WorldWideScience

Sample records for enhancing efficient functioning

  1. Cyclodextrins as functional excipients: methods to enhance complexation efficiency.

    Science.gov (United States)

    Loftsson, Thorsteinn; Brewster, Marcus E

    2012-09-01

    Cyclodextrins have gained currency as useful solubilizing excipients with an ever increasing list of beneficial properties and functionalities. Although their use in liquid dosage forms including oral and parenteral solutions is straightforward, their application to solids can be confounded by the added bulk that is contributed to the formulation. This factor has limited the use of cyclodextrin in tablets and relates systems mainly to potent drug substances. Increasing the ability of cyclodextrins to complex with drug through a manipulation of their complexation efficiency (CE) may expand the use of these materials to the increasing list of drug candidates and marketed drugs who may benefit from this technology. This brief review assesses tools and materials that have been suggested for increasing the CE for pharmaceutically useful cyclodextrins and drugs. The relative importance of impacting the drug solubility (S(0) ) and phase-solubility isotherm slope is discussed in the context of drug ionization and salt use; the impact of polymers, charge interactions, and charge shielding; and the coincidental formation of other complex types in the media. The influence of drug form as well as supersaturation is also discussed in the context of the responsible mechanisms along with aggregation, inclusion, and noninclusion complex formation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene.

    Science.gov (United States)

    Bai, Yang; Dong, Qingfeng; Shao, Yuchuan; Deng, Yehao; Wang, Qi; Shen, Liang; Wang, Dong; Wei, Wei; Huang, Jinsong

    2016-10-05

    The instability of hybrid perovskite materials due to water and moisture arises as one major challenge to be addressed before any practical application of the demonstrated high efficiency perovskite solar cells. Here we report a facile strategy that can simultaneously enhance the stability and efficiency of p-i-n planar heterojunction-structure perovskite devices. Crosslinkable silane molecules with hydrophobic functional groups are bonded onto fullerene to make the fullerene layer highly water-resistant. Methylammonium iodide is introduced in the fullerene layer for n-doping via anion-induced electron transfer, resulting in dramatically increased conductivity over 100-fold. With crosslinkable silane-functionalized and doped fullerene electron transport layer, the perovskite devices deliver an efficiency of 19.5% with a high fill factor of 80.6%. A crosslinked silane-modified fullerene layer also enhances the water and moisture stability of the non-sealed perovskite devices by retaining nearly 90% of their original efficiencies after 30 days' exposure in an ambient environment.

  3. The left frontal cortex supports reserve in aging by enhancing functional network efficiency.

    Science.gov (United States)

    Franzmeier, Nicolai; Hartmann, Julia; Taylor, Alexander N W; Araque-Caballero, Miguel Á; Simon-Vermot, Lee; Kambeitz-Ilankovic, Lana; Bürger, Katharina; Catak, Cihan; Janowitz, Daniel; Müller, Claudia; Ertl-Wagner, Birgit; Stahl, Robert; Dichgans, Martin; Duering, Marco; Ewers, Michael

    2018-03-06

    Recent evidence derived from functional magnetic resonance imaging (fMRI) studies suggests that functional hubs (i.e., highly connected brain regions) are important for mental health. We found recently that global connectivity of a hub in the left frontal cortex (LFC connectivity) is associated with relatively preserved memory abilities and higher levels of protective factors (education, IQ) in normal aging and Alzheimer's disease. These results suggest that LFC connectivity supports reserve capacity, alleviating memory decline. An open question, however, is why LFC connectivity is beneficial and supports memory function in the face of neurodegeneration. We hypothesized that higher LFC connectivity is associated with enhanced efficiency in connected major networks involved in episodic memory. We further hypothesized that higher LFC-related network efficiency predicts higher memory abilities. We assessed fMRI during a face-name association learning task performed by 26 healthy, cognitively normal elderly participants. Using beta-series correlation analysis, we computed task-related LFC connectivity to key memory networks, including the default mode network (DMN) and dorsal attention network (DAN). Network efficiency within the DMN and DAN was estimated by the graph theoretical small-worldness statistic. We applied linear regression analyses to test the association between LFC connectivity with the DMN/DAN and small-worldness of these networks. Mediation analysis was applied to test LFC connectivity to the DMN and DAN as a mediator of the association between education and higher DMN and DAN small-worldness. Last, we tested network small-worldness as a predictor of memory performance. We found that higher LFC connectivity to the DMN and DAN during successful memory encoding and recognition was associated with higher small-worldness of those networks. Higher task-related LFC connectivity mediated the association between education and higher small-worldness in the DMN

  4. An aptamer cocktail-functionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Young [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Jurng, Jongsoo [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Park, Young-Kwon [School of Environmental Engineering, University of Seoul, Seoulsiripdae-ro 163, Dongdaemun-gu, Seoul 02504 (Korea, Republic of); Kim, Byoung Chan, E-mail: bchankim@kist.re.kr [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of)

    2016-11-15

    Highlights: • Aptamer-conjugated TiO{sub 2} was developed for target-specific bacterial inactivation. • TiO{sub 2}-aptamer cocktail can enhance inactivation of target bacteria faster than TiO{sub 2}. • TiO{sub 2}-aptamer cocktail can enhance inactivation of target bacteria in mixed culture. • Efficient ROS transfer to the bacteria is caused by close contact of TiO{sub 2}-aptamer. - Abstract: We developed TiO{sub 2} particles conjugated with an Escherichia coli surface-specific ssDNA aptamer cocktail (composed of three different aptamers isolated from E. coli) for targeted and enhanced disinfection of E. coli. We examined the target-specific and enhanced inactivation of this composite (TiO{sub 2}-Apc), which were compared to those of TiO{sub 2} conjugated with a single aptamer (one of the three different aptamers, TiO{sub 2}-Aps) and non-modified TiO{sub 2}. We found that TiO{sub 2}-Apc enhanced the inactivation of targeted E. coli under UV irradiation compared to both the non-modified TiO{sub 2} and TiO{sub 2}-Aps. A higher number of TiO{sub 2}-Apc than TiO{sub 2}-Aps particles was observed on the surface of E. coli. The amount of TiO{sub 2}-Apc required to inactivate ∼99.9% of E. coli (10{sup 6} CFU/ml) was 10 times lower than that of non-modified TiO{sub 2}. The close proximity of functionalized particles with E. coli resulting from the interaction between the target surface and the aptamer induced the efficient and fast transfer of reactive oxygen species to the cells. In a mixed culture of different bacteria (E. coli and Staphylococcus epidermidis), TiO{sub 2}-Apc enhanced the inactivation of only E. coli. Taken together, these results support the use of aptamer cocktail-conjugated TiO{sub 2} for improvement of the target-specific inactivation of bacteria.

  5. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  6. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles

    Science.gov (United States)

    Ghalei, Behnam; Sakurai, Kento; Kinoshita, Yosuke; Wakimoto, Kazuki; Isfahani, Ali Pournaghshband; Song, Qilei; Doitomi, Kazuki; Furukawa, Shuhei; Hirao, Hajime; Kusuda, Hiromu; Kitagawa, Susumu; Sivaniah, Easan

    2017-07-01

    Mixed matrix membranes (MMMs) for gas separation applications have enhanced selectivity when compared with the pure polymer matrix, but are commonly reported with low intrinsic permeability, which has major cost implications for implementation of membrane technologies in large-scale carbon capture projects. High-permeability polymers rarely generate sufficient selectivity for energy-efficient CO2 capture. Here we report substantial selectivity enhancements within high-permeability polymers as a result of the efficient dispersion of amine-functionalized, nanosized metal-organic framework (MOF) additives. The enhancement effects under optimal mixing conditions occur with minimal loss in overall permeability. Nanosizing of the MOF enhances its dispersion within the polymer matrix to minimize non-selective microvoid formation around the particles. Amination of such MOFs increases their interaction with thepolymer matrix, resulting in a measured rigidification and enhanced selectivity of the overall composite. The optimal MOF MMM performance was verified in three different polymer systems, and also over pressure and temperature ranges suitable for carbon capture.

  7. Functionalized carbon nanotube doping of P3HT:PCBM photovoltaic devices for enhancing short circuit current and efficiency

    Directory of Open Access Journals (Sweden)

    Rohit Bhatia

    2017-03-01

    Full Text Available We have successfully functionalized multiwalled carbon nanotubes (MWCNTs using nitrene approach employing the two aryl azides as a precursor for nitrene generation. The dispersion of functionalized MWCNTs has been enhanced in various organic solvents. These functionalized MWCNTs have been successfully doped in various concentrations in the bulk heterojunction (BHJ organic photovoltaic (OPV cells with a poly (3-hexyl thiophene (P3HT and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM photoactive blended layer. The incorporation of MWCNTs with aryl functional groups, in active the layer, results in enhanced performance with respect to a reference cell. The maximum power conversion efficiency of 1.86% is achieved with adduct I while in the case of adduct II it gets double to 2.0% in comparison with a reference cell. This improvement in the device performance is attributed to enhanced exciton dissociation and improved charge transport properties due to the formation of a nanotube percolation network in the photoactive composite layer.

  8. Self-Assembled Functional Nanostructure of Plasmid DNA with Ionic Liquid [Bmim][PF₆]: Enhanced Efficiency in Bacterial Gene Transformation.

    Science.gov (United States)

    Soni, Sarvesh K; Sarkar, Sampa; Mirzadeh, Nedaossadat; Selvakannan, P R; Bhargava, Suresh K

    2015-04-28

    The electrostatic interaction between the negatively charged phosphate groups of plasmid DNA and the cationic part of hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]), initiates spontaneous self-assembly to form the functional nanostructures made up of DNA and ionic liquid (IL). These functional nanostructures were demonstrated as promising synthetic nonviral vectors for the efficient bacterial pGFP gene transformation in cells. In particular, the functional nanostructures that were made up of 1 μL of IL ([Bmim][PF6]) and 1 μg of plasmid DNA can increase the transformation efficiency by 300-400% in microbial systems, without showing any toxicity for E. coli DH5α cells. (31)P nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron (XPS) spectroscopic analysis revealed that the electrostatic interaction between negatively charged phosphate oxygen and cationic Bmim(+) tends to initiate the self-assembly process. Thermogravimetric analysis of the DNA-IL functional nanostructures showed that these nanostructures consist of ∼16 wt % ionic liquid, which is considered to provide the stability to the plasmid DNA that eventually enhanced the transformation efficiency.

  9. Dual Function Additives: A Small Molecule Crosslinker for Enhanced Efficiency and Stability in Organic Solar Cells

    KAUST Repository

    Rumer, Joseph W.

    2015-02-01

    A bis-azide-based small molecule crosslinker is synthesized and evaluated as both a stabilizing and efficiency-boosting additive in bulk heterojunction organic photovoltaic cells. Activated by a noninvasive and scalable solution processing technique, polymer:fullerene blends exhibit improved thermal stability with suppressed polymer skin formation at the cathode and frustrated fullerene aggregation on ageing, with initial efficiency increased from 6% to 7%. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Åmand, Helene L.; Nordén, Bengt; Fant, Kristina

    2012-01-01

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  11. Enhancing efficient functioning of the nordic electricity market. Summary and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    In September 2004, Nordic Council of Ministers (NCM) in their meeting in Akureyri, Iceland, assessed the state of the Nordic electricity market. The Ministers acknowledged that the market has proved it is well functioning in many respects, however, further development of the Nordic electricity market is needed, i.e. towards a regional market without borders. The Nordic Transmission System Operators (TSOs) were asked to study how a further co-ordination of the system responsibility, a joint organizing and financing of the grid investments and a handling of peak load situations can be established in the Nordic countries. In this report, the main focus is on market-related tasks within system responsibility that are market-related and may have an effect on the functioning of the market. The report covers the following issues: definition of the system responsibility and role of TSOs, harmonization of operational rules and practices in order to improve functioning of the market, TSOs' collaboration in disturbances and shortage situations and joint Nordic transmission investments. Furthermore, the report summarizes the concrete actions taken by the TSOs in strengthening of the market mechanisms in peak load situations. (BA)

  12. Polyethylene Glycol-Functionalized Magnetic Fe₃O₄/P(MMA-AA) Composite Nanoparticles Enhancing Efficient Capture of Circulating Tumor Cells.

    Science.gov (United States)

    Ma, Shaohua; Zhan, Xiaohui; Yang, Minggang; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2018-04-01

    Circulating tumor cells (CTCs) played a significant role in early diagnosis and prognosis of carcinomas, and efficient capture of CTCs was highly desired to provide important and reliable evidence for clinical diagnosis. In present work, we successfully synthesized functional magnetic Fe3O4/P(MMA-AA) composite nanoparticles (FCNPs) inspired by a counterbalance concept for recognition and capture of CTCs. This counterbalance, composed of polyethylene glycol (PEG) suppressing cell adhesion and anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody targeting tumor cells, could both enhance the specific capture of tumor cells and reduce unspecific adhesion of normal cells. The study showed that the PEG density on the surface of the FCNPs affected the specificity of the materials, and a density of ca. 15% was efficient for reducing the unspecific adhesion. After incubation with the mixture of HepG2 cells and Jurkat T cells, the FCNPs reached a capture efficiency as high as about 86.5% of the cancer cells, suggesting great potential on detection of CTCs in the diagnoses and prognoses of cancer metastasis.

  13. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  14. Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides

    Directory of Open Access Journals (Sweden)

    Zhang HJ

    2015-08-01

    Full Text Available Huijie Zhang,1 Shini Feng,1 Ting Yan,1 Chunyi Zhi,2 Xiao-Dong Gao,1 Nobutaka Hanagata3,41The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Kowlong, Hong Kong SAR, People’s Republic of China; 3Biomaterials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Ibaraki, Japan; 4Nanotechnology Innovation Station, National Institute for Materials Science, Ibaraki, JapanAbstract: CpG oligodeoxynucleotides (ODNs stimulate innate and adaptive immune responses. Thus, these molecules are promising therapeutic agents and vaccine adjuvants against various diseases. In this study, we developed a novel CpG ODNs delivery system based on polyethyleneimine (PEI-functionalized boron nitride nanospheres (BNNS. PEI was coated on the surface of BNNS via electrostatic interactions. The prepared BNNS–PEI complexes had positive zeta potential and exhibited enhanced dispersity and stability in aqueous solution. In vitro cytotoxicity assays revealed that the BNNS–PEI complexes with concentrations up to 100 µg/mL exhibited no obvious cytotoxicity. Furthermore, the positively charged surface of the BNNS–PEI complexes greatly improved the loading capacity and cellular uptake efficiency of CpG ODNs. Class B CpG ODNs loaded on the BNNS–PEI complexes enhanced the production of interleukin-6 and tumor necrosis factor-α from peripheral blood mononuclear cells compared with CpG ODNs directly loaded on BNNS. Contrary to the free CpG ODNs or CpG ODNs directly loaded on BNNS, class B CpG ODNs loaded on the BNNS–PEI complexes induced interferon-α simultaneously. PEI coating may have changed the physical form of class B CpG ODNs on BNNS, which further affected their interaction with Toll-like receptor 9 and induced interferon

  15. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  16. Calcium-microRNA Complexes Functionalized Nanotubular Implant Surface for Highly Efficient Transfection and Enhanced Osteogenesis of Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Song, Wen; Yang, Chuanxu; Svend Le, Dang Quang

    2018-01-01

    effective delivery method of small RNA therapeutics into hMSCs from an implant surface by calcium ions. First, we demonstrated that simple Ca/siGFP nanocomplexes were able to efficiently silence GFP in GFP-expressing hMSCs with adequate Ca2+ concentration (>5 mM). In addition, a single transfection could...

  17. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    National Research Council Canada - National Science Library

    Soref, Richard A; Khurgin, J. B; Sun, G

    2008-01-01

    We apply the "effective mode volume" theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays...

  18. Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency (final report NFE-12-03876)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Barnhill, William C [ORNL; Luo, Huimin [ORNL; Toops, Todd J [ORNL; West, Brian H [ORNL; Blau, Peter Julian [ORNL; Dai, Sheng [ORNL; Papke, Brian L [Shell Global Solutions (US); Gao, Hong [Shell Global Solutions (US); Kheireddin, Bassem [Shell Global Solutions (US); Chen, Cheng [Shell Global Solutions (US)

    2016-04-01

    This ORNL-Shell CRADA developed and investigated ionic liquids (ILs) as multifunctional additives for next-generation low-viscosity engine oils. Several groups of oil-miscible ILs were successfully designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Synergistic effects between the common anti-wear additive zinc dialkyldithiophosphate (ZDDP) and a particular group of ILs were discovered with > 30% friction reduction and 70% wear reduction compared with using ZDDP or IL alone. The IL+ZDDP tribofilm distinguishes itself from the IL or ZDDP tribofilms with substantially higher contents of metal phosphates but less metal oxides and sulfur compounds. Notably, it was revealed that the actual concentrations of functional elements on the droplet surface of the oil containing IL+ZDDP are one order magnitude higher than their nominal values. Such significantly increased concentrations of anti-wear agents are presumably expected for the oilsolid interface and believed to be responsible for the superior lubricating performance. A prototype SAE 0W-16 engine oil using a synergistic IL+ZDDP pair as the anti-wear additive has been formulated based on the compatibility between the IL and other additives. Sequence VIE full-scale engine dynamometer tests demonstrated fuel economy improvement (FEI) for this prototype oil and revealed the individual contributions from the lower oil viscosity and reduced boundary friction. The impact of IL and IL+ZDDP on exhaust emission catalyst was investigated using an accelerated small engine aging test and results were benchmarked against ZDDP.

  19. Enhancing Energy Efficient TCP by Partial Reliability

    NARCIS (Netherlands)

    Donckers, L.; Smit, Gerardus Johannes Maria; Havinga, Paul J.M.; Smit, L.T.

    We present a study on the effects on a mobile system's energy efficiency of enhancing, with partial reliability, our energy efficient TCP variant (E/sup 2/TCP) (see Donckers, L. et al., Proc. 2nd Asian Int. Mobile Computing Conf. - AMOC2002, p.18-28, 2002). Partial reliability is beneficial for

  20. Dual functional reduced graphene oxide as photoanode and counter electrode in dye-sensitized solar cells and its exceptional efficiency enhancement

    Science.gov (United States)

    Jumeri, F. A.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Pandikumar, A.; Lim, S. P.

    2015-10-01

    The dual functionalities of reduced graphene oxide (rGO) as photoanode and counter electrode in dye-sensitized solar cells (DSSCs) is explored. A titanium dioxide (TiO2) film is deposited on an indium tin oxide (ITO) glass using an in-house aerosol-assisted chemical vapor deposition method. Graphene oxide (GO) is then introduced onto the TiO2-ITO substrate, and the GO layer is successively thermally treated to rGO. The TiO2-rGO film is used as a compact layer for the photoanode of the DSSC. A layer of zinc oxide-silver (ZnO-Ag) is introduced on top of the compact layer as an active material. Its highly porous flower-shaped morphology is advantageous for the adsorption of dye. The in-situ electrochemical polymerization method used for the fabrication of polypyrrole incorporated with rGO and p-toluenesulfonate (pTS) (Ppy-rGO-pTS) on an ITO glass is used as a counter electrode for the DSSC. The DSSC assembled with the Ppy-rGO-1.0pTS counter electrode exhibites an enhanced conversion efficiency of 1.99% under solar illumination, which is better than that using conventional Pt as a counter electrode (0.08%). This is attributed to the increased contact area between the Ppy-rGO-pTS counter electrode and electrolyte, which subsequently improves the conductivity and high electrocatalytic activities of the Ppy-rGO-pTS counter electrode.

  1. Efficient microwave irradiation enhanced stereoselective synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 4. Efficient microwave irradiation enhanced stereoselective synthesis and antitumor activity of indolylchalcones and their pyrazoline analogs. Magdy A H Zahran Hanan F Salama Yasmin G Abdin Amira M Gamal-Eldeen. Full Papers Volume 122 Issue 4 ...

  2. High-efficiency thermoelectrics with functionalized graphene.

    Science.gov (United States)

    Kim, Jeong Yun; Grossman, Jeffrey C

    2015-05-13

    Graphene superlattices made with chemical functionalization offer the possibility of tuning both the thermal and electronic properties via nanopatterning of the graphene surface. Using classical and quantum mechanical calculations, we predict that suitable chemical functionalization of graphene can introduce peaks in the density of states at the band edge that result in a large enhancement in the Seebeck coefficient, leading to an increase in the room-temperature power factor of a factor of 2 compared to pristine graphene, despite the degraded electrical conductivity. Furthermore, the presence of patterns on graphene reduces the thermal conductivity, which when taken together leads to an increase in the figure of merit for functionalized graphene by up to 2 orders of magnitude over that of pristine graphene, reaching its maximum ZT ∼ 3 at room temperature according to our calculations. These results suggest that appropriate chemical functionalization could lead to efficient graphene-based thermoelectric materials.

  3. Efficient functionalization of alginate biomaterials.

    Science.gov (United States)

    Dalheim, Marianne Ø; Vanacker, Julie; Najmi, Maryam A; Aachmann, Finn L; Strand, Berit L; Christensen, Bjørn E

    2016-02-01

    Peptide coupled alginates obtained by chemical functionalization of alginates are commonly used as scaffold materials for cells in regenerative medicine and tissue engineering. We here present an alternative to the commonly used carbodiimide chemistry, using partial periodate oxidation followed by reductive amination. High and precise degrees of substitution were obtained with high reproducibility, and without formation of by-products. A protocol was established using l-Tyrosine methyl ester as a model compound and the non-toxic pic-BH3 as the reducing agent. DOSY was used to indirectly verify covalent binding and the structure of the product was further elucidated using NMR spectroscopy. The coupling efficiency was to some extent dependent on alginate composition, being most efficient on mannuronan. Three different bioactive peptide sequences (GRGDYP, GRGDSP and KHIFSDDSSE) were coupled to 8% periodate oxidized alginate resulting in degrees of substitution between 3.9 and 6.9%. Cell adhesion studies of mouse myoblasts (C2C12) and human dental stem cells (RP89) to gels containing various amounts of GRGDSP coupled alginate demonstrated the bioactivity of the material where RP89 cells needed higher peptide concentrations to adhere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Luminous Efficiency Functions at Higher Intensities

    National Research Council Canada - National Science Library

    Harrington, Lawrence

    2004-01-01

    Two psychophysical measurement techniques, flicker photometry and successive heterochromatic brightness matching, were used to measure changes in luminance efficiency functions with increasing levels of light adaptation...

  5. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    Full Text Available Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK and serine/threonine kinase 11(LKB1-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  6. Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Science.gov (United States)

    Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385

  7. COFFEE - Coherent Optical System Field Trial for Spectral Efficiency Enhancement

    DEFF Research Database (Denmark)

    Imran, Muhammad; Fresi, Francesco; Rommel, Simon

    2016-01-01

    The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented.......The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented....

  8. Nano-materials for enhanced thermoelectric efficiencies

    Science.gov (United States)

    Boukai, Akram

    2010-04-01

    Energy is the ultimate currency that drives the world economy. Without energy, the global economy would cease to function normally. Most of the world's energy comes from the burning of fossil fuels such as coal and oil. Unfortunately, these fossil fuels are limited and pollute the atmosphere. The rising costs and demand of energy products and the alarming rate of global warming have focused research efforts into alternative forms of renewable energy. Thermoelectrics are one class of renewable energy producing devices. Thermoelectrics operate by converting temperature differences into electrical power and vice versa. They find limited use due to their low efficiencies and high cost. This article will review the operation of thermoelectrics and their current state-of-the-art. It will also explore future promising research endeavors that aim to increase their efficiency.

  9. Efficient and robust gradient enhanced Kriging emulators.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  10. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  11. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  12. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  13. Efficient discrete Gabor functions for robot vision

    Science.gov (United States)

    Weiman, Carl F. R.

    1994-03-01

    A new discrete Gabor function provides subpixel resolution of phase while overcoming many of the computational burdens of current approaches to Gabor function implementation. Applications include hyperacuity measurement of binocular disparity and optic flow for stereo vision. Convolution is avoided by exploiting band-pass to subsample the image plane. A general purpose front end processor for robot vision, based on a wavelet interpretation of this discrete Gabor function, can be constructed by tessellating and pyramiding the elementary filter. Computational efficiency opens the door to real-time implementation which mimics many properties of the simple and complex cells in the visual cortex.

  14. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photol......-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications.......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...

  15. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  16. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft are...

  17. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  18. The Effect of Multispectral Image Fusion Enhancement on Human Efficiency

    Science.gov (United States)

    2017-03-20

    5a. CONTRACT NUMBER In-House The effect of multispectral image fusion enhancement on human efficiency 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...fusion across its associated problem space of application. 15. SUBJECT TERMS Ideal observer analysis, Efficiency, Image fusion, Multispectral imagery...Implications (2017) 2:19 DOI 10.1186/s41235-016-0045-0 ORIGINAL ARTICLE Open Access The effect of multispectral image fusion enhancement on human

  19. Particle filters for object tracking: enhanced algorithm and efficient implementations

    International Nuclear Information System (INIS)

    Abd El-Halym, H.A.

    2010-01-01

    Object tracking and recognition is a hot research topic. In spite of the extensive research efforts expended, the development of a robust and efficient object tracking algorithm remains unsolved due to the inherent difficulty of the tracking problem. Particle filters (PFs) were recently introduced as a powerful, post-Kalman filter, estimation tool that provides a general framework for estimation of nonlinear/ non-Gaussian dynamic systems. Particle filters were advanced for building robust object trackers capable of operation under severe conditions (small image size, noisy background, occlusions, fast object maneuvers ..etc.). The heavy computational load of the particle filter remains a major obstacle towards its wide use.In this thesis, an Excitation Particle Filter (EPF) is introduced for object tracking. A new likelihood model is proposed. It depends on multiple functions: position likelihood; gray level intensity likelihood and similarity likelihood. Also, we modified the PF as a robust estimator to overcome the well-known sample impoverishment problem of the PF. This modification is based on re-exciting the particles if their weights fall below a memorized weight value. The proposed enhanced PF is implemented in software and evaluated. Its results are compared with a single likelihood function PF tracker, Particle Swarm Optimization (PSO) tracker, a correlation tracker, as well as, an edge tracker. The experimental results demonstrated the superior performance of the proposed tracker in terms of accuracy, robustness, and occlusion compared with other methods Efficient novel hardware architectures of the Sample Important Re sample Filter (SIRF) and the EPF are implemented. Three novel hardware architectures of the SIRF for object tracking are introduced. The first architecture is a two-step sequential PF machine, where particle generation, weight calculation and normalization are carried out in parallel during the first step followed by a sequential re

  20. Spectral efficiency enhancement with interference cancellation for wireless relay network

    DEFF Research Database (Denmark)

    Yomo, Hiroyuki; De Carvalho, Elisabeth

    The introduction of relaying into wireless communication system for coverage enhancement can cause severe decrease of spectral efficiency due to the requirement on extra radio resource. In this paper, we propose a method to increase spectral efficiency in such a wireless relay network by employin...

  1. Quantum enhanced estimation of optical detector efficiencies

    Directory of Open Access Journals (Sweden)

    Barbieri Marco

    2016-01-01

    Full Text Available Quantum mechanics establishes the ultimate limit to the scaling of the precision on any parameter, by identifying optimal probe states and measurements. While this paradigm is, at least in principle, adequate for the metrology of quantum channels involving the estimation of phase and loss parameters, we show that estimating the loss parameters associated with a quantum channel and a realistic quantum detector are fundamentally different. While Fock states are provably optimal for the former, we identify a crossover in the nature of the optimal probe state for estimating detector imperfections as a function of the loss parameter using Fisher information as a benchmark. We provide theoretical results for on-off and homodyne detectors, the most widely used detectors in quantum photonics technologies, when using Fock states and coherent states as probes.

  2. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  3. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  4. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2017-10-01

    Full Text Available Auditory cognitive training (ACT improves attention in older adults; however, the underlying neurophysiological mechanisms are still unknown. The present study examined the effects of ACT on the P3b event-related potential reflecting attention allocation (amplitude and speed of processing (latency during stimulus categorization and the P1-N1-P2 complex reflecting perceptual processing (amplitude and latency. Participants completed an auditory oddball task before and after 10 weeks of ACT (n = 9 or a no contact control period (n = 15. Parietal P3b amplitudes to oddball stimuli decreased at post-test in the trained group as compared to those in the control group, and frontal P3b amplitudes show a similar trend, potentially reflecting more efficient attentional allocation after ACT. No advantages for the ACT group were evident for auditory perceptual processing or speed of processing in this small sample. Our results provide preliminary evidence that ACT may enhance the efficiency of attention allocation, which may account for the positive impact of ACT on the everyday functioning of older adults.

  5. Nonequilibrium Enhances Adaptation Efficiency of Stochastic Biochemical Systems.

    Directory of Open Access Journals (Sweden)

    Chen Jia

    Full Text Available Adaptation is a crucial biological function possessed by many sensory systems. Early work has shown that some influential equilibrium models can achieve accurate adaptation. However, recent studies indicate that there are close relationships between adaptation and nonequilibrium. In this paper, we provide an explanation of these two seemingly contradictory results based on Markov models with relatively simple networks. We show that as the nonequilibrium driving becomes stronger, the system under consideration will undergo a phase transition along a fixed direction: from non-adaptation to simple adaptation then to oscillatory adaptation, while the transition in the opposite direction is forbidden. This indicates that although adaptation may be observed in equilibrium systems, it tends to occur in systems far away from equilibrium. In addition, we find that nonequilibrium will improve the performance of adaptation by enhancing the adaptation efficiency. All these results provide a deeper insight into the connection between adaptation and nonequilibrium. Finally, we use a more complicated network model of bacterial chemotaxis to validate the main results of this paper.

  6. Shared Services for enhancing municipal planning efficiency in ...

    African Journals Online (AJOL)

    The past five years have seen a growing trend towards the notion of a Shared Services approach to enhancing municipal efficiency in the local government sector in South Africa. In KwaZulu-Natal (KZN), this approach is receiving more focused attention. In this regard, the Department of Co-operative Governance and ...

  7. Analysis of the enhanced coupling efficiency for different profile curves of special optical taper

    Science.gov (United States)

    Gao, Fei-long; Fu, Xing-hu; Fu, Guang-wei; Bi, Wei-hong

    2014-07-01

    For enhancing the coupling efficiency between the beam and the photodiode, a special optical taper is proposed for receiving optical signal. Based on the circular symmetric structure of special optical taper, the profile curve equations of it are deduced, including the trigonometric function type, parabolic type and exponential type. Moreover, the coupling efficiencies for special optical tapers with different profile curves are studied. The relationships of incident position, incident angle and coupling efficiency are analyzed. Finally, the comparison of coupling efficiency analytical results is also given.

  8. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes.

    Science.gov (United States)

    Abdul Khaliq, R; Kafafy, Raed; Salleh, Hamzah Mohd; Faris, Waleed Fekry

    2012-11-16

    The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.

  9. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  10. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.

  11. Recent progress in enhancing solar-to-hydrogen efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianqing [Hohai University, China; Yang, Donghui [Hohai University, China; Song, Dan [Hohai University, China; Jiang, Jinghua [Hohai University, China; Ma, Aibin [Hohai University, China; Hu, Michael Z. [ORNL; Ni, Chaoying [University of Delaware

    2015-01-01

    Solar water splitting is a promising and ideal route for renewable production of hydrogen by using the most abundant resources of solar light and water. Focusing on the working principal of solar water splitting, including photon absorption and exciton generation in semiconductor, exciton separation and transfer to the surface of semiconductor, and respective electron and hole reactions with absorbed surface species to generate hydrogen and oxygen, this review covers the comprehensive efforts and findings made in recent years on the improvement for the solar-to-hydrogen efficiency (STH) determined by a combination of light absorption process, charge separation and migration, and catalytic reduction and oxidation reactions. Critical evaluation is attempted on the strategies for improving solar light harvesting efficiency, enhancing charge separation and migration, and improving surface reactions. Towards the end, new and emerging technologies for boosting the STH efficiency are discussed on multiple exciton generation, up-conversion, multi-strategy modifications and the potentials of organometal hybrid perovskite materials.

  12. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis.

    Science.gov (United States)

    Liu, Shizhen; Li, Degang; Sun, Hongqi; Ang, Ha Ming; Tadé, Moses O; Wang, Shaobin

    2016-04-15

    Metal-free semiconductors offer a new opportunity for environmental photocatalysis toward a potential breakthrough in high photo efficiency with complete prevention of metal leaching. In this study, graphitic carbon nitride (GCN) modified by oxygen functional groups was synthesized by a hydrothermal treatment of pristine GCN at different temperatures with H2O2. Insights into the emerging characteristics of the modified GCN in photocatalysis were obtained by determining the optical properties, band structure, electrochemical activity and pollutant degradation efficiency. It was found that the introduction of GCN with oxygen functional groups can enhance light absorption and accelerate electron transfer so as to improve the photocatalytic reaction efficiency. The photoinduced reactive radicals and the associated photodegradation were investigated by in situ electron paramagnetic resonance (EPR). The reactive radicals, O2(-) and OH, were responsible for organic degradation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Enhanced Raman scattering on functionalized graphene substrates

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Kovaříček, Petr; Fridrichová, Michaela; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kalbáč, Martin

    2017-01-01

    Roč. 4, č. 2 (2017), č. článku 025087. ISSN 2053-1583 R&D Projects: GA ČR(CZ) GA15-01953S Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : spectroscopy * molecules * graphene * graphene enhanced Raman scattering * functionalized graphene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor : 6.937, year: 2016

  14. Enhanced Raman scattering on functionalized graphene substrates

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Kovaříček, Petr; Fridrichová, Michaela; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kalbáč, Martin

    2017-01-01

    Roč. 4, č. 2 (2017), č. článku 025087. ISSN 2053-1583 R&D Projects: GA ČR(CZ) GA15-01953S Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : spectroscopy * molecules * graphene * graphene enhanced Raman scattering * functionalized graphene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.937, year: 2016

  15. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  16. Measurement of dynamic efficiency: a directional distance function parametric approach

    NARCIS (Netherlands)

    Serra, T.; Oude Lansink, A.G.J.M.; Stefanou, S.E.

    2011-01-01

    This research proposes a parametric estimation of the structural dynamic efficiency measures proposed by Silva and Oude Lansink (2009). Overall, technical and allocative efficiency measurements are derived based on a directional distance function and the duality between this function and the optimal

  17. Functionalized dicationic ionic liquids: Green and efficient ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 8. Functionalized dicationic ... Regular Article Volume 128 Issue 8 August 2016 pp 1277-1284 ... Theinfluences of the reaction temperature, catalyst dosage, and molar ratio of phthalic anhydride to alcohol on the esterification reaction were investigated.

  18. Coherence-enhanced efficiency of feedback-driven quantum engines

    Science.gov (United States)

    Brandner, Kay; Bauer, Michael; Schmid, Michael T.; Seifert, Udo

    2015-06-01

    A genuine feature of projective quantum measurements is that they inevitably alter the mean energy of the observed system if the measured quantity does not commute with the Hamiltonian. Compared to the classical case, Jacobs proved that this additional energetic cost leads to a stronger bound on the work extractable after a single measurement from a system initially in thermal equilibrium (2009 Phys. Rev. A 80 012322). Here, we extend this bound to a large class of feedback-driven quantum engines operating periodically and in finite time. The bound thus implies a natural definition for the efficiency of information to work conversion in such devices. For a simple model consisting of a laser-driven two-level system, we maximize the efficiency with respect to the observable whose measurement is used to control the feedback operations. We find that the optimal observable typically does not commute with the Hamiltonian and hence would not be available in a classical two level system. This result reveals that periodic feedback engines operating in the quantum realm can exploit quantum coherences to enhance efficiency.

  19. Efficiency and Linearity Enhancement of Microwave GaN Power Amplifiers using Harmonic Injection

    Science.gov (United States)

    Dani, Asmita Rajiv

    This thesis addresses an architecture for enhancing efficiency and linearity of GaN power amplifiers using external second harmonic injection at the output. This transmitter architecture has potential uses in communication and radar systems which have stringent requirements of low DC power dissipation and minimum out of band interference. An idealized theoretical analysis based on expansions of the nonlinear transfer function of a PA predicts the measured improvements in linearity and efficiency. The experimental demostration is performed with both hybrid and integrated harmonically-injected PA using discrete GaN 6W transistors in class-AB mode with 55% PAE at a fundamental frequency of 2.45 GHz. Harmonic injection at the output is shown to enhance the efficiency of the PA to 89%. For a slightly reduced efficiency of 78%, the linearity can be improved and > 15 dB reduction of third and fifth order intermodulation distortion tones is measured in compression. Integration of a dynamic supply of the harmonically-injected PA is also investigated in order to achieve high efficiency and linearity for signals with Peak-to-Average ratios (PARs) of 6 dB and higher. Experimental results demonstrate a 70-80% efficient HI-PA for an output power variation of 6 dB. Reduction in third order nonlinear products and AM-PM distortion shows improved linearity of the PA over the entire range of power levels. Finally, the concept is extended to an X-band GaN MMIC to demonstrate integration and efficiency enhancement at 10 GHz with a 4 W, 47% efficient class-AB PA, with an expected final efficiency of over 60% with harmonic injection.

  20. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; He, Maofang; Wang, Chaozhan; Wei, Yinmao, E-mail: ymwei@nwu.edu.cn

    2015-07-30

    Boronate affinity materials have been widely used for specific separation and preconcentration of cis-diol molecules, but most do not have sufficient capacity due to limited binding sites on the material surface. In this work, we prepared a phenylboronic acid-functionalized adsorbent with a high binding capacity via the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and chain-end functionalization. With this method, the terminal chlorides of the polymer chains were used fully, and the proposed adsorbent contains dense boronic acid polymers chain with boronic acid on the chain end. Consequently, the proposed adsorbent possesses excellent selectivity and a high binding capacity of 513.6 μmol g{sup −1} for catechol and 736.8 μmol g{sup −1} for fructose, which are much higher than those of other reported adsorbents. The dispersed solid-phase extraction (dSPE) based on the prepared adsorbent was used for extraction of three cis-diol drugs (i.e., epinephrine, isoprenaline and caffeic acid isopropyl ester) from plasma; the eluates were analyzed by HPLC-UV. The reduced amount of adsorbent (i.e., 2.0 mg) could still eliminate interferences efficiently and yielded a recovery range of 85.6–101.1% with relative standard deviations ranging from 2.5 to 9.7% (n = 5). The results indicated that the proposed strategy could serve as a promising alternative to increase the density of surface functional groups on the adsorbent; thus, the prepared adsorbent has the potential to effectively enrich cis-diol substances in real samples. - Highlights: • Boronate adsorbent is prepared via ATRP and chain-end functionalization. • The adsorbent has quite high binding capacity for cis-diols. • Binding capacity is easily manipulated by ATRP condition. • Chain-end functionalization can improve binding capacity significantly. • Reduced adsorbent is consumed in dispersed solid-phase extraction of cis-diols.

  1. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...... a fixed time interval. Rate optimal and effcient estimators areobtained for a one-dimensional diffusion parameter. Stable convergence in distribution isused to achieve a practically applicable Gaussian limit distribution for suitably normalisedestimators. In a simulation example, the limit distributions...... multidimensional parameter. Conditions for rate optimality and effciency of estimatorsof drift-jump and diffusion parameters are given in some special cases. Theseconditions are found to extend the pre-existing conditions applicable to continuous diffusions,and impose much stronger requirements on the estimating...

  2. Functional cerebral lateralization and dual-task efficiency-testing the function of human brain lateralization using fTCD

    NARCIS (Netherlands)

    Lust, J. M.; Geuze, R. H.; Groothuis, A. G. G.; Bouma, A.; Bouma, J.M.

    2011-01-01

    It has been hypothesized that functional cerebral lateralization enhances cognitive performance. Evidence was found in birds and fish. Our study aimed to test this hypothesis by analyzing the relationship between cerebral lateralization and both single-task performance and dual-task efficiency in

  3. Efficient Enhancement for Spatial Scalable Video Coding Transmission

    Directory of Open Access Journals (Sweden)

    Mayada Khairy

    2017-01-01

    Full Text Available Scalable Video Coding (SVC is an international standard technique for video compression. It is an extension of H.264 Advanced Video Coding (AVC. In the encoding of video streams by SVC, it is suitable to employ the macroblock (MB mode because it affords superior coding efficiency. However, the exhaustive mode decision technique that is usually used for SVC increases the computational complexity, resulting in a longer encoding time (ET. Many other algorithms were proposed to solve this problem with imperfection of increasing transmission time (TT across the network. To minimize the ET and TT, this paper introduces four efficient algorithms based on spatial scalability. The algorithms utilize the mode-distribution correlation between the base layer (BL and enhancement layers (ELs and interpolation between the EL frames. The proposed algorithms are of two categories. Those of the first category are based on interlayer residual SVC spatial scalability. They employ two methods, namely, interlayer interpolation (ILIP and the interlayer base mode (ILBM method, and enable ET and TT savings of up to 69.3% and 83.6%, respectively. The algorithms of the second category are based on full-search SVC spatial scalability. They utilize two methods, namely, full interpolation (FIP and the full-base mode (FBM method, and enable ET and TT savings of up to 55.3% and 76.6%, respectively.

  4. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Dummi Mahadevan, Gurumurthy [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); Zhao, Feng, E-mail: fzhao@iue.ac.cn [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China)

    2016-12-15

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media.

  5. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar

    International Nuclear Information System (INIS)

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang; Dummi Mahadevan, Gurumurthy; Zhao, Feng

    2016-01-01

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media.

  6. Physiological analysis for enhancing radiation use efficiency (RUE) in rice

    International Nuclear Information System (INIS)

    Punzalan, B.; Calibo, S.; Jagadish, S.V.K.

    2012-01-01

    Global dimming, or the decrease in global irradiance has been observed in the last 50 years at a rate of 2.7% per decade. Potential consequences of reduced solar radiation include a decline in total biomass production and productivity. Systematic studies involving rice and its ability to utilize available radiation efficiently under tropical conditions are limited. The study was conducted at the International Rice Research Institute (IRRI), Philippines, during the wet season of 2011 to physiologically analyze enhanced radiation use efficiency (RUE) under natural field conditions with limited sunlight. Five varieties were selected from previous seasons' experiments involving 48 different entries. Among the five entries, two with low yield under low solar radiation were selected to serve as checks. Growth analysis for estimating total biomass production and partitioning was done at key growth stages i.e. mid-tillering, panicle initiation, flowering, 15 days after flowering (15 DAF), and physiological maturity, coupled with analysis of non-structural carbohydrates (NSC). Yield and yield components were recorded at maturity. Results show that poor-performing varieties IR40 and IR54 had significantly more panicles than the other three varieties at flowering, indicating a higher sink to source ratio. NSIC RC 222 had the highest RUE of 1.33, while a 22% reduction in RUE was observed among the poor-performing varieties, which also had the lowest leaf area index (LAI) at 15 DAF. Data on thousand-grain weight revealed that IR40 and IR54 had smaller grain size. In conclusion, the authors hypothesize that either insufficient production or inefficient translocation of NSC might be causing the reduced grain size in poor-performing varieties

  7. On the functional form of an efficiency index

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Keiding, Hans

    1998-01-01

    An input efficiency index gives a numeric assessment of the degree to which a given input combination falls short of being efficient in producing a fixed amount of output. This paper presents a system of axioms which characterise a certain family of efficiency indices containing the well-known Fa......An input efficiency index gives a numeric assessment of the degree to which a given input combination falls short of being efficient in producing a fixed amount of output. This paper presents a system of axioms which characterise a certain family of efficiency indices containing the well......-known Farrell and Färe-Lovell indices. The family of indices satisfying the axioms can be obtained by minimizing a suitable function, called a performance evaluation, and different choices of performance evaluation will result in different indices...

  8. Efficiency enhancement of a harmonic lasing free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, E.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of); Mirian, N. S. [School of Particle and Accelerator Physics, Institute for Research in Fundamental Sciences (IPM), 19395-5531 Tehran (Iran, Islamic Republic of)

    2015-03-15

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  9. Efficiency enhancement of membraneless fuel cells by using Dean vortices

    Science.gov (United States)

    Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    To prove the concept of efficiency enhancement of membraneless fuel cells (Ferrigno et al., J. Am. Chem. Soc., 2002) by means of Dean vortices, we performed detailed experiments using Astigmatic Particle Tracking velocimetry (Cierpka et al., Meas. Sci. Technol., 2011). The basic idea is to use transversal secondary flows to stir the fluid inside the two co-laminar streams of the fuel cell (Yoon et al., Lab chip, 2006). To systematically characterize the performance of this approach, we proposed to measure simultaneously the voltage/current intensity output of the device and the corresponding 3D velocity field for different geometries and flow regimes. In this work, we show the first results obtained on a fuel cell with rectangular cross-section of 600 μm × 400 μm and radius of curvature r = 1 mm. A device with the same cross-section and a straight microchannel was used as a reference. Different flow rates were investigated leading to Reynolds numbers from 3.6 to 18. Additionally, to study the implications of possible variations of the co-laminar stream configuration, the topology of the interface between the two streams was measured using a particle-based interface reconstruction approach (Rossi et al., Meas. Sci. Technol., 2011).

  10. Efficiency enhancement of a harmonic lasing free-electron laser

    International Nuclear Information System (INIS)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-01-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered

  11. Efficiency enhancement of a harmonic lasing free-electron laser

    Science.gov (United States)

    Salehi, E.; Maraghechi, B.; Mirian, N. S.

    2015-03-01

    The harmonic lasing free-electron laser amplifier, in which two wigglers is employed in order for the fundamental resonance of the second wiggler to coincide with the third harmonic of the first wiggler to generate ultraviolet radiation, is studied. A set of coupled nonlinear first-order differential equations describing the nonlinear evolution of the system, for a long electron bunch, is solved numerically by CYRUS code. Solutions for the non-averaged and averaged equations are compared. Remarkable agreement is found between the averaged and non-averaged simulations for the evolution of the third harmonic. Thermal effects in the form of longitudinal velocity spread are also investigated. For efficiency enhancement, the second wiggler field is set to decrease linearly and nonlinearly at the point where the radiation of the third harmonic saturates. The optimum starting point and the slope of the tapering of the amplitude of the wiggler are found by a successive run of the code. It is found that tapering can increase the saturated power of the third harmonic considerably. In order to reduce the length of the wiggler, the prebunched electron beam is considered.

  12. Enhancing the light utilization efficiency of microalgae using organic dyes.

    Science.gov (United States)

    Seo, Yeong Hwan; Lee, Yonghee; Jeon, Duk Young; Han, Jong-In

    2015-04-01

    Solar radiation is composed of wide light spectrum including the range which cannot be utilized for microalgae. To enhance the light utilization efficiency, organic dye solutions of rhodamine101 and 9,10-diphenylanthracene were used as wavelength converters. Each dye affected cell growth and lipid accumulation differently, based on the response of each to different light spectrum. Under a light intensity of 50 W/m(2), maximum cell growth (1.5 g/L) was obtained with the red organic dye rhodamine101, whereas best lipid content (30%) with the blue type 9,10-diphenylanthracene. These two separate and complementary traits could be combined by simple mixing, and in so doing optimal growth (1.5 g/L) as well as lipid accumulation (30%) was achieved: lipid productivity was 2.3 times greater than without the organic dye. This study proved that certain organic dye solutions could convert useless wavelengths to be useful for algae cultivation, thereby increasing the productivity of biomass and lipids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Iida, Daisuke; Liu, Jin

    2018-01-01

    We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW) samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light...

  14. Preserving and enhancing the functionality of highways in Texas : workshop.

    Science.gov (United States)

    2010-01-01

    Workshop Objectives: To promote the importance of Highway Functionality To review functionality in highway lifecycle To provide how to materials to preserve, maintain, and enhance functionality To promote coordination between Tx...

  15. Preparation of function-enhanced vegetable oils

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2016-01-01

    Evaluation of function-enriched edible oils: Preventive effect of lipid peroxidation; (a Heat exposure: Commercial rape-seed oil and extra virgin oil were used as controls. For preparation of the test samples (function fortified oils of tomato-juice waste-residue and grape wine- ferment waste-residues, it is described in above section (1. All oil preparations were exposed to high temperature at 150oC and peroxide value (POV, acid value and TBARS were measured at various times as described. The methods of measurements of POV, acid value and TBARS were adapted conventional standard method described elsewhere. (b Light exposure: Similar to (a they were exposed to excessive light using Nippon Ikaga Kikai (Tokyo, LH-200-RDS equipped with fluorescent light tube (x3, NEC FL40S-2XN, 3.2K lux at 390-730nm. Result and Discussions: (1 Extraction of carotenoids etc. Modern edible oil refining processes are highly elaborated and efficient. The most of the commercial edible oils in the market are so purified that many important antioxidant components are mostly removed during refining process. Oils became mostly colorless and odorless; and they lack are devoid of anti-oxidative or radical scavenging components. We measured anti-alkyl peroxy radical (ROO.-scavenging activity, and found that many commercial oils have very little such activity (Figure 1. Many disposal- of tomato juice or extraction waste-residues in wine making, yet contained significant amount of functionally useful components that may be recovered by immersing the dried waste residues in the functionally poor oil, ie., low grade oils. Figure 2A, B shows it was indeed possible to recover such component like lycopene and carotenoids, and the spectrum of this oil exhibits multiple peaks correspond tomato lycopene. (2 Antioxidation activity: (a Acid value after light and heat exposure. Commercial highly purified edible oils are vulnerable for oxidation and resulting in lipid or alkyl hydroperoxides formation (ROOH, which

  16. Enhancing health programme efficiency: a Cambodian case study.

    Science.gov (United States)

    Stuer, F

    1998-09-01

    In 1995, the Cambodian Urban Health Care Association (CUHCA) was set up as facilitator between private health care providers and patients, guaranteeing good quality health care and fair pricing to patients and providing training and logistic support to providers. Providers were engaged on a fee-for-service basis and competition encouraged. CUHCA's objectives followed the same line of thought as the 1993 World Development Report, aiming at influencing the unregulated private health care market through competition mechanisms. But soon after the start of the project the basic problem was recognized to be not the absence of effective government regulation but rather that consumers lack the requisite knowledge to make good choices in the market for health services. CUHCA had not adequately addressed the demand for health services. The original supply-side strategy of improving health services by increasing competition was a failure. In order to improve CUHCA's health programme efficiency the association's objectives were subsequently redefined and its functioning reorganized. CUHCA now tries to educate consumers and provides good quality services so that consumers will be able to act on the basis of their newly acquired knowledge. CUHCA's health centres serve as model clinics for first-line health care. Community educators organize information, education and communication (IEC) activities. Staff help school teachers to improve formal health education in schools and CUHCA assists local leaders in sanitation development. Only full-time personnel are employed, encouraging team spirit and communication with the target population. Salaries are based on team performance. The CUHCA programme demonstrates that, depending on the market situation, health programme models need to address both the supply and the demand for services in order to be efficient. Where consumers lack essential knowledge to make appropriate choices in the health service market, interventions should focus

  17. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    Science.gov (United States)

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Enhancing Cold Atmospheric Plasma Treatment Efficiency for Cancer Therapy

    Science.gov (United States)

    Cheng, Xiaoqian

    To improve efficiency and safety of anti-cancer therapies the researchers and clinicians alike are prompted to develop targeted combined therapies that especially minimize damage to healthy tissues while eradicating the body of cancerous tissues. Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that cold plasma induced cell death. In this study, we seek to integrate the medical application of CAP. We proposed and implemented 3 novel ideas to enhance efficacy and selectivity of cancer therapy. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. We determined a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of CAP, including output voltage, treatment time, and gas flow-rate. We varied the characteristics of the cold plasma in order to obtain different major species (such as O, OH, N2+, and N2 lines). "plasma dosage" D ~ Q * V * t. is defined, where D is the entire "plasma dosage"; Q is the flow rate of feeding gas; V is output voltage; t is treatment time. The proper CAP dosage caused 3-fold cell death in the U87 cells compared to the normal human astrocytes E6/E7 cells. We demonstrated there is a synergy between AuNPS and CAP in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce U87 cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The ROS intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the

  19. Quantum Dot Spectrum Converters for Enhanced High Efficiency Photovoltaics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to enhance solar cell efficiency, radiation resistance and affordability. The Quantum Dot Spectrum Converter (QDSC) disperses quantum dots...

  20. Iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-10-01

    Full Text Available A novel platinum-based macrocycle, iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine (PtFeOCPc), was synthesised and characterised. The heterogeneous electron transfer and electrocatalytic properties of this functional material towards...

  1. Efficient functionalization of poly (styrene) beads immobilized metal ...

    Indian Academy of Sciences (India)

    Three types of new bead-shaped heterogeneous nanoparticle (NP) catalysts were synthesized by simplified procedures and studied for continuous reduction of crystal violet (CV) dye. The stabilizing agent, viz., 2-acryloxyethyltrimethyl ammonium chloride (PAC) was functionalized efficiently onto the surface of insoluble ...

  2. Acquired phototrophy through retention of functional chloroplasts increases growth efficiency of the sea slug Elysia viridis.

    Directory of Open Access Journals (Sweden)

    Finn A Baumgartner

    Full Text Available Photosynthesis is a fundamental process sustaining heterotrophic organisms at all trophic levels. Some mixotrophs can retain functional chloroplasts from food (kleptoplasty, and it is hypothesized that carbon acquired through kleptoplasty may enhance trophic energy transfer through increased host growth efficiency. Sacoglossan sea slugs are the only known metazoans capable of kleptoplasty, but the relative fitness contributions of heterotrophy through grazing, and phototrophy via kleptoplasts, are not well understood. Fitness benefits (i.e. increased survival or growth of kleptoplasty in sacoglossans are commonly studied in ecologically unrealistic conditions under extended periods of complete darkness and/or starvation. We compared the growth efficiency of the sacoglossan Elysia viridis with access to algal diets providing kleptoplasts of differing functionality under ecologically relevant light conditions. Individuals fed Codium fragile, which provide highly functional kleptoplasts, nearly doubled their growth efficiency under high compared to low light. In contrast, individuals fed Cladophora rupestris, which provided kleptoplasts of limited functionality, showed no difference in growth efficiency between light treatments. Slugs feeding on Codium, but not on Cladophora, showed higher relative electron transport rates (rETR in high compared to low light. Furthermore, there were no differences in the consumption rates of the slugs between different light treatments, and only small differences in nutritional traits of algal diets, indicating that the increased growth efficiency of E. viridis feeding on Codium was due to retention of functional kleptoplasts. Our results show that functional kleptoplasts from Codium can provide sacoglossan sea slugs with fitness advantages through photosynthesis.

  3. Potential impact of enhanced practice efficiency on endoscopy waiting times.

    LENUS (Irish Health Repository)

    Harewood, G C

    2009-06-01

    With the growing demand on endoscopy services, optimising practice efficiency has assumed increasing importance. Prior research has identified practice changes, which increase the efficiency in endoscopy. In this study, the potential impact of these practice changes on the current and projected future endoscopy waiting times at our institution was assessed.

  4. Laser contrast and other key parameters enhancing the laser conversion efficiency in ion acceleration regime

    Science.gov (United States)

    Torrisi, Lorenzo

    2018-01-01

    Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.

  5. Enhancing Lipoaspirate Efficiency by Altering Liposuction Cannula Design

    Directory of Open Access Journals (Sweden)

    Daniel O. Beck, MD

    2014-10-01

    Conclusions: We have developed 2 novel cannulas that maximize port features and seek to minimize the internal shaft resistance. Both designs demonstrate enhanced aspiration and uptake compared with an industry standard design.

  6. Semi-autonomous parking for enhanced safety and efficiency.

    Science.gov (United States)

    2017-06-01

    This project focuses on the use of tools from a combination of computer vision and localization based navigation schemes to aid the process of efficient and safe parking of vehicles in high density parking spaces. The principles of collision avoidanc...

  7. Optical Downconverting Nanomaterials for Enhanced Photovoltaic Efficiency, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For photovoltaic cells used to power space missions, such as those based on silicon, CuInGaSe2, and III-V materials, optical-to-electrical conversion efficiency is...

  8. Using Backscattering to Enhance Efficiency in Neutron Detectors

    DEFF Research Database (Denmark)

    Kittelmann, T.; Kanaki, K.; Klinkby, Esben Bryndt

    2017-01-01

    The principle of using strongly scattering materials to recover efficiency in detectors for neutron instruments, via backscattering of unconverted thermal neutrons, is discussed in general. The feasibility of the method is illustrated through Geant4-based simulations involving thermal neutrons...

  9. Enhancement of exergy efficiency in combustion systems using flameless mode

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Exergy efficiency in flameless combustion mode is 13% more than conventional combustion. • The maximum exergy efficiency in flameless combustion mode is achieved when oxidizer contains 10% oxygen. • Exergy destruction of flameless combustion is maximized when CO 2 is used for dilution of oxidizer. - Abstract: An exergitic-based analysis of methane (CH 4 ) conventional and flameless combustion in a lab-scale furnace is performed to determine the rate of pollutant formation and the effective potential of a given amount of fuel in the various combustion modes. The effects of inlet air temperature on exergy efficiency and pollutant formation of conventional combustion in various equivalence ratios are analyzed. The rate of exergy destruction in different conditions of flameless combustion (various equivalence ratios, oxygen concentration in the oxidizer and the effects of diluent) are computed using three-dimensional (3D) computational fluid dynamic (CFD). Fuel consumption reduction and exergy efficiency augmentation are the main positive consequences of using preheated air temperature in conventional combustion, however pollutants especially NO x formation increases dramatically. Low and moderate temperature inside the chamber conducts the flameless combustion system to low level pollutant formation. Fuel consumption and exergy destruction reduce drastically in flameless mode in comparison with conventional combustion. Exergy efficiency of conventional and flameless mode is 75% and 88% respectively in stoichiometric combustion. When CO 2 is used for dilution of oxidizer, chemical exergy increases due to high CO 2 concentration in the combustion products and exergy efficiency reduces around 2% compared to dilution with nitrogen (N 2 ). Since the rate of irreversibilities in combustion systems is very high in combined heat and power (CHP) generation and other industries, application of flameless combustion could be effective in terms of pollutant

  10. Enhancing propulsive efficiency through proper design of bending patterns of a flexible pitching foil

    Science.gov (United States)

    Zeyghami, Samane; Akoz, Emre; Moored, Keith

    2016-11-01

    Many aquatic animals propel themselves efficiently through water by oscillating flexible fins. These fins are, however, not homogeneously flexible, but instead their flexural rigidity varies along their chord and span. To detail the flow structures and propulsive performance of these functionally-graded propulsors a simple model of an unsteady pitching airfoil with a flexible hinge of varying location is examined. This acts as a first-order model of a functionally-graded fin by varying both the flexibility and bending pattern of the propulsor. Recent experiments have shown that adding a flexible 'tail' with the proper stiffness to a rigid pitching foil can effectively delay/suppress the formation of a deflected wake thereby enhancing the cycle-averaged wake momentum in the swimming direction. To extend these observations, we investigate the dependency of the wake pattern of a hinged pitching airfoil to the location and flexibility of the hinge by employing a fast boundary element method solver that is strongly coupled with a torsional spring structural model. The observed wake patterns are further connected to the thrust production and propulsive efficiency with the goal of determining the proper combinations of parameters that yields the maximum gain in efficiency. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  11. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Directory of Open Access Journals (Sweden)

    Yunfei Shang

    2015-10-01

    Full Text Available Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous, gallium arsenide (GaAs solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed

  12. Efficient tabling of structured data with enhanced hash-consing

    DEFF Research Database (Denmark)

    Zhou, Neng-Fa; Have, Christian Theil

    2012-01-01

    techniques, called input sharing and hash code memoization, for reducing the time complexity by avoiding computing hash codes for certain terms. The improved system is able to eliminate the extra linear factor in the old system for processing sequences, thus significantly enhancing the scalability...... uses hash tables, but also systems that use tries such as XSB and YAP. In this paper, we apply hash-consing to tabling structured data in B-Prolog. While hash-consing can reduce the space consumption when sharing is effective, it does not change the time complexity. We enhance hash-consing with two...

  13. Efficiency enhancements for MCP-based beta autoradiography imaging

    CERN Document Server

    Lees, J E

    2002-01-01

    We describe three approaches to increase the beta detection efficiency of microchannel plate detectors for biological beta autoradiography:(a)reversing the microchannel plate (MCP) bias polarity, changing the conventional high negative voltage on the input MCP to a grounded input, (b) a reduction in MCP pore size from 12.5 to 6 mu m, (c) using a CsI coating as an efficient secondary electron emitter. We also present our first measurements of double-tracer ( sup 3 H and sup 1 sup 4 C) imaging using pulse height analysis to distinguish between isotopes.

  14. Efficient quantum algorithm for computing n-time correlation functions.

    Science.gov (United States)

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  15. Absorption enhancement in graphene with an efficient resonator

    DEFF Research Database (Denmark)

    Xiao, Binggang; Gu, Mingyue; Qin, Kang

    2017-01-01

    Graphene can be utilized in designing tunable terahertz (THz) devices due to its tunability of sheet conductivity, suffering however with weak light-graphene interactions. In this paper, an absorption enhancement in graphene using a Fabry–Perot resonator is presented, and its performance has been...

  16. Efficient contrast enhancement through log-power histogram modification

    NARCIS (Netherlands)

    Wu, T.; Toet, A.

    2014-01-01

    A simple power-logarithm histogram modification operator is proposed to enhance digital image contrast. First a logarithm operator reduces the effect of spikes and transforms the image histogram into a smoothed one that approximates a uniform histogram while retaining the relative size ordering of

  17. Phytoremediation of heavy metals with several efficiency enhancer ...

    African Journals Online (AJOL)

    It is no doubt that the contamination of water, air and soil has worsened, and this occurs as a result of the increase in population. However, the need for remediation technologies has to be seriously considered. Phytoremediation is one of the remediation techniques with a relatively slow procedure and low efficiency.

  18. Enhanced efficiency in double junction polymer: Fullerene solar cells

    NARCIS (Netherlands)

    Moet, D.J.D.; Bruyn, P. de; Kotlarski, J.D.; Blom, P.W.M.

    2010-01-01

    Polymer solar cells based on the polyfluorene copolymer poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) and the fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) exhibit a power conversion efficiency of 4%. However, the optimum thickness of the

  19. Enhancement of callus induction and regeneration efficiency from ...

    African Journals Online (AJOL)

    Carbon source in the medium is considered to be an essential component for the high production costs of callus and plantlets in tissue culture. We report here the establishment of an efficient tissue culture cycle (callus induction and plant regeneration) for Datura stramonium by adjusting carbon sources and concentrations.

  20. DNA supercoiling enhances cooperativity and efficiency of an epigenetic switch

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Andersson, Magnus; Sneppen, Kim

    2013-01-01

    Bacteriophage λ stably maintains its dormant prophage state but efficiently enters lytic development in response to DNA damage. The mediator of these processes is the λ repressor protein, CI, and its interactions with λ operator DNA. This λ switch is a model on the basis of which epigenetic switch...

  1. Enhancing Instructional Design Efficiency: Methodologies Employed by Instructional Designers

    Science.gov (United States)

    Roytek, Margaret A.

    2010-01-01

    Instructional systems design (ISD) has been frequently criticised as taking too long to implement, calling for a reduction in cycle time--the time that elapses between project initiation and delivery. While instructional design research has historically focused on increasing "learner" efficiencies, the study of what instructional designers do to…

  2. Enhanced efficiency steam turbine blading - for cleaner coal plant

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, A.; Bell, D.; Cao, C.; Fowler, R.; Oliver, P.; Greenough, C.; Timmis, P. [ALSTOM Power, Rugby (United Kingdom)

    2005-03-01

    The aim of this project was to increase the efficiency of the short height stages typically found in high pressure steam turbine cylinders. For coal fired power plant, this will directly lead to a reduction in the amount of fuel required to produce electrical power, resulting in lower power station emissions. The continual drive towards higher cycle efficiencies demands increased inlet steam temperatures and pressures, which necessarily leads to shorter blade heights. Further advances in blading for short height stages are required in order to maximise the benefit. To achieve this, an optimisation of existing 3 dimensional designs was carried out and a new 3 dimensional fixed blade for use in the early stages of the high pressure turbine was developed. 28 figs., 5 tabs.

  3. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing.

    Science.gov (United States)

    Kneipp, Janina; Li, Xiangting; Sherwood, Margaret; Panne, Ulrich; Kneipp, Harald; Stockman, Mark I; Kneipp, Katrin

    2008-06-01

    Nanoaggregates formed by metal spheres of different radii and interparticle distances represent finite, deterministic, self-similar systems that efficiently concentrate optical fields and act as "nanolenses". Here we verify experimentally the theoretical concept of nanolenses and explore their potential as enhancing nanostructures in surface enhanced Raman scattering (SERS). Self-similar structures formed by gold nanospheres of different sizes are generated by laser ablation from solid gold into water. These nanolenses exhibit SERS enhancement factors on the order of 10(9). The "chemically clean" preparation process provides several advantages over chemically prepared nanoaggregates and makes the stable and biocompatible gold nanolenses potent enhancing structures for various analytical and sensing applications.

  4. Developing strategies to enhance loading efficiency of erythrosensors

    Science.gov (United States)

    Bustamante Lopez, Sandra C.; Ritter, Sarah C.; Meissner, Kenith E.

    2014-02-01

    For diabetics, continuous glucose monitoring and the resulting tighter control of glucose levels ameliorate serious complications from hypoglycemia and hyperglycemia. Diabetics measure their blood glucose levels multiple times a day by finger pricks, or use implantable monitoring devices. Still, glucose and other analytes in the blood fluctuate throughout the day and the current monitoring methods are invasive, immunogenic, and/or present biodegradation problems. Using carrier erythrocytes loaded with a fluorescent sensor, we seek to develop a biodegradable, efficient, and potentially cost effective method to continuously sense blood analytes. We aim to reintroduce sensor-loaded erythrocytes to the bloodstream and conserve the erythrocytes lifetime of 120 days in the circulatory system. Here, we compare the efficiency of two loading techniques: hypotonic dilution and electroporation. Hypotonic dilution employs hypotonic buffer to create transient pores in the erythrocyte membrane, allowing dye entrance and a hypertonic buffer to restore tonicity. Electroporation relies on controlled electrical pulses that results in reversible pores formation to allow cargo entrance, follow by incubation at 37°C to reseal. As part of the cellular characterization of loaded erythrocytes, we focus on cell size, shape, and hemoglobin content. Cell recovery, loading efficiency and cargo release measurements render optimal loading conditions. The detected fluorescent signal from sensor-loaded erythrocytes can be translated into a direct measurement of analyte levels in the blood stream. The development of a suitable protocol to engineer carrier erythrocytes has profound and lasting implications in the erythrosensor's lifespan and sensing capabilities.

  5. Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Steirer, K. Xerxes; Ndione, Paul F.; Widjonarko, N. Edwin; Lloyd, Matthew T.; Meyer, Jens; Ratcliff, Erin L.; Kahn, Antoine; Armstrong, Neal R.; Curtis, Calvin J.; Ginley, David S.; Berry, Joseph J.; Olson, Dana C.

    2011-07-18

    We show enhanced efficiency and stability of a high performance organic solar cell (OPV) when the work-function of the hole collecting indium-tin oxide (ITO) contact, modified with a solution-processed nickel oxide (NiOx) hole-transport layer (HTL), is matched to the ionization potential of the donor material in a bulk-heterojunction solar cell. Addition of the NiOx HTL to the hole collecting contact results in a power conversion efficiency (PCE) of 6.7%, which is a 17.3% net increase in performance over the 5.7% PCE achieved with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL on ITO. The impact of these NiOx films is evaluated through optical and electronic measurements as well as device modeling. The valence and conduction band energies for the NiOx HTL are characterized in detail through photoelectron spectroscopy studies while spectroscopic ellipsometry is used to characterize the optical properties. Oxygen plasma treatment of the NiOx HTL is shown to provide superior contact properties by increasing the ITO/NiOx contact work-function by 500 meV. Enhancement of device performance is attributed to reduction of the band edge energy offset at the ITO/NiOx interface with the poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothidiazole) (PCDTBT):[6,6]-phenyl-C61 butyric acid methyl ester PCBM and [6,6]-phenyl-C71 butyric acid methyl ester (PC70BM) active layer. A high work-function hole collecting contact is therefore the appropriate choice for high ionization potential donor materials in order to maximize OPV performance.

  6. Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Steirer, K. Xerxes [Colorado School of Mines, Golden, CO (United States); Ndione, Paul F. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Widjonarko, N. Edwin [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics; Lloyd, Matthew T. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Meyer, Jens [Princeton Univ., NJ (United States). Electrical Engineering Dept.; Ratcliff, Erin L. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry and Center for Interface Science: Solar Electric Materials (CISSEM); Kahn, Antoine [Princeton Univ., NJ (United States). Electrical Engineering Dept.; Armstrong, Neal R. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry and Center for Interface Science: Solar Electric Materials (CISSEM); Curtis, Calvin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Ginley, David S. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Berry, Joseph J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics; Olson, Dana C. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Center for Photovoltaics

    2011-07-18

    We show enhanced efficiency and stability of a high performance organic solar cell (OPV) when the work-function of the hole collecting indium-tin oxide (ITO) contact, modified with a solution-processed nickel oxide (NiOx) hole-transport layer (HTL), is matched to the ionization potential of the donor material in a bulk-heterojunction solar cell. Addition of the NiOx HTL to the hole collecting contact results in a power conversion efficiency (PCE) of 6.7%, which is a 17.3% net increase in performance over the 5.7% PCE achieved with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL on ITO. The impact of these NiOx films is evaluated through optical and electronic measurements as well as device modeling. The valence and conduction band energies for the NiOx HTL are characterized in detail through photoelectron spectroscopy studies while spectroscopic ellipsometry is used to characterize the optical properties. Oxygen plasma treatment of the NiOx HTL is shown to provide superior contact properties by increasing the ITO/NiOx contact work-function by 500 meV. Enhancement of device performance is attributed to reduction of the band edge energy offset at the ITO/NiOx interface with the poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothidiazole) (PCDTBT):[6,6]-phenyl-C61 butyric acid methyl ester PCBM and [6,6]-phenyl-C71 butyric acid methyl ester (PC₇₀BM) active layer. A high work-function hole collecting contact is therefore the appropriate choice for high ionization potential donor materials in order to maximize OPV performance.

  7. Evaluating the efficiency of functioning of integrated structures in industry

    Directory of Open Access Journals (Sweden)

    Suvorova Larisa

    2017-01-01

    Full Text Available In the article the authors review approaches to evaluating the efficiency of the integrated structures in industry in order to improve the methodology of this evaluation. In contrast to existing indicators for evaluating the efficiency, which characterize the performance of some aspects of the integrated structures activities, the authors propose the methodology based on calculating and comparing general and individual efficiency indicators of current (operating, financial and investing activities on the integrated structure as a whole. These indicators are presented in the form of the coefficients. By means of mathematical analysis, the authors have found out the strong and direct correlation among the given indicators, which confirms the objectivity of choosing the indicators. The received results of evaluating the efficiency of functioning of the integrated structures are proposed for use in the developed algorithm of making managerial decisions. The validity of the developed methodology is shown on the example of the integrated structure of the joint-stock company “Kirov Dairy Plant”.

  8. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency.

    Science.gov (United States)

    Jacobs, Matthew; Lopez-Garcia, Martin; Phrathep, O-Phart; Lawson, Tracy; Oulton, Ruth; Whitney, Heather M

    2016-10-24

    Enhanced light harvesting is an area of interest for optimizing both natural photosynthesis and artificial solar energy capture 1,2 . Iridescence has been shown to exist widely and in diverse forms in plants and other photosynthetic organisms and symbioses 3,4 , but there has yet to be any direct link demonstrated between iridescence and photosynthesis. Here we show that epidermal chloroplasts, also known as iridoplasts, in shade-dwelling species of Begonia 5 , notable for their brilliant blue iridescence, have a photonic crystal structure formed from a periodic arrangement of the light-absorbing thylakoid tissue itself. This structure enhances photosynthesis in two ways: by increasing light capture at the predominantly green wavelengths available in shade conditions, and by directly enhancing quantum yield by 5-10% under low-light conditions. These findings together imply that the iridoplast is a highly modified chloroplast structure adapted to make best use of the extremely low-light conditions in the tropical forest understorey in which it is found 5,6 . A phylogenetically diverse range of shade-dwelling plant species has been found to produce similarly structured chloroplasts 7-9 , suggesting that the ability to produce chloroplasts whose membranes are organized as a multilayer with photonic properties may be widespread. In fact, given the well-established diversity and plasticity of chloroplasts 10,11 , our results imply that photonic effects may be important even in plants that do not show any obvious signs of iridescence to the naked eye but where a highly ordered chloroplast structure may present a clear blue reflectance at the microscale. Chloroplasts are generally thought of as purely photochemical; we suggest that one should also think of them as a photonic structure with a complex interplay between control of light propagation, light capture and photochemistry.

  9. Temporal adaptation enhances efficient contrast gain control on natural images.

    Directory of Open Access Journals (Sweden)

    Fabian Sinz

    Full Text Available Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to Barlow's redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy reduction.

  10. Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters

    Science.gov (United States)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.; Mehrabi, M.

    2018-01-01

    Here, Zinc Oxide nanowires are synthesized using thermal chemical vapor deposition of a Zn granulate source and used to enhance a significant Si-solar cell efficiency with simple and low cost method. The nanowires are grown in various O2 flow rates. Those affect the shape, yield, structure and the quality of ZnO nanowires according to scanning electron microscopy and x-ray diffraction analyses. This delineates that the ZnO nanostructure is dependent on the synthesis conditions. The photoluminescence spectroscopy of ZnO indicates optical emission at the Ultra-Violet and blue-green regions whose intensity varies as a function of diameter of ZnO nano-wires. The optical property of ZnO layer is measured by UV-visible and diffuse reflection spectroscopy that demonstrate high absorbance at 280-550 nm. Furthermore, the photovoltaic characterization of ZnO nanowires is investigated based on the drop casting on Si-solar cell. The ZnO nanowires with various diameters demonstrate different effects on the efficiency of Si-solar cells. We have shown that the reduction of the spectral reflectance and down-shifting process as well as the reduction of photon trapping are essential parameters on the efficiency of Si-solar cells. However, the latter is dominated here. In fact, the trapped photons during the electron-hole generation are dominant due to lessening the absorption rate in ZnO nano-wires. The results indicate that the mean diameters reduction of ZnO nanowires is also essential to improve the fill factor. The external and internal quantum efficiency analyses attest the efficiency improvement over the blue region which is related to the key parameters above.

  11. Enhanced extraction efficiency of fluorescent SiC by surface nanostructuring

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Yakimova, Rositza

    2012-01-01

    Antireflective structures were fabricated on fluorescent 6H-SiC for white LEDs to enhance the extraction efficiency. Average surface reflectance decreased from 22.1% to 5.1% over a broad range, and luminescence intensity was enhanced by 41%.......Antireflective structures were fabricated on fluorescent 6H-SiC for white LEDs to enhance the extraction efficiency. Average surface reflectance decreased from 22.1% to 5.1% over a broad range, and luminescence intensity was enhanced by 41%....

  12. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  13. Phytoremediation of heavy metals with several efficiency enhancer ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Key words: phytoremediation, heavy metal, plant growth promoting rhizobacteria, multi-functional method. INTRODUCTION ... toxicity of heavy metals differs according to plant species; for flowering plants the ..... inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a ...

  14. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fasolato, C. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); Domenici, F., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it; De Angelis, L.; Luongo, F.; Postorino, P., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Sennato, S. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Mura, F. [Dip. Scienze di Base Applicate all' Ingegneria, Università Sapienza, Via A. Scarpa, 16, 00185 Rome (Italy); Costantini, F. [Dip. Ingegneria Astronautica Elettrica ed Energetica, Università Sapienza, Via Eudossiana, 18, 00184 Rome (Italy); Bordi, F. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy)

    2014-08-18

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10{sup 9} is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm{sup 2} as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  15. An efficient multi-scale Green's function reaction dynamics scheme

    Science.gov (United States)

    Sbailò, Luigi; Noé, Frank

    2017-11-01

    Molecular Dynamics-Green's Function Reaction Dynamics (MD-GFRD) is a multiscale simulation method for particle dynamics or particle-based reaction-diffusion dynamics that is suited for systems involving low particle densities. Particles in a low-density region are just diffusing and not interacting. In this case, one can avoid the costly integration of microscopic equations of motion, such as molecular dynamics (MD), and instead turn to an event-based scheme in which the times to the next particle interaction and the new particle positions at that time can be sampled. At high (local) concentrations, however, e.g., when particles are interacting in a nontrivial way, particle positions must still be updated with small time steps of the microscopic dynamical equations. The efficiency of a multi-scale simulation that uses these two schemes largely depends on the coupling between them and the decisions when to switch between the two scales. Here we present an efficient scheme for multi-scale MD-GFRD simulations. It has been shown that MD-GFRD schemes are more efficient than brute-force molecular dynamics simulations up to a molar concentration of 102 μM. In this paper, we show that the choice of the propagation domains has a relevant impact on the computational performance. Domains are constructed using a local optimization of their sizes and a minimal domain size is proposed. The algorithm is shown to be more efficient than brute-force Brownian dynamics simulations up to a molar concentration of 103 μM and is up to an order of magnitude more efficient compared with previous MD-GFRD schemes.

  16. Absorption enhancement in graphene with an efficient resonator

    DEFF Research Database (Denmark)

    Xiao, Binggang; Gu, Mingyue; Qin, Kang

    2017-01-01

    Graphene can be utilized in designing tunable terahertz (THz) devices due to its tunability of sheet conductivity, suffering however with weak light-graphene interactions. In this paper, an absorption enhancement in graphene using a Fabry–Perot resonator is presented, and its performance has been...... numerically investigated using finite element method. The Fabry–Perot resonator consists of a continuous layer of graphene film sandwiched between the polymethyl methacrylate and silicon layers on an Au substrate which is covered by periodic gold ribbons. Numerical results show that the absorption performance...... of graphene which could be conveniently achieved by applying a bias voltage. The proposed structure here has a promising potential for developing advanced THz optics-electronics devices....

  17. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement.

    Science.gov (United States)

    Nguyen, N; Milanfar, P; Golub, G

    2001-01-01

    In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.

  18. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Sabine Szunerits

    2018-02-01

    Full Text Available Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs, which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field

  19. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery

    Science.gov (United States)

    Szunerits, Sabine; Boukherroub, Rabah

    2018-01-01

    Advances in materials science and bionanotechnology have allowed the refinements of current drug delivery systems, expected to facilitate the development of personalized medicine. While dermatological topical pharmaceutical formulations such as foams, creams, lotions, gels, etc., have been proposed for decades, these systems target mainly skin-based diseases. To treat systemic medical conditions as well as localized problems such as joint or muscle concerns, transdermal delivery systems (TDDSs), which use the skin as the main route of drug delivery, are very appealing. Over the years, these systems have shown to offer important advantages over oral as well as intravenous drug delivery routes. Besides being non-invasive and painless, TDDSs are able to deliver drugs with a short-half-life time more easily and are well adapted to eliminate frequent administrations to maintain constant drug delivery. The possibility of self-administration of a predetermined drug dose at defined time intervals makes it also the most convenient personalized point-of-care approach. The transdermal market still remains limited to a narrow range of drugs. While small and lipophilic drugs have been successfully delivered using TDDSs, this approach fails to deliver therapeutic macromolecules due to size-limited transport across the stratum corneum, the outermost layer of the epidermis. The low permeability of the stratum corneum to water-soluble drugs as well as macromolecules poses important challenges to transdermal administration. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to iontophoresis and microneedle-based concepts, thermal-based approaches have shown great promise to enhance transdermal drug delivery of different therapeutics. In this inaugural article for the section “Frontiers in Bioengineering and Biotechnology,” the advances in this field and the handful of

  20. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    Directory of Open Access Journals (Sweden)

    Ou Yiyu

    2018-01-01

    Full Text Available We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extraction efficiency. The size-dependent strain relaxation effect was characterized by photoluminescence, Raman spectroscopy and time-resolved photoluminescence measurements. In addition, the light extraction efficiency of different MQW samples was studied by finite-different time-domain simulations. Compared to the as-grown sample, the nanopillar amber MQW sample with a diameter of 300 nm has demonstrated an emission enhancement by a factor of 23.8.

  1. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    KAUST Repository

    Ou, Yiyu

    2017-09-09

    We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW) samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extraction efficiency. The size-dependent strain relaxation effect was characterized by photoluminescence, Raman spectroscopy and time-resolved photoluminescence measurements. In addition, the light extraction efficiency of different MQW samples was studied by finite-different time-domain simulations. Compared to the as-grown sample, the nanopillar amber MQW sample with a diameter of 300 nm has demonstrated an emission enhancement by a factor of 23.8.

  2. The Efficiency of Non-Flammable Functional Underwear

    Directory of Open Access Journals (Sweden)

    Glombikova Viera

    2014-09-01

    Full Text Available This study evaluates the efficiency of non-flammable functional underwear used as a secondary heat barrier in extreme conditions. Five groups of knitted fabrics were analysed for flame resistance and selected physiological properties (water vapour permeability, air permeability, thermal resistance and liquid moisture transport by moisture management transport. The results indicated similar levels of flame resistance for the materials tested but show important differences in terms of physiological characteristics, namely liquid moisture transport, which influences the safety and comfort of protective clothing.

  3. Enhancement in Photoelectrochemical Efficiency by Fabrication of BiVO4@MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available An enormous enhancement in the photo-to-current conversion efficiency over the nanocomposite material composed by BiVO4 on the surface of MWCNTs, with respect to electrode of pure BiVO4, was observed. The heterojunction formed between MWCNTs and nano-BiVO4 is beneficial for the separation of photogenerated electrons and holes, resulting in more electrons that are able to transport efficiently to the surface and therefore enhance the photoefficiency.

  4. Linearization and efficiency enhancement of power amplifiers using digital predistortion

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Nima

    2008-07-01

    Today, demand of higher spectral efficiency forces wireless communication systems to employ non-constant envelope modulation schemes such as Quadrature Amplitude Modulations (QAM), Code Division Multiple Access (CDMA) and Orthogonal Frequency-Division Multiplexing (OFDM) schemes. These modulation techniques generate signals with wide range of envelope fluctuation. This property makes these schemes sensitive to nonlinear amplifications. Nonlinearities introduced by Power Amplifiers (PA) cause both a distortion of the signal and an increased out of band output spectrum, which leads to a rise in adjacent channel interference. Thus, in order to ensure a high spectral efficiency and to avoid spectral regrowth, a linearization technique is required. Among all the linearization techniques, basedband Digital Predistortion (DPD) is one of the commonly used linearization techniques, which is characterized by robust operation, low implementation cost and high accuracy. In the first chapter of this thesis, an introduction on the motivation and necessity of using PA linearization techniques is presented. Digital Predistortion as a popular linearization technique aims to improve the efficiency and linearity of RF power amplifiers. The scope of the thesis, the goals to be achieved and the contributions are also discussed in chapter one. Chapter two, mainly discusses sample-by-sample updating algorithm in Digital Predistorters to adaptively linearize the PA memoryless nonlinearities. Look-up Table (LUT) and polynomial approaches are studied and implemented in Hardware using a test-bed provided by Nera Research. The experimental results together with a discussion are then given. A new DPD algorithm based on block estimation is proposed in chapter three to avoid realtime signal processing, reduce the complexity and also avoid the bad performance during the slow adaptation of adaptive the Adjacent Channel Power Ratio (ACPR) and the Error Vector Magnitude (EVM) requirements. In

  5. [Measures to enhance patient safety. Importance of efficiency evaluation].

    Science.gov (United States)

    Conen, D

    2011-02-01

    Over the last 10 years, there has been increasing awareness of medical errors and harm to patients in healthcare. There is now widespread acceptance of the problem of medical harm and a determination to tackle major patient safety problems. Safety is defined as freedom from accidental injury. Thus, clinical risk management has been increasingly requested by professionals and their professional organizations to make healthcare safer. Clinical risk management is one of a number of organizational systems or processes aimed to improve the quality of healthcare, but one which is primarily concerned with creating and maintaining safe systems of care. A definition of this form--identifying, analyzing, and controlling risks--fits more comfortably with the culture and mission of healthcare organizations and is more likely to achieve the support and involvement of clinical professionals because it better reflects their purpose and values. Patient safety needs to become embedded in the culture of healthcare, not just in the sense of individual high standards, but a widespread acceptance of understanding of risk and safety and the need of everyone to actively promote patient safety. Measures taken to enhance patient safety encompass a wide range of activities with regard to the errors in the process of medication, to surgical errors and surgical outcome ("safer surgery saves lives"), and to hospitalism and hospital-acquired infections taking into consideration adherence to hand hygiene. An evaluation of the added value to patient safety, when processes are systematically changed and the patients become involved in making healthcare safer, is needed.

  6. Stacked microbial desalination cells to enhance water desalination efficiency.

    Science.gov (United States)

    Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia

    2011-03-15

    Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.

  7. Auditing energy use -a systematic approach for enhancing energy efficiency

    International Nuclear Information System (INIS)

    Ardhapnrkar, P.M.; Mahalle, A.M.

    2005-01-01

    Energy management is a critical activity in the developing as well as developed countries owing to constraints in the availability of primary energy resources and the increasing demand for energy from the industrial and non-industrial users. Energy consumption is a vital parameter that determines the economic growth of any country. An energy management system (EMS) can save money by allowing greater control over energy consuming equipment. The foundation for the energy program is the energy audit, which is the systematic study of factory or building to determine where and how well energy is being used. It is the nucleus of any successful energy saving program -it is tool, not a solution. Conventional energy conservation methods are mostly sporadic and lack a coordinated plan of action. Consequently only apparent systems are treated without the analysis of system interaction. Energy audit on the other hand, involves total system approach and aims at optimizing energy use efficiently for the entire plant. In the present paper a new approach to pursue energy conservation techniques is being discussed. The focus is mainly on the methodology of energy audit, energy use analysis, relating energy with the production, and reducing energy losses, etc. It is observe that with this systematic approach, if adopted, which consists of three essential segments namely capacity utilization fine-tuning of the equipment and technology up-gradation can result in phenomenal savings in the energy, building competitive edge for the industry. This approach along with commitment can provide the right impetus to reap the benefits of energy conservation on a sustained basis. (author)

  8. Enhanced quantum efficiency of photoelectron emission, through surface textured metal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Anna; Bandaru, Prabhakar R., E-mail: pbandaru@ucsd.edu [Program in Materials Science, Department of Mechanical Engineering, University of California, San Diego, La Jolla, California, 92130 (United States); Moody, Nathan A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-03-15

    It is predicted that the quantum efficiency (QE) of photoelectron emission from metals may be enhanced, possibly by an order of magnitude, through optimized surface texture. Through extensive computational simulations, it is shown that the absorption enhancement in select surface groove geometries may be a dominant contributor to enhanced QE and corresponds to localized Fabry–Perot resonances. The inadequacy of extant analytical models in predicting the QE increase, and suggestions for further improvement, are discussed.

  9. Enhancing Energy Efficiency of Wireless Sensor Network through the Design of Energy Efficient Routing Protocol

    Directory of Open Access Journals (Sweden)

    Noor Zaman

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is known to be a highly resource constrained class of network where energy consumption is one of the prime concerns. In this research, a cross layer design methodology was adopted to design an energy efficient routing protocol entitled “Position Responsive Routing Protocol” (PRRP. PRRP is designed to minimize energy consumed in each node by (1 reducing the amount of time in which a sensor node is in an idle listening state and (2 reducing the average communication distance over the network. The performance of the proposed PRRP was critically evaluated in the context of network lifetime, throughput, and energy consumption of the network per individual basis and per data packet basis. The research results were analyzed and benchmarked against the well-known LEACH and CELRP protocols. The outcomes show a significant improvement in the WSN in terms of energy efficiency and the overall performance of WSN.

  10. Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality

    Science.gov (United States)

    Vogel, Nancy Amanda

    Nanomaterials bridge the gap between bulk materials and molecular structures and are known for their unique material properties and highly functional nature which make them attractive for a variety of potential applications, from energy storage and pollution sensors to agricultural and biomedical products. These potential applications, coupled with advances in nanotechnology, have generated considerable interest in nanostructure research. The work presented in this dissertation focuses on two such nanostructures, electrospun nanofibers and nanodiamond particles, with an overarching goal of tailoring the material behavior for a desired outcome. Our first research theme focuses on realizing the full potential of chitosan electrospinning by understanding the mechanism that enables fiber formation through cyclodextrin complexation as a function of solution properties, solvent types, and cyclodextrin content. We demonstrate that cyclodextrin addition not only enables chitosan fiber formation, but also extends the composition and solvent window for nanofiber synthesis while introducing a variety of mat topologies, including three-dimensional, self-supporting mats. These fiber formation improvements cannot be fully explained by conventional electrospinning parameters, but instead seem to be related to the molecular interactions between chitosan and cyclodextrin. Our second research theme entails the modification of highly water soluble, poly(vinyl alcohol) (PVA) nanofibers dissolution properties via atomic layer deposition (ALD) post treatments. In this work, we demonstrate that applying different thicknesses of aluminum oxide nano-coatings can improve the stability of PVA nanofibers in high humidity conditions and significantly decrease the solubility of electrospun PVA mats in water, from seconds to multiple weeks. Controlling mat dissolution allows for the unique opportunity to modulate small molecule, such as drug, release from nanofibers without altering the core

  11. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    Science.gov (United States)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  12. Small Molecules that Enhance the Catalytic Efficiency of HLA-DM

    International Nuclear Information System (INIS)

    Nicholson, M.; Moradi, B.; Seth, N.; Xing, X.; Cuny, G.; Stein, R.; Wucherpfenning, K.

    2006-01-01

    HLA-DM (DM) plays a critical role in Ag presentation to CD4 T cells by catalyzing the exchange of peptides bound to MHC class II molecules. Large lateral surfaces involved in the DM:HLA-DR (DR) interaction have been defined, but the mechanism of catalysis is not understood. In this study, we describe four small molecules that accelerate DM-catalyzed peptide exchange. Mechanistic studies demonstrate that these small molecules substantially enhance the catalytic efficiency of DM, indicating that they make the transition state of the DM:DR/peptide complex energetically more favorable. These compounds fall into two functional classes: two compounds are active only in the presence of DM, and binding data for one show a direct interaction with DM. The remaining two compounds have partial activity in the absence of DM, suggesting that they may act at the interface between DM and DR/peptide. A hydrophobic ridge in the DMβ1 domain was implicated in the catalysis of peptide exchange because the activity of three of these enhancers was substantially reduced by point mutations in this area

  13. Efficient VLSI Architecture for Training Radial Basis Function Networks

    Science.gov (United States)

    Fan, Zhe-Cheng; Hwang, Wen-Jyi

    2013-01-01

    This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired. PMID:23519346

  14. Libcint: An efficient general integral library for Gaussian basis functions.

    Science.gov (United States)

    Sun, Qiming

    2015-08-15

    An efficient integral library Libcint was designed to automatically implement general integrals for Gaussian-type scalar and spinor basis functions. The library is able to evaluate arbitrary integral expressions on top of p, r and σ operators with one-electron overlap and nuclear attraction, two-electron Coulomb and Gaunt operators for segmented contracted and/or generated contracted basis in Cartesian, spherical or spinor form. Using a symbolic algebra tool, new integrals are derived and translated to C code programmatically. The generated integrals can be used in various types of molecular properties. To demonstrate the capability of the integral library, we computed the analytical gradients and NMR shielding constants at both nonrelativistic and 4-component relativistic Hartree-Fock level in this work. Due to the use of kinetically balanced basis and gauge including atomic orbitals, the relativistic analytical gradients and shielding constants requires the integral library to handle the fifth-order electron repulsion integral derivatives. The generality of the integral library is achieved without losing efficiency. On the modern multi-CPU platform, Libcint can easily reach the overall throughput being many times of the I/O bandwidth. On a 20-core node, we are able to achieve an average output 8.3 GB/s for C60 molecule with cc-pVTZ basis. © 2015 Wiley Periodicals, Inc.

  15. Efficiency issues related to probability density function comparison

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.M.; Cannon, M.; Barros, J.E.

    1996-03-01

    The CANDID project (Comparison Algorithm for Navigating Digital Image Databases) employs probability density functions (PDFs) of localized feature information to represent the content of an image for search and retrieval purposes. A similarity measure between PDFs is used to identify database images that are similar to a user-provided query image. Unfortunately, signature comparison involving PDFs is a very time-consuming operation. In this paper, we look into some efficiency considerations when working with PDFS. Since PDFs can take on many forms, we look into tradeoffs between accurate representation and efficiency of manipulation for several data sets. In particular, we typically represent each PDF as a Gaussian mixture (e.g. as a weighted sum of Gaussian kernels) in the feature space. We find that by constraining all Gaussian kernels to have principal axes that are aligned to the natural axes of the feature space, computations involving these PDFs are simplified. We can also constrain the Gaussian kernels to be hyperspherical rather than hyperellipsoidal, simplifying computations even further, and yielding an order of magnitude speedup in signature comparison. This paper illustrates the tradeoffs encountered when using these constraints.

  16. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  17. Memory-efficient analysis of dense functional connectomes

    Directory of Open Access Journals (Sweden)

    Kristian Loewe

    2016-11-01

    Full Text Available The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software are compared with regard to their computational efficiency in terms of memory requirements and computation time. The matrix implementation based on on-demand computations has very low memory requirements thus enabling

  18. Functional autonomy of distant-acting human enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Akiyama, Jennifer A.; Shoukry, Malak; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-19

    Many human genes are associated with dispersed arrays of transcriptional enhancers that regulate their expression in time and space. Studies in invertebrate model systems have suggested that these elements function as discrete and independent regulatory units, but the in vivo combinatorial properties of vertebrate enhancers remain poorly understood. To explore the modularity and regulatory autonomy of human developmental enhancers, we experimentally concatenated up to four enhancers from different genes and used a transgenic mouse assay to compare the in vivo activity of these compound elements with that of the single modules. In all of the six different combinations of elements tested, the reporter gene activity patterns were additive without signs of interference between the individual modules, indicating that regulatory specificity was maintained despite the presence of closely-positioned heterologous enhancers. Even in cases where two elements drove expression in close anatomical proximity, such as within neighboring subregions of the developing limb bud, the compound patterns did not show signs of cross-inhibition between individual elements or novel expression sites. These data indicate that human developmental enhancers are highly modular and functionally autonomous and suggest that genomic enhancer shuffling may have contributed to the evolution of complex gene expression patterns in vertebrates

  19. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains.

    Science.gov (United States)

    Zeng, Ximin; Ardeshna, Devarshi; Lin, Jun

    2015-07-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Polymer density functional approach to efficient evaluation of path integrals

    DEFF Research Database (Denmark)

    Brukhno, Andrey; Vorontsov-Velyaminov, Pavel N.; Bohr, Henrik

    2005-01-01

    A polymer density functional theory (P-DFT) has been extended to the case of quantum statistics within the framework of Feynman path integrals. We start with the exact P-DFT formalism for an ideal open chain and adapt its efficient numerical solution to the case of a ring. We show that, similarly......, the path integral problem can, in principle, be solved exactly by making use of the two-particle pair correlation function (2p-PCF) for the ends of an open polymer, half of the original. This way the exact data for one-dimensional quantum harmonic oscillator are reproduced in a wide range of temperatures....... The exact solution is not, though, reachable in three dimensions (3D) because of a vast amount of storage required for 2p-PCF. In order to treat closed paths in 3D, we introduce a so-called "open ring" approximation which proves to be rather accurate in the limit of long chains. We also employ a simple self...

  1. A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account

    International Nuclear Information System (INIS)

    Liu, Jizhen; Meng, Hongmin; Hu, Yang; Lin, Zhongwei; Wang, Wei

    2015-01-01

    Highlights: • We discuss the disadvantages of conventional OTC MPPT method. • We study the relationship between enhancing efficiency and power smoothing. • The conversion efficiency is enhanced and the volatility of power is suppressed. • Small signal analysis is used to verify the effectiveness of proposed method. - Abstract: With the increasing capacity of wind energy conversion system (WECS), the rotational inertia of wind turbine is becoming larger. And the efficiency of energy conversion is significantly reduced by the large inertia. This paper proposes a novel maximum power point tracking (MPPT) method to enhance the efficiency of energy conversion for large-scale wind turbine. Since improving the efficiency may increase the fluctuations of output power, power smoothing is considered as the second control objective. A T-S fuzzy inference system (FIS) is adapted to reduce the fluctuations according to the volatility of wind speed and accelerated rotor speed by regulating the compensation gain. To verify the effectiveness, stability and good dynamic performance of the new method, mechanism analyses, small signal analyses, and simulation studies are carried out based on doubly-fed induction generator (DFIG) wind turbine, respectively. Study results show that both the response speed and the efficiency of proposed method are increased. In addition, the extra fluctuations of output power caused by the high efficiency are reduced effectively by the proposed method with FIS

  2. Functional analysis of limb transcriptional enhancers in the mouse.

    Science.gov (United States)

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. © 2014 Wiley Periodicals, Inc.

  3. Efficiency Enhancement of Gallium Arsenide Photovoltaics Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers

    Directory of Open Access Journals (Sweden)

    Yangsen Kang

    2015-01-01

    Full Text Available We demonstrate a high-throughput, solution-based process for subwavelength surface texturing of a III-V compound solar cell. A zinc oxide (ZnO nanoparticle ink is spray-coated directly on top of a gallium arsenide (GaAs solar cell. The nanostructured ZnO films have demonstrated antireflection and light scattering properties over the visible/near-infrared (NIR spectrum. The results show a broadband spectral enhancement of the solar cell external quantum efficiency (EQE, a 16% enhancement of short circuit current, and a 10% increase in photovoltaic efficiency.

  4. Efficiency Enhancement of Gallium Arsenide Photovoltaic Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers

    International Nuclear Information System (INIS)

    Kang, Y.; Huo, Y.; Chen, Y.; Christoforo, M. G.; Harris, J.S.; Liang, D.; Mehra, S.; Salleo, A.; Harris, J.S.; Harris, J.S.

    2015-01-01

    We demonstrate a high-throughput, solution-based process for sub wavelength surface texturing of a III-V compound solar cell. A zinc oxide (ZnO) nanoparticle ink is spray-coated directly on top of a gallium arsenide (GaAs) solar cell. The nano structured ZnO films have demonstrated antireflection and light scattering properties over the visible/near-infrared (NIR) spectrum. The results show a broadband spectral enhancement of the solar cell external quantum efficiency (EQE), a 16% enhancement of short circuit current, and a 10% increase in photovoltaic efficiency

  5. GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Artur Piński

    2017-07-01

    Full Text Available Phytoremediation is an emerging technology that uses plants in order to cleanup pollutants including xenobiotics and heavy metals from soil, water and air. Inoculation of plants with plant growth promoting endophytic and rhizospheric bacteria can enhance efficiency of phytoremediation. Genomic analysis of four plant-associated strains belonging to the Stenotrophomonas maltophilia species revealed the presence of genes encoding proteins involved in plant growth promotion, biocontrol of phytopathogens, biodegradation of xenobiotics, heavy metals resistance and plant-bacteria-environment interaction. The results of this analysis suggest great potential of bacteria belonging to Stenotrophomonas maltophilia species in enhancing phytoremediation efficiency.

  6. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  7. A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells

    KAUST Repository

    Schmidt, Kristin

    2013-10-31

    The addition of processing additives is a widely used approach to increase power conversion efficiencies for many organic solar cells. We present how additives change the polymer conformation in the casting solution leading to a more intermixed phase-segregated network structure of the active layer which in turn results in a 5-fold enhancement in efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    International Nuclear Information System (INIS)

    Iida, Daisuke; Fadil, Ahmed; Ou, Yiyu; Kopylov, Oleksii; Ou, Haiyan; Chen, Yuntian; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2015-01-01

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm 2 , and a factor of 8.1 at 1 W/cm 2 . A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor

  9. Enhancement of biodiversity in energy farming: towards a functional approach

    International Nuclear Information System (INIS)

    Londo, M.; Dekker, J.

    1997-01-01

    When biomass is a substantial sustainable energy source, and special energy crops are grown on a large scale, land use and the environment of agriculture will be affected. Of these effects, biodiversity deserves special attention. The enhancement of biodiversity in energy farming via standard setting is the overall purpose of this project. In this study, the potential functionality of biodiversity in energy farming is proposed as a way of operationalising the rather abstract and broad concept of biodiversity. Functions of biodiversity are reviewed, and examples of functions are worked out, based on the current literature of nature in energy farming systems. (author)

  10. Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers

    Science.gov (United States)

    Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.

    Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.

  11. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    International Nuclear Information System (INIS)

    Wu, Qingyang; Zhang, Shiming; Yue, Shouzhen; Zhang, Zhensong; Xie, Guohua; Zhao, Yi; Liu, Shiyong

    2013-01-01

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C 2′ )acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C 2− ] (FIrpic) and PO-01 into the same wide band-gap host of N,N ′ -dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices

  12. Demand for functional and nutritional enhancements in specialty milk products.

    Science.gov (United States)

    Gulseven, Osman; Wohlgenant, Michael

    2014-10-01

    This article investigates the socio-demographic determinants affecting the demand for functional and nutritional enhancements in milk products based on a two-stage model. In order to derive the implicit market values of these enhancements, first we estimated the relationship between the prices of differentiated dairy products and the amount or respectively the presence of specific characteristics in these products. Next, using these implicit prices along with the information on households' demographic background, we analyzed the socio-demographic factors that affect consumer demand for specific functional and nutritional enhancements. The model is estimated using a combined panel data set based on AC Nielsen Retail Homescan Panel and the USDA Nutrient Database. Our results indicate that being lactose/cholesterol free (LFCF) and organic implies substantially higher price premiums, whereas soy has a negative price. Socio-demographic factors such as income, racial profile, presence of children; education level and age have significant effects on the demand for functional enhancements. Specialty milk consumption increases with age, education, and presence of kids, whereas it declines with income. The ratio of specialty milk consumption to total milk consumption is substantially higher among Hispanic, Asian and African-American households. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Enhancing the Efficiency of Polymer Solar Cells by Modifying Buffer Layer with N,N-Dimethylacetamide

    Directory of Open Access Journals (Sweden)

    Shaopeng Yang

    2014-01-01

    Full Text Available We modified the PEDOT:PSS anode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells by spin-coating the solvent N,N-dimethylacetamide (DMAC. This modification significantly enhanced the efficiency of the ITO/PEDOT:PSS/DMAC/P3HT:PCBM/LiF/Al solar cells. The DMAC-treated device spin-coated at 3000 rpm exhibited a power conversion efficiency (PCE of 3.74%, a 59% improvement over that of an untreated cell. To study the mechanism of improving the conversion efficiency, we characterized many parameters, including the light and dark I-V curves, external quantum efficiency, active layer absorption spectrum, transmission spectrum of ITO:PEDOTPSS, PEDOT:PSS surface morphology, and electrical conductivity. Modifying the PEDOT:PSS film increased conductivity, making it more conducive to hole extraction and collection. Our findings suggest that modifying the anode buffer layer can improve photoelectric conversion efficiency.

  14. Windows Vista Kernel-Mode: Functions, Security Enhancements and Flaws

    Directory of Open Access Journals (Sweden)

    Mohammed D. ABDULMALIK

    2008-06-01

    Full Text Available Microsoft has made substantial enhancements to the kernel of the Microsoft Windows Vista operating system. Kernel improvements are significant because the kernel provides low-level operating system functions, including thread scheduling, interrupt and exception dispatching, multiprocessor synchronization, and a set of routines and basic objects.This paper describes some of the kernel security enhancements for 64-bit edition of Windows Vista. We also point out some weakness areas (flaws that can be attacked by malicious leading to compromising the kernel.

  15. Assembly of catalase-based bioconjugates for enhanced anticancer efficiency of photodynamic therapy in vitro.

    Science.gov (United States)

    Zhao, Jie; Fei, Jinbo; Du, Cuiling; Cui, Wei; Ma, Hongchao; Li, Junbai

    2013-11-25

    An oxygen generation core-shell structure uploading rose bengal has been fabricated by covalent assembly of catalase and alginate dialdehyde via Schiff's base. The composite can catalyze the decomposition of intracellular H2O2 to increase the concentration of O2, which effectively enhances the anticancer efficiency of photodynamic therapy in vitro.

  16. The Relationship between Enhancing Efficiency and Reducing Anxiety in the Class during the Assessment

    Science.gov (United States)

    Demollari, Bajram; Halili, Batjar

    2018-01-01

    Through this work we suppose to find the relationship between enhancing the efficiency and the circumstance of anxiety in the classroom during the evaluation by the teachers in the Republic of Kosovo, particularly focused in the region of Prizren. For this study we have researched various approach theories and practices that are close to the topic…

  17. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  18. Enhancing decoding efficiency in poor readers via a word identification game

    NARCIS (Netherlands)

    Gorp, K. van; Segers, P.C.J.; Verhoeven, L.T.W.

    2017-01-01

    The effects of a word identification game aimed at enhancing decoding efficiency in poor readers were tested. Following a pretest-posttest-retention design with a waiting control group, 62 poor-reading Dutch second graders received a five-hour tablet intervention across a period of five weeks.

  19. Enhanced weathering of olivine in seawater: The efficiency as revealed by thermodynamic scenario analysis

    NARCIS (Netherlands)

    Griffioen, J.

    2017-01-01

    Enhanced weathering of olivine has been suggested as a measure to lower the atmospheric CO2 level and it might also mitigate ocean acidification. This study aimed to characterise how olivine can weather in seawater, to elucidate the role of secondary precipitation and to ascertain the efficiency in

  20. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction.

    Science.gov (United States)

    Li, Xiao-Hong; Li, Qianqian; Jiang, Lin; Deng, Chunyu; Liu, Zaiyi; Fu, Yongheng; Zhang, Mengzhen; Tan, Honghong; Feng, Yuliang; Shan, Zhixin; Wang, Jianjun; Yu, Xi-Yong

    2015-12-01

    The reprogramming of fibroblasts to induced pluripotent stem cells raises the possibility that somatic cells could be directly reprogrammed to cardiac progenitor cells (CPCs). The present study aimed to assess highly efficient protein-based approaches to reduce or eliminate the genetic manipulations to generate CPCs for cardiac regeneration therapy. A combination of QQ-reagent-modified Gata4, Hand2, Mef2c, and Tbx5 and three cytokines rapidly and efficiently reprogrammed human dermal fibroblasts (HDFs) into CPCs. This reprogramming process enriched trimethylated histone H3 lysine 4, monoacetylated histone H3 lysine 9, and Baf60c at the Nkx2.5 cardiac enhancer region by the chromatin immunoprecipitation quantitative polymerase chain reaction assay. Protein-induced CPCs transplanted into rat hearts after myocardial infarction improved cardiac function, and this was related to differentiation into cardiomyocyte-like cells. These findings demonstrate that the highly efficient protein-transduction method can directly reprogram HDFs into CPCs. This protein reprogramming strategy lays the foundation for future refinements both in vitro and in vivo and might provide a source of CPCs for regenerative approaches. The findings from the present study have demonstrated an efficient protein-transduction method of directly reprogramming fibroblasts into cardiac progenitor cells. These results have great potential in cell-based therapy for cardiovascular diseases. ©AlphaMed Press.

  1. Chronic antiepileptic drug use and functional network efficiency: A functional magnetic resonance imaging study.

    Science.gov (United States)

    van Veenendaal, Tamar M; IJff, Dominique M; Aldenkamp, Albert P; Lazeron, Richard H C; Hofman, Paul A M; de Louw, Anton J A; Backes, Walter H; Jansen, Jacobus F A

    2017-06-28

    To increase our insight in the neuronal mechanisms underlying cognitive side-effects of antiepileptic drug (AED) treatment. The relation between functional magnetic resonance-acquired brain network measures, AED use, and cognitive function was investigated. Three groups of patients with epilepsy with a different risk profile for developing cognitive side effects were included: A "low risk" category (lamotrigine or levetiracetam, n = 16), an "intermediate risk" category (carbamazepine, oxcarbazepine, phenytoin, or valproate, n = 34) and a "high risk" category (topiramate, n = 5). Brain connectivity was assessed using resting state functional magnetic resonance imaging and graph theoretical network analysis. The Computerized Visual Searching Task was used to measure central information processing speed, a common cognitive side effect of AED treatment. Central information processing speed was lower in patients taking AEDs from the intermediate and high risk categories, compared with patients from the low risk category. The effect of risk category on global efficiency was significant ( P effect on the clustering coefficient (ANCOVA, P > 0.2). Also no significant associations between information processing speed and global efficiency or the clustering coefficient (linear regression analysis, P > 0.15) were observed. Only the four patients taking topiramate show aberrant network measures, suggesting that alterations in functional brain network organization may be only subtle and measureable in patients with more severe cognitive side effects.

  2. Large Purcell enhancement with efficient one-dimensional collection via coupled nanowire–nanorod system

    Science.gov (United States)

    Duan, Xueke; Ren, Juanjuan; Zhang, Fan; Hao, He; Lu, Guowei; Gong, Qihuang; Gu, Ying

    2018-01-01

    Combining the advantages of both gap surface plasmons (GSPs) and evanescent waves, we demonstrate simultaneously large Purcell enhancement and efficient one-dimensional collection of photons at subwavelength scale in the coupled nanowire–nanorod system. The spontaneous emission (SE) can be enhanced thousands of times based on the excitation of GSPs with strongly localized electromagnetic field. Emitted photons are directly collected by subwavelength-confined evanescent modes and guided along the nanowire. By optimizing geometry and material parameters, 14 208 times of Purcell enhancement with collection efficiency up to 39.3% can be achieved in the Ag nanowire–Ag nanorod system where the emitted photons can spread more than 25 μm, or SE is enhanced by 3142 times and up to 53% of emitted photons propagate with low loss in the dielectric nanowire–Ag nanorod system. This proposal that incorporates large Purcell enhancement, efficient nanoscale collection and one-dimensional propagation of photons, promises to have an important impact on bright single photon sources, plasmon-based nanolasers and on-chip nanodevices.

  3. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin

    2015-12-16

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  4. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters.

    Science.gov (United States)

    Tsai, Meng-Lin; Tu, Wei-Chen; Tang, Libin; Wei, Tzu-Chiao; Wei, Wan-Rou; Lau, Shu Ping; Chen, Lih-Juann; He, Jr-Hau

    2016-01-13

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm(2) and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultrahigh efficiency photovoltaic cells in the future.

  5. Enhanced Solar Photoelectrochemical Conversion Efficiency of ZnO:Cu Electrodes for Water-Splitting Application

    Directory of Open Access Journals (Sweden)

    Rekha Dom

    2013-01-01

    Full Text Available n-type ZnO:Cu photoanodes were fabricated by simple spray pyrolysis deposition technique. Influence of low concentration (range ~10−4–10−1% of Cu doping in hexagonal ZnO lattice on its photoelectrochemical performance has been investigated. The doped photoanodes displayed 7-time enhanced conversion efficiencies with respect to their undoped counterpart, as estimated from the photocurrents generated under simulated solar radiation. This is the highest enhancement in the solar conversion efficiency reported so far for the Cu-doped ZnO. This performance is attributed to the red shift in the band gap of the Cu-doped films and is in accordance with the incident-photon-current-conversion efficiency (IPCE measurements. Electrochemical studies reveal an n-type nature of these photoanodes. Thus, the study indicates a high potential of doped ZnO films for solar energy applications, in purview of the development of simple nanostructuring methodologies.

  6. Efficient wave-function matching approach for quantum transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, Dan Erik

    2009-01-01

    . This approach makes it feasible to apply iterative techniques to efficiently determine the few required bulk modes, which allows for a significant reduction of the computational expense of the WFM method. We illustrate the efficiency of the method on a carbon nanotube field-effect-transistor device displaying...... band-to-band tunneling and modeled within the semiempirical extended Hückel theory framework....

  7. Application of biuret, dicyandiamide, or urea as a cathode buffer layer toward the efficiency enhancement of polymer solar cells.

    Science.gov (United States)

    Zhao, Xuemei; Xu, Chenhui; Wang, Haitao; Chen, Fei; Zhang, Wenfeng; Zhao, Zhiqiang; Chen, Liwei; Yang, Shangfeng

    2014-03-26

    Three amino-containing small-molecule organic materials-biuret, dicyandiamide (DCDA), and urea-were successfully applied as novel cathode buffer layers (CBLs) in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs) for the first time, resulting in obvious efficiency enhancement. Under the optimized condition, the power conversion efficiencies (PCEs) of the CBL-incorporated BHJ-PSC devices are 3.84%, 4.25%, and 4.39% for biuret, DCDA, and urea, which are enhanced by ∼15%, ∼27%, and ∼31%, respectively, compared to the reference poly(3-hexylthiophene-2,5-diyl) : [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) BHJ-PSC device without any CBL. The efficiency enhancement is primarily attributed to the increases of both short-circuit current density (Jsc) and fill factor (FF), for which the enhancement ratio is found to be sensitively dependent on the molecular structure of small-molecule organic materials. The surface morphologies and surface potential changes of the CBL-incorporated P3HT:PCBM photoactive layers were studied by atomic force microscopy and scanning Kelvin probe microscopy, respectively, suggesting the formation of an interfacial dipole layer between the photoactive layer and Al cathode, which may decrease the energy level offset between the work function of Al and the lowest unoccipoed molecular orbital level (LUMO) of the PCBM acceptor and consequently facilitate electron extraction by the Al cathode. The difference in the enhancement effect of biuret, DCDA, and urea is due to their difference on the work function matching with P3HT:PCBM. Besides, the coordination interaction between the lone-pair electrons on the N atoms of the amino (-NH2) group and the Al atoms may prohibit interaction between Al and the thiophene rings of P3HT, contributing to the efficiency enhancement of the CBL-incorporated devices as well. In this sense, the different CBL performance of biuret, DCDA, and urea is also proposed to partially originate from the

  8. Operational Efficiency And Customer Satisfaction of Restaurants: Basis For Business Operation Enhancement

    Directory of Open Access Journals (Sweden)

    Annie Gay Barlan-Espino

    2017-02-01

    Full Text Available Restaurants’ primary objective is to provide comfort and satisfaction to guest without compromising the operational efficiency of the business. This research aimed to determine the operational efficiency and customer satisfaction of restaurants as a basis for business operation enhancement. Specifically to determine the operational efficiency of the restaurant in terms of kitchen operations and dining operations and the level of customer satisfaction of the restaurant business in terms of: Product, Policies, People, Processes and Proactivity as well as the problems encountered by the restaurant in their operation and customer service. Descriptive research design was used with managers and customers as respondents of the study. It was concluded that majority of the restaurants are operating for more than a year with sufficient number of employees having enough seating capacity that accommodate large volume of customers. Restaurants are efficient on the aspect of kitchen and dining operations and sometimes encountered problems. Customers are satisfied in terms of 5 P’s. It was found out that there is no significant difference in the operational efficiency of restaurant when grouped according to profile variables. An action plan for continuous business operation enhancement on operational efficiency and customer satisfaction was proposed.

  9. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency.

    Science.gov (United States)

    Fan, Qiuling; Treder, Krzysztof; Miller, W Allen

    2012-05-06

    Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs) containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV)-like cap-independent translation elements (BTEs). The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV) did not stimulate translation efficiently. mRNA with the crTMV 5' UTR was unstable in tobacco protoplasts. BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.

  10. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    Directory of Open Access Journals (Sweden)

    Fan Qiuling

    2012-05-01

    Full Text Available Abstract Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV-like cap-independent translation elements (BTEs. The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.

  11. Enhancing Propriospinal Relays to Improve Functional Recovery After SCI

    Science.gov (United States)

    2017-10-01

    controls and PAP treated animals . We are presently starting specific aim 3 of the study to examine enhancing propriospinal axon sprouting using GDNF alone...functioning motor control systems, such as the corticospinal tract, making restoration of voluntary locomotor control difficult. In many animal models... the manuscript for submission later this month. Subtask  1.1:    We  received  ACURO  approval  to  begin   animal  studies

  12. Covalent chemical functionalization enhances the biodegradation of graphene oxide

    Science.gov (United States)

    Kurapati, Rajendra; Bonachera, Fanny; Russier, Julie; Rajukrishnan Sureshbabu, Adukamparai; Ménard-Moyon, Cécilia; Kostarelos, Kostas; Bianco, Alberto

    2018-01-01

    Biodegradation of the graphene-based materials is an emerging issue due to their estimated widespread usage in different industries. Indeed, a few concerns have been raised about their biopersistence. Here, we propose the design of surface-functionalized graphene oxide (GO) with the capacity to degrade more effectively compared to unmodified GO using horseradish peroxidase (HRP). For this purpose, we have functionalized the surface of GO with two well-known substrates of HRP namely coumarin and catechol. The biodegradation of all conjugates has been followed by Raman, dynamic light scattering and electron microscopy. Molecular docking and gel electrophoresis have been carried out to gain more insights into the interaction between GO conjugates and HRP. Our studies have revealed better binding when GO is functionalized with coumarin or catechol compared to control GOs. All results prove that GO functionalized with coumarin and catechol moieties display a faster and more efficient biodegradation over GO.

  13. Functionally enhanced brown adipose tissue in Ames dwarf mice.

    Science.gov (United States)

    Darcy, Justin; Bartke, Andrzej

    2017-01-02

    Reduced insulin-like growth factor 1/insulin signaling (IIS) has been linked to extended longevity in species ranging from yeast to mammals. In mammals, this is exemplified in Ames dwarf (Prop1 df/df ) mice, which have a 40%-60% increase in longevity (males and females, respectively) due to their recessive Prop1 loss-of-function mutation that results in lack of growth hormone (GH), thyroid-stimulating hormone and prolactin. Our laboratory has previously shown that Ames dwarf mice have functionally unique white adipose tissue (WAT) that improves, rather than impairs, insulin sensitivity. Because GH and thyroid hormone are integral to adipose tissue development and function, we hypothesized that brown adipose tissue (BAT) in Ames dwarf mice may also be functionally unique and/or enhanced. Here, we elaborate on our recent findings, which demonstrate that BAT is functionally enhanced in Ames dwarf mice, and suggest that BAT removal in these mice results in utilization of WAT depots as an energy source. We also discuss how our findings compare to those in other long-lived dwarf mice with altered IIS, which unlike Ames dwarf mice, are essentially euthyroid. Lastly, we provide some insights into the implications of these findings and discuss some of the necessary future work in this area.

  14. Enhanced Yields in Organic Arable Crop Production by Eco-Functional Intensification using Intercropping

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Bedoussac, Laurent; Carlsson, Georg

    2015-01-01

    Organic agriculture (OA) faces challenges to enhance food production per unit area and simultaneously reduce the environmental and climate impacts, e.g. nitrate leaching per unit land and green-houses gases (GHG) emissions per kg product. Eco-functional intensification (EFI) is suggested as a means...... as an efficient tool for weed management, enhanced product quality (i.e. grain protein concentration of the intercropped cereal). We discuss how ICs contribute to efficient use of soil N sources and minimized losses of N by leaching via “ecological precision farming”. It is concluded, that crop diversification...... in space by intercropping, fitted into the organic crop rotation, has a strong potential to increase yield and hereby reduce the global environmental effects performance such as GHG per kg organic grain. Finally, we discuss likely barriers for increased use of intercropping in organic farming and suggest...

  15. High-efficiency intracavity second-harmonic enhancement for a few-cycle laser pulse train

    International Nuclear Information System (INIS)

    Cai, Yi; Xu, Shixiang; Zeng, Xuanke; Zou, Da; Li, Jingzhen

    2012-01-01

    This paper presents an intracavity second-harmonic (SH) enhancement technology without the need of input impedance-matching for optimal coupling between the cavity and its input frequency comb. More than 10% SH energy conversion efficiency is available, thus the power of the SH frequency comb can be enhanced beyond 100 relative to single-pass SH generation. Compared with a conventional passive enhancing cavity, for the purpose of high power enhancement, our scheme can operate at much lower finesse and thus broader bandwidth so that it can support several-optical-cycle pulses more easily. If they have the same finesse, both methods perform with similar operating stability. The results show that our novel design is suitable for some applications which need a short wavelength, high intensity, and ultra-broad bandwidth pulse train. (paper)

  16. Ultrathin high efficiency photodetectors based on subwavelength grating and near-field enhanced absorption.

    Science.gov (United States)

    Zohar, Moshe; Auslender, Mark; Hava, Shlomo

    2015-03-12

    Optical absorbers, comprising a thin semiconductor layer placed between two transparent ones in close proximity to a subwavelength grating, are considered. With no back mirror, these structures only mimic the resonant cavity enhanced photodetector, being an order of magnitude thinner. It is argued that the grating can assist the light confinement by near field microcavity resonance rather than by far field mirroring. Tolerant designs to attain nearly 100% optical absorption at a predefined wavelength are demonstrated, and the near-field enhancement of the absorption is confirmed. The results obtained indicate that the proposed near field enhanced photodetectors meet the combined challenges of significantly increasing the efficiency and reducing the complexity and size of the entire device as compared to the resonant cavity enhanced photodetectors, which may be useful for integrated multi-detector arrays.

  17. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  18. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides.

    Science.gov (United States)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N Asger; Dong, Jianji; Ding, Yunhong

    2017-02-09

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW -1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10-90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater.

  19. Enhanced finite difference scheme for the neutron diffusion equation using the importance function

    International Nuclear Information System (INIS)

    Vagheian, Mehran; Vosoughi, Naser; Gharib, Morteza

    2016-01-01

    Highlights: • An enhanced finite difference scheme for the neutron diffusion equation is proposed. • A seven-step algorithm is considered based on the importance function. • Mesh points are distributed through entire reactor core with respect to the importance function. • The results all proved that the proposed algorithm is highly efficient. - Abstract: Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in regions with greater neutron importance, density of mesh elements is higher than that in regions with less importance. The forward calculations are then performed for both of the uniform and improved non-uniform mesh point distributions and the results (the neutron fluxes along with the corresponding eigenvalues) for the two cases are compared with each other. The results are benchmarked against the reference values (with fine meshes) for Kang and Rod Bundle BWR benchmark problems. These benchmark cases revealed that the improved non-uniform mesh point distribution is highly efficient.

  20. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  1. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Science.gov (United States)

    Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong

    2017-11-01

    This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  2. Bird functional diversity decreases with time since disturbance: Does patchy prescribed fire enhance ecosystem function?.

    Science.gov (United States)

    Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan

    2016-01-01

    Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control

  3. Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement

    Science.gov (United States)

    Stratakis, Emmanuel; Stylianakis, Minas M.; Koudoumas, Emmanuel; Kymakis, Emmanuel

    2013-05-01

    Enhancement of photoconversion efficiency (PCE) and stability in bulk heterojunction (BHJ) plasmonic organic photovoltaic devices (OPVs) incorporating graphene oxide (GO) thin films as the hole transport layer (HTL) and surfactant free Au nanoparticles (NPs) between the GO HTL and the photoactive layers is demonstrated. In particular the plasmonic GO-based devices exhibited a performance enhancement by 30% compared to the devices using the traditional PEDOT:PSS layer. Likewise, they preserved 50% of their initial PCE after 45 h of continuous illumination, contrary to the PEDOT:PSS-based ones that die after 20 h. The performance increase is attributed to the improved photocurrent and fill factor owing to the enhanced exciton generation rate due to NP-induced plasmon absorption enhancement. Besides this, the stability enhancement can be attributed to limited oxygen and/or indium diffusion from the indium tin oxide (ITO) electrode into the active layer. The industrial exploitation of composite GO/NPs as efficient buffer layers in OPVs is envisaged.

  4. Enhancement of efficiency and stability of phosphorescent OLEDs based on heterostructured light-emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Byung Doo, E-mail: bdchin@dankook.ac.kr [Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2011-03-23

    The light-emitting efficiency and stability of a phosphorescent organic light-emitting device (OLED), whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping influenced by heterostructured emissive layers, are studied. The variation of the material combination of the heterostructured emitter, both for mixed and double layer configuration, affects the charge injection behaviour, luminous efficiency and stability. Both double and mixed emitter configurations yield low-voltage and high-efficiency behaviour (51 lm W{sup -1} at 1000 cd m{sup -2}; 30 lm W{sup -1} at 10 000 cd m{sup -2}). Such an improvement in power efficiency at elevated brightness is sufficiently universal, while the enhancement of device half-lifetime is rather sensitive to the circumstantial layout of heterostructural emitters. With an optimal mixture of hole-transport type and electron-transport type, a half-lifetime of more than 2500 h at 4000 cd m{sup -2} is obtained, which is 8 times the half-lifetime of control devices with a single emitter structure. The origin and criterion for enhancement of efficiency and lifetime are discussed in terms of the carrier transport behaviour with a specific device architecture.

  5. Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion.

    Science.gov (United States)

    Zhao, Lu; Hu, Yan; Xu, Dawei; Cai, Kaiyong

    2014-07-01

    Orthopedic implants failures are generally related to poor osseointegration and/or bacterial infection in clinical application. Surface functionalization of an implant is one promising alternative for enhancing osseointegration and/or reducing bacterial infection, thus ensuring the long term survival of the implant. In this study, titanium (Ti) substrates were surface functionalized with a polydopamine (PDOP) film as an intermediate layer for post-immobilization of chitosan-lauric acid (Chi-LA) conjugate. Chi-LA conjugate was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR) and hydrogen proton nuclear magnetic resonance (NMR) spectrometer, respectively. Lauric acid (LA), a natural saturated fatty acid, was used mainly due to its good antibacterial property. Scanning electron microscopy (SEM) and water contact angle measurements were employed to detect the morphology changes and surface wettability of Ti substrates. The results suggested that Chi-LA conjugate was successfully immobilized onto the surfaces of Ti substrates. In vitro tests confirmed that the cell adhesion, cell viability, intracellular alkaline phosphatase activity and mineralization capacity of osteoblasts were remarkably improved when cultured onto Chi-LA surface functionalized Ti substrates. Antibacterial assay against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) showed that the Chi-LA modified Ti substrates efficiently inhibited the adhesion and growth of bacteria. Overall, this study developed a promising approach to fabricate functional Ti-based orthopedic implants, which could enhance the biological functions of osteoblasts and concurrently reduce bacteria adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Heat management methodology for enhanced global efficiency in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    F. Claude

    2017-09-01

    Full Text Available The transportation impact on pollution and global climate change, has forced the automotive sector to search for more ecological solutions. Owing to the different properties of Fuel Cell (FC, real potential for reducing vehicles’ emissions has been witnessed. The optimization of FC integration within Electric Vehicles (EVs is one of the original solutions. This paper presents an innovating solution of multi-stack Fuel Cell Electrical Vehicle (FCEV in terms of efficiency, durability and ecological impact on environment. The main objective is to illustrate the interest of using the multi-stack FC system on the global autonomy, cycling, and efficiency enhancement, besides optimizing its operation performance.

  7. Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW

    CERN Document Server

    Kerhervé, Eric

    2015-01-01

    This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch

  8. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  9. Efficient Hardware Implementation For Fingerprint Image Enhancement Using Anisotropic Gaussian Filter.

    Science.gov (United States)

    Khan, Tariq Mahmood; Bailey, Donald G; Khan, Mohammad A U; Kong, Yinan

    2017-05-01

    A real-time image filtering technique is proposed which could result in faster implementation for fingerprint image enhancement. One major hurdle associated with fingerprint filtering techniques is the expensive nature of their hardware implementations. To circumvent this, a modified anisotropic Gaussian filter is efficiently adopted in hardware by decomposing the filter into two orthogonal Gaussians and an oriented line Gaussian. An architecture is developed for dynamically controlling the orientation of the line Gaussian filter. To further improve the performance of the filter, the input image is homogenized by a local image normalization. In the proposed structure, for a middle-range reconfigurable FPGA, both parallel compute-intensive and real-time demands were achieved. We manage to efficiently speed up the image-processing time and improve the resource utilization of the FPGA. Test results show an improved speed for its hardware architecture while maintaining reasonable enhancement benchmarks.

  10. Accurate and efficient computation of synchrotron radiation functions

    International Nuclear Information System (INIS)

    MacLeod, Allan J.

    2000-01-01

    We consider the computation of three functions which appear in the theory of synchrotron radiation. These are F(x)=x∫x∞K 5/3 (y) dy))F p (x)=xK 2/3 (x) and G p (x)=x 1/3 K 1/3 (x), where K ν denotes a modified Bessel function. Chebyshev series coefficients are given which enable the functions to be computed with an accuracy of up to 15 sig. figures

  11. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment

    DEFF Research Database (Denmark)

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério

    2017-01-01

    Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough...... to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process...

  12. Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles

    OpenAIRE

    Wilson, Benjamin K.; Mentele, Tim; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H.; Lin, Lih Y.

    2010-01-01

    We propose and demonstrate a purely optical approach to trap and align particles using the interaction of polarized light with periodic nanostructures to generate enhanced trapping force. With a weakly focused laser beam, we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 μm down to 190 nm as well as cancer cell nuclei. In addition, alignment of non-spherical dielectric particles to a 1-D periodic nanostructure was achieved with low laser intensi...

  13. Evaluating transit operator efficiency: An enhanced DEA model with constrained fuzzy-AHP cones

    OpenAIRE

    Xin Li; Yue Liu; Yaojun Wang; Zhigang Gao

    2016-01-01

    This study addresses efforts to comb the Analytic Hierarchy Process (AHP) with Data Envelopment Analysis (DEA) to deliver a robust enhanced DEA model for transit operator efficiency assessment. The proposed model is designed to better capture inherent preferences information over input and output indicators by adding constraint cones to the conventional DEA model. A revised fuzzy-AHP model is employed to generate cones, where the proposed model features the integration of the fuzzy logic with...

  14. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    Science.gov (United States)

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  15. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy

    Science.gov (United States)

    You, Yufeng; Wang, Zhigang; Ran, Haitao; Zheng, Yuanyi; Wang, Dong; Xu, Jinshun; Wang, Zhibiao; Chen, Yu; Li, Pan

    2016-02-01

    High-intensity focused ultrasound (HIFU) is being generally explored as a non-invasive therapeutic modality to treat solid tumors. However, the clinical use of HIFU for large and deep tumor-ablation applications such as hepatocellular carcinoma (HCC) is currently entangled with long treatment duration and high operating energy. This critical issue can be potentially resolved by the introduction of HIFU synergistic agents (SAs). Traditional SAs such as microbubbles and microparticles face the problem of large size, short cycle time, damage to mononuclear phagocytic system and unsatisfactory targeting efficiency. In this work, we have developed a facile and versatile nanoparticle-based HIFU synergistic cancer surgery enhanced by transarterial chemoembolization for high-efficiency HCC treatment based on elaborately designed Fe3O4-PFH/PLGA nanocapsules. Multifunctional Fe3O4-PFH/PLGA nanocapsules were administrated into tumor tissues via transarterial injection combined with Lipiodol to achieve high tumor accumulation because transarterial chemoembolization by Lipiodol could block the blood vessels. The high synergistic HIFU ablation effect was successfully achieved against HCC tumors based on the phase-transformation performance of the perfluorohexane (PFH) inner core in the composite nanocapsules, as systematically demonstrated in VX2 liver tumor xenograft in rabbits. Multifunctional Fe3O4-PFH/PLGA nanocapsules were also demonstrated as efficient contrast agents for ultrasound, magnetic resonance and photoacoustic tri-modality imagings, potentially applicable for imaging-guided HIFU synergistic surgery. Therefore, the elaborate integration of traditional transarterial chemoembolization with recently developed nanoparticle-enhanced HIFU cancer surgery could efficiently enhance the HCC cancer treatment outcome, initiating a new and efficient therapeutic protocol/modality for clinic cancer treatment.

  16. Surface Acoustic Wave (SAW-Enhanced Chemical Functionalization of Gold Films

    Directory of Open Access Journals (Sweden)

    Gina Greco

    2017-10-01

    Full Text Available Surface chemical and biochemical functionalization is a fundamental process that is widely applied in many fields to add new functions, features, or capabilities to a material’s surface. Here, we demonstrate that surface acoustic waves (SAWs can enhance the chemical functionalization of gold films. This is shown by using an integrated biochip composed by a microfluidic channel coupled to a surface plasmon resonance (SPR readout system and by monitoring the adhesion of biotin-thiol on the gold SPR areas in different conditions. In the case of SAW-induced streaming, the functionalization efficiency is improved ≈ 5 times with respect to the case without SAWs. The technology here proposed can be easily applied to a wide variety of biological systems (e.g., proteins, nucleic acids and devices (e.g., sensors, devices for cell cultures.

  17. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2017-12-01

    Full Text Available The development of human induced pluripotent stem cells (iPSCs holds great promise for regenerative medicine. However the iPSC induction efficiency is still very low and with lengthy reprogramming process. We utilized the highly potent transactivation domain (TAD of MYC protein to engineer the human OCT4 fusion proteins. Applying the MYC-TAD-OCT4 fusion proteins in mouse iPSC generation leads to shorter reprogramming dynamics, with earlier activation of pluripotent markers in reprogrammed cells than wild type OCT4 (wt-OCT4. Dramatic enhancement of iPSC colony induction efficiency and shortened reprogramming dynamics were observed when these MYC-TAD-OCT4 fusion proteins were used to reprogram primary human cells. The OCT4 fusion proteins induced human iPSCs are pluripotent. We further show that the MYC Box I (MBI is dispensable while both MBII and the linking region between MBI/II are essential for the enhanced reprogramming activity of MYC-TAD-OCT4 fusion protein. Consistent with an enhanced transcription activity, the engineered OCT4 significantly stimulated the expression of genes specifically targeted by OCT4-alone, OCT4/SOX2, and OCT4/SOX2/KLF4 during human iPSC induction, compared with the wt-OCT4. The MYC-TAD-OCT4 fusion proteins we generated will be valuable tools for studying the reprogramming mechanisms and for efficient iPSC generation for humans as well as for other species.

  18. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    Science.gov (United States)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  19. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability.

    Science.gov (United States)

    Stassi, Stefano; Chiadò, Alessandro; Cauda, Valentina; Palmara, Gianluca; Canavese, Giancarlo; Laurenti, Marco; Ricciardi, Carlo

    2017-04-01

    An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices. Graphical Abstract An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

  20. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  1. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow....... At a device level, the focus is on improving the light extraction efficiency due to the rather high refractive index of SiC by nanostructuring the surface of SiC. Both periodic nanostructures made by e-beam lithography and nanosphere lithography and random nanostructures made by self-assembled Au nanosphere...... mask and a thin layer of Al film have been investigated and all of them showed much enhanced extraction efficiency. All these good results pave the way to a very promising fluorescent SiC based white LED light source...

  2. Enhanced efficiency of P-element mediated transgenesis in Drosophila: Microinjection of DNA complexed with nanomaterial.

    Science.gov (United States)

    Sonane, Madhavi; Goyal, Ritu; Chowdhuri, Debapratim K; Ram, Kristipati Ravi; Gupta, Kailash C

    2013-12-03

    The efficiency of genetic transformation technology to generate stable transgenics depends upon the successful delivery of plasmid DNA in embryonic cells. The available gene vectors facilitate efficient plasmid DNA delivery to the cellular milieu but are exposed to nuclease degradation. Recent in vitro studies suggest encapsulation of plasmid DNA with nanomaterial(s) for better protection against nucleases. Therefore, in this study, we tested if complexing of free plasmid DNA with linear polyethylenimine (LPEI, 25 kDa) based nanoparticle (LPN) enhances the efficiency of transformation (transgenesis) by using Drosophila based germ-line transformation technology. Here, we show that the LPN-DNA complex not only enhances the efficiency of this transgenic technology at a DNA concentration of 0.04 μg/μl but also reduces the DNA quantity required to generate transgenics by ten folds. This approach has potential applications for other types of transgenesis and nucleic acid injection methods in Drosophila as well as other popular genetic model systems.

  3. Efficiency Enhancement of Nanoporous Silicon/Polycrystalline-Silicon Solar Cells by Application of Trenched Electrodes

    Directory of Open Access Journals (Sweden)

    Kuen-Hsien Wu

    2014-01-01

    Full Text Available Trenched electrodes were proposed to enhance the short-circuit current and conversion efficiency of polycrystalline-silicon (poly-Si solar cells with nanoporous silicon (NPS surface layers. NPS films that served as textured surface layers were firstly prepared on heavily doped p+-type (100 poly-Si wafers by anodic etching process. Interdigitated trenches were formed in the NPS layers by a reactive-ion-etch (RIE process and Cr/Al double-layered metal was then deposited to fill the trenches and construct trenched-electrode-contacts (TEC’s. Cells with TEC structures (called “TEC cells” obtained 5.5 times higher short-circuit current than that of cells with planar electrode contacts (called “non-TEC cells”. Most significantly, a TEC cell achieved 8 times higher conversion efficiency than that of a non-TEC cell. The enhanced short-circuit current and conversion efficiency in TEC cells were ascribed to the reduced overall series resistance of devices. In a TEC cell, trenched electrodes provided photocurrent flowing routes that directly access the poly-Si substrates without passing through the high resistive NPS layers. Therefore, the application of NPS surface layers with trenched electrodes is a novel approach to development of highly efficient poly-Si solar cells.

  4. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    Science.gov (United States)

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  5. Multi-Functional Distributed Generation Unit for Power Quality Enhancement

    DEFF Research Database (Denmark)

    Zeng, Zheng; Yang, Huan; Guerrero, Josep M.

    2015-01-01

    A multi-functional distributed generation unit (MFDGU) and its control strategy are proposed in this paper for the purpose of enhancing power quality in low-voltage networks. By using the 3H-bridge converter structure, an MFDGU can be applied in 3-phase 4-wire low-voltage distribution networks...... reference of the MFDGU, which can be easily implemented in three-phase networks. A 15kVA prototype consisting of three full bridge converters has been built and tested. Experimental results show the feasibility of the proposed topology and control strategy....

  6. Efficiency Enhancement of an Envelope Tracking Power Amplifier Combining Supply Shaping and Dynamic Biasing

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Sira, Daniel; Jensen, Ole Kiel

    2013-01-01

    of the input envelope by means of two shaping functions jointly designed on the basis of a single-tone characterization. The presented technique is demonstrated by means of measurements on a commercial GaAs HBT power amplifier. Measured results showed a PA power added efficiency (PAE) of 51.9%, an error vector...

  7. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Directory of Open Access Journals (Sweden)

    Lulu Yao

    2017-01-01

    Full Text Available The N-methyl-D-aspartate receptors (NMDARs are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer’s disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer’s disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs.

  8. Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yoshifumi [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Goshima, Satoshi, E-mail: gossy@par.odn.ne.jp [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Kajita, Kimihiro [Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki [Department of Radiology, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194 (Japan); Bae, Kyongtae T. [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-11-15

    Purpose: To evaluate the association between gadoxetic-acid-enhanced magnetic resonance (MR) imaging measurements and laboratory and clinical biomarkers of liver function and fibrosis. Materials and methods: One hundred thirty nine consecutive patients with suspected liver disease or liver tumor underwent gadoxetic-acid-enhanced MR imaging. MR imaging measurements during the hepatobiliary phase included biliary tract structure-to-muscle signal intensity ratio (SIR). These measurements were compared with Child-Pugh classification, end-stage liver disease (MELD) score, and aspartate aminotransferase-to-platelet ratio index (APRI). Results: The SIRs of cystic duct and common bile duct were significantly correlated with Child-Pugh classification (P = 0.012 for cystic duct and P < 0.0001 for common bile duct), MELD score (P = 0.0016 and P = 0.0033), and APRI (P = 0.0022 and P = 0.0015). The sensitivity, specificity, and area under the receiver-operating-characteristic curve were: (74%, 88%, 0.86) with the SIR of common bile duct for the detection of patients with Child-Pugh class B or C; (100%, 87%, 0.94) with the SIR of cystic duct for MELD score (>10); (65%, 76%, 0.70) with the SIR of common bile duct for APRI (>1.5). Conclusion: Gadoxetic-acid contrast enhancement of cystic duct and common bile duct could be used as biomarkers to assess liver function.

  9. Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2011-01-01

    The simplicity in coding the heuristic judgment of experienced operator by means of fuzzy logic can be exploited for enhancement of energy efficiency. Fuzzy logic has been used as an effective tool for scheduling conventional PID controllers gain coefficients (F-PID). However, to search for the most desirable fuzzy system characteristics that allow for best performance of the energy system with minimum energy input, optimization techniques such as genetic algorithm (GA) could be utilized and the control methodology is identified as GA-based F-PID (GA-F-PID). The objective of this study is to examine the performance of PID, F-PID, and GA-F-PID controllers for enhancement of energy efficiency of a dynamic energy system. The performance evaluation of the controllers is accomplished by means of two cost functions that are based on the quadratic forms of the energy input and deviation from a setpoint temperature, referred to as energy and comfort costs, respectively. The GA-F-PID controller is examined in two different forms, namely, global form and local form. For the global form, all possible combinations of fuzzy system characteristics in the search domain are explored by GA for finding the fittest chromosome for all discrete time intervals during the entire operation period. For the local form, however, GA is used in each discrete time interval to find the fittest chromosome for implementation. The results show that the global form GA-F-PID and local form GA-F-PID control methodologies, in comparison with PID controller, achieve higher energy efficiency by lowering energy costs by 51.2%, and 67.8%, respectively. Similarly, the comfort costs for deviation from setpoint are enhanced by 54.4%, and 62.4%, respectively. It is determined that GA-F-PID performs better in local from than global form.

  10. Enhanced Matrix Power Function for Cryptographic Primitive Construction

    Directory of Open Access Journals (Sweden)

    Eligijus Sakalauskas

    2018-02-01

    Full Text Available A new enhanced matrix power function (MPF is presented for the construction of cryptographic primitives. According to the definition in previously published papers, an MPF is an action of two matrices powering some base matrix on the left and right. The MPF inversion equations, corresponding to the MPF problem, are derived and have some structural similarity with classical multivariate quadratic (MQ problem equations. Unlike the MQ problem, the MPF problem seems to be more complicated, since its equations are not defined over the field, but are represented as left–right action of two matrices defined over the infinite near-semiring on the matrix defined over the certain infinite, additive, noncommuting semigroup. The main results are the following: (1 the proposition of infinite, nonsymmetric, and noncommuting algebraic structures for the construction of the enhanced MPF, satisfying associativity conditions, which are necessary for cryptographic applications; (2 the proof that MPF inversion is polynomially equivalent to the solution of a certain kind of generalized multivariate quadratic (MQ problem which can be reckoned as hard; (3 the estimation of the effectiveness of direct MPF value computation; and (4 the presentation of preliminary security analysis, the determination of the security parameter, and specification of its secure value. These results allow us to make a conjecture that enhanced MPF can be a candidate one-way function (OWF, since the effective (polynomial-time inversion algorithm for it is not yet known. An example of the application of the proposed MPF for the Key Agreement Protocol (KAP is presented. Since the direct MPF value is computed effectively, the proposed MPF is suitable for the realization of cryptographic protocols in devices with restricted computation resources.

  11. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.

    Science.gov (United States)

    Islim, Mohamed Sufyan; Haas, Harald

    2016-05-30

    The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).

  12. Development of contrast-enhanced rodent imaging using functional CT

    Science.gov (United States)

    Liang, Yun; Stantz, Keith M.; Krishnamurthi, Ganapathy; Steinmetz, Rosemary; Hutchins, Gary D.

    2003-05-01

    Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.

  13. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  14. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    International Nuclear Information System (INIS)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT + colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references

  15. Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function.

    Science.gov (United States)

    Bok, Jan; Schauer, Petr

    2014-01-01

    In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.

  16. Efficient approximation of black-box functions and Pareto sets

    NARCIS (Netherlands)

    Rennen, G.

    2009-01-01

    In the case of time-consuming simulation models or other so-called black-box functions, we determine a metamodel which approximates the relation between the input- and output-variables of the simulation model. To solve multi-objective optimization problems, we approximate the Pareto set, i.e. the

  17. Efficient alkyne homocoupling catalysed by copper immobilized on functionalized silica

    NARCIS (Netherlands)

    van Gelderen, L.; Rothenberg, G.; Calderone, V.R.; Wilson, K.; Shiju, N.R.

    2013-01-01

    Copper immobilized on a functionalized silica support is a good catalyst for the homocoupling of terminal alkynes. The so-called Glaser-Hay coupling reaction can be run in air with catalytic amounts of base. The copper catalyst is active for multiple substituted alkynes, in both polar and non-polar

  18. An ME-PC Enhanced HDMR Method for Efficient Statistical Analysis of Multiconductor Transmission Line Networks

    KAUST Repository

    Yucel, Abdulkadir C.

    2015-05-05

    An efficient method for statistically characterizing multiconductor transmission line (MTL) networks subject to a large number of manufacturing uncertainties is presented. The proposed method achieves its efficiency by leveraging a high-dimensional model representation (HDMR) technique that approximates observables (quantities of interest in MTL networks, such as voltages/currents on mission-critical circuits) in terms of iteratively constructed component functions of only the most significant random variables (parameters that characterize the uncertainties in MTL networks, such as conductor locations and widths, and lumped element values). The efficiency of the proposed scheme is further increased using a multielement probabilistic collocation (ME-PC) method to compute the component functions of the HDMR. The ME-PC method makes use of generalized polynomial chaos (gPC) expansions to approximate the component functions, where the expansion coefficients are expressed in terms of integrals of the observable over the random domain. These integrals are numerically evaluated and the observable values at the quadrature/collocation points are computed using a fast deterministic simulator. The proposed method is capable of producing accurate statistical information pertinent to an observable that is rapidly varying across a high-dimensional random domain at a computational cost that is significantly lower than that of gPC or Monte Carlo methods. The applicability, efficiency, and accuracy of the method are demonstrated via statistical characterization of frequency-domain voltages in parallel wire, interconnect, and antenna corporate feed networks.

  19. Energy Use Efficiency in Indian Cement Industry: Application of Data Envelopment Analysis and Directional Distance Function

    OpenAIRE

    Sabuj Kumar Mandal; S Madheswaran

    2009-01-01

    The present paper aims at measuring energy use efficiency in Indian cement industry and estimating the factors explaining inter-firm variations in energy use efficiency. Within the framework of production theory, Data Envelopment Analysis (DEA) and directional distance function (DDF) have been used to measure energy use efficiency. Using data from electronic CMIE PROWESS data base for the years 1989-90 through 2006-07, the study first estimates energy efficiency and then compares the energy e...

  20. Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite

    Science.gov (United States)

    Cao, Liangcai; Wu, Shenghan; Hao, Jinping; Zhu, Chen; He, Zehao; Zhang, Zheyuan; Zong, Song; Zhang, Fushi; Jin, Guofan

    2017-10-01

    We propose a method to improve the holographic performance of a volume holographic material by the particle-shape dependence of doped nanoparticles. Previously reported methods are based on changing the doping concentration of dopants and the diameter of nanoparticles or modifying the surface of nanoparticles. When transverse surface plasmon resonance of optimized gold nanorods shifts near the recording wavelength, experiments confirmed that enhancement of diffraction efficiency by efficient dopants of gold nanorods is better than that of gold nanospheres. The enhancement effects under optimal mixing conditions occur with a crucial factor of maximum absorption intensity at the recording wavelength using the particle-shape dependence of doping nanorods. The gold nanorods with an average diameter of 10 ± 2.1 nm and an average length of 34 ± 5 nm are doped in Phenanthrenequinone-doped poly(methyl methacrylate) photopolymers. The diffraction efficiency of volume holographic grating in the photopolymer doped with nanorods is 18.5% higher than that in the photopolymer doped with nanospheres and 29.6% higher than that in the pure photopolymer.

  1. Evaluating transit operator efficiency: An enhanced DEA model with constrained fuzzy-AHP cones

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-06-01

    Full Text Available This study addresses efforts to comb the Analytic Hierarchy Process (AHP with Data Envelopment Analysis (DEA to deliver a robust enhanced DEA model for transit operator efficiency assessment. The proposed model is designed to better capture inherent preferences information over input and output indicators by adding constraint cones to the conventional DEA model. A revised fuzzy-AHP model is employed to generate cones, where the proposed model features the integration of the fuzzy logic with a hierarchical AHP structure to: 1 normalize the scales of different evaluation indicators, 2 construct the matrix of pair-wise comparisons with fuzzy set, and 3 optimize the weight of each criterion with a non-linear programming model. With introduction of cone-based constraints, the new system offers accounting advantages in the interaction among indicators when evaluating the performance of transit operators. To illustrate the applicability of the proposed approach, a real case in Nanjing City, the capital of China's Jiangsu Province, has been selected to assess the efficiencies of seven bus companies based on 2009 and 2010 datasets. A comparison between conventional DEA and enhanced DEA was also conducted to clarify the new system's superiority. Results reveal that the proposed model is more applicable in evaluating transit operator's efficiency thus encouraging a boarder range of applications.

  2. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells.

    Science.gov (United States)

    Meng, Lingyi; Yam, ChiYung; Zhang, Yu; Wang, Rulin; Chen, GuanHua

    2015-11-05

    The unique optical properties of nanometallic structures can be exploited to confine light at subwavelength scales. This excellent light trapping is critical to improve light absorption efficiency in nanoscale photovoltaic devices. Here, we apply a multiscale quantum mechanics/electromagnetics (QM/EM) method to model the current-voltage characteristics and optical properties of plasmonic nanowire-based solar cells. The QM/EM method features a combination of first-principles quantum mechanical treatment of the photoactive component and classical description of electromagnetic environment. The coupled optical-electrical QM/EM simulations demonstrate a dramatic enhancement for power conversion efficiency of nanowire solar cells due to the surface plasmon effect of nanometallic structures. The improvement is attributed to the enhanced scattering of light into the photoactive layer. We further investigate the optimal configuration of the nanostructured solar cell. Our QM/EM simulation result demonstrates that a further increase of internal quantum efficiency can be achieved by scattering light into the n-doped region of the device.

  3. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  4. Increased fragmentation efficiency by enhancement of cavitation for extracorporal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Loske, A.M.; Fernandez, F.; Gutierrez, J.

    2005-01-01

    The non-invasive disintegration of kidney stones using shock waves, referred to as extracorporal shock wave lithotripsy, has been successful for more than twenty years in treating patients having renal and ureteral stones. Two modified shock wave generators are described in this article. The novel systems produce two similar shock waves (tandem shock waves) generated with a short time delay. The second shock wave arrives during collapse of the bubbles generated in the neighborhood of the stone due to the first shock wave. This may increase cavitation bubble collapse and could enhance cavitation-induced damage to kidney stones during shock wave lithotripsy. In vitro comparison of standard systems with the new designs showed that fragmentation efficiency of artificial kidney stones was significantly enhanced using tandem shock waves. (orig.)

  5. Efficient image enhancement using sparse source separation in the Retinex theory

    Science.gov (United States)

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  6. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  7. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    Science.gov (United States)

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  8. Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles.

    Science.gov (United States)

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-06-07

    The advantages of using magnetic mesoporous silica nanoparticles (M-MSNs) in biomedical applications have been widely recognized. However, poor uptake efficiency may hinder the potential of M-MSNs in many applications, such as cell tracking, drug delivery, fluorescence and magnetic resonance imaging. An external magnetic field may improve the cellular uptake efficiency. In this paper, we evaluated the effect of a magnetic field on the uptake of M-MSNs. We found that the internalization of M-MSNs by A549 cancer cells could be accelerated and enhanced by a magnetic field. An endocytosis study indicated that M-MSNs were internalized by A549 cells mainly through an energy-dependent pathway, namely clathrin-induced endocytosis. Transmission electron microscopy showed that M-MSNs were trafficked into lysosomes. With the help of a magnetic field, anticancer drug-loaded M-MSNs induced elevated cancer cell growth inhibition.

  9. Multiregion apodized photon sieve with enhanced efficiency and enlarged pinhole sizes.

    Science.gov (United States)

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-08-20

    A novel multiregion structure apodized photon sieve is proposed. The number of regions, the apodization window values, and pinhole sizes of each pinhole ring are all optimized to enhance the energy efficiency and enlarge the pinhole sizes. The design theory and principle are thoroughly proposed and discussed. Two numerically designed apodized photon sieves with the same diameter are given as examples. Comparisons have shown that the multiregion apodized photon sieve has a 25.5% higher energy efficiency and the minimum pinhole size is enlarged by 27.5%. Meanwhile, the two apodized photon sieves have the same form of normalized intensity distribution at the focal plane. This method could improve the flexibility of the design and the fabrication the apodized photon sieve.

  10. Enhanced quantum efficiency for CsI grown on a graphite-based substrate coating

    CERN Document Server

    Friese, J; Homolka, J; Kastenmüller, A; Maier-Komor, P; Peter, M; Zeitelhack, K; Kienle, P; Körner, H J

    1999-01-01

    Quantum efficiencies (QE) in the vacuum ultraviolet (VUV) wavelength region have been measured for solid CsI layers on various substrates. The CsI films were deposited applying electron beam evaporation. The QE measurements were performed utilizing synchrotron radiation as well as light from a deuterium lamp. A GaAsP diode with a sensitivity calibration traceable to a primary radiation standard was used for normalization. For CsI layers grown on resin-stabilized graphite films a significant enhancement of QE was observed. Substrates suitable for gas detector applications and aging properties were investigated. The procedures to prepare and reproduce high quantum efficient CsI layers are described.

  11. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  12. Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses

    Science.gov (United States)

    Kaganskiy, Arsenty; Fischbach, Sarah; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan

    2018-04-01

    We report on the realization of scalable single-photon sources (SPSs) based on single site-controlled quantum dots (SCQDs) and deterministically fabricated microlenses. The fabrication process comprises the buried-stressor growth technique complemented with low-temperature in-situ electron-beam lithography for the integration of SCQDs into microlens structures with high yield and high alignment accuracy. The microlens-approach leads to a broadband enhancement of the photon-extraction efficiency of up to (21 ± 2)% and a high suppression of multi-photon events with g (2)(τ = 0) SPSs which, can be applied in photonic quantum circuits and advanced quantum computation schemes.

  13. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    Science.gov (United States)

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Chemogenetic enhancement of functional recovery after a sciatic nerve injury.

    Science.gov (United States)

    Jaiswal, Poonam B; English, Arthur W

    2017-05-01

    Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools used to modulate neuronal excitability. We hypothesized that activation of excitatory (Gq) DREADD by its designer ligand, clozapine-N-oxide (CNO), would increase the excitability of neurons whose axons have been transected following peripheral nerve injury, and that this increase will lead to an enhanced functional recovery. The lateral gastrocnemius (LG) muscle of adult female Lewis rats was injected unilaterally with AAV9- hsyn- hM3Dq-mCherry (7.6 × 10 9 viral genomes/μL) to transduce Gq-DREADD expression in LG neurons. The contralateral LG muscle served as an uninjected control. No significant changes in either spontaneous EMG activity or electrically evoked direct muscle (M) responses were found in either muscle after injection of CNO (1 mg/kg, i.p.). The amplitude of monosynaptic H-reflexes in LG was increased after CNO treatment exclusively in muscles previously injected with virus, suggesting that Gq-DREADD activation increased neuronal excitability. After bilateral sciatic nerve transection and repair, additional rats were treated similarly with CNO for up to three days after injury. Electrophysiological data were collected at 2, 4 and 6 weeks after injury. Evoked EMG responses were observed as early as 2 weeks after injury only in Gq-DREADD expressing virus injected LG muscle. By 4 weeks after injury, both M-response and H-reflex amplitudes were significantly greater in muscles previously injected with viral vector than contralateral, uninjected muscles. Increases in the excitability of injured neurons produced by this novel use of Gq-DREADD were sufficient to promote an enhancement in functional recovery after a sciatic nerve injury. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Area-efficient physically unclonable function circuit architecture

    Science.gov (United States)

    Gurrieri, Thomas; Hamlet, Jason; Bauer, Todd; Helinski, Ryan; Pierson, Lyndon G

    2015-04-28

    Generating a physically a physically unclonable function ("PUF") circuit value includes comparing each of first identification components in a first bank to each of second identification components in a second bank. A given first identification component in the first bank is not compared to another first identification component in the first bank and a given second identification component in the second bank is not compared to another second identification component in the second bank. A digital bit value is generated for each comparison made while comparing each of the first identification components to each of the second identification components. A PUF circuit value is generated from the digital bit values from each comparison made.

  16. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind

    2013-04-13

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  17. Efficient time-domain model of the graphene dielectric function

    Science.gov (United States)

    Prokopeva, Ludmila J.; Kildishev, Alexander V.

    2013-09-01

    A honey-comb monolayer lattice of carbon atoms, graphene, is not only ultra-thin, ultra-light, flexible and strong, but also highly conductive when doped and exhibits strong interaction with electromagnetic radiation in the spectral range from microwaves to the ultraviolet. Moreover, this interaction can be effectively controlled electrically. High flexibility and conductivity makes graphene an attractive material for numerous photonic applications requiring transparent conducting electrodes: touchscreens, liquid crystal displays, organic photovoltaic cells, and organic light-emitting diodes. Meanwhile, its tunability makes it desirable for optical modulators, tunable filters and polarizers. This paper deals with the basics of the time-domain modeling of the graphene dielectric function under a random-phase approximation. We focus at applicability of Padé approximants to the interband dielectric function (IDF) of single layer graphene. Our study is centered on the development of a two-critical points approximation (2CPA) of the IDF within a single-electron framework with negligible carrier scattering and a realistic range of chemical potential at room temperature. This development is successfully validated by comparing reflection and transmission spectra computed by a numerical method in time-domain versus semi-analytical calculations in frequency domain. Finally, we sum up our results - (1) high-quality approximation, (2) tunability, and (3) second-order accurate numerical FDTD implementation of the 2CPA of IDF demonstrated across the desired range of the chemical potential to temperature ratios (4 - 23). Finally, we put forward future directions for time-domain modeling of optical response of graphene with wide range of tunable and fabrication-dependent parameters, including other broadening factors and variations of temperature and chemical potentials.

  18. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  19. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  20. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  1. Finishing pigs that are divergent in feed efficiency show small differences in intestinal functionality and structure.

    Directory of Open Access Journals (Sweden)

    Barbara U Metzler-Zebeli

    Full Text Available Controversial information is available regarding the feed efficiency-related variation in intestinal size, structure and functionality in pigs. The present objective was therefore to investigate the differences in visceral organ size, intestinal morphology, mucosal enzyme activity, intestinal integrity and related gene expression in low and high RFI pigs which were reared at three different geographical locations (Austria, AT; Northern Ireland, NI; Republic of Ireland, ROI using similar protocols. Pigs (n = 369 were ranked for their RFI between days 42 and 91 postweaning and low and high RFI pigs (n = 16 from AT, n = 24 from NI, and n = 60 from ROI were selected. Pigs were sacrificed and sampled on ~day 110 of life. In general, RFI-related variation in intestinal size, structure and function was small. Some energy saving mechanisms and enhanced digestive and absorptive capacity were indicated in low versus high RFI pigs by shorter crypts, higher duodenal lactase and maltase activity and greater mucosal permeability (P < 0.05, but differences were mainly seen in pigs from AT and to a lesser degree in pigs from ROI. Additionally, low RFI pigs from AT had more goblet cells in duodenum but fewer in jejunum compared to high RFI pigs (P < 0.05. Together with the lower expression of TLR4 and TNFA in low versus high RFI pigs from AT and ROI (P < 0.05, these results might indicate differences in the innate immune response between low and high RFI pigs. Results demonstrated that the variation in the size of visceral organs and intestinal structure and functionality was greater between geographic location (local environmental factors than between RFI ranks of pigs. In conclusion, present results support previous findings that the intestinal size, structure and functionality do not significantly contribute to variation in RFI of pigs.

  2. GDNF Enhances Therapeutic Efficiency of Neural Stem Cells-Based Therapy in Chronic Experimental Allergic Encephalomyelitis in Rat.

    Science.gov (United States)

    Gao, Xiaoqing; Deng, Li; Wang, Yun; Yin, Ling; Yang, Chaoxian; Du, Jie; Yuan, Qionglan

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease in the CNS. The current immunomodulating drugs for MS do not effectively prevent the progressive neurological decline. Neural stem cells (NSCs) transplantation has been proven to promote repair and functional recovery of experimental allergic encephalomyelitis (EAE) animal model for MS, and glial cell line-derived neurotrophic factor (GDNF) has also been found to have capability of promoting axonal regeneration and remyelination of regenerating axons. In the present study, to assess whether GDNF would enhance therapeutic effect of NSCs for EAE, GDNF gene-modified NSCs (GDNF/NSCs) and native NSCs were transplanted into each lateral ventricle of rats at 10 days and rats were sacrificed at 60 days after EAE immunization. We found that NSCs significantly reduced the clinical signs, and GDNF gene-modification further promoted functional recovery. GDNF/NSCs more profoundly suppressed brain inflammation and improved density of myelin compared with NSCs. The survival of GDNF/NSCs was significantly higher than that of transplanted NSCs. Transplanted GDNF/NSCs, in contrast to NSCs, differentiated into more neurons and oligodendrocytes. Moreover, the mRNA expression of oligodendrocyte lineage cells in rats with GDNF/NSCs was significantly increased compared to rats with NSCs. These results suggest that GDNF enhances therapeutic efficiency of NSCs-based therapy for EAE.

  3. An efficient algorithm for function optimization: modified stem cells algorithm

    Science.gov (United States)

    Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad

    2013-03-01

    In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).

  4. Efficient Mercury Capture Using Functionalized Porous Organic Polymer.

    Science.gov (United States)

    Aguila, Briana; Sun, Qi; Perman, Jason A; Earl, Lyndsey D; Abney, Carter W; Elzein, Radwan; Schlaf, Rudy; Ma, Shengqian

    2017-08-01

    The primary challenge in materials design and synthesis is achieving the balance between performance and economy for real-world application. This issue is addressed by creating a thiol functionalized porous organic polymer (POP) using simple free radical polymerization techniques to prepare a cost-effective material with a high density of chelating sites designed for mercury capture and therefore environmental remediation. The resulting POP is able to remove aqueous and airborne mercury with uptake capacities of 1216 and 630 mg g -1 , respectively. The material demonstrates rapid kinetics, capable of dropping the mercury concentration from 5 ppm to 1 ppb, lower than the US Environmental Protection Agency's drinking water limit (2 ppb), within 10 min. Furthermore, the material has the added benefits of recyclability, stability in a broad pH range, and selectivity for toxic metals. These results are attributed to the material's physical properties, which include hierarchical porosity, a high density of chelating sites, and the material's robustness, which improve the thiol availability to bind with mercury as determined by X-ray photoelectron spectroscopy and X-ray absorption fine structure studies. The work provides promising results for POPs as an economical material for multiple environmental remediation applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bis-ZnIIsalphen complexes bearing pyridyl functionalized ligands for efficient organic light-emitting diodes (OLEDs).

    Science.gov (United States)

    Zhao, Jiang; Dang, Feifan; Liu, Boao; Wu, Yong; Yang, Xiaolong; Zhou, Guijiang; Wu, Zhaoxin; Wong, Wai-Yeung

    2017-05-09

    Inspired by the emissive features of Zn II complexes based on bis-Schiff base ligands, bis-Zn II salphen complexes bearing pyridyl functionalized ligands have been successfully synthesized. Their photophysical features, electrochemical behavior and electroluminescent (EL) properties have been investigated in detail. The functionalized bis-Zn II salphen complexes can exhibit high thermal stability up to 417 °C, and their photoluminescence (PL) spectra show a maximal emission wavelength peak at ca. 565 nm both in solution and PMMA doped films. The PL investigation of the neat films for these functionalized bis-Zn II salphen complexes indicated that the pyridyl functionalized ligands can effectively reduce the degree of molecular aggregation to enhance their emission intensity. Taking advantage of the charge carrier injection/transporting ability of the pyridyl functionalized ligands and their dendritic design, the optimized EL devices fabricated by a simple solution-processing method can achieve a peak luminance (L max ) of 3589 cd m -2 , a maximal external quantum efficiency (η ext ) of 1.46%, a maximal current efficiency (η L ) of 4.1 cd A -1 and a maximal power efficiency (η p ) of 3.8 lm W -1 . These results should afford important instructions for exploiting high performance fluorescent emitters based on dinuclear Zn II complexes.

  6. Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition

    Science.gov (United States)

    Carlson, Daniel F.; Geurts, Aron M.; Garbe, John R.; Park, Chang-Won; Rangel-Filho, Artur; O'Grady, Scott M.; Jacob, Howard J.; Steer, Clifford J.; Largaespada, David A.

    2012-01-01

    Heightened interest in relevant models for human disease increases the need for improved methods for germline transgenesis. We describe a significant improvement in the creation of transgenic laboratory mice and rats by chemical modification of Sleeping Beauty transposons. Germline transgenesis in mice and rats was significantly enhanced by in vitro cytosine-phosphodiester-guanine methylation of transposons prior to injection. Heritability of transgene alleles was also greater from founder mice generated with methylated versus non-methylated transposon. The artificial methylation was reprogrammed in the early embryo, leading to founders that express the transgenes. We also noted differences in transgene insertion number and structure (single-insert versus concatemer) based on the influence of methylation and plasmid conformation (linear versus supercoiled), with supercoiled substrate resulting in efficient transpositional transgenesis (TnT) with near elimination of concatemer insertion. Combined, these substrate modifications resulted in increases in both the frequency of transgenic founders and the number of transgenes per founder, significantly elevating the number of potential transgenic lines. Given its simplicity, versatility and high efficiency, TnT with enhanced Sleeping Beauty components represents a compelling non-viral approach to modifying the mammalian germline. PMID:20352328

  7. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  8. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Malasi

    2016-10-01

    Full Text Available Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag, its nanoparticles have amongst the highest radiative quantum efficiencies (η, i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  9. Efficient and Security Enhanced Anonymous Authentication with Key Agreement Scheme in Wireless Sensor Networks.

    Science.gov (United States)

    Jung, Jaewook; Moon, Jongho; Lee, Donghoon; Won, Dongho

    2017-03-21

    At present, users can utilize an authenticated key agreement protocol in a Wireless Sensor Network (WSN) to securely obtain desired information, and numerous studies have investigated authentication techniques to construct efficient, robust WSNs. Chang et al. recently presented an authenticated key agreement mechanism for WSNs and claimed that their authentication mechanism can both prevent various types of attacks, as well as preserve security properties. However, we have discovered that Chang et al's method possesses some security weaknesses. First, their mechanism cannot guarantee protection against a password guessing attack, user impersonation attack or session key compromise. Second, the mechanism results in a high load on the gateway node because the gateway node should always maintain the verifier tables. Third, there is no session key verification process in the authentication phase. To this end, we describe how the previously-stated weaknesses occur and propose a security-enhanced version for WSNs. We present a detailed analysis of the security and performance of our authenticated key agreement mechanism, which not only enhances security compared to that of related schemes, but also takes efficiency into consideration.

  10. Caching Efficiency Enhancement at Wireless Edges with Concerns on User’s Quality of Experience

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-01-01

    Full Text Available Content caching is a promising approach to enhancing bandwidth utilization and minimizing delivery delay for new-generation Internet applications. The design of content caching is based on the principles that popular contents are cached at appropriate network edges in order to reduce transmission delay and avoid backhaul bottleneck. In this paper, we propose a cooperative caching replacement and efficiency optimization scheme for IP-based wireless networks. Wireless edges are designed to establish a one-hop scope of caching information table for caching replacement in cases when there is not enough cache resource available within its own space. During the course, after receiving the caching request, every caching node should determine the weight of the required contents and provide a response according to the availability of its own caching space. Furthermore, to increase the caching efficiency from a practical perspective, we introduce the concept of quality of user experience (QoE and try to properly allocate the cache resource of the whole networks to better satisfy user demands. Different caching allocation strategies are devised to be adopted to enhance user QoE in various circumstances. Numerical results are further provided to justify the performance improvement of our proposal from various aspects.

  11. Au@polymer core-shell nanoparticles for simultaneously enhancing efficiency and ambient stability of organic optoelectronic devices.

    Science.gov (United States)

    Kim, Taesu; Kang, Hyunbum; Jeong, Seonju; Kang, Dong Jin; Lee, Changyeon; Lee, Chun-Ho; Seo, Min-Kyo; Lee, Jung-Yong; Kim, Bumjoon J

    2014-10-08

    In this paper, we report and discuss our successful synthesis of monodispersed, polystyrene-coated gold core-shell nanoparticles (Au@PS NPs) for use in highly efficient, air-stable, organic light-emitting diodes (OLEDs) and organic photovoltaics (OPVs). These core-shell NPs retain the dual functions of (1) the plasmonic effect of the Au core and (2) the stability and solvent resistance of the cross-linked PS shell. The monodispersed Au@PS NPs were incorporated into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film that was located between the ITO substrate and the emitting layer (or active layer) in the devices. The incorporation of the Au@PS NPs provided remarkable improvements in the performances of both OLEDs and OPVs, which benefitted from the plasmonic effect of the Au@PS NPs. The OLED device with the Au@PS NPs achieved an enhancement of the current efficiency that was 42% greater than that of the control device. In addition, the power conversion efficiency was increased from 7.6% to 8.4% in PTB7:PC71BM-based OPVs when the Au@PS NPs were embedded. Direct evidence of the plasmonic effect on optical enhancement of the device was provided by near-field scanning optical microscopy measurements. More importantly, the Au@PS NPs induced a remarkable and simultaneous improvement in the stabilities of the OLED and OPV devices by reducing the acidic and hygroscopic properties of the PEDOT:PSS layer.

  12. Intraspecific functional diversity of common species enhances community stability.

    Science.gov (United States)

    Wood, Connor M; McKinney, Shawn T; Loftin, Cynthia S

    2017-03-01

    Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among-habitat and within-habitat iFD (i.e., among- and within-plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short-term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red-backed voles ( Myodes gapperi ) had greater iFD than deer mice ( Peromyscus maniculatus ), both among habitats, and within the plant community in which they were most abundant (their "primary habitat"). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within-habitat type iFD, best explained variation in M. gapperi diet, while models representing internal filters and external filters (e.g., climate), which suppress within-habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.

  13. Intraspecific functional diversity of common species enhances community stability

    Science.gov (United States)

    Wood, Connor M.; McKinney, Shawn T.; Loftin, Cynthia S.

    2017-01-01

    Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among-habitat and within-habitat iFD (i.e., among- and within-plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short-term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red-backed voles (Myodes gapperi) had greater iFD than deer mice (Peromyscus maniculatus), both among habitats, and within the plant community in which they were most abundant (their “primary habitat”). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within-habitat type iFD, best explained variation in M. gapperidiet, while models representing internal filters and external filters (e.g., climate), which suppress within-habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.

  14. Rotational magnetic pulses enhance the magnetofection efficiency in vitro in adherent and suspension cells

    Energy Technology Data Exchange (ETDEWEB)

    Dahmani, Ch., E-mail: dahmani@tum.de [Institute of Energy Conversion Technology, Technische Universität München, Munich (Germany); Mykhaylyk, O. [Institute of Experimental Oncology and Therapy Research, Klinikum rechts der Isar, Technische Universität München, 81675 Munich (Germany); Helling, Fl. [Institute of Electrical Energy Supply, Universität der Bundeswehr, Munich (Germany); Götz, St. [Institute of Energy Conversion Technology, Technische Universität München, Munich (Germany); Weyh, Th. [Institute of Electrical Energy Supply, Universität der Bundeswehr, Munich (Germany); Herzog, H.-G. [Institute of Energy Conversion Technology, Technische Universität München, Munich (Germany); Plank, Ch. [Institute of Experimental Oncology and Therapy Research, Klinikum rechts der Isar, Technische Universität München, 81675 Munich (Germany)

    2013-04-15

    The association of magnetic nanoparticles with gene delivery vectors in combination with the use of gradient magnetic fields (magnetofection) enables improved and synchronised gene delivery to cells. In this paper, we report a system comprising rotating permanent magnets to generate defined magnetic field pulses with frequencies from 2.66 to 133 Hz and a field amplitude of 190 or 310 mT at the location of the cells. Low-frequency pulses of 2.66–10 Hz with a magnetic flux density of 190 mT were applied to the examined cells for 30–120 s after magnetofection. These pulses resulted in a 1.5–1.9-fold enhancement in the transfection efficiency compared with magnetofection with only a static magnetic field in both adherent and suspension cells. The magnetic field amplitudes of 190 and 310 mT had similar effects on the transfection efficacy. No increase in the percentage of transgene-expressing suspension cells and no cytotoxic effects (based on the results of the MTT assay) were observed after applying alternating magnetic fields. - Highlights: ► We developed a magnetic system capable of generating defined magnetic pulses based on permanent magnets. ► The main advantage of the system is the lack of heat-induced fluctuations in the working parameters. ► Our system succeeded in enhancing the transfection of adherent human lung epithelial cells and human suspension cells. ► The enhancement in the transfection efficiency compared with static magnetic field is due to the magnetic field pulses. ► The approach could be used as a complementary method for drug targeting.

  15. Block Copolymer-Tuned Fullerene Electron Transport Layer Enhances the Efficiency of Perovskite Photovoltaics.

    Science.gov (United States)

    Lin, Hsi-Kuei; Su, Yu-Wei; Chen, Hsiu-Cheng; Huang, Yi-Jiun; Wei, Kung-Hwa

    2016-09-21

    In this study, we enhanced the power conversion efficiency (PCE) of perovskite solar cells by employing an electron transfer layer (ETL) comprising [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) and, to optimize its morphology, a small amount of the block copolymer polystyrene-b-poly(ethylene oxide) (PS-b-PEO), positioned on the perovskite active layer. When incorporating 0.375 wt % PS-b-PEO into PC61BM, the PCE of the perovskite photovoltaic device increased from 9.4% to 13.4%, a relative increase of 43%, because of a large enhancement in the fill factor of the device. To decipher the intricate morphology of the ETL, we used synchrotron grazing-incidence small-angle X-ray scattering for determining the PC61BM cluster size, atomic force microscopy and scanning electron microscopy for probing the surface, and transmission electron microscopy for observing the aggregation of PC61BM in the ETL. We found that the interaction between PS-b-PEO and PC61BM resulted in smaller PC61BM clusters that further aggregated into dendritic structures in some domains, a result of the similar polarities of the PS block and PC61BM; this behavior could be used to tune the morphology of the ETL. The optimal PS-b-PEO-mediated PC61BM cluster size in the ETL was 17 nm, a large reduction from 59 nm for the pristine PC61BM layer. This approach of incorporating a small amount of nanostructured block copolymer into a fullerene allowed us to effectively tune the morphology of the ETL on the perovskite active layer and resulted in enhanced fill factors of the devices and thus their device efficiency.

  16. Rotational magnetic pulses enhance the magnetofection efficiency in vitro in adherent and suspension cells

    International Nuclear Information System (INIS)

    Dahmani, Ch.; Mykhaylyk, O.; Helling, Fl.; Götz, St.; Weyh, Th.; Herzog, H.-G.; Plank, Ch.

    2013-01-01

    The association of magnetic nanoparticles with gene delivery vectors in combination with the use of gradient magnetic fields (magnetofection) enables improved and synchronised gene delivery to cells. In this paper, we report a system comprising rotating permanent magnets to generate defined magnetic field pulses with frequencies from 2.66 to 133 Hz and a field amplitude of 190 or 310 mT at the location of the cells. Low-frequency pulses of 2.66–10 Hz with a magnetic flux density of 190 mT were applied to the examined cells for 30–120 s after magnetofection. These pulses resulted in a 1.5–1.9-fold enhancement in the transfection efficiency compared with magnetofection with only a static magnetic field in both adherent and suspension cells. The magnetic field amplitudes of 190 and 310 mT had similar effects on the transfection efficacy. No increase in the percentage of transgene-expressing suspension cells and no cytotoxic effects (based on the results of the MTT assay) were observed after applying alternating magnetic fields. - Highlights: ► We developed a magnetic system capable of generating defined magnetic pulses based on permanent magnets. ► The main advantage of the system is the lack of heat-induced fluctuations in the working parameters. ► Our system succeeded in enhancing the transfection of adherent human lung epithelial cells and human suspension cells. ► The enhancement in the transfection efficiency compared with static magnetic field is due to the magnetic field pulses. ► The approach could be used as a complementary method for drug targeting

  17. Phase-Separated Liposomes Enhance the Efficiency of Macromolecular Delivery to the Cellular Cytoplasm.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Ashby, Grant; Nagib, Fatema; Mendicino, Morgan; Zhao, Chi; Gadok, Avinash K; Stachowiak, Jeanne C

    2017-10-01

    From viruses to organelles, fusion of biological membranes is used by diverse biological systems to deliver macromolecules across membrane barriers. Membrane fusion is also a potentially efficient mechanism for the delivery of macromolecular therapeutics to the cellular cytoplasm. However, a key shortcoming of existing fusogenic liposomal systems is that they are inefficient, requiring a high concentration of fusion-promoting lipids in order to cross cellular membrane barriers. Toward addressing this limitation, our experiments explore the extent to which membrane fusion can be amplified by using the process of lipid membrane phase separation to concentrate fusion-promoting lipids within distinct regions of the membrane surface. We used confocal fluorescence microscopy to investigate the integration of fusion-promoting lipids into a ternary lipid membrane system that separated into liquid-ordered and liquid-disordered membrane phases. Additionally, we quantified the impact of membrane phase separation on the efficiency with which liposomes transferred lipids and encapsulated macromolecules to cells, using a combination of confocal fluorescence imaging and flow cytometry. Here we report that concentrating fusion-promoting lipids within phase-separated lipid domains on the surfaces of liposomes significantly increases the efficiency of liposome fusion with model membranes and cells. In particular, membrane phase separation enhanced the delivery of lipids and model macromolecules to the cytoplasm of tumor cells by at least 4-fold in comparison to homogenous liposomes. Our findings demonstrate that phase separation can enhance membrane fusion by locally concentrating fusion-promoting lipids on the surface of liposomes. This work represents the first application of lipid membrane phase separation in the design of biomaterials-based delivery systems. Additionally, these results lay the ground work for developing fusogenic liposomes that are triggered by physical and

  18. MLN4924 and 2DG combined treatment enhances the efficiency of radiotherapy in breast cancer cells.

    Science.gov (United States)

    Oladghaffari, Maryam; Shabestani Monfared, Ali; Farajollahi, Alireza; Baradaran, Behzad; Mohammadi, Mohsen; Shanehbandi, Dariush; Asghari Jafar Abadi, Mohammad; Pirayesh Islamian, Jalil

    2017-06-01

    Two-deoxy-D-glucose (2DG) causes cytotoxicity in the cancer cells by disrupting the thiol metabolism, and MLN4924 inactivates the SCF E3 ligase and so causes the accumulation of its substrates which trigger apoptosis and hence might enhance the efficiency of radiotherapy and overcame on the radioresistance of the cancer cells. SKBR3 and MCF-7 breast cancer cells were treated with 500 μM 2DG and/or MLN4924 (30, 100, 200 and 300 nM), and in combination in the presence and absence of 1, 1.5 and 2 Gy gamma irradiation. The effects of the treatments - 2DG, MLN4924, irradiation alone and combined - on MCF-7 and SKBR3 cell lines were evaluated by MTT assay, TUNEL assay, cell death detection, Q-PCR for caspase-3 and Bcl-2 expression analysis, and finally clonogenic survival assay. The treatments enhanced the further radio cytotoxicity via inducing the apoptosis cell signaling gene, caspase-3. The 2DG and MLN4924 treatments could act as a radiosensitizer, especially on the SKBR3 cells, and further sensitized the cells with a sensitivity enhancement ratio (SER) of 1.41 and 1.27 in SKBR3 and MCF-7 cells, respectively. The combined chemo-radiotherapy might improve the breast cancer treatment outcome.

  19. Observation of Significant Quantum Efficiency Enhancement from a Polarized Photocathode with Distributed Bragg Reflector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Poelker, Matthew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Stutzman, Marcy L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Chen, Yiqiao [SVT Associates, Inc., Eden Prairie, MN (United States); Moy, Aaron [SVT Associates, Inc., Eden Prairie, MN (United States)

    2015-09-01

    Polarized photocathodes with higher Quantum efficiency (QE) would help to reduce the technological challenge associated with producing polarized beams at milliampere levels, because less laser light would be required, which simplifies photocathode cooling requirements. And for a given amount of available laser power, higher QE would extend the photogun operating lifetime. The distributed Bragg reflector (DBR) concept was proposed to enhance the QE of strained-superlattice photocathodes by increasing the absorption of the incident photons using a Fabry-Perot cavity formed between the front surface of the photocathode and the substrate that includes a DBR, without compromising electron polarization. Here we present recent results showing QE enhancement of a GaAs/GaAsP strained-superlattice photocathode made with a DBR structure. Typically, a GaAs/GaAsP strained-superlattice photocathode without DBR provides a QE of 1%, at a laser wavelength corresponding to peak polarization. In comparison, the GaAs/GaAsP strained-superlattice photocathodes with DBR exhibited an enhancement of over 2 when the incident laser wavelength was tuned to meet the resonant condition for the Fabry-Perot resonator.

  20. Overcoming Intrinsic Restriction Enzyme Barriers Enhances Transformation Efficiency in Arthrospira platensis C1.

    Science.gov (United States)

    Jeamton, Wattana; Dulsawat, Sudarat; Tanticharoen, Morakot; Vonshak, Avigad; Cheevadhanarak, Supapon

    2017-04-01

    The development of a reliable genetic transformation system for Arthrospira platensis has been a long-term goal, mainly for those trying either to improve its performance in large-scale cultivation systems or to enhance its value as food and feed additives. However, so far, most of the attempts to develop such a transformation system have had limited success. In this study, an efficient and stable transformation system for A. platensis C1 was successfully developed. Based on electroporation and transposon techniques, exogenous DNA could be transferred to and stably maintained in the A. platensis C1 genome. Most strains of Arthrospira possess strong restriction barriers, hampering the development of a gene transfer system for this group of cyanobacteria. By using a type I restriction inhibitor and liposomes to protect the DNA from nuclease digestion, the transformation efficiency was significantly improved. The transformants were able to grow on a selective medium for more than eight passages, and the transformed DNA could be detected from the stable transformants. We propose that the intrinsic endonuclease enzymes, particularly the type I restriction enzyme, in A. platensis C1 play an important role in the transformation efficiency of this industrial important cyanobacterium. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    D' Agostini, M.D.

    2000-06-02

    This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

  2. Efficiency Enhancement of Perovskite Solar Cells via Electrospun CuO Nanowires as Buffer Layers.

    Science.gov (United States)

    Sun, Qinjun; Zhou, Shaolong; Shi, Xiaolei; Wang, Xiaochun; Gao, Liyan; Li, Zhanfeng; Hao, Yuying

    2018-04-04

    CuO nanowires (NWs) with the diameters ranging from 130 to 275 nm have been successfully prepared by electrospinning technique, followed by a calcination process. Inverted planar heterojunction perovskite solar cells (PSCs) with the structure of indium tin oxide/CuO NWs/poly(3,4-ethylenedioxythiophene) (PEDOT):poly(styrenesulphonate) (PSS)/CH 3 NH 3 PbI 3 /phenyl C 61 -butyric acid methyl ester/Bphen/Ag were designed, achieving a best power conversion efficiency (PCE) of 16.87%, which is 21% improvement compared to that of the control PSCs without CuO NWs. By the characterizations of an optical microscope, X-ray diffraction, and scanning electron microscopy, it was found that CuO NWs have uniform morphology and orderly arrangement. Electrochemical impedance spectrometry and external quantum efficiency were used to reveal the effect of CuO NWs on the performance of PSCs. Compared to ZnO NWs with the same diameters and quantitative analysis based on a simple model, we conclude that the improvement of PCE by about 13% can be ascribed to the increase of the PEDOT:PSS/CH 3 NH 3 PbI 3 interface area and the remaining increase of 8% can be attributed to the higher hole mobility of the CuO NWs/PEDOT:PSS composite film. The results indicate that the efficiency of PSCs will have a significant enhancement when the optimal CuO NWs are introduced into the charge transport layer.

  3. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shayan, Kamran [Department; Rabut, Claire [Department; Kong, Xiaoqing [Department; Li, Xiangzhi [Department; Luo, Yue [Department; Mistry, Kevin S. [National Renewable; Blackburn, Jeffrey L. [National Renewable; Lee, Stephanie S. [Department; Strauf, Stefan [Department

    2017-11-09

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) up to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.

  4. Enhanced temporal variability of amygdala-frontal functional connectivity in patients with schizophrenia.

    Science.gov (United States)

    Yue, Jing-Li; Li, Peng; Shi, Le; Lin, Xiao; Sun, Hong-Qiang; Lu, Lin

    2018-01-01

    The "dysconnectivity hypothesis" was proposed 20 years ago. It characterized schizophrenia as a disorder with dysfunctional connectivity across a large range of distributed brain areas. Resting-state functional magnetic resonance imaging (rsfMRI) data have supported this theory. Previous studies revealed that the amygdala might be responsible for the emotion regulation-related symptoms of schizophrenia. However, conventional methods oversimplified brain activities by assuming that it remained static throughout the entire scan duration, which may explain why inconsistent results have been reported for the same brain region. An emerging technique is sliding time window analysis, which is used to describe functional connectivity based on the temporal variability of regions of interest (e.g., amygdala) in patients with schizophrenia. Conventional analysis of the static functional connectivity between the amygdala and whole brain was also conducted. Static functional connectivity between the amygdala and orbitofrontal region was impaired in patients with schizophrenia. The variability of connectivity between the amygdala and medial prefrontal cortex was enhanced (i.e., greater dynamics) in patients with schizophrenia. A negative relationship was found between the variability of connectivity and information processing efficiency. A positive correlation was found between the variability of connectivity and symptom severity. The findings suggest that schizophrenia was related to abnormal patterns of fluctuating communication among brain areas that are involved in emotion regulations. Unveiling the temporal properties of functional connectivity could disentangle the inconsistent results of previous functional connectivity studies.

  5. The Approach to an Estimation of a Local Area Network Functioning Efficiency

    Directory of Open Access Journals (Sweden)

    M. M. Taraskin

    2010-09-01

    Full Text Available In the article authors call attention to a choice of system of metrics, which permits to take a qualitative assessment of local area network functioning efficiency in condition of computer attacks.

  6. Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst

    Science.gov (United States)

    San, Boi Hoa; Ha, Eun-Ju; Paik, Hyun-Jong; Kim, Kyeong Kyu

    2014-05-01

    Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis.Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst

  7. Enhancement of the efficiency of the Open Cycle Phillips Optimized Cascade LNG process

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.; El-Nigeily, M.

    2016-01-01

    Highlights: • Expanders replaced JT valves in the Phillips Optimized Cascade liquefaction process. • Improvement in plant liquefaction efficiency was evaluated in presence of expanders. • Comparison of the different optimum cases for the liquefaction process was presented. - Abstract: This study aims to improve the performance of the Open Cycle Phillips Optimized Cascade Process for the production of liquefied natural gas (LNG) through the replacement of Joule–Thomson (JT) valves by expanders. The expander has a higher thermodynamic efficiency than the JT valve. Moreover, the produced shaft power from the expander is integrated into the process. The study is conducted using the Aspen HYSYS-V7 simulation software for simulation of the Open Cycle Phillips Optimized Cascade Process having the JT valves. Simulation of several proposed cases in which expanders are used instead of JT valves at different locations in the process as at the propane cycle, ethylene cycle, methane cycle and the upstream of the heavies removal column is conducted. The optimum cases clearly indicate that expanders not only produce power, but also offer significant improvements in the process performance as shown by the total plant power consumption, LNG production, thermal efficiency, plant specific power and CO 2 emissions reduction. Results also reveal that replacing JT valves by expanders in the methane cycle has a dominating influence on all performance criteria and hence, can be considered as the main key contributor affecting the Phillips Optimized Cascade Process leading to a notable enhancement in its efficiency. This replacement of JT valves by liquid expanders at different locations of the methane cycle encounters power savings in the range of 4.92–5.72%, plant thermal efficiency of 92.64–92.97% and an increase in LNG production of 5.77–7.04%. Moreover, applying liquid expanders at the determined optimum cases for the different cycles, improves process performance and

  8. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes

    Science.gov (United States)

    Chen, Hongyuan; Wei, Hanxing; Chen, Minghai; Meng, Fancheng; Li, Hongbo; Li, Qingwen

    2013-10-01

    Functionalized carbon nanotubes (CNTs) were introduced into silicone grease to accompany the subsistent metallic oxide particles (micron-sized Al2O3, submicron-sized ZnO) with the aim of enhancing the thermal contact conductance of the composite grease as thermal interface materials (TIMs). The well-dispersed CNTs located among the metallic oxide particles to construct a three dimensional network structure and cooperated with them to form a highly efficient thermal transferring path. The functionalization of CNTs played a key role in achieving a good dispersion of CNTs in silicone grease matrix. The carboxylated CNTs were observed to show better dispersion in silicone grease and weaker reaction with oxide particles than pristine CNTs and amino-functionalized CNTs. Thus the thermal impedance of the silicone grease could be further decreased by 35% (as low as 0.18 cm2 K/W) with the addition of 2 wt.% carboxylated CNTs. Finally, such CNT-modified silicone grease was used to enhance the performance of high-power light emitting diode and showed the prospective applications in TIMs.

  9. Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayer nanocomposite light-emitting devices

    International Nuclear Information System (INIS)

    Park, Jong Hyeok; Lim, Yong Taik; Park, O Ok; Yu, Jae-Woong; Kim, Jai Kyeong; Kim, Young Chul

    2004-01-01

    Light-emitting devices based on environmentally stable, blue-emitting polymer/dielectric nanolayer nanocomposites were fabricated by blending poly(di-octylfluorene) (PDOF) with organo-clay. By reducing the excimer formation that leads to long wavelength tails, the photoluminescence (PL) and electroluminescence (EL) color purity of the device was enhanced. When a conjugated polymer/dielectric nanolayer nanocomposite is applied to an EL device, we expect an electronic structure similar to the well-known quantum well in small nanodomains. The ratio of PDOF/organo-clay was regulated from 2:1 to 0.5:1 (w/w). The light-emitting device of 0.5:1 (w/w) blend demonstrated the highest quantum efficiency (QE), 0.72% (ph/el), which is ∼500 times higher value compared with that of the pure PDOF layer device. However, the driving voltage of the nanocomposite devices tended to increase with increasing organo-clay content

  10. Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells.

    Science.gov (United States)

    Liu, Yaxuan; Shen, Jingya; Huang, Liping; Wu, Dan

    2013-11-15

    Enhancement of both cobalt leaching from LiCoO2 and acid utilization efficiency (AUE) in microbial fuel cells (MFCs) was successfully achieved by the addition of Cu(II). A dosage of 10mg/L Cu(II) improved both cobalt leaching up to 308% and AUE of 171% compared to the controls with no presence of Cu(II). The apparent activation energy of cobalt leaching catalyzed by Cu(II) in MFCs was only 11.8 kJ/mol. These results demonstrate cobalt leaching in MFCs using Cu(II) as a catalyst may be an effective strategy for cobalt recovery and recycle of spent Li-ion batteries, and the evidence of influence factors including solid/liquid ratio, temperature, and pH and solution conductivity can contribute to improving understanding of and optimizing cobalt leaching catalyzed by Cu(II) in MFCs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Enhancing efficiency in polymer-blend solar cells: Structural insights through scattering

    Science.gov (United States)

    Kuppa, Vikram

    All-polymer solar cells that employ blends of semiconducting polymers are capable of harnessing a greater portion of the incident solar spectrum than singly sensitized devices. However, they invariably show poor performance when compared with small-molecule bulk heterojunction cells. Following our successful approach in adding very small quantities of pristine graphene to the active layer to boost performance in P3HT/PCBM cells, we have recently reported a three-fold enhancement in efficiency of all-polymer (a blend of P3HT and F8BT) photovoltaic devices. These new cells exhibit more balanced transport of electrons and holes, strong dependence of recombination behavior on graphene content, and up to two orders of magnitude increase in mobility, resulting in a peak improvement of over 200

  12. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth [Impact Technologies, Tulsa, OK (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Parick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mohan, Ram [Univ. of Tulsa, OK (United States); Shoham, Ovadia [Univ. of Tulsa, OK (United States); Felber, Betty [Impact Technologies, Tulsa, OK (United States); Rychel, Dwight [Impact Technologies, Tulsa, OK (United States)

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  13. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes.

    Science.gov (United States)

    Yamamoto, Keisuke; Hara, Kiyotaka Y; Morita, Toshihiko; Nishimura, Akira; Sasaki, Daisuke; Ishii, Jun; Ogino, Chiaki; Kizaki, Noriyuki; Kondo, Akihiko

    2016-09-13

    Red yeast, Xanthophyllomyces dendrorhous is the only yeast known to produce astaxanthin, an anti-oxidant isoprenoid (carotenoid) widely used in the aquaculture, food, pharmaceutical and cosmetic industries. The potential of this microorganism as a platform cell factory for isoprenoid production has been recognized because of high flux through its native terpene pathway. Recently, we developed a multiple gene expression system in X. dendrorhous and enhanced the mevalonate synthetic pathway to increase astaxanthin production. In contrast, the mevalonate synthetic pathway is suppressed by ergosterol through feedback inhibition. Therefore, releasing the mevalonate synthetic pathway from this inhibition through the deletion of genes involved in ergosterol synthesis is a promising strategy to improve isoprenoid production. An efficient method for deleting diploid genes in X. dendrorhous, however, has not yet been developed. Xanthophyllomyces dendrorhous was cultivated under gradually increasing concentrations of antibiotics following the introduction of antibiotic resistant genes to be replaced with target genes. Using this method, double CYP61 genes encoding C-22 sterol desaturases relating to ergosterol biosynthesis were deleted sequentially. This double CYP61 deleted strain showed decreased ergosterol biosynthesis compared with the parental strain and single CYP61 disrupted strain. Additionally, this double deletion of CYP61 genes showed increased astaxanthin production compared with the parental strain and the single CYP61 knockout strain. Finally, astaxanthin production was enhanced by 1.4-fold compared with the parental strain, although astaxanthin production was not affected in the single CYP61 knockout strain. In this study, we developed a system to completely delete target diploid genes in X. dendrorhous. Using this method, we deleted diploid CYP61 genes involved in the synthesis of ergosterol that inhibits the pathway for mevalonate, which is a common

  14. Tin–indium/graphene with enhanced initial coulombic efficiency and rate performance for lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Hongxun; Li, Ling

    2014-01-01

    Graphical abstract: -- Highlights: • Tin–indium/graphene hybrid was firstly synthesized. • Indium in the hybrid reduces charge transfer resistance of electrode. • Graphene can accommodate the volume change of nanoparticles during cycling. • Tin–indium/graphene hybrid shows enhanced initial coulombic efficiency. • Tin–indium/graphene hybrid shows enhanced rate capability. -- Abstract: Tin is an attractive anode material replacing the current commercial graphite for the next generation lithium ion batteries because of its high theoretical storage capacity and energy density. However, poor capacity retention caused by large volume changes during cycling, and low rate capability frustrate its practical application. In this study, a new ternary composite based on tin–indium alloy (Sn–In) and graphene nanosheet (GNS) was prepared via a facile solvothermal synthesis followed by thermal treatment in hydrogen and argon at 550 °C. Characterizations show that the tin–indium nanoparticles with about 100 nm in size were wrapped between the graphene nanosheets. As an anode for lithium ion batteries, the Sn–In/GNS composite exhibits a remarkably improved electrochemical performance in terms of lithium storage capacity (865.6 mAh g −1 at 100 mA g −1 rate), initial coulombic efficiency (78.6%), cycling stability (83.9% capacity retention after 50 cycles), and rate capability (493.2 mAh g −1 at 600 mA g −1 rate after 25 cycles) compared to Sn/GNS and Sn–In electrode. This improvement is attributed to the introduction of lithium activity metal, indium, which reduces the charge transfer resistance of electrode, and the graphene nanosheet which accommodates the volume change of tin–indium nanoparticles during cycling and improves electrical conductivity of material

  15. Adaptive Splitting Integrators for Enhancing Sampling Efficiency of Modified Hamiltonian Monte Carlo Methods in Molecular Simulation.

    Science.gov (United States)

    Akhmatskaya, Elena; Fernández-Pendás, Mario; Radivojević, Tijana; Sanz-Serna, J M

    2017-10-24

    The modified Hamiltonian Monte Carlo (MHMC) methods, i.e., importance sampling methods that use modified Hamiltonians within a Hybrid Monte Carlo (HMC) framework, often outperform in sampling efficiency standard techniques such as molecular dynamics (MD) and HMC. The performance of MHMC may be enhanced further through the rational choice of the simulation parameters and by replacing the standard Verlet integrator with more sophisticated splitting algorithms. Unfortunately, it is not easy to identify the appropriate values of the parameters that appear in those algorithms. We propose a technique, that we call MAIA (Modified Adaptive Integration Approach), which, for a given simulation system and a given time step, automatically selects the optimal integrator within a useful family of two-stage splitting formulas. Extended MAIA (or e-MAIA) is an enhanced version of MAIA, which additionally supplies a value of the method-specific parameter that, for the problem under consideration, keeps the momentum acceptance rate at a user-desired level. The MAIA and e-MAIA algorithms have been implemented, with no computational overhead during simulations, in MultiHMC-GROMACS, a modified version of the popular software package GROMACS. Tests performed on well-known molecular models demonstrate the superiority of the suggested approaches over a range of integrators (both standard and recently developed), as well as their capacity to improve the sampling efficiency of GSHMC, a noticeable method for molecular simulation in the MHMC family. GSHMC combined with e-MAIA shows a remarkably good performance when compared to MD and HMC coupled with the appropriate adaptive integrators.

  16. Enhanced monolithic diffraction gratings with high efficiency and reduced polarization sensitivity for remote sensing applications

    Science.gov (United States)

    Triebel, Peter; Diehl, Torsten; Moeller, Tobias; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars H.; Burkhardt, Matthias; Kalies, Alexander

    2015-10-01

    Spectral imaging systems lead to enhanced sensing properties when the sensing system provides sufficient spectral resolution to identify materials from its spectral reflectance signature. The performance of diffraction gratings provides an initial way to improve instrumental resolution. Thus, subsequent manufacturing techniques of high quality gratings are essential to significantly improve the spectral performance. The ZEISS unique technology of manufacturing real-blazed profiles and as well as lamellar profiles comprising transparent substrates is well suited for the production of transmission gratings. In order to reduce high order aberrations, aspherical and free-form surfaces can be alternatively processed to allow more degrees of freedom in the optical design of spectroscopic instruments with less optical elements and therefore size and weight advantages. Prism substrates were used to manufacture monolithic GRISM elements for UV to IR spectral range. Many years of expertise in the research and development of optical coatings enable high transmission anti-reflection coatings from the DUV to the NIR. ZEISS has developed specially adapted coating processes (Ion beam sputtering, ion-assisted deposition and so on) for maintaining the micro-structure of blazed gratings in particular. Besides of transmission gratings, numerous spectrometer setups (e.g. Offner, Rowland circle, Czerny-Turner system layout) working on the optical design principles of reflection gratings. This technology steps can be applied to manufacture high quality reflection gratings from the EUV to the IR applications with an outstanding level of low stray light and ghost diffraction order by employing a combination of holography and reactive ion beam etching together with the in-house coating capabilities. We report on results of transmission gratings on plane and curved substrates and GRISM elements with enhanced efficiency of the grating itself combined with low scattered light in the angular

  17. Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles

    DEFF Research Database (Denmark)

    Dohn, Søren; Sandberg, Rasmus Kousholt; Svendsen, Winnie Edith

    2005-01-01

    By positioning a single gold-particle at different locations along the length axis on a cantilever based mass sensor, we have investigated the effect of mass position on the mass responsivity and compared the results to simulations. A significant improvement in quality factor and responsivity was...... was achieved by operating the cantilever in the 4th bending mode, thereby increasing the intrinsic sensitivity. It is shown that the use of higher bending modes grants a spatial resolution and thereby enhances the functionality of the cantilever based mass sensor....

  18. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    Science.gov (United States)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  19. Dobutamine enhances both contractile function and energy reserves in hypoperfused canine right ventricle.

    Science.gov (United States)

    Yi, K D; Downey, H F; Bian, X; Fu, M; Mallet, R T

    2000-12-01

    Although the beta(1)-adrenergic agent dobutamine is used clinically to provide inotropic support to the failing myocardium, it could jeopardize the myocardium by depleting energy reserves. This investigation delineated the contractile and energetic effects of low versus high dobutamine doses in the hypoperfused right ventricular (RV) myocardium. The right coronary artery (RCA) of anesthetized dogs was cannulated for controlled perfusion with arterial blood, and regional RV contractile function was measured. RCA perfusion pressure was lowered from 100 mmHg baseline to 40 mmHg, and flow fell by 54%. At 15-min hypoperfusion, dobutamine was infused into the RCA at either 0.01 (low-dose dobutamine) or 0.06 microgram. kg(-1). min(-1) (high-dose dobutamine) for 15 min. Regional power (systolic segment shortening x isometric developed force x heart rate) stabilized at 63% of baseline during hypoperfusion. Low-dose dobutamine restored power to baseline but did not increase RV myocardial O(2) consumption (MVO(2)) and thus increased myocardial O(2) utilization efficiency (O(2)UE:power/MVO(2)). At 5 min, high-dose dobutamine enhancement of power was similar to that of low-dose dobutamine, but by 15 min, power and O(2)UE fell to untreated levels. Remarkably, low-dose dobutamine tripled cytosolic phosphorylation potential; in contrast, high-dose dobutamine lowered phosphorylation potential to 45% of the untreated value. Analyses of glucose uptake and glycolytic intermediates revealed sustained enhancement of glycolysis by low-dose dobutamine, but glycolysis became limited at glyceraldehyde 3-phosphate dehydrogenase during high-dose dobutamine treatment. In summary, low-dose dobutamine improved mechanical performance and efficiency of the hypoperfused RV myocardium while increasing myocardial energy reserves, but high-dose dobutamine failed to sustain improved function and depleted energy reserves. Dobutamine is capable of improving both contractile function and cellular

  20. Enhanced power coupling efficiency in inductive discharges with RF substrate bias driven at consecutive harmonics with adjustable phase

    Science.gov (United States)

    Berger, Birk; Steinberger, Thomas; Schüngel, Edmund; Koepke, Mark; Mussenbrock, Thomas; Awakowicz, Peter; Schulze, Julian

    2017-11-01

    Inductive discharges with radio-frequency (RF) substrate bias are frequently used for various technological applications. We operate such a hybrid discharge with a phase-locked RF substrate bias at twice the frequency of the inductive coupling with fixed but adjustable phase between both RF sources in neon at low pressures of a few Pa. The ion flux to the substrate is found to be a function of this relative phase in the H-mode at constant RF powers as long as some residual capacitive coupling of the planar coil is present. For distinct choices of the phase, Phase Resolved Optical Emission Spectroscopy measurements show that energetic beam electrons generated by the expanding boundary sheaths (i) are well confined, (ii) are accelerated efficiently, and (iii) propagate vertically through the inductive skin layer at the times of maximum azimuthal induced electric field within the fundamental RF period. This enhances the inductive stochastic electron heating, the power coupling efficiency, and finally the ion flux.

  1. Influence of enhancing electrolytes on the removal efficiency of heavy metals from Gabes marine sediments (Tunisia).

    Science.gov (United States)

    Missaoui, Amel; Said, Imen; Lafhaj, Zoubeir; Hamdi, Essaieb

    2016-12-15

    This study focused on the feasibility of the treatment of heavy metals-contaminated sediments from Gabes harbor (Tunisia) using enhanced electrokinetic process. It presented a laboratory short-time electrokinetic experiment. The enhancing agents, as citric, acetic acids and sodium dodecyl sulfate (SDS) were used regarding their low environmental hazard. The electrokinetic cell was specially designed in order to elaborate two experiments at the same time. This paper is composed of three parts. The first part introduces the characterization of Gabes sediments. The second part describes the design of laboratory electrokinetic cell and the followed methods. The third part is dedicated to the results analysis. Treatment efficiency revealed that more than 80% of lead was removed from Gabes marine sediments. The reduction of cooper concentration, in sediments after treatment, ranged from 74 to 87%. Despite, the high removal of cadmium that ranged from 58 to 79%, treated sediments presented Cd concentration above the threshold limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon.

    Science.gov (United States)

    Tarun, Alvarado; Hayazawa, Norihiko; Motohashi, Masashi; Kawata, Satoshi

    2008-01-01

    We present a versatile tip-enhanced Raman spectroscopy (TERS) system that permits efficient illumination and detection of optical properties in the visible range to obtain high signal-to-noise Raman signals from surfaces and interfaces of materials using an edge filter. The cutoff wavelength of the edge filter is tuned by changing the angle of incident beam to deliver high incident power and effectively collect scattered near-field signals for nanoscopic investigation in depolarized TERS configuration. The dynamic design of the instrument provides a unique combination of features that allows us to perform reflection or transmission mode TERS to cover both opaque and transparent samples. A detailed description of improvements of TERS was carried out on a thin strained silicon surface layer. The utilization of an edge filter for shorter collection time, specialized tip for higher field enhancement and for elimination of Raman signal from the tip, shorter wavelength, sample orientation relative to probing polarization, and depolarized configuration for higher contrast Raman signal is discussed.

  3. Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency.

    Science.gov (United States)

    Yuan, Tao; Li, Xiekun; Xiao, Shiyuan; Guo, Ying; Zhou, Weizheng; Xu, Jingliang; Yuan, Zhenhong

    2016-11-01

    Nowadays, microalgae are being considered as promising raw material for bioethanol production. In this work, three process variables during liquid hot water (LHW) pretreatment prior to enzymatic hydrolysis by response surface methodology on Scenedesmus sp. WZKMT were investigated to enhance glucose recovery. Results indicated that the order of significance for three parameters was temperature>solid-to-liquid ratio>time. The optimal condition was 1:13 (w/v), 147°C and 40min. The concentration and recovery of glucose under this condition were 14.223g·L(-1) and 89.32%, respectively, which were up to 5-fold higher than the samples without LHW pretreatment. In addition, the surface morphologies of microalgae cells before and after LHW pretreatment were also verified using scanning electron microscopy (SEM). LHW pretreatment can greatly enhance the enzymatic efficiency, and can be regarded as an ideal pretreatment method for glucose recovery from microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A piggyBac transposon- and gateway-enhanced system for efficient BAC transgenesis.

    Science.gov (United States)

    Zhao, Liang; Ng, Ee Ting; Koopman, Peter

    2014-09-01

    Bacterial artificial chromosomes (BACs) have become increasingly popular vectors for making transgenic mice, as they are able to carry large genomic DNA fragments that in many cases are needed to reproduce the endogenous gene expression pattern. However, the efficiency of BAC transgenesis is generally low, and gene transfer to BAC vectors by recombination-mediated engineering (recombineering) is time-consuming and technically demanding. We present an enhanced system, comprising a BAC vector retrofitted with piggyBac DNA transposon elements and attL (Gateway) docking sites, that obviates these problems. Using this system, a gene-of-interest (such as a reporter gene) is transferred to the vector in a one-step in vitro reaction, and piggyBac transposition mediates transgene integration at high efficiency when microinjected into mouse zygotes with piggyBac transposase mRNA. We establish proof-of-principle for this system using a Wilms tumour-1 (Wt1) BAC to drive expression of an mCherry-2A-EGFP (RG) reporter gene, which yielded transgenic mice at a frequency of 33%, and recapitulated endogenous WT1 expression in developing gonads, kidneys and heart. The system we describe is applicable to any BAC transgenesis strategy. Copyright © 2014 Wiley Periodicals, Inc.

  5. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety

    Science.gov (United States)

    Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin

    2017-06-01

    Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.

  6. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.

    Science.gov (United States)

    Fei, Ruixiang; Faghaninia, Alireza; Soklaski, Ryan; Yan, Jia-An; Lo, Cynthia; Yang, Li

    2014-11-12

    Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy and are highly desirable for the development of portable, solid state, passively powered electronic systems. The conversion efficiencies of such devices are quantified by the dimensionless thermoelectric figure of merit (ZT), which is proportional to the ratio of a device's electrical conductance to its thermal conductance. In this paper, a recently fabricated two-dimensional (2D) semiconductor called phosphorene (monolayer black phosphorus) is assessed for its thermoelectric capabilities. First-principles and model calculations reveal not only that phosphorene possesses a spatially anisotropic electrical conductance, but that its lattice thermal conductance exhibits a pronounced spatial-anisotropy as well. The prominent electrical and thermal conducting directions are orthogonal to one another, enhancing the ratio of these conductances. As a result, ZT may reach the criterion for commercial deployment along the armchair direction of phosphorene at T = 500 K and is close to 1 even at room temperature given moderate doping (∼2 × 10(16) m(-2) or 2 × 10(12) cm(-2)). Ultimately, phosphorene hopefully stands out as an environmentally sound thermoelectric material with unprecedented qualities. Intrinsically, it is a mechanically flexible material that converts heat energy with high efficiency at low temperatures (∼300 K), one whose performance does not require any sophisticated engineering techniques.

  7. Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics.

    Science.gov (United States)

    Zhu, Zhiwei; To, Suet

    2015-08-10

    Fast tool servo/ slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of freeform optics. However, the currently adopted constant scheme for azimuth sampling and side-feeding motion possesses no adaptation to surface shape variation, leading to the non-uniform surface quality and low machining efficiency. To overcome this defect, this paper reports on a novel adaptive tool servo (ATS) diamond turning technique which is essentially based on the novel two-degree-of-freedom (2-DOF) FTS/STS. In the ATS, the sampling interval and the side-feeding motion are actively controlled at any cutting point to adapt the machining process to shape variation of the desired surface, making both the sampling induced interpolation error and the side-feeding induced residual tool mark be within the desired tolerances. Characteristic of the required cutting motion suggests that besides the conventional z-axis servo motion, another servo motion along the x-axis synthesizing by the c-axis is mandatory for implementing the ATS. Comparative studies of surface generation of typical micro-structured surfaces in FTS/STS and ATS are thoroughly conducted both theoretically and experimentally. The result demonstrates that the ATS outperforms the FTS/STS with improved surface quality while simultaneously enhanced machining efficiency.

  8. Flow Pickering Emulsion Interfaces Enhance Catalysis Efficiency and Selectivity for Cyclization of Citronellal.

    Science.gov (United States)

    Chen, Huan; Zou, Houbing; Hao, Yajuan; Yang, Hengquan

    2017-05-09

    Cyclization of citronellal is a necessary intermediate step to produce the important flavor chemical (-)-menthol. Here, a continuous-flow Pickering emulsion (FPE) strategy for selective cyclization of citronellal to (-)-isopulegol by using water droplets hosting a heteropolyacid (HPA) catalyst to fill a column reactor is demonstrated. Owing to the large liquid-liquid interface and the excellent confinement ability of droplets toward HPA, the FPE system exhibited a much higher catalysis efficiency than its batch counterpart (2-5-fold) and an excellent durability (two months). Moreover, a remarkably enhanced selectivity was observed from 34.8 % for batch reactions to 64 % for the FPE reactions. It was found that the water droplet size and the flow rate significantly impact the catalysis selectivity and efficiency. This study not only represents an unprecedented and sustainable process for the selective cyclization of citronellal but also demonstrates a new flow-interface catalysis effect that can be useful for designing innovative catalysis systems in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhancement of phytochemical content and drying efficiency of onions (Allium cepa L.) through blanching.

    Science.gov (United States)

    Ren, Feiyue; Perussello, Camila A; Zhang, Zhihang; Gaffney, Michael T; Kerry, Joseph P; Tiwari, Brijesh K

    2018-03-01

    This study investigated the effect of blanching (60, 70 and 80 °C for 1, 3, 5 and 10 min) combined with oven drying at 60 °C on the phenolic compounds, antioxidant activity, colour and drying characteristics (drying time, drying rate constant, effective moisture diffusivity and activation energy) of onion slices. Blanching of onion slices at 60 °C for 3 min and at 70 °C for 1 min prior to drying increased their bioactive compounds and antioxidant activity compared to the control samples and other treatments. Eighteen drying models were evaluated. The Modified Page and two-term exponential models best represented the drying data. The effective diffusivity ranged from 3.32 × 10 -11 m 2 s -1 (control) to 5.27 × 10 -11 m 2 s -1 , 5.01 × 10 -11 m 2 s -1 , and 4.74 × 10 -11 m 2 s -1 for onions blanched at 60 °C, 70 °C and 80 °C, respectively. The higher activation energy was observed for the control (unblanched) sample and slightly lower values were found for 1 min- and 3 min-blanched samples, confirming the higher drying efficiency as a result of the blanching pre-treatment. The use of blanching as a pre-treatment before drying of onions resulted in enhanced phytochemical content and drying efficiency. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Ronald [Chrysler Group LLC., Auburn Hills, MI (United States)

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were; Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009

  11. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations

    KAUST Repository

    Lin, Ronghui

    2018-04-21

    A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.

  12. Design analysis and simulation study of an efficiency enhanced L-band MILO

    Science.gov (United States)

    Dixit, Gargi; Kumar, Arjun; Jain, P. K.

    2017-01-01

    In this article, an experimental L-band compact magnetically insulated transmission line oscillator (MILO) has been simulated using the 3D PIC simulation code "Particle Studio," and an improvement in the device efficiency has been obtained. The detailed interaction and operating mechanism describing the role of sub-assemblies have been explained. The performance of the device was found to be the function of the distance between the end-surface of the cathode and the beam-dump disk. During simulation, a high power microwave of the TM01 mode is generated with the peak RF-power of 6 GW and the power conversion efficiency of 19.2%, at the operating voltage of ˜600 kV and at the current of 52 kA. For better impedance matching or maximum power transfer, four stubs have been placed at the λg/4 distance from the extractor cavity, which results in the stable RF power output. In this work, an improved L-band MILO along with a new type beam-dump disk is selected for performance improvement with typical design parameters and beam parameters. The total peak power of improved MILO is 7 GW, and the maximum power conversion efficiency is 22.4%. This improvement is achieved due to the formation of the virtual cathode at the load side, which helps in modulating the energy of electrons owing to maximum reflection of electrons from the mesh or foil.

  13. NARINGENIN ENHANCED EFFICIENCY OF GUS ACTIVITY IN Passiflora mollissima (H.B.K. Bailey

    Directory of Open Access Journals (Sweden)

    G.O. Cancino

    2004-06-01

    Full Text Available The flavonoid naringenin has been investigated as a possible vir gene inducer in Agrobacterium-mediated transformation in Passiflora mollissima, P. giberti and Nicotiana tabacum cv. Xanthi. The transformation efficiency percentage of explants showing blue GUS expression and the extent of staining following inoculation with Agrobacterium tumefaciens strains EHA 105 and 1065, carrying gus and nptII genes was enhanced with the supplementation of the co-cultivation medium with naringenin. Supplementation of medium with 100µM (strain EHA 105 and 300 µM (strain 1065 naringenin was most effective at enhancing mean (±s.e.m., n=3 GUS activity in leaf explants (20.3 ± 2.4%, strain EHA; 105; 6.0 ± 0.57%, strain 1065 and nodal segments (16.7 ± 2.4% strain EHA 105; 8.3 ± 0.57% strain 1065 of P. mollissima. In P. giberti and N. tabacum maximum GUS activity was obtained in leaf and root explants with 100µM naringenin for both strains analysed. Additionally, when naringenin was added to Luria Bertani (LB medium, both bacterial growth via optical density and colony forming units were higher when compared to control. This is the first report of the use of naringenin to enhance gene transfer from Agrobacterium to plants. These findings suggest that naringenin can be used as an alternative to acetosyringone for vir gene induction in Agrobacterium. This approach may be especially useful in plants that are generally recalcitrant to Agrobacterium-mediatedtransformation.

  14. Strong photocurrent enhancements in plasmonic organic photovoltaics by biomimetic nanoarchitectures with efficient light harvesting.

    Science.gov (United States)

    Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su

    2015-04-01

    We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.

  15. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  16. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings.

    Science.gov (United States)

    Wu, Hung-Yi; Liu, Kun-Hsiang; Wang, Yi-Chieh; Wu, Jing-Fen; Chiu, Wan-Ling; Chen, Chao-Ying; Wu, Shu-Hsing; Sheen, Jen; Lai, Erh-Min

    2014-01-01

    Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein-protein interactions in physiological contexts. AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous applications in fluorescent

  17. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings

    Science.gov (United States)

    2014-01-01

    Background Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. Results We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts. Conclusions AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous

  18. Photonic and plasmonic structures for enhancing efficiency of thin film silicon solar cells

    Science.gov (United States)

    Pattnaik, Sambit

    Crystalline silicon solar cells use high cost processing techniques as well as thick materials that are ˜ 200µm thick to convert solar energy into electricity. From a cost viewpoint, it is highly advantageous to use thin film solar cells which are generally made in the range of 0.1-3µm in thickness. Due to this low thickness, the quantity of material is greatly reduced and so is the number and complexity of steps involved to complete a device, thereby allowing a continuous processing capability improving the throughput and hence greatly decreasing the cost. This also leads to faster payback time for the end user of the photovoltaic panel. In addition, due to the low thickness and the possibility of deposition on flexible foils, the photovoltaic (PV) modules can be flexible. Such flexible PV modules are well suited for building-integrated applications and for portable, foldable, PV power products. For economical applications of solar cells, high efficiency is an important consideration. Since Si is an indirect bandgap material, a thin film of Si needs efficient light trapping to achieve high optical absorption. The previous work in this field has been mostly based on randomly textured back reflectors. In this work, we have used a novel approach, a periodic photonic and plasmonic structure, to optimize current density of the devices by absorbing longer wavelengths without hampering other properties. The two dimensional diffraction effect generated by a periodic structure with the plasmonic light concentration achieved by silver cones to efficiently propagate light in the plane at the back surface of a solar cell, achieves a significant increase in optical absorption. Using such structures, we achieved a 50%+ increase in short circuit current in a nano-crystalline (nc-Si) solar cell relative to stainless steel. In addition to nc-Si solar cells on stainless steel, we have also used the periodic photonic structure to enhance optical absorption in amorphous cells and

  19. A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration.

    Science.gov (United States)

    Yassin, Mohammed A; Mustafa, Kamal; Xing, Zhe; Sun, Yang; Fasmer, Kristine Eldevik; Waag, Thilo; Krueger, Anke; Steinmüller-Nethl, Doris; Finne-Wistrand, Anna; Leknes, Knut N

    2017-06-01

    Functionalizing polymer scaffolds with nanodiamond particles (nDPs) has pronounced effect on the surface properties, such as improved wettability, an increased active area and binding sites for cellular attachment and adhesion, and increased ability to immobilize biomolecules by physical adsorption. This study aims to evaluate the effect of poly(l-lactide-co-ε-caprolactone) (poly(LLA-co-CL)) scaffolds, functionalized with nDPs, on bone regeneration in a rat calvarial critical size defect. Poly(LLA-co-CL) scaffolds functionalized with nDPs are also compared with pristine scaffolds with reference to albumin adsorption and seeding efficiency of bone marrow stromal cells (BMSCs). Compared with pristine scaffolds, the experimental scaffolds exhibit a reduction in albumin adsorption and a significant increase in the seeding efficiency of BMSCs (p = 0.027). In the calvarial defects implanted with BMSC-seeded poly(LLA-co-CL)/nDPs scaffolds, live imaging at 12 weeks discloses a significant increase in osteogenic metabolic activity (p = 0.016). Microcomputed tomography, confirmed by histological data, reveals a substantial increase in bone volume (p = 0.021). The results show that compared with conventional poly(LLA-co-CL) scaffolds those functionalized with nDPs promote osteogenic metabolic activity and mineralization capacity. It is concluded that poly(LLA-co-CL) composite matrices functionalized with nDPs enhance osteoconductivity and therefore warrant further study as potential scaffolding material for bone tissue engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An enhanced biometric authentication scheme for telecare medicine information systems with nonce using chaotic hash function.

    Science.gov (United States)

    Das, Ashok Kumar; Goswami, Adrijit

    2014-06-01

    Recently, Awasthi and Srivastava proposed a novel biometric remote user authentication scheme for the telecare medicine information system (TMIS) with nonce. Their scheme is very efficient as it is based on efficient chaotic one-way hash function and bitwise XOR operations. In this paper, we first analyze Awasthi-Srivastava's scheme and then show that their scheme has several drawbacks: (1) incorrect password change phase, (2) fails to preserve user anonymity property, (3) fails to establish a secret session key beween a legal user and the server, (4) fails to protect strong replay attack, and (5) lacks rigorous formal security analysis. We then a propose a novel and secure biometric-based remote user authentication scheme in order to withstand the security flaw found in Awasthi-Srivastava's scheme and enhance the features required for an idle user authentication scheme. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks, including the replay and man-in-the-middle attacks. Our scheme is also efficient as compared to Awasthi-Srivastava's scheme.

  1. Enhanced efficiency in plastic solar cells via energy matched solution processed NiO{sub x} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Steirer, K. Xerxes [Colorado School of Mines, Physics Dept., Golden, CO (United States); Ndione, Paul F.; Lloyd, Matthew T.; Curtis, Calvin J.; Ginley, David S.; Berry, Joseph J.; Olson, Dana C. [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Widjonarko, N. Edwin [University of Colorado, Physics Dept., Boulder, CO (United States); Meyer, Jens; Kahn, Antoine [Princeton University, Electrical Engineering Dept., Princeton, NJ (United States); Ratcliff, Erin L.; Armstrong, Neal R. [University of Arizona, Dept. of Chemistry and Biochemistry and Center for Interface Science, Solar Electric Materials, Tucson, AZ (United States)

    2011-10-15

    We show enhanced efficiency and stability of a high performance organic solar cell (OPV) when the work-function of the hole collecting indium-tin oxide (ITO) contact, modified with a solution-processed nickel oxide (NiO{sub x}) hole-transport layer (HTL), is matched to the ionization potential of the donor material in a bulk-heterojunction solar cell. Addition of the NiO{sub x} HTL to the hole collecting contact results in a power conversion efficiency (PCE) of 6.7%, which is a 17.3% net increase in performance over the 5.7% PCE achieved with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL on ITO. The impact of these NiO{sub x} films is evaluated through optical and electronic measurements as well as device modeling. The valence and conduction band energies for the NiO{sub x} HTL are characterized in detail through photoelectron spectroscopy studies while spectroscopic ellipsometry is used to characterize the optical properties. Oxygen plasma treatment of the NiO{sub x} HTL is shown to provide superior contact properties by increasing the ITO/NiO{sub x} contact work-function by 500 meV. Enhancement of device performance is attributed to reduction of the band edge energy offset at the ITO/NiO{sub x} interface with the poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothidiazole)) (PCDTBT):[6,6]-phenyl-C61 butyric acid methyl ester PCBM and [6,6]-phenyl-C71 butyric acid methyl ester (PC{sub 70}BM) active layer. A high work-function hole collecting contact is therefore the appropriate choice for high ionization potential donor materials in order to maximize OPV performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Nalwa, Kanwar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.

  3. Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50.

    Science.gov (United States)

    Guo, Qiang; Liu, Hao; Shi, Zhenzhen; Wang, Fuzhi; Zhou, Erjun; Bian, Xingming; Zhang, Bing; Alsaedi, Ahmed; Hayat, Tasawar; Tan, Zhan'ao

    2018-02-15

    Enhancing the light-harvesting activity is an effective way to improve the power conversion efficiency of solar cells. Although rapid enhancement in the PCE up to a value of 22.1% has been achieved for perovskite solar cells, only part of the sunlight, i.e., with wavelengths below 800-850 nm is utilized due to the limited bandgap of the perovskite materials, resulting in most of the near infrared light being wasted. To broaden the photoresponse of perovskite solar cells, we demonstrate an efficient perovskite/organic integrated solar cell containing both CH 3 NH 3 PbI 3 perovskite and PBDTTT-E-T:IEICO organic photoactive layers. By integrating a low band gap PBDTTT-E-T:IEICO active layer on a perovskite layer, the maximum wavelength for light harvesting of the ISC increased to 930 nm, sharply increasing the utilization of near infrared radiation. In addition, the external quantum efficiency of the integrated device exceeded 50% in the near infrared range. The MAPbI 3 /PBDTTT-E-T:IEICO ISCs show an enhanced short-circuit current density of over 24 mA cm -2 , which is the highest existing value among perovskite/organic integrated solar cells and much higher than the traditional MAPbI 3 based perovskite solar cells. The results reveal that a perovskite/organic integrated structure is a promising strategy to extend and enhance sunlight utilization for perovskite solar cells.

  4. Disrupted Module Efficiency of Structural and Functional Brain Connectomes in Clinically Isolated Syndrome and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Yaou Liu

    2018-04-01

    Full Text Available Recent studies have demonstrated disrupted topological organization of brain connectome in multiple sclerosis (MS. However, whether the communication efficiency between different functional systems is affected in the early stage of MS remained largely unknown. In this study, we constructed the structural connectivity (SC and functional connectivity (FC networks in 41 patients with clinically isolated syndrome (CIS, 32 MS patients and 35 healthy controls (HC based on diffusion and resting-state functional MRI. To quantify the communication efficiency within and between different functional systems, we proposed two measures called intra- and inter-module efficiency. Based on the module parcellation of functional backbone network, the intra- and inter-module efficiency of SC and FC networks was calculated for each participant. For the SC network, CIS showed decreased inter-module efficiency between the sensory-motor network (SMN, the visual network (VN, the default-mode network (DMN and the fronto-parietal network (FPN compared with HC, while MS showed more widespread decreased module efficiency both within and between modules relative to HC and CIS. For the FC network, no differences were found between CIS and HC, and a decreased inter-module efficiency between SMN and FPN and between VN and FPN was identified in MS, compared with HC and CIS. Moreover, both intra- and inter-module efficiency of SC network were correlated with the disability and cognitive scores in MS. Therefore, our results demonstrated early SC changes between modules in CIS, and more widespread SC alterations and inter-module FC changes were observed in MS, which were further associated with cognitive impairment and physical disability.

  5. Neural network model for the efficient calculation of Green's functions in layered media

    CERN Document Server

    Soliman, E A; El-Gamal, M A; 10.1002/mmce.10066

    2003-01-01

    In this paper, neural networks are employed for fast and efficient calculation of Green's functions in a layered medium. Radial basis function networks (RBFNs) are effectively trained to estimate the coefficients and the exponents that represent a Green's function in the discrete complex image method (DCIM). Results show very good agreement with the DCIM, and the trained RBFNs are very fast compared with the corresponding DCIM. (23 refs).

  6. An efficient cost function for the optimization of an n-layered isotropic cloaked cylinder

    International Nuclear Information System (INIS)

    Paul, Jason V; Collins, Peter J; Coutu, Ronald A Jr

    2013-01-01

    In this paper, we present an efficient cost function for optimizing n-layered isotropic cloaked cylinders. Cost function efficiency is achieved by extracting the expression for the angle independent scatterer contribution of an associated Green's function. Therefore, since this cost function is not a function of angle, accounting for every bistatic angle is not necessary and thus more efficient than other cost functions. With this general and efficient cost function, isotropic cloaked cylinders can be optimized for many layers and material parameters. To demonstrate this, optimized cloaked cylinders made of 10, 20 and 30 equal thickness layers are presented for TE and TM incidence. Furthermore, we study the effect layer thickness has on optimized cloaks by optimizing a 10 layer cloaked cylinder over the material parameters and individual layer thicknesses. The optimized material parameters in this effort do not exhibit the dual nature that is evident in the ideal transformation optics design. This indicates that the inevitable field penetration and subsequent PEC boundary condition at the cylinder must be taken into account for an optimal cloaked cylinder design. Furthermore, a more effective cloaked cylinder can be designed by optimizing both layer thickness and material parameters than by additional layers alone. (paper)

  7. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    Science.gov (United States)

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham; Hodges, Michael

    2011-02-01

    Considerable advances in our understanding of the control of mitochondrial metabolism and its interactions with nitrogen metabolism and associated carbon/nitrogen interactions have occurred in recent years, particularly highlighting important roles in cellular redox homeostasis. The tricarboxylic acid (TCA) cycle is a central metabolic hub for the interacting pathways of respiration, nitrogen assimilation, and photorespiration, with components that show considerable flexibility in relation to adaptations to the different functions of mitochondria in photosynthetic and non-photosynthetic cells. By comparison, the operation of the oxidative pentose phosphate pathway appears to represent a significant limitation to nitrogen assimilation in non-photosynthetic tissues. Valuable new insights have been gained concerning the roles of the different enzymes involved in the production of 2-oxoglutarate (2-OG) for ammonia assimilation, yielding an improved understanding of the crucial role of cellular energy balance as a broker of co-ordinate regulation. Taken together with new information on the mechanisms that co-ordinate the expression of genes involved in organellar functions, including energy metabolism, and the potential for exploiting the existing flexibility for NAD(P)H utilization in the respiratory electron transport chain to drive nitrogen assimilation, the evidence that mitochondrial metabolism and machinery are potential novel targets for the enhancement of nitrogen use efficiency (NUE) is explored.

  9. Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient Förster Energy Transfer from Interface Exciplex.

    Science.gov (United States)

    Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Bin, Zhengyang; Zhang, Deqiang; Duan, Lian

    2016-02-17

    Exciplex forming cohosts have been widely adopted in phosphorescent organic light-emitting diodes (PHOLEDs), achieving high efficiency with low roll-off and low driving voltage. However, the influence of the exciplex-forming hosts on the lifetimes of the devices, which is one of the essential characteristics, remains unclear. Here, we compare the influence of the bulk exciplex and interface exciplex on the performances of the devices, demonstrating highly efficient orange PHOLEDs with long lifetime at low dopant concentration by efficient Förster energy transfer from the interface exciplex. A bipolar host, (3'-(4,6-diphenyl-1,3,5-triazin-2-yl)-(1,1'-biphenyl)-3-yl)-9-carbazole (CzTrz), was adopted to combine with a donor molecule, tris(4-(9H-carbazol-9-yl)phenyl)amine (TCTA), to form exciplex. Devices with energy transfer from the interface exciplex achieve lifetime almost 2 orders of magnitude higher than the ones based on bulk exciplex as the host by avoiding the formation of the donor excited states. Moreover, a highest EQE of 27% was obtained at the dopant concentration as low as 3 wt % for a device with interface exciplex, which is favorable for reducing the cost of fabrication. We believe that our work may shed light on future development of ideal OLEDs with high efficiency, long-lifetime, low roll-off and low cost simultaneously.

  10. An empirical function for the full energy peak efficiency for a P-type ...

    African Journals Online (AJOL)

    An empirical analytical function has been obtained for the full energy peak efficiency of a co-axial P-type High Purity Germanium Detector for gamma-ray energies in the range of 80 - 1333 keV and source-to-detector distance in the range of 1.0 - 4.0 cm. Comparison of the calculated efficiencies with the corresponding ...

  11. An efficient method for hybrid density functional calculation with spin-orbit coupling

    Science.gov (United States)

    Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui

    2018-03-01

    In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.

  12. Enhancement of Solar Cell Efficiency for Space Applications Using Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Postigo P.A.

    2017-01-01

    Full Text Available The effects of having a nanopatterned photonic crystal (PC structure in the surface of a solar cell can be usefully employed to increase the energy conversion efficiency, which may be critical for space applications. In this work, we have measured the reflectance (R and transmittance (T of thin InP layers (270 nm thick bonded to a glass substrate and nanopatterned with holes down to the glass in a triangular symmetry lattice separated by a lattice parameter a=450nm and maintaining a value of r/a=0.32. The optical spectra were measured with angular resolution in the range from 0.55 to 2.0 eV. There are noticeable changes in the spectra of the PC sample, with minima and maxima of the R and T clearly shifted with respect to the unpatterned sample, and new features that alter significantly the overall lineshape of each spectrum. Those features correspond in a first approximation to the well-known Fano-like resonances of the discrete photonic modes of the PC lattice and they have been used before to determine experimentally the position of the PC bands. The observed features can be translated to the optical absorption (A defined as A=1-R-T provided there are low or negligible scattering effects. The generated absorption spectra show enhancements above and below the electronic band edge of the InP that can be correlated with the photonic band structure. Even using a thicker semiconductor layer, the abovementioned effects can justify to use a photonic crystal front surface with sub-wavelength motifs. In this way, we have fabricated and characterized a complete Ge/InGaP solar cell with a 2D-PC on its front surface. An increase in the photocurrent up to a 8% was achieved on a solar cell with a 40% of its surface covered with a PC pattern. Enhancements of the external quantum efficiency (EQE of 22% for a wide range of wavelengths and up to a 46% for specific wavelengths have been measured, without use of any anti-reflection coating (ARC. A correlation

  13. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  14. Phosphor-doping enhanced efficiency in bilayer organic solar cells due to longer exciton diffusion length

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kang [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Hou, Lintao, E-mail: thlt@jnu.edu.cn [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Wang, Ping, E-mail: wangping996633@163.com [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Xia, Yuxin [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Chen, Dongcheng; Xiao, Biao [Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 (China)

    2014-07-01

    We fabricated bilayer organic solar cells (OSCs) in the structure glass/ITO/PEDOT:PSS/PtOEP:MEH-PPV/C{sub 70}/Al, where MEH-PPV was doped with platinum octaethylporphyrin (PtOEP). Enhanced exciton diffusion length (L{sub D}) is realized via converting generated singlet excitons to triplet excitons. Investigation based on transfer matrix simulations reveals that it is the extended exciton L{sub D} of the doping donor layer that leads to the short-circuit current density (J{sub sc}) and power conversion efficiency (PCE) improvement, when compared with those of the OSCs with a non-doping donor layer. As a result of the increased L{sub D}, J{sub sc} and PCE increase by 30% and 42% respectively for a device with 5 wt% PtOEP-doped 25 nm-thick donor layer. Meanwhile, by doping with phosphorescent bis(1-phenyl-isoquinoline)(acetylacetonato)iridium(III), the reduction in open-circuit voltage and the comparable J{sub sc} are shown due to its higher HOMO level and higher LUMO level, leading to the decrease of PCE. It demonstrates that doping a polymer with a suitable phosphorescent molecule is an important approach to be considered to increase the exciton L{sub D}. - Highlights: • Optical model based on transfer matrix method was used to study phosphor-doped organic planar hetero-junction solar cells. • The enhanced exciton diffusion length was experimentally investigated by absorption, PL, time-resolved transient PL, J–V and EQE curves. • Only suitable phosphor dyes can increase exciton diffusion length.

  15. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-01-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated

  16. Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2

    International Nuclear Information System (INIS)

    Chen, Xuejing; Jiang, Jianguo; Li, Kaimin; Tian, Sicong; Yan, Feng

    2017-01-01

    Highlights: • The effect of O 2 content from 0 to 15% on Ni/SiO 2 are studied for biogas reforming. • The presence of O 2 in biogas improves CH 4 conversion and stability of biogas reforming. • An obvious carbon-resistance effect is observed due to the carbon gasification effect of O 2 in biogas. • The presence of O 2 in biogas greatly helps inhibit the catalyst sintering. - Abstract: We report an energy-efficient biogas reforming process with high and stable methane conversions by O 2 presence. During this biogas reforming process, the effects of various O 2 concentrations in biogas on initial conversions and stability at various temperatures on a Ni/SiO 2 catalyst were detailed investigated. In addition, theoretical energy consumption and conversions were calculated based on the Gibbs energy minimization method to compare with experimental results. Carbon formation and sintering during the reforming process were characterized by thermal gravity analysis, the Brunauer-Emmett-Teller method, X-ray diffraction, and high-resolution transmission electron microscopy to investigate the feasibility of applying this process to an inexpensive nickel catalyst. The results showed that 5% O 2 in biogas improved the CH 4 conversion and stability of biogas reforming. The enhancement of stability was attributed to the inhibited sintering, our first finding, and the reduced carbon deposition at the same time, which sustained a stable conversion of CH 4 , and proved the applicability of base Ni catalyst to this process. Higher O 2 concentrations (⩾10%) in biogas resulted in severe decrease in CO 2 conversion and greater H 2 O productivity. Our proposed biogas reforming process, with a high and stable conversion of CH 4 , reduced energy input, and the applicability to inexpensive base metal catalyst, offers a good choice for biogas reforming with low O 2 concentrations (⩽5%) to produce syngas with high energy efficiency.

  17. Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell

    Science.gov (United States)

    Mohan, Minu; Ramkumar, S.; Namboothiry, Manoj A. G.

    2017-08-01

    P3HT:PCBM is one of the most studied polymer-fullerene system. However the reported power conversion efficiency (PCE) values falls within the range of 4% to 5%. The thin film architecture in OPVs exhibits low PCE compared to inorganic photovoltaic cells. This is mainly due to the low exciton diffusion length that limits the active layer thickness which in turn reduces the absorption of incident light. Several strategies are adapted in order to increase the absorption in the active layer without increasing the film thickness. Inclusion of metal nanoparticles into the polymer layer of bulk heterojunction (BHJ) solar cells is one of the promising methods. Incorporation of metal nanostructures increases the absorption of organic materials due to the high electromagnetic field strength in the vicinity of the excited surface plasmons. In this work, we used 60 nm Au plasmonic structures to improve the efficiency of organic solar cell. The prepared metal nano structures were characterized through scanning electron microscopy (SEM), and UV-Visible spectroscopy techniques. These prepared metallic nanoparticles can be incorporated either into the electron transport layer (ETL) or into the active P3HT:PC71BM layer. The effect of incorporation of plasmonic gold (Au) nanoparticle in the inverted bulk heterojunction organic photovoltaic cells (OPVs) of P3HT:PC71BM fabricated in ambient air condition is in progress. Initial studies shows an 8.5% enhancement in the PCE with the incorporation of Au nanoparticles under AM1.5G light of intensity 1 Sun.

  18. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    Science.gov (United States)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  19. Fulleropyrrolidine interlayers lower cathode work function to raise organic solar cell efficiency

    Science.gov (United States)

    Liu, Yao; Page, Zachariah; Duzhko, Volodimyr; Emrick, Todd; Russell, Thomas

    2015-03-01

    A major challenge in organic solar cell design is the trade-off between oxidative stability and work function of the metal used as a cathode. Here we report that solution-based incorporation of fulleropyrrolidines with amine (C60-N) or zwitterionic (C60-SB) substituents as cathode-independent buffer layers conveniently surmounts this barrier in single junction polymer solar cells. Specifically, a thin layer of C60-N reduced the effective work function of Ag, Cu, and Au electrodes to 3.65 eV. Power conversion efficiency (PCE) values exceeding 8.5% were obtained for organic photovoltaics independent of the cathode selection (Al, Ag, Cu or Au). Such high efficiencies did not require precise control over interlayer thickness, as devices prepared with C60-N and C60-SB layers ranging from 5 to 55 nm functioned with high efficiency.

  20. For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Charles McCormick; Roger Hester

    2003-02-28

    Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge density terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.

  1. Efficiency Enhancement of an Envelope Tracking Power Amplifier Combining Supply Shaping and Dynamic Biasing

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Sira, Daniel; Jensen, Ole Kiel

    2013-01-01

    magnitude (EVM) of 1.2% and an adjacent channel power ratio (ACPR) of -39.4/-43.5 dBc. The presented transmitter architecture allowed an improvement of 12% PAE compared to a classical ET transmitter where the measured PA was biased in class-AB, maintaining the linearity indicators.......This paper presents a new method to improve the performance of envelope tracking (ET) power amplifiers (PAs). The method consists of combining the supply modulation that characterizes the envelope tracking architecture with supply shaping and dynamic biasing. The inclusion of dynamic biasing allows...... a dynamic minimization of the current consumption while imposing simultaneously a constant gain condition. In such a way we maximize the efficiency of the ET transmitter maintaining a considerable linearity. Bias and supply voltages are modulated applying specific waveforms obtained as a function...

  2. Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency.

    Science.gov (United States)

    Do, Eun Kyoung; Park, Jae Kyung; Cheon, Hyo Cheon; Kwon, Yang Woo; Heo, Soon Chul; Choi, Eun Jung; Seo, Jeong Kon; Jang, Il Ho; Lee, Sang Chul; Kim, Jae Ho

    2017-11-24

    Embryonic stem (ES) cells are pluripotent cells characterized by self-renewability and differentiation potential. Induced pluripotent stem (iPS) cells are ES cell-equivalent cells derived from somatic cells by the introduction of core reprogramming factors. ES and iPS cells are important sources for understanding basic biology and for generating therapeutic cells for clinical applications. Tribbles homolog 2 (Trib2) functions as a scaffold in signaling pathways. However, the relevance of Trib2 to the pluripotency of ES and iPS cells is unknown. In the present study, we elucidated the importance of Trib2 in maintaining pluripotency in mouse ES cells and in generating iPS cells from somatic cells through the reprogramming process. Trib2 expression decreased as ES cells differentiated, and Trib2 knockdown in ES cells changed their colony morphology while reducing the activity of alkaline phosphatase and the expression of the pluripotency marker genes Oct4, Sox2, Nanog and Klf4. Trib2 directly interacted with Oct4 and elevated Oct4 promoter activity. During the generation of iPS cells, Trib2 knockdown decreased the reprogramming efficiency of mouse embryonic fibroblasts, whereas Trib2 overexpression significantly increased their reprogramming efficiency. In summary, our results suggest that Trib2 is important for maintaining self-renewal in ES cells and for pluripotency induction during the reprogramming process.

  3. Direct current brain stimulation enhances navigation efficiency in individuals with low spatial sense of direction.

    Science.gov (United States)

    Brunyé, Tad T; Holmes, Amanda; Cantelon, Julie; Eddy, Marianna D; Gardony, Aaron L; Mahoney, Caroline R; Taylor, Holly A

    2014-10-22

    The aim of this study was to evaluate the influence of right versus left temporal transcranial direct current stimulation (tDCS) on navigation efficiency and spatial memory in individuals with low versus high spatial skills. A mixed design administered low (0.5 mA) versus high (2.0 mA) anodal tDCS (within-participants) over the right or the left temporal lobe (between-participants), centered at electrode site T8 (right) or T7 (left). During stimulation, participants navigated virtual environments in search of specified landmarks, and data were logged in terms of current position and heading over time. Following stimulation, participants completed pointing and map-drawing spatial memory tests. Individual differences in sense of direction reliably and inversely predicted navigation advantages in the 2.0 versus 0.5 mA right hemisphere stimulation condition (R=0.45, Psense of direction showed increased navigation efficiency in the 2.0 versus 0.5 mA condition. Spatial memory tests also showed the development of relatively comprehensive spatial memories: bidimensional regression indicated lower distortion in sketch maps drawn following 2.0 versus 0.5 mA right temporal lobe stimulation (F=8.7, Pspatial memories during complex navigation tasks, and uniquely suggest that continuing research may find value in optimizing stimulation parameters (intensity, focality) as a function of individual differences.

  4. Efficient site-specific transgenesis and enhancer activity tests in medaka using PhiC31 integrase

    Science.gov (United States)

    Kirchmaier, Stephan; Höckendorf, Burkhard; Möller, Eva Katharina; Bornhorst, Dorothee; Spitz, Francois; Wittbrodt, Joachim

    2013-01-01

    Established transgenesis methods for fish model systems allow efficient genomic integration of transgenes. However, thus far a way of controlling copy number and integration sites has not been available, leading to variable transgene expression caused by position effects. The integration of transgenes at predefined genomic positions enables the direct comparison of different transgenes, thereby improving time and cost efficiency. Here, we report an efficient PhiC31-based site-specific transgenesis system for medaka. This system includes features that allow the pre-selection of successfully targeted integrations early on in the injected generation. Pre-selected embryos transmit the correctly integrated transgene through the germline with high efficiency. The landing site design enables a variety of applications, such as reporter and enhancer switch, in addition to the integration of any insert. Importantly, this allows assaying of enhancer activity in a site-specific manner without requiring germline transmission, thus speeding up large-scale analyses of regulatory elements. PMID:24048591

  5. Efficient Techniques of Sparse Signal Analysis for Enhanced Recovery of Information in Biomedical Engineering and Geosciences

    KAUST Repository

    Sana, Furrukh

    2016-11-01

    Sparse signals are abundant among both natural and man-made signals. Sparsity implies that the signal essentially resides in a small dimensional subspace. The sparsity of the signal can be exploited to improve its recovery from limited and noisy observations. Traditional estimation algorithms generally lack the ability to take advantage of signal sparsity. This dissertation considers several problems in the areas of biomedical engineering and geosciences with the aim of enhancing the recovery of information by exploiting the underlying sparsity in the problem. The objective is to overcome the fundamental bottlenecks, both in terms of estimation accuracies and required computational resources. In the first part of dissertation, we present a high precision technique for the monitoring of human respiratory movements by exploiting the sparsity of wireless ultra-wideband signals. The proposed technique provides a novel methodology of overcoming the Nyquist sampling constraint and enables robust performance in the presence of noise and interferences. We also present a comprehensive framework for the important problem of extracting the fetal electrocardiogram (ECG) signals from abdominal ECG recordings of pregnant women. The multiple measurement vectors approach utilized for this purpose provides an efficient mechanism of exploiting the common structure of ECG signals, when represented in sparse transform domains, and allows leveraging information from multiple ECG electrodes under a joint estimation formulation. In the second part of dissertation, we adopt sparse signal processing principles for improved information recovery in large-scale subsurface reservoir characterization problems. We propose multiple new algorithms for sparse representation of the subsurface geological structures, incorporation of useful prior information in the estimation process, and for reducing computational complexities of the problem. The techniques presented here enable significantly

  6. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoliang; Chen, Min; Liu, Yaling; Miralles, Diego G.; Wang, Faming

    2017-05-01

    Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosol loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R2=0.84 and RMSE=0.01gC (kg H2O)-1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.

  7. Harmonic Enhancement in Low Bitrate Audio Coding Using an Efficient Long-Term Predictor

    Directory of Open Access Journals (Sweden)

    Song Jeongook

    2010-01-01

    Full Text Available This paper proposes audio coding using an efficient long-term prediction method to enhance the perceptual quality of audio codecs to speech input signals at low bit-rates. The MPEG-4 AAC-LTP exploited a similar concept, but its improvement was not significant because of small prediction gain due to long prediction lags and aliased components caused by the transformation with a time-domain aliasing cancelation (TDAC technique. The proposed algorithm increases the prediction gain by employing a deharmonizing predictor and a long-term compensation filter. The look-back memory elements are first constructed by applying the de-harmonizing predictor to the input signal, then the prediction residual is encoded and decoded by transform audio coding. Finally, the long-term compensation filter is applied to the updated look-back memory of the decoded prediction residual to obtain synthesized signals. Experimental results show that the proposed algorithm has much lower spectral distortion and higher perceptual quality than conventional approaches especially for harmonic signals, such as voiced speech.

  8. Retrieval practice is an efficient method of enhancing the retention of anatomy and physiology information.

    Science.gov (United States)

    Dobson, John L

    2013-06-01

    Although a great deal of empirical evidence has indicated that retrieval practice is an effective means of promoting learning and memory, very few studies have investigated the strategy in the context of an actual class. The primary purpose of this study was to determine if a series of very brief retrieval quizzes could significantly improve the retention of previously tested information throughout an anatomy and physiology course. A second purpose was to determine if there were any significant differences between expanding and uniform patterns of retrieval that followed a standardized initial retrieval delay. Anatomy and physiology students were assigned to either a control group or groups that were repeatedly prompted to retrieve a subset of previously tested course information via a series of quizzes that were administered on either an expanding or a uniform schedule. Each retrieval group completed a total of 10 retrieval quizzes, and the series of quizzes required (only) a total of 2 h to complete. Final retention of the exam subset material was assessed during the last week of the semester. There were no significant differences between the expanding and uniform retrieval groups, but both retained an average of 41% more of the subset material than did the control group (ANOVA, F = 129.8, P = 0.00, ηp(2) = 0.36). In conclusion, retrieval practice is a highly efficient and effective strategy for enhancing the retention of anatomy and physiology material.

  9. Designing the inner surface corrugations of hollow fibers to enhance CO2 absorption efficiency.

    Science.gov (United States)

    Fashandi, Hossein; Zarrebini, Mohammad; Ghodsi, Ali; Saghafi, Reza

    2016-08-15

    For the first time, a low cost strategy is introduced to enhance the efficiency of CO2 absorption using gas-liquid membrane contactors. This is implemented by designing the corrugations in the inner layer of poly(vinyl chloride) hollow fibers (PVC HFs) through changing the bore fluid composition. In fact, the number of corrugations in the HF inner layer is engineered via changing the phase separation time within the inner layer. Such that expedited phase separation leads to highly corrugated inner layer. In contrast, decelerated phase separation is responsible for reduced number of inner layer corrugations. Phase separation causes the initial polymer solution with low viscoelastic moduli to be transferred into polymer-rich domains with high viscoelastic moduli. These domains resist against stretching-induced radial forces toward the center of HF; therefore, the inner layer of HF buckles. Delayed phase separation defers formation of polymer-rich domains and hence, HF with less corrugated inner surface is expected. The phase separation within the HF inner layer is controlled through changing the rate of solvent/nonsolvent exchange. This is conducted by variation the solvent content in the bore fluid; as higher as solvent content, as slower as solvent/nonsolvent exchange. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting.

    Science.gov (United States)

    Zhang, Liwu; Lin, Chia-Yu; Valev, Ventsislav K; Reisner, Erwin; Steiner, Ullrich; Baumberg, Jeremy J

    2014-10-15

    Photo-electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar-to-H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano-architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible-light-active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm(-2) at 1.23 V versus RHE, which is among the highest for oxide-based photoanodes and over 4 times higher than the unstructured planar photoanode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. ENHANCEMENT OF PHENOL REMOVAL EFFICIENCY IN DORA REFINERY WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Salah F. Sharif

    2013-05-01

    Full Text Available Because the sanctions imposed on Iraq by the United Nations, programmed maintenance and wearing parts replacement has not been performed according to schedules in DORA Refinery Wastewater Unit, which resulted in higher phenol content and BOD5 in effluents disposed to river. The investigations showed that two main reasons were behind this problem: Firstly, increased emissions of hydrocarbons in the complexity of refinery equipment and Secondly, the decreased efficiency of the aerators in the biological. During the last few months, phenol average concentration in the effluent, after biological treatment was found to be between 0.06-0.13 mg/L, while COD was exceeding 110 mg/L after treatment in the same period. Considerable enhancement, has been indicated recently, after the following performances: First: Recycling wastewater from some heat exchangers, and the segregation of low and high strength of wastewaters, Second: Minimizing emissions of hydrocarbons from fluid catalytic cracking and steam cracking, Third: Replacement of driving motors of the aerators in the biological treatment unit. After replacement of these units, a significant decrease in phenol concentration was obtained in purified water (0.03-0.05 mg/L and COD of 60 mg/L before the tertiary treatment. It is concluded that a better quality of effluents has been obtained after a series of emissions control and wastewater treatment unit equipment maintenance performances.

  12. Harmonic Enhancement in Low Bitrate Audio Coding Using an Efficient Long-Term Predictor

    Science.gov (United States)

    Song, Jeongook; Lee, Chang-Heon; Oh, Hyen-O.; Kang, Hong-Goo

    2010-12-01

    This paper proposes audio coding using an efficient long-term prediction method to enhance the perceptual quality of audio codecs to speech input signals at low bit-rates. The MPEG-4 AAC-LTP exploited a similar concept, but its improvement was not significant because of small prediction gain due to long prediction lags and aliased components caused by the transformation with a time-domain aliasing cancelation (TDAC) technique. The proposed algorithm increases the prediction gain by employing a deharmonizing predictor and a long-term compensation filter. The look-back memory elements are first constructed by applying the de-harmonizing predictor to the input signal, then the prediction residual is encoded and decoded by transform audio coding. Finally, the long-term compensation filter is applied to the updated look-back memory of the decoded prediction residual to obtain synthesized signals. Experimental results show that the proposed algorithm has much lower spectral distortion and higher perceptual quality than conventional approaches especially for harmonic signals, such as voiced speech.

  13. An Approach to Integrated Spectrum Efficient Network Enhanced Telemetry (iSENET))

    Science.gov (United States)

    Okino, Clayton; Gao, Jay; Clare, Loren; Darden, Scott; Walsh, William; Loh, Kok-kiong

    2006-01-01

    As the integrated Network Enhanced Telemetry (iNET) program moves forward in resolving systems engineering design and architecture definition, critical technology "gaps" and a migration path to realizing the integration of this technology are needed to insure a smooth transition from the current legacy point to point telemetry links to a network oriented telemetry system. Specifically, identified by the DoD aeronautical telemetry community is the need for a migration to a network solution for command, control, and transfer of test data by optimizing the physical, data link, and network layers. In this paper, we present a network-centric telemetry approach based on variants of 802.11 that leverages the open standards as well as the previous Advanced Range Telemetry (ARTM) work on the physical layer waveform. Specifically, we present a burst modem approach based on the recent AOFDM 802.11a work, a TDMA-like MAC layer approach based on 802.11e, and then add additional MAC layer features to allow for the multi-hop aeronautical environment using a variant of the current working standards of 802.11s. The combined benefits of the variants obtained from 802.11a, 802.11e, and 802.11s address the needs for both spectrum efficiency in the aeronautical environment and the iNET program.

  14. Aryl-Substituted Ruthenium(II) Complexes: A Strategy for Enhanced Photocleavage and Efficient DNA Binding.

    Science.gov (United States)

    Abreu, Felipe Diógenes; Paulo, Tercio de F; Gehlen, Marcelo H; Ando, Rômulo A; Lopes, Luiz G F; Gondim, Ana Cláudia S; Vasconcelos, Mayron A; Teixeira, Edson H; Sousa, Eduardo Henrique Silva; de Carvalho, Idalina Maria Moreira

    2017-08-07

    Ruthenium polypyridine complexes have shown promise as agents for photodynamic therapy (PDT) and tools for molecular biology (chromophore-assisted light inactivation). To accomplish these tasks, it is important to have at least target selectivity and great reactive oxygen species (ROS) photogeneration: two properties that are not easily found in the same molecule. To prepare such new agents, we synthesized two new ruthenium complexes that combine an efficient DNA binding moiety (dppz ligand) together with naphthyl-modified (1) and anthracenyl-modified (2) bipyridine as a strong ROS generator bound to a ruthenium complex. The compounds were fully characterized and their photophysical and photochemical properties investigated. Compound 2 showed one of the highest quantum yields for singlet oxygen production ever reported (Φ Δ = 0.96), along with very high DNA binding (log K b = 6.78). Such photochemical behavior could be ascribed to the lower triplet state involving the anthracenyl-modified bipyridine, which is associated with easier oxygen quenching. In addition, the compounds exhibited moderate selectivity toward G-quadruplex DNA and binding to the minor groove of DNA, most likely driven by the pendant ligands. Interestingly, they also showed DNA photocleavage activity even upon exposure to a yellow light-emitting diode (LED). Regarding their biological activity, the compounds exhibited an exciting antibacterial action, particularly against Gram-positive bacteria, which was enhanced upon blue LED irradiation. Altogether, these results showed that our strategy succeeded in producing light-triggered DNA binding agents with pharmacological and biotechnological potential.

  15. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene

    International Nuclear Information System (INIS)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-01-01

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time (∼0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO(reg s ign), with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  16. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  17. Synthesis of core-shell Y2O3 nanoparticles for enhanced luminescence efficiency

    Science.gov (United States)

    Choi, Ju H.; Hyun, Jae Y.; Kim, Ki H.; Kim, Jae P.

    2013-09-01

    In this works, rare earth ion doped core and core-shell Y2O3 phosphors have been extensively studied for many applications due to the high stability and emission range and intensity. The core-shell Y2O3: (RE= Eu, Dy, Tb) nanoparticles are synthesized using a two-step process in which 100-150 nm Y2O3 core particles are synthesized using a molten salt synthesis and the shell is deposited using a sol-gel process The core-shell architecture was designed for enhanced luminescence efficiency with long emission lifetimes. Specifically, a multi-shell architecture was necessary to spatially separate Dy3+, Eu3+ and Tb3+ within the phosphor to circumvent the energy transfer to the surface quenching sites. First, the crystallinity of Y2O3nanophosphors was characterized using X-ray analysis. RE-doped Y2O3 core nanoparticles have a good compositional homogeneity. We have also recorded emission spectra and measured fluorescence lifetime. After coating passive shell layer, emission spectra and measured emission lifetimes were compared with those form Y2O3 nanophosphor core system and the effectiveness of these core-shell phosphors were successfully assessed.

  18. Impaired quality and efficiency of sleep impairs cognitive functioning in Addison's disease.

    Science.gov (United States)

    Henry, Michelle; Ross, Ian Louis; Wolf, Pedro Sofio Abril; Thomas, Kevin Garth Flusk

    2017-04-01

    Standard replacement therapy for Addison's disease (AD) does not restore a normal circadian rhythm. Periods of sub- and supra- physiological cortisol levels experienced by patients with AD likely induce disrupted sleep. Given that healthy sleep plays an important role in memory consolidation, the novelty of the current study was to characterise, using objective measures, the relationship between sleep and memory in patients with AD, and to examine the hypothesis that poor sleep is a biological mechanism underlying memory impairment in those patients. We used a within-subjects design. Ten patients with AD and 10 matched healthy controls completed standardised neuropsychological tests assessing declarative memory (Rey Auditory Verbal Learning Test) and procedural memory (Finger Tapping Task) before and after a period of actigraphy-measured sleep, and before and after a period of waking. Relative to healthy controls, patients with AD experienced disrupted sleep characterised by poorer sleep efficiency and more time spent awake. Patients also showed impaired verbal learning and memory relative to healthy controls (p=0.007). Furthermore, whereas healthy controls' declarative memory performance benefited from a period of sleep compared to waking (p=0.032), patients with AD derived no such benefit from sleep (p=0.448). Regarding the procedural memory task, analyses detected no significant between-group differences (all p'ssleep-enhanced performance. We demonstrated, using actigraphy and standardized measures of memory performance, an association between sleep disturbances and cognitive deficits in patients with AD. These results suggest that, in patients with AD, the source of memory deficits is, at least to some extent, disrupted sleep patterns that interfere with optimal consolidation of previously-learned declarative information. Hence, treating the sleep disturbances that are frequently experienced by patients with AD may improve their cognitive functioning. Copyright

  19. Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures

    Directory of Open Access Journals (Sweden)

    Qingyang Yue

    2012-01-01

    Full Text Available The out-coupling efficiency of planar organic light emitting diodes (OLEDs is only about 20% due to factors, such as, the total internal reflection, surface plasmon coupling, and metal absorption. Two-dimensional periodic nanostructures, such as, photonic crystals (PhCs and microlenses arrays offer a potential method to improve the out-coupling efficiency of OLEDs. In this work, we employed the finite-difference time-domain (FDTD method to explore different mechanisms that embedded PhCs and surface PhCs to improve the out-coupling efficiency. The effects of several parameters, including the filling factor, the depth, and the lattice constant were investigated. The result showed that embedded PhCs play a key role in improving the out-coupling efficiency, and an enhancement factor of 240% was obtained in OLEDs with embedded PhCs, while the enhancement factor of OLEDs with surface PhCs was only 120%. Furthermore, the phenomena was analyzed using the mode theory and it demonstrated that the overlap between the mode and PhCs was related to the distribution of vertical mode profiles. The enhancement of the extraction efficiency in excess of 290% was observed for the optimized OLEDs structure with double PhCs. This proposed structure could be a very promising candidate for high extraction efficiency OLEDs.

  20. Can electrical stimulation enhance effects of a functional training program in hospitalized geriatric patients?

    Science.gov (United States)

    Zinglersen, Amanda Hempel; Halsteen, Malte Bjoern; Kjaer, Michael; Karlsen, Anders

    2018-02-26

    Hospitalization of older medical patients may lead to functional decline. This study investigated whether simultaneously applied neuromuscular electrical stimulation (NMES) can enhance the effects of a functional training program in hospitalized geriatric patients. This was a quasi-randomized controlled trial in geriatric hospitalized patients (N = 16, age = 83.1 ± 8.1 years, mean ± SD). The patients performed a simple and time efficient chair-stand based functional exercise program daily, either with (FT + NMES, N = 8) or without (FT, N = 8) simultaneous NMES to the knee extensor muscles. Physical function was assessed at day 2 and 6-10 of the hospitalization with the De Morton Mobility Index (DEMMI), a 30-second chair stand test (30 s-CST) and a 4-meter gait speed test (4 m-GST). Additionally, the pooled results of training from the two training groups (TRAINING, N = 16) was compared to a similar historical control-group (CON, N = 48) receiving only standard-care. Eight patients were assigned to FT, 12 to FT+NMES with 4 dropouts during intervention. During the 6-10 days of hospitalization, both groups improved in all functional measures (p  0.05). The training sessions within the FT+NMES-group were more time consuming (~11 vs ~7 min) and entailed higher levels of discomfort than FT-training sessions. Compared to standard-care, training resulted in significantly larger improvements in the 30 s-CST (TRAINING: +3.8 repetitions; CON: +1.4 repetitions, p functional training program improves chair stand performance in hospitalized geriatric patients, with no additional effect of simultaneous electrical muscle stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry

    International Nuclear Information System (INIS)

    Popli, Sahil; Rodgers, Peter; Eveloy, Valerie

    2013-01-01

    In hot climates, the efficiency of energy-intensive industrial facilities utilizing gas turbines for power generation, such as oil refineries and natural gas processing plants (NGPPs), can be enhanced by reducing gas turbine compressor inlet air temperature. This is typically achieved using either evaporative media coolers or electrically-driven mechanical vapor-compression chillers. However, the performance of evaporative media coolers is constrained in high relative humidity (RH) conditions, such as encountered in the Middle East and tropical regions, and such coolers require demineralized water supply, while electrically-driven mechanical vapor-compression chillers consume a significant amount of electric power. In this study, the use of gas turbine exhaust gas waste-heat powered, single-effect water–lithium bromide (H 2 O–LiBr) absorption chillers is thermo-economically evaluated for gas turbine compressor inlet air cooling scheme, with particular applicability to Middle East NGPPs. The thermodynamic performance of the proposed scheme, integrated in a NGPP, is compared with that of conventional evaporative coolers and mechanical vapor-compression chillers, in terms of key operating parameters, and either demineralized water or electricity consumption, respectively. The results show that in extreme ambient conditions representative of summer in the Persian Gulf (i.e., 55 °C, 80% RH), three steam-fired, single-effect H 2 O–LiBr absorption chillers utilizing 17 MW of gas turbine exhaust heat, could provide 12.3 MW of cooling to cool compressor inlet air to 10 °C. In the same ambient conditions, evaporative coolers would only provide 2.3 MW cooling capacity, and necessitate consumption of approximately 0.8 kg/s of demineralized water to be vaporized. In addition, mechanical vapor-compression chillers would require an additional 2.7 MW of electric energy to provide the same amount of cooling as H 2 O–LiBr absorption chillers. The additional electricity

  2. Enhancing Propriospinal Relays to Improve Functional Recovery after SCI

    Science.gov (United States)

    2016-10-01

    pilot studies to examine regeneration and sprouting mediated by inhibiting PTEN using our peptides. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION...we injected HiRet/GFP/Lentivirus into the lumbar spinal cord. This lentivirus uses the Rabies-G envelope protein for high efficiency retrograde

  3. Impaired small-world network efficiency and dynamic functional distribution in patients with cirrhosis.

    Directory of Open Access Journals (Sweden)

    Tun-Wei Hsu

    Full Text Available Hepatic encephalopathy (HE is a complex neuropsychiatric syndrome and a major complication of liver cirrhosis. Dysmetabolism of the brain, related to elevated ammonia levels, interferes with intercortical connectivity and cognitive function. For evaluation of network efficiency, a 'small-world' network model can quantify the effectiveness of information transfer within brain networks. This study aimed to use small-world topology to investigate abnormalities of neuronal connectivity among widely distributed brain regions in patients with liver cirrhosis using resting-state functional magnetic resonance imaging (rs-fMRI. Seventeen cirrhotic patients without HE, 9 with minimal HE, 9 with overt HE, and 35 healthy controls were compared. The interregional correlation matrix was obtained by averaging the rs-fMRI time series over all voxels in each of the 90 regions using the automated anatomical labeling model. Cost and correlation threshold values were then applied to construct the functional brain network. The absolute and relative network efficiencies were calculated; quantifying distinct aspects of the local and global topological network organization. Correlations between network topology parameters, ammonia levels, and the severity of HE were determined using linear regression and ANOVA. The local and global topological efficiencies of the functional connectivity network were significantly disrupted in HE patients; showing abnormal small-world properties. Alterations in regional characteristics, including nodal efficiency and nodal strength, occurred predominantly in the association, primary, and limbic/paralimbic regions. The degree of network organization disruption depended on the severity of HE. Ammonia levels were also significantly associated with the alterations in local network properties. Results indicated that alterations in the rs-fMRI network topology of the brain were associated with HE grade; and that focal or diffuse lesions

  4. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  5. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  6. Expanded function allied dental personnel and dental practice productivity and efficiency.

    Science.gov (United States)

    Beazoglou, Tryfon J; Chen, Lei; Lazar, Vickie F; Brown, L Jackson; Ray, Subhash C; Heffley, Dennis R; Berg, Rob; Bailit, Howard L

    2012-08-01

    This study examined the impact of expanded function allied dental personnel on the productivity and efficiency of general dental practices. Detailed practice financial and clinical data were obtained from a convenience sample of 154 general dental practices in Colorado. In this state, expanded function dental assistants can provide a wide range of reversible dental services/procedures, and dental hygienists can give local anesthesia. The survey identified practices that currently use expanded function allied dental personnel and the specific services/procedures delegated. Practice productivity was measured using patient visits, gross billings, and net income. Practice efficiency was assessed using a multivariate linear program, Data Envelopment Analysis. Sixty-four percent of the practices were found to use expanded function allied dental personnel, and on average they delegated 31.4 percent of delegatable services/procedures. Practices that used expanded function allied dental personnel treated more patients and had higher gross billings and net incomes than those practices that did not; the more services they delegated, the higher was the practice's productivity and efficiency. The effective use of expanded function allied dental personnel has the potential to substantially expand the capacity of general dental practices to treat more patients and to generate higher incomes for dental practices.

  7. BLANNOTATOR: enhanced homology-based function prediction of bacterial proteins

    Directory of Open Access Journals (Sweden)

    Kankainen Matti

    2012-02-01

    Full Text Available Abstract Background Automated function prediction has played a central role in determining the biological functions of bacterial proteins. Typically, protein function annotation relies on homology, and function is inferred from other proteins with similar sequences. This approach has become popular in bacterial genomics because it is one of the few methods that is practical for large datasets and because it does not require additional functional genomics experiments. However, the existing solutions produce erroneous predictions in many cases, especially when query sequences have low levels of identity with the annotated source protein. This problem has created a pressing need for improvements in homology-based annotation. Results We present an automated method for the functional annotation of bacterial protein sequences. Based on sequence similarity searches, BLANNOTATOR accurately annotates query sequences with one-line summary descriptions of protein function. It groups sequences identified by BLAST into subsets according to their annotation and bases its prediction on a set of sequences with consistent functional information. We show the results of BLANNOTATOR's performance in sets of bacterial proteins with known functions. We simulated the annotation process for 3090 SWISS-PROT proteins using a database in its state preceding the functional characterisation of the query protein. For this dataset, our method outperformed the five others that we tested, and the improved performance was maintained even in the absence of highly related sequence hits. We further demonstrate the value of our tool by analysing the putative proteome of Lactobacillus crispatus strain ST1. Conclusions BLANNOTATOR is an accurate method for bacterial protein function prediction. It is practical for genome-scale data and does not require pre-existing sequence clustering; thus, this method suits the needs of bacterial genome and metagenome researchers. The method and a

  8. Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Bone marrow microenvironment (niche plays essential roles in the fate of hematopoietic stem cells (HSCs. Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP, and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown. OBJECTIVE: To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice. METHODS: Hematopoietic cell subpopulations in bone marrow (BM and peripheral blood (PB from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS(+ transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS, cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively. RESULTS: The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered. CONCLUSIONS: Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors

  9. Functionally Relevant Microsatellite Markers From Chickpea Transcription Factor Genes for Efficient Genotyping Applications and Trait Association Mapping

    Science.gov (United States)

    Kujur, Alice; Bajaj, Deepak; Saxena, Maneesha S.; Tripathi, Shailesh; Upadhyaya, Hari D.; Gowda, C.L.L.; Singh, Sube; Jain, Mukesh; Tyagi, Akhilesh K.; Parida, Swarup K.

    2013-01-01

    We developed 1108 transcription factor gene-derived microsatellite (TFGMS) and 161 transcription factor functional domain-associated microsatellite (TFFDMS) markers from 707 TFs of chickpea. The robust amplification efficiency (96.5%) and high intra-specific polymorphic potential (34%) detected by markers suggest their immense utilities in efficient large-scale genotyping applications, including construction of both physical and functional transcript maps and understanding population structure. Candidate gene-based association analysis revealed strong genetic association of TFFDMS markers with three major seed and pod traits. Further, TFGMS markers in the 5′ untranslated regions of TF genes showing differential expression during seed development had higher trait association potential. The significance of TFFDMS markers was demonstrated by correlating their allelic variation with amino acid sequence expansion/contraction in the functional domain and alteration of secondary protein structure encoded by genes. The seed weight-associated markers were validated through traditional bi-parental genetic mapping. The determination of gene-specific linkage disequilibrium (LD) patterns in desi and kabuli based on single nucleotide polymorphism-microsatellite marker haplotypes revealed extended LD decay, enhanced LD resolution and trait association potential of genes. The evolutionary history of a strong seed-size/weight-associated TF based on natural variation and haplotype sharing among desi, kabuli and wild unravelled useful information having implication for seed-size trait evolution during chickpea domestication. PMID:23633531

  10. Fitting of alpha-efficiency versus quenching parameter by exponential functions in liquid scintillation counting

    International Nuclear Information System (INIS)

    Sosa, M.; Manjón, G.; Mantero, J.; García-Tenorio, R.

    2014-01-01

    The objective of this work is to propose an exponential fit for the low alpha-counting efficiency as a function of a sample quenching parameter using a Quantulus liquid scintillation counter. The sample quenching parameter in a Quantulus is the Spectral Quench Parameter of the External Standard (SQP(E)), which is defined as the number of channel under which lies the 99% of Compton spectrum generated by a gamma emitter ( 152 Eu). Although in the literature one usually finds a polynomial fitting of the alpha counting efficiency, it is shown here that an exponential function is a better description. - Highlights: • We have studied the quenching in alpha measurement by liquid scintillation counting. • We have reviewed typical fitting of alpha counting efficiency versus quenching parameter. • Exponential fitting of data is proposed as better fitting. • We consider exponential fitting has a physical basis

  11. Fitting of alpha-efficiency versus quenching parameter by exponential functions in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, M. [Departamento de Ingeniería Física, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato (Mexico); Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain); Manjón, G., E-mail: manjon@us.es [Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain); Mantero, J.; García-Tenorio, R. [Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain)

    2014-05-01

    The objective of this work is to propose an exponential fit for the low alpha-counting efficiency as a function of a sample quenching parameter using a Quantulus liquid scintillation counter. The sample quenching parameter in a Quantulus is the Spectral Quench Parameter of the External Standard (SQP(E)), which is defined as the number of channel under which lies the 99% of Compton spectrum generated by a gamma emitter ({sup 152}Eu). Although in the literature one usually finds a polynomial fitting of the alpha counting efficiency, it is shown here that an exponential function is a better description. - Highlights: • We have studied the quenching in alpha measurement by liquid scintillation counting. • We have reviewed typical fitting of alpha counting efficiency versus quenching parameter. • Exponential fitting of data is proposed as better fitting. • We consider exponential fitting has a physical basis.

  12. Alpha-2-macroglobulin loaded microcapsules enhance human leukocyte functions and innate immune response.

    Science.gov (United States)

    Federici Canova, Donata; Pavlov, Anton M; Norling, Lucy V; Gobbetti, Thomas; Brunelleschi, Sandra; Le Fauder, Pauline; Cenac, Nicolas; Sukhorukov, Gleb B; Perretti, Mauro

    2015-11-10

    Synthetic microstructures can be engineered to deliver bioactive compounds impacting on their pharmacokinetics and pharmacodynamics. Herein, we applied dextran-based layer-by-layer (LbL) microcapsules to deliver alpha-2-macroglobulin (α2MG), a protein with modulatory properties in inflammation. Extending recent observations made with dextran-microcapsules loaded with α2MG in experimental sepsis, we focused on the physical and chemical characteristics of these microstructures and determined their biology on rodent and human cells. We report an efficient encapsulation of α2MG into microcapsules, which enhanced i) human leukocyte recruitment to inflamed endothelium and ii) human macrophage phagocytosis: in both settings microcapsules were more effective than soluble α2MG or empty microcapsules (devoid of active protein). Translation of these findings revealed that intravenous administration of α2MG-microcapsules (but not empty microcapsules) promoted neutrophil migration into peritoneal exudates and augmented macrophage phagocytic functions, the latter response being associated with alteration of bioactive lipid mediators as assessed by mass spectrometry. The present study indicates that microencapsulation can be an effective strategy to harness the complex biology of α2MG with enhancing outcomes on fundamental processes of the innate immune response paving the way to potential future development in the control of sepsis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Enhanced functional connectivity properties of human brains during in-situ nature experience

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2016-07-01

    Full Text Available In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males to a 20 min in-situ sitting exposure in either a nature (n = 16 or urban environment (n = 16 and measured their Electroencephalography (EEG signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with “coherent” experience measured by Perceived Restorativeness Scale (PRS. Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  14. Enhanced functional connectivity properties of human brains during in-situ nature experience.

    Science.gov (United States)

    Chen, Zheng; He, Yujia; Yu, Yuguo

    2016-01-01

    In this study, we investigated the impacts of in-situ nature and urban exposure on human brain activities and their dynamics. We randomly assigned 32 healthy right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males) to a 20 min in-situ sitting exposure in either a nature (n = 16) or urban environment (n = 16) and measured their Electroencephalography (EEG) signals. Analyses revealed that a brief in-situ restorative nature experience may induce more efficient and stronger brain connectivity with enhanced small-world properties compared with a stressful urban experience. The enhanced small-world properties were found to be correlated with "coherent" experience measured by Perceived Restorativeness Scale (PRS). Exposure to nature also induces stronger long-term correlated activity across different brain regions with a right lateralization. These findings may advance our understanding of the functional activities during in-situ environmental exposures and imply that a nature or nature-like environment may potentially benefit cognitive processes and mental well-being.

  15. An efficient transient expression system for gene function analysis in rose.

    Science.gov (United States)

    Lu, Jun; Bai, Mengjuan; Ren, Haoran; Liu, Jinyi; Wang, Changquan

    2017-01-01

    Roses are widely used as garden ornamental plants and cut flowers. Rosa chinensis cv 'Old Blush' has been used as a model genotype in rose studies due to its contribution to recurrent flowering and tea scent traits of modern roses. The deficiency of efficient genetic transformation systems is a handicap limiting functional genetics studies of roses. Agrobacterium -mediated transient transformation offers a powerful tool for the characterization of gene function in plants. A convenient and highly efficient Agrobacterium mediated genetic transformation protocol using R. chinensis cv 'Old Blush' seedlings in vitro as an expression system is described in this paper. The most important factor affecting transformation efficiency in this system is seedling age; 3/4-week-old rose shoots with or without roots from sub-culturing are optimal for transformation, requiring no complicated inoculation media, supplements, or carefully tuned plant growth conditions. This transient expression system was successfully applied to analysis of the gene promoter activities, DNA binding capacity of transcription factors, protein-protein interaction in physiological contexts using luciferase as a reporter gene. This transient transformation system was validated as a robust and efficient platform, thus providing a new option for gene function and signaling pathway investigation in roses and further extending the utility of R. chinensis cv 'Old Blush' as a model plant to study diverse gene function and signaling pathways in Rosaceae.

  16. Training of Attentional Filtering, but Not of Memory Storage, Enhances Working Memory Efficiency by Strengthening the Neuronal Gatekeeper Network.

    Science.gov (United States)

    Schmicker, Marlen; Schwefel, Melanie; Vellage, Anne-Katrin; Müller, Notger G

    2016-04-01

    Memory training (MT) in older adults with memory deficits often leads to frustration and, therefore, is usually not recommended. Here, we pursued an alternative approach and looked for transfer effects of 1-week attentional filter training (FT) on working memory performance and its neuronal correlates in young healthy humans. The FT effects were compared with pure MT, which lacked the necessity to filter out irrelevant information. Before and after training, all participants performed an fMRI experiment that included a combined task in which stimuli had to be both filtered based on color and stored in memory. We found that training induced processing changes by biasing either filtering or storage. FT induced larger transfer effects on the untrained cognitive function than MT. FT increased neuronal activity in frontal parts of the neuronal gatekeeper network, which is proposed to hinder irrelevant information from being unnecessarily stored in memory. MT decreased neuronal activity in the BG part of the gatekeeper network but enhanced activity in the parietal storage node. We take these findings as evidence that FT renders working memory more efficient by strengthening the BG-prefrontal gatekeeper network. MT, on the other hand, simply stimulates storage of any kind of information. These findings illustrate a tight connection between working memory and attention, and they may open up new avenues for ameliorating memory deficits in patients with cognitive impairments.

  17. Can a canopy temperature-based stress index enhance water use efficiency in irrigated wine grape under arid conditions?

    Science.gov (United States)

    Enhancement of irrigation water use efficiency and water productivity in arid wine grape production regions is hindered by a lack of automated, real-time methods for monitoring and interpreting vine water status. A normalized, water stress index calculated from real-time vine canopy temperature meas...

  18. Large Stokes shift downshifting Eu(III) films as efficiency enhancing UV blocking layers for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, M.; Ahmed, H.; Doran, J.; Norton, B. [Dublin Energy Laboratory, Dublin Institute of Technology (Ireland); Bosch-Jimenez, P.; Della Pirriera, M.; Torralba-Calleja, E.; Gutierrez Tauste, D.; Aubouy, L. [Leitat Technological Center, Terrassa (Spain); Daren, S.; Solomon-Tsvetkov, F. [Daren Laboratories, Ness-Ziona (Israel); Galindo, S.; Voz, C.; Puigdollers, J. [Universitat Politecnica Catalunya, Barcelona (Spain)

    2015-01-01

    Large Stokes shift downshifting organolanthanide complex, Eu(tta){sub 3}phen, is examined for inclusion in polymeric layers to replace the UV blocking layer in dye sensitized solar cell (DSSC) technology. The UV blocking layer increases stability but power conversion efficiency decreases as incident UV photons are not converted into photocurrent. Eu(tta){sub 3}phen doped polymeric film are prepared and attached to DSSC devices following optimized thickness and concentration from a ray-trace numerical model for the specific DSSC. External quantum efficiency is significantly increased in the UV spectral region compared to DSSCs utilizing a passive, non-luminescent, UV-BL. High Eu(tta){sub 3}phen film transparency in the visible range minimizes DSSC EQE losses at visible wavelengths. Short-circuit current (I{sub sc}) enhancement due to downshifting is demonstrated (∝1%) in small-scale DSSC prototypes, where the specific geometry limits the photon collection efficiency and overall enhancement. Model predictions indicate that 2%-3% Isc enhancement is realizable in flexible single DSSC compared to, non-luminescent, UV-BL. Added to this, in outdoor conditions taking into account diffuse light, the increment in I{sub sc} can increase 50% more. Although photostability of the blended LSS-DS polymer films is not sufficient to be useful for medium-long term outdoor PV applications, the results demonstrate that significant efficiency enhancement can be realized. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Distinguishing patients with Parkinson's disease subtypes from normal controls based on functional network regional efficiencies.

    Directory of Open Access Journals (Sweden)

    Delong Zhang

    Full Text Available Many studies have demonstrated that the pathophysiology and clinical symptoms of Parkinson's disease (PD are inhomogeneous. However, the symptom-specific intrinsic neural activities underlying the PD subtypes are still not well understood. Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and 20 matched normal controls (NCs were recruited and underwent resting-state functional magnetic resonance imaging (fMRI. Functional brain networks were constructed based on randomly generated anatomical templates with and without the cerebellum. The regional network efficiencies (i.e., the local and global efficiencies were further measured and used to distinguish subgroups of PD patients (i.e., with tremor-dominant PD and non-tremor-dominant PD from the NCs using linear discriminant analysis. The results demonstrate that the subtype-specific functional networks were small-world-organized and that the network regional efficiency could discriminate among the individual PD subgroups and the NCs. Brain regions involved in distinguishing between the study groups included the basal ganglia (i.e., the caudate and putamen, limbic regions (i.e., the hippocampus and thalamus, the cerebellum, and other cerebral regions (e.g., the insula, cingulum, and calcarine sulcus. In particular, the performances of the regional local efficiency in the functional network were better than those of the global efficiency, and the performances of global efficiency were dependent on the inclusion of the cerebellum in the analysis. These findings provide new evidence for the neurological basis of differences between PD subtypes and suggest that the cerebellum may play different roles in the pathologies of different PD subtypes. The present study demonstrated the power of the combination of graph-based network analysis and discrimination analysis in elucidating the neural basis of different PD subtypes.

  20. Application of Response Surface Methodology for Optimization of Urea Grafted Multiwalled Carbon Nanotubes in Enhancing Nitrogen Use Efficiency and Nitrogen Uptake by Paddy Plants

    Directory of Open Access Journals (Sweden)

    Norazlina Mohamad Yatim

    2016-01-01

    Full Text Available Efficient use of urea fertilizer (UF as important nitrogen (N source in the world’s rice production has been a concern. Carbon-based materials developed to improve UF performance still represent a great challenge to be formulated for plant nutrition. Advanced N nanocarrier is developed based on functionalized multiwall carbon nanotubes (f-MWCNTs grafted with UF to produce urea-multiwall carbon nanotubes (UF-MWCNTs for enhancing the nitrogen uptake (NU and use efficiency (NUE. The grafted N can be absorbed and utilized by rice efficiently to overcome the N loss from soil-plant systems. The individual and interaction effect between the specified factors of f-MWCNTs amount (0.10–0.60 wt% and functionalization reflux time (12–24 hrs with the corresponding responses (NUE, NU were structured via the Response Surface Methodology (RSM based on five-level CCD. The UF-MWCNTs with optimized 0.5 wt% f-MWCNTs treated at 21 hrs reflux time achieve tremendous NUE up to 96% and NU at 1180 mg/pot. Significant model terms (p value < 0.05 for NUE and NU responses were confirmed by the ANOVA. Homogeneous dispersion of UF-MWCNTs was observed via FESEM and TEM. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs’ approach provides a promising strategy in enhancing plant nutrition for rice.

  1. Application of Response Surface Methodology for Optimization of Urea Grafted Multi walled Carbon Nano tubes in Enhancing Nitrogen Use Efficiency and Nitrogen Uptake by Paddy Plants

    International Nuclear Information System (INIS)

    Yatim, N. M.; Shaaban, A.; Dimin, M. F.; Yusof, F.; Abo Razak, J.

    2016-01-01

    Efficient use of urea fertilizer (UF) as important nitrogen (N) source in the world’s rice production has been a concern. Carbon-based materials developed to improve UF performance still represent a great challenge to be formulated for plant nutrition. Advanced N nano carrier is developed based on functionalized multi wall carbon nano tubes (f-MWCNTs) grafted with UF to produce urea-multi wall carbon nano tubes (UF-MWCNTs) for enhancing the nitrogen uptake (NU) and use efficiency (NUE). The grafted N can be absorbed and utilized by rice efficiently to overcome the N loss from soil-plant systems. The individual and interaction effect between the specified factors of f-MWCNTs amount (0.10-0.60 wt%) and functionalization reflux time (12-24 hrs) with the corresponding responses (NUE, NU) were structured via the Response Surface Methodology (RSM) based on five-level CCD. The UF-MWCNTs with optimized 0.5 wt% f-MWCNTs treated at 21 hrs reflux time achieve tremendous NUE up to 96% and NU at 1180 mg/pot. Significant model terms (Þ value < 0.05) for NUE and NU responses were confirmed by the ANOVA. Homogeneous dispersion of UF-MWCNTs was observed via FESEM and TEM. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs’ approach provides a promising strategy in enhancing plant nutrition for rice.

  2. Coupling systematic planning and expert judgement enhances the efficiency of river restoration.

    Science.gov (United States)

    Langhans, Simone D; Gessner, Jörn; Hermoso, Virgilio; Wolter, Christian

    2016-08-01

    . If applied, this approach has a high potential to enhance overall efficiency of future restoration efforts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enhancing the Light-Extraction Efficiency of AlGaN Nanowires Ultraviolet Light-Emitting Diode by using Nitride/Air Distributed Bragg Reflector Nanogratings

    KAUST Repository

    Alias, Mohd Sharizal

    2017-09-11

    The performance and efficiency of AlGaN ultraviolet light-emitting diodes have been limited by the extremely low light-extraction efficiency (LEE) due to the intrinsic material properties of AlGaN. Here, to enhance the LEE of the device, we demonstrate an AlGaN nanowires light-emitting diode (NWs-LED) integrated with nitride/air Distributed Bragg Reflector (DBR) nanogratings. Compared to a control device (only mesa), the AlGaN NWs-LED with the nitride/air DBR nanogratings exhibit enhancement in the light output power and external quantum efficiency (EQE) by a factor of ∼1.67. The higher light output power and EQE are attributed mainly to the multiple reflectances laterally for the transverse magnetic (TM)-polarized light and scattering introduced by the nanogratings. To further understand the LEE enhancement, the electrical field distribution, extraction ratio and polar pattern of the AlGaN NWs-LED with and without the nitride/air DBR nanogratings were analyzed using the finite-difference-time-domain method. It was observed that the TM-field emission was confined and scattered upward whereas the polar pattern was intensified for the AlGaN NWs-LED with the nanogratings. Our approach to enhance the LEE via the nitride/air DBR nanogratings can provide a promising route for increasing the efficiency of AlGaN-based LEDs, also, to functioning as facet mirror for AlGaN-based laser diodes.

  4. Novel Photoanode for Dye-Sensitized Solar Cells with Enhanced Light-Harvesting and Electron-Collection Efficiency.

    Science.gov (United States)

    Song, Weixing; Gong, Yudong; Tian, Jianjun; Cao, Guozhong; Zhao, Huabo; Sun, Chunwen

    2016-06-01

    A novel photoanode structure modified by porous flowerlike CeO2 microspheres as a scattering layer with a thin TiO2 film deposited by atomic layer deposition (ALD) is prepared to achieve a significantly enhanced performance of dye-sensitized solar cells (DSSCs). The light scattering capability of the photoanode with the porous CeO2 microsphere layer is considerably improved. The interconnection of particles and electrical contact between bilayer and conducting substrate is further enhanced by an ALD-deposited TiO2 film, which effectively reduces the electron recombination and facilitates electron transport and thus enhances the charge collection efficiency of DSSCs. As a result, the overall efficiency of the obtained TiO2-CeO2-based cells reaches 9.86%, which is 31% higher than that of the DSSCs with a conventional TiO2 photoanode.

  5. Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement

    NARCIS (Netherlands)

    Gill, R.; Tian, L.; Somerville, W.R.C.; Ru, Le E.C.; Amerongen, van H.; Subramaniam, V.

    2012-01-01

    The enhanced local fields around plasmonic structures can lead to enhancement of the excitation and modification of the emission quantum yield of fluorophores. So far, high enhancement of fluorescence intensity from dye molecules was demonstrated using bow-tie gap antenna made by e-beam lithography.

  6. Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement

    NARCIS (Netherlands)

    Gill, Ron; Tian, L.; Somerville, W.R.C.; le Ru, E.C.; Amerongen, H.; Subramaniam, Vinod

    2012-01-01

    The enhanced local fields around plasmonic structures can lead to enhancement of the excitation and modification of the emission quantum yield of fluorophores. So far, high enhancement of fluorescence intensity from dye molecules was demonstrated using bow-tie gap antenna made by e-beam lithography.

  7. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

    Science.gov (United States)

    Ko, Je Yeong; Oh, Sumin; Yoo, Kyung Hyun

    2017-01-01

    Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development. PMID:28359147

  8. A new function of rapid eye movement sleep: improvement of muscular efficiency.

    Science.gov (United States)

    Cai, Zi-Jian

    2015-05-15

    Previously I demonstrated that the slow wave sleep (SWS) functioned to adjust the emotional balance disrupted by emotional memories randomly accumulated during waking, while the rapid eye movement (REM) sleep played the opposite role. Many experimental results have unambiguously shown that various emotional memories are processed during REM sleep. In this article, it is attempted to combine this confirmed function of REM sleep with the atonic state unique to REM sleep, and to integrate a new theory suggesting that improvement of muscular efficiency be a new function of REM sleep. This new function of REM sleep is more advantageous than the function of REM sleep in emotional memories and disinhibited drives to account for the phylogenetic variations of REM sleep, especially the absence of REM sleep in dolphins and short duration of REM sleep in birds in contrary to that in humans and rodents, the absence of penile erections in REM sleep in armadillo, as well as the higher voltage in EEG during REM sleep in platypus and ostrich. Besides, this new function of REM sleep is also advantageous to explain the association of REM sleep with the atonic episodes in SWS, the absence of drastic menopausal change in duration of REM sleep, and the effects of ambient temperature on the duration of REM sleep. These comparative and experimental evidences support the improvement of muscular efficiency as a new and major function of REM sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles.

    Science.gov (United States)

    Jain, Navin; Bhargava, Arpit; Rathi, Mohit; Dilip, R Venkataramana; Panwar, Jitendra

    2015-01-01

    The present study demonstrates an economical and environmental affable approach for the synthesis of "protein-capped" silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties.

  10. An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping

    Science.gov (United States)

    Bai, Xin; Qiu, Jing; Wang, Linjun

    2018-03-01

    We provide an in-depth investigation of the time interval convergence when both trivial crossing and decoherence corrections are applied to Tully's fewest switches surface hopping (FSSH) algorithm. Using one force-based and one energy-based decoherence strategies as examples, we show decoherence corrections intrinsically enhance the trivial crossing problem. We propose a restricted decoherence (RD) strategy and incorporate it into the self-consistent (SC) fewest switches surface hopping algorithm [L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014)]. The resulting SC-FSSH-RD approach is applied to general Hamiltonians with different electronic couplings and electron-phonon couplings to mimic charge transport in tens to hundreds of molecules. In all cases, SC-FSSH-RD allows us to use a large time interval of 0.1 fs for convergence and the simulation time is reduced by over one order of magnitude. Both the band and hopping mechanisms of charge transport have been captured perfectly. SC-FSSH-RD makes surface hops in the adiabatic representation and can be implemented in both diabatic and locally diabatic representations for wave function propagation. SC-FSSH-RD can potentially describe general nonadiabatic dynamics of electrons and excitons in organics and other materials.

  11. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles

    Science.gov (United States)

    Jain, Navin; Bhargava, Arpit; Rathi, Mohit; Dilip, R. Venkataramana; Panwar, Jitendra

    2015-01-01

    The present study demonstrates an economical and environmental affable approach for the synthesis of “protein-capped” silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties. PMID:26226385

  12. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Navin Jain

    Full Text Available The present study demonstrates an economical and environmental affable approach for the synthesis of "protein-capped" silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES. In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties.

  13. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    Science.gov (United States)

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p

  14. Efficiency and Privacy Enhancement for a Track and Trace System of RFID-Based Supply Chains

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-06-01

    Full Text Available One of the major applications of Radio Frequency Identification (RFID technology is in supply chain management as it promises to provide real-time visibility based on the function of track and trace. However, such an RFID-based track and trace system raises new security and privacy challenges due to the restricted resource of tags. In this paper, we refine three privacy related models (i.e., the privacy, path unlinkability, and tag unlinkability of RFID-based track and trace systems, and clarify the relations among these privacy models. Specifically, we have proven that privacy is equivalent to path unlinkability and tag unlinkability implies privacy. Our results simplify the privacy concept and protocol design for RFID-based track and trace systems. Furthermore, we propose an efficient track and trace scheme, Tracker+, which allows for authentic and private identification of RFID-tagged objects in supply chains. In the Tracker+, no computational ability is required for tags, but only a few bytes of storage (such as EPC Class 1 Gen 2 tags are needed to store the tag state. Indeed, Tracker+ reduces the memory requirements for each tag by one group element compared to the Tracker presented in other literature. Moreover, Tracker+ provides privacy against supply chain inside attacks.

  15. A Biosurfactant-Sophorolipid Acts in Synergy with Antibiotics to Enhance Their Efficiency

    Directory of Open Access Journals (Sweden)

    Kasturi Joshi-Navare

    2013-01-01

    Full Text Available Sophorolipids (SLs, biosurfactants with antimicrobial properties, have been tried to address the problem of antibiotic resistance. The synergistic action of SL and antibiotics was checked using standard microdilution and spread plate methods. With Staphylococcus aureus, SL-tetracycline combination achieved total inhibition before 4 h of exposure while tetracycline alone couldnot achieve total inhibition till the end of 6 h. The inhibition caused by exposure of bacterium to SL-tetracycline mixture was ~25% more as compared to SL alone. In spite of known robustness of gram-negative bacteria, SL-cefaclor mixture proved to be efficient against Escherichia coli which showed ~48% more inhibition within 2 h of exposure as compared to cefaclor alone. Scanning electron microscopy of the cells treated with mixture revealed bacterial cell membrane damage and pore formation. Moreover, SLs being a type of asymmetric bola, they are expected to form self-assemblies with unique functionality. This led to the speculation that SLs being amphiphilic in nature can span through the structurally alike cell membrane and facilitate the entry of drug molecules.

  16. Metaheuristic Techniques in Enhancing the Efficiency and Performance of Thermo-Electric Cooling Devices

    Directory of Open Access Journals (Sweden)

    Pandian Vasant

    2017-10-01

    Full Text Available The objective of this paper is to focus on the technical issues of single-stage thermo-electric coolers (TECs and two-stage TECs and then apply new methods in optimizing the dimensions of TECs. In detail, some metaheuristics—simulated annealing (SA and differential evolution (DE—are applied to search the optimal design parameters of both types of TEC, which yielded cooling rates and coefficients of performance (COPs individually and simultaneously. The optimization findings obtained by using SA and DE are validated by applying them in some defined test cases taking into consideration non-linear inequality and non-linear equality constraint conditions. The performance of SA and DE are verified after comparing the findings with the ones obtained applying the genetic algorithm (GA and hybridization technique (HSAGA and HSADE. Mathematical modelling and parameter setting of TEC is combined with SA and DE to find better optimal findings. The work revealed that SA and DE can be applied successfully to solve single-objective and multi-objective TEC optimization problems. In terms of stability, reliability, robustness and computational efficiency, they provide better performance than GA. Multi-objective optimizations considering both objective functions are useful for the designer to find the suitable design parameters of TECs which balance the important roles of cooling rate and COP.

  17. Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency

    Science.gov (United States)

    Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark

    2010-04-01

    This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.

  18. An image enhancement technique using nonlinear transfer function and unsharp masking in multispectral endoscope

    Science.gov (United States)

    Zhang, Kejian; Wang, Huan; Yuan, Bo; Wang, Liqiang

    2017-01-01

    This paper studies the realization of image processing algorithm of multispectral endoscope. The research contents include: local brightness enhancement and adaptive contrast enhancement. Firstly, this paper transforms the image from the RGB space to the HSV space, and then carries on the image enhancement processing to the V space, finally transforms to the RGB space. Local brightness enhancement algorithm divides V space image into smaller windows, and then calculates the nonlinear transfer function of each window, which enhances the pixels in the window, and finally the contrast of brightness enhanced image is restored. The adaptive contrast enhancement adopts the unsharp mask technique based on the guided filter. First of all, this paper uses guided filter to the RGB channel of the original image and gets the unsharp mask of each channel, then plus a scaled image which is the result of the original image subtracts the unsharp mask. So the enhancement of the image is achieved. This paper uses subjective evaluation criteria and enhance factor α to evaluate the effect of enhancement. And this paper compares the enhancement effect of the proposed image enhancement algorithm and the traditional algorithm. The results show that the α of histogram equalization is smallest and AINDANE method is better than histogram equalization. The proposed method has the best α. The subjective evaluation also shows that the effect of HE is not satisfactory and the proposed method enhances the detail information tremendously. The subjective and objective criteria shows that the proposed method produces better enhancement effect.

  19. Enhanced Emission Performance and Fuel Efficiency for HD Methane Engines. Literature Study. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Broman, R.; Staalhammar, P.; Erlandsson, L.

    2010-05-15

    to change the combustion system from the Diesel-cycle to the Otto-cycle or to use the Diesel Dual Fuel (DDF) cycle which used a Diesel-like cycle. The Otto-cycle (spark ignited, SI) is the most common option when rebuilding a diesel engine to operate on methane. The Diesel dual fuelcycle can however offer some benefits since it uses Diesel injection for ignition of the methane/air mixture 'like a liquid' spark plug. Additionally, DDF systems can either use the original Diesel injectors together with injection of methane into the air intake, allowing use of methane and/or diesel for more flexibility, or employ a specially designed gas/Diesel injector, incorporating only a small range of Diesel injection which disable operating the engine on 100 % Diesel, but allows for more Diesel substitution by methane over the full operating range of the engine. The fuel used in methane fuelled engines is biomethane, compressed natural gas (CNG), liquefied natural gas (LNG) or liquefied biomethane (LBM). LNG/LBM is the preferred fuel for long haul trucks since it has significantly higher energy density implying smaller, but different gas cylinders on-board the vehicle. For vehicles operated in a local area, compressed methane gas might be the most suitable alternative. Other combinations of methane fuels could also be used as fuel within the transportation sector such as blends of fuels from fossil and renewable origin and hydrogen enriched natural gas, hythane (HCNG). A recent interest for Diesel dual fuel concepts has now appeared among stakeholders as an alternative or a complement to the conventional methane fuelled HD vehicles, underlined by the fact that differences in the actual mode of operation of vehicles will enhance advantages with various engine concepts. Compared to a SI methane fuelled engine a DDF concept could end up with better fuel efficiency using current engine technology. However, the potential for substitution of diesel with methane would be lower

  20. Enhancing Functional Performance using Sensorimotor Adaptability Training Programs

    Science.gov (United States)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.

  1. Cyclization enhances function of linear anti-arthritic peptides.

    Science.gov (United States)

    Ali, Marina; Amon, Michael; Bender, Vera; Bolte, Andrea; Separovic, Frances; Benson, Heather; Manolios, Nicholas

    2014-01-01

    This study describes the biophysical and immunomodulatory features of a cyclic peptide termed C1 which consists of alternating d-, l-amino acids and is capable of inhibiting IL-2 production in vitro and reducing the induction and extent of T-cell mediated inflammation in animal models. Solid-state nuclear magnetic resonance demonstrates that the peptide orders the lipid bilayer, suggesting a transmembrane orientation, and this is supported by surface plasmon resonance indicating strong binding affinity of C1 to model membranes. In vitro cell viability and proliferation assays show that C1 does not disrupt the integrity of cell surface membranes. Permeation studies of C1 and analogs across human epidermis cells show that the stability and skin permeability are enhanced by cyclization. Treatment with C1 in an asthma and in an arthritis animal model resulted in a suppressed immune response. Cyclization may be a useful means of enhancing biological linear peptide activity and improving delivery. © 2013. Published by Elsevier Inc. All rights reserved.

  2. Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers

    Science.gov (United States)

    Stratakis, Emmanuel; Savva, Kyriaki; Konios, Dimitrios; Petridis, Constantinos; Kymakis, Emmanuel

    2014-05-01

    A facile, fast, non-destructive and roll-to-roll compatible photochemical method for simultaneous partial reduction and doping of graphene oxide (GO) films through ultraviolet laser irradiation in the presence of a Cl2 precursor gas is demonstrated. The photochemical chlorinated GO-Cl films were fully characterized by XPS and Raman measurements, in which grafting of chloride to the edges and the basal plane of GO was confirmed. By tuning the laser exposure time, it is possible to control the doping and reduction levels and therefore to tailor the work function (WF) of the GO-Cl layers from 4.9 eV to a maximum value of 5.23 eV. These WF values match with the HOMO level of most polymer donors employed in OPV devices. Furthermore, high efficiency poly(2,7-carbazole) derivative (PCDTBT):fullerene derivative (PC71BM) based OPVs with GO-Cl as the hole transporting layer (HTL) were demonstrated with a power conversion efficiency (PCE) of 6.56% which is 17.35% and 19.48% higher than that of the pristine GO and PEDOT:PSS based OPV devices, respectively. The performance enhancement was attributed to more efficient hole transportation due to the energy level matching between the GO-Cl and the polymer donor.

  3. Energy-efficient specialization of functional units in a Coarse-Grained Reconfigurable Array

    Energy Technology Data Exchange (ETDEWEB)

    Van Essen, B; Panda, R; Wood, A; Ebeling, C; Hauck, S

    2010-12-01

    Functional units provide the backbone of any spatial accelerator by providing the computing resources. The desire for having rich and expensive functional units is in tension with producing a regular and energy-efficient computing fabric. This paper explores the design trade-off between complex, universal functional units and simpler, limited functional units. We show that a modest amount of specialization reduces the area-delay-energy product of an optimized architecture to 0.86x a baseline architecture. Furthermore, we provide a design guideline that allows an architect to customize the contents of the computing fabric just by examining the profile of benchmarks within the application domains. Functional units are the core of compute-intensive spatial accelerators. They perform the computation of interest with support from local storage and communication structures. Ideally, the functional units will provide rich functionality, supporting operations ranging from simple addition, to fused multiply-adds, to advanced transcendental functions and domain specific operations like add-compare-select. However, the total opportunity cost to support the more complex operations is a function of the cost of the hardware, the rate of occurrence of the operation in the application domain, and the inefficiency of emulating the operation with simpler operators. Examples of operations that are typically emulated in spatial accelerators are division and trigonometric functions, which can be solved using table-lookup based algorithms and the CORDIC algorithm. One reason to avoid having direct hardware support for complex operations in a tiled architecture like a Coarse-Grained Reconfigurable Array (CGRA) is that the expensive hardware will typically need to be replicated in some or all of the architecture's tiles. Tiled architecture are designed such that their tiles are either homogeneous or heterogeneous. Homogeneous architectures are simpler to design but heterogeneous

  4. Energy-efficient specialization of functional units in a Coarse-Grained Reconfigurable Array

    International Nuclear Information System (INIS)

    Van Essen, B.; Panda, R.; Wood, A.; Ebeling, C.; Hauck, S.

    2010-01-01

    Functional units provide the backbone of any spatial accelerator by providing the computing resources. The desire for having rich and expensive functional units is in tension with producing a regular and energy-efficient computing fabric. This paper explores the design trade-off between complex, universal functional units and simpler, limited functional units. We show that a modest amount of specialization reduces the area-delay-energy product of an optimized architecture to 0.86x a baseline architecture. Furthermore, we provide a design guideline that allows an architect to customize the contents of the computing fabric just by examining the profile of benchmarks within the application domains. Functional units are the core of compute-intensive spatial accelerators. They perform the computation of interest with support from local storage and communication structures. Ideally, the functional units will provide rich functionality, supporting operations ranging from simple addition, to fused multiply-adds, to advanced transcendental functions and domain specific operations like add-compare-select. However, the total opportunity cost to support the more complex operations is a function of the cost of the hardware, the rate of occurrence of the operation in the application domain, and the inefficiency of emulating the operation with simpler operators. Examples of operations that are typically emulated in spatial accelerators are division and trigonometric functions, which can be solved using table-lookup based algorithms and the CORDIC algorithm. One reason to avoid having direct hardware support for complex operations in a tiled architecture like a Coarse-Grained Reconfigurable Array (CGRA) is that the expensive hardware will typically need to be replicated in some or all of the architecture's tiles. Tiled architecture are designed such that their tiles are either homogeneous or heterogeneous. Homogeneous architectures are simpler to design but heterogeneous

  5. Functionalized perylenes : origin of the enhanced electrical performances

    NARCIS (Netherlands)

    Piliego, C.; Cordella, F.; Jarzab, D.; Lu, S.; Chen, Z; Facchetti, A.; Loi, M.A.

    In this letter we compare the transistor performances of two solution-processed perylene derivatives: N,N'-bis (n-octyl)- dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI8-CN(2)) and N,N'-1H,1H-perfluorobutyl dicyanoperylenediimide (PDIF-CN(2)). Perylenediimide nitrogen functionalization with

  6. Microquake seismic interferometry with SVD-enhanced Green's function recovery

    OpenAIRE

    Melo, Gabriela; Malcolm, Alison E.

    2011-01-01

    The conditions under which seismic interferometry (SI) leads to the exact Green's function (GF) are rarely met in practice. As a result, we generally recover only estimates of the true GF. This raises the questions: How good an approximation to the GF can SI give? Can we improve this estimated GF?

  7. Enhanced Lung Function and Prevention of Peroxidative Damage ...

    African Journals Online (AJOL)

    This study was designed to assess the effects of vitamin E supplementation on the lung function and lipid peroxidation status of asthmatic children. Fifteen asthmatics (ten male and five female) aged between 6 and 13years, all in a stable state, were recruited from the paediatric out-patient respiratory clinic of the Lagos ...

  8. Fullerene/photosensitizer nanovesicles as highly efficient and clearable phototheranostics with enhanced tumor accumulation for cancer therapy.

    Science.gov (United States)

    Guan, Mirong; Ge, Jiechao; Wu, Jingyi; Zhang, Guoqiang; Chen, Daiqin; Zhang, Wei; Zhang, Ying; Zou, Toujun; Zhen, Mingming; Wang, Chunru; Chu, Taiwei; Hao, Xiaojuan; Shu, Chunying

    2016-10-01

    A novel phototheranostic platform based on tri-malonate derivative of fullerene C70 (TFC70)/photosensitizer (Chlorin e6, Ce6) nanovesicles (FCNVs) has been developed for effective tumor imaging and treatment. The FCNVs were prepared from amphiphilic TFC70-oligo ethylene glycol -Ce6 molecules. The developed FCNVs possessed the following advantages: (i) high loading efficiency of Ce6 (up to ∼57 wt%); (ii) efficient absorption in near-infrared light region; (iii) enhanced cellular uptake efficiency of Ce6 in vitro and in vivo; (iv) good biocompatibility and total clearance out from the body. These unique properties suggest that the as-prepared FCNVs could be applied as an ideal theranostic agent for simultaneous imaging and photodynamic therapy of tumor. This finding may provide a good solution to highly efficient phototheranostic applications based on fullerene derivatives fabricated nanostructures. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Enhancing the Efficiency of Removing Support Material from Rapid Prototype Parts using pH Value Compensation Technology

    Directory of Open Access Journals (Sweden)

    Chil-Chyuan KUO

    2015-06-01

    Full Text Available Removing support material from rapid prototyping (RP parts fabricated by fused deposition modeling (FDM is required. Removing the support material rapidly and efficiently is an important concern because the product life cycle is shorter than before. The measurement of pH value in solution is an important issue affecting the efficiency of removing support material. In this work, a method was proposed to enhance the efficiency of removing support material from rapid prototype parts using pH value compensation technology. It is found that the pH value11.6 is a good candidate for compensating the solution during removing process. The efficiency of removing support material increases with increasing the times of compensation. The savings in the removing time is up to 72% using pH value compensation technology.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6523

  10. Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen Yang

    2014-08-01

    Full Text Available Highly efficient CO2 absorption was realized through formation of zwitterionic adducts, combining synthetic strategies to ionic liquids (ILs and coordination. The essence of our strategy is to make use of multidentate cation coordination between Li+ and an organic base. Also PEG-functionalized organic bases were employed to enhance the CO2-philicity. The ILs were reacted with CO2 to form the zwitterionic adduct. Coordination effects between various lithium salts and neutral ligands, as well as the CO2 capacity of the chelated ILs obtained were investigated. For example, the CO2 capacity of PEG150MeBu2N increased steadily from 0.10 to 0.66 (mol CO2 absorbed per mol of base through the formation of zwitterionic adducts being stabilized by Li+.

  11. Enhancing energy efficiency in public buildings: The role of local energy audit programmes

    International Nuclear Information System (INIS)

    Annunziata, Eleonora; Rizzi, Francesco; Frey, Marco

    2014-01-01

    In the objective of reaching the “nearly zero-energy buildings” target set by the European Union, municipalities cover a crucial role in advocating and implementing energy-efficient measures on a local scale. Based on a dataset of 322 municipalities in Northern Italy, we carried out a statistical analysis to investigate which factors influence the adoption of energy efficiency in municipal buildings. In particular, the analysis focuses on four categories of factors: (i) capacity building for energy efficiency, (ii) existing structure and competences for energy efficiency, (iii) technical and economic support for energy efficiency, and (iv) spill-over effect caused by adoption of “easier” energy-efficient measures. Our results show that capacity building through training courses and technical support provided by energy audits affect positively the adoption of energy efficiency in municipal buildings. The size of the municipal authority, the setting of local energy policies for residential buildings and funding for energy audits are not correlated with energy efficiency in public buildings, where the “plucking of low hanging fruit” often prevails over more cost-effective but long-term strategies. Finally, our results call for the need to promote an efficient knowledge management and a revision of the Stability and Growth Pact. - Highlights: • Public procurement supports the deployment of the energy efficiency of buildings. • Energy audits and other factors influence energy efficiency in public buildings. • Econometric analysis applied to data from 322 municipalities in Northern Italy. • Municipalities need to overtake the “plucking of low-hanging fruit”. • Knowledge management should be associated with removal of budget constraints

  12. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics.

    Science.gov (United States)

    Sun, Hyeon-Jin; Uchii, Sayaka; Watanabe, Shin; Ezura, Hiroshi

    2006-03-01

    We report a highly efficient protocol for the Agrobacterium-mediated genetic transformation of a miniature dwarf tomato (Lycopersicon esculentum), Micro-Tom, a model cultivar for tomato functional genomics. Cotyledon explants of tomato inoculated with Agrobacterium tumefaciens (Rhizobium radiobacter) C58C1Rif(R) harboring the binary vector pIG121Hm generated a mass of chimeric non-transgenic and transgenic adventitious buds. Repeated shoot elongation from the mass of adventitious buds on selection media resulted in the production of multiple transgenic plants that originated from independent transformation events. The transformation efficiency exceeded 40% of the explants. This protocol could become a powerful tool for functional genomics in tomato.

  13. Efficient Green's Function Reaction Dynamics (GFRD) simulations for diffusion-limited, reversible reactions

    Science.gov (United States)

    Bashardanesh, Zahedeh; Lötstedt, Per

    2018-03-01

    In diffusion controlled reversible bimolecular reactions in three dimensions, a dissociation step is typically followed by multiple, rapid re-association steps slowing down the simulations of such systems. In order to improve the efficiency, we first derive an exact Green's function describing the rate at which an isolated pair of particles undergoing reversible bimolecular reactions and unimolecular decay separates beyond an arbitrarily chosen distance. Then the Green's function is used in an algorithm for particle-based stochastic reaction-diffusion simulations for prediction of the dynamics of biochemical networks. The accuracy and efficiency of the algorithm are evaluated using a reversible reaction and a push-pull chemical network. The computational work is independent of the rates of the re-associations.

  14. Characterizing luminous efficiency functions for a simulated mesopic night driving task based on reaction time.

    Science.gov (United States)

    Szalmas, Attila; Bodrogi, Peter; Sik-Lanyi, Cecilia

    2006-05-01

    The objective of this study is to test the luminous efficiency functions V(lambda), V'(lambda), V(10)(lambda) and their linear combinations on the basis of a data set gained from a simulated mesopic night-time driving experiment. Another aim is to provide 'real-world' data for the 'X framework' or 'linear combination model', and to find out its limits in a practical situation. Human performance was measured by the reaction time method. Results show that the single parameter of the linear combination of photopic and scotopic luminous efficiency functions can be determined analytically with little variation for a given mesopic background luminance level and a given visual target colour, but the computation leads to considerable deviations comparing all three target colours (red, green and blue) used in the experiment. The conclusion for the given experimental conditions is that the single parameter of the linear combination model has an increasing deviation for lower background luminance levels.

  15. Enhanced Efficiency of Polymer Light-Emitting Diodes by Dispersing Dehydrated Nanotube Titanic Acid in the Hole-buffer Layer

    Energy Technology Data Exchange (ETDEWEB)

    Qian, L., E-mail: qian_lei@126.com; Xu, Z.; Teng, F.; Duan, X.-X. [Beijing Jiaotong University, Institute of Optoelectronic Technology (China); Jin, Z.-S.; Du, Z.-L. [Henan University, Key Laboratory on special functional materials (China); Li, F.-S.; Zheng, M.-J. [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, Department of Physics (China); Wang, Y.-S. [Beijing Jiaotong University, Institute of Optoelectronic Technology (China)

    2007-06-15

    Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)-p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased.

  16. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  17. Enhanced Efficiency of Polymer Light-Emitting Diodes by Dispersing Dehydrated Nanotube Titanic Acid in the Hole-buffer Layer

    International Nuclear Information System (INIS)

    Qian, L.; Xu, Z.; Teng, F.; Duan, X.-X.; Jin, Z.-S.; Du, Z.-L.; Li, F.-S.; Zheng, M.-J.; Wang, Y.-S.

    2007-01-01

    Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)-p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased

  18. Efficiency of a neuromuscular training on balance and functional movement in recreational runners

    OpenAIRE

    Barasaitė, Vitalija

    2017-01-01

    ABSTRACT Vilnius University Faculty of Medicine Department of Rehabilitation, Physical and Sports Medicine Bachelor Degree of Physical Therapy EFFICIENCY OF A NEUROMUSCULAR TRAINING ON BALANCE AND FUNCTIONAL MOVEMENT IN RECREATIONAL RUNNERS Physiotherapy Bachelor's Thesis The Author: Vitalija Barasaitė, a final year student in Bachelor’s of Physical Therapy of Vilnius University. Academic advisor: lecturer dr. Inga Muntianaitė, Vilnius University, Faculty of Medicine, The Department of Rehabi...

  19. Functionalized Cellulose Networks for Efficient Oil Removal from Oil–Water Emulsions

    OpenAIRE

    Uttam C. Paul; Despina Fragouli; Ilker S. Bayer; Athanassia Athanassiou

    2016-01-01

    The separation of oil from water in emulsions is a great environmental challenge, since oily wastewater is industrially produced. Here, we demonstrate a highly efficient method to separate oil from water in non-stabilized emulsions, using functionalized cellulose fiber networks. This is achieved by the modification of the wetting properties of the fibers, transforming them from oil- and water-absorbing to water-absorbing and oil-proof. In particular, two diverse layers of polymeric coatings, ...

  20. An efficient route to functionalize singe-walled carbon nanotubes using alcohols

    International Nuclear Information System (INIS)

    Tian Rong; Wang Xianbao; Li Mingjian; Hu Huating; Chen Rong; Liu Fangming; Zheng Han; Wan Li

    2008-01-01

    An efficient method to functionalize single-walled carbon nanotubes (SWNTs) with alcohols under microwave irradiation was reported. An electrophilic addition reaction took place between a series of alcohols and SWNTs, resulting in the attachment of various alkyl or alcoholic groups, as well as hydroxyl groups, to the surface of the nanotubes. The modified SWNTs show better dispersibility in common organic solvents (such as N, N-dimethylformamide and ethanol) than the pristine nanotubes, which is important to improve their processability. These results illustrate a direct pathway to abundantly functionalize SWNTs for building nanostructures.

  1. An efficient algorithm for solving coupled Schroedinger type ODE's, whose potentials include δ-functions

    International Nuclear Information System (INIS)

    Gousheh, S.S.

    1996-01-01

    I have used the shooting method to find the eigenvalues (bound state energies) of a set of strongly coupled Schroedinger type equations. I have discussed the advantages of the shooting method when the potentials include δ-functions. I have also discussed some points which are universal in these kind of problems, whose use make the algorithm much more efficient. These points include mapping the domain of the ODE into a finite one, using the asymptotic form of the solutions, best use of the normalization freedom, and converting the δ-functions into boundary conditions

  2. Towards a More Energy Efficient Future: Applying indicators to enhance energy policy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Improving energy efficiency is a shared policy goal of many governments around the world. The benefits of more efficient use of energy are well known. Not only does it reduce energy costs and investments in energy infrastructure, it also lowers fossil fuel dependency and CO2 emissions, while at the same time increasing competitiveness and improving consumer welfare. Yet many questions remain unanswered. What are the latest trends in global energy use and CO2 emissions? How do factors such as demography, economic structure, income, lifestyle and climate affect these trends? Where are the greatest potentials to further improve energy efficiency, and which data are required to support energy efficiency policy development? This publication answers these questions using the latest insights from the IEA energy indicators work. The goal is to show policy makers how in-depth indicators can be used to track the progress in efficiency and identify new opportunities for improvements.

  3. Assessing eco-efficiency: A metafrontier directional distance function approach using life cycle analysis

    International Nuclear Information System (INIS)

    Beltrán-Esteve, Mercedes; Reig-Martínez, Ernest; Estruch-Guitart, Vicent

    2017-01-01

    Sustainability analysis requires a joint assessment of environmental, social and economic aspects of production processes. Here we propose the use of Life Cycle Analysis (LCA), a metafrontier (MF) directional distance function (DDF) approach, and Data Envelopment Analysis (DEA), to assess technological and managerial differences in eco-efficiency between production systems. We use LCA to compute six environmental and health impacts associated with the production processes of nearly 200 Spanish citrus farms belonging to organic and conventional farming systems. DEA is then employed to obtain joint economic-environmental farm's scores that we refer to as eco-efficiency. DDF allows us to determine farms' global eco-efficiency scores, as well as eco-efficiency scores with respect to specific environmental impacts. Furthermore, the use of an MF helps us to disentangle technological and managerial eco-inefficiencies by comparing the eco-efficiency of both farming systems with regards to a common benchmark. Our core results suggest that the shift from conventional to organic farming technology would allow a potential reduction in environmental impacts of 80% without resulting in any decline in economic performance. In contrast, as regards farmers' managerial capacities, both systems display quite similar mean scores.

  4. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    Science.gov (United States)

    Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole

  5. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  6. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics.

    Science.gov (United States)

    Yadav, Dinesh K; Yadav, Neelam; Yadav, Sarika; Haque, Shafiul; Tuteja, Narendra

    2016-12-15

    Advancements in peptide fusion technologies to maximize the protein production has taken a big leap to fulfill the demands of post-genomics era targeting elucidation of structure/function of the proteome and its therapeutic applications, by over-expression in heterologous expression systems. Despite being most preferred protein expression system armed with variety of cardinal fusion tags, expression of the functionally active recombinant protein in E. coli remains plagued. The present review critically analyses the aptness of well-characterized fusion tags utilized for over-expression of recombinant proteins with improved solubility and their compatibility with downstream purification procedures. The combinatorial tandem affinity strategies have shown to provide more versatile options. Solubility decreasing fusion tags have proved to facilitate the overproduction of antimicrobial peptides. Efficient removal of fusion tags prior to final usage is of utmost importance and has been summarized discussing the efficiency of various enzymatic and chemical methods of tag removal. Unfortunately, no single fusion tag works as a magic bullet to completely fulfill the requirements of protein expression and purification in active form. The information provided might help in selection and development of a successful protocol for efficient recombinant protein production for functional proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Multifunctional Efficiency: Extending the Concept of Atom Economy to Functional Nanomaterials.

    Science.gov (United States)

    Freund, Ralph; Lächelt, Ulrich; Gruber, Tobias; Rühle, Bastian; Wuttke, Stefan

    2018-03-27

    Green chemistry, in particular, the principle of atom economy, has defined new criteria for the efficient and sustainable production of synthetic compounds. In complex nanomaterials, the number of embedded functional entities and the energy expenditure of the assembly process represent additional compound-associated parameters that can be evaluated from an economic viewpoint. In this Perspective, we extend the principle of atom economy to the study and characterization of multifunctionality in nanocarriers, which we define as "multifunctional efficiency". This concept focuses on the design of highly active nanomaterials by maximizing integrated functional building units while minimizing inactive components. Furthermore, synthetic strategies aim to minimize the number of steps and unique reagents required to make multifunctional nanocarriers. The ultimate goal is to synthesize a nanocarrier that is highly specialized but practical and simple to make. Owing to straightforward crystal engineering, metal-organic framework (MOF) nanoparticles are an excellent example to illustrate the idea behind this concept and have the potential to emerge as next-generation drug delivery systems. Here, we highlight examples showing how the combination of the properties of MOFs ( e.g., their organic-inorganic hybrid nature, high surface area, and biodegradability) and induced systematic modifications and functionalizations of the MOF's scaffold itself lead to a nanocarrier with high multifunctional efficiency.

  8. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation.

    Science.gov (United States)

    Li, Wenbo; Notani, Dimple; Ma, Qi; Tanasa, Bogdan; Nunez, Esperanza; Chen, Aaron Yun; Merkurjev, Daria; Zhang, Jie; Ohgi, Kenneth; Song, Xiaoyuan; Oh, Soohwan; Kim, Hong-Sook; Glass, Christopher K; Rosenfeld, Michael G

    2013-06-27

    The functional importance of gene enhancers in regulated gene expression is well established. In addition to widespread transcription of long non-coding RNAs (lncRNAs) in mammalian cells, bidirectional ncRNAs are transcribed on enhancers, and are thus referred to as enhancer RNAs (eRNAs). However, it has remained unclear whether these eRNAs are functional or merely a reflection of enhancer activation. Here we report that in human breast cancer cells 17β-oestradiol (E2)-bound oestrogen receptor α (ER-α) causes a global increase in eRNA transcription on enhancers adjacent to E2-upregulated coding genes. These induced eRNAs, as functional transcripts, seem to exert important roles for the observed ligand-dependent induction of target coding genes, increasing the strength of specific enhancer-promoter looping initiated by ER-α binding. Cohesin, present on many ER-α-regulated enhancers even before ligand treatment, apparently contributes to E2-dependent gene activation, at least in part by stabilizing E2/ER-α/eRNA-induced enhancer-promoter looping. Our data indicate that eRNAs are likely to have important functions in many regulated programs of gene transcription.

  9. Jungle Honey Enhances Immune Function and Antitumor Activity

    Science.gov (United States)

    Fukuda, Miki; Kobayashi, Kengo; Hirono, Yuriko; Miyagawa, Mayuko; Ishida, Takahiro; Ejiogu, Emenike C.; Sawai, Masaharu; Pinkerton, Kent E.; Takeuchi, Minoru

    2011-01-01

    Jungle honey (JH) is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal). After seven injections, peritoneal cells (PC) were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2) cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS) producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW) of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261. PMID:19141489

  10. Jungle Honey Enhances Immune Function and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  11. Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings

    International Nuclear Information System (INIS)

    Nolde, Jill A.; Kim, Chul Soo; Jackson, Eric M.; Ellis, Chase T.; Abell, Joshua; Glembocki, Orest J.; Canedy, Chadwick L.; Tischler, Joseph G.; Vurgaftman, Igor; Meyer, Jerry R.; Aifer, Edward H.; Kim, Mijin

    2015-01-01

    We demonstrate up to 39% resonant enhancement of the quantum efficiency (QE) of a low dark current nBn midwave infrared photodetector with a 0.5 μm InAsSb absorber layer. The enhancement was achieved by using a 1D plasmonic grating to couple incident light into plasmon modes propagating in the plane of the device. The plasmonic grating is composed of stripes of deposited amorphous germanium overlaid with gold. Devices with and without gratings were processed side-by-side for comparison of their QEs and dark currents. The peak external QE for a grating device was 29% compared to 22% for a mirror device when the illumination was polarized perpendicularly to the grating lines. Additional experiments determined the grating coupling efficiency by measuring the reflectance of analogous gratings deposited on bare GaSb substrates

  12. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  13. Efficient enhancement of below-threshold harmonic generation by laser-driven excited states of Cs atom

    Science.gov (United States)

    Guo, Qiao-Ling; Li, Peng-Cheng; Zhou, Xiao-Xin; Chu, Shih-I.

    2018-03-01

    We propose an efficient method for the enhancement of below-threshold harmonic generation (BTHG) by mid-infrared laser-driven excited states of a Cs atom. The BTHG is calculated by solving three-dimensional time-dependent Schrödinger equation accurately and efficiently using the time-dependent generalized pseudospectral method. We adopt an excited state as the initial state of a Cs atom. As a result, the BTHG is significantly enhanced by two orders of magnitude compared with the case of the initial ground state. Furthermore, we find that a single vacuum-ultraviolet pulse can be generated by mid-infrared laser-driven excited states by superposing several below-threshold harmonics of a Cs atom. Our finding suggests that the generation of below-threshold harmonics by laser-driven excited states of an atom can provide a powerful methodology for the production of intense vacuum-ultraviolet pulses.

  14. Molecular Engineering of Azobenzene-Functionalized Polyimides to Enhance Both Photomechanical Work and Motion (POSTPRINT)

    Science.gov (United States)

    2014-09-01

    concentrations of azobenzene in both linear and cross-linked PIs, 30 mol % azobenzene diamine (4) and 20 mol % of azobenzene triamine (7) were added...AFRL-RX-WP-JA-2014-0204 MOLECULAR ENGINEERING OF AZOBENZENE - FUNCTIONALIZED POLYIMIDES TO ENHANCE BOTH PHOTOMECHANICAL WORK AND MOTION...August 2014 4. TITLE AND SUBTITLE MOLECULAR ENGINEERING OF AZOBENZENE - FUNCTIONALIZED POLYIMIDES TO ENHANCE BOTH PHOTOMECHANICAL WORK AND MOTION

  15. Enhancing the Promiscuous Phosphotriesterase Activity of a Thermostable Lactonase (GkaP) for the Efficient Degradation of Organophosphate Pesticides

    OpenAIRE

    Zhang, Yu; An, Jiao; Ye, Wei; Yang, Guangyu; Qian, Zhi-Gang; Chen, Hai-Feng; Cui, Li; Feng, Yan

    2012-01-01

    The phosphotriesterase-like lactonase (PLL) enzymes in the amidohydrolase superfamily hydrolyze various lactones and exhibit latent phosphotriesterase activities. These enzymes serve as attractive templates for in vitro evolution of neurotoxic organophosphates (OPs) with hydrolytic capabilities that can be used as bioremediation tools. Here, a thermostable PLL from Geobacillus kaustophilus HTA426 (GkaP) was targeted for joint laboratory evolution with the aim of enhancing its catalytic effici...

  16. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical-vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  17. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical -vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  18. Enhanced actuation in functionalized carbon nanotube–Nafion composites

    KAUST Repository

    Lian, Huiqin

    2011-08-01

    The fabrication and electromechanical performance of functionalized carbon nanotube (FCNT)-Nafion composite actuators were studied. The CNTs were modified successfully with polyethylene glycol (PEG), as verified by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) images show that the FCNTs are homogeneously dispersed in the Nafion matrix. The properties of FCNT-Nafion composites in terms of water uptake, ion exchange capacity, proton conductivity, dynamic mechanical properties, and actuation behavior were evaluated. The results show that the sample with 0.5 wt% FCNT exhibits the best overall behavior. Its storage modulus is 2.4 times higher than that of Nafion. In addition, the maximum generated strain and the blocking force for the same sample are 2 and 2.4 times higher compared to the neat Nafion actuator, respectively. © 2011 Elsevier B.V.

  19. Enhancement of the efficiency of dye lasers using electron energy transfer processes

    Energy Technology Data Exchange (ETDEWEB)

    Levin, M.B.; Uzhinov, B.M. (Moskovskii Gosudarstvennyi Universitet, Moscow (USSR))

    1990-04-01

    Various types of electron energy transfer processes are considered, which are associated with the introduction of energy donors (Dn) and triplet quenchers (TQ) into the acceptor dye solutions with the use of luminescent light filters (LLF) in the pumping system. Mixed solutions are proposed which make it possible to increase the efficiency of the coumarine 314 dye laser by a factor of 1.8. In lasers using unsubstituted and B rhodamines, the simultaneous action of Dn, TQ, and LLF leads, in the optimal cases, to a three-to-ten-fold increase in the efficiency, making the efficiency of these dyes close to that of rhodamine 6G. 50 refs.

  20. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells.

    Science.gov (United States)

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-07-25

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells.

  1. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells

    Science.gov (United States)

    Ho, Nhu Thuy; Tien, Huynh Ngoc; Jang, Se-Joeng; Senthilkumar, Velusamy; Park, Yun Chang; Cho, Shinuk; Kim, Yong Soo

    2016-07-01

    High performance of organic tandem solar cell is largely dependent on transparent and conductive intermediate layer (IML). The current work reports the design and fabrication of an IML using a simple solution process. The efficiency of a homo-tandem device with poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester as an active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(ethylenimine) as an IML was initially found to be 3.40%. Further enhancement of the cell efficiency was achieved using silver nanoparticles (Ag-NPs) of different sizes and graphene quantum dot embedded IML. A maximum efficiency of 4.03% was achieved using 7 nm Ag-NPs that contribute to a better recombination process. Also, the performance of the tandem cell was solely based on the electrical improvements indicated by the current - voltage measurements, external quantum efficiency and impedance analysis. The use of Ag-NPs in the IML has been shown to lengthen the life time of electron-hole pairs in the device. This study thus paves way to develop such efficient IMLs for more efficient tandem solar cells.

  2. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    Science.gov (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mobile/Modular Deployment Project-Enhancing Efficiencies within the National Transuranic Waste Program

    International Nuclear Information System (INIS)

    Triay, I.R.; Basabilvazo, G.B.; Countiss, S.; Moody, D.C.; Behrens, R.G.; Lott, S.A.

    2002-01-01

    In 1999, the National Transuranic (TRU) Waste Program (NTP) achieved two significant milestones. First, the Waste Isolation Plant (WIPP) opened in March for the permanent disposal of TRU waste generated by, and temporarily stored at, various sites supporting the nation's defense programs. Second, the Hazardous Waste Facility Permit, issued by the New Mexico Environment Department, for WIPP became effective in November. While the opening of WIPP brought to closure a number of scientific, engineering, regulatory, and political challenges, achieving this major milestone led to a new set of challenges-how to achieve the Department of Energy's (DOE's) NTP end-state vision: All TRU waste from DOE sites scheduled for closure is removed All legacy TRU waste from DOE sites with an ongoing nuclear mission is disposed 0 All newly generated TRU waste is disposed as it is generated The goal is to operate the national TRU waste program safely, cost effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. The existing schedule for TRU waste disposition would achieve the NTP vision in 2034 at an estimated life-cycle cost of $16B. The DOE's Carlsbad Field Office (CBFO) seeks to achieve this vision early-by at least 10 years- while saving the nation an estimated $48 to $6B. CBFO's approach is to optimize, or to make as functional as possible, TRU waste disposition. That is, to remove barriers that impede waste disposition, and increase the rate and cost efficiency of waste disposal at WIPP, while maintaining safety. The Mobile/Modular Deployment Project (MMDP) is the principal vehicle for implementing DOE's new commercial model of using best business practices of national authorization basis, standardization, and economies of scale to accelerate the completion of WIPP's mission. The MMDP is one of the cornerstones of the National TRU Waste System Optimization Project (1). The objective of the MMDP is to increase TRU

  4. Efficient method of evaluation for Gaussian Hartree-Fock exchange operator for Gau-PBE functional.

    Science.gov (United States)

    Song, Jong-Won; Hirao, Kimihiko

    2015-07-14

    We previously developed an efficient screened hybrid functional called Gaussian-Perdew-Burke-Ernzerhof (Gau-PBE) [Song et al., J. Chem. Phys. 135, 071103 (2011)] for large molecules and extended systems, which is characterized by the usage of a Gaussian function as a modified Coulomb potential for the Hartree-Fock (HF) exchange. We found that the adoption of a Gaussian HF exchange operator considerably decreases the calculation time cost of periodic systems while improving the reproducibility of the bandgaps of semiconductors. We present a distance-based screening scheme here that is tailored for the Gaussian HF exchange integral that utilizes multipole expansion for the Gaussian two-electron integrals. We found a new multipole screening scheme helps to save the time cost for the HF exchange integration by efficiently decreasing the number of integrals of, specifically, the near field region without incurring substantial changes in total energy. In our assessment on the periodic systems of seven semiconductors, the Gau-PBE hybrid functional with a new screening scheme has 1.56 times the time cost of a pure functional while the previous Gau-PBE was 1.84 times and HSE06 was 3.34 times.

  5. On Measurement of Efficiency of Cobb-Douglas Production Function with Additive and Multiplicative Errors

    Directory of Open Access Journals (Sweden)

    Md. Moyazzem Hossain

    2015-02-01

    Full Text Available In developing counties, efficiency of economic development has determined by the analysis of industrial production. An examination of the characteristic of industrial sector is an essential aspect of growth studies. The most of the developed countries are highly industrialized as they brief “The more industrialization, the more development”. For proper industrialization and industrial development we have to study industrial input-output relationship that leads to production analysis. For a number of reasons econometrician’s belief that industrial production is the most important component of economic development because, if domestic industrial production increases, GDP will increase, if elasticity of labor is higher, implement rates will increase and investment will increase if elasticity of capital is higher. In this regard, this paper should be helpful in suggesting the most suitable Cobb-Douglas production function to forecast the production process for some selected manufacturing industries of developing countries like Bangladesh. This paper choose the appropriate Cobb-Douglas function which gives optimal combination of inputs, that is, the combination that enables it to produce the desired level of output with minimum cost and hence with maximum profitability for some selected manufacturing industries of Bangladesh over the period 1978-79 to 2011-2012. The estimated results shows that the estimates of both capital and labor elasticity of Cobb-Douglas production function with additive errors are more efficient than those estimates of Cobb-Douglas production function with multiplicative errors.

  6. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ying Ao

    Full Text Available Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM, and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications.

  7. Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration

    OpenAIRE

    Ahmed, Sana; Fujita, Satoshi; Matsumura, Kazuaki

    2016-01-01

    Here we show a new strategy for efficient freeze concentration-mediated cytoplasmic delivery of proteins, obtained via the endosomal escape property of polyampholyte-modified liposomes. The freeze concentration method successfully induces the efficient internalization of proteins simply by freezing cells with protein and nanocarrier complexes. However, the mechanism of protein internalization remains unclear. Here, we designed a novel protein delivery carrier by modifying liposomes through in...

  8. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains

    OpenAIRE

    Zeng, Ximin; Ardeshna, Devarshi; Lin, Jun

    2015-01-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the ...

  9. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) Study.

    Science.gov (United States)

    Kang, Guo-Jun; Song, Chao; Ren, Xue-Feng

    2016-11-25

    The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH₃-YD2 and TPhe-YD) were systematically investigated by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO₂ cluster were fully investigated. From the analyses of natural bond orbital (NBO), extended charge decomposition analysis (ECDA), and electron density variations (Δρ) between the excited state and ground state, it was found that the introduction of N(CH₃)₂ and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT) character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH₃)₂ and 1,1,2-triphenylethene groups. NCH₃-YD2 with N(CH₃)₂ groups in the donor part is an effective way to improve the interactions between the dyes and TiO₂ surface, light having efficiency (LHE), and free energy change (ΔG inject ), which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs).

  10. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT and Time-Dependent Density Functional Theory (TD-DFT Study

    Directory of Open Access Journals (Sweden)

    Guo-Jun Kang

    2016-11-01

    Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.

  11. USE OF IMAGE ENHANCEMENT TECHNIQUES FOR IMPROVING REAL TIME FACE RECOGNITION EFFICIENCY ON WEARABLE GADGETS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD EHSAN RANA

    2017-01-01

    Full Text Available The objective of this research is to study the effects of image enhancement techniques on face recognition performance of wearable gadgets with an emphasis on recognition rate.In this research, a number of image enhancement techniques are selected that include brightness normalization, contrast normalization, sharpening, smoothing, and various combinations of these. Subsequently test images are obtained from AT&T database and Yale Face Database B to investigate the effect of these image enhancement techniques under various conditions such as change of illumination and face orientation and expression.The evaluation of data, collected during this research, revealed that the effect of image pre-processing techniques on face recognition highly depends on the illumination condition under which these images are taken. It is revealed that the benefit of applying image enhancement techniques on face images is best seen when there is high variation of illumination among images. Results also indicate that highest recognition rate is achieved when images are taken under low light condition and image contrast is enhanced using histogram equalization technique and then image noise is reduced using median smoothing filter. Additionally combination of contrast normalization and mean smoothing filter shows good result in all scenarios. Results obtained from test cases illustrate up to 75% improvement in face recognition rate when image enhancement is applied to images in given scenarios.

  12. Enhancement of near-UV GaN LED light extraction efficiency by GaN/sapphire template patterning

    International Nuclear Information System (INIS)

    Ali, M; Svensk, O; Riuttanen, L; Suihkonen, S; Törmä, P T; Sopanen, M; Lipsanen, H; Kruse, M; Romanov, A E; Odnoblyudov, M A; Bougrov, V E

    2012-01-01

    We present near-UV GaN light-emitting diodes (LEDs) grown on patterned GaN/sapphire templates with improved material quality and light extraction efficiency. Enhancement of light extraction efficiency is attributed to voids generated at the GaN/sapphire interface. The sidewall inclination angle of the voids can be controlled from nearly vertical (∼ 85°) to fully inclined (∼ 60°) by changing the initial patterning dimensions. Light extraction efficiency and material quality improve with a decreasing void sidewall angle. A 20% increase in the light output is observed at 20 mA of input current for LED structures with ∼60° inclined sidewall voids. (fast track communication)

  13. Differential Connexin Function Enhances Self-Renewal in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro Hitomi

    2015-05-01

    Full Text Available The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43, but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.

  14. Enhancing functionality and autonomy in man-portable robots

    Science.gov (United States)

    Pacis, E. B.; Everett, Hobart R.; Farrington, Nathan; Bruemmer, D. J.

    2004-09-01

    Current man-portable robotic systems are too heavy for troops to pack during extended missions in rugged terrain and typically require more user support than can be justified by their limited return in force multiplication or improved effectiveness. As a consequence, today"s systems appear organically attractive only in life-threatening scenarios, such as detection of chemical/biological/radiation hazards, mines, or improvised explosive devices. For the long term, significant improvements in both functionality (i.e., perform more useful tasks) and autonomy (i.e., with less human intervention) are required to increase the level of general acceptance and, hence, the number of units deployed by the user. In the near term, however, the focus must remain on robust and reliable solutions that reduce risk and save lives. This paper describes ongoing efforts to address these needs through a spiral development process that capitalizes on technology transfer to harvest applicable results of prior and ongoing activities throughout the technical community.

  15. Disruption of glial function enhances electroacupuncture analgesia in arthritic rats.

    Science.gov (United States)

    Sun, Shan; Chen, Wen-Ling; Wang, Pei-Fen; Zhao, Zhi-Qi; Zhang, Yu-Qiu

    2006-04-01

    Activated glia play a major role in mediating behavioral hypersensitive state following peripheral inflammation. Electroacupuncture is well known to relieve persistent inflammatory pain. The present study was undertaken to examine whether fluorocitrate, a glial metabolic inhibitor, could synergize electroacupuncture antagonizing thermal hyperalgesia and mechanical allodynia evoked by ankle joint inflammation. Monoarthritis of rat ankle joint was induced by an intra-articular injection of Complete Freund's Adjuvant (CFA). The paw withdrawal latency (PWL) from a thermal stimulus and paw withdrawal threshold (PWT) from von Frey hairs were measured in awake rats. Intrathecal (i.t.) injection of 1 nmol fluorocitrate markedly suppressed monoarthritis-induced thermal hyperalgesia and mechanical allodynia. Unilateral electroacupuncture stimulation of "Huantiao" (GB30) and "Yanglingquan" (GB34) acupuncture points (100/2 Hz alternation, 1-2-3 mA) significantly elevated the PWLs and PWTs for 45 min after cessation of electroacupuncture in monoarthritic rats. Co-application of 0.1 or 1 nmol fluorocitrate with electroacupuncture significantly potentiated electroacupuncture analgesia, although 0.1 nmol fluorocitrate alone had no effect on PWLs and PWTs in monoarthritic rats. These results suggested that electroacupuncture and disrupting glial function could synergistically antagonize inflammatory pain, which might provide a potential strategy for the treatment of arthritic pain.

  16. Infection of Early and Young Callus Tissues of Indica Rice BPT 5204 Enhances Regeneration and Transformation Efficiency

    Directory of Open Access Journals (Sweden)

    P. MANIMARAN

    2013-11-01

    Full Text Available A rapid and reproducible method to develop transgenic plants with enhanced transformation efficiency using Agrobacterium has been developed for the elite indica rice variety BPT 5204. Different rice calli aged from 3 to 30 d were co-cultivated with pre-incubated Agrobacterium suspension culture (LBA4404: pSB1, pCAMBIA1301 and incubated in dark for 3 d. Based on the transient GUS gene expression analysis, 6-day-old young calli showed high transformation frequency followed by 21-day-old ones. Thus, both 6- and 21-day-old calli were used for assessing the stable transformation efficiency. It was observed that the 6-day-old young transformed calli showed about 2-fold higher regeneration frequency when compared with 21-day-old calli. The transformation efficiency was enhanced for young calli to 5.9% compared with 0.8% of the 21-day-old calli. Molecular and genetic analysis of transgenic plants (T0 revealed the presence of 1–2 copies of T-DNA integration in transformants and it follows Mendalian ratio in T1 transgenic plants. From the present study, it was concluded that the development of transgenic rice plants in less duration with high regeneration and transformation efficiency was achieved in BPT 5204 by using 6-day-old young calli as explants.

  17. Ag Nanoparticle-Functionalized Open-Ended Freestanding TiO₂ Nanotube Arrays with a Scattering Layer for Improved Energy Conversion Efficiency in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Rho, Won-Yeop; Chun, Myeung-Hwan; Kim, Ho-Sub; Kim, Hyung-Mo; Suh, Jung Sang; Jun, Bong-Hyun

    2016-06-15

    Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO₂ nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO₂ NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO₂ nanotube array-based DSSCs without Ag or large TiO₂ NPs, the energy conversion efficiency of closed-ended DSSCs improved by 9.21% (actual efficiency, from 5.86% to 6.40%) with Ag NPs, 6.48% (actual efficiency, from 5.86% to 6.24%) with TiO₂ NPs, and 14.50% (actual efficiency, from 5.86% to 6.71%) with both Ag NPs and TiO₂ NPs. By introducing Ag NPs and/or large TiO₂ NPs to open-ended freestanding TiO₂ nanotube array-based DSSCs, the energy conversion efficiency was improved by 9.15% (actual efficiency, from 6.12% to 6.68%) with Ag NPs and 8.17% (actual efficiency, from 6.12% to 6.62%) with TiO₂ NPs, and by 15.20% (actual efficiency, from 6.12% to 7.05%) with both Ag NPs and TiO₂ NPs. Moreover, compared to closed-ended freestanding TiO₂ nanotube arrays, the energy conversion efficiency of open-ended freestanding TiO₂ nanotube arrays increased from 6.71% to 7.05%. We demonstrate that each component-Ag NPs, TiO₂ NPs, and open-ended freestanding TiO₂ nanotube arrays-enhanced the energy conversion efficiency, and the use of a combination of all components in DSSCs resulted in the highest energy conversion efficiency.

  18. Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering.

    Science.gov (United States)

    Shi, Lin; Wang, Defeng; Liu, Wen; Fang, Kui; Wang, Yi-Xiang J; Huang, Wenhua; King, Ann D; Heng, Pheng Ann; Ahuja, Anil T

    2014-05-01

    To automatically and robustly detect the arterial input function (AIF) with high detection accuracy and low computational cost in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In this study, we developed an automatic AIF detection method using an accelerated version (Fast-AP) of affinity propagation (AP) clustering. The validity of this Fast-AP-based method was proved on two DCE-MRI datasets, i.e., rat kidney and human head and neck. The detailed AIF detection performance of this proposed method was assessed in comparison with other clustering-based methods, namely original AP and K-means, as well as the manual AIF detection method. Both the automatic AP- and Fast-AP-based methods achieved satisfactory AIF detection accuracy, but the computational cost of Fast-AP could be reduced by 64.37-92.10% on rat dataset and 73.18-90.18% on human dataset compared with the cost of AP. The K-means yielded the lowest computational cost, but resulted in the lowest AIF detection accuracy. The experimental results demonstrated that both the AP- and Fast-AP-based methods were insensitive to the initialization of cluster centers, and had superior robustness compared with K-means method. The Fast-AP-based method enables automatic AIF detection with high accuracy and efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  19. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties.

    Science.gov (United States)

    Shepherd, Jessica G; Joseph, Stephen; Sohi, Saran P; Heal, Kate V

    2017-07-01

    A multi-technique analysis was performed on a range of biochar materials derived from secondary organic resources and aimed at sustainable recovery and re-use of wastewater phosphorus (P). Our purpose was to identify mechanisms of P capture in biochar and thereby inform its future optimisation as a sustainable P fertiliser. The biochar feedstock comprised pellets of anaerobically digested sewage sludge (PAD) or pellets of the same blended in the ratio 9:1 with ochre sourced from minewater treatment (POCAD), components which have limited alternative economic value. In the present study the feedstocks were pyrolysed at two highest treatment temperatures of 450 and 550 °C. Each of the resulting biochars were repeatedly exposed to a 20 mg l -1 PO 4 -P solution, to produce a parallel set of P-exposed biochars. Biochar exterior and/or interior surfaces were quantitatively characterised using laser-ablation (LA)-ICP-MS, X-ray diffraction, X-ray photo-electron spectroscopy (XPS) and scanning electron microscopy coupled with energy dispersive X-ray. The results highlighted the general importance of Fe minerals in P capture. XPS analysis of POCAD550 indicated lower oxidation state Fe2p3 bonding compared to POCAD450, and LA-ICP-MS indicated stronger covariation of Fe and S, even after P exposure. This suggests that low-solubility Fe/S compounds are formed during pyrolysis, are affected by process parameters and impact on P capture. Other data suggested capture roles for aluminium, calcium and silicon. Overall, our analyses suggest that a range of mechanisms for P capture are concurrently active in biochar. We highlighted the potential to manipulate these through choice of form and composition of feedstock as well as pyrolysis processing, so that biochar may be increasingly tailored towards specific functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Efficient approximation of the incomplete gamma function for use in cloud model applications

    Directory of Open Access Journals (Sweden)

    U. Blahak

    2010-07-01

    Full Text Available This paper describes an approximation to the lower incomplete gamma function γl(a,x which has been obtained by nonlinear curve fitting. It comprises a fixed number of terms and yields moderate accuracy (the absolute approximation error of the corresponding normalized incomplete gamma function P is smaller than 0.02 in the range 0.9 ≤ a ≤ 45 and x≥0. Monotonicity and asymptotic behaviour of the original incomplete gamma function is preserved.

    While providing a slight to moderate performance gain on scalar machines (depending on whether a stays the same for subsequent function evaluations or not compared to established and more accurate methods based on series- or continued fraction expansions with a variable number of terms, a big advantage over these more accurate methods is the applicability on vector CPUs. Here the fixed number of terms enables proper and efficient vectorization. The fixed number of terms might be also beneficial on massively parallel machines to avoid load imbalances, caused by a possibly vastly different number of terms in series expansions to reach convergence at different grid points. For many cloud microphysical applications, the provided moderate accuracy should be enough. However, on scalar machines and if a is the same for subsequent function evaluations, the most efficient method to evaluate incomplete gamma functions is perhaps interpolation of pre-computed regular lookup tables (most simple example: equidistant tables.

  1. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Vecharynski, Eugene [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Shao, Meiyue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Govind, Niranjan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division

    2017-12-01

    We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.

  2. Enhancing shareholder value: Making a more compelling energy efficiency case to industry by quantifying non-energy benefits

    International Nuclear Information System (INIS)

    Pye, M.; McKane, A.

    1999-01-01

    This paper describes a more compelling case for industry to promote the non-energy benefits of energy efficiency investments. They do this in two ways to actively appeal to chief executive officers' (CEOs') and chief financial officers' (CFOs') primary responsibility: to enhance shareholder value. First, they describe the use of a project-by-project corporate financial analysis approach to quantify a broader range of productivity benefits that stem from investments in energy-efficient technologies, including waste reduction and pollution prevention. Second, and perhaps just as important, they present such information in corporate financial terms. These standard, widely accepted analysis procedures are more credible to industry than the economic modeling done in the past because they are structured in the same way corporate financial analysts perform discounted cashflow investment analyses on individual projects. Case studies including such financial analyses, which quantify both energy and non-energy benefits from investments in energy-efficient technologies, are presented. Experience shows that energy efficiency projects' non-energy benefits often exceed the value of energy savings, so energy savings should be viewed more correctly as part of the total benefits, rather than the focus of the results. Quantifying the total benefits of energy efficiency projects helps companies understand the financial opportunities of investments in energy-efficient technologies. Making a case for investing in energy-efficient technologies based on energy savings alone has not always proven successful. Evidence suggests, however, that industrial decision makers will understand energy efficiency investments as part of a broader set of parameters that affect company productivity and profitability

  3. Efficient Variational Approach to Multimodal Registration of Anatomical and Functional Intra-Patient Tumorous Brain Data.

    Science.gov (United States)

    Legaz-Aparicio, Alvar-Ginés; Verdú-Monedero, Rafael; Larrey-Ruiz, Jorge; Morales-Sánchez, Juan; López-Mir, Fernando; Naranjo, Valery; Bernabéu, Ángela

    2017-09-01

    This paper addresses the functional localization of intra-patient images of the brain. Functional images of the brain (fMRI and PET) provide information about brain function and metabolism whereas anatomical images (MRI and CT) supply the localization of structures with high spatial resolution. The goal is to find the geometric correspondence between functional and anatomical images in order to complement and fuse the information provided by each imaging modality. The proposed approach is based on a variational formulation of the image registration problem in the frequency domain. It has been implemented as a C/C[Formula: see text] library which is invoked from a GUI. This interface is routinely used in the clinical setting by physicians for research purposes (Inscanner, Alicante, Spain), and may be used as well for diagnosis and surgical planning. The registration of anatomic and functional intra-patient images of the brain makes it possible to obtain a geometric correspondence which allows for the localization of the functional processes that occur in the brain. Through 18 clinical experiments, it has been demonstrated how the proposed approach outperforms popular state-of-the-art registration methods in terms of efficiency, information theory-based measures (such as mutual information) and actual registration error (distance in space of corresponding landmarks).

  4. Enhancement of Energy Efficiency and Food Product Quality Using Adsorption Dryer with Zeolite

    Directory of Open Access Journals (Sweden)

    Moh Djaeni

    2013-06-01

    Full Text Available Drying is a basic operation in wood, food, pharmaceutical and chemical industry. Currently, several drying methods are often not efficient in terms of energy consumption (energy efficiency of 20-60% and have an impact on product quality degradation due to the introduction of operational temperature upper 80oC. This work discusses the development of adsorption drying with zeolite to improve the energy efficiency as well as product quality. In this process, air as drying medium is dehumidified by zeolite. As a result humidity of air can be reduced up to 0.1 ppm. So, for heat sensitive products, the drying process can be performed in low or medium temperature with high driving force. The study has been conducted in three steps: designing the dryer, performing laboratory scale equipment (tray, spray, and fluidised bed dryers with zeolite, and evaluating the dryer performance based on energy efficiency and product quality. Results showed that the energy efficiency of drying process is 15-20% higher than that of conventional dryer. In additon, the dryer can speed up drying time as well as retaining product quality.

  5. Fast Recovery of the High Work Function of Tungsten and Molybdenum Oxides via Microwave Exposure for Efficient Organic Photovoltaics.

    Science.gov (United States)

    Vasilopoulou, Maria; Soultati, Anastasia; Argitis, Panagiotis; Stergiopoulos, Thomas; Davazoglou, Dimitris

    2014-06-05

    In this work, we use microwave exposure of tungsten and molybdenum oxides to improve hole extraction in organic photovoltaics (OPVs). This is a result of fast recovery of the high work function of metal oxides occurring within a few seconds of microwave processing. Using the space-charge-limited current model, we verified the formation of an anode contact that facilitates hole extraction, while Mott-Schottky analysis revealed the enhancement of the device built-in field in the devices with the microwave-exposed metal oxides. Both were attributed to the formation of large interfacial dipoles at the ITO/microwave-exposed metal oxide interface. The power conversion efficiency (PCE) of OPVs using microwave-exposed metal oxides and based on blends of poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) with ([6,6]-phenyl-C71 butyric acid methyl ester, PC71BM) reached values of 7.2%, which represents an increase of about 30% compared with the efficiency of 5.7% of devices using metal oxides not subjected to microwave exposure.

  6. Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2017-11-01

    Full Text Available Synaptotagmin 7 (Syt7 is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC-Purkinje cell (PC synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission.

  7. DART: A Functional-Level Reconfigurable Architecture for High Energy Efficiency

    Directory of Open Access Journals (Sweden)

    David Raphaël

    2008-01-01

    Full Text Available Abstract Flexibility becomes a major concern for the development of multimedia and mobile communication systems, as well as classical high-performance and low-energy consumption constraints. The use of general-purpose processors solves flexibility problems but fails to cope with the increasing demand for energy efficiency. This paper presents the DART architecture based on the functional-level reconfiguration paradigm which allows a significant improvement in energy efficiency. DART is built around a hierarchical interconnection network allowing high flexibility while keeping the power overhead low. To enable specific optimizations, DART supports two modes of reconfiguration. The compilation framework is built using compilation and high-level synthesis techniques. A 3G mobile communication application has been implemented as a proof of concept. The energy distribution within the architecture and the physical implementation are also discussed. Finally, the VLSI design of a 0.13  m CMOS SoC implementing a specialized DART cluster is presented.

  8. IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer.

    Science.gov (United States)

    Felices, M; Chu, S; Kodal, B; Bendzick, L; Ryan, C; Lenvik, A J; Boylan, K L M; Wong, H C; Skubitz, A P N; Miller, J S; Geller, M A

    2017-06-01

    Natural killer (NK) cells represent a powerful immunotherapeutic target as they lyse tumors directly, do not require differentiation, and can elicit potent inflammatory responses. The objective of these studies was to use an IL-15 super-agonist complex, ALT-803 (Altor BioScience Corporation), to enhance the function of both normal and ovarian cancer patient derived NK cells by increasing cytotoxicity and cytokine production. NK cell function from normal donor peripheral blood mononuclear cells (PBMCs) and ovarian cancer patient ascites was assessed using flow cytometry and chromium release assays ±ALT-803 stimulation. To evaluate the ability of ALT-803 to enhance NK cell function in vivo against ovarian cancer, we used a MA148-luc ovarian cancer NOD scid gamma (NSG) xenogeneic mouse model with transferred human NK cells. ALT-803 potently enhanced functionality of NK cells against all ovarian cancer cell lines with significant increases seen in CD107a, IFNγ and TNFα expression depending on target cell line. Function was also rescued in NK cells derived from ovarian cancer patient ascites. Finally, only animals treated with intraperitoneal ALT-803 displayed an NK dependent significant decrease in tumor. ALT-803 enhances NK cell cytotoxicity against ovarian cancer in vitro and in vivo and is able to rescue functionality of NK cells derived from ovarian cancer patient ascites. These findings suggest that ALT-803 has the potential to enhance NK cell-based immunotherapeutic approaches for the treatment of ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Sandeep; Agrawal, Ashish Kumar

    2013-01-01

    The present study reports the development, characterization, and evaluation of novel polyelectrolytes stabilized lipoplexes as a nonviral vector for gene delivery. In order to achieve the advantage of both DOTAP (1,2-dioleoyl-3-trimethylammonium propane) and PEI (high transfection efficiency...... size of 242.6 ± 9.4 nm and zeta potential of +23.1 ± 1.5 mV. Following development nanoplexes were evaluated for cellular uptake, nuclear colocalization, transfection efficiency, and cellular toxicity in MCF-7, HeLa, and HEK-293 cell lines. In support of our hypothesis nanoplexes exhibited higher...... uptake and nuclear colocalization in comparison with DOTAP/PC, DOTAP/DOPE lipoplexes, and PEI polyplexes. Nanoplexes also exhibited 50-80, 11-12, 6-7, and 5-6 fold higher transfection efficiency in comparison with DOTAP/PC-lipoplexes, DOTAP/DOPE-lipoplexes, PEI-polyplexes, and lipofectamine, respectively...

  10. Study on Enhanceing Mechanisim and Policy on Energy Efficiency of Electrical Motor System in China

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Liu, Meng; Chen, Lili; Yang, Ming

    2017-12-01

    Motor is a kind of terminal energy-consumption equipment with the maximum power consumption in China every year; compared with international advanced level, the technical innovation of motor equipment, speed regulating system, drive system and automatic intelligent control technique in China still lag behind relatively; the standard technical service support system of motor system is not complete, the energy conserving transformation mode needs to be innovated, and the market development mechanism of motor industry is not perfect, etc. This paper analyzes the promotion mechanism and policy on energy efficiency of the motor system in China in recent years, studies the demonstration cases of successful promotion of high-efficiency motor, standard labeling, financial finance and tax policy, and puts forward suggestions on promotion of high-efficiency motor in China.

  11. Efficiency Enhancement of a Low-Voltage Automotive Vacuum Cleaner Using a Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Han-Geol Seon

    2016-08-01

    Full Text Available A recent increase in the number of diverse leisure activities and family outdoor activities has increased the need for the automobile-embedded vacuum cleaner. To date, this technology has not been applied in Korea and development efforts are not underway. Many of the existing portable cleaners connecting to the lighter jack of the vehicle use a direct current motor (DC motor. However, they do not have sufficient suction power to satisfy consumers; moreover, they have low durability and efficiency. In this paper, we therefore propose a technology for increasing the efficiency of the low-voltage automobile vacuum cleaner by replacing the existing DC motor with a switched reluctance motor (SRM, which has superior durability and efficiency.

  12. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  13. Chlorine-functionalized carbon dots for highly efficient photodegradation of pollutants under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shengliang, E-mail: hsliang@yeah.net [School of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Ding, Yanli [School of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Chang, Qing, E-mail: changneu@gmail.com [School of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Yang, Jinlong [State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China); Lin, Kui, E-mail: linkui@tju.edu.cn [Analytical Instrumentation Center, Tianjin University, Tianjin 300072 (China)

    2015-11-15

    Graphical abstract: Chlorine-functionalized carbon dots (Cl-CDs) were synthesized through the substitution reaction. Cl-CDs show highly photocatalytic activity under visible-light irradiation, and can quickly degrade phthalocyanine with the thermal and chemical stability. This work suggests that surface engineering of carbon dots with heteroatoms can be used to enhance their photochemical properties. - Highlights: • Chlorine-functionalized carbon dots (Cl-CDs) were synthesized by substitution reaction. • Cl-CDs show highly photocatalytic activity under visible-light irradiation. • The thermally and chemically stable phthalocyanine is even photodegraded by Cl-CDs. - Abstract: Chlorine-functionalized carbon dots (Cl-CDs) were prepared by the substitution reaction between Cl radicals into thionyl chloride molecules and carbon dots with containing OH/COOH groups at their surface (O-CDs). The obtained Cl-CDs with a size of 2–5 nm contain 2–3% Cl atoms and emit blue light. Compared with amine-functionalzed carbon dots (N-CDs) and O-CDs, Cl-CDs exhibit much higher photocatalytic activity under visible-light irradiation. The thermally and chemically stable phthalocyanine can be even degraded quickly through Cl-CDs. This work suggests that surface engineering of carbon dots with heteroatoms can be used to enhance their photochemical properties.

  14. Fins effectiveness and efficiency with position function of rhombus sectional area in unsteady condition

    Science.gov (United States)

    Nugroho, Tito Dwi; Purwadi, P. K.

    2017-01-01

    The function of the fin is to extend surfaces so that objects fitted with fin can remove the heat to the surrounding environment so that the cooling process can take place more quickly. The purpose of this study is to calculate and determine the effect of (a) the convective heat transfer coefficient of fluid on the value of the fin on the efficiency and effectiveness of non-steady state, and (b) the fin material to the value of the fins on the efficiency and effectiveness of non-steady state. The studied fins are in the form of straight fins with rhombus sectional area which is a function of position x with the short diagonal length of D1 and D2 as long diagonal length, L as fin's length and α as fin's tilt angle. Research solved numerical computation, using a finite difference method on the explicit way. At first, the fin has the same initial temperature with essentially temperature Ti = Tb, then abruptly fin conditioned on fluid temperature environment T∞. Fin's material is assumed with uniform properties, does not change with changes in temperature, and fin does not change the shape and volume during the process. The temperature of the fluid around the fins and the value of the convective heat transfer coefficient are permanently constant, and there is no energy generation in the fin. Fin's heat transfer conduction only take place in one direction, namely in the direction perpendicular to the fin base (or x-direction). The entire surface of the fin makes the process of heat transfer to a fluid environment around the fins. The results show that (a) the greater the value of heat transfer coefficient of convection h, the smaller the efficiency fin and effectiveness fins (b) In circumstances of unsteady state, the efficiency and effectivity influenced by the value of density, specific heat, heat transfer coefficient of conduction and thermal diffusivity fin material.

  15. Can Artificial Intelligence and Online Dispute Resolution enhance efficiency and effectiveness in Courts

    Directory of Open Access Journals (Sweden)

    John Zeleznikow

    2017-05-01

    Full Text Available The growing rise in the number of self-represented litigants has negative implications for both the court system and access to justice. The expanding use of Artificial Intelligence and the World Wide Web has led to the development and use of Online Dispute Resolution. In this article we investigate a number of systems in Australian Family Law that enhance Alternative Dispute Resolution and Access to Justice. We discuss how a hybrid system that incorporates advice about BATNAs and potential trade-offs as well as allowing online communication can enhance access to justice.

  16. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    Science.gov (United States)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  17. Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyungmi [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713 (Korea, Republic of); Lee, Kyung-Jin, E-mail: kj-lee@korea.ac.kr [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-08-07

    We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable for the optimization of STT-MRAM.

  18. Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories

    Science.gov (United States)

    Song, Kyungmi; Lee, Kyung-Jin

    2015-08-01

    We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable for the optimization of STT-MRAM.

  19. Enhancement of Heat-Recovery Steam-Gas Plant Efficiency at Expense of Steam Reheating Application

    Directory of Open Access Journals (Sweden)

    A. S. Grinchuk

    2008-01-01

    Full Text Available The paper considers a thermodynamic efficiency and peculiar features pertaining to realization of heat-recovery steam-gas plant schemes with steam reheating. Possible reserves of higher efficiency concerning plant economy and methods for achieving these goals are given in the paper. The author has made calculations for steam-gas plants of one-, two- and three-loop cycle of steam pressure. An analysis of the obtained results in respect of technical and economic indices and expediency of the application of corresponding plants in power engineering of the Republic of Belarus are presented in the paper.

  20. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  1. Enhancing cognate target elution efficiency in gel-free chemical proteomics

    Directory of Open Access Journals (Sweden)

    Branka Radic-Sarikas

    2015-12-01

    Full Text Available Gel-free liquid chromatography mass spectrometry coupled to chemical proteomics is a powerful approach for characterizing cellular target profiles of small molecules. We have previously described a fast and efficient elution protocol; however, altered target profiles were observed. We hypothesised that elution conditions critically impact the effectiveness of disrupting drug-protein interactions. Thus, a number of elution conditions were systematically assessed with the aim of improving the recovery of all classes of proteins whilst maintaining compatibility with immunoblotting procedures. A double elution with formic acid combined with urea emerged as the most efficient and generically applicable elution method for chemical proteomics

  2. Novel bandgap grading technique for enhancing the limiting efficiency of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Habib, S.E.-D.; Rafat, N.H. [Cairo Univ., Giza (Egypt). Faculty of Engineering

    1997-02-01

    The efficiency of solar cells is limited by radiative and/or Auger recombination losses. Radiative recombination can be reduced by limiting the escape angle of the re-emitted rays. Auger recombination can be reduced by limiting the cells` thickness. A novel technique for reducing the Auger recombination limit is proposed in this work. We show that bandgap grading can be effectively utilized to suppress the Auger recombination limit. The optimum bandgap grading profile that maximises the limiting efficiency for an idealized, one dimensional solar cell is hence calculated under AMO irradiation conditions. (author)

  3. Enhanced Efficiency of PTB7 : PC61BM Organic Solar Cells by Adding a Low Efficient Polymer Donor

    Directory of Open Access Journals (Sweden)

    Joana Farinhas

    2017-01-01

    Full Text Available Ternary blend polymer solar cells combining two electron-donor polymers, poly[4,8-bis[(2-ethylhexyloxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophenediyl] (PTB7 and poly[2,5-bis(3-dodecylthiophen-2-ylthieno[3,2-b]thiophene] (pBTTT and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM, as electron-acceptor, were fabricated. The power conversion efficiency of the ternary cells was enhanced by 18%, with respect to the reference binary cells, for a blend composition with 25% (wt% of pBTTT in the polymers content. The optimized device performance was related to the blend morphology, nonrevealing pBTTT aggregates, and improved charge extraction within the device.

  4. An efficient virus-induced gene silencing vector for maize functional genomics research.

    Science.gov (United States)

    Wang, Rong; Yang, Xinxin; Wang, Nian; Liu, Xuedong; Nelson, Richard S; Li, Weimin; Fan, Zaifeng; Zhou, Tao

    2016-04-01

    Maize is a major crop whose rich genetic diversity provides an advanced resource for genetic research. However, a tool for rapid transient gene function analysis in maize that may be utilized in most maize cultivars has been lacking, resulting in reliance on time-consuming stable transformation and mutation studies to obtain answers. We developed an efficient virus-induced gene silencing (VIGS) vector for maize based on a naturally maize-infecting cucumber mosaic virus (CMV) strain, ZMBJ-CMV. An infectious clone of ZMBJ-CMV was constructed, and a vascular puncture inoculation method utilizing Agrobacterium was optimized to improve its utility for CMV infection of maize. ZMBJ-CMV was then modified to function as a VIGS vector. The ZMBJ-CMV vector induced mild to moderate symptoms in many maize lines, making it useful for gene function studies in critically important maize cultivars, such as the sequenced reference inbred line B73. Using this CMV VIGS system, expression of two endogenous genes, ZmPDS and ZmIspH, was found to be decreased by 75% and 78%, respectively, compared with non-silenced tissue. Inserts with lengths of 100-300 bp produced the most complete transcriptional and visual silencing phenotypes. Moreover, genes related to autophagy, ZmATG3 and ZmATG8a, were also silenced, and it was found that they function in leaf starch degradation. These results indicate that our ZMBJ-CMV VIGS vector provides a tool for rapid and efficient gene function studies in maize. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Fast, accurate photon beam accelerator modeling using BEAMnrc: A systematic investigation of efficiency enhancing methods and cross-section data

    Energy Technology Data Exchange (ETDEWEB)

    Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A.; Solberg, Timothy D.; Chetty, Indrin J. [Henry Ford Health System, Detroit, Michigan 48202 (United States); National Research Council of Canada, Ottawa, Ontario K1A OR6 (Canada); University of California, San Francisco, California 94143-0226 (United States); UT Southwestern Medical Center, Dallas, Texas 75390-9183 (United States); Henry Ford Health System, Detroit, Michigan 48202 (United States)

    2009-12-15

    In this work, an investigation of efficiency enhancing methods and cross-section data in the BEAMnrc Monte Carlo (MC) code system is presented. Additionally, BEAMnrc was compared with VMC++, another special-purpose MC code system that has recently been enhanced for the simulation of the entire treatment head. BEAMnrc and VMC++ were used to simulate a 6 MV photon beam from a Siemens Primus linear accelerator (linac) and phase space (PHSP) files were generated at 100 cm source-to-surface distance for the 10x10 and 40x40 cm{sup 2} field sizes. The BEAMnrc parameters/techniques under investigation were grouped by (i) photon and bremsstrahlung cross sections, (ii) approximate efficiency improving techniques (AEITs), (iii) variance reduction techniques (VRTs), and (iv) a VRT (bremsstrahlung photon splitting) in combination with an AEIT (charged particle range rejection). The BEAMnrc PHSP file obtained without the efficiency enhancing techniques under study or, when not possible, with their default values (e.g., EXACT algorithm for the boundary crossing algorithm) and with the default cross-section data (PEGS4 and Bethe-Heitler) was used as the ''base line'' for accuracy verification of the PHSP files generated from the different groups described previously. Subsequently, a selection of the PHSP files was used as input for DOSXYZnrc-based water phantom dose calculations, which were verified against measurements. The performance of the different VRTs and AEITs available in BEAMnrc and of VMC++ was specified by the relative efficiency, i.e., by the efficiency of the MC simulation relative to that of the BEAMnrc base-line calculation. The highest relative efficiencies were {approx}935 ({approx}111 min on a single 2.6 GHz processor) and {approx}200 ({approx}45 min on a single processor) for the 10x10 field size with 50 million histories and 40x40 cm{sup 2} field size with 100 million histories, respectively, using the VRT directional bremsstrahlung

  6. Investigating the Neural Bases for Intra-Subject Cognitive Efficiency Using Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Neena K. Rao

    2014-10-01

    Full Text Available Several fMRI studies have examined brain regions mediating inter-subject variability in cognitive efficiency, but none have examined regions mediating intra-subject variability in efficiency. Thus, the present study was designed to identify brain regions involved in intra-subject variability in cognitive efficiency via participant-level correlations between trial-level reaction time (RT and trial-level fMRI BOLD percent signal change on a processing speed task. On each trial, participants indicated whether a digit-symbol probe-pair was present or absent in an array of nine digit-symbol probe-pairs while fMRI data were collected. Deconvolution analyses, using RT time-series models (derived from the proportional scaling of an event-related hemodynamic response function model by trial-level RT, were used to evaluate relationships between trial-level RTs and BOLD percent signal change. Although task-related patterns of activation and deactivation were observed in regions including bilateral occipital, bilateral parietal, portions of the medial wall such as the precuneus, default mode network regions including anterior cingulate, posterior cingulate, bilateral temporal, right cerebellum, and right cuneus, RT-BOLD correlations were observed in a more circumscribed set of regions. Positive RT-related patterns, or RT-BOLD correlations where fast RTs were associated with lower BOLD percent signal change, were observed in regions including bilateral occipital, bilateral parietal, and the precuneus. RT-BOLD correlations were not observed in the default mode network indicating a smaller set of regions associated with intra-subject variability in cognitive efficiency. The results are discussed in terms of a distributed area of regions that mediate variability in the cognitive efficiency that might underlie processing speed differences between individuals.

  7. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    Science.gov (United States)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug

  8. Integration of 3D printed lens with InGaN light-emitting diodes with enhanced light extraction efficiency

    Science.gov (United States)

    Ooi, Yu Kee; Ugras, Christopher; Liu, Cheng; Hartensveld, Matthew; Gandhi, Shaunak; Cormier, Denis; Zhang, Jing

    2017-02-01

    III-nitride based light-emitting diodes (LEDs) have great potential in various applications due to their higher efficiency and longer lifetime. However, conventional planar structure InGaN LED suffers from total internal reflection due to large refractive index contrast between GaN (nGaN = 2.5) and air (nair = 1), which results in low light extraction efficiency (ηextraction). Accordingly, various approaches have been proposed previously to enhance the ηextraction. Nevertheless, most of the proposed methods involve elaborated fabrication processes. Therefore, in this work, we proposed the integration of three-dimensional (3D) printing with LED fabrication as a straightforward and highlyreproducible method to improve the ηextraction. Specifically, 500-μm diameter dome-shaped lens of optically transparent acrylate-based photopolymer is 3D-printed on planar structure 500 × 500 μm2 blue-emitting LEDs. Light output power measurement shows that up to 9% enhancement at injection current 4 mA can be obtained from the LEDs with 3D printed lens on top as compared to LEDs without the lens. Angle-dependent electroluminescence measurement also exhibits significant light output enhancement between angles 0 and 30° due to the larger photon escape cone introduced by the higher refractive index of the 3D printed lens (nlens = 1.5) than the air medium as well as the enhanced light scattering effect attributed to the curvature surface of the 3D printed lens. Our simulation results based on 3D finitedifference time-domain method also show that up to 1.61-times enhancement in ηextraction can be achieved by the use of 3D-printed lens of various dimensions as compared to conventional structure without the lens.

  9. Effective and efficient learning in the operating theater with intraoperative video-enhanced surgical procedure training

    NARCIS (Netherlands)

    van Det, M.J.; Meijerink, W.J.; Hoff, C.; Middel, B.; Pierie, J.P.

    INtraoperative Video Enhanced Surgical procedure Training (INVEST) is a new training method designed to improve the transition from basic skills training in a skills lab to procedural training in the operating theater. Traditionally, the master-apprentice model (MAM) is used for procedural training

  10. Site-specific variable rate irrigation as a means to enhance water use efficiency

    Science.gov (United States)

    The majority of irrigated cropland in the US is watered with sprinkler irrigation systems. These systems are inherently more efficient in distributing water than furrow or flood irrigation. Appropriate system design of sprinkler irrigation equipment, application methods, and farming practices (e.g. ...

  11. Enhancing battery efficiency for pervasive health-monitoring systems based on electronic textiles.

    Science.gov (United States)

    Zheng, Nenggan; Wu, Zhaohui; Lin, Man; Yang, Laurence Tianruo

    2010-03-01

    Electronic textiles are regarded as one of the most important computation platforms for future computer-assisted health-monitoring applications. In these novel systems, multiple batteries are used in order to prolong their operational lifetime, which is a significant metric for system usability. However, due to the nonlinear features of batteries, computing systems with multiple batteries cannot achieve the same battery efficiency as those powered by a monolithic battery of equal capacity. In this paper, we propose an algorithm aiming to maximize battery efficiency globally for the computer-assisted health-care systems with multiple batteries. Based on an accurate analytical battery model, the concept of weighted battery fatigue degree is introduced and the novel battery-scheduling algorithm called predicted weighted fatigue degree least first (PWFDLF) is developed. Besides, we also discuss our attempts during search PWFDLF: a weighted round-robin (WRR) and a greedy algorithm achieving highest local battery efficiency, which reduces to the sequential discharging policy. Evaluation results show that a considerable improvement in battery efficiency can be obtained by PWFDLF under various battery configurations and current profiles compared to conventional sequential and WRR discharging policies.

  12. Enhanced Locomotion Efficiency of a Bio-inspired Walking Robot using Contact Surfaces with Frictional Anisotropy

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander

    2016-01-01

    stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged...

  13. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines...

  14. Efficiency enhancement using voltage biasing for ferroelectric polarization in dye-sensitized solar cells

    Science.gov (United States)

    Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung

    2018-01-01

    Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.

  15. Enhanced energy efficiency in waste water treatment plants; Steigerung der Energieeffizienz auf kommunalen Klaeranlagen

    Energy Technology Data Exchange (ETDEWEB)

    Haberkern, Bernd; Maier, Werner; Schneider, Ursula [iat - Ingenieurberatung fuer Abwassertechnik, Darmstadt und Stuttgart, Darmstadt (Germany)

    2008-03-15

    In order to implement the requests of EU-IPCC-directive in a new decree for waste water treatment in Germany, best available techniques have to be defined to optimize energy efficiency in waste water treatment plants (WWTP). Therefore energy efficiency was investigated for common treatment processes and new technologies like membrane filtration, co-digestion or phosphorus recycling. In addition, the occurrence of different technologies for waste water and sludge treatment was evaluated for different size ranges of treatment plants (in population equivalents, PE) nationwide in Germany. The definition of actual and aimed values for specific energy consumption (in kWh/(PE.a)) allowed to calculate the potential energy savings in WWTP and the additional consumption due to new processes on a national level. Under consideration of the reciprocations between optimized energy consumption in WWTP and operation practice, toe-holds to increase energy efficiency according to their relevancy for the national balance could be listed. Case studies prove the feasibility of the investigated techniques and allow proposals for minimum requirements in legal regulation concerning energy efficiency in WWTP. (orig.)

  16. Lubricant Formulations to Enhance Engine Efficiency in Modern Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Wai [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Wong, Victor [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Plumley, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Martins, Tomas [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gu, Grace [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tracy, Ian [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Molewyk, Mark [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Park, Soo Youl [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-04-19

    The research program presented aimed to investigate, develop, and demonstrate low-friction, environmentally-friendly and commercially-feasible lubricant formulations that would significantly improve the mechanical efficiency of modern engines without incurring increased wear, emissions or deterioration of the emission-aftertreatment system.

  17. Analysis Platform for Energy Efficiency Enhancement in Hybrid and Full Electric Vehicles

    Directory of Open Access Journals (Sweden)

    NICOLAICA, M.-O.

    2016-02-01

    Full Text Available The current paper presents a new virtual analysis method that is applied both on hybrid and electric vehicle architectures with the purpose of contributing to the improvement of energy efficiency. The study is based on Matlab modeling and simulation. A set of parameters are considered in order to assess the system performance. The benefit is given by the comparative overview obtained after the completed analysis. The effectiveness of the analysis method is confirmed by a sequence of simulation results combined in several case studies. The impulse of the research is given by the fact that the automotive market is focusing on wider simulation techniques and better control strategies that lead to more efficient vehicles. Applying the proposed method during design would improve the battery management and controls strategy. The advantage of this method is that the system behavior with regards to energy efficiency can be evaluated from an early concept phase. The results contribute to the actual necessity of driving more efficient and more environmental friendly vehicles.

  18. Highly stereoselective and efficient synthesis of functionalized cyclohexanes with multiple stereocenters.

    Science.gov (United States)

    Schneider, Christoph; Reese, Oliver

    2002-06-03

    Chiral 7-oxo-2-enimides 2, which were readily obtained through a silyloxy-Cope rearrangement of syn-aldol products 1, have proved to be versatile substrates for a one-step, highly efficient and stereoselective synthesis of functionalized cyclohexanes. Organocopper and organoaluminum reagents have been employed as nucleophiles that underwent a conjugate addition to the enimide structure of the Cope products. The enolates formed in situ attacked the aldehyde or iminium ion in an intramolecular aldol or Mannich reaction, respectively, to directly yield cyclohexanols 3 and 4 and cyclohexylamines 5, respectively, in moderate to good yields and with excellent stereocontrol.

  19. Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7).

    Science.gov (United States)

    de Oliveira, Catiúscia P; Büttenbender, Sabrina L; Prado, Willian A; Beckenkamp, Aline; Asbahr, Ana C; Buffon, Andréia; Guterres, Silvia S; Pohlmann, Adriana R

    2018-01-04

    Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization) in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT) and in human breast carcinoma cells (MCF-7). Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors), while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7) being promising products for further in vivo pre-clinical evaluations.

  20. Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7

    Directory of Open Access Journals (Sweden)

    Catiúscia P. de Oliveira

    2018-01-01

    Full Text Available Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT and in human breast carcinoma cells (MCF-7. Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors, while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7 being promising products for further in vivo pre-clinical evaluations.

  1. CO2-response function of radiation use efficiency in rice for climate change scenarios

    Directory of Open Access Journals (Sweden)

    Nereu Augusto Streck

    2012-07-01

    Full Text Available The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2] by the radiation use efficiency (RUE in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (R², and the root mean square error (RMSE. The f(CO2 describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century.

  2. Calculating the n-point correlation function with general and efficient python code

    Science.gov (United States)

    Genier, Fred; Bellis, Matthew

    2018-01-01

    There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.

  3. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA.

    Science.gov (United States)

    Wang, Dong; Garcia-Bassets, Ivan; Benner, Chris; Li, Wenbo; Su, Xue; Zhou, Yiming; Qiu, Jinsong; Liu, Wen; Kaikkonen, Minna U; Ohgi, Kenneth A; Glass, Christopher K; Rosenfeld, Michael G; Fu, Xiang-Dong

    2011-05-15

    Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA) based on global nuclear run-on sequencing (GRO-seq) analysis, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer-promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.

  4. Efficient evaluation of dielectric response functions and calculations of ground and excited state properties beyond local Density Functional approaches

    Science.gov (United States)

    Lu, Deyu; Li, Yan; Rocca, Dario; Viet Nguyen, H.; Gygi, Francois; Galli, Giulia

    2010-03-01

    A recently developed technique to diagonalize iteratively dielectric matrices [1], is used to carry out efficient, ab-initio calculations of dispersion interactions, and excited state properties of nanostructures. In particular, we present results for the binding energies of weakly bonded molecular crystals [2], obtained at the EXX/RPA level of theory, and for absorption spectra of semiconducting clusters, obtained by an iterative solution of the Bethe-Salpeter equations [3]. We show that the ability to obtain the eigenmodes of dielectric matrices from Density Functional perturbation theory, without computing single particle excited states, greatly improves the efficiency of both EXX/RPA and many body perturbation theory [3,4] calculations and opens the way to large scale computations. [1] H. Wilson, F. Gygi and G. Galli, Phys. Rev. B , 78, 113303, 2008; and H. Wilson, D. Lu, F. Gygi and G. Galli, Phys. Rev. B, 79, 245106, 2009. [2] D. Lu, Y. Li, D. Rocca and G. Galli, Phys. Rev. Lett, 102, 206411, 2009; and Y. Li, D. Lu, V. Nguyen and G. Galli, J. Phys. Chem. C (submitted) [3] D. Rocca, D. Lu and G. Galli, submitted. [4] D. Lu, F. Gygi and G. Galli, Phys. Rev. Lett. 100, 147601, 2008. Work was funded by DOE/Scidac DE-FC02-06ER25794 and DOE/BES DE-FG02-06ER46262.

  5. A Significant Increase of RNAi Efficiency in Human Cells by the CMV Enhancer with a tRNAlys Promoter

    Directory of Open Access Journals (Sweden)

    Ma Weiwei

    2009-01-01

    Full Text Available RNA interference (RNAi is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene.

  6. A Significant Increase of RNAi Efficiency in Human Cells by the CMV Enhancer with a tRNAlys Promoter

    Science.gov (United States)

    Weiwei, Ma; Zhenhua, Xie; Feng, Liu; Hang, Ning; Yuyang, Jiang

    2009-01-01

    RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene. PMID:19859553

  7. Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells.

    Science.gov (United States)

    Tsai, Yu-Lin; Wang, Sheng-Wen; Huang, Jhih-Kai; Hsu, Lung-Hsing; Chiu, Ching-Hsueh; Lee, Po-Tsung; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung

    2015-11-30

    This work demonstrates the enhanced power conversion efficiency (PCE) in InGaN/GaN multiple quantum well (MQWs) solar cells with gradually decreasing indium composition in quantum wells (GQWs) toward p-GaN as absorber. The GQW can improve the fill factor from 42% to 62% and enhance the short current density from 0.8 mA/cm2 to 0.92 mA/cm2, as compares to the typical MQW solar cells. As a result, the PCE is boosted from 0.63% to 1.11% under AM1.5G illumination. Based on simulation and experimental results, the enhanced PCE can be attributed to the improved carrier collection in GQW caused by the reduction of potential barriers and piezoelectric polarization induced fields near the p-GaN layer. The presented concept paves a way toward highly efficient InGaN-based solar cells and other GaN-related MQW devices.

  8. Hardware-efficient signal generation of layered/enhanced ACO-OFDM for short-haul fiber-optic links.

    Science.gov (United States)

    Wang, Qibing; Song, Binhuang; Corcoran, Bill; Boland, David; Zhu, Chen; Zhuang, Leimeng; Lowery, Arthur J

    2017-06-12

    Layered/enhanced ACO-OFDM is a promising candidate for intensity modulation and direct-detection based short-haul fiber-optic links due to its both power and spectral efficiency. In this paper, we firstly demonstrate a hardware-efficient real-time 9.375 Gb/s QPSK-encoded layered/enhanced asymmetrical clipped optical OFDM (L/E-ACO-OFDM) transmitter using a Virtex-6 FPGA. This L/E-ACO-OFDM signal is successfully transmitted over 20-km uncompensated standard single-mode fiber (S-SMF) using a directly modulated laser. Several methods are explored to reduce the FPGA's logic resource utilization by taking advantage of the L/E-ACO-OFDM's signal characteristics. We show that the logic resource occupation of L/E-ACO-OFDM transmitter is almost the same as that of DC-biased OFDM transmitter when they achieve the same spectral efficiency, proving its great potential to be used in a real-time short-haul optical transmission link.

  9. Efficient visible-light photocatalytic and enhanced photocorrosion inhibition of Ag2WO4 decorated MoS2 nanosheets

    Science.gov (United States)

    Thangavel, Sakthivel; Thangavel, Srinivas; Raghavan, Nivea; Alagu, Raja; Venugopal, Gunasekaran

    2017-11-01

    The use of two-dimensional nanomaterials as co-catalysts in the photodegradation of toxic compounds using light irradiation is an attractive ecofriendly process. In this study, we prepared a novel MoS2/Ag2WO4 nanohybrid via a one-step hydrothermal approach and the photocatalytic properties were investigated by the degradation of methyl-orange under stimulated irradiation. The nanohybrid exhibits enhanced efficiency in dye degradation compared to the bare Ag2WO4 nanorods; the same has been evidently confirmed with UV-visible spectra and total organic carbon removal analysis. The pseudo-first order rate constant of the nanohybrid is nearly 1.8 fold higher than that of the bare Ag2WO4 nanorods. With the aid of classical radical quenching and photoluminescence spectral analysis, a reasonable mechanism has been derived for the addition of MoS2 to nanohybrids to enhance the photocatalytic efficiency. MoS2 prevents photocorrosion of Ag2WO4 and also diminishes the number of photogenerated electron-hole recombination. Our findings could provide new insights in understanding the mechanism of the MoS2/Ag2WO4 nanohybrid as an efficient photocatalyst suitable for waste-water treatment and remedial applications.

  10. A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture.

    Science.gov (United States)

    Gaxiola, Roberto A; Edwards, Mark; Elser, James J

    2011-08-01

    Concerns about phosphorus (P) sustainability in agriculture arise not only from the potential of P scarcity but also from the known effects of agricultural P use beyond the field, i.e., eutrophication leading to dead zones in lakes, rivers and coastal oceans due to runoffs from fertilized fields. Plants possess a large number of adaptive responses to P(i) (orthophosphate) limitation that provide potential raw materials to enhance P(i) scavenging abilities of crop plants. Understanding and engineering these adaptive responses to increase the efficiency of crop capture of natural and fertilizer P(i) in soils is one way to optimize P(i) use efficiency (PUE) and, together with other approaches, help to meet the P sustainability challenge in agriculture. Research on the molecular and physiological basis of P(i) uptake is facilitating the generation of plants with enhanced P(i) use efficiency by genetic engineering. Here we describe work done in this direction with emphasis on the up-regulation of plant proton-translocating pyrophosphatases (H(+)-PPases). Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Evaluation of design factors for a cascade aerator to enhance the efficiency of an oxidation pond for ferruginous mine drainage.

    Science.gov (United States)

    Oh, Chamteut; Ji, Sangwoo; Cheong, Youngwook; Yim, Giljae; Hong, Ji-Hye

    2016-10-01

    This research focused on the optimum design of a cascade aerator to enhance the efficiency of an oxidation pond in a passive treatment system for remediating ferruginous mine drainage. For this purpose, various aeration experiments with aerators of different drop heights (0-4 m) and formations (types A and B) were executed on mine drainage. Type A simply drops the mine drainage into the oxidation pond while type B sprays the mine drainage and retains it for 8 min in each step. The efficiency enhancement of the oxidation pond was strongly dependent on the increase in pH and DO of the mine drainage discharged into the pond. The water quality improved with the increase in drop height but especially showed better effect with type B. The reasons for this result were attributed to the increase of contact surface and retention time of the mine drainage. The cascade aerator, therefore, should be designed to be as high as possible with the assistance of spraying form and retention time of the mine drainage to maximize the efficiency of the oxidation pond. These effects could be evaluated by calculating required areas of the oxidation pond for 95% of Fe(2+) oxidation.

  12. Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered

    Science.gov (United States)

    2011-01-01

    Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. Conclusions The analysis procedures

  13. Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.

    Science.gov (United States)

    Mathiassen, Svend Erik; Bolin, Kristian

    2011-05-21

    Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used

  14. Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered

    Directory of Open Access Journals (Sweden)

    Bolin Kristian

    2011-05-01

    Full Text Available Abstract Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set

  15. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    Science.gov (United States)

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Refining 3 Measures to Construct an Efficient Functional Assessment of Stroke.

    Science.gov (United States)

    Wang, Yu-Lin; Lin, Gong-Hong; Huang, Yi-Jing; Chen, Mei-Hsiang; Hsieh, Ching-Lin

    2017-06-01

    The Fugl-Meyer Assessment motor scale, Postural Assessment Scale for Stroke patients, and Barthel Index are widely used to assess patients' upper extremity and lower extremity motor function, balance, and basic activities of daily living after stroke, respectively. However, these 3 measures (72 items) require a great amount of time for assessment. Therefore, we aimed to develop an efficient test, the Functional Assessment of Stroke (FAS). The FAS was constructed from 4 short-form tests of the Fugl-Meyer Assessment-upper extremity, Fugl-Meyer Assessment-lower extremity, Postural Assessment Scale for Stroke patients, and Barthel Index based on the results of Rasch analyses and the items' content. We examined the psychometric properties of the FAS, including Rasch reliability, concurrent validity, convergent validity, known-group validity, and responsiveness. The FAS contained 29 items (10, 6, 8, and 5 items for the 4 short-form tests, respectively). The FAS demonstrated high Rasch reliability (0.92-0.94), concurrent validity ( r =0.90-0.97 with the original tests), convergent validity ( r =0.62-0.94 with the 5-scale Fugl-Meyer Assessment), and known-group validity (significant difference in the FAS scores among 3 groups of disability levels; P <0.001). In addition, the responsiveness of the FAS (standardized response mean=0.55-1.93) was similar or significantly superior to those of the original tests (standardized response mean=0.46-1.39). The FAS contains 29 items and has sufficient Rasch reliability, validities, and responsiveness. These findings support that the FAS is efficient for reliably and validly assessing upper extremity/lower extremity motor function, balance, and basic activities of daily living and for sensitively detecting change in those functions in patients with stroke. © 2017 American Heart Association, Inc.

  17. Efficient iterative method for solving the Dirac-Kohn-Sham density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin; Shao, Sihong; E, Weinan

    2012-11-06

    We present for the first time an efficient iterative method to directly solve the four-component Dirac-Kohn-Sham (DKS) density functional theory. Due to the existence of the negative energy continuum in the DKS operator, the existing iterative techniques for solving the Kohn-Sham systems cannot be efficiently applied to solve the DKS systems. The key component of our method is a novel filtering step (F) which acts as a preconditioner in the framework of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. The resulting method, dubbed the LOBPCG-F method, is able to compute the desired eigenvalues and eigenvectors in the positive energy band without computing any state in the negative energy band. The LOBPCG-F method introduces mild extra cost compared to the standard LOBPCG method and can be easily implemented. We demonstrate our method in the pseudopotential framework with a planewave basis set which naturally satisfies the kinetic balance prescription. Numerical results for Pt$_{2}$, Au$_{2}$, TlF, and Bi$_{2}$Se$_{3}$ indicate that the LOBPCG-F method is