max) and of hydraulic capacity during the phase of rewatering. Our results suggest (i) that stomatal closure effectively reduces the risk of xylem dysfunction in water-stressed plants at the cost of gas exchange, (ii) that the leaf functions as a safety valve to protect the hydraulic pathway from water stress-induced dysfunction to a larger extent than does the stem and (iii) that the full drought recovery of gas exchange is restricted by not only hydraulic factors but also non-hydraulic factors.

  10. Research on enhancement of natural circulation capability in lead–bismuth alloy cooled reactor by using gas-lift pump

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Juanli, E-mail: Jenyzuo@163.com; Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn; Chen, Ronghua, E-mail: ronghua.chen@stu.xjtu.edu.cn; Qiu, Suizheng; Su, Guanghui, E-mail: ghsu@mail.xjtu.edu.cn

    2013-10-15

    Highlights: • The gas-lift pump has been adopted to enhance the natural circulation capability. • LENAC code is developed in my study. • The calculation results by LENAC code show good agreement with experiment results. • Gas mass flow rate, bubble diameter, rising pipe length are important parameters. -- Abstract: The gas-lift pump has been adopted to enhance the natural circulation capability in the type of lead–bismuth alloy cooled reactors such as Accelerator Driven System (ADS) and Liquid–metal Fast Reactor (LMFR). The natural circulation ability and the system safety are obviously influenced by the two phase flow characteristics of liquid metal–inert gas. In this study, LENAC (LEad bismuth alloy NAtural Circulation capability) code has been developed to evaluate the natural circulation capability of lead–bismuth cooled ADS with gas-lift pump. The drift flow theory, void fraction prediction model and friction pressure drop prediction model have been incorporated into LENAC code. The calculation results by LENAC code show good agreement with experiment results of CIRCulation Experiment (CIRCE) facility. The effects of the gas mass flow rate, void fraction, gas quality, bubble diameter and the rising pipe height or the potential difference between heat exchanger and reactor core on natural circulation capability of gas-lift pump have been analyzed. The results showed that in bubbly flow pattern, for a fixed value of gas mass flow rate, the natural circulation capability increased with the decrease of the bubble diameter. In the bubbly flow, slug flow, churn flow and annular flow pattern, with the gas mass flow rate increasing, the natural circulation capability initially increased and then declined. And the flow parameters influenced the thermal hydraulic characteristics of the reactor core significantly. The present work is helpful for revealing the law of enhancing the natural circulation capability by gas-lift pump, and providing theoretical

  11. Acute effects of temperature and hypercarbia on cutaneous and branchial gas exchange in the South American lungfish, Lepidosiren paradoxa.

    Science.gov (United States)

    Zena, Lucas A; Bícego, Kênia C; da Silva, Glauber S F; Giusti, Humberto; Glass, Mogens L; Sanchez, Adriana P

    2017-01-01

    The South American lungfish, Lepidosiren paradoxa inhabits seasonal environments in the Central Amazon and Paraná-Paraguay basins that undergo significant oscillations in temperature throughout the year. They rely on different gas exchange organs, such as gills and skin for aquatic gas exchange while their truly bilateral lungs are responsible for aerial gas exchange; however, there are no data available on the individual contributions of the skin and the gills to total aquatic gas exchange in L. paradoxa. Thus, in the present study we quantify the relative contributions of skin and gills on total aquatic gas exchange during warm (35°C) and cold exposure (20°C) in addition to the effects of aerial and aquatic hypercarbia on aquatic gas exchange and gill ventilation rate (f G ; 25°C), respectively. Elevated temperature (35°C) caused a significant increase in the contribution of cutaneous (from 0.61±0.13 to 1.34±0.26ml. STPD.h -1 kg -1 ) and branchial (from 0.54±0.17 to 1.73±0.53ml. STPD.h -1 kg -1 ) gas exchange for V̇CO 2 relative to the lower temperature (20°C), while V̇O 2 remained relatively unchanged. L. paradoxa exhibited a greater branchial contribution in relation to total aquatic gas exchange at lower temperatures (20 and 25°C) for oxygen uptake. Aerial hypercarbia decreased branchial V̇O 2 whereas branchial V̇CO 2 was significantly increased. Progressive increases in aquatic hypercarbia did not affect f G . This response is in contrast to increases in pulmonary ventilation that may offset any increase in arterial partial pressure of CO 2 owing to CO 2 loading through the animals' branchial surface. Thus, despite their reduced contribution to total gas exchange, cutaneous and branchial gas exchange in L. paradoxa can be significantly affected by temperature and aerial hypercarbia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  13. Nesting behaviour influences species-specific gas exchange across avian eggshells.

    Science.gov (United States)

    Portugal, Steven J; Maurer, Golo; Thomas, Gavin H; Hauber, Mark E; Grim, Tomáš; Cassey, Phillip

    2014-09-15

    Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (G(H2O)) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell G(H2O) and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in G(H2O) has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between G(H2O) and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher G(H2O) than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher G(H2O) than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the G(H2O) are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher G(H2O) to overcome this constraint and still

  14. Tritium labelled nucleotides: Heterogeneous metal catalyzed exchange labelling of ATP with tritium gas

    International Nuclear Information System (INIS)

    Jaiswal, D.K.; Morimoto, H.; Williams, P.G.; Wemmer, D.E.

    1991-09-01

    Adenosine 5' triphosphate (ATP) in aqueous solution has been labeled by exchange with tritium gas in the presence of palladium oxide catalyst. Comparison with our experiments using Pd/BaSO 4 as the catalyst shows that we have obtained product with higher specific activity and improved chemical purity. 3 H NMR spectroscopy of the tritiated ATP shows labelling in both the C-8 and C-2 positions, and the integral ratio of these positions was found to vary from 3:1 to 1:1 under different reaction conditions. 5 refs., 1 fig., 2 tabs

  15. Gas exchange in the Pee Dee River based on 222Rn evasion

    International Nuclear Information System (INIS)

    Moore, W.S.; Elsinger, R.J.

    1983-01-01

    Excess 222 Rn concentrations decrease downstream in the fresh water section of the Pee Dee River. Ground water is the primary source of the excess 222 Rn to the River. Using the radon concentration gradients determined during four sampling periods, gas exchange rates based on the stagnant film model are calculated. Stagnant film thicknesses range from 19 μm to 48 μm and mass transfer coefficients range from 2.1 m/d to 4.1 m/d

  16. Changes in pulmonary blood flow do not affect gas exchange during intermittent ventilation in resting turtles

    DEFF Research Database (Denmark)

    Wang, Tobias; Hicks, James W.

    2008-01-01

    The breathing pattern of many different air-breathing vertebrates, including lungfish, anuran amphibians, turtles, crocodiles and snakes, is characterized by brief periods of lung ventilation interspersed among apnoeas of variable duration. These intermittent ventilatory cycles are associated...... experimentally. The present study measured pulmonary gas exchange in fully recovered, freely diving turtles, where changes in pulmonary blood flow were prevented by partial occlusion of the pulmonary artery. Prevention of L-R shunt during ventilation did not impair CO2 excretion and overall, oxygen uptake and CO...

  17. Differential leaf gas exchange responses to salinity and drought in the mangrove tree Avicecennia germinans (Avicenniaceae

    Directory of Open Access Journals (Sweden)

    M.A Sobrado

    2006-06-01

    Full Text Available Leaf gas exchange was assessed in Avicennia germinans L. grown under different NaCl concentrations (0-40‰, after salt-relief, and then during drought. Stomatal conductance (g s and net photosynthetic rate (Pn decreased with increasing NaCl concentration, and intrinsic water use efficiency (Pn / g s increased. Under desalinization Pn / g s declined. Thus, g s did not change in plants grown at low NaCl concentration (10‰, but increased up to 30-32% at higher NaCl concentration (20 - 40‰. However, Pn was only slightly enhanced (10- 15%. Under drought, Pn decreased by as much as 46% in plants grown at low NaCl concentration (10‰ and by 22% at high NaCl concentration (40‰. Thus, Pn / g s decreased and water use efficiency was lower during drought compared to estimates prior to salt-relief. Rev. Biol. Trop. 54(2: 371-375. Epub 2006 Jun 01.Se estudió el intercambio de gases en las hojas de Avicennia germinans L. en varias concentraciones de NaCl (0-40‰, después de la desalinización y durante la desecación. La conductancia de los estomas (g s y la tasa de fotosíntesis (Pn decrecieron con el incremento en la concentración de NaCl, y se incrementó la eficiencia en el uso intrínseco de agua (Pn / g s. Bajo desalinización Pn / g s declinó. Así, g s no cambia en el crecimiento de las plantas a bajas concentraciones de NaCl (10‰, pero se incrementó hasta 30-32% a las concentraciones de NaCl más altas (20 - 40‰. Sin embargo, Pn aumentó ligeramente (10-15%. En desecación Pn fue reducido hasta un 46% a bajas concentaciones (10‰ de NaCl, y a un 22% a altas concentraciones (40‰ de NaCl. Así, Pn / g s decrecieron y la eficiencia en el uso de agua fue menor durante desecación en comparación con los evalolres stimados previos a la desalinización.

  18. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  19. Modeling the effects of temperature and relative humidity on gas exchange of prickly pear cactus (Opuntia spp.) stems

    NARCIS (Netherlands)

    Guevara-Arauza, J.C.; Yahia, E.M.; Cedeno, L.; Tijskens, L.M.M.

    2006-01-01

    A model to estimate gas profile of modified atmosphere packaged (MAP) prickly pear cactus stems was developed and calibrated. The model describes the transient gas exchange taking in consideration the effect of temperature (T) and relative humidity (RH) on film permeability (FPgas), respiration rate

  20. Gas exchange at the air-sea interface: a technique for radon measurements in seawater

    International Nuclear Information System (INIS)

    Queirazza, G.; Roveri, M.

    1991-01-01

    The rate of exchange of various gas species, such as O 2 , CO 2 etc. across the air-water interface can be evaluated from the 222 Rn vertical profiles in the water column. Radon profiles were measured in 4 stations in the NW Adriatic Sea, in September 1990, using solvent extraction and liquid scintillation counting techniques, directly on board the ship. The radiochemical procedure is described in detail. The lower limit of detection is approximately 0.4 mBq 1 -1 . The radon deficiency in the profiles gives estimates of the gas transfer rate across the air-sea interface ranging from 0.9 to 7.0 m d -1 . The suitability of the radon deficiency method in shallow water, enclosed seas is briefly discussed. (Author)

  1. High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Kim, Chan Soo; Hong, Seong Duk; Park, Hong Yoon

    2010-01-01

    PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype

  2. Exchange of availability/performance data on base-load gas turbine and combined cycle plant

    Energy Technology Data Exchange (ETDEWEB)

    Jesuthasan, D.K.; Kaupang, B.M. (Tenaga Nasional Berhad (Malaysia))

    1992-09-01

    This paper describes the recommendations developed to facilitate the international exchange of availability performance data on base-load gas turbines and combined cycle plant. Standardized formats for the collection of plant availability statistics, recognizing the inherent characteristics of gas turbines in simple and combined cycle plants are presented. The formats also allow for a logical expansion of the data collection detail as that becomes desirable. To assist developing countries in particular, the approach includes basic formats for data collection needed for international reporting. In addition, the participating utilities will have a meaningful database for internal use. As experience is gained with this data colletion system, it is expected that additional detail may be accommodated to enable further in-depth performance analysis on the plant and on the utility level. 2 refs., 2 tabs., 11 apps.

  3. Is pulmonary gas exchange during exercise in hypoxia impaired with the increase of cardiac output?

    DEFF Research Database (Denmark)

    Calbet, J.A.; Robach, P.; Lundby, C.

    2008-01-01

    During exercise in humans, the alveolar-arterial O(2) tension difference ((A-a)DO(2)) increases with exercise intensity and is an important factor determining the absolute level of oxygen binding to hemoglobin and therefore the level of systemic oxygen transport. During exercise in hypoxia, the (A......-a)DO(2) is accentuated. Using the multiple inert gas elimination technique it has been shown that during exercise in acute hypoxia the contribution of ventilation-perfusion inequality to (A-a)DO(2) is rather small and in the absence of pulmonary edema intrapulmonary shunts can be ruled out. This implies...... that the main mechanism limiting pulmonary gas exchange is diffusion limitation. It is presumed that an elevation of cardiac output during exercise in acute hypoxia should increase the (A-a)DO(2). However, no studies have examined how variations in cardiac output independently affect pulmonary diffusion...

  4. Co-doped phosphorene: Enhanced sensitivity of CO gas sensing

    Science.gov (United States)

    Lei, S. Y.; Luan, S.; Yu, H.

    2018-03-01

    First-principle calculation was carried out to systematically investigate carbon monoxide (CO) adsorption on pristine and cobalt (Co)-doped phosphorenes (Co-bP). Whether or not CO is adsorped, pristine phosphorene is a direct-band-gap semiconductor. However, the bandgap of Co-bP experiences direct-to-indirect transition after CO molecule adsorption, which will affect optical absorption considerably, implying that Co doping can enhance the sensitivity of phosphorene as a CO gas sensor. Moreover, Co doping can improve an adsorption energy of CO to 1.31 eV, as compared with pristine phosphorene (0.12 eV), also indicating that Co-bP is energetically favorable for CO gas sensing.

  5. Extracorporeal gas exchange with the DeltaStream rotary blood pump in experimental lung injury.

    Science.gov (United States)

    Dembinski, Rolf; Kopp, Rüdger; Henzler, Dietrich; Hochhausen, Nadine; Oslender, Nicole; Max, Martin; Rossaint, Rolf; Kuhlen, Ralf

    2003-06-01

    In most severe cases of the acute respiratory distress syndrome, veno-venous extracorporeal membrane oxygenation (ECMO) can be used to facilitate gas exchange. However, the clinical use is limited due to the size and the concomitant risk of severe adverse events of conventionally-used centrifugal blood pumps with high extracorporeal blood volumes. The DeltaStream blood pump is a small-sized rotary blood pump that may reduce extracorporeal blood volume, foreign surfaces, contact activation of the coagulation system, and blood trauma. The aim of the present study was to test the safety and efficacy of the DeltaStream pump for ECMO in animals with normal lung function and experimental acute lung injury (ALI). Therefore, veno-venous ECMO was performed for 6 hours in mechanically ventilated pigs with normal lung function (n=6) and with ALI induced by repeated lung lavage (n=6) with a blood flow of 30% of the cardiac output. Gas flow with a FiO2 of 1.0 was set to equal blood flow. With a mean activated clotting time of 121 +/- 22 s, no circulatory impairment or thrombus formation was revealed during ECMO. Furthermore, free plasma Hb did not increase. In controls, hemodynamics and gas exchange remained unchanged. In animals with ALI, hemodynamics remained stable and gas transfer across the extracorporeal oxygenators was optimal, but only in 2 animals was a marked increase in PaO2 observed. CO2 removal was efficacious in all animals. We concluded that the DeltaStream blood pump may be used for veno-venous ECMO without major blood damage or hemodynamic impairment.

  6. Preliminary design analysis of hot gas ducts and a intermediate heat exchanger for the nuclear hydrogen reactor

    International Nuclear Information System (INIS)

    Song, K. N.; Kim, Y. W.

    2008-01-01

    Korea Atomic Energy Research Institute (KAERI) is in the process of carrying out a nuclear hydrogen system by considering the indirect cycle gas cooled reactors that produce heat at temperatures in the order of 950 .deg. C. Primary and secondary hot gas ducts with coaxial double tubes and are key components connecting a reactor pressure vessel and a intermediate heat exchanger for the nuclear hydrogen system. In this study, preliminary design analyses on the hot gas ducts and the intermediate heat exchanger were carried out. These preliminary design activities include a preliminary design on the geometric dimensions, a preliminary strength evaluation, thermal sizing, and an appropriate material selection

  7. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  8. Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments.

    Science.gov (United States)

    Jaime, R; Serichol, C; Alcántara, J M; Rey, P J

    2014-03-01

    During photosynthesis, respiration and transpiration, gas exchange occurs via the stomata and so plants face a trade-off between maximising photosynthesis while minimising transpiration (expressed as water use efficiency, WUE). The ability to cope with this trade-off and regulate photosynthetic rate and stomatal conductance may be related to niche differentiation between closely related species. The present study explored this as a possible mechanism for habitat differentiation in Iberian columbines. The roles of irradiance and water stress were assessed to determine niche differentiation among Iberian columbines via distinct gas exchange processes. Photosynthesis-irradiance curves (P-I curves) were obtained for four taxa, and common garden experiments were conducted to examine plant responses to water and irradiance stress, by measuring instantaneous gas exchange and plant performance. Gas exchange was also measured in ten individuals using two to four field populations per taxon. The taxa had different P-I curves and gas exchange in the field. At the species level, water stress and irradiance explained habitat differentiation. Within each species, a combination of irradiance and water stress explained the between-subspecies habitat differentiation. Despite differences in stomatal conductance and CO2 assimilation, taxa did not have different WUE under field conditions, which suggests that the environment equally modifies photosynthesis and transpiration. The P-I curves, gas exchange in the field and plant responses to experimental water and irradiance stresses support the hypothesis that habitat differentiation is associated with differences among taxa in tolerance to abiotic stress mediated by distinct gas exchange responses. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel.

    Science.gov (United States)

    Shim, Suin; Wan, Jiandi; Hilgenfeldt, Sascha; Panchal, Prathamesh D; Stone, Howard A

    2014-07-21

    We studied the dissolution dynamics of CO2 gas bubbles in a microfluidic channel, both experimentally and theoretically. In the experiments, spherical CO2 bubbles in a flow of a solution of sodium dodecyl sulfate (SDS) first shrink rapidly before attaining an equilibrium size. In the rapid dissolution regime, the time to obtain a new equilibrium is 30 ms regardless of SDS concentration, and the equilibrium radius achieved varies with the SDS concentration. To explain the lack of complete dissolution, we interpret the results by considering the effects of other gases (O2, N2) that are already dissolved in the aqueous phase, and we develop a multicomponent dissolution model that includes the effect of surface tension and the liquid pressure drop along the channel. Solutions of the model for a stationary gas bubble show good agreement with the experimental results, which lead to our conclusion that the equilibrium regime is obtained by gas exchange between the bubbles and liquid phase. Also, our observations from experiments and model calculations suggest that SDS molecules on the gas-liquid interface form a diffusion barrier, which controls the dissolution behaviour and the eventual equilibrium radius of the bubble.

  10. Investigation of gas flow characteristics in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kwac, Lee Ku; Kim, Hong Gun

    2008-01-01

    An investigation of electrochemical behavior of PEMFC (proton exchange membrane fuel cell) is performed by using a single-phase two-dimensional finite element analysis. Equations of current balance, mass balance, and momentum balance are implemented to simulate the behavior of PEMFC. The analysis results for the co-flow and counterflow mode of gas flow direction are examined in detail in order to compare how the gas flow direction affects quantitatively. The characteristics of internal properties, such as gas velocity distribution, mass fraction of the reactants, fraction of water and current density distribution in PEMFC are illustrated in the electrode and GDL (gas diffusion layer). It is found that the dry reactant gases can be well internally humidified and maintain high performance in the case of the counter-flow mode without external humidification while it is not advantageous for highly humidified or saturated reactant gases. It is also found that the co-flow mode improves the current density distribution with humidified normal condition compared to the counter-flow mode

  11. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II

    NARCIS (Netherlands)

    Di Martino, A. (Adriana); O'Connor, D. (David); Chen, B. (Bosi); Alaerts, K. (Kaat); Anderson, J.S. (Jeffrey S.); Assaf, M. (Michal); Balsters, J.H. (Joshua H.); Baxter, L. (Leslie); Beggiato, A. (Anita); Bernaerts, S. (Sylvie); L.M.E. Blanken (Laura); Bookheimer, S.Y. (Susan Y.); Braden, B.B. (B. Blair); Byrge, L. (Lisa); Castellanos, F.X. (F. Xavier); Dapretto, M. (Mirella); R. Delorme (Richard); Fair, D.A. (Damien A.); Fishman, I. (Inna); Fitzgerald, J. (Jacqueline); L. Gallagher (Louise); Keehn, R.J.J. (R. Joanne Jao); Kennedy, D.P. (Daniel P.); Lainhart, J.E. (Janet E.); Luna, B. (Beatriz); S.H. Mostofsky (Stewart H.); Müller, R.-A. (Ralph-Axel); Nebel, M.B. (Mary Beth); Nigg, J.T. (Joel T.); O'Hearn, K. (Kirsten); Solomon, M. (Marjorie); R. Toro (Roberto); Vaidya, C.J. (Chandan J.); Wenderoth, N. (Nicole); T.J.H. White (Tonya); Craddock, R.C. (R. Cameron); Lord, C. (Catherine); Leventhal, B. (Bennett); Milham, M.P. (Michael P.)

    2017-01-01

    textabstractThe second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data

  12. Inelastic J/Ψ photoproduction off nuclei: Gluon enhancement or double color exchange?

    International Nuclear Information System (INIS)

    Huefner, J.; Zamolodchikov, A.

    1996-01-01

    The nuclear enhancement observed in inelastic photoproduction of J/Ψ should not be interpreted as evidence for an increased gluon density in nuclei. The nuclear suppression of the production rate due to initial and final state interactions is calculated and a novel two-step color exchange process is proposed, which is able to explain the data. (orig.)

  13. Devise of an exhaust gas heat exchanger for a thermal oil heater in a palm oil refinery plant

    Science.gov (United States)

    Chucherd, Panom; Kittisupakorn, Paisan

    2017-08-01

    This paper presents the devise of an exhaust gas heat exchanger for waste heat recovery of the exhausted flue gas of palm oil refinery plant. This waste heat can be recovered by installing an economizer to heat the feed water which can save the fuel consumption of the coal fired steam boiler and the outlet temperature of flue gas will be controlled in order to avoid the acid dew point temperature and protect the filter bag. The decrease of energy used leads to the reduction of CO2 emission. Two designed economizer studied in this paper are gas in tube and water in tube. The gas in tube exchanger refers to the shell and tube heat exchanger which the flue gas flows in tube; this designed exchanger is used in the existing unit. The new designed water in tube refers to the shell and tube heat exchanger which the water flows in the tube; this designed exchanger is proposed for new implementation. New economizer has the overall coefficient of heat transfer of 19.03 W/m2.K and the surface heat transfer area of 122 m2 in the optimized case. Experimental results show that it is feasible to install economizer in the exhaust flue gas system between the air preheater and the bag filter, which has slightly disadvantage effect in the system. The system can raise the feed water temperature from 40 to 104°C and flow rate 3.31 m3/h, the outlet temperature of flue gas is maintained about 130 °C.

  14. Establishment in treeshelter. II. Effect of shelter color on gas exchange and hardiness

    International Nuclear Information System (INIS)

    Kjelgren, R.; Montague, D.T.; Rupp, L.A.

    1997-01-01

    We investigated the microclimate, gas exchange, and growth of feild-grown Norway maple (Acerplatanoides L.) and green ash (Fraxinus pennsylvanica Marsh) trees nonsheltered, and in brown and white shelters. Shelter microclimate-air temperature (Ta), vapor pressure deficit (VPD), and radiation -and tree leaf area, growth in diameter, stomatal conductance (gs), and photosynthesis were measured during the first growing season after bare-root transplanting. Bark temperatures in midwinter were also measured. Treeshelter microclimate was greenhouse-like compared to ambient conditions, as shortwave radiation was lower, and midday Ta and relative humidity were higher. Although trees in shelters had greater shoot elongation and higher gs than trees grown without shelters, photosynthesis was not different. White shelters allowed 25% more shortwave radiation penetration and increased Ta by 2 to 4 degrees C and VPD by 0.5-1 kPa over brown shelters. However, tree growth and gas exchange generally were not affected by shelter color. Winter injury was increased for trees in shelters and varied with species and shelter color. Both species exhibited shoot dieback in shelters the spring following a winter where bark temperatures varied 40 to 50 degrees C diurnally. More new growth died on maple, particularly in white shelters where several trees were killed. These data suggest that supra optimal summer and winter temperatures may reduce vigor and interfere with cold tolerance of some species grown in shelters

  15. Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: Occurrence, characteristics and temperature dependence

    Directory of Open Access Journals (Sweden)

    John R.B. Lighton

    2002-11-01

    Full Text Available The discontinuous gas exchange cycle of the pseudoscorpion Garypus californicus, mean mass 5.9 mg, is rudimentary and is characterized by bursts of CO2 at frequencies ranging from 3.6 mHz at 15 °C to 13.3 mHz at 35 °C. The mean volume of CO2 emitted per burst is 3.6 µl g-1 at 25 °C, about a tenth of the amount emitted by tracheate arthropods with a well developed discontinuous gas exchange cycle. Interburst CO2 emission is high and increases with temperature, reaching near 45% of total CO2 production rate at 35 °C. No fluttering spiracle phase is evident. The metabolic rate of G. californicus at 25 °C (8.4 µW is typical of other arthropods. We infer from the high rate of interburst CO2 emission in G. californicus that trans-spiracular O2 partial pressure gradients are small and that spiracular conductance is correspondingly high, which may lead to high rates of respiratory water loss relative to arthropods with more stringent spiracular control and higher CO2 buffering capacity. The typical moist, hypogeal environments and small body sizes of pseudoscorpions correlate well with their respiratory physiology

  16. Differential leaf gas exchange performance of mango cultivars infected by different isolates of Ceratocystis fimbriata

    Directory of Open Access Journals (Sweden)

    Wilka Messner da Silva Bispo

    2016-04-01

    Full Text Available ABSTRACT Caused by the vascular fungus Ceratocystis fimbriata, mango wilt is considered to be one of the most serious threats in mango-producing regions worldwide. However, changes in leaf gas exchange level and the mechanisms underlying host responses to this fungal infection remain poorly described. This study aimed to evaluate potential changes in the leaf gas exchange of different mango cultivars (Ubá, Espada, Haden and Tommy Atkins in response to two Brazilian isolates of C. fimbriata (CEBS15 and MSAK16 to non-invasively assess cultivar variability in relation to the basal level of resistance to mango wilt. Both isolates, regardless of the cultivar, caused reductions in stomatal conductance and, thus, a reduction in CO2 assimilation via diffusive limitations. Taking into account the full length of the internal lesion and the radial colonization of the stem tissues, both isolates showed equivalent aggressiveness when inoculated into the Haden and Tommy Atkins cultivars. Conversely, when compared to the CEBS15 isolate of C. fimbriata, the MSAK16 isolate was more aggressive in cv. Espada and less aggressive in cv. Ubá.

  17. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    Science.gov (United States)

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  18. Do We Need Exercise Tests to Detect Gas Exchange Impairment in Fibrotic Idiopathic Interstitial Pneumonias?

    Directory of Open Access Journals (Sweden)

    Benoit Wallaert

    2012-01-01

    Full Text Available In patients with fibrotic idiopathic interstitial pneumonia (f-IIP, the diffusing capacity for carbon monoxide (DLCO has been used to predict abnormal gas exchange in the lung. However, abnormal values for arterial blood gases during exercise are likely to be the most sensitive manifestations of lung disease. The aim of this study was to compare DLCO, resting PaO2, P(A-aO2 at cardiopulmonary exercise testing peak, and oxygen desaturation during a 6-min walk test (6MWT. Results were obtained in 121 patients with idiopathic pulmonary fibrosis (IPF, n=88 and fibrotic nonspecific interstitial pneumonias (NSIP, n=33. All but 3 patients (97.5% had low DLCO values (35 mmHg and 100 (83% demonstrated significant oxygen desaturation during 6MWT (>4%. Interestingly 27 patients had low DLCO and normal P(A-aO2, peak and/or no desaturation during the 6MWT. The 3 patients with normal DLCO also had normal PaO2, normal P(A-aO2, peak, and normal oxygen saturation during 6MWT. Our results demonstrate that in fibrotic IIP, DLCO better defines impairment of pulmonary gas exchange than resting PaO2, exercise P(A-aO2, peak, or 6MWT SpO2.

  19. Gas exchange during exercise in different evolutional stages of chronic Chagas' heart disease

    Directory of Open Access Journals (Sweden)

    Fátima Palha de Oliveira

    2000-12-01

    Full Text Available OBJECTIVE: To compare gas exchange at rest and during exercise in patients with chronic Chagas' heart disease grouped according to the Los Andes clinical/hemodynamic classification. METHODS: We studied 15 healthy volunteers and 52 patients grouped according to the Los Andes clinical/hemodynamic classification as follows: 17 patients in group IA (normal electrocardiogram/echocardiogram, 9 patients in group IB (normal electrocardiogram and abnormal echocardiogram, 14 patients in group II (abnormal electrocardiogram/echocardiogram, without congestive heart failure, and 12 patients in group III (abnormal electrocardiogram/echocardiogram with congestive heart failure. The following variables were analyzed: oxygen consumption (V O2, carbon dioxide production (V CO2, gas exchange rate (R, inspiratory current volume (V IC, expiratory current volume (V EC, respiratory frequency, minute volume (V E, heart rate (HR, maximum load, O2 pulse, and ventilatory anaerobic threshold (AT. RESULTS: When compared with the healthy group, patients in groups II and III showed significant changes in the following variables: V O2peak, V CO2peak, V ICpeak, V ECpeak, E, HR, and maximum load. Group IA showed significantly better results for these same variables as compared with group III. CONCLUSION: The functional capacity of patients in the initial phase of chronic Chagas' heart disease is higher than that of patients in an advanced phase and shows a decrease that follows the loss in cardiac-hemodynamic performance.

  20. Gas exchange during exercise in different evolutional stages of chronic Chagas' heart disease.

    Science.gov (United States)

    Oliveira, F P; Pedrosa, R C; Giannella-Neto, A

    2000-12-01

    To compare gas exchange at rest and during exercise in patients with chronic Chagas' heart disease grouped according to the Los Andes clinical hemodynamic classification. We studied 15 healthy volunteers and 52 patients grouped according to the Los Andes clinical and hemodynamic classification as follows: 17 patients in group IA (normal electrocardiogram and echocardiogram), 9 patients in group IB (normal electrocardiogram and abnormal echocardiogram), 14 patients in group II (abnormal electrocardiogram and echocardiogram, without congestive heart failure), and 12 patients in group III (abnormal electrocardiogram and echocardiogram with congestive heart failure). The following variables were analyzed: oxygen consumption (V O2), carbon dioxide production (V CO2), gas exchange rate (R), inspiratory current volume (V IC), expiratory current volume (V EC), respiratory frequency, minute volume (V E), heart rate (HR), maximum load, O2 pulse, and ventilatory anaerobic threshold (AT). When compared with the healthy group, patients in groups II and III showed significant changes in the following variables: V O2 peak, V CO2 peak, V IC peak, V EC peak, E, HR, and maximum load. Group IA showed significantly better results for these same variables as compared with group III. The functional capacity of patients in the initial phase of chronic Chagas' heart disease is higher than that of patients in an advanced phase and shows a decrease that follows the loss in cardiac-hemodynamic performance.

  1. Growth and gas exchange in white pitaya under different concentrations of potassium and calcium

    Directory of Open Access Journals (Sweden)

    João Paulo Cajazeira

    Full Text Available ABSTRACT Agriculture in Brazil has improved at a fast pace in recent years, given the growing demand for quality and the need for new products. In this respect, white pitaya [Hylocereus undatus (Haw. Britton & Rose] has become a feasible alternative for Northeast farmers. The limiting factors include a small amount of data on plant mineral nutrition and crop growth (phenology. Therefore, this study goal was to evaluate the effect of different concentrations of potassium (K and calcium (Ca on crop development and gas exchange in white pitaya grown in the coastal region of the state of Ceará, in Brazil. Sixteen treatments with three repetitions were organized in a completely randomized block design and a 4 × 4 factorial arrangement. Treatments consisted of various concentrations of K (0; 125; 250 and 375 mg dm-3 and Ca (0, 53, 106, and 159 mg dm-3. Biometric characteristics and gas exchange were determined after 270 and 240 days of treatment, respectively. For morphometric characteristics, the most significant nutrient combination was 250 mg dm-3 of K and 159 mg dm-3 of Ca. Net photosynthesis was higher at the dose of 125 mg dm-3 of K and 0 mg dm-3 of Ca. Our results indicate that, for the environmental conditions under which the test was conducted, an optimum nutrient combination for the analyzed variables was 250 mg dm-3 K and 159 mg dm-3 Ca.

  2. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    Science.gov (United States)

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Whole Plant and Leaf Steady State Gas Exchange during Ethylene Exposure in Xanthium strumarium L.

    Science.gov (United States)

    Woodrow, L; Jiao, J; Tsujita, M J; Grodzinski, B

    1989-05-01

    The effects of ethylene evolved from ethephon on leaf and whole plant photosynthesis in Xanthium strumarium L. were examined. Ethylene-induced epinasty reduced light interception by the leaves of ethephon treated plants by up to 60%. Gas exchange values of individual, attached leaves under identical assay conditions were not inhibited even after 36 hours of ethylene exposure, although treated leaves required a longer induction period to achieve steady state photosynthesis. The speed of translocation of recently fixed (11)C-assimilate movement was not seriously impaired following ethephon treatment; however, a greater proportion of the assimilate was partitioned downward toward the roots. Within 24 hours of ethephon treatment, the whole plant net carbon exchange rate expressed on a per plant basis or a leaf area basis had dropped by 35%. The apparent inhibition of net carbon exchange rate was reversed by physically repositioning the leaves with respect to the light source. Ethylene exposure also inhibited expansion of young leaves which was partially reversed when the leaves were repositioned. The data indicated that ethylene indirectly affected net C gain and plant growth through modification of light interception and altered sink demand without directly inhibiting leaf photosynthesis.

  4. Whole Plant and Leaf Steady State Gas Exchange during Ethylene Exposure in Xanthium strumarium L. 1

    Science.gov (United States)

    Woodrow, Lorna; Jiao, Jirong; Tsujita, M. James; Grodzinski, Bernard

    1989-01-01

    The effects of ethylene evolved from ethephon on leaf and whole plant photosynthesis in Xanthium strumarium L. were examined. Ethylene-induced epinasty reduced light interception by the leaves of ethephon treated plants by up to 60%. Gas exchange values of individual, attached leaves under identical assay conditions were not inhibited even after 36 hours of ethylene exposure, although treated leaves required a longer induction period to achieve steady state photosynthesis. The speed of translocation of recently fixed 11C-assimilate movement was not seriously impaired following ethephon treatment; however, a greater proportion of the assimilate was partitioned downward toward the roots. Within 24 hours of ethephon treatment, the whole plant net carbon exchange rate expressed on a per plant basis or a leaf area basis had dropped by 35%. The apparent inhibition of net carbon exchange rate was reversed by physically repositioning the leaves with respect to the light source. Ethylene exposure also inhibited expansion of young leaves which was partially reversed when the leaves were repositioned. The data indicated that ethylene indirectly affected net C gain and plant growth through modification of light interception and altered sink demand without directly inhibiting leaf photosynthesis. Images Figure 1 PMID:16666773

  5. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  6. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.

    Science.gov (United States)

    Castro, Hernán Ariel; Luca, Vittorio; Bianchi, Hugo Luis

    2017-03-23

    Polystyrene divinylbenzene-based ion exchange resins are employed extensively within nuclear power plants (NPPs) and research reactors for purification and chemical control of the cooling water system. To maintain the highest possible water quality, the resins are regularly replaced as they become contaminated with a range of isotopes derived from compromised fuel elements as well as corrosion and activation products including 14 C, 60 Co, 90 Sr, 129 I, and 137 Cs. Such spent resins constitute a major proportion (in volume terms) of the solid radioactive waste generated by the nuclear industry. Several treatment and conditioning techniques have been developed with a view toward reducing the spent resin volume and generating a stable waste product suitable for long-term storage and disposal. Between them, pyrolysis emerges as an attractive option. Previous work of our group suggests that the pyrolysis treatment of the resins at low temperatures between 300 and 350 °C resulted in a stable waste product with a significant volume reduction (>50%) and characteristics suitable for long-term storage and/or disposal. However, another important issue to take into account is the complexity of the off-gas generated during the process and the different technical alternatives for its conditioning. Ongoing work addresses the characterization of the ion exchange resin treatment's off-gas. Additionally, the application of plasma technology for the treatment of the off-gas current was studied as an alternative to more conventional processes utilizing oil- or gas-fired post-combustion chambers operating at temperatures in excess of 1000 °C. A laboratory-scale flow reactor, using inductively coupled plasma, operating under sub-atmospheric conditions was developed. Fundamental experiments using model compounds have been performed, demonstrating a high destruction and removal ratio (>99.99%) for different reaction media, at low reactor temperatures and moderate power consumption

  7. Rate of Isotope Exchange Reaction Between Tritiated Water in a Gas Phase and Water on the Surface of Piping Materials

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Yamaguchi, Junya; Kobayashi, Ryusuke; Nishikawa, Masabumi

    2001-01-01

    The system effect of tritium arises from the interaction of tritium in the gas phase with water on the surface of piping materials. It has been reported that the system effect can be quantified by applying the serial reactor model to the piping system and that adsorption and isotope exchange reactions play the main roles in the trapping of tritium. The isotope exchange reaction that occurs when the chemical form of tritium in the gas phase is in the molecular form, i.e., HT or T 2 , has been named isotope exchange reaction 1, and that which occurs when tritium in the gas phase is in water form, i.e., HTO or T 2 O, has been named isotope exchange reaction 2.The rate of isotope exchange reaction 2 is experimentally quantified, and the rate is observed to be about one-third of the rate of adsorption. The trapping and release behavior of tritium from the piping surface due to isotope exchange reaction 2 is also discussed. It is certified that swamping of water vapor to process gas is effective to release tritium from the surface contaminated with tritium

  8. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status.

    Science.gov (United States)

    Meinzer, Frederick C; Smith, Duncan D; Woodruff, David R; Marias, Danielle E; McCulloh, Katherine A; Howard, Ava R; Magedman, Alicia L

    2017-08-01

    Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed. © 2017 John Wiley & Sons Ltd.

  9. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia.

    Science.gov (United States)

    Yan, Weiming; Zheng, Shuxia; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-06-30

    Leaf gas exchange is closely associated with water relations; however, less attention has been given to this relationship over successive drought events. Dynamic changes in gas exchange and water potential in the seedlings of two woody species, Amorpha fruticosa and Robinia pseudoacacia, were monitored during recurrent drought. The pre-dawn leaf water potential declined in parallel with gas exchange in both species, and sharp declines in gas exchange occurred with decreasing water potential. A significant correlation between pre-dawn water potential and gas exchange was observed in both species and showed a right shift in R. pseudoacacia in the second drought. The results suggested that stomatal closure in early drought was mediated mainly by elevated foliar abscisic acid (ABA) in R. pseudoacacia, while a shift from ABA-regulated to leaf-water-potential-driven stomatal closure was observed in A. fruticosa. After re-watering, the pre-dawn water potential recovered quickly, whereas stomatal conductance did not fully recover from drought in R. pseudoacacia, which affected the ability to tightly control transpiration post-drought. The dynamics of recovery from drought suggest that stomatal behavior post-drought may be restricted mainly by hydraulic factors, but non-hydraulic factors may also be involved in R. pseudoacacia.

  10. A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae).

    Science.gov (United States)

    Groenewald, Berlizé; Chown, Steven L; Terblanche, John S

    2014-10-01

    The evolutionary origin and maintenance of discontinuous gas exchange (DGE) in tracheate arthropods are poorly understood and highly controversial. We investigated prioritization of abiotic factors in the gas exchange control cascade by examining oxygen, water and haemolymph pH regulation in the grasshopper Paracinema tricolor. Using a full-factorial design, grasshoppers were acclimated to hypoxic or hyperoxic (5% O2, 40% O2) gas conditions, or dehydrated or hydrated, whereafter their CO2 release was measured under a range of O2 and relative humidity (RH) conditions (5%, 21%, 40% O2 and 5%, 60%, 90% RH). DGE was significantly less common in grasshoppers acclimated to dehydrating conditions compared with the other acclimations (hypoxia, 98%; hyperoxia, 100%; hydrated, 100%; dehydrated, 67%). Acclimation to dehydrating conditions resulted in a significant decrease in haemolymph pH from 7.0±0.3 to 6.6±0.1 (mean ± s.d., P=0.018) and also significantly increased the open (O)-phase duration under 5% O2 treatment conditions (5% O2, 44.1±29.3 min; 40% O2, 15.8±8.0 min; 5% RH, 17.8±1.3 min; 60% RH, 24.0±9.7 min; 90% RH, 20.6±8.9 min). The observed acidosis could potentially explain the extension of the O-phase under low RH conditions, when it would perhaps seem more useful to reduce the O-phase to lower respiratory water loss. The results confirm that DGE occurrence and modulation are affected by multiple abiotic factors. A hierarchical framework for abiotic factors influencing DGE is proposed in which the following stressors are prioritized in decreasing order of importance: oxygen supply, CO2 excretion and pH modulation, oxidative damage protection and water savings. © 2014. Published by The Company of Biologists Ltd.

  11. Intricate but tight coupling of spiracular activity and abdominal ventilation during locust discontinuous gas exchange cycles.

    Science.gov (United States)

    Talal, Stav; Gefen, Eran; Ayali, Amir

    2018-03-15

    Discontinuous gas exchange (DGE) is the best studied among insect gas exchange patterns. DGE cycles comprise three phases, which are defined by their spiracular state: closed, flutter and open. However, spiracle status has rarely been monitored directly; rather, it is often assumed based on CO 2 emission traces. In this study, we directly recorded electromyogram (EMG) signals from the closer muscle of the second thoracic spiracle and from abdominal ventilation muscles in a fully intact locust during DGE. Muscular activity was monitored simultaneously with CO 2 emission, under normoxia and under various experimental oxic conditions. Our findings indicate that locust DGE does not correspond well with the commonly described three-phase cycle. We describe unique DGE-related ventilation motor patterns, coupled to spiracular activity. During the open phase, when CO 2 emission rate is highest, the thoracic spiracles do not remain open; rather, they open and close rapidly. This fast spiracle activity coincides with in-phase abdominal ventilation, while alternating with the abdominal spiracle and thus facilitating a unidirectional air flow along the main trachea. A change in the frequency of rhythmic ventilation during the open phase suggests modulation by intra-tracheal CO 2 levels. A second, slow ventilatory movement pattern probably serves to facilitate gas diffusion during spiracle closure. Two flutter-like patterns are described in association with the different types of ventilatory activity. We offer a modified mechanistic model for DGE in actively ventilating insects, incorporating ventilatory behavior and changes in spiracle state. © 2018. Published by The Company of Biologists Ltd.

  12. Effect of sedation with detomidine and butorphanol on pulmonary gas exchange in the horse.

    Science.gov (United States)

    Nyman, Görel; Marntell, Stina; Edner, Anna; Funkquist, Pia; Morgan, Karin; Hedenstierna, Göran

    2009-05-07

    Sedation with alpha2-agonists in the horse is reported to be accompanied by impairment of arterial oxygenation. The present study was undertaken to investigate pulmonary gas exchange using the Multiple Inert Gas Elimination Technique (MIGET), during sedation with the alpha2-agonist detomidine alone and in combination with the opioid butorphanol. Seven Standardbred trotter horses aged 3-7 years and weighing 380-520 kg, were studied. The protocol consisted of three consecutive measurements; in the unsedated horse, after intravenous administration of detomidine (0.02 mg/kg) and after subsequent butorphanol administration (0.025 mg/kg). Pulmonary function and haemodynamic effects were investigated. The distribution of ventilation-perfusion ratios (VA/Q) was estimated with MIGET. During detomidine sedation, arterial oxygen tension (PaO2) decreased (12.8 +/- 0.7 to 10.8 +/- 1.2 kPa) and arterial carbon dioxide tension (PaCO2) increased (5.9 +/- 0.3 to 6.1 +/- 0.2 kPa) compared to measurements in the unsedated horse. Mismatch between ventilation and perfusion in the lungs was evident, but no increase in intrapulmonary shunt could be detected. Respiratory rate and minute ventilation did not change. Heart rate and cardiac output decreased, while pulmonary and systemic blood pressure and vascular resistance increased. Addition of butorphanol resulted in a significant decrease in ventilation and increase in PaCO2. Alveolar-arterial oxygen content difference P(A-a)O2 remained impaired after butorphanol administration, the VA/Q distribution improved as the decreased ventilation and persistent low blood flow was well matched. Also after subsequent butorphanol no increase in intrapulmonary shunt was evident. The results of the present study suggest that both pulmonary and cardiovascular factors contribute to the impaired pulmonary gas exchange during detomidine and butorphanol sedation in the horse.

  13. Effect of sedation with detomidine and butorphanol on pulmonary gas exchange in the horse

    Directory of Open Access Journals (Sweden)

    Morgan Karin

    2009-05-01

    Full Text Available Abstract Background Sedation with α2-agonists in the horse is reported to be accompanied by impairment of arterial oxygenation. The present study was undertaken to investigate pulmonary gas exchange using the Multiple Inert Gas Elimination Technique (MIGET, during sedation with the α2-agonist detomidine alone and in combination with the opioid butorphanol. Methods Seven Standardbred trotter horses aged 3–7 years and weighing 380–520 kg, were studied. The protocol consisted of three consecutive measurements; in the unsedated horse, after intravenous administration of detomidine (0.02 mg/kg and after subsequent butorphanol administration (0.025 mg/kg. Pulmonary function and haemodynamic effects were investigated. The distribution of ventilation-perfusion ratios (VA/Q was estimated with MIGET. Results During detomidine sedation, arterial oxygen tension (PaO2 decreased (12.8 ± 0.7 to 10.8 ± 1.2 kPa and arterial carbon dioxide tension (PaCO2 increased (5.9 ± 0.3 to 6.1 ± 0.2 kPa compared to measurements in the unsedated horse. Mismatch between ventilation and perfusion in the lungs was evident, but no increase in intrapulmonary shunt could be detected. Respiratory rate and minute ventilation did not change. Heart rate and cardiac output decreased, while pulmonary and systemic blood pressure and vascular resistance increased. Addition of butorphanol resulted in a significant decrease in ventilation and increase in PaCO2. Alveolar-arterial oxygen content difference P(A-aO2 remained impaired after butorphanol administration, the VA/Q distribution improved as the decreased ventilation and persistent low blood flow was well matched. Also after subsequent butorphanol no increase in intrapulmonary shunt was evident. Conclusion The results of the present study suggest that both pulmonary and cardiovascular factors contribute to the impaired pulmonary gas exchange during detomidine and butorphanol sedation in the horse.

  14. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y. [McMaster University, Hamilton, ON (Canada); Mekky, W. [AMEC NSS, Power and Process America, Toronto (Canada)

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  15. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    International Nuclear Information System (INIS)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-01-01

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  16. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit.

    Science.gov (United States)

    Ceccon, Alberto; Marius Clore, G; Tugarinov, Vitali

    2016-09-01

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ 2 (app) ) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k ex between the species is fast on the PRE time scale (k ex ≫ Γ2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789-5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd(3+), we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k ex ≫ Γ2) the ratio of the apparent proton to carbon methyl PREs, ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γΗ/γC)(2). However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ2 is comparable in magnitude to k ex) the ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ) ratio provides a reliable measure of the 'true' methyl PREs.

  17. Capture of elemental and organic iodine from dilute gas streams by silver-exchanged mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, S.H.; Jubin, R.T.; Jordan, J.A. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2016-07-01

    The treatment of off-gas streams arising from reprocessing of used nuclear fuel (UNF) is an area of active study by the U.S. Department of Energy. Such off-gas streams contain volatile fission products, including long-lived {sup 129}I. Although {sup 129}I is released into the off-gas at multiple points within the chemical reprocessing flowsheet, previous research has focused on removal from the dissolver off-gas stream (DOG). The DOG is expected to contain up to 98% of iodine in UNF at ppm levels within the stream. Other off-gas streams will also contain iodine but at substantially lower concentrations. Recent work has shown that compliance with U.S. regulations will likely require capture of iodine from these dilute streams in addition to capture from DOG. In particular, the vessel off-gas (VOG) stream is expected to contain 1-3% of the total iodine inventory at ppb concentrations. A review of literature also indicates that the speciation of iodine in the VOG stream will differ from that of the DOG, with the DOG containing primarily I{sub 2} and the VOG containing a mixture of I{sub 2} and organic iodine species. Silver-exchanged mordenite (AgZ) has been identified for use in the removal of iodine from off-gas streams. It is an effective capture material for I{sub 2} at the concentrations expected in the DOG, but little is known about its performance in gas streams that may contain both I{sub 2} and organic iodides at very dilute concentrations. The experiments to be described were designed to separately characterize the adsorption of I{sub 2} and methyl iodide on AgZ through extended duration testing. Simulated vessel off-gases containing low levels of either I{sub 2} or methyl iodide were contacted with AgZ sorbent beds for up to four months. Through the use of sorbent beds in series and varied sampling times, key parameters such as adsorption rate, decontamination factor, and performance over time could be determined for the capture of each species by AgZ. This

  18. Gas diffusion layer for proton exchange membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Kannan, A.M.; Lin, J.F.; Saminathan, K. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Ho, Y. [Department of Biotechnology, College of Health Science, Asia University, Taichung 41354 (China); Lin, C.W. [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States)

    2009-10-20

    Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H{sub 2}/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the Journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (author)

  19. Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kong, Im Mo; Jung, Aeri; Kim, Min Soo

    2016-01-01

    Highlights: • The performance of self-humidified PEMFCs can be improved with double GDBL. • The effect of double GDBL on water retention capability and membrane hydration was investigated. • In addition to HFR and EIS measurements, numerical analysis was conducted. • Optimized design of double GDBL for self-humidified PEMFC was investigated. • This study provides an inspiration on how to design the double GDBL. - Abstract: In order to simplify the system configuration and downsize the volume, a proton exchange membrane fuel cell (PEMFC) needs to be operated in a self-humidified mode without any external humidifiers. However, in self-humidified PEMFCs, relatively low cell performance is a problem to be solved. In our previous study, a gas diffusion layer (GDL) containing double gas diffusion backing layer (GDBL) coated by single micro porous layer (MPL) was introduced and its effect on the cell performance was evaluated. In the present study, the effect of the double GDBL was investigated by measuring high frequency resistance (HFR) and electrochemical impedance spectroscopy (EIS). In the experiments, the HFR value was remarkably reduced, while the diameter of semicircle of EIS was increased. It means that the membrane hydration was improved due to enhanced water retention capability of the GDL despite of interrupted gas diffusion. The result of numerical analysis also showed that the water retention capability of GDL can be improved with proper structure design of double GDBL. Based on the result, optimized design of double GDBL for water retention was obtained numerically. The result of this study provides useful information on the structural design of GDBL for self-humidified PEMFCs.

  20. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Koefoed-Nielsen, Jacob

    2008-01-01

    We hypothesized that apneic oxygenation, using an open lung approach, combined with extracorporeal CO2 removal, would provide adequate gas exchange in acute lung injury. We tested this hypothesis in nine anesthetized and mechanically ventilated pigs (85-95 kg), in which surfactant was depleted fr....../min. Thus, the method provided adequate gas exchange in this experimental model, suggesting that it might have potential as an alternative treatment modality in acute lung injury.......We hypothesized that apneic oxygenation, using an open lung approach, combined with extracorporeal CO2 removal, would provide adequate gas exchange in acute lung injury. We tested this hypothesis in nine anesthetized and mechanically ventilated pigs (85-95 kg), in which surfactant was depleted from...

  1. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    Science.gov (United States)

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. © 2015 The Protein Society.

  2. Thermo-aerodynamic efficiency of non-circular ducts with vortex enhancement of heat exchange in different types of compact heat exchangers

    Science.gov (United States)

    Vasilev, V. Ya; Nikiforova, S. A.

    2018-03-01

    Experimental studies of thermo-aerodynamic characteristics of non-circular ducts with discrete turbulators on walls and interrupted channels have confirmed the rational enhancement of convective heat transfer, in which the growth of heat transfer outstrips or equals the growth of aerodynamic losses. Determining the regularities of rational (energy-saving) enhancement of heat transfer and the proposed method for comparing the characteristics of smooth-channel (without enhancement) heat exchangers with effective analogs provide new results, confirming the high efficiency of vortex enhancement of convective heat transfer in non-circular ducts of plate-finned heat exchange surfaces. This allows creating heat exchangers with much smaller mass and volume for operation in energy-saving modes.

  3. Water status and gas exchange of umbu plants (Spondias tuberosa Arr. Cam.) propagated by seeds and stem cuttings.

    OpenAIRE

    LIMA FILHO, J. M. P.

    2008-01-01

    The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange dat...

  4. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Nielsen, Jakob Koefoed

    In this porcine lung injury model, apneic oxygenation with arteriovenous CO2 removal provided sufficient gas exchange and stable hemodynamics, indicating that the method might have a potential in the treatment of severe ARDS.   Acknowledgements The membrane lungs were kindly provided by Novalung GmbH, Germany.......Background and aim of study We hypothesized that continuous high airway pressure without ventilatory movements (apneic oxygenation), using an open lung approach, combined with extracorporeal, pumpless, arterio-venous, carbon dioxide (CO2) removal would provide adequate gas exchange in acute lung...

  5. Evaluating the Effects of Fire on Semi-Arid Savanna Ecosystem Productivity Using Integrated Spectral and Gas Exchange Measurements

    Science.gov (United States)

    Raub, H. D.; Jimenez, J. R.; Gallery, R. E.; Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.

    2017-12-01

    Drylands account for 40% of the land surface and have been identified as increasingly important in driving interannual variability of the land carbon sink. Yet, understanding of dryland seasonal ecosystem productivity dynamics - termed Gross Primary Productivity (GPP) - is limited due to complex interactions between vegetation health, seasonal drought dynamics, a paucity of long-term measurements across these under-studied regions, and unanticipated disturbances from varying fire regimes. For instance, fire disturbance has been found to either greatly reduce post-fire GPP through vegetation mortality or enhance post-fire GPP though increased resource availability (e.g., water, light, nutrients, etc.). Here, we explore post-fire ecosystem recovery by evaluating seasonal GPP dynamics for two Ameriflux eddy covariance flux tower sites within the Santa Rita Experimental Range of southeastern Arizona: 1) the US-SRG savanna site dominated by a mix of grass and woody mesquite vegetation that was burned in May 2017, and 2) the US-SRM savanna site dominated by similar vegetation but unburned for the full measurement record. For each site, we collected leaf-level spectral and gas exchange measurements, as well as leaf-level chemistry and soil chemistry to characterize differences in nutrient availability and microbial activity throughout the 2017 growing season. From spectral data, we derived and evaluated multiple common vegetation metrics, including normalized difference vegetation index (NDVI), photochemical reflectivity index (PRI), near-infrared reflectance (NIRv), and MERIS terrestrial chlorophyll index (MTCI). Early results suggest rates of photosynthesis were enhanced at the burned site, with productivity increasing immediately following the onset of monsoonal precipitation; whereas initial photosynthesis at the unburned site remained relatively low following first monsoonal rains. MTCI values for burned vegetation appear to track higher levels of leaf-level nitrogen

  6. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves

    Science.gov (United States)

    Bowman, William D.

    1989-01-01

    Measurements of leaf spectral reflectance, the components of water potential, and leaf gas exchanges as a function of leaf water content were made to evaluate the use of NIR reflectance as an indicator of plant water status. Significant correlations were determined between spectral reflectance at 810 nm, 1665 nm, and 2210 nm and leaf relative water content, total water potential, and turgor pressure. However, the slopes of these relationships were relatively shallow and, when evaluated over the range of leaf water contents in which physiological activity occurs (e.g., photosynthesis), had lower r-squared values, and some relationships were not statistically significant. NIR reflectance varied primarily as a function of leaf water content, and not independently as a function of turgor pressure, which is a sensitive indicator of leaf water status. The limitations of this approach to measuring plant water stress are discussed.

  7. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper Paracinema tricolor.

    Science.gov (United States)

    Gudowska, Agnieszka; Boardman, Leigh; Terblanche, John S

    2016-08-15

    The discontinuous gas exchange (DGE) pattern of respiration shown by many arthropods includes periods of spiracle closure (C-phase) and is largely thought to serve as a physiological adaptation to restrict water loss in terrestrial environments. One major challenge to this hypothesis is to explain the presence of DGE in insects in moist environments. Here, we show a novel ecological correlate of the C-phase, namely, diving behaviour in mesic Paracinema tricolor grasshoppers. Notably, maximal dive duration is positively correlated with C-phase length, even after accounting for mass scaling and absolute metabolic rate. Here, we propose that an additional advantage of DGE may be conferred by allowing the tracheal system to act as a sealed underwater oxygen reservoir. Spiracle closure may facilitate underwater submersion, which, in turn, may contribute to predator avoidance, the survival of accidental immersion or periodic flooding and the exploitation of underwater resources. © 2016. Published by The Company of Biologists Ltd.

  8. Hemodynamics and Gas Exchange Effects of Inhaled Nitrous Oxide in Patients with Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2006-01-01

    Full Text Available Inhaled nitrous oxide (iNO therapy aimed at improving pulmonary oxygenizing function and at decreasing artificial ventilation (AV load has been used in foreign clinical practice in the past decade. The study was undertaken to evaluate the hemodynamic and gas exchange effects of iNO in acute respiratory distress syndrome (ARDS that developed after car-diosurgical operations. Fifty-eight (43 males and 15 females patients aged 21 to 76 (55.2±2.4 years were examined. The study has demonstrated that in 48.3% of cases, the early stage of ARDS is attended by the increased tone pulmonary vessels due to impaired NO-dependent vasodilatation. In these patients, iNO therapy is an effective therapeutic method for correcting hemodynamic disorders and lung oxygenizing function.

  9. Soil-atmosphere greenhouse-gas exchange in a bioretention system

    Science.gov (United States)

    Daly, E.; Chan, H.; Beringer, J.; Livesley, S. J.

    2011-12-01

    Bioretention systems are a popular green-technology for the management of urban stormwater runoff in many countries. They typically consist of a trench filled with a highly permeable soil medium that supports vegetation; runoff is diverted to bioretention systems and, by percolating through the filter medium, is subjected to a number of treatment processes. Nitrogen (N) is one of the key pollutants targeted by bioretention systems, which are able to reduce N concentrations considerably from inflow to outflow. To increase N removal, a saturated zone at the bottom of the filter medium is often artificially generated, to both enhance the denitrification process and increase the water available to the vegetation between inflow events. Although studies on the N-removal performance of bioretention systems are widely available in the literature, less is known about the exchange of greenhouse gases (GHG), especially nitrous oxide (N2O), between the bioretention systems and the atmosphere. Here, we present an experimental pilot study to measure N2O and CO2 soil emissions in a bioretention system installed on the Clayton Campus of Monash University in Melbourne, Australia. The bioretention system is divided into three cells, each 15 m2; the system as a whole receives water run-off from 4500 m2 of impervious car park. We monitored two cells with mostly sandy-loam vegetated with native sedges (mainly Carex Appressa and Lomandra Longifolia), one with and one without a saturated zone. Three manual flux chambers were installed in both cells. Gas flux samples were taken twice a week at about 11 am between the 2nd of March and the 18th of May 2011 (late summer and fall). Since October 2010, air-phase soil CO2 concentration profiles were measured continuously using solid-state infrared CO2 transmitters (GMT-221 model, Vaisala, Finland), along with soil moisture and soil temperature. Preliminary analysis of the chamber data (March only) showed that N2O fluxes were in general below 50

  10. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    Science.gov (United States)

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  11. Effects of Salinity Stress on Gas Exchange, Growth, and Nutrient Concentrations of Two Citrus Rootstocks

    Directory of Open Access Journals (Sweden)

    D. Khoshbakht

    2015-03-01

    Full Text Available A greenhouse study was undertaken to assess the salt tolerance of two citrus rootstocks, namely, Bakraii (Citrus sp. and Trifoliate orange (Poncirus trifoliata. A factorial experiment through a completely randomized design (CRD with three replications and four levels of salt including 0, 20, 40 and 60 mM NaCl was conducted. After eight weeks of treatment, number of leaves, plant height, leaf area, wet and dry weight of leaf, stem and root, length of root, chlorophyll content, net CO2 assimilation rate (ACO2, stomatal conductance (gs, transpiration (E and water use efficiency (WUE and ion concentrations were measured. Salinity decreased growth and net gas exchange. Trifoliate orange showed the most decrease in growth indices and net gas exchange compared with Bakraii. The ability to limit the transfer of sodium to leaves in low levels of salt was observed in Trifoliate orange, but this ability was not observed in high levels of salt. Results showed that accumulation of chloride in leaves and roots were less in Bakraii compared to the Trifoliate orange. The lower Cl- concentration in leaves of Bakraii than trifoliate orange suggests that the salinity tolerance of Bakraii is associated with less transport of Cl- to the leaves. Salinity increased K+ and decreased Mg2+ and Ca2+ concentrations in leaves of both rootstocks. It is proposed that salt stress effect on plant physiological processes such as changes in plant growth, Cl- and Na+ toxicity, and mineral distribution, decreases chlorophyll content and reduces the photosynthetic efficiency of these citrus species.

  12. Effect of simultaneously induced environmental stimuli on electrical signalling and gas exchange in maize plants.

    Science.gov (United States)

    Vuralhan-Eckert, Jasmin; Lautner, Silke; Fromm, Jörg

    2018-04-01

    Electrical signalling in response to environmental stimuli is a well-known phenomenon in higher plants. For example, in maize, different stimuli, such as wounding or re-irrigation after drought, incite characteristic electrical signals which have quite particular effects on gas exchange. What is less well understood is how plants (specifically maize) respond when two different environmental stimuli are applied simultaneously. To explore this, a three-stage experiment was designed. In the first stage, drought conditions were simulated by decreasing the soil water content to 30-40 % of field capacity. In these conditions, and in contrast to well-watered plants, the maize exhibited only 60-70% of the original level of stomatal conductance and 50-60 % of the original photosynthesis rate. In the second stage of the experiment the plants were re-irrigated and heat stimulated separately. Re-irrigation led to specific electrical signals followed by a gradual increase of gas exchange. In contrast, after heat stimulation of a leaf an electrical signal was evoked that reduced the net CO 2 -uptake rate as well as stomatal conductance. In the third stage, to elucidate how plants process simultaneous re-irrigation and heat stimulation, the drought-stressed maize plants were re-watered and heat-stimulated at the same time. Results showed a two phase response. In the first phase there was a rapid decrease in both the CO 2 uptake rate and the stomatal conductance, while in the second phase each of these parameters increased gradually. Thus, the results strongly support the view that the responses from both stimuli were combined, indicating that maize plants can process simultaneously applied stimuli. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  14. Positive end-expiratory pressure improves gas exchange and pulmonary mechanics during partial liquid ventilation.

    Science.gov (United States)

    Kirmse, M; Fujino, Y; Hess, D; Kacmarek, R M

    1998-11-01

    Partial liquid ventilation (PLV) with perflubron (PFB) has been proposed as an adjunct to the current therapies for the acute respiratory distress syndrome (ARDS). Because PFB has been also referred to as "liquid PEEP," distributing to the most gravity-dependent regions of the lung, less attention has been paid to the amount of applied positive end-expiratory pressure (PEEP). We hypothesized that higher PEEP levels than currently applied are needed to optimize gas exchange, and that the lower inflection point (LIP) of the pressure-volume curve could be used to estimate the amount of PEEP needed when the lung is filled with PFB. Lung injury was induced in 23 sheep by repeated lung lavage with warmed saline until the PaO2/FIO2 ratio fell below 150. Five sheep were used to investigate the change of the LIP when the lung was filled with PFB in increments of 5 ml/kg/body weight to a total of 30 ml/kg/body weight. To evaluate the impact of PEEP set at LIP +1 cm H2O we randomized an additional 15 sheep to three groups with different doses (7.5 ml, 15 ml, 30 ml/kg/body weight) of PFB. In random order a PEEP of 5 cm H2O or PEEP at LIP +1 cm H2O was applied. The LIP decreased with incremental filling of PFB to a minimum at 10 ml (p PFB shifts the LIP to the left, and that setting PEEP at LIP +1 cm H2O improves gas exchange at moderate to high doses of PFB.

  15. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Fukuoka

    Full Text Available Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency, breath-by-breath ventilation (V̇E and gas exchange (CO2 output (V̇CO2 and O2 uptake (V̇O2 responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min. The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW was significantly greater than that during sinusoidal cycling (SC, and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward and muscle afferent feedback.

  16. Experimental and numerical investigation of gas side particulate fouling onto heat exchanger tubes

    International Nuclear Information System (INIS)

    Bailer, Frederic

    1998-01-01

    This work deals with gas side particulate fouling onto heat exchanger tubes. An experimental and numerical investigation was carried out. By means of a new testing loop designed for this study, the deposit kinetics were obtained in dust-controlled conditions at the beginning of the fouling process. Experimental results pointed out the existence of various transport regimes: for sub-micronic particles, convective diffusion augmented by thermophoresis in the presence of a temperature gradient governs the particle deposition; inertial impaction controls the super-micronic particles deposition: in the intermediate granulometric range, combined action of particle inertia and thermophoresis must be considered. Moreover, measurements on an other testing loop using a more concentrated aerosol allowed us to point out the modification of the mechanisms with time and the influence of the deposit shape. A numerical model predicting the particle deposition, based on the TRIO software and an Eulerian-Lagrangian approach, was developed and validated against experimental results from the literature and from our study. Numerical approach gave us an accurate understanding of the phenomena by means of local parameters computations. In this way, the different mechanisms which control particulate deposition onto heat exchangers tubes were identified and modelled, especially before the onset of the inertial impaction. (author) [fr

  17. Double tube heat exchanger with novel enhancement: Part I - flow development length and adiabatic friction factor

    Energy Technology Data Exchange (ETDEWEB)

    Tiruselvam, R.; Raghavan, Vijay R. [Universiti Teknologi PETRONAS, Faculty of Mechanical Engineering, Tronoh (Malaysia)

    2012-04-15

    The study is conducted to evaluate the flow characteristics in a double tube heat exchanger using two new and versatile enhancement configurations. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Correlations are proposed for flow development length and friction factor for use in predicting fluid pumping power in thermal equipment as well as in subsequent heat transfer characterization of the surface. (orig.)

  18. Gas exchange rates across the sediment-water andd air-water interfaces in south San Francisco Bay

    International Nuclear Information System (INIS)

    Hartman, B.; Hammond, D.E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainity of the determinations, about 20%. The annual average of bethic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water inteface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2--6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models

  19. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    Science.gov (United States)

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  20. Environmental Development Plan (EDP). Enhanced gas recovery, FY 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    This Enhanced Gcs Recovery EDP addresses the environmental impacts of enhanced gas recovery processes in shale and sandstone, methane drainage from coalbeds, and methane recovery from geopressured aquifers. The EDP addresses planning in two basic areas: environmental research and environmental assessment. Environmental research can be categorized as follows: characterization of pollutants from EGR processes; selective application of monitoring and measuring techniques; evaluation of control/mitigation techniques; and evaluation of the synergistic impacts of the development of EGR techniques. Environmental assessment activities scheduled by EDP include: assessment of ecological impacts; assessment of socioeconomic effects; EIA/EIS preparation; evaluation of control technology needs; and analysis of applicable and proposed emission, effluent, and health and safety standards. The EGR EDP includes an EGR technology overview (Section 2), a discussion of EGR environmental issues and requirements (Section 3), an environmental action plan (Section 4), an environmental management strategy for the EGR program (Section 5), and supporting appendices which present information on Federal legislation applicable to EGR technology, a summary of ongoing and completed research, and future research and assessment projects.

  1. Effect of body position changes on pulmonary gas exchange in Eisenmenger's syndrome.

    Science.gov (United States)

    Sandoval, J; Alvarado, P; Martínez-Guerra, M L; Gómez, A; Palomar, A; Meza, S; Santos, E; Rosas, M

    1999-04-01

    Preliminary studies on sleep of patients with congenital heart disease and Eisenmenger's syndrome (ES) at our institution demonstrated nocturnal worsening arterial unsaturation, which appeared to be a body position-related phenomenon. To investigate the potential effect of body position on gas exchange in ES, we carried out a prospective study of 28 patients (mean age, 34.8 +/- 11.7 yr) with established ES due to congenital heart disease. In every patient, arterial blood gases were performed during both sitting and supine positions under three different conditions: room air, while breathing 100% oxygen, and after breathing oxygen at a flow rate of 3 L/min through nasal prongs. Alveolar oxygen pressure (PaO2) for the calculation of alveolar-arterial oxygen tension differences (AaPO2) was derived from the alveolar gas equation using PaCO2 and assuming R = 1. We used paired t test, repeated-measures two-way ANOVA with Bonferroni's test, and regression analysis. From sitting to supine position on room air, there was a significant decrease in PaO2 (from 52.5 +/- 7.5 to 47.5 +/- 5.5 mm Hg; p position. A ventilation-perfusion (V/Q) distribution abnormality and/or a diffusion limitation phenomenon rather than an increase in true shunt may be the mechanisms responsible for this finding. The response to nasal O 2 we observed warrants a trial with long-term nocturnal oxygen therapy in these patients.

  2. Gas exchange and heart rate in the harbour porpoise, Phocoena phocoena

    DEFF Research Database (Denmark)

    Reed, J.Z.; Chambers, C.; Hunter, C.J.

    2000-01-01

    a comparatively high minute rate of gas exchange. Oxygen consumption under these experimental conditions (247 +/- 13.8 ml O-2. min(-1)) was 1.9- fold higher than predicted by standard scaling relations. These data together with an estimate of the total oxygen stores predicted an aerobic dive limit of 5.4 min......The respiratory physiology, heart rates and metabolic rates of two captive juvenile male harbour porpoises (both 28 kg) were measured using a rapid-response respiratory gas analysis system in the laboratory. Breath-hold durations in the laboratory (12 +/- 0.3 s, mean +/- SEM) were shorter than...... field observations. although a few breath-holds of over 40 s were recorded. The mean percentage time spent submerged was 89 +/- 0.4%. Relative to similarly-sized terrestrial mammals, the respiratory frequency was low (4.9 +/- 0.19 breaths min(-1)) but with high tidal volumes (1.1 +/- 0.01 l), enabling...

  3. [Extracorporeal gas exchange--an alternative to ventilation of the premature newborn infant with respiratory insufficiency].

    Science.gov (United States)

    Schmidt, S; Dudenhausen, J W; Langner, K; Laiblin, C; Saling, E

    1984-01-01

    In spite of improvements in its prophylaxis and therapy the membrane syndrome is still one of the main causes of morbidity and mortality in newborns. In many perinatal centers in the United States extracorporeal gas exchange via an artificial lung is the ultimate step in therapy for this group of patients today. As a result of our own research work we are able to introduce an extracorporeal circulation system which is especially suited to the particular situation of the immature newborn and which enables a complete immobilization of the lung to avoid baro-trauma with alveolar oxygen diffusion and CO2-removal through the membrane lung. Using appropriate dimensions the system can be housed in a newborn incubator. With low total resistance the perfusion in the newborn is performed via an arterio-venous shunt of the umbilical vessels alternatively with and without a mechanical pump. We tested this perfusion system on premature lambs with a gestational age of 128 to 130 days. During a test period of from 6 to 8 hours at a low blood flow rate (200 ml/min) we achieved a sufficient CO2-removal via the membrane lung with enough oxygen supply through the non-ventilated lung. By means of suitable materials, and using CO2 gas priming procedure and employing prostacyclin analogons to inhibit thrombocyte aggregation, it was possible to lower the heparine dosage to a minimum.

  4. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    International Nuclear Information System (INIS)

    Lee, W.T.; Tong Xin; Rich, Dennis; Liu Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

    2009-01-01

    In recent years, polarized 3 He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3 He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3 He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3 He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3 He gas using the SEOP method.

  5. Mechanisms underlying gas exchange alterations in an experimental model of pulmonary embolism

    Directory of Open Access Journals (Sweden)

    J.H.T. Ferreira

    2006-09-01

    Full Text Available The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg. The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13 consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction. The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg, but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg. Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg, as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution

  6. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    Science.gov (United States)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  7. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers - 15563

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Millan, P.

    2015-01-01

    In the framework of the CEA program to develop an industrial prototype of sodium-cooled fast reactor named (ASTRID), the present work aims at proposing an innovative compact heat exchanger technology, to provide solid technological basis for the utilization of a Brayton power conversion system. This allows avoiding the energetic sodium-water interaction that could potentially occur if a traditional Rankine cycle was used. The design of the gas-side (which determines the heat transfer resistance of the heat exchanger) of the sodium-gas heat exchanger has been the object of the present work. Compact technologies are necessary for the present application because of the low heat transfer capacity of the gas foreseen, i.e. nitrogen. The basic idea of this work is to design a channel were the fluid flow is as much as 3-dimensional as possible. In particular the proposed channel can be thought as the result of the superposition of 2 single PCHE wavy channels in phase opposition. The innovative channel geometry has to be studied numerically and experimentally to demonstrate its industrial interest and the final compact gain. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. It has been demonstrated that the ASST model can provide a valuable alternative to more complex models. Given the innovation of the proposed geometry, no test case has been found in the literature to be fully applicable to the present study. So, 3 experimental facilities have been used to acquire an extensive aerodynamic database. The Laser Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV) and VHEGAS facilities have been built to investigate the innovative channel flow and heat transfer characteristics. The ASST model, used with a SGDH turbulent heat flux model, has been validate against the acquired thermal-hydraulic database

  8. Water-gas exchange of organochlorine pesticides at Lake Chaohu, a large Chinese lake.

    Science.gov (United States)

    Ouyang, Hui-Ling; He, Wei; Qin, Ning; Kong, Xiang-Zhen; Liu, Wen-Xiu; He, Qi-Shuang; Yang, Chen; Jiang, Yu-Jiao; Wang, Qing-Mei; Yang, Bin; Xu, Fu-Liu

    2013-04-01

    Organochlorine pesticides (OCPs), a potential threat to ecosystems and human health, are still widely residual in the environment. The residual levels of OCPs in the water and gas phase were monitored in Lake Chaohu, a large Chinese lake, from March 2010 to February 2011. Nineteen types of OCPs were detected in the water with a total concentration of 7.27 ± 3.32 ng/l. Aldrin, DDTs and HCHs were the major OCPs in the water, accounting for 38.3%, 28.9% and 23.6% of the total, respectively. The highest mean concentration (12.32 ng/l) in the water was found in September, while the lowest (1.74 ng/l) was found in November. Twenty types of gaseous OCPs were detected in the atmosphere with a total concentration of 542.0 ± 636.5 pg/m(3). Endosulfan, DDTs and chlordane were the major gaseous OCPs in the atmosphere, accounting for 48.9%, 22.5% and 14.4% of the total, respectively. The mean concentration of gaseous OCPs was significantly higher in summer than in winter. o,p'-DDE was the main metabolite of DDT in both the water and gas phase. Of the HCHs, 52.3% existed as β-HCH in the water, while α-HCH (37.9%) and γ-HCH (30.9%) were dominant isomers in the gas phase. The average fluxes were -21.11, -3.30, -152.41, -35.50 and -1314.15 ng/(m(2) day) for α-HCH, γ-HCH, HCB, DDT and DDE, respectively. The water-gas exchanges of the five types of OCPs indicate that water was the main potential source of gaseous OCPs in the atmosphere. A sensitivity analysis indicated that the water-gas flux of α-HCH, γ-HCH and DDT is more vulnerable than that of HCB and DDE to the variation of the parameters. The possible source of the HCHs in the water was from the historical usage of lindane; however, that in the air was mainly from the recent usage of lindane. The technical DDT and dicofol might be the source of DDTs in the water and air.

  9. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit

    Energy Technology Data Exchange (ETDEWEB)

    Ceccon, Alberto; Marius Clore, G., E-mail: mariusc@mail.nih.gov; Tugarinov, Vitali, E-mail: vitali.tugarinov@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2016-09-15

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ{sub 2}{sup app}) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k{sub ex} between the species is fast on the PRE time scale (k{sub ex} ≫ Γ{sub 2}). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789–5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd{sup 3+}, we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k{sub ex} ≫ Γ{sub 2}) the ratio of the apparent proton to carbon methyl PREs, ({sup 1}H{sub m}–Γ{sub 2}{sup app})/({sup 13}C{sub m}–Γ{sub 2}{sup app}), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γ{sub Η}/γ{sub C}){sup 2}. However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ{sub 2} is comparable in magnitude to k{sub ex}) the ({sup 1}H{sub m}–Γ{sub 2}{sup app})/({sup 13}C{sub m}–Γ{sub 2}{sup app}) ratio provides a reliable measure of the ‘true’ methyl PREs.

  10. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit

    International Nuclear Information System (INIS)

    Ceccon, Alberto; Marius Clore, G.; Tugarinov, Vitali

    2016-01-01

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ_2"a"p"p) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k_e_x between the species is fast on the PRE time scale (k_e_x ≫ Γ_2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789–5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd"3"+, we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k_e_x ≫ Γ_2) the ratio of the apparent proton to carbon methyl PREs, ("1H_m–Γ_2"a"p"p)/("1"3C_m–Γ_2"a"p"p), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γ_Η/γ_C)"2. However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ_2 is comparable in magnitude to k_e_x) the ("1H_m–Γ_2"a"p"p)/("1"3C_m–Γ_2"a"p"p) ratio provides a reliable measure of the ‘true’ methyl PREs.

  11. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status

    Science.gov (United States)

    Frederick C. Meinzer; Duncan D. Smith; David R. Woodruff; Danielle E. Marias; Katherine A. McCulloh; Ava R. Howard; Alicia L. Magedman

    2017-01-01

    Species’ differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this...

  12. Growth, gas exchange, foliar nitrogen content, and water use of subirrigated and overhead irrigated Populus tremuloides Michx. seedlings

    Science.gov (United States)

    Anthony S. Davis; Matthew M. Aghai; Jeremiah R. Pinto; Kent G. Apostal

    2011-01-01

    Because limitations on water used by container nurseries has become commonplace, nursery growers will have to improve irrigation management. Subirrigation systems may provide an alternative to overhead irrigation systems by mitigating groundwater pollution and excessive water consumption. Seedling growth, gas exchange, leaf nitrogen (N) content, and water use were...

  13. Diurnal and seasonal variation in air exchange rates and interzonal flows measured by active tracer gas in five Danish homes

    DEFF Research Database (Denmark)

    Clausen, Geo; Bekö, Gabriel; Toftum, Jørn

    2016-01-01

    We measured the air exchange rates (AER) in up to six rooms in five naturally ventilated dwellings across four seasons using active tracer gas. Night time AER was also estimated in all bedrooms based on occupant-generated CO2. Additionally, we studied the pollutant distribution across the dwellin...

  14. The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates.

    Science.gov (United States)

    Gortan, Emmanuelle; Nardini, Andrea; Gascó, Antonio; Salleo, Sebastiano

    2009-04-01

    Leaf hydraulic conductance (Kleaf) is known to be an important determinant of plant gas exchange and photosynthesis. Little is known about the long-term impact of different environmental factors on the hydraulic construction of leaves and its eventual consequences on leaf gas exchange. In this study, we investigate the impact of soil water availability on Kleaf of Fraxinus ornus L. as well as the influence of Kleaf on gas exchange rates and plant water status. With this aim, Kleaf, leaf conductance to water vapour (gL), leaf water potential (Psileaf) and leaf mass per area (LMA) were measured in F. ornus trees, growing in 21 different sites with contrasting water availability. Plants growing in arid sites had lower Kleaf, gL and Psileaf than those growing in sites with higher water availability. On the contrary, LMA was similar in the two groups. The Kleaf values recorded in sites with two different levels of soil water availability were constantly different from each other regardless of the amount of precipitation recorded over 20 days before measurements. Moreover, Kleaf was correlated with gL values. Our data suggest that down-regulation of Kleaf is a component of adaptation of plants to drought-prone habitats. Low Kleaf implies reduced gas exchange which may, in turn, influence the climatic conditions on a local/regional scale. It is concluded that leaf hydraulics and its changes in response to resource availability should receive greater attention in studies aimed at modelling biosphere-atmosphere interactions.

  15. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements

    Science.gov (United States)

    Most previous analyses of leaf gas exchange measurements assumed an infinite value of mesophyll conductance (gm) and thus equaled CO2 partial pressures in the substomatal cavity and chloroplast. Yet an increasing number of studies have recognized that gm is finite and there is a drawdown of CO2 part...

  16. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  17. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  18. Do chestnut, northern red, and white oak germinant seedlings respond similary to light treatments? II. Gas exchange and chlorophyll responses

    Science.gov (United States)

    Joanne Rebbeck; Amy Scherzer; Kurt. Gottschalk

    2012-01-01

    Understanding differences in physiological and growth strategies in low-light environments among upland oak species may help managers address the challenges of oaks' poor regeneration. Gas exchange and chlorophyll content were measured for northern red oak (Quercus rubra L.), chestnut oak (Quercus prinus L.), and white oak (...

  19. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    International Nuclear Information System (INIS)

    Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Hug, C.; Landolt, W.; Bleuler, P.; Kraeuchi, N.

    2005-01-01

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures

  20. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves

    NARCIS (Netherlands)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N.C.; Struik, Paul C.; Nicolaï, Bart M.

    2016-01-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model

  1. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula).

    Science.gov (United States)

    Niglas, Aigar; Papp, Kaisa; Sekiewicz, Maciej; Sellin, Arne

    2017-09-01

    Leaves have to acclimatize to heterogeneous radiation fields inside forest canopies in order to efficiently exploit diverse light conditions. Short-term effects of light quality on photosynthetic gas exchange, leaf water use and hydraulic traits were studied on Betula pendula Roth shoots cut from upper and lower thirds of the canopy of 39- to 35-year-old trees growing in natural forest stand, and illuminated with white, red or blue light in the laboratory. Photosynthetic machinery of the leaves developed in different spectral conditions acclimated differently with respect to incident light spectrum: the stimulating effect of complete visible spectrum (white light) on net photosynthesis is more pronounced in upper-canopy layers. Upper-canopy leaves exhibit less water saving behaviour, which may be beneficial for the fast-growing pioneer species on a daily basis. Lower-canopy leaves have lower stomatal conductance resulting in more efficient water use. Spectral gradients existing within natural forest stands represent signals for the fine-tuning of stomatal conductance and tree water relations to afford lavish water use in sun foliage and enhance leaf water-use efficiency in shade foliage sustaining greater hydraulic limitations. Higher sensitivity of hydraulic conductance of shade leaves to blue light probably contributes to the efficient use of short duration sunflecks by lower-canopy leaves. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  3. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition.

    Science.gov (United States)

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2017-04-10

    Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO 2 (atm. CO 2 ) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO 2 concentration, and SO 4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO 2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO 2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes.

  4. Effects of UV-B radiation and water stress on gas exchange of soybeans under two different nitrogen levels

    International Nuclear Information System (INIS)

    Rosa, L.M.; Forseth, I.N.

    1993-01-01

    Due to anthropogenic destruction of stratospheric ozone, UV-B radiation is projected to increase in the near future. Other potential global climate changes in temperature and precipitation patterns raise the need for research into plant responses to multiple environmental stresses. The objective of this study was to document UV-B and water stress effects on gas exchange of soybean (Glycine max Merr.) under two nitrogen levels. Two soybean cultivars differing in sensitivity to UV-B were tested at fluence rates of 19.1 or 8.5 kJ m -2 day -1 (enhance and natural levels of UV-B, respectively). Measurements of photosaturated CO 2 uptake at ambient CO 2 (A). stomatal conductance. photosaturated O 2 evolution at saturating CO 2 (A max ), long term water use efficiency (using δ 13 C), and nitrogen fixation (using 15 N) were performed. No significant treatment effects on A could be detected. However A max was significantly increased, and stomatal conductance reduced (p<0.01) by increased UV-B at all levels of water and nitrogen for both cultivars, suggesting a stronger stomal limitation of photosynthesis under UV-B. Water and nitrogen use efficiency also decreased under increased UV-B in both cultivars (p<0.01)

  5. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G.

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  6. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    Directory of Open Access Journals (Sweden)

    Suborov Evgeny V

    2012-06-01

    Full Text Available Abstract Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI and enhanced generation of nitric oxide (NO. We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS, which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8 keeping VT and FiO2 unchanged, respiratory rate (RR 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8 and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8. We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI and the pulmonary vascular permeability index (PVPI. We measured plasma nitrite/nitrate (NOx levels and examined lung biopsies for lung injury score (LIS. Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange

  7. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy.

    Science.gov (United States)

    Suborov, Evgeny V; Smetkin, Alexey A; Kondratiev, Timofey V; Valkov, Andrey Y; Kuzkov, Vsevolod V; Kirov, Mikhail Y; Bjertnaes, Lars J

    2012-06-21

    Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT) of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping VT and FiO2 unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS). Both the injuriously ventilated groups demonstrated a 2-3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Inhibition of nNOS improved gas exchange, but did not reduce lung water extravasation following

  8. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine.

    Science.gov (United States)

    Poyatos, Rafael; Aguadé, David; Galiano, Lucía; Mencuccini, Maurizio; Martínez-Vilalta, Jordi

    2013-10-01

    Drought-induced defoliation has recently been associated with the depletion of carbon reserves and increased mortality risk in Scots pine (Pinus sylvestris). We hypothesize that defoliated individuals are more sensitive to drought, implying that potentially higher gas exchange (per unit of leaf area) during wet periods may not compensate for their reduced photosynthetic area. We measured sap flow, needle water potentials and whole-tree hydraulic conductance to analyse the drought responses of co-occurring defoliated and nondefoliated Scots pines in northeast Spain during typical (2010) and extreme (2011) drought conditions. Defoliated Scots pines showed higher sap flow per unit leaf area during spring, but were more sensitive to summer drought, relative to nondefoliated pines. This pattern was associated with a steeper decline in soil-to-leaf hydraulic conductance with drought and an enhanced sensitivity of canopy conductance to soil water availability. Near-homeostasis in midday water potentials was observed across years and defoliation classes, with minimum values of -2.5 MPa. Enhanced sensitivity to drought and prolonged periods of near-zero gas exchange were consistent with low levels of carbohydrate reserves in defoliated trees. Our results support the critical links between defoliation, water and carbon availability, and their key roles in determining tree survival and recovery under drought. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.

    Science.gov (United States)

    Clusella-Trullas, Susana; Chown, Steven L

    2008-10-01

    Several controversies currently dominate the fields of arthropod metabolic rate, gas exchange and water balance, including the extent to which modulation of gas exchange reduces water loss, the origins of discontinuous gas exchange, the relationship between metabolic rate and life-history strategies, and the causes of Palaeozoic gigantism. In all of these areas, repeated calls have been made for the investigation of groups that might most inform the debates, especially of taxa in key phylogenetic positions. Here we respond to this call by investigating metabolic rate, respiratory water loss and critical oxygen partial pressure (Pc) in the onychophoran Peripatopsis capensis, a member of a group basal to the arthropods, and by synthesizing the available data on the Onychophora. The rate of carbon dioxide release (VCO2) at 20 degrees C in P. capensis is 0.043 ml CO2 h(-1), in keeping with other onychophoran species; suggesting that low metabolic rates in some arthropod groups are derived. Continuous gas exchange suggests that more complex gas exchange patterns are also derived. Total water loss in P. capensis is 57 mg H2O h(-1) at 20 degrees C, similar to modern estimates for another onychophoran species. High relative respiratory water loss rates ( approximately 34%; estimated using a regression technique) suggest that the basal condition in arthropods may be a high respiratory water loss rate. Relatively high Pc values (5-10% O2) suggest that substantial safety margins in insects are also a derived condition. Curling behaviour in P. capensis appears to be a strategy to lower energetic costs when resting, and the concomitant depression of water loss is a proximate consequence of this behaviour.

  10. EVALUATION OF GAS EXCHANGES IN DIFFERENT Prunus SPP. ROOTSTOCKS UNDER DROUGHT AND FLOODING STRESS

    Directory of Open Access Journals (Sweden)

    ELSA KUHN KLUMB

    2017-10-01

    Full Text Available ABSTRACT The state of Rio Grande do Sul is the largest peach productor in Brazil; however, it still possesses poor yield values when compared with other states. One of the problems associated with this is the occurrence of soils with drainage problems, mainly in Pelotas region, which depending on the year period, may undergo water deficit or flooding situations in the great majority of the years, which harm the crop development and yield. Among the harmful effects caused by these stresses stand out, the decrease in the net assimilation rate, closure of stomata, reduction of the cell activities, production of reactive oxygen species, membrane and protein destabilization. Thus, the aim of this study was to investigate in what magnitude of the gaseous exchange parameters of Prunus spp. rootstocks are influenced under drought and flood stress. In the experiment, gas exchange parameters net photosynthetic rate (A stomata conductance (gs, intercellular carbon (Ci and transpiration (E] were evaluated in three Prunus spp. rootstocks (peach tree ‘Capdeboscq’ and plum trees ‘Julior’ and ‘Marianna 2624’ under three water conditions (control, water deficit and soil flooding for seven days. The three rootstocks proved more susceptible to flooding than to water deficit, only varying in response time, which is intrinsic to each genotype, and that there is a genetic variability for the tolerance to the studied stresses. The variation on physiological response to the water deficit stress was later in both evaluated genotypes. However, in general, ‘Julior’ presented greater tolerance to both stresses when compared to the other rootstocks evaluated. Such information is useful to help in the choice of rootstocks for plant production, in the orchard management and for plant breeding programs, aiming at the selection of new genotypes with increased tolerance to these water stresses.

  11. LACK OF AGREEMENT BETWEEN GAS EXCHANGE VARIABLES MEASURED BY TWO METABOLIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    DjordjeG. Jakovljevic

    2008-03-01

    Full Text Available The purpose of this study was to assess the agreement and consistency between gas exchange variables measured by two online metabolic systems during an incremental exercise test. After obtaining local ethics approval and informed consent, 15 healthy subjects performed an incremental exercise test to volitional fatigue using the Bruce protocol. The Innocor (Innovision, Denmark and CardiO2 (Medical Graphics, USA systems were placed in series, with the Innocor mouthpiece attached to the pneumotach of the CardiO2. Metabolic data were analysed during the last 30 seconds of each stage and at peak exercise. There were non- significant differences (p > 0.05 between the two systems in estimation of oxygen consumption (VO2 and in minute ventilation (VE. Mean Cronbach's alpha for VO2 and VE were 0.88 and 0.92. The Bland-Altman analysis revealed that limits of agreement were -0.52 to 0.55 l.min-1 for VO2, and -8.74 to 10.66 l.min-1 for VE. Carbon dioxide production (VCO2 and consequently respiratory exchange ratio (RER measured by the Innocor were significantly lower (p < 0.05 through all stages. The CardiO2 measured fraction of expired carbon dioxide (FeCO2 significantly higher (p < 0.05. The limits of agreement for VO2 and VE are wide and unacceptable in cardio-pulmonary exercise testing. The Innocor reported VCO2 systematically lower. Therefore the Innocor and CardiO2 metabolic systems cannot be used interchangeably without affecting the diagnosis of an individual patient. Results from the present study support previous suggestion that considerable care is needed when comparing metabolic data obtained from different automated metabolic systems.

  12. Enhanced exchange anisotropy in IrMn/CoFeB systems and its correlation with uncompensated interfacial spins

    DEFF Research Database (Denmark)

    Du, Yuqing; Pan, Genhua; Moate, Roy

    2010-01-01

    Bottom pinned exchange bias systems of IrMn/CoFe and IrMn/CoFeB on CoFe seed layers were studied. Enhanced exchange anisotropy has been observed for IrMn/CoFeB samples annealed at 350 °C. The ferromagnetic and antiferromagnetic layers of both samples are polycrystalline and textured {110} for the...

  13. A Numerical Study on Using Air Cooler Heat Exchanger for Low Grade Energy Recovery from Exhaust Flue Gas in Natural Gas Pressure Reduction Stations

    OpenAIRE

    Mansoor Naderi; Ghasem Zargar; Ebrahim Khalili

    2018-01-01

    Heat EXchangers (HEX) that are used in City Gate Station (CGS) systems are modeled numerically to recover the exhaust waste heat. It was tried to find the best viscous model to obtain results in accordance with experimental results and to change the heat exchanger design. This HEX is used for recovering heat from exhaust flue gas with a mixture of 40% water and 60% ethylene glycol as the cooling fluid. Then, the effects of sizes and numbers of fins and tube rows on recovered heat rate were in...

  14. Noninvasive Assisted Ventilation in Pulmonary Gas Exchange Dysfunctions in Cardiac Surgical Patients

    Directory of Open Access Journals (Sweden)

    V. N. Poptsov

    2008-01-01

    Full Text Available Background. Postextubation pulmonary gas exchange dysfunctions are a potential complication in the activation of cardio-surgical patients in the early periods after surgical intervention. Objective: to evaluate the efficiency of noninvasive assisted ventilation (NIAV as a method for correcting the pulmonary gas exchange disturbances developing after early activation of cardiosurgical patients. Subjects and methods. The study included 64 patients (36 males and 28 females aged 21 to 72 (54±2 years who had been operated on under extracorporeal circulation (EC. The duration of EC and myocardial ischemia was 104±6 and 73±4 min, respectively. The indications for NIAV were the clinical manifestations of acute respiratory failure (ARF and/or PaCO2>50 mm Hg and/or PaO2/FiO2Results. During NIAV, there was improvement (p<0.05 of lung oxygenizing function (the increase in PaO2/FiO2 was 23%, a reduction in Qs/Qt from 21.1±1.9 to 13.9±1.0% (p<0.05. NIAV was accompanied by a decrease in PaCO2 (p<0.05. Hypercapnia regressed in 7 patients with isolated lung ventilatory dysfunction (PaCO2>50 mm Hg an hour after initiation of NIAV. During and after NIAV, there were reductions in right atrial pressure, mean pulmonary pressure, indexed total pulmonary vascular resistance (ITPVR (p<0.05. Prior to, during, and following NIAV, mean blood pressure, cardiac index, and indexed total pulmonary vascular resstance did not change greatly. In hypercapnia, the duration of NIAV was significantly less than that in lung oxygenizing function (2.8±0.2 hours versus 4.7±0.5 hours. That of ICU treatment was 23±4 hours. Fifty-two (81% patients were transferred from ICUs to cardiosurgical units on the following day after surgery. Conclusion. In most cases, NIAV promotes a rapid and effective correction of postextubation lung ventilatory and oxygenizing dysfunctions occurring after early activation of cardiosurgical patients. Key words: non-invasive assisted ventilation, early

  15. A Test of the Optimality Approach to Modelling Canopy gas Exchange by Natural Vegetation

    Science.gov (United States)

    Schymanski, S. J.; Sivapalan, M.; Roderick, M. L.; Beringer, J.; Hutley, L. B.

    2005-12-01

    Natural vegetation has co-evolved with its environment over a long period of time and natural selection has led to a species composition that is most suited for the given conditions. Part of this adaptation is the vegetation's water use strategy, which determines the amount and timing of water extraction from the soil. Knowing that water extraction by vegetation often accounts for over 90% of the annual water balance in some places, we need to understand its controls if we want to properly model the hydrologic cycle. Water extraction by roots is driven by transpiration from the canopy, which in turn is an inevitable consequence of CO2 uptake for photosynthesis. Photosynthesis provides plants with their main building material, carbohydrates, and with the energy necessary to thrive and prosper in their environment. Therefore we expect that natural vegetation would have evolved an optimal water use strategy to maximise its `net carbon profit' (the difference between carbon acquired by photosynthesis and carbon spent on maintenance of the organs involved in its uptake). Based on this hypothesis and on an ecophysiological gas exchange and photosynthesis model (Cowan and Farquhar 1977; von Caemmerer 2000), we model the optimal vegetation for a site in Howard Springs (N.T., Australia) and compare the modelled fluxes with measurements by Beringer, Hutley et al. (2003). The comparison gives insights into theoretical and real controls on transpiration and photosynthesis and tests the optimality approach to modelling gas exchange of natural vegetation with unknown properties. The main advantage of the optimality approach is that no assumptions about the particular vegetation on a site are needed, which makes it very powerful for predicting vegetation response to long-term climate- or land use change. Literature: Beringer, J., L. B. Hutley, et al. (2003). "Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia." International

  16. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances

    Science.gov (United States)

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-01

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  17. Seasonal variations in body composition, maximal oxygen uptake, and gas exchange threshold in cross-country skiers.

    Science.gov (United States)

    Polat, Metin; Korkmaz Eryılmaz, Selcen; Aydoğan, Sami

    2018-01-01

    In order to ensure that athletes achieve their highest performance levels during competitive seasons, monitoring their long-term performance data is crucial for understanding the impact of ongoing training programs and evaluating training strategies. The present study was thus designed to investigate the variations in body composition, maximal oxygen uptake (VO 2max ), and gas exchange threshold values of cross-country skiers across training phases throughout a season. In total, 15 athletes who participate in international cross-country ski competitions voluntarily took part in this study. The athletes underwent incremental treadmill running tests at 3 different time points over a period of 1 year. The first measurements were obtained in July, during the first preparation period; the second measurements were obtained in October, during the second preparation period; and the third measurements were obtained in February, during the competition period. Body weight, body mass index (BMI), body fat (%), as well as VO 2max values and gas exchange threshold, measured using V-slope method during the incremental running tests, were assessed at all 3 time points. The collected data were analyzed using SPSS 20 package software. Significant differences between the measurements were assessed using Friedman's twoway variance analysis with a post hoc option. The athletes' body weights and BMI measurements at the third point were significantly lower compared with the results of the second measurement ( p exchange threshold, running speed at the gas exchange threshold, VO 2max , amount of oxygen consumed at gas exchange threshold level (VO 2GET ), maximal heart rate (HR max ), and heart rate at gas exchange threshold level (HR GET ) values did not significantly differ between the measurement time points ( p >0.05). VO 2max and gas exchange threshold values recorded during the third measurements, the timing of which coincided with the competitive season of the cross-country skiers

  18. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger

    OpenAIRE

    Zhongchao Zhao; Kai Zhao; Dandan Jia; Pengpeng Jiang; Rendong Shen

    2017-01-01

    As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE) is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG) vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG) as working fluid. The thermal properties of supercritical LNG were tested by utilizing t...

  19. Gas exchanges in peach palms as a function of the spad chlorophyll meter readings

    Directory of Open Access Journals (Sweden)

    Maria Luiza Sant'anna Tucci

    2011-10-01

    Full Text Available The close relationship between the chlorophyll-meters readings and the total chlorophyll and nitrogen contents in leaves, has allowed their evaluation both in annual and perennial species. Besides, some physiological events such as the CO2 assimilation have also been estimated by chlorophyll meters. This work was carried out aiming to evaluate the gas exchanges of peach palms as a function of the chlorophyll SPAD-Meter readings. Three year-old peach palms from Yurimaguas, Peru were studied in Ubatuba, SP, Brazil, spaced 2 x 1 m in area under a natural gradient of organic matter which allowed four plots to be considered, according to the peach palms leaves colors, from light yellow to dark green. The SPAD readings and the stomatal frequency of leaflets were evaluated. The photosynthetic photon flux density (PPFD, μmol m-2 s-1, the leaf temperature (Tleaf, ºC, the CO2 assimilation (A, μmol m-2 s-1, the stomatal conductance (g s, mol m-2 s-1, the transpiration (E, mmol m-2 s-1 and the intercellular CO2 concentration (Ci, μmol mol-1 were evaluated with a portable infrared gas analyzer (LCA-4, ADC BioScientific Ltd., Great Amwell, U.K.. A linear increase in the CO2 assimilation as a function of the SPAD readings (y = -0.34 + 0.19x, R² = 0.99, indicates that they can be a rapid and cheap complementary method to evaluate in peach palms some important physiological events, such as CO2 assimilation.

  20. Gas exchange efficiency of an oxygenator with integrated pulsatile displacement blood pump for neonatal patients.

    Science.gov (United States)

    Schlanstein, Peter C; Borchardt, Ralf; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2014-01-01

    Oxygenators have been used in neonatal extracorporeal membrane oxygenation (ECMO) since the 1970s. The need to develop a more effective oxygenator for this patient cohort exists due to their size and blood volume limitations. This study sought to validate the next design iteration of a novel oxygenator for neonatal ECMO with an integrated pulsatile displacement pump, thereby superseding an additional blood pump. Pulsating blood flow within the oxygenator is generated by synchronized active air flow expansion and contraction of integrated silicone pump tubes and hose pinching valves located at the oxygenator inlet and outlet. The current redesign improved upon previous prototypes by optimizing silicone pump tube distribution within the oxygenator fiber bundle; introduction of an oval shaped inner fiber bundle core, and housing; and a higher fiber packing density, all of which in combination reduced the priming volume by about 50% (50 to 27 mL and 41 to 20 mL, respectively). Gas exchange efficiency was tested for two new oxygenators manufactured with different fiber materials: one with coating and one with smaller pore size, both capable of long-term use (OXYPLUS® and CELGARD®). Results demonstrated that the oxygen transfer for both oxygenators was 5.3-24.7 mlO2/min for blood flow ranges of 100-500 mlblood/min. Carbon dioxide transfer for both oxygenators was 3.7-26.3 mlCO2/min for the same blood flow range. These preliminary results validated the oxygenator redesign by demonstrating an increase in packing density and thus in gas transfer, an increase in pumping capacity and a reduction in priming volume.

  1. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  2. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  3. Salt tolerance and regulation of gas exchange and hormonal homeostasis by auxin-priming in wheat

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2013-09-01

    Full Text Available The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant and Inqlab-91 (salt-tolerant cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls and evaluated under saline (15 dS m-1 and nonsaline (2.84 dS m-1 conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.

  4. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  5. Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Dąbrowski, P., E-mail: piotr_dabrowski@sggw.pl [Department of Environmental Improvement, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); Kalaji, M.H., E-mail: hazem@kalaji.pl [Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); SI TECHNOLOGY Sp. z o. o., Górczewska 226C/26, 01-460 Warsaw (Poland); Baczewska, A.H., E-mail: a.baczewska@obpan.pl [Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, 2 Prawdziwka St., 02-973 Warsaw (Poland); Pawluśkiewicz, B. [Department of Environmental Improvement, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); Mastalerczuk, G., E-mail: grazyna_mastalerczuk@sggw.pl [Department of Agronomy, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); Borawska-Jarmułowicz, B., E-mail: barbara_borawska_jarmulowicz@sggw.pl [Department of Agronomy, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw (Poland); Paunov, M. [Department Biophysics and Radiobiology, St. Kl. Ohridski Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia (Bulgaria); Goltsev, V., E-mail: goltsev@biofac.uni-sofia.bg [Department Biophysics and Radiobiology, St. Kl. Ohridski Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia (Bulgaria)

    2017-03-15

    Perennial ryegrass (Lolium perenne L.) is one of the more popular grass species in Europe. It is commonly used for starting lawns in urban areas, where plant growth is limited by many environmental conditions. The contamination of soils by salt is one of the major problems in urban green areas, as well as in natural areas. The basic aim of this study is to provide a detailed in vivo analysis of the changes in the delayed chlorophyll fluorescence and MR 820 signals (induced by salt stress) of two lawn varieties of perennial ryegrass, and to find out if there are correlations between these parameters and gas exchange. Two lawn varieties of Lolium perenne L. were used: Nira and Roadrunner. Salinization was performed at 8 weeks after sowing by adding NaCl in water solution (0, 0.15, and 0.30 M). There were 8 terms of measurement: 0 h, 24 h, 48 h, 96 h, 144 h, 192 h, 240 h, and 288 h after salinization. Our results showed that delayed fluorescence is a tool that can bring completely new opportunities for detecting stress in plants caused by salt. Our work allowed us to identify various limitation patterns in the photosynthetic efficiency of perennial ryegrass lawn varieties grown under salt stress conditions. Significant differences between the two tested varieties in response to salt stress were confirmed.

  6. Effects of vertical positioning on gas exchange and lung volumes in acute respiratory distress syndrome.

    Science.gov (United States)

    Richard, Jean-Christophe M; Maggiore, Salvatore Maurizio; Mancebo, Jordi; Lemaire, François; Jonson, Bjorn; Brochard, Laurent

    2006-10-01

    Supine position may contribute to the loss of aerated lung volume in patients with acute respiratory distress syndrome (ARDS). We hypothesized that verticalization increases lung volume and improves gas exchange by reducing the pressure surrounding lung bases. Prospective observational physiological study in a medical ICU. In 16 patients with ARDS we measured arterial blood gases, pressure-volume curves of the respiratory system recorded from positive-end expiratory pressure (PEEP), and changes in lung volume in supine and vertical positions (trunk elevated at 45 degrees and legs down at 45 degrees ). Vertical positioning increased PaO(2) significantly from 94+/-33 to 142+/-49 mmHg, with an increase higher than 40% in 11 responders. The volume at 20 cmH(2)O measured on the PV curve from PEEP increased using the vertical position only in responders (233+/-146 vs. -8+/-9 1ml in nonresponders); this change was correlated to oxygenation change (rho=0.55). End-expiratory lung volume variation from supine to vertical and 1 h later back to supine, measured in 12 patients showed a significant increase during the 1-h upright period in responders (n=7) but not in nonresponders (n=5; 215+/-220 vs. 10+/-22 ml), suggesting a time-dependent recruitment. Vertical positioning is a simple technique that may improve oxygenation and lung recruitment in ARDS patients.

  7. Gas Exchange Disturbances Regulate Alveolar Fluid Clearance during Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    István Vadász

    2017-07-01

    Full Text Available Disruption of the alveolar–capillary barrier and accumulation of pulmonary edema, if not resolved, result in poor alveolar gas exchange leading to hypoxia and hypercapnia, which are hallmarks of acute lung injury and the acute respiratory distress syndrome (ARDS. Alveolar fluid clearance (AFC is a major function of the alveolar epithelium and is mediated by the concerted action of apically-located Na+ channels [epithelial Na+ channel (ENaC] and the basolateral Na,K-ATPase driving vectorial Na+ transport. Importantly, those patients with ARDS who cannot clear alveolar edema efficiently have worse outcomes. While hypoxia can be improved in most cases by O2 supplementation and mechanical ventilation, the use of lung protective ventilation settings can lead to further CO2 retention. Whether the increase in CO2 concentrations has deleterious or beneficial effects have been a topic of significant controversy. Of note, both low O2 and elevated CO2 levels are sensed by the alveolar epithelium and by distinct and specific molecular mechanisms impair the function of the Na,K-ATPase and ENaC thereby inhibiting AFC and leading to persistence of alveolar edema. This review discusses recent discoveries on the sensing and signaling events initiated by hypoxia and hypercapnia and the relevance of these results in identification of potential novel therapeutic targets in the treatment of ARDS.

  8. Seasonal variation in gas exchange by plants of Erythroxylum simonis Plowman

    Directory of Open Access Journals (Sweden)

    João Everthon da Silva Ribeiro

    2018-02-01

    Full Text Available ABSTRACT Erythroxylum simonisis an understory species found in Northeast Brazil. Due to its shaded habitat,E. simonisis subjected to seasonal oscillations of the environment, to which it must respond ecophysiologically. The objective of this study was to evaluate the effects of seasonality on the ecophysiology ofE. simonis in a fragment of Seasonal Semideciduous Forest. Leaf area index, visible sky fraction and photosynthetically active radiation were measured for 10 individuals during the dry and rainy seasons. Soil moisture, temperature and monthly precipitation were measured, as well as photosynthetic rate, stomatal conductance, internal CO2concentration, transpiration, instantaneous water use efficiency, instantaneous carboxylation efficiency and chlorophyll content. Ecophysiological variables were correlated with environmental variables, with a greater association of rainfall and soil moisture with stomatal conductance, transpiration and photosynthetic rate, indicating that water availability has an effect on the ecophysiology ofE. simonis. With the exception of instantaneous carboxylation efficiency, gas exchange exhibited significant differences among the months studied, with the highest values being for months with greater water availability, thus showing that the ecophysiology of the species responds to seasonal changes throughout the year.

  9. Gas exchange and antioxidant activity in seedlings of C opaifera langsdorffii Desf. under different water conditions.

    Science.gov (United States)

    Rosa, Derek B C J; Scalon, Silvana P Q; Cremon, Thais; Ceccon, Felipe; Dresch, Daiane M

    2017-01-01

    The aim of this study was to evaluate gas exchange, efficiency of the photosynthetic apparatus, and antioxidant activity in Copaifera langsdorffii Desf. The seedlings were cultivated under different conditions of water availability, in order to improve the utilization efficiency of available water resources. The seedlings were cultivated in four different water retention capacities (WRC- 25%, 50%, 75%, and 100%), and evaluated at four different time (T- 30, 60, 90, and 120 days). During the experimental period, seedlings presented the highest values for carboxylation efficiency of Rubisco (A/Ci), intrinsic water use efficiency (IWUE = A/gs), chlorophyll index, and stomatal opening, when grown in the substrate with 75% WRC, but the stomatal index (SI) was less the 25% WRC. The efficiency of photosystem II was not significantly altered by the treatments. Comparison between the extreme treatments in terms of water availability, represented by 25% and 100% WRC, represent stress conditions for the species. Water availability causes a high activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) in the plant.

  10. Effect of saline irrigation water on gas exchange and proline metabolism in ber (Ziziphus).

    Science.gov (United States)

    Bagdi, D L; Bagri, G K

    2016-09-01

    An experiment was conducted in pots of 25 kg capacity to study the effect of saline irrigation (EC 0,5,10,15 and 20 dSm-1) prepared by mixing NaCl, NaSO4, CaCl and MgCl2 in 3:1 ratio of chloride and sulphate on gas exchange traits, membrane stability, chlorophyll stability index and osmolytic defense mechanism in Ziziphus rotundifolia and Ziziphus nummularia species of Indian jujube (Z.mauritiana). Result showed that net photosynthetic rate (PN), transpiration (e) and stomatal conductance were comparatively lower in Ziziphus nummularia, which further declined with increasing level of saline irrigation water. Chlorophyll stability and membrane stability also declined significantly in salt stress, with higher magnitude in Ziziphus nummularia. The activity of proline anabolic enzymes; Δ1-Pyrrolline-5-carboxylate reductase, Δ1-Pyrrolline-5-carboxylate synthetase and Ornithine-δ-aminotransferase were recorded higher in Ziziphus rotundifolia with decrease in proline dehydrogenase. The sodium content was observed higher in roots of Ziziphus rotundifolia and leaves of Ziziphus nummularia. Therefore, it is suggested that salt tolerance mechanism was more efficiently operative in Ziziphus rotundifolia owing to better management of physiological attributes, osmolytic defense mechanism and restricted translocation of sodium from root to leaves along with larger accumulation of potassium in its leaves.

  11. Effects of Drought and Rewetting on Growth and Gas Exchange of Minor European Broadleaved Tree Species

    Directory of Open Access Journals (Sweden)

    Jörg Kunz

    2016-10-01

    Full Text Available Widespread and economically important European tree species such as Norway spruce, Scots pine, and European beech are projected to be negatively affected by the increasing intensity and frequency of dry and hot conditions in a future climate. Hence, there is an increasing need to investigate the suitability of presumably more drought tolerant species to ensure future ecological stability, biodiversity, and productivity of forests. Based on their distribution patterns and climatic envelopes, the rare, minor broadleaved tree species Sorbus torminalis ((L. CRANTZ, S. domestica (L., Acer campestre (L., and A. platanoides (L. are assumed to be drought tolerant, however, there is only limited experimental basis to support that notion. This study aimed at quantifying growth and gas exchange of seedlings of these species during drought conditions, and their capacity to recover following drought. For that purpose, they were compared to the common companion species Quercus petraea ((MATTUSCHKA LIEBL. and Fagus sylvatica (L.. Here, potted seedlings of these species were exposed to water limitation followed by rewetting cycles in a greenhouse experiment. Photosynthesis and transpiration rates, stomatal conductance as well as root and shoot growth rates indicated a high drought resistance of A. campestre and A. platanoides. Sorbus domestica showed a marked ability to recover after drought stress. Therefore, we conclude that these minor tree species have the potential to enrich forests on drought-prone sites. Results from this pot experiment need to be complemented by field studies, in which the drought response of the species is not influenced by restrictions to root development.

  12. Gas exchange and antioxidant activity in seedlings of C opaifera langsdorffii Desf. under different water conditions

    Directory of Open Access Journals (Sweden)

    DEREK B.C.J. ROSA

    Full Text Available ABSTRACT The aim of this study was to evaluate gas exchange, efficiency of the photosynthetic apparatus, and antioxidant activity in Copaifera langsdorffii Desf. The seedlings were cultivated under different conditions of water availability, in order to improve the utilization efficiency of available water resources. The seedlings were cultivated in four different water retention capacities (WRC- 25%, 50%, 75%, and 100%, and evaluated at four different time (T- 30, 60, 90, and 120 days. During the experimental period, seedlings presented the highest values for carboxylation efficiency of Rubisco (A/Ci, intrinsic water use efficiency (IWUE = A/gs, chlorophyll index, and stomatal opening, when grown in the substrate with 75% WRC, but the stomatal index (SI was less the 25% WRC. The efficiency of photosystem II was not significantly altered by the treatments. Comparison between the extreme treatments in terms of water availability, represented by 25% and 100% WRC, represent stress conditions for the species. Water availability causes a high activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase in the plant.

  13. [Effects of soil water status on gas exchange of peanut and early rice leaves].

    Science.gov (United States)

    Chen, Jiazhou; Lü, Guoan; He, Yuanqiu

    2005-01-01

    The gas exchange characteristics of peanut and early rice leaves were investigated in experimental plots under different soil water conditions over a long growth period. The results showed that at the branching stage of peanut, the stomatal conductance (Gs) and transpiration rate (Tr) decreased slightly under mild and moderate soil water stress, while the net photosynthetic rate (Pn) and leaf water use efficiency (WUE) increased. The Gs/Tr ratio also increased under mild water stress, but decreased under moderate water stress. At podding stage, the Gs, Tr, Gs/Tr ratio and Pn decreased, while WUE increased significantly under mild and moderate water stress. The peanut was suffered from water stress at its pod setting stage. At the grain filling stage of early rice, the Gs, Tr and Gs/Tr ratio fluctuated insignificantly under mild and moderate water stress, while Pn and WUE increased significantly, with an increase in grain yield under mild water stress. It's suggested that the combination of Gs and Gs/Tr ratio could be a reference index for crop water stress, namely, crops could be hazarded by water stress when Gs and Gs/Tr decreased synchronously.

  14. Gas exchange and leaf anatomy of a C3-CAM hybrid, Yucca gloriosa (Asparagaceae).

    Science.gov (United States)

    Heyduk, Karolina; Burrell, Nia; Lalani, Falak; Leebens-Mack, Jim

    2016-03-01

    While the majority of plants use the typical C3 carbon metabolic pathway, ~6% of angiosperms have adapted to carbon limitation as a result of water stress by employing a modified form of photosynthesis known as Crassulacean acid metabolism (CAM). CAM plants concentrate carbon in the cells by temporally separating atmospheric carbon acquisition from fixation into carbohydrates. CAM has been studied for decades, but the evolutionary progression from C3 to CAM remains obscure. In order to better understand the morphological and physiological characteristics associated with CAM photosynthesis, phenotypic variation was assessed in Yucca aloifolia, a CAM species, Yucca filamentosa, a C3 species, and Yucca gloriosa, a hybrid species derived from these two yuccas exhibiting intermediate C3-CAM characteristics. Gas exchange, titratable leaf acidity, and leaf anatomical traits of all three species were assayed in a common garden under well-watered and drought-stressed conditions. Yucca gloriosa showed intermediate phenotypes for nearly all traits measured, including the ability to acquire carbon at night. Using the variation found among individuals of all three species, correlations between traits were assessed to better understand how leaf anatomy and CAM physiology are related. Yucca gloriosa may be constrained by a number of traits which prevent it from using CAM to as high a degree as Y. aloifolia. The intermediate nature of Y. gloriosa makes it a promising system in which to study the evolution of CAM. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Hydraulic properties of rice and the response of gas exchange to water stress.

    Science.gov (United States)

    Stiller, Volker; Lafitte, H Renee; Sperry, John S

    2003-07-01

    We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure in the response of rice (Oryza sativa) gas exchange to water stress. In the field (Philippines), the percentage loss of xylem conductivity (PLC) from cavitation exceeded 60% in leaves even in watered controls. The PLC versus leaf water potential relationship indicated diurnal refilling of cavitated xylem. The leaf water potential causing 50 PLC (P(50)) was -1.6 MPa and did not differ between upland versus lowland rice varieties. Greenhouse-grown varieties (Utah) were more resistant to cavitation with a 50 PLC of -1.9 MPa but also showed no difference between varieties. Six-day droughts caused concomitant reductions in leaf-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated with cavitation-inducing water potentials and the disappearance of nightly root pressure. The return of root pressure after drought was associated with the complete recovery of leaf diffusive conductance, leaf-specific photosynthetic rate, and soil-leaf hydraulic conductance. Root pressure after the 6-d drought (61.2 +/- 8.8 kPa) was stimulated 7-fold compared with well-watered plants before drought (8.5 +/- 3.8 kPa). The results indicate: (a) that xylem cavitation plays a major role in the reduction of plant hydraulic conductance during drought, and (b) that rice can readily reverse cavitation, possibly aided by nocturnal root pressure.

  16. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  17. Carbon gas exchange of a re-vegetated cut-away peatland five decades after abandonment

    International Nuclear Information System (INIS)

    Yli-Petaeys, M.; Laine, J.; Vasander, H.; Tuittila, E.-S.

    2007-01-01

    Only little is known about the long-term carbon dynamics related to peatland restoration. We studied CO 2 and CH 4 dynamics of spontaneously regenerated peat trenches five decades after peat harvesting had ceased. We used non-linear regression models and interpolation for simulating gas exchange of four regenerating plant communities during two growing seasons and one winter. The studied communities all acted as seasonal (June-September) sinks of CO 2 between 14 and 118 g C m -2 , while the emissions of CH 4 ranged from -4.9 to -28.8 g C m -2 . When the winter time losses of carbon and the estimated leaching were subtracted, the balance was very low or negative: between -67 and 31 g C m -2 . The low or even negative annual carbon balance in all communities may suggest a decrease in carbon sink strength in the advanced regeneration after the previously observed strong sink in the first regeneration stages caused by mass colonization by Eriophorum. (orig.)

  18. Gas exchange and leaf contents in bell pepper under energized water and biofertilizer doses

    Directory of Open Access Journals (Sweden)

    Francisca R. M. Borges

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of energized water and bovine biofertilizer doses on the gas exchange and NPK contents in leaves of yellow bell pepper plants. The experiment was conducted at the experimental area of the Federal University of Ceará, in Fortaleza-CE, Brazil, from June to November 2011. The experiment was set in a randomized block design, in a split-plot scheme; the plots were composed of treatments with energized and non-energized water and the subplots of five doses of liquid biofertilizer (0, 250, 500, 750 and 1000 mL plant-1 week-1. The following variables were analyzed: transpiration, stomatal conductance, photosynthesis and leaf contents of nitrogen (N, phosphorus (P and potassium (K. Water energization did not allow significant increases in the analyzed variables. The use of biofertilizer as the only source of fertilization was sufficient to provide the nutrients N, P and K at appropriate levels for the bell pepper crop.

  19. Gas exchange and organic solutes in forage sorghum genotypes grown under different salinity levels

    Directory of Open Access Journals (Sweden)

    Daniela S. Coelho

    Full Text Available ABSTRACT Adaptation of plants to saline environments depends on the activation of mechanisms that minimize the effects of excess ions on vital processes, such as photosynthesis. The objective of this study was to evaluate the leaf gas exchange, chlorophyll, and organic solute in ten genotypes of forage sorghum irrigated with solutions of different salinity levels. The experiment was conducted in a randomized block design, in a 10 x 6 factorial arrangement, with three replications, using ten genotypes - F305, BRS-655, BRS-610, Volumax, 1.015.045, 1.016.005, 1.016.009, 1.016.013, 1.016.015 and 1.016.031 - and six saline solutions, with electrical conductivity (ECw of 0, 2.5, 5.0, 7.5, 10 and 12.5 dS m-1. The photosynthetic activity in forage sorghum plants reduces with increasing salinity, and this response was found in the ten genotypes evaluated. The chlorophyll and protein contents were not affected by salinity, whereas carbohydrates and amino acid contents increased with increasing ECw. Soluble sugars are essential for osmoregulation of forage sorghum due to its high content in leaves.

  20. Effect of heat and moisture exchanger (HME positioning on inspiratory gas humidification

    Directory of Open Access Journals (Sweden)

    Nishimura Masaji

    2006-08-01

    Full Text Available Abstract Background In mechanically ventilated patients, we investigated how positioning the heat and moisture exchanger (HME at different places on the ventilator circuit affected inspiratory gas humidification. Methods Absolute humidity (AH and temperature (TEMP at the proximal end of endotracheal tube (ETT were measured in ten mechanically ventilated patients. The HME was connected either directly proximal to the ETT (Site 1 or at before the circuit Y-piece (Site 2: distance from proximal end of ETT and Site 2 was about 19 cm (Figure. 1. Two devices, Hygrobac S (Mallinckrodt Dar, Mirandola, Italy and Thermovent HEPA (Smiths Medical International Ltd., Kent, UK were tested. AH and TEMP were measured with a hygrometer (Moiscope, MERA Co., Ltd., Tokyo, Japan. Results Hygrobac S provided significantly higher AH and TEMP at both sites than Thermovent HEPA. Both Hygrobac S and with Thermovent HEPA provided significantly higher AH and TEMP when placed proximally to the ETT. Conclusion Although placement proximal to the ETT improved both AH and TEMP in both HMEs tested, one HME performed better in the distal position than the other HME in the proximal position. We conclude the both the type and placement of HME can make a significant difference in maintaining AH and TEMP during adult ventilation.

  1. Effect of heat and moisture exchanger (HME) positioning on inspiratory gas humidification

    Science.gov (United States)

    Inui, Daisuke; Oto, Jun; Nishimura, Masaji

    2006-01-01

    Background In mechanically ventilated patients, we investigated how positioning the heat and moisture exchanger (HME) at different places on the ventilator circuit affected inspiratory gas humidification. Methods Absolute humidity (AH) and temperature (TEMP) at the proximal end of endotracheal tube (ETT) were measured in ten mechanically ventilated patients. The HME was connected either directly proximal to the ETT (Site 1) or at before the circuit Y-piece (Site 2: distance from proximal end of ETT and Site 2 was about 19 cm) (Figure. 1). Two devices, Hygrobac S (Mallinckrodt Dar, Mirandola, Italy) and Thermovent HEPA (Smiths Medical International Ltd., Kent, UK) were tested. AH and TEMP were measured with a hygrometer (Moiscope, MERA Co., Ltd., Tokyo, Japan). Results Hygrobac S provided significantly higher AH and TEMP at both sites than Thermovent HEPA. Both Hygrobac S and with Thermovent HEPA provided significantly higher AH and TEMP when placed proximally to the ETT. Conclusion Although placement proximal to the ETT improved both AH and TEMP in both HMEs tested, one HME performed better in the distal position than the other HME in the proximal position. We conclude the both the type and placement of HME can make a significant difference in maintaining AH and TEMP during adult ventilation. PMID:16895607

  2. Influence of exercise modality on agreement between gas exchange and heart rate variability thresholds.

    Science.gov (United States)

    Cunha, F A; Montenegro, R A; Midgley, A W; Vasconcellos, F; Soares, P P; Farinatti, P

    2014-08-01

    The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%VO2 R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and VO2 at GET and HRVT were 16 bpm (P0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and % VO2 R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and % VO2 R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.

  3. Characterization of photosynthetic gas exchange in leaves under simulated adaxial and abaxial surfaces alternant irradiation.

    Science.gov (United States)

    Zhang, Zi-Shan; Li, Yu-Ting; Gao, Hui-Yuan; Yang, Cheng; Meng, Qing-Wei

    2016-07-05

    Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight. To simulate adaxial and abaxial surfaces alternant irradiation (ad-ab-alt irradiation), the adaxial or abaxial surface of leaves were exposed to light regimes that fluctuated between 100 and 1,000 μmol m(-2) s(-1). Compared with constant adaxial irradiation, simulated ad-ab-alt irradiation suppressed net photosynthetic rate (Pn) and transpiration (E) but not water use efficiency. These suppressions were aggravated by an increase in alternant frequency of the light intensity. When leaves were transferred from constant light to simulated ad-ab-alt irradiation, the maximum Pn and E during the high light period decreased, but the rate of photosynthetic induction during this period remained constant. The sensitivity of photosynthetic gas exchange to simulated ad-ab-alt irradiation was lower on abaxial surface than adaxial surface. Under simulated ad-ab-alt irradiation, higher Pn and E were measured on abaxial surface compared with adaxial surface. Therefore, bifacial leaves can fix more carbon than leaves with two "sun-leaf-like" surfaces under ad-ab-alt irradiation. Photosynthetic research should be conducted under dynamic conditions that better mimic nature.

  4. Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress

    International Nuclear Information System (INIS)

    Dąbrowski, P.; Kalaji, M.H.; Baczewska, A.H.; Pawluśkiewicz, B.; Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Paunov, M.; Goltsev, V.

    2017-01-01

    Perennial ryegrass (Lolium perenne L.) is one of the more popular grass species in Europe. It is commonly used for starting lawns in urban areas, where plant growth is limited by many environmental conditions. The contamination of soils by salt is one of the major problems in urban green areas, as well as in natural areas. The basic aim of this study is to provide a detailed in vivo analysis of the changes in the delayed chlorophyll fluorescence and MR 820 signals (induced by salt stress) of two lawn varieties of perennial ryegrass, and to find out if there are correlations between these parameters and gas exchange. Two lawn varieties of Lolium perenne L. were used: Nira and Roadrunner. Salinization was performed at 8 weeks after sowing by adding NaCl in water solution (0, 0.15, and 0.30 M). There were 8 terms of measurement: 0 h, 24 h, 48 h, 96 h, 144 h, 192 h, 240 h, and 288 h after salinization. Our results showed that delayed fluorescence is a tool that can bring completely new opportunities for detecting stress in plants caused by salt. Our work allowed us to identify various limitation patterns in the photosynthetic efficiency of perennial ryegrass lawn varieties grown under salt stress conditions. Significant differences between the two tested varieties in response to salt stress were confirmed.

  5. Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Yu, Shuchun; Li, Xiaojin; Li, Jin; Liu, Sa; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2013-01-01

    Highlights: • The hydrophobicity degradation mechanism of GDL was proposed thoroughly. • C-O and C=O groups appeared on the surfaces of GDL after immersion. • The relative content of PTFE in GDL decreased after immersion. • The surfaces and inner structure of GDL destroyed after immersion. - Abstract: As one of the essential components of proton exchange membrane fuel cell (PEMFC), gas diffusion layer (GDL) is of importance on water management, as well on the performance and durability of PEMFC. In this paper, the hydrophobicity degradation of GDL was investigated by immersing it in the 1.0 mol L −1 H 2 SO 4 solution saturated by air for 1200 h. From the measurements of contact angle and water permeability, the hydrophobic characteristics of the pristine and immersed GDLs were compared. To investigate the causes for hydrophobicity degradation, the GDLs were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry. Further, the chemical compositions of H 2 SO 4 solutions before and after immersion test were analyzed with infrared spectroscopy. Results showed that the hydrophobicity of immersed GDL decreased distinctly, which was caused by the damage of physical structure and surface characteristics. Moreover, the immersed GDL showed a worse fuel cell performance than the pristine GDL, especially under a low humidity condition

  6. Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Seiyed Mohammad Javad Hosseini

    2013-01-01

    Full Text Available This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05 on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

  7. Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration

    Directory of Open Access Journals (Sweden)

    Cameron Abrams

    2013-12-01

    Full Text Available We review a selection of methods for performing enhanced sampling in molecular dynamics simulations. We consider methods based on collective variable biasing and on tempering, and offer both historical and contemporary perspectives. In collective-variable biasing, we first discuss methods stemming from thermodynamic integration that use mean force biasing, including the adaptive biasing force algorithm and temperature acceleration. We then turn to methods that use bias potentials, including umbrella sampling and metadynamics. We next consider parallel tempering and replica-exchange methods. We conclude with a brief presentation of some combination methods.

  8. Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.

    Science.gov (United States)

    Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan

    2013-09-01

    Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P exchange caused by differences in lung inflation and posture.

  9. Gas-exchange patterns of Mediterranean fruit fly Pupae (Diptera: Tephritidae): A tool to forecast developmental stage

    International Nuclear Information System (INIS)

    Nestel, D.; Nemny-Lavy, E.; Alchanatis, V.

    2007-01-01

    The pattern of gas-exchange (CO 2 emission) was investigated for developing Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) pupae incubated at different temperatures. This study was undertaken to explore the usefulness of gas-exchange systems in the determination of physiological age in developing pupae that are mass produced for sterile insect technique projects. The rate of CO 2 emission was measured in a closed flow-through system connected to commercial infrared gas analysis equipment. Metabolic activity (rate of CO 2 emission) was related to pupal eye-color, which is the current technique used to determine physiological age. Eye-color was characterized digitally with 3 variables (Hue, Saturation and Intensity), and color separated by discriminant analysis. The rate of CO 2 emission throughout pupal development followed a U-shape, with high levels of emission during pupariation, pupal transformation and final pharate adult stages. Temperature affected the development time of pupae, but not the basic CO 2 emission patterns during development. In all temperatures, rates of CO 2 emission 1 and 2 d before adult emergence were very similar. After mid larval-adult transition (e.g., phanerocephalic pupa), digital eye-color was significantly correlated with CO 2 emission. Results support the suggestion that gas-exchange should be explored further as a system to determine pupal physiological age in mass production of fruit flies. (author) [es

  10. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  11. A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Xiao, Boqi; Fan, Jintu; Ding, Feng

    2014-01-01

    The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (D T ), pore area fractal dimensions (d f ), water phase (d f,w ) and gas phase (d f,g ) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models

  12. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    Science.gov (United States)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  13. BEST Engineered Hyporheic Zones: Enhanced Hyporheic Exchange and Resazurin and Nitrate Cycling in Constructed Stream Experiments

    Science.gov (United States)

    Herzog, S.; McCray, J. E.; Higgins, C. P.

    2016-12-01

    The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. To increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This research utilized two artificial stream flumes at the Colorado School of Mines in Golden, CO. Each lined stream flume was 15m long, 0.3m wide, had 0.3m sediment depth, and was continuously dosed with recycled water at 0.25 L/s. One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). NaCl breakthrough curves were monitored and analyzed using STAMMT-L, a mobile-immobile exchange model, which showed greater hyporheic exchange and residence times in the BEST stream relative to the control. This result is even more apparent when the calibrated models are used to simulate longer stream reaches. Water quality samples at the reach scale also revealed greater attenuation of nitrate and transformation of the indicator compound resazurin into resorufin. Together these compounds demonstrate that BEST can attenuate contaminants that degrade under anaerobic and aerobic conditions, respectively. These experimental results were also compared to previous numerical simulations to evaluate model accuracy, and show reasonable agreement. Altogether, these results show that BEST may be an effective novel best management practice for improving streamwater quality in urban and

  14. Enhancement of combined heat and mass transfer in a vertical-tube heat and mass exchanger

    International Nuclear Information System (INIS)

    Webb, R.L.; Perez-Blanco, H.

    1986-01-01

    This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air--water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors' hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement

  15. Experimental study on CO2 frosting and clogging in a brazed plate heat exchanger for natural gas liquefaction process

    Science.gov (United States)

    Wu, Jitan; He, Tianbiao; Ju, Yonglin

    2018-04-01

    The plate-fin heat exchanger (PFHE), which has been widely used in natural gas liquefaction (LNG) industry at present, has some disadvantages such as being sensitive to the impurities in the feed gas, such as water, CO2 and H2S. Compared with the PFHE, the brazed plate heat exchanger (BPHE), which has been applied in some boil off gas (BOG) recycling LNG plants of small to middle size, has simpler inherent structure and higher impurity tolerance. In this study the BPHE is suggested to replace the PFHE to simplify or even omit the massive CO2 purification equipment for the LNG process. A set of experimental apparatus is designed and constructed to investigate the influence of the CO2 concentration of the natural gas on solid precipitation inside a typical BPHE meanly by considering the flow resistance throughout the LNG process. The results show that the maximum allowable CO2 concentration of the natural gas liquefied in the BPHE is two orders of magnitude higher than that in the PFHE under the same condition. In addition, the solid-liquid separation for the CO2 impurity is studied and the reasonable separating temperature is obtained. The solid CO2 should be separated below 135 K under the pressure of 3 MPa.

  16. Regulation and acclimation of leaf gas exchange in a piñon-juniper woodland exposed to three different precipitation regimes.

    Science.gov (United States)

    Limousin, Jean-Marc; Bickford, Christopher P; Dickman, Lee T; Pangle, Robert E; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Osuna, Jessica L; Pockman, William T; McDowell, Nate G

    2013-10-01

    Leaf gas-exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas-exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon-juniper Pinus edulis-Juniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (-45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas-exchange rates under well-watered conditions, leaf-specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade-off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA. © 2013 John Wiley & Sons Ltd.

  17. Effect of wind and currents on gas exchange in an estuarine system. Final technical report, 1 August 1986-31 July 1987

    International Nuclear Information System (INIS)

    Broecker, W.S.; Ledwell, J.R.; Bopp, R.

    1987-11-01

    The objectives were to develop a non-volatile tracer to use in gas exchange experiments in laterally unconfined systems and to study applications of deliberate tracers in limnology and oceanography. Progress was made on both fronts but work on the development of the non-volatile tracer proved to be more difficult and labor intensive that anticipated so no field experiments using non-volatile tracers was performed as yet. In the search for a suitable non-volatile tracer for an ocean scale gas exchange experiment a tracer was discovered which does not have the required sensitivity for a large scale experiment, but is very easy to analyze and will be well suited for smaller experiments such as gas exchange determinations on rivers and streams. Sulfur hexafluoride, SF 6 , was used successfully as a volatile tracer along with tritium as a non-volatile tracer to study gas exchange rates from a primary stream. This is the first gas exchange experiment in which gas exchange rates were determined on a head water stream where significant groundwater input occurs along the reach. In conjunction with SF 6 , Radon-222 measurements were performed on the groundwater and in the stream. The feasibility of using a combination of SF 6 and radon is being studied to determine groundwater inputs and gas exchange of rates in streams with significant groundwater input without using a non-volatile tracer

  18. Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Fitridge, Isla

    2012-01-01

    We compared photosynthetic gas exchange, the photosynthesis-leaf nitrogen (N) relationship, and growth response to nutrient enrichment in the invasive wetland grass Glyceria maxima (Hartman) Holmburg with two native New Zealand Carex sedges (C. virgata Boott and C. secta Boott), to explore...... the ecophysiological traits contributing to invasive behaviour. The photosynthesis-nitrogen relationship was uniform across all three species, and the maximum light-saturated rate of photosynthesis expressed on a leaf area basis (Amaxa) did not differ significantly between species. However, specific leaf area (SLA...... the sedges, but correlations between leaf N, gas exchange parameters (Amaxa, Amaxm, Rd and gs) and RGR were all highly significant in G. maxima, whereas they were weak or absent in the sedges. Allocation of biomass (root:shoot ratio, leaf mass ratio, root mass ratio), plant N and P content, and allocation...

  19. The Effect of Water Stress on the Gas Exchange Parameters, Productivity and Seed Health of Buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Agnieszka Pszczółkowska

    2012-12-01

    Full Text Available The present pot experiment studied the effect of different soil moisture contents (60 - 70% CWC (capillary water capacity - control; 30 - 35% CWC - water stress on buckwheat productivity, the gas exchange parameters and health of buckwheat nuts. It was found that water deficit affected adversely certain biometric features investigated (plant height, number of nuts per cluster and caused a decrease in seed weight per plant. It was also shown that water stress reduced the values of the investigated gas exchange parameters (photosynthesis rate, transpiration rate, intercellular-space CO2 concentration, and stomatal conductance relative to the control treatment. Different soil moisture contents did not have a clear effect on fungal colonization of seeds. The multiplex PCR assays did not enable the detection of the genes responsible for mycotoxin synthesis. Under water deficit conditions, an increase was found in the content of albumin and globulin fractions as well as of glutelin fractions.

  20. Efficiency Enhancement in DC Pulsed Gas Discharge Memory Panel

    Science.gov (United States)

    Okamoto, Yukio

    1983-01-01

    Much improvement in the luminous efficiency of a dc pulsed gas discharge memory panel for color TV display was achieved by shortening the sustaining pulse duration. High energy electrons can thus be produced in the pulsed discharge with fast rise times. Calculated optimum value of E/P in a Xe gas discharge is 7-8 V/cm\\cdotTorr.

  1. Features of gas exchange and use of reserve substances in pumpkin seedlings in conditions of skoto- and photomorphogenesis under the influence of gibberellin and chlormequat-chloride

    Directory of Open Access Journals (Sweden)

    I. V. Poprotska

    2017-02-01

    Full Text Available We investigated the effect of gibberellin and the antigibberellic agent chlormequat-chloride on gas exchange and use of reserve substances in pumpkin seedlings during germination in the light and in the dark. We established that an artificial strengthening or growth inhibition of pumpkin seedlings in conditions of skotomorphogenesis caused an increase in of respiration intensity. Gibberellin treatment increased the proportion of assimilation processes in carbon dioxide gas exchange of seedlings, and growth inhibition by retardant caused an increase in respiratory costs when the nutrition type switches in the light from heterotrophic to autotrophic. The formation by seedlings of the demand for reserve assimilates from cotyledons was largely determined by change of activity of subapical meristems, which is manifested in the acceleration of seed germination, enhancing of histogenesis for the actions of gibberellin and in the weakening of these processes under the influence of retardants. Reserve substances used both oil and nitrogen-containing compounds. The content of protein nitrogen in pumpkin cotyledons decreased more in the light than in the dark, moreover growth inhibition by the retardant slowed down and growth increase by gibberellin accelerated this process both in conditions of photomorphogenesis and skotomorphogenesis.

  2. Leaf water potential, gas exchange and chlorophyll a fluorescence in acariquara seedlings (Minquartia guianensis Aubl.) under water stress and recovery

    OpenAIRE

    Liberato, Maria Astrid Rocha; Gonçalves, José Francisco de Carvalho; Chevreuil, Larissa Ramos; Nina Junior, Adamir da Rocha; Fernandes, Andreia Varmes; Santos Junior, Ulysses Moreira dos

    2006-01-01

    The physiological performance of acariquara (Minquartia guianensis) seedlings submitted to water deficit and the recovery of physiological parameters during rehydration were investigated in a greenhouse experiment. The analyzed parameters were: leaf water potential, gas exchange and chlorophyll a fluorescence. After thirty-five days, non-irrigated plants exhibited a leaf water potential 70 % lower compared to control plants (irrigated daily) and the stomatal conductance reached values close t...

  3. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory

    Science.gov (United States)

    Kimberly A. Novick; Chelcy F. Miniat; James M. Vose

    2016-01-01

    We merge concepts from stomatal optimization theory and cohesion–tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a ‘demand limitation’ driven by an assumption of optimal stomatal functioning; (2) ‘hydraulic limitation’ of water movement from the roots to the leaves...

  4. Parameterization of Leaf-Level Gas Exchange for Plant Functional Groups From Amazonian Seasonal Tropical Rain Forest

    Science.gov (United States)

    Domingues, T. F.; Berry, J. A.; Ometto, J. P.; Martinelli, L. A.; Ehleringer, J. R.

    2004-12-01

    Plant communities exert strong influence over the magnitude of carbon and water cycling through ecosystems by controlling photosynthetic gas exchange and respiratory processes. Leaf-level gas exchange fluxes result from a combination of physiological properties, such as carboxylation capacity, respiration rates and hydraulic conductivity, interacting with environmental drivers such as water and light availability, leaf-to-air vapor pressure deficit, and temperature. Carbon balance models concerned with ecosystem-scale responses have as a common feature the description of eco-physiological properties of vegetation. Here we focus on the parameterization of ecophysiological gas-exchange properties of plant functional groups from a pristine Amazonian seasonally dry tropical rain forest ecosystem (FLONA-Tapajós, Santarém, PA, Brazil). The parameters were specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, photosynthetic carboxylation capacity, dark respiration rates, and stomatal conductance to water vapor. Our plant functional groupings were lianas at the top of the canopy, trees at the top of the canopy, mid-canopy trees and undestory trees. Within the functional groups, we found no evidence that leaves acclimated to seasonal changes in precipitation. However, there were life-form dependent distinctions when a combination of parameters was included. Top-canopy lianas were statistically different from top-canopy trees for leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and stomatal conductance to water vapor, suggesting that lianas are more conservative in the use of water, causing a stomatal limitation on photosynthetic assimilation. Top-canopy, mid canopy and understory groupings were distinct for specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and photosynthetic carboxylation capacity. The recognition that plant

  5. Gas-phase fragmentation of peptides to increase the spatial resolution of the Hydrogen Exchange Mass Spectrometry experiment

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    are produced after precursor ion selection and thus do not add complexity to the LC-MS analysis. The key to obtaining optimal spatial resolution in a hydrogen exchange mass spectrometry (HX-MS) experiment is the fragmentation efficiency. This chapter discusses common fragmentation techniques like collision....../D scrambling, thus making them suitable for HX applications. By combining the classic bottom-up HX-MS workflow with gas-phase fragmentation by ETD, detailed information on protein HX can be obtained....

  6. Peach Water Relations, Gas Exchange, Growth and Shoot Mortality under Water Deficit in Semi-Arid Weather Conditions

    OpenAIRE

    Rahmati, Mitra; Davarynejad, Gholam Hossein; G?nard, Michel; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2015-01-01

    In this study the sensitivity of peach tree (Prunus persica L.) to three water stress levels from mid-pit hardening until harvest was assessed. Seasonal patterns of shoot and fruit growth, gas exchange (leaf photosynthesis, stomatal conductance and transpiration) as well as carbon (C) storage/mobilization were evaluated in relation to plant water status. A simple C balance model was also developed to investigate sink-source relationship in relation to plant water status at the tree level. The...

  7. ESTIMATION OF GAS EXCHANGE INDICATORS AT 3-D MODELING OF THE WORKING PROCESS OF THE TWO-STROKE PETROL ENGINE

    Directory of Open Access Journals (Sweden)

    V. Korohodskyi

    2017-06-01

    Full Text Available With the help of 3-D modeling of the workflow of a two-stroke engine with spark ignition, crank-chamber scavenging and a carburetor feeding system in the modes of external speed characteristic the indices of gas exchange were evaluated. The simulation results are consistent with the experimental data and 3D simulation results in the AVL FIRE and MTFS® software complexes. The model allows performing optimized calculations of multiphase flow in ICE during experimental design work.

  8. Two Inexpensive and Non-destructive Techniques to Correct for Smaller-Than-Gasket Leaf Area in Gas Exchange Measurements

    Directory of Open Access Journals (Sweden)

    Andreas M. Savvides

    2018-04-01

    Full Text Available The development of technology, like the widely-used off-the-shelf portable photosynthesis systems, for the quantification of leaf gas exchange rates and chlorophyll fluorescence offered photosynthesis research a massive boost. Gas exchange parameters in such photosynthesis systems are calculated as gas exchange rates per unit leaf area. In small chambers (<10 cm2, the leaf area used by the system for these calculations is actually the internal gasket area (AG, provided that the leaf covers the entire AG. In this study, we present two inexpensive and non-destructive techniques that can be used to easily quantify the enclosed leaf area (AL of plant species with leaves of surface area much smaller than the AG, such as that of cereal crops. The AL of the cereal crop species studied has been measured using a standard image-based approach (iAL and estimated using a leaf width-based approach (wAL. iAL and wAL did not show any significant differences between them in maize, barley, hard and soft wheat. Similar results were obtained when the wAL was tested in comparison with iAL in different positions along the leaf in all species studied. The quantification of AL and the subsequent correction of leaf gas exchange parameters for AL provided a precise quantification of net photosynthesis and stomatal conductance especially with decreasing AL. This study provides two practical, inexpensive and non-destructive solutions to researchers dealing with photosynthesis measurements on small-leaf plant species. The image-based technique can be widely used for quantifying AL in many plant species despite their leaf shape. The leaf width-based technique can be securely used for quantifying AL in cereal crop species such as maize, wheat and barley along the leaf. Both techniques can be used for a wide range of gasket shapes and sizes with minor technique-specific adjustments.

  9. Alveolar gas exchange and tissue oxygenation during incremental treadmill exercise, and their associations with blood O2 carrying capacity

    Directory of Open Access Journals (Sweden)

    Antti-Pekka E. Rissanen

    2012-07-01

    Full Text Available The magnitude and timing of oxygenation responses in highly active leg muscle, less active arm muscle, and cerebral tissue, have not been studied with simultaneous alveolar gas exchange measurement during incremental treadmill exercise. Nor is it known, if blood O2 carrying capacity affects the tissue-specific oxygenation responses. Thus, we investigated alveolar gas exchange and tissue (m. vastus lateralis, m. biceps brachii, cerebral cortex oxygenation during incremental treadmill exercise until volitional fatigue, and their associations with blood O2 carrying capacity in 22 healthy men. Alveolar gas exchange was measured, and near-infrared spectroscopy (NIRS was used to monitor relative concentration changes in oxy- (Δ[O2Hb], deoxy- (Δ[HHb] and total hemoglobin (Δ[tHb], and tissue saturation index (TSI. NIRS inflection points (NIP, reflecting changes in tissue-specific oxygenation, were determined and their coincidence with ventilatory thresholds (anaerobic threshold (AT, respiratory compensation point (RC; V-slope method was examined. Blood O2 carrying capacity (total hemoglobin mass (tHb-mass was determined with the CO-rebreathing method. In all tissues, NIPs coincided with AT, whereas RC was followed by NIPs. High tHb-mass associated with leg muscle deoxygenation at peak exercise (e.g., Δ[HHb] from baseline walking to peak exercise vs. tHb-mass: r = 0.64, p < 0.01, but not with arm muscle- or cerebral deoxygenation. In conclusion, regional tissue oxygenation was characterized by inflection points, and tissue oxygenation in relation to alveolar gas exchange during incremental treadmill exercise resembled previous findings made during incremental cycling. It was also found out, that O2 delivery to less active m. biceps brachii may be limited by an accelerated increase in ventilation at high running intensities. In addition, high capacity for blood O2 carrying was associated with a high level of m. vastus lateralis deoxygenation at peak

  10. Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer

    International Nuclear Information System (INIS)

    Kong, Im Mo; Choi, Jong Won; Kim, Sung Il; Lee, Eun Sook; Kim, Min Soo

    2015-01-01

    Highlights: • Investigated self-humidification effect of structurally modified GDBLs in PEMFCs. • One conventional and two modified GDLs were prepared. • Structural design of the GDBLs significantly affected self-humidification. • Stacking was found to have negligible effect on self-humidification. • It can be applied readily to self-humidified PEMFCs. - Abstract: Adequate hydration of the membrane is required to ensure high proton conductivity in proton exchange membrane fuel cells (PEMFCs), which, in turn, is required for achieving high cell performances. While external humidifiers are typically used to humidify the supplied air in conventional systems, their use increases the complexity, weight, volume, and parasitic power loss in fuel cell systems, rendering them unviable in some systems, particularly for portable applications. In this study, the structure of a gas diffusion backing layer (GDBL) was modified to enhance the self-humidification effect in PEMFCs. Three types of GDLs were prepared for the experiments: a conventional GDL (GDL-A with uniform single GDBL) and two modified GDLs (GDL-A′B with uniform double GDBL and GDL-A′C with heterogeneous double GDBLs). In order to evaluate the effect of stacking and structural design on the self-humidification characteristics, some characteristics of the GDLs such as contact angle, resistance, and vapor permeation rate were measured. The electrochemical performances of the fuel cells were also measured at various relative humidity (RH) and stoichiometric ratio (SR) conditions. The results showed that stacking had a negligible effect, whereas the structural design of the GDBL had a significant effect on self-humidification. The self-humidification effect and the cell performance were improved significantly in the structurally modified GDBL. In addition, considering the actual field conditions and the results of the present study, it was concluded that the structural modifications made to the GDBL would

  11. Leaf gas exchange performance and the lethal water potential of five European species during drought.

    Science.gov (United States)

    Li, Shan; Feifel, Marion; Karimi, Zohreh; Schuldt, Bernhard; Choat, Brendan; Jansen, Steven

    2016-02-01

    Establishing physiological thresholds to drought-induced mortality in a range of plant species is crucial in understanding how plants respond to severe drought. Here, five common European tree species were selected (Acer campestre L., Acer pseudoplatanus L., Carpinus betulus L., Corylus avellana L. and Fraxinus excelsior L.) to study their hydraulic thresholds to mortality. Photosynthetic parameters during desiccation and the recovery of leaf gas exchange after rewatering were measured. Stem vulnerability curves and leaf pressure-volume curves were investigated to understand the hydraulic coordination of stem and leaf tissue traits. Stem and root samples from well-watered and severely drought-stressed plants of two species were observed using transmission electron microscopy to visualize mortality of cambial cells. The lethal water potential (ψlethal) correlated with stem P99 (i.e., the xylem water potential at 99% loss of hydraulic conductivity, PLC). However, several plants that were stressed beyond the water potential at 100% PLC showed complete recovery during the next spring, which suggests that the ψlethal values were underestimated. Moreover, we observed a 1 : 1 relationship between the xylem water potential at the onset of embolism and stomatal closure, confirming hydraulic coordination between leaf and stem tissues. Finally, ultrastructural changes in the cytoplasm of cambium tissue and mortality of cambial cells are proposed to provide an alternative approach to investigate the point of no return associated with plant death. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Combined low temperature-high light effects on gas exchange properties of jojoba leaves.

    Science.gov (United States)

    Loreto, F; Bongi, G

    1989-12-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO(2) were measured on jojoba leaves recovering from chilling temperature (4 degrees C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO(2) was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO(2) concentration may constitute an ecological advantage of jojoba as a crop in the future.

  13. Combined Low Temperature-High Light Effects on Gas Exchange Properties of Jojoba Leaves 1

    Science.gov (United States)

    Loreto, Francesco; Bongi, Guido

    1989-01-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO2 were measured on jojoba leaves recovering from chilling temperature (4°C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO2 was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO2 concentration may constitute an ecological advantage of jojoba as a crop in the future. PMID:16667220

  14. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce

    Science.gov (United States)

    Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan

    2010-09-01

    The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.

  15. Gas exchanges and water use efficiency in the selection of tomato genotypes tolerant to water stress.

    Science.gov (United States)

    Borba, M E A; Maciel, G M; Fraga Júnior, E F; Machado Júnior, C S; Marquez, G R; Silva, I G; Almeida, R S

    2017-06-20

    Water stress can affect the yield in tomato crops and, despite this, there are few types of research aiming to select tomato genotypes resistant to the water stress using physiological parameters. This experiment aimed to study the variables that are related to the gas exchanges and the efficiency in water use, in the selection of tomato genotypes tolerant to water stress. It was done in a greenhouse, measuring 7 x 21 m, in a randomized complete block design, with four replications (blocks), being five genotypes in the F 2 BC 1 generation, which were previously obtained from an interspecific cross between Solanum pennellii versus S. lycopersicum and three check treatments, two susceptible [UFU-22 (pre-commercial line) and cultivar Santa Clara] and one resistant (S. pennellii). At the beginning of flowering, the plants were submitted to a water stress condition, through irrigation suspension. After that CO 2 assimilation, internal CO 2 , stomatal conductance, transpiration, leaf temperature, instantaneous water use efficiency, intrinsic efficiency of water use, instantaneous carboxylation efficiency, chlorophyll a and b, and the potential leaf water (Ψf) were observed. Almost all variables that were analyzed, except CO 2 assimilation and instantaneous carboxylation efficiency, demonstrated the superiority of the wild accession, S. pennellii, concerning the susceptible check treatments. The high photosynthetic rate and the low stomatal conductance and transpiration, presented by the UFU22/F 2 BC 1 #2 population, allowed a better water use efficiency. Because of that, these physiological characteristics are promising in the selection of tomato genotypes tolerant to water stress.

  16. Pulmonary hypertension in patients with idiopathic pulmonary fibrosis - the predictive value of exercise capacity and gas exchange efficiency.

    Directory of Open Access Journals (Sweden)

    Sven Gläser

    Full Text Available Exercise capacity and survival of patients with IPF is potentially impaired by pulmonary hypertension. This study aims to investigate diagnostic and prognostic properties of gas exchange during exercise and lung function in IPF patients with or without pulmonary hypertension. In a multicentre setting, patients with IPF underwent right heart catheterization, cardiopulmonary exercise and lung function testing during their initial evaluation. Mortality follow up was evaluated. Seventy-three of 135 patients [82 males; median age of 64 (56; 72 years] with IPF had pulmonary hypertension as assessed by right heart catheterization [median mean pulmonary arterial pressure 34 (27; 43 mmHg]. The presence of pulmonary hypertension was best predicted by gas exchange efficiency for carbon dioxide (cut off ≥152% predicted; area under the curve 0.94 and peak oxygen uptake (≤56% predicted; 0.83, followed by diffusing capacity. Resting lung volumes did not predict pulmonary hypertension. Survival was best predicted by the presence of pulmonary hypertension, followed by peak oxygen uptake [HR 0.96 (0.93; 0.98]. Pulmonary hypertension in IPF patients is best predicted by gas exchange efficiency during exercise and peak oxygen uptake. In addition to invasively measured pulmonary arterial pressure, oxygen uptake at peak exercise predicts survival in this patient population.

  17. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.

    Science.gov (United States)

    Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C

    2017-10-01

    Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. © 2015 John Wiley & Sons Ltd.

  19. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. © 2016 John Wiley & Sons Ltd.

  20. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, K.; Smith, W.K. [Wake Forest Univ., Winston-Salem, NC (United States). Dept. of Biology

    2008-01-15

    Global climate change is expected to increase regional cloud ceiling levels in many mountainous forested areas of the world. This study investigated environmental influences on the gas exchange physiology of understory red spruce and Fraser fir trees at 2 sites in the Appalachian mountains. The study hypothesized that the humid, cloudy environment would influence the photosynthetic performance of the trees, and that the species would adapt to low, diffuse light. The study also predicted that leaf conductance to carbon dioxide (CO{sub 2}) would be high as a result of low leaf-to-air-vapour pressure deficit (LAVD). The study demonstrated that leaf conductance decreased exponentially as LAVD increased. Predawn leaf water potentials remained stable, while late afternoon values declined. It was concluded that leaf gas exchange was correlated with the response of leaf conductance and LAVD. The cloudy, humid environment strongly influenced tree leaf gas exchange and water relations. It was suggested that further research is needed to investigate cloud impacts on carbon gain and water relations. 72 refs., 1 tab., 8 figs.

  1. Interruption to cutaneous gas exchange is not a likely mechanism of WNS-associated death in bats.

    Science.gov (United States)

    Carey, Charleve S; Boyles, Justin G

    2015-07-01

    Pseudogymnoascus destructans is the causative fungal agent of white-nose syndrome (WNS), an emerging fungal-borne epizootic. WNS is responsible for a catastrophic decline of hibernating bats in North America, yet we have limited understanding of the physiological interactions between pathogen and host. Pseudogymnoascus destructans severely damages wings and tail membranes, by causing dryness that leads to whole sections crumbling off. Four possible mechanisms have been proposed by which infection could lead to dehydration; in this study, we tested one: P. destructans infection could cause disruption to passive gas-exchange pathways across the wing membranes, thereby causing a compensatory increase in water-intensive pulmonary respiration. We hypothesized that total evaporative water loss would be greater when passive gas exchange was inhibited. We found that bats did not lose more water when passive pathways were blocked. This study provides evidence against the proposed proximal mechanism that disruption to passive gas exchange causes dehydration and death to WNS-infected bats. © 2015. Published by The Company of Biologists Ltd.

  2. Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator

    National Research Council Canada - National Science Library

    Welch, Gerard

    1999-01-01

    The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine...

  3. A SIGNAL ENHANCED PORTABLE RAMAN PROBE FOR ANESTHETIC GAS MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schlüter

    2015-03-01

    Full Text Available The spontaneous Raman scattering technique is an excellent tool for a quantitative analysis of multi-species gas mixtures. It is a noninvasive optical method for species identification and gas phase concentration measurement of all Raman active molecules, since the intensity of the species specific Raman signal is linearly dependent on the concentration. Applying a continuous wave (CW laser it typically takes a few seconds to capture a gas phase Raman spectrum at room temperature. Nevertheless in contrast to these advantages the weak Raman signal intensity is a major drawback. Thus, it is still challenging to detect gas phase Raman spectra in alow-pressure regime with a temporal resolution of only a few 100 ms. In this work a fully functional gas phase Raman system for measurements in the low-pressure regime (p ≥ 980 hPa (absolute is presented. It overcomes the drawback of a weak Raman signal by using a multipass cavity. A description of the sensor setup and of the multipass arrangement will be presented. Moreover the complete functionality of the sensor system will be demonstrated by measurements at an anesthesia simulator under clinical relevant conditions and in comparison to a conventional gas monitor.

  4. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.

    Science.gov (United States)

    Song, Xin; Simonin, Kevin A; Loucos, Karen E; Barbour, Margaret M

    2015-12-01

    The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of 'net-flux' (rather than 'gross-flux' as suggested by the original F&C model)-based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv . There is an increasing popularity among plant ecophysiologists to use a gas-exchange system coupled to laser-based isotope measurement for investigating non-steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas-exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv ) being constant and independent of that of transpiration (δE ). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated

  5. The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland

    Directory of Open Access Journals (Sweden)

    Vivian Zufferey

    2017-04-01

    Full Text Available Aims : The aims of this study were to investigate the physiological behavior (plant hydraulics, gas exchange of the cultivar Pinot Noir in the field under progressively increasing conditions of water stress and analyze the effects of drought on grape and wine quality. Methods and results : Grapevines of the variety Vitis vinifera L. cv. Pinot Noir (clone 9-18, grafted onto 5BB were subjected to different water regimes (irrigation treatments over the growing season. Physiological indicators were used to monitor plant water status (leaf and stem water potentials and relative carbon isotope composition (d13C in must sugars. Leaf gas exchange (net photosynthesis A and transpiration E, leaf stomatal conductance (gs, specific hydraulic conductivity in petioles (Kpetiole, yield components, berry composition at harvest, and organoleptic quality of wines were analyzed over a 7-year period, between 2009 and 2015, under relatively dry conditions in the canton of Wallis, Switzerland. A progressively increasing water deficit, observed throughout the season, reduced the leaf gas exchange (A and E and gs in non-irrigated vines. The intrinsic water use efficiency (WUEi, A/gs increased during the growing season and was greater in water-stressed vines than in well-watered vines (irrigated vines. This rise in WUEi was correlated with an increase in d13C in must sugars at harvest. Drought led to decreases in Kpetiole, E and sap flow in stems. A decrease in vine plant vigor was observed in vines that had been subjected to water deficits year after year. Moderate water stress during ripening favored sugar accumulation in berries and caused a reduction in total acidic and malic contents in must and available nitrogen content (YAN. Wines produced from water-stressed vines had a deeper color and were richer in anthocyanins and phenol compounds compared with wines from well-watered vines with no water stress. The vine water status greatly influenced the organoleptic

  6. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Science.gov (United States)

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  7. Bottom-up design of a gas futures market in East Asia: Lessons from the Dojima rice exchange

    Directory of Open Access Journals (Sweden)

    Xunpeng Shi

    2016-10-01

    Full Text Available The natural gas market in East Asia remains fragmented without a functioning benchmark price to duly reflect the dynamics of demand and supply forces in the region. A functional regional gas futures market, which is highly dependent on the presence of well-developed physical spot trading, is yet to be established. Since the intra-regional pipeline connection is largely non-existent in East Asia, it is the LNG spot cargo trading that is likely to become the basis for the regional gas futures market. This paper offers a novel approach to understanding the development of such a market by analyzing the experience of a different commodity market – the Dojima Rice Exchange (DRE – and identifying potentially transferrable lessons in the market design and the role of government regulations. Based on the case study analysis, implications for the development of natural gas trading hubs in East Asia are offered and an LNG futures exchange design is put forward.

  8. Leaf gas exchange and oxidative stress in sorghum plants supplied with silicon and infected by Colletotrichum sublineolum.

    Science.gov (United States)

    Resende, Renata Sousa; Rodrigues, Fabrício Ávila; Cavatte, Paulo Cezar; Martins, Samuel Cordeiro Vitor; Moreira, Wiler Ribas; Chaves, Agnaldo Rodrigues Melo; Damatta, Fábio Murilo

    2012-09-01

    Considering the economic importance of anthracnose, caused by Colletotrichum sublineolum, and silicon (Si) to enhance sorghum resistance against this disease, this study aimed to investigate the effect of this element on leaf gas exchange and also the antioxidative system when infected by C. sublineolum. Plants from sorghum line CMSXS142 (BR 009 [Tx623] - Texas), growing in hydroponic culture with (+Si, 2 mM) or without (-Si) Si, were inoculated with C. sublineolum. Disease severity was assessed at 2, 4, 6, 8, and 10 days after inoculation (dai) and data were used to calculate the area under anthracnose progress curve (AUAPC). Further, the net carbon assimilation rate (A), stomatal conductance to water vapor (g(s)), internal-to-ambient CO₂ concentration ratio (C(i)/C(a)), and transpiration rate (E); the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR); the electrolyte leakage (EL), and the concentrations of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA) were determined. The AUAPC was reduced by 86% for the +Si plants compared with the -Si plants. The values of A, g(s), and E were lower upon inoculation of -Si plants in contrast to inoculated +Si plants with decreases of 31 and 60% for A, 34 and 61% for g(s), and 27 and 57% for E, respectively, at 4 and 8 dai. For the noninoculated plants, there was no significant difference between the -Si and +Si treatments for the values of A, g(s), and E. The C(i)/C(a) ratio was similar between the -Si and +Si treatments, regardless of the pathogen inoculation. The activities of SOD, CAT, APX, and GR tended to be higher in the +Si plants compared with the -Si plants upon inoculation with C. sublineolum. The EL significantly increased for -Si plants compared with +Si plants. The MDA concentration significantly increased by 31 and 38% at 4 and 8 dai, respectively, for the -Si plants compared with the +Si plants. Based on these results, Si may have a

  9. Importance of ventricular rate after mode switching during low intensity exercise as assessed by clinical symptoms and ventilatory gas exchange.

    Science.gov (United States)

    Brunner-La Rocca, H P; Rickli, H; Weilenmann, D; Duru, F; Candinas, R

    2000-01-01

    Automatic mode switching from DDD(R) to DDI(R) or VVI(R) pacing modes has improved dual chamber pacing in patients at high risk for supraventricular tachyarrhythmias. However, little is known about the effect of ventricular pacing rate adaptation after mode switching. We conducted a single-blinded, crossover study in 15 patients (58 +/- 21 years) with a DDD pacemaker who had AV block and normal sinus node function to investigate the influence of pacing rate adaptation to intrinsic heart rate during low intensity exercise. Patients performed two tests (A/B) of low intensity treadmill exercise (0.5 W/kg) in randomized order. They initially walked for 6 minutes while paced in DDD mode. The pacing mode was then switched to VVI with a pacing rate of either 70 beats/min (test A) or matched to the intrinsic heart rate (95 +/- 11 beats/min test B). Respiratory gas exchange variables were determined and patients classified the effort before and after mode switching on a Borg scale from 6 to 20. Percentage changes of respiratory gas exchange measurements were significantly larger (O2 consumption: -8.2 +/- 5.0% vs. -0.6 +/- 7.2%; ventilatory equivalent of CO2 exhalation: 5.3 +/- 4.9% vs. 1.5 +/- 4.3%; respiratory exchange ratio: 7.0 +/- 2.2% vs. 3.5 +/- 3.0%; end-tidal CO2: -5.7 +/- 2.9% vs. -1.8 +/- 2.7%; all P rate unadjusted than after adjusted mode switching. Mode switching from DDD to VVI pacing is better tolerated and gas exchange measurements are less influenced if ventricular pacing rate is adjusted to the level of physical activity. Thus, pacing rate adjustment should be considered as part of automatic mode switch algorithms.

  10. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.

    Science.gov (United States)

    Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao

    2017-08-01

    Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

  11. Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.

    Science.gov (United States)

    Morel, Alexandre; Zuo, Kuichang; Xia, Xue; Wei, Jincheng; Luo, Xi; Liang, Peng; Huang, Xia

    2012-08-01

    A novel configuration of microbial desalination cell (MDC) packed with ion-exchange resin (R-MDC) was proposed to enhance water desalination rate. Compared with classic MDC (C-MDC), an obvious increase in desalination rate (DR) was obtained by R-MDC. With relatively low concentration (10-2 g/L NaCl) influents, the DR values of R-MDC were about 1.5-8 times those of C-MDC. Ion-exchange resins packed in the desalination chamber worked as conductor and thus counteracted the increase in ohmic resistance during treatment of low concentration salt water. Ohmic resistances of R-MDC stabilized at 3.0-4.7 Ω. By contrast, the ohmic resistances of C-MDC ranged from 5.5 to 12.7 Ω, which were 55-272% higher than those of R-MDC. Remarkable improvement in desalination rate helped improve charge efficiency for desalination in R-MDC. The results first showed the potential of R-MDC in the desalination of water with low salinity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Enhancement of exchange coupling interaction of NdFeB/MnBi hybrid magnets

    Science.gov (United States)

    Nguyen, Truong Xuan; Nguyen, Khanh Van; Nguyen, Vuong Van

    2018-03-01

    MnBi ribbons were fabricated by melt - spinning with subsequent annealing. The MnBi ribbons were ground and mixed with NdFeB commercial Magnequench powders (MQA). The hybrid powder mixtures were subjected thrice to the annealing and ball-milling route. The hybrid magnets (100 - x)NdFeB/xMnBi, x=0, 30, 40, 50 and 100 wt% were in-mold aligned in an 18 kOe magnetic field and warm compacted at 290 °C by 2000 psi uniaxial pressure for 10 min. An enhancement of the exchange coupling of NdFeB/MnBi hybrid magnets was obtained by optimizing the magnets' microstructures via annealing and ball-milling processes. The magnetic properties of prepared NdFeB/MnBi hybrid magnets were studied and discussed in details.

  13. Enhancement of Oxidative Desulfurization Performance over UiO-66(Zr) by Titanium Ion Exchange.

    Science.gov (United States)

    Ye, Gan; Qi, Hui; Li, Xiaolin; Leng, Kunyue; Sun, Yinyong; Xu, Wei

    2017-07-19

    Oxidative desulfurization is considered to be one of the most promising methods for producing ultra-low-sulfur fuels because it can effectively remove refractory sulfur-containing aromatic compounds under mild conditions. In this work, the oxidative desulfurization performance over UiO-66(Zr) is greatly enhanced by Ti ion exchange. This strategy is not only efficient for UiO-66(Zr) with crystal defects but also for UiO-66(Zr) with high crystallinity. In particular, the performance of UiO-66(Zr) with high crystallinity in the oxidative desulfurization of dibenzothiophene can be improved more than 11-fold, which can be mainly attributed to the introduction of active Ti sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhancing cuttings removal with gas blasts while drilling on Mars

    Science.gov (United States)

    Zacny, K. A.; Quayle, M. C.; Cooper, G. A.

    2005-04-01

    Future missions to Mars envision use of drills for subsurface exploration. Since the Martian atmosphere precludes the use of liquids for cuttings removal, proposed drilling machines utilize mechanical cuttings removal systems such as augers. However, an auger can substantially contribute to the total power requirements, and in the worst scenario it can choke. A number of experiments conducted under Martian pressures showed that intermittent blasts of gas at low differential pressures can effectively lift the cuttings out of the hole. A gas flushing system could be incorporated into the drill assembly for assistance in clearing the holes of rock cuttings or for redundancy in case of auger jamming. A number of variables such as the particle size distribution of the rock powder, the type of gas used, the bit and auger side clearances, the initial mass of cuttings, and the ambient pressure were investigated and found to affect the efficiency. In all tests the initial volume of gas was close to 1 L and the differential pressure was varied to achieve desired clearing efficiencies. Particles were being lifted out of the hole at a maximum speed of 6 m/s at a differential pressure of 25 torr and ambient pressure of 5 torr. Flushing tests lasted on average for 2 s. The power required to compress the thin Martian atmosphere to achieve a sufficient gas blast every minute or so at 10% efficiency was calculated to be of the order of a few watts.

  15. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur; Loh, Wai Soong; Chakraborty, Anutosh; Saha, Bidyut Baran; Chun, Won Gee; Ng, Kim Choon

    2011-01-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation

  16. Local Nusselt number enhancement during gas-liquid Taylor bubble flow in a square mini-channel: An experimental study

    International Nuclear Information System (INIS)

    Majumder, Abhik; Mehta, Balkrishna; Khandekar, Sameer

    2013-01-01

    Taylor bubble flow takes place when two immiscible fluids (liquid-liquid or gas-liquid) flow inside a tube of capillary dimensions within specific range of volume flow ratios. In the slug flows where gas and liquid are two different phases, liquid slugs are separated by elongated Taylor bubbles. This singular flow pattern is observed in many engineering mini-/micro-scale devices like pulsating heat pipes, gas-liquid-solid monolithic reactors, micro-two-phase heat exchangers, digital micro-fluidics, micro-scale mass transfer process, fuel cells, etc. The unique and complex flow characteristics require understanding on local, as well as global, spatio-temporal scales. In the present work, the axial stream-wise profile of the fluid and wall temperature for air-water (i) isolated single Taylor bubble and, (ii) a train of Taylor bubbles, in a horizontal square channel of size 3.3 mm x 3.3 mm x 350 mm, heated from the bottom (heated length = 175 mm), with the other three sides kept insulated, are reported at different gas volume flow ratios. The primary aim is to study the enhancement of heat transfer due to the Taylor bubble train flow, in comparison with thermally developing single-phase flows. Intrusion of a bubble in the liquid flow drastically changes the local temperature profiles. The axial distribution of time-averaged local Nusselt number (Nu z ) shows that Taylor bubble train regime increases the transport of heat up to 1.2-1.6 times more as compared with laminar single-phase liquid flow. In addition, for a given liquid flow Reynolds number, the heat transfer enhancement is a function of the geometrical parameters of the unit cell, i.e., the length of adjacent gas bubble and water plug. (authors)

  17. Changes in blood lactate and respiratory gas exchange measures in sports with discontinuous load profiles.

    Science.gov (United States)

    Smekal, Gerhard; von Duvillard, Serge P; Pokan, Rochus; Tschan, Harald; Baron, Ramon; Hofmann, Peter; Wonisch, Manfred; Bachl, Norbert

    2003-06-01

    This study compares two different sport events (orienteering = OTC; tennis = TEC) with discontinuous load profiles and different activity/recovery patterns by means of blood lactate (LA), heart rate (HR), and respiratory gas exchange measures (RGME) determined via a portable respiratory system. During the TEC, 20 tennis-ranked male subjects [age: 26.0 (3.7) years; height: 181.0 (5.7) cm; weight: 73.2 (6.8) kg; maximal oxygen consumption (VO(2)max): 57.3 (5.1) ml.kg(-1).min(-1)] played ten matches of 50 min. During the OTC, 11 male members of the Austrian National Team [age: 23.5 (3.9) years; height: 183.6 (6.8) cm; weight: 72.4 (3.9) kg; VO(2)max: 67.9 (3.8) ml.kg(-1).min(-1)] performed a simulated OTC (six sections; average length: 10.090 m). In both studies data from the maximal treadmill tests (TT) were used as reference values for the comparison of energy expenditure of OTC and TEC. During TEC, the average VO(2) was considerably lower [29.1 (5.6) ml(.)kg(-1.)min(-1)] or 51.1 (10.9)% of VO(2)max and 64.8.0 (13.3)% of VO(2) determined at the individual anaerobic threshold (IAT) on the TT. The short high-intensity periods (activity/recovery = 1/6) did not result in higher LA levels [average LA of games: 2.07 (0.9) mmol.l(-1)]. The highest average VO(2 )value for a whole game was 47.8 ml.kg(-1.)min(-1) and may provide a reference for energy demands required to sustain high-intensity periods of tennis predominantly via aerobic mechanism of energy delivery. During OTC, we found an average VO(2) of 56.4 (4.5) ml.kg(-1).min(-1) or 83.0 (3.8)% of VO(2)max and 94.6 (5.2)% of VO(2) at IAT. In contrast to TEC, LA were relatively high [5.16 (1.5) mmol.l(-1)) although the average VO(2) was significantly lower than VO(2) at IAT. Our data suggest that portable RGEM provides valuable information concerning the energy expenditure in sports that cannot be interpreted from LA or HR measures alone. Portable RGEM systems provide valuable assessment of under- or over-estimation of

  18. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    Science.gov (United States)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by

  19. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    Science.gov (United States)

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-exchange

  20. Greenhouse gas exchange in West African savanna ecosystems - how important are emissions from termite mounds?

    Science.gov (United States)

    Brümmer, C.; Brüggemann, N.

    2012-04-01

    Savannas cover large areas of the Earth's surface and play an important role in global carbon and nitrogen cycling. In this study, we present the soil-atmosphere exchange of N2O, CH4, and CO2 during two field campaigns throughout the growing seasons 2005 and 2006 at a natural savanna site that was not subject to human disturbances except for annual burning, and four agricultural sites planted with sorghum (n=2), cotton and peanut in Burkina Faso. The annual N2O emission of the nature reserve site amounted to 0.52 kg N2O-N ha-1 yr-1 in 2005 and to 0.67 kg N2O-N ha-1 yr-1 in 2006, whereas the calculated average annual N2O release of the crop sites was only 0.19 and 0.20 kg N2O-N ha-1 yr-1 in 2005 and 2006, respectively. As a result of a temporal up-scaling approach, a lower bound of annual N2O release could be given for two fertilized sorghum plots, that is, 0.83 kg N2O-N ha-1 yr-1 for a highly fertilized plot and 0.44 kg N2O-N ha-1 yr-1 for a moderately fertilized plot. During the rainy season both CH4 uptake in the range of up to 20 μg CH4-C m-2 h-1 as well as CH4 emission up to 300 μg CH4-C m-2 h-1 were observed at the nature reserve site, which was on average a CH4 source of 87.4 and 30.8 μg CH4-C m-2 h-1 in 2005 and 2006, respectively. All crop sites were on average weak CH4 sinks without significant seasonal variation. Uptake rates ranged between 2.5 and 8.7 μg CH4-C m-2 h-1. Occasionally very low net CH4 emission was observed after heavy rainfall events. Mean annual CH4 rates could be estimated to 2.48 kg CH4-C ha-1 yr-1 and -0.68 kg CH4-C ha-1 yr-1 for the nature reserve site and the crop sites, respectively. Trace gas emissions from termite (Cubitermes fungifaber) mounds that were almost exclusively found at the nature reserve were one order of magnitude higher for N2O and CO2, and two orders of magnitude higher for CH4 than soil emissions of the respective trace gas. Termite N2O, CH4 and CO2 release at the nature reserve contributed only 3.2%, 8.1% and

  1. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    DR OKE

    Energy from biomass based gasifier-engine integrated systems are ..... an almost linear electrical signal of 40 /lVrc. ..... The diesel and ROME can be used as injected fuel in dual fuel mode with producer gas induction and this feature does not.

  2. 77 FR 69781 - Enhanced Natural Gas Market Transparency

    Science.gov (United States)

    2012-11-21

    ... be filed in native applications or print-to-PDF format and not in a scanned format, at http://www... daily and monthly indices reported by Platts and the daily indices reported by Natural Gas Intelligence... print-to-PDF format and not in a scanned format. Commenters filing electronically do not need to make a...

  3. An investigation of heat exchanger fouling in dust suspension cooling systems using graphite powder and carbon dioxide gas

    International Nuclear Information System (INIS)

    Garton, D.A.; Hawes, R.I.; Rose, P.W.

    1966-01-01

    Some experiments have been performed to study the fouling of heat exchanger surfaces where heat is being transferred from a heated fluid to a cooled surface. The fluid studied was a suspension of 4-5 microns mean diameter graphite powder in carbon dioxide gas at near atmospheric pressures. The solids loading range covered was from 5 to 30 lb. graphite/lb. carbon dioxide, and gas Reynolds numbers from 6000 to 16000. Temperature gradients across the cooler of from 20 to 120 deg. C were obtained. The heat transfer ratio is correlated to show the dependence upon the solids loading ratio of the suspension, the gas Reynolds number and the temperature gradient across the cooler. The results have demonstrated that stringent precautions are necessary to ensure complete dryness of the graphite powder and the loop flow surfaces before any quantitative fouling data can be obtained, as the presence of entrained moisture will accelerate the deposition of material on the cold walls of the heat exchanger and can result in plugging. The heat transfer coefficient showed no obvious dependency upon either the gas Reynolds number or the temperature gradient across the cooler over the range investigated. The measured heat transfer coefficient was considerably lower than that obtained when the heat is transferred from a hot wall to a cooler fluid. At a solids loading of 30 lb, graphite/lb. carbon dioxide, the heat transfer coefficient was only 50% of that for heat transfer from a heated wall. At solids loadings below 7 lb/lb., the heat transfer was less than that for a gas alone. (author)

  4. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  5. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  6. Solar-Enhanced Air-Cooled Heat Exchangers for Geothermal Power Plants

    Directory of Open Access Journals (Sweden)

    Kamel Hooman

    2017-10-01

    Full Text Available This paper focuses on the optimization of a Solar-Enhanced Natural-Draft Dry-Cooling Tower (SENDDCT, originally designed by the Queensland Geothermal Energy Centre of Excellence (QGECE, as the air-cooled condenser of a geothermal power plant. The conventional method of heat transfer augmentation through fin-assisted area extension is compared with a metal foam-wrapped tube bundle. Both lead to heat-transfer enhancement, albeit at the expense of a higher pressure drop when compared to the bare tube bundle as our reference case. An optimal design is obtained through the use of a simplified analytical model and existing correlations by maximizing the heat transfer rate with a minimum pressure drop goal as the constraint. Sensitivity analysis was conducted to investigate the effect of sunroof diameter, as well as tube bundle layouts and tube spacing, on the overall performance of the system. Aiming to minimize the flow and thermal resistances for a SENDDCT, an optimum design is presented for an existing tower to be equipped with solar panels to afterheat the air leaving the heat exchanger bundles, which are arranged vertically around the tower skirt. Finally, correlations are proposed to predict the total pressure drop and heat transfer of the extended surfaces considered here.

  7. Fabrication of gas diffusion layer based on x-y robotic spraying technique for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Sitanggang, Ramli; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Kadhum, Abdul Amir H.; Iyuke, S.E.

    2009-01-01

    The x-y robotic spraying technique developed in the Universiti Kebangsaan Malaysia is capable of fabricating various sizes of thickness and porosity of gas diffusion layer (GDL) used in the proton exchange membrane fuel cell (PEMFC). These parameters are obtained by varying the characteristic spray numbers of the robotic spraying machine. This investigation results were adequately represented with mathematical equations for hydrogen gas distribution in GDL. Volumetric modulus (M) parameter is used to determine the value of current density produced on the electrode of a single cell PEMFC. Thus the M parameter can be employed as indicator for a successful GDL fabrication. GDL type 4 has three variables of layer design that can be optimized to function as gas distributor, gas storage, flooding preventer on GDL surface, to evacuate water from the electrode and to control the electrical conductivity. The gas distribution in GDL was mathematically represented with average error of 15.5%. The M value of GDL type 4 according to the model was 0.22 cm 3 /s and yielded a current density of 750 A/m 2 .

  8. Air-sea gas exchange of HCHs and PCBs and enantiomers of α-HCH in the Kattegat Sea region

    International Nuclear Information System (INIS)

    Sundqvist, Kristina L.; Wingfors, Haakan; Brorstoem-Lunden, Eva; Wiberg, Karin

    2004-01-01

    Concentrations and air-water gas exchange of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) were determined in nine paired air and water samples. The samples were collected monthly in the Kattegat Sea between December 1998 and November 1999. Average fugacity and flux values indicated that PCBs were oversaturated in the water, while HCHs were net deposited. Variations were large over the year, especially during spring and summer. Air parcel back trajectories suggested that air concentrations over the Kattegat Sea are largely dependent of air mass origin. Seasonal trends were detected for airborne HCHs and for PCBs in water. The air and water enantiomeric compositions of α-HCH indicated that a larger portion of α-HCH in air originated from the underlying water during summer than during winter. - Air-water exchange of PCBs and HCHs is studied in the Kattegat Sea and shows to vary seasonally

  9. Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: indirect and direct effects.

    Science.gov (United States)

    Smith, Nicholas G; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S

    2016-01-01

    Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (V cmax ), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in

  10. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  11. Usefulness of decrease in oxygen uptake efficiency to identify gas exchange abnormality in patients with idiopathic pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Xiaoyue Tan

    Full Text Available BACKGROUND: Decline in oxygen uptake efficiency (OUE, especially during exercise, is found in patients with chronic heart failure. In this study we aimed to test the validity and usefulness of OUE in evaluating gas exchange abnormality of patients with idiopathic pulmonary arterial hypertension (IPAH. METHODS: We retrospectively investigated the cardiopulmonary exercise test (CPET with gas exchange measurements in 32 patients with confirmed IPAH. All patients also had resting hemodynamic measurements and pulmonary function test (PFT. Sixteen healthy subjects, matched by age, sex, and body size were used as controls, also had CPET and PFT measurements. RESULTS: In IPAH patients, the magnitude of absolute and percentage of predicted (%pred oxygen uptake efficiency slope (OUES and oxygen uptake efficiency plateau (OUEP, as well as several other CPET parameters, were strikingly worse than healthy subjects (P<0.0001. Pattern of changes in OUE in patients is similar to that in controls, In IPAH patients, OUE values at rest, warming up, anaerobic threshold and peak exercise were all significantly lower than in normal (P<0.0001. OUEP%pred, better than OUES%pred, correlated significantly with New York Heart Association (NYHA functional Class (r = -0.724, P<0.005, Total Pulmonary Vascular Resistance (TPVR (r = -0.694, P<0.005, diffusing capacity for carbon monoxide (DLCO (r = 0.577, P<0.05, and the lowest ventilation versus CO2 output ratio during exercise (LowestV˙E/V˙CO2 (r = -0.902, P<0.0001. In addition, the coefficient of variation (COV of OUEP was lower (20.9% markedly than OUES (34.3% (P<0.0001. CONCLUSIONS: In patients with IPAH, OUES and OUEP are both significantly lower than the healthy subjects. OUEP is a better physiological parameter than OUES in evaluating the gas exchange abnormality of patients with IPAH.

  12. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    Science.gov (United States)

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  13. Nitrogen availability effects on gas exchange measurements in field-grown maize (Zea mays L.) under irrigated Mediterranean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Isla, R.; Guillén, M.; Salmerón, M.

    2016-07-01

    There are limited studies about the effect of nitrogen (N) deficiency on leaf growth, N status, and photosynthetic capacity of maize grown under field conditions in a Mediterranean climate. The objective of this work was to evaluate the effect of different levels of mineral N availability on leaf gas exchange parameters of sprinkler irrigated maize. The experiment was conducted in a conventional maize field located in the central part of the Ebro valley (Spain) during two seasons. Using a portable LICOR-6400 equipment, instantaneous measurements and light response curves to gas exchange were conducted in plots with different levels of N supply ranging from deficient (no fertilized) to over-fertilized (300 kg N/ha). In addition to gas exchange measurements, mineral soil N content, chlorophyll meter readings (CMR), leaf N content, and grain yield were measured in the different plots. Results showed that grain yield reached a plateau (14.5 Mg/ha) when the mineral N available was about 179 kg/ha. CMR were linearly and highly related to total N in ear leaves. The relationship between light-saturated leaf photosynthesis measurements and CMR was significant but very weak (R2=0.13) at V8 and V14 stages but increased later in the growing season (R2=0.52). Plants with intermediate levels of N supply (48

  14. Leaf Gas Exchange and Nutrient Use Efficiency Help Explain the Distribution of Two Neotropical Mangroves under Contrasting Flooding and Salinity

    Directory of Open Access Journals (Sweden)

    Pablo Cardona-Olarte

    2013-01-01

    Full Text Available Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1 were simulated over 10 months. Assimilation (A, stomatal conductance (gw, intercellular CO2 concentration (Ci, instantaneous photosynthetic water use efficiency (PWUE, and photosynthetic nitrogen use efficiency (PNUE were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and gw and, accordingly, had greater intercellular CO2 (calculated during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  15. Nitrogen availability effects on gas exchange measurements in field-grown maize (Zea mays L.) under irrigated Mediterranean conditions

    International Nuclear Information System (INIS)

    Isla, R.; Guillén, M.; Salmerón, M.

    2016-01-01

    There are limited studies about the effect of nitrogen (N) deficiency on leaf growth, N status, and photosynthetic capacity of maize grown under field conditions in a Mediterranean climate. The objective of this work was to evaluate the effect of different levels of mineral N availability on leaf gas exchange parameters of sprinkler irrigated maize. The experiment was conducted in a conventional maize field located in the central part of the Ebro valley (Spain) during two seasons. Using a portable LICOR-6400 equipment, instantaneous measurements and light response curves to gas exchange were conducted in plots with different levels of N supply ranging from deficient (no fertilized) to over-fertilized (300 kg N/ha). In addition to gas exchange measurements, mineral soil N content, chlorophyll meter readings (CMR), leaf N content, and grain yield were measured in the different plots. Results showed that grain yield reached a plateau (14.5 Mg/ha) when the mineral N available was about 179 kg/ha. CMR were linearly and highly related to total N in ear leaves. The relationship between light-saturated leaf photosynthesis measurements and CMR was significant but very weak (R2=0.13) at V8 and V14 stages but increased later in the growing season (R2=0.52). Plants with intermediate levels of N supply (48< CMR<54) tended to have slightly higher assimilation rates than plants with higher CMR readings. As the available N increased, the saturation point, the light compensation point and significant increases of dark respiration rate were observed. Under the conditions of the study, leaf N contents of 1.9% in the ear leaf were enough to maximize leaf assimilation rates with no need to over-fertilize the maize crop.

  16. Influence of inhaled nitric oxide on gas exchange during normoxic and hypoxic exercise in highly trained cyclists.

    Science.gov (United States)

    Sheel, A W; Edwards, M R; Hunte, G S; McKenzie, D C

    2001-03-01

    This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.

  17. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    Science.gov (United States)

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Loew, Markus; Heerdt, Christian; Grams, Thorsten E.E.; Haeberle, Karl-Heinz; Matyssek, Rainer

    2009-01-01

    The effects of elevated O 3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O 3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ 13 C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O 3 detoxification and repair was suggested under elevated O 3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O 3 , this effect being accompanied by lowered F v /F m . These results suggest that chronic O 3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O 3 sensitivity of photosynthesis and accelerated senescence in shade leaves. - Across leaf differentiation in adult beech crowns, elevated ozone acted through stomatal closure on gas exchange although enhancing photosynthetic sensitivity of shaded leaves

  19. Gas-solid heat exchange in a fibrous metallic material measured by a heat regenerator technique

    NARCIS (Netherlands)

    Golombok, M.; Jariwala, H.; Shirvill, C.

    1990-01-01

    The convective heat transfer properties of a porous metallic fibre material used in gas surface combustion burners are studied. The important parameter governing the heat transfer between hot gas and metal fibre—the heat transfer coefficient—is measured using a non-steady-state method based on

  20. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Hunt, D.F.; Sethi, S.K.

    1980-01-01

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D 2 O, EtOD, or ND 3 as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND 3 , D 2 O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables

  1. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Daniel Paech

    Full Text Available BACKGROUND AND PURPOSE: Nuclear Overhauser Enhancement (NOE mediated chemical exchange saturation transfer (CEST is a novel magnetic resonance imaging (MRI technique on the basis of saturation transfer between exchanging protons of tissue proteins and bulk water. The purpose of this study was to evaluate and compare the information provided by three dimensional NOE mediated CEST at 7 Tesla (7T and standard MRI in glioblastoma patients. PATIENTS AND METHODS: Twelve patients with newly diagnosed histologically proven glioblastoma were enrolled in this prospective ethics committee-approved study. NOE mediated CEST contrast was acquired with a modified three-dimensional gradient-echo sequence and asymmetry analysis was conducted at 3.3 ppm (B1 = 0.7 µT to calculate the magnetization transfer ratio asymmetry (MTR(asym. Contrast enhanced T1 (CE-T1 and T2-weighted images were acquired at 3T and used for data co-registration and comparison. RESULTS: Mean NOE mediated CEST signal based on MTR(asym values over all patients was significantly increased (p<0.001 in CE-T1 tumor (-1.99 ± 1.22%, tumor necrosis (-1.36 ± 1.30% and peritumoral CEST hyperintensities (PTCH within T2 edema margins (-3.56 ± 1.24% compared to contralateral normal appearing white matter (-8.38 ± 1.19%. In CE-T1 tumor (p = 0.015 and tumor necrosis (p<0.001 mean MTR(asym values were significantly higher than in PTCH. Extent of the surrounding tumor hyperintensity was smaller in eight out of 12 patients on CEST than on T2-weighted images, while four displayed at equal size. In all patients, isolated high intensity regions (0.40 ± 2.21% displayed on CEST within the CE-T1 tumor that were not discernible on CE-T1 or T2-weighted images. CONCLUSION: NOE mediated CEST Imaging at 7 T provides additional information on the structure of peritumoral hyperintensities in glioblastoma and displays isolated high intensity regions within the CE-T1 tumor that cannot be acquired on CE-T1 or T2

  2. Physiological gas exchange mapping of hyperpolarized 129 Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury.

    Science.gov (United States)

    Zanette, Brandon; Stirrat, Elaine; Jelveh, Salomeh; Hope, Andrew; Santyr, Giles

    2018-02-01

    To map physiological gas exchange parameters using dissolved hyperpolarized (HP) 129 Xe in a rat model of regional radiation-induced lung injury (RILI) with spiral-IDEAL and the model of xenon exchange (MOXE). Results are compared to quantitative histology of pulmonary tissue and red blood cell (RBC) distribution. Two cohorts (n = 6 each) of age-matched rats were used. One was irradiated in the right-medial lung, producing regional injury. Gas exchange was mapped 4 weeks postirradiation by imaging dissolved-phase HP 129 Xe using spiral-IDEAL at five gas exchange timepoints using a clinical 1.5 T scanner. Physiological lung parameters were extracted regionally on a voxel-wise basis using MOXE. Mean gas exchange parameters, specifically air-capillary barrier thickness (δ) and hematocrit (HCT) in the right-medial lung were compared to the contralateral lung as well as nonirradiated control animals. Whole-lung spectroscopic analysis of gas exchange was also performed. δ was significantly increased (1.43 ± 0.12 μm from 1.07 ± 0.09 μm) and HCT was significantly decreased (17.2 ± 1.2% from 23.6 ± 1.9%) in the right-medial lung (i.e., irradiated region) compared to the contralateral lung of the irradiated rats. These changes were not observed in healthy controls. δ and HCT correlated with histologically measured increases in pulmonary tissue heterogeneity (r = 0.77) and decreases in RBC distribution (r = 0.91), respectively. No changes were observed using whole-lung analysis. This work demonstrates the feasibility of mapping gas exchange using HP 129 Xe in an animal model of RILI 4 weeks postirradiation. Spatially resolved gas exchange mapping is sensitive to regional injury between cohorts that was undetected with whole-lung gas exchange analysis, in agreement with histology. Gas exchange mapping holds promise for assessing regional lung function in RILI and other pulmonary diseases. © 2017 The Authors. Medical Physics published by Wiley

  3. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    Science.gov (United States)

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Enhancing water security in a rapidly developing shale gas region

    Directory of Open Access Journals (Sweden)

    Shannon Holding

    2017-06-01

    New hydrological insights for the region: Initiatives and tools enhancing water security in the region include strategic partnerships and stakeholder collaborations, policy and regulation development, and data collection and distribution efforts. The contributions and limitations of each of these are discussed. A vulnerability mapping framework is presented which addresses data gaps and provides a tool for decision-making surrounding risk to water quality from various hazards. An example vulnerability assessment was conducted for wastewater transport along pipeline and trucking corridors.

  5. Removal of Carbon Dioxide from Gas Mixtures Using Ion-Exchanged Silicoaluminophosphates

    Science.gov (United States)

    Hernandez-Maldonado, Arturo J (Inventor); Rivera-Ramos, Milton E (Inventor); Arevalo-Hidalgo, Ana G (Inventor)

    2017-01-01

    Na+-SAPO-34 sorbents were ion-exchanged with several individual metal cations for CO2 absorption at different temperatures (273-348 K) and pressures (SAPO-34 sorbents are by far the best option for CO2 removal from CH4 mixtures, especially at low concentrations.

  6. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    International Nuclear Information System (INIS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Dux, R.; Pütterich, T.; Viezzer, E.

    2013-01-01

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique

  7. Development of the gas puff charge exchange recombination spectroscopy (GP-CXRS) technique for ion measurements in the plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. M.; Theiler, C.; Lipschultz, B. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Dux, R.; Pütterich, T.; Viezzer, E. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Collaboration: Alcator C-Mod Team; ASDEX Upgrade Team

    2013-09-15

    A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

  8. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Akhtar, Nahid; Yamaguchi, Masahiro; Inada, Hidetoshi; Hoshino, Daiki; Kondo, Taisuke; Izuta, Takeshi

    2010-01-01

    To clarify the effects of O 3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O 3 at 60 and 100 nl l -1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O 3 . Although there was no significant effect of O 3 on stomatal diffusive conductance to H 2 O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O 3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O 3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O 3 may detrimentally affect wheat production in Bangladesh. - The exposure to ambient levels of ozone decreases growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat.

  9. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    International Nuclear Information System (INIS)

    Zhang Jianwei; Schaub, Marcus; Ferdinand, Jonathan A.; Skelly, John M.; Steiner, Kim C.; Savage, James E.

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g wv ), foliar injury, and leaf nitrogen concentration (N L ) to tropospheric ozone (O 3 ) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g wv , foliar injury, and N L (P 3 treatments. Seedlings in AA showed the highest A and g wv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g wv , N L , and higher foliar injury (P wv , and foliar injury to O 3 . Both VPD and N L had a strong influence on leaf gas exchange. Foliar O 3 -induced injury appeared when cumulative O 3 uptake reached 8-12 mmol m -2 , depending on soil water availability. The mechanistic assessment of O 3 -induced injury is a valuable approach for a biologically relevant O 3 risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  10. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.

    Science.gov (United States)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M

    2016-05-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianwei, E-mail: jianweizhang@fs.fed.u [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Schaub, Marcus; Ferdinand, Jonathan A. [Environmental Resources Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, John M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Steiner, Kim C. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Savage, James E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-15

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g{sub wv}), foliar injury, and leaf nitrogen concentration (N{sub L}) to tropospheric ozone (O{sub 3}) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g{sub wv}, foliar injury, and N{sub L} (P < 0.05) among O{sub 3} treatments. Seedlings in AA showed the highest A and g{sub wv} due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g{sub wv}, N{sub L}, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g{sub wv}, and foliar injury to O{sub 3}. Both VPD and N{sub L} had a strong influence on leaf gas exchange. Foliar O{sub 3}-induced injury appeared when cumulative O{sub 3} uptake reached 8-12 mmol m{sup -2}, depending on soil water availability. The mechanistic assessment of O{sub 3}-induced injury is a valuable approach for a biologically relevant O{sub 3} risk assessment for forest trees. - Ozone effects on symptom development and leaf gas exchange interacted with leaf age and N-content on black cherry seedlings.

  12. Effect of Magnesium on Gas Exchange and Photosynthetic Efficiency of Coffee Plants Grown under Different Light Levels

    Directory of Open Access Journals (Sweden)

    Kaio Gonçalves de Lima Dias

    2017-09-01

    Full Text Available The aim of the present study was to investigate the effects of magnesium on the gas exchange and photosynthetic efficiency of Coffee seedlings grown in nutrient solution under different light levels. The experiment was conducted under controlled conditions in growth chambers and nutrient solution at the Department of Plant Pathology of the Federal University of Lavras. The treatments consisted of five different Mg concentrations (0, 48, 96, 192 and 384 mg·L−1 and four light levels (80, 160, 240 and 320 µmol photon m−2·s−1. Both the Mg concentration and light levels affected gas exchange in the coffee plants. Photosynthesis increased linearly with the increasing light, indicating that the light levels tested were low for this crop. The highest CO2 assimilation rate, lowest transpiration, and highest water use efficiency were observed with 250 mg·Mg·L−1, indicating that this concentration was the optimal Mg supply for the tested light levels.

  13. Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange.

    Science.gov (United States)

    Nardini, Andrea; Salleo, Sebastiano

    2005-12-01

    The hydraulic architecture, water relationships, and gas exchange of leaves of sunflower plants, grown under different levels of water stress, were measured. Plants were either irrigated with tap water (controls) or with PEG600 solutions with osmotic potential of -0.4 and -0.8 MPa (PEG04 and PEG08 plants, respectively). Mature leaves were measured for hydraulic resistance (R(leaf)) before and after making several cuts across minor veins, thus getting the hydraulic resistance of the venation system (R(venation)). R(leaf) was nearly the same in controls and PEG04 plants but it was reduced by about 30% in PEG08 plants. On the contrary, R(venation) was lowest in controls and increased in PEG04 and PEG08 plants as a likely result of reduction in the diameter of the veins' conduits. As a consequence, the contribution of R(venation) to the overall R(leaf) markedly increased from controls to PEG08 plants. Leaf conductance to water vapour (g(L)) was highest in controls and significantly lower in PEG04 and PEG08 plants. Moreover, g(L) was correlated to R(venation) and to leaf water potential (psi(leaf)) with highly significant linear relationships. It is concluded that water stress has an important effect on the hydraulic construction of leaves. This, in turn, might prove to be a crucial factor in plant-water relationships and gas exchange under water stress conditions.

  14. Extended high-frequency partial liquid ventilation in lung injury: gas exchange, injury quantification, and vapor loss.

    Science.gov (United States)

    Doctor, Allan; Al-Khadra, Eman; Tan, Puay; Watson, Kenneth F; Diesen, Diana L; Workman, Lisa J; Thompson, John E; Rose, Charles E; Arnold, John H

    2003-09-01

    High-frequency oscillatory ventilation with perflubron (PFB) reportedly improves pulmonary mechanics and gas exchange and attenuates lung injury. We explored PFB evaporative loss kinetics, intrapulmonary PFB distribution, and dosing strategies during 15 h of high-frequency oscillation (HFO)-partial liquid ventilation (PLV). After saline lavage lung injury, 15 swine were rescued with high-frequency oscillatory ventilation (n = 5), or in addition received 10 ml/kg PFB delivered to dependent lung [n = 5, PLV-compartmented (PLV(C))] or 10 ml/kg distributed uniformly within the lung [n = 5, PLV(U)]. In the PLV(C) group, PFB vapor loss was replaced. ANOVA revealed an unsustained improvement in oxygenation index in the PLV(U) group (P = 0.04); the reduction in oxygenation index correlated with PFB losses. Although tissue myeloperoxidase activity was reduced globally by HFO-PLV (P PFB distribution optimized gas exchange during HFO-PLV; additionally, monitoring PFB evaporative loss appears necessary to stabilize intrapulmonary PFB volume.

  15. Numerical Study of Heat Transfer Enhancement in Heat Exchanger Using AL2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Hussein Talal Dhaiban

    2016-04-01

    Full Text Available In this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity at (0.2, 0.3, 0.4 and 0.5 m/s at the cold loop and constant velocity at (0.5 m/s at the hot loop. The results show that the heat transfer coefficient and Nusselt number increased by increasing Reynolds number and particle concentration. Numerical results indicate that the maximum enhancement in Nusselt number and heat transfer coefficient were 9.5% and 13.5% respectively at Reynolds number of 7100 and particles volume fraction of 4%. Results of nanofluids also showed a good agreement with the available empirical correlation at particles volume fractions of 1%, 2% and 3%, but at volume fractions of 4% a slight deviation is obtained.

  16. Meson-Exchange Enhancement of First-Forbidden $\\beta$-Transitions in the Lead Region

    CERN Multimedia

    Delaure, B J P; Severijns, N

    2002-01-01

    Both on-line and off-line low temperature nuclear orientation is used to measure the $\\beta$-asymmetry parameter for the first-forbidden g.s. $\\rightarrow$~g.s. $\\beta$-transitions of $^{205}$Hg, $^{207,209}$Tl, $^{209}$Pb and $^{213}$Bi. From this, the ratio of the rank-zero and the rank-one strengths in these decays can be deduced, with the rank of a $\\beta$-transition being defined as the total angular momentum of the lepton system. Combining this result with the experimental ${ft}$-values yields for the first time a purely experimental determination of the rank-zero contribution in these $\\Delta$ J = 0 first-forbidden transitions. This provides an independent check of the large enhancement (of about 100% over the impulse approximation) of the rank-zero matrix element of $\\gamma_{5} $, caused by meson exchange currents (MEC), which was recently obtained from a comparison of calculated first-forbidden $\\beta$-decay rates with experimentally observed values for nuclei in the lead region (A = 205-212). Measur...

  17. Externally fired gas turbine cycles with high temperature heat exchangers utilising Fe-based ODS alloy tubing

    International Nuclear Information System (INIS)

    Olsson, F.; Svensson, S.-A.; Duncan, R.

    2001-01-01

    This work is part of the BRITE / EuRAM Project 'Development of Torsional Grain Structures to Improve Biaxial Creep Performance of Fe-based ODS Alloy Tubing for Biomass Power Plant'. The main goal of this project is to heat exchanger tubes working at 1100 o C and above. The paper deals with design implications of a biomass power plant, using an indirectly fired gas turbine with a high temperature heat exchanger containing Fe-based ODS alloy tubing. In the current heat exchanger design, ODS alloy tubing is used in a radiant section, using a bayonet type tube arrangement. This enables the use of straight sections of ODS tubing and reduces the amount of material required. In order to assess the potential of the power plant system, thermodynamic calculations have been conducted. Both co-generation and condensing applications are studied and results so far indicate that the electrical efficiency is high, compared to values reached by conventional steam cycle power plants of the same size (approx. 5 MW e ). (author)

  18. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  19. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  20. Conceptual design study for the enhanced gas cooled reactor (EGCR)

    International Nuclear Information System (INIS)

    Nakano, M.; Sadahiro, D.; Ozaki, H.; Bryant, S.D.; Cheyne, A.; Gilroy, J.E.; Hulme, G.; Lennox, T.A.; Sunderland, R.E.; Beaumont, H.M.; Kida, M.; Nomura, M.

    2001-01-01

    The preliminary concept of the carbon dioxide cooled fast reactor EGCR has been studied as a Generation IV system. EGCR with MOX fuel has a very good core performance, a breeding ratio over 1.2, a long operating cycle of 24 months, and a high burnup of 150 GWd/t. The plant system is based on the successful AGR experience but provides 3600 MWth. Enhanced passive safety features are provided and a debris tray included. Preliminary costing studies show that EGCR can be competitive to LWRs and can be constructed on a similar schedule. This EGCR concept also shows development potential. (author)

  1. Enhancing SOEC system lifetime by controlling inlet gas composition

    DEFF Research Database (Denmark)

    2015-01-01

    In a method for enhancing the lifetime of a solid oxide electrolysis cell system by counteracting nitridation of the threads of the in-line electrical heaters of the system, the start-up, shut-down and trip operations are done in a humidified nitrogen atmosphere on the fuel side to achieve a dew ...... point between -70 DEG C and 23 DEG C, and in air or in carbon dioxide on the oxygen side, securing that sufficiently oxidizing conditions are always present across the whole surface of the cells on the oxygen side in the stack....

  2. Surfactant control of air-sea gas exchange from North Sea coastal waters and the Atlantic Meridional Transect

    Science.gov (United States)

    Pereira, R.

    2016-02-01

    Suppression of gas transfer velocity (kw) by surfactants are well established, both in laboratory wind flumes and purposeful oceanic releases. However, the effects on kw of time and space varying concentrations of natural surfactant are inadequately studied. We have developed an automated gas exchange tank for simultaneous high precision measurement of kw in unmodified seawater samples. Here we present data from two studies along a coastal North Sea transect during 2012-2013 and the Atlantic Meridional Transect (AMT) 24 from September to November 2014. Measurements of surfactant activity (SA), CDOM absorbance and chlorophyll-a have enabled us to characterize the effects of variable amounts of natural surfactant on kw. North Sea coastal waters range in k660 (kw normalized to the value for CO2 in freshwater at 20oC) was 6.8-24.5 cm hr-1 (n=20), with the ranges of SA, total CDOM absorbance (200-450 nm) and chlorophyll-a measured in the surface microlayer (SML) of our seawater samples were 0.08-0.38 mg l-1 T-X-100, 0.13-4.7 and 0.09-1.54 µg l-1, respectively. The AMT k660 ranged from 7.0-23.9 cm hr-1 (n=22), with SA measured in the SML and subsurface water (SSW) of our seawater samples ranging from 0.15-1.08 mg l-1 T-X-100 and 0.07-0.43 mg l-1 T-X-100, respectively. Importantly, we found 12-45% (North Sea) and 1-43% (AMT) k660 suppression relative to Milli-Q water that relate to seasonal and spatial differences in SA. The North Sea demonstrated notable seasonal influences on k660 suppression that were related to CDOM absorbance and chlorophyll-a. The degree of k660 suppression was highest in summer consistent with k660 control by natural surfactant. The degree of k660 suppression decreased with distance offshore in the North Sea and displayed a strong relationship with SA (r2 = 0.51-0.64, p = 0.02, n = 20). The AMT demonstrated notable differences in k660 suppression between hemispheres and across the Longhurst Provinces but the overall relationship between k660

  3. Fluoroplastic materials for pressure tubes in flue gas heat exchangers under corrosive conditions of flue gas desulfurisation plants; Fluorkunststoffe fuer Druckrohre in Rauchgaswaermetauschern unter korrosiven Bedingungen fuer die Rauchgasentschwefelung

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk-Gaudig, Gabriele [Dyneon GmbH, Burgkirchen (Germany); Broda, Siegfried [Heatec Co., Ltd., Chonburi (Thailand); Adamczyk, Frank; Kreilos, Klaus [Babcock Borsig Service GmbH, Oberhausen (Germany). Bereich Waermenutzung

    2010-07-01

    Since the 1980s, power plants have been required to have flue gas desulphurising plants. For the cooling of flue gases to below the acid dew point and subsequent reheating, corrosion-resistant gas-gas heat exchanger systems had already been developed at this time by what is now Babcock Borsig Service GmbH (BBS). The best results were achieved using 100 % plastic piping as a vital component. In addition to the development of the plastic heat exchangers and the differences in design relative to alternative models, the various types of fluoroplastics will be discussed, and in particular the difference between PFA and PTFE. (orig.)

  4. The tissue microarray data exchange specification: A document type definition to validate and enhance XML data

    Science.gov (United States)

    Nohle, David G; Ayers, Leona W

    2005-01-01

    Background The Association for Pathology Informatics (API) Extensible Mark-up Language (XML) TMA Data Exchange Specification (TMA DES) proposed in April 2003 provides a community-based, open source tool for sharing tissue microarray (TMA) data in a common format. Each tissue core within an array has separate data including digital images; therefore an organized, common approach to produce, navigate and publish such data facilitates viewing, sharing and merging TMA data from different laboratories. The AIDS and Cancer Specimen Resource (ACSR) is a HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers HIV-related malignancies and uninfected control tissues in microarrays (TMA) accompanied by de-identified clinical data to approved researchers. Exporting our TMA data into the proposed API specified format offers an opportunity to evaluate the API specification in an applied setting and to explore its usefulness. Results A document type definition (DTD) that governs the allowed common data elements (CDE) in TMA DES export XML files was written, tested and evolved and is in routine use by the ACSR. This DTD defines TMA DES CDEs which are implemented in an external file that can be supplemented by internal DTD extensions for locally defined TMA data elements (LDE). Conclusion ACSR implementation of the TMA DES demonstrated the utility of the specification and allowed application of a DTD to validate the language of the API specified XML elements and to identify possible enhancements within our TMA data management application. Improvements to the specification have additionally been suggested by our experience in importing other institution's exported TMA data. Enhancements to TMA DES to remove ambiguous situations and clarify the data should be considered. Better specified identifiers and hierarchical relationships will make automatic use of the data possible. Our tool can be

  5. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    International Nuclear Information System (INIS)

    Gilchrist, B.E.; Banks, P.M.; Neubert, T.; Williamson, P.R.; Myers, N.B.; Raitt, W.J.; Sasaki, Susumu

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode

  6. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  7. Hydrogen production by absorption enhanced water gas shift (AEWGS)

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo Bretado, Miguel A. [Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Ave. Veterinaria s/n, Circuito Universitario, Durango 34120 (Mexico); Departamento de Quimica de Materiales, Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109 (Mexico); Delgado Vigil, Manuel D.; Gutierrez, Jesus Salinas; Lopez Ortiz, Alejandro; Collins-Martinez, Virginia [Departamento de Quimica de Materiales, Centro de Investigacion en Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109 (Mexico)

    2010-11-15

    AEWGS is a reaction that combines the WGS reaction and CO{sub 2} capture by a solid absorbent to produce high purity H{sub 2} from synthesis gas in one single step at 600-800 C. This reactor system, if homogeneous, would not require a catalyst. However, previous research on this concept was not conclusive, since a steel reactor was used and reactor walls were suspected to act as catalyst. Therefore, there is a need to address this issue and to select and evaluate suitable CO{sub 2} absorbents for this concept. AEWGS was studied using a quartz-made fixed-bed reactor at; SV = 3000 h{sup -1}, feed; 5% CO, 15% H{sub 2}O, balance He-N{sub 2} at 600 C, 1 atm. CO{sub 2} absorbents tested were CaO*MgO, and Na{sub 2}ZrO{sub 3}. Empty quartz-reactor tests leaded to conclude that a catalyst is needed for the WGS at temperatures of interest. A 97% H{sub 2} product was obtained with calcined dolomite suggesting this last to act as a WGS catalyst. (author)

  8. Heat transfer between immiscible liquids enhanced by gas bubbling

    International Nuclear Information System (INIS)

    Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model

  9. Snowpack-atmosphere gas exchanges of carbon dioxide, ozone, and nitrogen oxides at a hardwood forest site in northern Michigan

    Directory of Open Access Journals (Sweden)

    Brian Seok

    2015-03-01

    Full Text Available Abstract Snowpack-atmosphere gas exchanges of CO2, O3, and NOx (NO + NO2 were investigated at the University of Michigan Biological Station (UMBS, a mid-latitude, low elevation hardwood forest site, during the 2007–2008 winter season. An automated trace gas sampling system was used to determine trace gas concentrations in the snowpack at multiple depths continuously throughout the snow-covered period from two adjacent plots. One natural plot and one with the soil covered by a Tedlar sheet were setup for investigating whether the primary source of measured trace gases was biogenic (i.e., from the soil or non-biogenic (i.e., from the snowpack. The results were compared with the “White on Green” study conducted at the Niwot Ridge (NWT Long Term Ecological Research site in Colorado. The average winter CO2 flux ± s.e. from the soil at UMBS was 0.54 ± 0.037 µmol m-2 s-1 using the gradient diffusion method and 0.71 ± 0.012 µmol m-2 s-1 using the eddy covariance method, and in a similar range as found for NWT. Observed snowpack-O3 exchange was also similar to NWT. However, nitrogen oxides (NOx fluxes from snow at UMBS were 10 times smaller than those at NWT, and fluxes were bi-directional with the direction of the flux dependent on NOx concentrations in ambient air. The compensation point for the change in the direction of NOx flux was estimated to be 0.92 nmol mol-1. NOx in snow also showed diurnal dependency on incident radiation. These NOx dynamics in the snow at UMBS were notably different compared to NWT, and primarily determined by snow-atmosphere interactions rather than by soil NOx emissions.

  10. On-line stable isotope measurements during plant and soil gas exchange

    International Nuclear Information System (INIS)

    Yakir, D.

    2001-01-01

    Recent techniques for on-line stable isotope measurements during plant and soil exchange of CO 2 and/or water vapor are briefly reviewed. For CO 2 , these techniques provide means for on-line measurements of isotopic discrimination during CO 2 exchange by leaves in the laboratory and in the field, of isotopic discrimination during soil respiration and during soil-atmosphere CO 2 exchange, and of isotopic discrimination in O 2 during plant respiration. For water vapor, these techniques provide means to measure oxygen isotopic composition of water vapor during leaf transpiration and for the analysis of sub microliter condensed water vapor samples. Most of these techniques involve on-line sampling of CO 2 and water vapor from a dynamic, intact soil or plant system. In the laboratory, these systems also allow on-line isotopic analysis by continuous-flow isotope ratio mass spectrometry. The information obtained with these on-line techniques is becoming increasingly valuable, and often critical, for ecophysiologial research and in the study of biosphere-atmosphere interactions. (author)

  11. Local area water removal analysis of a proton exchange membrane fuel cell under gas purge conditions.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Yu-Ming; Lee, Shuo-Jen

    2012-01-01

    In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold.

  12. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    Energy Technology Data Exchange (ETDEWEB)

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  13. Enhancement of carbon dioxide reduction and methane production by an obligate anaerobe and gas dissolution device.

    Science.gov (United States)

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2016-01-25

    The use of gas dissolution devices to improve the efficiency of H2 dissolution has enhanced CO2 reduction and CH4 production. In addition, the nutrients that initially existed in anaerobic sludge were exhausted over time, and the activities of anaerobic microorganisms declined. When nutrients were artificially injected, CO2 reduction and CH4 production rates climbed. Thus, assuming that the activity of the obligatory anaerobic microorganisms is maintained, a gas dissolution device will further enhance the efficiency of CO2 reduction and CH4 production. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Exchange Enhancement of the Electron-Phonon Interaction: The Case of Weakly Doped Two-Dimensional Multivalley Semiconductors

    Science.gov (United States)

    Pamuk, Betül; Zoccante, Paolo; Baima, Jacopo; Mauri, Francesco; Calandra, Matteo

    2018-04-01

    The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the cases, exchange tends to enhance the electron-phonon interaction, although the motivations for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in LixZrNCl and that much larger Tcs could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity.

  15. Enhanced Recovery in Tight Gas Reservoirs using Maxwell-Stefan Equations

    Science.gov (United States)

    Santiago, C. J. S.; Kantzas, A.

    2017-12-01

    Due to the steep production decline in unconventional gas reservoirs, enhanced recovery (ER) methods are receiving great attention from the industry. Wet gas or liquid rich reservoirs are the preferred ER candidates due to higher added value from natural gas liquids (NGL) production. ER in these reservoirs has the potential to add reserves by improving desorption and displacement of hydrocarbons through the medium. Nevertheless, analysis of gas transport at length scales of tight reservoirs is complicated because concomitant mechanisms are in place as pressure declines. In addition to viscous and Knudsen diffusion, multicomponent gas modeling includes competitive adsorption and molecular diffusion effects. Most models developed to address these mechanisms involve single component or binary mixtures. In this study, ER by gas injection is investigated in multicomponent (C1, C2, C3 and C4+, CO2 and N2) wet gas reservoirs. The competing effects of Knudsen and molecular diffusion are incorporated by using Maxwell-Stefan equations and the Dusty-Gas approach. This model was selected due to its superior properties on representing the physics of multicomponent gas flow, as demonstrated during the presented model validation. Sensitivity studies to evaluate adsorption, reservoir permeability and gas type effects are performed. The importance of competitive adsorption on production and displacement times is demonstrated. In the absence of adsorption, chromatographic separation is negligible. Production is merely dictated by competing effects between molecular and Knudsen diffusion. Displacement fronts travel rapidly across the medium. When adsorption effects are included, molecules with lower affinity to the adsorption sites will be produced faster. If the injected gas is inert (N2), an increase in heavier fraction composition occurs in the medium. During injection of adsorbing gases (CH4 and CO2), competitive adsorption effects will contribute to improved recovery of heavier

  16. DUV light source availability improvement via further enhancement of gas management technologies

    Science.gov (United States)

    Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.

    2011-04-01

    The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.

  17. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses

    Science.gov (United States)

    Maleki, Hossein; Karanji, Ahmad K.; Majuta, Sandra; Maurer, Megan M.; Valentine, Stephen J.

    2018-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate ( in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.

  18. Photosynthetic pigments and gas exchange in castor bean under conditions of above the optimal temperature and high CO2

    Directory of Open Access Journals (Sweden)

    Fabiola França Silva

    2015-08-01

    Full Text Available The castor bean plant, a Euphorbiaceae oil seed C3-metabolism rustic and drought-resistant plant, is cultivated in a wide range of environments due to its good adaptive capacity. However, given the current environmental changes, many biochemical and physiological impacts may affect the productivity of important crops, such as castor bean. This work aimed to evaluate the impacts of the castor bean gas exchange in response to high temperature and increased CO2concentration.Our experiment was conducted in a phytotron located at Embrapa Algodão in 2010. We adopted a completely randomized design, with four treatments in a factorial combination of two temperatures (30/20 and 37/30°C and two CO2 levels (400 and 800 mmol L-1; four replications were performed, obtained in five surveys over the growth cycle, for a total of 80 sample units. An infrared gas analyzer (IRGA - Infra Red Gas Analyzer was used for the quantification of the photosynthetic rate, stomatal conductance and transpiration. An increase in the atmospheric CO2 concentration and temperature negatively affected the physiology of the castor bean plants, decreasing the net rate of photosynthesis, transpiration and stomatal conductance.

  19. Standardized Elemental Basis for Gas-Turbine Engine Heat Exchangers is the Key Factor for Their Cost Reduction

    Institute of Scientific and Technical Information of China (English)

    Soudarev A.V; Soudarev B.V; Kondratiev V.V; Lazarev M.V

    2001-01-01

    The competitiveness of the small gas turbine units (GTUs) (Ne<300 kW) in the world power market is dependent on both the maintenance expenses and the capital costs of production. Reduction in the maintenance expenditures could be achieved by increasing the plant efficiency. This task could be solved by some methods: increasing the cycle inlet temperature TIT, getting the cycle more complex (use of heat regeneration and compressed air intermediate cooling), cutting the power consumption on heat-stressed parts cooling. Putting the above into effect is linked with introduction of novel structural materials, a sharp increase in the mass-size values and the plant manufacture expenditures, in particular, at provision of its self-regulation.In connection with the above, the development of the combined metal-ceramic airheaters and standardization of the elemental basis of the metal gas-gas heat exchangers will promote reduction in the expenditures of the maintenance and the manufacture of the small-size independent power GTEs.

  20. Annual and transient signatures of gas exchange and transport in the Castañar de Ibor cave (Spain

    Directory of Open Access Journals (Sweden)

    Fernandez-Cortes A.

    2009-07-01

    Full Text Available The large microclimatic stability is a basic characteristic of the subterranean karst systems and causes a high sensitivity to changesin environmental conditions. High-accuracy monitoring of Castañar de Ibor cave (Spain determined the temporal evolution of theaerodynamic processes and ventilation rate by tracking CO2 and 222Rn levels over a twelve-month period. This cave is characterizedby a very stable microclimate, with high and relatively constant radon content (the mean value is 32200 Bq/m3, roughly, and thestandard deviation is 7600 Bq/m3 and a moderate and quite stable CO2 concentration (the mean value is 3730 ppm and the standarddeviation is 250 ppm. Beside the general patterns of cave microclimate throughout an annual cycle, some particular microclimaticprocesses are described with regard to the gas exchange between the cave and the outside atmosphere. There is a complexmicroclimatic functional relationship between the meteorological and cave microclimate conditions and the diffusion and flow of tracergases from the fractures and the pore system of soil and host rock to cave atmosphere. Transient variations of tracer gas on cave airare controlled by natural barometric fluxes and anthropogenic forced ventilation due to uncontrolled opening of cave entrance. Theshort-term fluctuations of gas levels on cave air reveal distinct patterns during the exhalation process of theses gases from the netof fissures and pores to the cave atmosphere, depending on the isolation effect of soil and host rock.

  1. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bottenus, Courtney LH [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-01-22

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.

  2. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  3. A Numerical Study on Using Air Cooler Heat Exchanger for Low Grade Energy Recovery from Exhaust Flue Gas in Natural Gas Pressure Reduction Stations

    Directory of Open Access Journals (Sweden)

    Mansoor Naderi

    2018-01-01

    Full Text Available Heat EXchangers (HEX that are used in City Gate Station (CGS systems are modeled numerically to recover the exhaust waste heat. It was tried to find the best viscous model to obtain results in accordance with experimental results and to change the heat exchanger design. This HEX is used for recovering heat from exhaust flue gas with a mixture of 40% water and 60% ethylene glycol as the cooling fluid. Then, the effects of sizes and numbers of fins and tube rows on recovered heat rate were investigated under various pump speeds. As the first step in solving the problem, SST k–ω and RNG k–ε suitable viscous models were chosen for these kinds of problems. Secondly, a new HEX is designed at a fixed coolant speed, pipe and fin thickness, and shell dimension because of operational constraints. Finally, the best HEX with the minimum pressure drop (minimum fin number is numerically analyzed, and the new HEX specifications were extracted.

  4. Measuring the respiratory gas exchange of grazing cattle using the GreenFeed emissions monitoring system

    Science.gov (United States)

    Ruminants are a significant source of enteric methane, which has been identified as a powerful greenhouse gas that contributes to climate change. With interest in developing technologies to decrease enteric methane emission, systems are currently being developed to measure the methane emission by c...

  5. Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing

    Science.gov (United States)

    Dunz, M.; Schmalhorst, J.; Meinert, M.

    2018-05-01

    We report an exchange bias of more than 2700 Oe at room temperature in MnN/CoFe bilayers after high-temperature annealing. We studied the dependence of exchange bias on the annealing temperature for different MnN thicknesses in detail and found that samples with tMnN > 32nm show an increase of exchange bias for annealing temperatures higher than TA = 400 °C. Maximum exchange bias values exceeding 2000 Oe with reasonably small coercive fields around 600 Oe are achieved for tMnN = 42, 48 nm. The median blocking temperature of those systems is determined to be 180 °C after initial annealing at TA = 525 °C. X-ray diffraction measurements and Auger depth profiling show that the large increase of exchange bias after high-temperature annealing is accompanied by strong nitrogen diffusion into the Ta buffer layer of the stacks.

  6. Different Techniques of Respiratory Support Do Not Significantly Affect Gas Exchange during Cardiopulmonary Resuscitation in a Newborn Piglet Model.

    Science.gov (United States)

    Mendler, Marc R; Maurer, Miriam; Hassan, Mohammad A; Huang, Li; Waitz, Markus; Mayer, Benjamin; Hummler, Helmut D

    2015-01-01

    There are no evidence-based recommendations on the use of different techniques of respiratory support and chest compressions (CC) during neonatal cardiopulmonary resuscitation (CPR). We studied the short-term effects of different ventilatory support strategies along with CC representing clinical practice on gas exchange [arterial oxygen saturation (SaO2), arterial partial pressure of oxygen (PaO2) and arterial partial pressure of carbon dioxide (PaCO2)], hemodynamics and cerebral oxygenation. We hypothesized that in newborn piglets with cardiac arrest, use of a T-piece resuscitator (TPR) providing positive end-expiratory pressure (PEEP) improves gas exchange as measured by SaO2 during CPR as compared to using a self-inflating bag (SIB) without PEEP. Furthermore, we explored the effects of a mechanical ventilator without synchrony to CC. Thirty newborn piglets with asystole were randomized into three groups and resuscitated for 20 min [fraction of inspired oxygen (FiO2) = 0.21 for 10 min and 1.0 thereafter]. Group 1 received ventilation using a TPR [peak inspiratory pressure (PIP)/PEEP of 20/5 cm H2O, rate 30/min] with inflations interposed between CC (3:1 ratio). Group 2 received ventilation using a SIB (PIP of 20 cm H2O without PEEP, rate 30/min) with inflations interposed between CC (3:1 ratio). Group 3 received ventilation using a mechanical ventilator (PIP/PEEP of 20/5 cm H2O, rate 30/min). CC were applied with a rate of 120/min without synchrony to inflations. We found no significant differences in SaO2 between the three groups. However, there was a trend toward a higher SaO2 [TPR: 28.0% (22.3-40.0); SIB: 23.7% (13.4-52.3); ventilator: 44.1% (39.2-54.3); median (interquartile range)] and a lower PaCO2 [TPR: 95.6 mm Hg (82.1-113.6); SIB: 100.8 mm Hg (83.0-108.0); ventilator: 74.1 mm Hg (68.5-83.1); median (interquartile range)] in the mechanical ventilator group. We found no significant effect on gas exchange using different respiratory support strategies

  7. Comparison of extracapillary and endocapillary blood flow oxygenators for open heart surgery in dogs: efficiency of gas exchange and platelet conservation.

    Science.gov (United States)

    Hoshi, Katsuichiro; Tanaka, Ryou; Shibazaki, Akira; Nagashima, Yukiko; Hirao, Hidehiro; Namiki, Ryosuke; Takashima, Kazuaki; Noishiki, Yasuharu; Yamane, Yoshihisa

    2003-03-01

    The goal of the current study was to compare the efficiency of gas exchange and platelet conservation of a new extracapillary blood flow oxygenator versus an endocapillary blood flow oxygenator during open heart surgery with extracorporeal circulation in dogs. Dilation and remodeling of the right ventricular outflow tract of dogs was performed using a patch graft technique to simulate pulmonary stenosis. Sequential pre- and post-operative blood analysis revealed that gas exchange efficiency and platelet conservation was significantly greater with the extracapillary blood flow oxygenator than with the endocapillary blood flow oxygenator. However, the priming volume of the extracapillary blood flow oxygenator was significantly greater, leading to hemodilution. We conclude that while the extracapillary blood flow oxygenator provided benefits in terms of gas exchange and platelet conservation, development of a smaller extracapillary blood flow type oxygenator to reduce hemodilution effects would be beneficial.

  8. Eddy covariance captures four-phase crassulacean acid metabolism (CAM) gas exchange signature in Agave.

    Science.gov (United States)

    Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-02-01

    Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2)  year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1)  year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2  m(-2)  d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates. © 2015 John Wiley & Sons Ltd.

  9. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    Science.gov (United States)

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  10. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas.

    Science.gov (United States)

    Satoh, Hisashi; Bandara, Wasala M K R T W; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2017-11-01

    A hollow fiber degassing membrane (DM) was applied to enhance organic matter degradation and methane gas production of anaerobic granular sludge process by reducing the dissolved hydrogen gas (D-H 2 ) concentration in the liquid phase. DM was installed in the bench-scale anaerobic granular sludge reactors and D-H 2 was removed through DM using a vacuum pump. Degasification improved the organic matter degradation efficiency to 79% while the efficiency was 62% without degasification at 12,000mgL -1 of the influent T-COD concentration. Measurement of D-H 2 concentrations in the liquid phase confirmed that D-H 2 was removed by degasification. Furthermore, the effect of acetate concentrations on the organic matter degradation efficiency was investigated. At acetate concentrations above 3gL -1 , organic matter degradation deteriorated. Degasification enhanced the propionate and acetate degradation. These results suggest that degasification reduced D-H 2 concentration and volatile fatty acids concentrations, prevented pH drop, and subsequent enhanced organic matter degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bovkun, L. S., E-mail: bovkun@ipmras.ru; Krishtopenko, S. S.; Zholudev, M. S.; Ikonnikov, A. V.; Spirin, K. E. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Dvoretsky, S. A.; Mikhailov, N. N. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Teppe, F.; Knap, W. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB (France); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-12-15

    The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions of hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.

  12. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.

    Science.gov (United States)

    Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae

    2015-09-22

    In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.

  13. Idiosyncratic deals and employee outcomes: the mediating roles of social exchange and self-enhancement and the moderating role of individualism.

    Science.gov (United States)

    Liu, Jun; Lee, Cynthia; Hui, Chun; Kwan, Ho Kwong; Wu, Long-Zeng

    2013-09-01

    The majority of studies on idiosyncratic employment arrangements ("i-deals") are based on social exchange theory. The authors suggest that self-enhancement theory, in addition to social exchange, can be used to explain the effects of i-deals. Using a multisource sample including 230 employees and 102 supervisors from 2 Chinese companies, the authors adopt a 3-wave lagged design to examine the mediating roles of social exchange and self-enhancement and the moderating role of individualism in the relationships between i-deals and employee outcomes, as indicated by proactive behaviors and affective commitment. The results of bootstrapping analyses confirm the mediating effects of social exchange and self-enhancement. In addition, employees with high levels of individualism are more receptive to self-enhancement effects; in contrast, employees with low levels of individualism are more receptive to social exchange effects. PsycINFO Database Record (c) 2013 APA, all rights reserved

  14. Boreal mire Green House Gas exchange in response to global change perturbations

    Science.gov (United States)

    Nilsson, Mats

    2017-04-01

    High latitude boreal peatlands contribute importantly to the land-atmosphere-hydrosphere exchange of carbon and GHG, i.e. carbon dioxide, methane and dissolved organic carbon. High latitude biomes are identified as most vulnerable to changing climate. High latitudes are also characterized by a strong seasonality in incoming solar radiation, weather conditions and thus also in biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere and land hydrosphere exchange of green house gases. In this presentation I combine data from long-term monitoring, long-term field manipulations and detailed chemical analysis to understand how changes in atmosphere and weather conditions influence the major carbon fluxes of a boreal mire Net Ecosystem Carbon Balance. The long-term monitoring data contains >12 years of continuous Eddy Covariance CO2 data, growing season chamber CH4 data and continuous measurements of discharge export of DOC, CO2 and CH4. Data from long-term field snow removal manipulations and growing season temperature increase manipulations are used to further understand the impact of climate on mire carbon and GHG fluxes. Finally we uses Nuclear Magnetic Spectroscopy (NMR) to reveal how century scale changes in atmospheric CO2 from 300 to 400 pm CO2 and temperature have influenced the net photosynthetic capacity of Sphagnum mosses, the single most important plant genus for boreal mire carbon sequestration.

  15. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    International Nuclear Information System (INIS)

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs

  16. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    Science.gov (United States)

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  17. Monitoring pulmonary function with superimposed pulmonary gas exchange curves from standard analyzers.

    Science.gov (United States)

    Zar, Harvey A; Noe, Frances E; Szalados, James E; Goodrich, Michael D; Busby, Michael G

    2002-01-01

    A repetitive graphic display of the single breath pulmonary function can indicate changes in cardiac and pulmonary physiology brought on by clinical events. Parallel advances in computer technology and monitoring make real-time, single breath pulmonary function clinically practicable. We describe a system built from a commercially available airway gas monitor and off the shelf computer and data-acquisition hardware. Analog data for gas flow rate, O2, and CO2 concentrations are introduced into a computer through an analog-to-digital conversion board. Oxygen uptake (VO2) and carbon dioxide output (VCO2) are calculated for each breath. Inspired minus expired concentrations for O2 and CO2 are displayed simultaneously with the expired gas flow rate curve for each breath. Dead-space and alveolar ventilation are calculated for each breath and readily appreciated from the display. Graphs illustrating the function of the system are presented for the following clinical scenarios; upper airway obstruction, bronchospasm, bronchopleural fistula, pulmonary perfusion changes and inadequate oxygen delivery. This paper describes a real-time, single breath pulmonary monitoring system that displays three parameters graphed against time: expired flow rate, oxygen uptake and carbon dioxide production. This system allows for early and rapid recognition of treatable conditions that may lead to adverse events without any additional patient measurements or invasive procedures. Monitoring systems similar to the one described in this paper may lead to a higher level of patient safety without any additional patient risk.

  18. Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications

    International Nuclear Information System (INIS)

    Bela, Somaiah; Ho, Ghim Wei; Wong, Andrew See Weng

    2010-01-01

    One-dimensional titanate and titania nanostructures are prepared by hydrothermal method from titania nanoparticles precursor via hydrolysis and ion exchange processes. The formation mechanism and the reaction process of the nanobelts are elucidated. The effects of the NaOH concentration, HCl leaching duration and the calcination temperature on the morphology and chemical composition of the produced nanobelts are investigated. Na + ions of the titanate nanobelts can be effectively removed by longer acid leaching and neutralization process and transformed into metastable hydrogen titanate compound. A hybrid hydrogen titanate and anatase titania nanobelts can be obtained under dehydration process of 500 0 C. The nanobelts are produced in gram quantities and easily made into nanostructure paper for the bulk study on their electrical and sensing properties. The sensing properties of the nanobelts sheet are tested and exhibited response to H 2 gas.

  19. SIMULATION OF POROSITY AND PTFE CONTENT IN GAS DIFFUSION LAYER ON PROTON EXCHANGE MEMBRANE FUEL CELL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    NUR H. MASLAN

    2016-01-01

    Full Text Available Numerous research and development activities have been conducted to optimize the operating parameters of a proton exchange membrane fuel cell (PEMFC by experiments and simulations. This study explains the development of a 3D model by using ANSYS FLUENT 14.5 to determine the optimum PEMFC parameters, namely, porosity and polytetrafluoroethylene (PTFE content, in the gas diffusion layer (GDL. A 3D model was developed to analyze the properties and effects of GDL. Simulation results showed that the increase in GDL porosity significantly improved the performance of PEMFC in generating electrical power. However, the performance of PEMFC decreased with increasing PTFE content in GDL. Thus, the PTFE content in the GDL must be optimized and the optimum PTFE content should be 5 wt%. The model developed in this simulation showed good capability in simulating the PEMFC parameters to assist the development process of PEMFC design.

  20. Seasonal and diurnal gas exchange differences in ozone-sensitive common milkweed (Asclepias syriaca L.) in relation to ozone uptake.

    Science.gov (United States)

    Bergweiler, Chris; Manning, William J; Chevone, Boris I

    2008-03-01

    Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.