WorldWideScience

Sample records for enhances cancer cell

  1. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-01-01

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  2. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness

    International Nuclear Information System (INIS)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-01-01

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial-mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer. The online version of this article (doi:10.1186/s12885-015-1780-1) contains supplementary material, which is available to authorized users

  3. Hypoxic enhancement of exosome release by breast cancer cells

    International Nuclear Information System (INIS)

    King, Hamish W; Michael, Michael Z; Gleadle, Jonathan M

    2012-01-01

    Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Breast cancer cell lines were cultured under either moderate (1% O 2 ) or severe (0.1% O 2 ) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Exposure of three different breast cancer cell lines to moderate (1% O 2 ) and severe (0.1% O 2 ) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release

  4. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  5. Osteopontin-enhanced hepatic metastasis of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Jianjin Huang

    Full Text Available Liver metastasis is a major cause of mortality from colorectal cancer (CRC. However, mechanisms underlying this process are largely unknown. Osteopontin (OPN is a secreted phosphorylated glycoprotein that is involved in tumor migration and metastasis. The role of OPN in cancer is currently unclear. In this study, OPN mRNA was examined in tissues from CRC, adjacent normal mucosa, and liver metastatic lesions using quantitative real-time PCR analysis. The protein expression of OPN and its receptors (integrin αv and CD44 v6 was detected by using an immunohistochemical (IHC method. The role of OPN in liver metastasis was studied in established colon cancer Colo-205 and SW-480 cell lines transfected with sense- or antisense-OPN eukaryotic expression plasmids by flow cytometry and cell adhesion assay. Fluorescence redistribution after photobleaching (FRAP was used to study gap functional intercellular communication (GJIC among OPN-transfected cells. It was found that OPN was highly expressed in metastatic hepatic lesions from CRC compared to primary CRC tissue and adjacent normal mucosa. The expression of OPN mRNA in tumor tissues was significantly related with the CRC stages. OPN expression was also detected in normal hepatocytes surrounding CRC metastatic lesions. Two known receptors of OPN, integrin αv and CD44v6 proteins, were strongly expressed in hepatocytes from normal liver. CRC cells with forced OPN expression exhibited increased heterotypic adhesion with endothelial cells and weakened intercellular communication. OPN plays a significant role in CRC metastasis to liver through interaction with its receptors in hepatocytes, decreased homotypic adhesion, and enhanced heterotypic adhesion.

  6. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    International Nuclear Information System (INIS)

    Shao, Chunlin; Folkard, Melvyn; Held, Kathryn D; Prise, Kevin M

    2008-01-01

    Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. The observation of bystander responses in breast tumour cells may offer new potential targets for radiation

  7. Increased hydrostatic pressure enhances motility of lung cancer cells.

    Science.gov (United States)

    Kao, Yu-Chiu; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Interstitial fluid pressures within most solid tumors are significantly higher than that in the surrounding normal tissues. Therefore, cancer cells must proliferate and migrate under the influence of elevated hydrostatic pressure while a tumor grows. In this study, we developed a pressurized cell culture device and investigated the influence of hydrostatic pressure on the migration speeds of lung cancer cells (CL1-5 and A549). The migration speeds of lung cancer cells were increased by 50-60% under a 20 mmHg hydrostatic pressure. We also observed that the expressions of aquaporin in CL1-5 and A549 cells were increased under the hydrostatic pressure. Our preliminary results indicate that increased hydrostatic pressure plays an important role in tumor metastasis.

  8. Natural killer cells enhance the immune surveillance of cancer

    African Journals Online (AJOL)

    Faisal Nouroz

    2015-09-11

    Sep 11, 2015 ... and lymphocytes, while AIR is comprised of T and B lymphocytes. All the cells of the .... through blood and physical barriers and both immunities cor- respond with each other .... Cancer stem cells (CSCs) retain the growth of tumor and resist .... kidney, liver, heart and lung transplant recipients 1970 to 2008.

  9. Enhanced gastric cancer growth potential of mesenchymal stem cells derived from gastric cancer tissues educated by CD4+ T cells.

    Science.gov (United States)

    Xu, Rongman; Zhao, Xiangdong; Zhao, Yuanyuan; Chen, Bin; Sun, Li; Xu, Changgen; Shen, Bo; Wang, Mei; Xu, Wenrong; Zhu, Wei

    2018-04-01

    Gastric cancer mesenchymal stem cells (GC-MSCs) can promote the development of tumour growth. The tumour-promoting role of tumour-associated MSCs and T cells has been demonstrated. T cells as the major immune cells may influence and induce a pro-tumour phenotype in MSCs. This study focused on whether CD4 + T cells can affect GC-MSCs to promote gastric cancer growth. CD4 + T cells upregulation of programmed death ligand 1 (PD-L1) expression in GC-MSCs through the phosphorylated signal transducer and activator of transcription (p-STAT3) signalling pathway was confirmed by immunofluorescence, western blotting and RT-PCR. Migration of GC cells was detected by Transwell migration assay, and apoptosis of GC cells was measured by flow cytometry using annexin V/propidium iodide double staining. CD4 + T cell-primed GC-MSCs promoted GC growth in a subcutaneously transplanted tumour model in BALB/c nu/nu mice. Gastric cancer mesenchymal stem cells stimulated by activated CD4 + T cells promoted migration of GC cells and enhanced GC growth potential in BALB/c nu/nu xenografts. PD-L1 upregulation of GC-MSCs stimulated by CD4 + T cells was mediated through the p-STAT3 signalling pathway. CD4 + T cells-primed GC-MSCs have greater GC volume and growth rate-promoting role than GC-MSCs, with cancer cell-intrinsic PD-1/mammalian target of rapamycin (mTOR) signalling activation. This study showed that GC-MSCs are plastic. The immunophenotype of GC-MSCs stimulated by CD4 + T cells has major changes that may influence tumour cell growth. This research was based on the interaction between tumour cells, MSCs and immune cells, providing a new understanding of the development and immunotherapy of GC. © 2017 John Wiley & Sons Ltd.

  10. Activin pathway enhances colorectal cancer stem cell self-renew and tumor progression.

    Science.gov (United States)

    Liu, Rui; Wang, Jun-Hua; Xu, Chengxiong; Sun, Bo; Kang, Sa-Ouk

    2016-10-28

    Activin belongs to transforming growth factor (TGF)-β super family of growth and differentiation factors and activin pathway participated in broad range of cell process. Studies elaborated activin pathway maintain pluripotency in human stem cells and suggest that the function of activin/nodal signaling in self-renew would be conserved across embryonic and adult stem cells. In this study, we tried to determine the effect of activin signaling pathway in regulation of cancer stem cells as a potential target for cancer therapy in clinical trials. A population of colorectal cancer cells was selected by the treatment of activin A. This population of cell possessed stem cell character with sphere formation ability. We demonstrated activin pathway enhanced the colorectal cancer stem cells self-renew and contribute to colorectal cancer progression in vivo. Targeting activin pathway potentially provide effective strategy for colorectal cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Resveratrol imparts photoprotection of normal cells and enhances the efficacy of radiation therapy in cancer cells.

    Science.gov (United States)

    Reagan-Shaw, Shannon; Mukhtar, Hasan; Ahmad, Nihal

    2008-01-01

    Solar radiation spans a whole range of electromagnetic spectrum including UV radiation, which are potentially harmful to normal cells as well as ionizing radiations which are therapeutically beneficial towards the killing of cancer cells. UV radiation is an established cause of a majority of skin cancers as well as precancerous conditions such as actinic keratosis. However, despite efforts to educate people about the use of sunscreens and protective clothing as preventive strategies, the incidence of skin cancer and other skin-related disorders are on the rise. This has generated an enormous interest towards finding alternative approaches for management of UV-mediated damages. Chemoprevention via nontoxic agents, especially botanical antioxidants, is one such approach that is being considered as a plausible strategy for prevention of photodamages including photocarcinogenesis. In this review, we have discussed the photoprotective effects of resveratrol, an antioxidant found in grapes and red wine, against UVB exposure-mediated damages in vitro and in vivo. In addition, we have also discussed studies showing that resveratrol can act as a sensitizer to enhance the therapeutic effects of ionizing radiation against cancer cells. Based on available literature, we suggest that resveratrol may be useful for (1) prevention of UVB-mediated damages including skin cancer and (2) enhancing the response of radiation therapies against hyperproliferative, precancerous and neoplastic conditions.

  12. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  13. Vorinostat enhances the cisplatin-mediated anticancer effects in small cell lung cancer cells.

    Science.gov (United States)

    Pan, Chun-Hao; Chang, Ying-Fang; Lee, Ming-Shuo; Wen, B-Chen; Ko, Jen-Chung; Liang, Sheng-Kai; Liang, Mei-Chih

    2016-11-07

    Vorinostat, a histone deacetylase (HDAC) inhibitor, is a promising agent for cancer therapy. Combining vorinostat with cisplatin may relax the chromatin structure and facilitate the accessibility of cisplatin, thus enhancing its cytotoxicity. Studies have not yet investigated the effects of the combination of vorinostat and cisplatin on small cell lung cancer (SCLC). We first assessed the efficacy of vorinostat with etoposide/cisplatin (EP; triple combination) and then investigated the effects of cotreatment with vorinostat and cisplatin on H209 and H146 SCLC cell lines. The anticancer effects of various combinations were determined in terms of cell viability, apoptosis, cell cycle distribution, and vorinostat-regulated proteins. We also evaluated the efficacy of vorinostat/cisplatin combination in H209 xenograft nude mice. Our data revealed that the triple combination engendered a significant reduction of cell viability and high apoptotic cell death. In addition, vorinostat combined with cisplatin enhanced cell growth inhibition, induced apoptosis, and promoted cell cycle arrest. We observed that the acetylation levels of histone H3 and α-tubulin were higher in combination treatments than in vorinostat treatment alone. Moreover, vorinostat reduced the expression of thymidylate synthase (TS), and TS remained inhibited after cotreament with cisplatin. Furthermore, an in vivo study revealed that the combination of vorinostat and cisplatin significantly inhibited tumor growth in xenograft nude mice (tumor growth inhibition T/C% = 20.5 %). Combined treatments with vorinostat promote the cytotoxicity of cisplatin and induce the expression of vorinostat-regulated acetyl proteins, eventually enhancing antitumor effects in SCLC cell lines. Triple combinations with a low dosage of cisplatin demonstrate similar therapeutic effects. Such triple combinations, if applied clinically, may reduce the undesired adverse effects of cisplatin. The effects of the combination of

  14. Hyperthermia enhances radiosensitivity of colorectal cancer cells through ROS inducing autophagic cell death.

    Science.gov (United States)

    Ba, Ming-Chen; Long, Hui; Wang, Shuai; Wu, Yin-Bing; Zhang, Bo-Huo; Yan, Zhao-Fei; Yu, Fei-Hong; Cui, Shu-Zhong

    2018-04-01

    Hyperthermia (HT) enhances the anti-cancer effects of radiotherapy (RT), but the precise biochemical mechanisms involved are unclear. This study was aim to investigate if mild HT sensitizes colorectal cancer cells to RT through reactive oxygen species (ROS)-inducing autophagic cell death in a mice model of HCT116 human colorectal cancer. HCT116 mice model were randomly divided into five groups: mock group, hyperthermia group (HT), radiotherapy group (RT), HT + RT group, and HT + RT +N-acetyl L-cysteine (NAC) group (HT + CT + NAC). After four weeks of treatment, cancer growth inhibition, rate and mitochondrial membrane potential were measured with MTT and JC-1 assays, respectively, while ROS were estimated fluorimetrically. The relationship of these parameters to expressions of autophagy-related genes Beclin1, LC3B, and mTOR was analyzed. Gene expression was measured by Real-Time polymerase chain reaction (RT-PCR). There were significant increases in ROS levels and mitochondrial membrane potential in the HT + RT group. ROS levels in the HT + RT group increased more significantly than in any other group. In contrast, ROS levels in the HT + RT + NAC group were significantly decreased relative to the HT + RT group. The number of autophagic bodies in HT + RT group was higher than that of mock group. There were significant increases in the expression of Beclin1 and LC3B genes, while mTOR expression was significantly decreased in the HT + CT group. Treatment with NAC reversed the pattern of these changes. These results indicate that HT enhances the radiosensitivity of colorectal cancer cells to RT through ROS inducing autophagic cell death. © 2017 Wiley Periodicals, Inc.

  15. Evaluation of Radiation Response and Gold Nanoparticle Enhancement in Drug-Resistant Pancreatic Cancer Cells

    Science.gov (United States)

    Abourabia, Assya

    Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing

  16. Inactivated Sendai virus particle upregulates cancer cell expression of intercellular adhesion molecule-1 and enhances natural killer cell sensitivity on cancer cells.

    Science.gov (United States)

    Li, Simin; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2017-12-01

    We have already reported that the inactivated Sendai virus (hemagglutinating virus of Japan; HVJ) envelope (HVJ-E) has multiple anticancer effects, including induction of cancer-selective cell death and activation of anticancer immunity. The HVJ-E stimulates dendritic cells to produce cytokines and chemokines such as β-interferon, interleukin-6, chemokine (C-C motif) ligand 5, and chemokine (C-X-C motif) ligand 10, which activate both CD8 + T cells and natural killer (NK) cells and recruit them to the tumor microenvironment. However, the effect of HVJ-E on modulating the sensitivity of cancer cells to immune cell attack has yet to be investigated. In this study, we found that HVJ-E induced the production of intercellular adhesion molecule-1 (ICAM-1, CD54), a ligand of lymphocyte function-associated antigen 1, in several cancer cell lines through the activation of nuclear factor-κB downstream of retinoic acid-inducible gene I and the mitochondrial antiviral signaling pathway. The upregulation of ICAM-1 on the surface of cancer cells increased the sensitivity of cancer cells to NK cells. Knocking out expression of ICAM-1 in MDA-MB-231 cells using the CRISPR/Cas9 method significantly reduced the killing effect of NK cells on ICAM-1-depleted MDA-MB-231 cells. In addition, HVJ-E suppressed tumor growth in MDA-MB-231 tumor-bearing SCID mice, and the HVJ-E antitumor effect was impaired when NK cells were depleted by treatment with the anti-asialo GM1 antibody. Our findings suggest that HVJ-E enhances NK cell sensitivity against cancer cells by increasing ICAM-1 expression on the cancer cell surface. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    Science.gov (United States)

    Mahmood, M.; Xu, Y.; Dantuluri, V.; Mustafa, T.; Zhang, Y.; Karmakar, A.; Casciano, D.; Ali, S.; Biris, A.

    2013-02-01

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells.

  18. Carbon nanotubes enhance the internalization of drugs by cancer cells and decrease their chemoresistance to cytostatics

    International Nuclear Information System (INIS)

    Mahmood, M; Xu, Y; Dantuluri, V; Mustafa, T; Karmakar, A; Casciano, D; Biris, A; Zhang, Y; Ali, S

    2013-01-01

    Etoposide is a semisynthetic, chemotherapeutic drug widely recommended to treat an extensive range of human cancers. Our studies indicate that, while etoposide is capable of killing human cancer cells, exposure to single-walled carbon nanotubes (SWCNTs) and etoposide results in enhanced cell death that appears to be synergistic and not merely additive. In this study, we used high pressure liquid chromatography and mass spectrometry to quantify the internal effective dose of etoposide when the human pancreatic cancer cell (PANC-1) was exposed to the combination of these agents. Our results unequivocally indicate that SWCNTs improve etoposide uptake and increase its capacity to kill cancer cells. We suggest that a combination of SWCNTs and etoposide may prove to be a more efficient chemotherapeutic protocol, especially because of the potential to lower toxic drug doses to levels that may be useful in decreasing adverse side effects, as well as in lowering the probability of inducing chemoresistance in exposed cancer cells. (paper)

  19. Extracellular Ca(2+)-dependent enhancement of cytocidal potency of zoledronic acid in human oral cancer cells.

    Science.gov (United States)

    Inoue, Sayaka; Arai, Naoya; Tomihara, Kei; Takashina, Michinori; Hattori, Yuichi; Noguchi, Makoto

    2015-08-15

    Direct antitumor effects of bisphosphonates (BPs) have been demonstrated in various cancer cells in vitro. However, the effective concentrations of BPs are typically much higher than their clinically relevant concentrations. Oral cancers frequently invade jawbone and may lead to the release of Ca(2+) in primary lesions. We investigated the effects of the combined application of zoledronic acid (ZA) and Ca(2+) on proliferation and apoptosis of oral cancer cells. Human oral cancer cells, breast cancer cells, and colon cancer cells were treated with ZA at a wide range of concentrations in different Ca(2+) concentration environments. Under a standard Ca(2+) concentration (0.6mM), micromolar concentrations of ZA were required to inhibit oral cancer cell proliferation. Increasing extracellular Ca(2+) concentrations greatly enhanced the potency of the ZA cytocidal effect. The ability of Ca(2+) to enhance the cytocidal effects of ZA was negated by the Ca(2+)-selective chelator EGTA. In contrast, the cytocidal effect of ZA was less pronounced in breast and colon cancer cells regardless of whether extracellular Ca(2+) was elevated. In oral cancer cells incubated with 1.6mM Ca(2+), ZA up-regulated mitochondrial Bax expression and increased mitochondrial Ca(2+) uptake. This was associated with decreased mitochondrial membrane potential and increased release of cytochrome c. We suggest that ZA can specifically produce potent cytocidal activity in oral cancer cells in an extracellular Ca(2+)-dependent manner, implying that BPs may be useful for treatment of oral squamous cell carcinoma with jawbone invasion leading to the hypercalcemic state. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs

    Directory of Open Access Journals (Sweden)

    Tahereh Fatemian

    2018-02-01

    Full Text Available Pharmacotherapy as the mainstay in the management of breast cancer has demonstrated various drawbacks, including non-targeted bio distribution and narrow therapeutic and safety windows. Thus, enhancements in pharmacodynamic and pharmacokinetic profiles of the classical anti-cancer drugs could lead to improved efficacy against cancer cells. Therefore, inorganic pH-dependent carbonate apatite (CA nanoparticles were utilized to efficiently deliver various drugs into cancer cells. Following characterization and various modifications in the structure of CA complexes with different drugs, lifted outcomes were achieved. Markedly, complexing paclitaxel with CA resulted in 20.71 ± 4.34% loading efficiency together with 24.14 ± 2.21% enhancement in cytotoxicity on MCF-7 cells plus superior in vivo anti-tumour efficacy compared to free paclitaxel.

  1. Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs

    Science.gov (United States)

    Fatemian, Tahereh; Chowdhury, Ezharul Hoque

    2018-01-01

    Pharmacotherapy as the mainstay in the management of breast cancer has demonstrated various drawbacks, including non-targeted bio distribution and narrow therapeutic and safety windows. Thus, enhancements in pharmacodynamic and pharmacokinetic profiles of the classical anti-cancer drugs could lead to improved efficacy against cancer cells. Therefore, inorganic pH-dependent carbonate apatite (CA) nanoparticles were utilized to efficiently deliver various drugs into cancer cells. Following characterization and various modifications in the structure of CA complexes with different drugs, lifted outcomes were achieved. Markedly, complexing paclitaxel with CA resulted in 20.71 ± 4.34% loading efficiency together with 24.14 ± 2.21% enhancement in cytotoxicity on MCF-7 cells plus superior in vivo anti-tumour efficacy compared to free paclitaxel. PMID:29401738

  2. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    International Nuclear Information System (INIS)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-01-01

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo

  3. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kai [Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong Province (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Song, Yong [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Department of Stomatology, Liu Zhou People' s Hospital, Guangxi (China); Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Liu, Ke, E-mail: liuke.1999@aliyun.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China); Shang, Zheng-jun, E-mail: shangzhengjun@hotmail.com [Department of Oral and Maxillofacial-Head and Neck oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan (China)

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  4. Cyclooxygenase-2 Inhibition Enhances Proliferation of NKT Cells Derived from Patients with Laryngeal Cancer.

    Science.gov (United States)

    Klatka, Janusz; Grywalska, Ewelina; Hymos, Anna; Guz, Małgorzata; Polberg, Krzysztof; Roliński, Jacek; Stepulak, Andrzej

    2017-08-01

    The aim of this study was to analyze whether inhibition of cyclooxygenase-2 by celecoxib and the subsequent enhancement in the proliferation of natural killer T (NKT) cells could play a role in dendritic cell (DC)-based laryngeal cancer (LC) immunotherapy. Peripheral blood mononuclear cells were obtained from 48 male patients diagnosed with LC and 30 control patients without cancer disease. Neoplastic cell lysate preparations were made from cancer tissues obtained after surgery and used for in vitro DCs generation. NKT cells proliferation assay was performed based on 3 H-thymidine incorporation assay. An increased proliferation of NKT cells was obtained from control patients compared to NKT cells obtained from LC patients regardless of the type of stimulation or treatment. In the patient group diagnosed with LC, COX-2 inhibition resulted in a significantly enhanced proliferation of NKT cells when stimulated with autologous DCs than NKT cells stimulated with DCs without COX-2 inhibition. These correlations were not present in the control group. Higher proliferation rate of NKT cells was also observed in non-metastatic and highly differentiated LC, which was independent of the type of stimulation or treatment. COX-2 inhibition could be regarded as immunotherapy-enhancing tool in patients with LC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells.

    Science.gov (United States)

    Cheng, Wan-Li; Huang, Chien-Yu; Tai, Cheng-Jeng; Chang, Yu-Jia; Hung, Chin-Sheng

    2018-02-01

    Androgen deprivation therapy remains the principal treatment for patients with advanced prostate cancer, though, most patients will eventually develop hormone-refractory prostate cancer (HRPC). Androgen ablation mediated maspin-induction has been identified in cancer patients. However, the role of maspin on the anticancer activity of curcumin derived from turmeric (Curcuma longa) in HRPC cells has not been elucidated. The anticancer action of curcumin in hormone-independent prostate cancer cells (DU145, and PC-3) was determined by measures of cell survival rate. The cause of maspin silencing on the anti-tumor abilities of curcumin in PC-3 cells was evaluated by measures of cell survival rate, cell-cycle distribution, and apoptosis signaling analysis. Our present study showed that PC-3 cells (with higher maspin expression) were more sensitive than DU145 cells to curcumin treatment (with lower maspin expression). RNA interference-mediated maspin silencing reduced curcumin sensitivity of PC-3 cells, as evidenced by reduced apoptotic cell death. After exposure to curcumin, maspin-knockdown cells showed lower expression levels of pro-apoptotic proteins, Bad and Bax, as compared with control cells. Maspin can enhance the sensitivity of HRPC cells to curcumin treatment. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Par3L enhances colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway

    International Nuclear Information System (INIS)

    Li, Taiyuan; Liu, Dongning; Lei, Xiong; Jiang, Qunguang

    2017-01-01

    Partitioning defective 3-like protein (Par3L) is a recently identified cell polarity protein that plays an important role in mammary stem cell maintenance. Previously, we showed that high expression of Par3L is associated with poor survival in malignant colorectal cancer (CRC), but the underlying mechanism remained unknown. To this end, we established a Par3L knockout colorectal cancer cell line using the CRISPR/Cas system. Interestingly, reduced proliferation, enhanced cell death and caspase-3 activation were observed in Par3L knockout (KO) cells as compared with wildtype (WT) cells. Consistent with previous studies, we showed that Par3L interacts with a tumor suppressor protein liver kinase B1 (Lkb1). Moreover, Par3L depletion resulted in abnormal activation of Lkb1/AMPK signaling cascade. Knockdown of Lkb1 in these cells could significantly reduce AMPK activity and partially rescue cell death caused by Par3L knockdown. Furthermore, we showed that Par3L KO cells were more sensitive to chemotherapies and irradiation. Together, these results suggest that Par3L is essential for colorectal cancer cell survival by inhibiting Lkb1/AMPK signaling pathway, and is a putative therapeutic target for CRC. - Highlights: • Par3L knockout using the CRISPR/Cas system induces apoptosis in colorectal cancer cells. • Par3L interacts with Lkb1 and regulates the activity of AMPK signaling cascade. • Par3L knockout cells are more sensitive to treatment of different chemotherapy drugs and irradiation.

  7. Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Ide, Hisamitsu; Nakagawa, Takashi; Terado, Yuichi; Kamiyama, Yutaka; Muto, Satoru; Horie, Shigeo

    2008-01-01

    Protein tyrosine kinase plays a central role in the proliferation and differentiation of various types of cells. One of these protein kinases, Tyk2, a member of the Jak family kinases, is known to play important roles in receptor signal transduction by interferons, interleukins, growth factors, and other hormones. In the present study, we investigated Tyk2 expression and its role in the growth and invasiveness of human prostate cancer cells. We used a small interfering RNA targeting Tyk2 and an inhibitor of Tyk2, tyrphostin A1, to suppress the expression and signaling of Tyk2 in prostate cancer cells. We detected mRNAs for Jak family kinases in prostate cancer cell lines by RT-PCR and Tyk2 protein in human prostate cancer specimens by immunohistochemistry. Inhibition of Tyk2 signaling resulted in attenuation of the urokinase-type plasminogen activator-enhanced invasiveness of prostate cancer cells in vitro without affecting the cellular growth rate. These results suggest that Tyk2 signaling in prostate cancer cells facilitate invasion of these cells, and interference with this signaling may be a potential therapeutic pathway

  8. MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrea Turner

    Full Text Available The Map kinase Activating Death Domain containing protein (MADD isoform of the IG20 gene is over-expressed in different types of cancer tissues and cell lines and it functions as a negative regulator of apoptosis. Therefore, we speculated that MADD might be over-expressed in human breast cancer tissues and that MADD knock-down might synergize with chemotherapeutic or TRAIL-induced apoptosis of breast cancer cells. Analyses of breast tissue microarrays revealed over-expression of MADD in ductal and invasive carcinomas relative to benign tissues. MADD knockdown resulted in enhanced spontaneous apoptosis in human breast cancer cell lines. Moreover, MADD knockdown followed by treatment with TRAIL or doxorubicin resulted in increased cell death compared to either treatment alone. Enhanced cell death was found to be secondary to increased caspase-8 activation. These data indicate that strategies to decrease MADD expression or function in breast cancer may be utilized to increase tumor cell sensitivity to TRAIL and doxorubicin induced apoptosis.

  9. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  10. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells.

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V

    2015-02-01

    We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells

    International Nuclear Information System (INIS)

    Dong, Xuejun; Liu, Anding; Zer, Cindy; Feng, Jianguo; Zhen, Zhuan; Yang, Mingfeng; Zhong, Li

    2009-01-01

    Doxorubicin is an effective breast cancer drug but is hampered by a severe, dose-dependent toxicity. Concomitant administration of doxorubicin and another cancer drug may be able to sensitize tumor cells to the cytotoxicity of doxorubicin and lowers the therapeutic dosage. In this study, we examined the combined effect of low-dose doxorubicin and siRNA inhibition of telomerase on breast cancer cells. We found that when used individually, both treatments were rapid and potent apoptosis inducers; and when the two treatments were combined, we observed an enhanced and sustained apoptosis induction in breast cancer cells. siRNA targeting the mRNA of the protein component of telomerase, the telomerase reverse transcriptase (hTERT), was transfected into two breast cancer cell lines. The siRNA inhibition was confirmed by RT-PCR and western blot on hTERT mRNA and protein levels, respectively, and by measuring the activity level of telomerase using the TRAP assay. The effect of the hTERT siRNA on the tumorigenicity of the breast cancer cells was also studied in vivo by injection of the siRNA-transfected breast cancer cells into nude mice. The effects on cell viability, apoptosis and senescence of cells treated with hTERT siRNA, doxorubicin, and the combined treatment of doxorubicin and hTERT siRNA, were examined in vitro by MTT assay, FACS and SA-β-galactosidase staining. The hTERT siRNA effectively knocked down the mRNA and protein levels of hTERT, and reduced the telomerase activity to 30% of the untreated control. In vivo, the tumors induced by the hTERT siRNA-transfected cells were of reduced sizes, indicating that the hTERT siRNA also reduced the tumorigenic potential of the breast cancer cells. The siRNA treatment reduced cell viability by 50% in breast cancer cells within two days after transfection, while 0.5 μM doxorubicin treatment had a comparable effect but with a slower kinetics. The combination of hTERT siRNA and 0.5 μM doxorubicin killed twice as many

  12. 3-bromopyruvate enhanced daunorubicin-induced cytotoxicity involved in monocarboxylate transporter 1 in breast cancer cells.

    Science.gov (United States)

    Liu, Zhe; Sun, Yiming; Hong, Haiyu; Zhao, Surong; Zou, Xue; Ma, Renqiang; Jiang, Chenchen; Wang, Zhiwei; Li, Huabin; Liu, Hao

    2015-01-01

    Increasing evidence demonstrates that the hexokinase inhibitor 3-bromopyruvate (3-BrPA) induces the cell apoptotic death by inhibiting ATP generation in human cancer cells. Interestingly, some tumor cell lines are less sensitive to 3-BrPA-induced apoptosis than others. Moreover, the molecular mechanism of 3-BrPA-trigged apoptosis is unclear. In the present study, we examined the effects of 3-BrPA on the viability of the breast cancer cell lines MDA-MB-231 and MCF-7. We further investigated the potential roles of monocarboxylate transporter 1 (MCT1) in drug accumulation and efflux of breast cancer cells. Finally, we explored whether 3-BrPA enhanced daunorubicin (DNR)-induced cytotoxicity through regulation of MCT1 in breast cancer cells. MTT and colony formation assays were used to measure cell viability. Western blot analysis, flow cytometric analysis and fluorescent microscopy were used to determine the molecular mechanism of actions of MCT1 in different breast cancer cell lines. Whole-body bioluminescence imaging was used to investigate the effect of 3-BrPA in vivo. We found that 3-BrPA significantly inhibited cell growth and induced apoptosis in MCF-7 cell line, but not in MDA-MB-231 cells. Moreover, we observed that 3-BrPA efficiently enhanced DNR-induced cytotoxicity in MCF-7 cells by inhibiting the activity of ATP-dependent efflux pumps. We also found that MCT1 overexpression increased the efficacy of 3-BrPA in MDA-MB-231 cells. 3-BrPA markedly suppressed subcutaneous tumor growth in combination with DNR in nude mice implanted with MCF-7 cells. Lastly, our whole-body bioluminescence imaging data indicated that 3-BrPA promoted DNR accumulation in tumors. These findings collectively suggest that 3-BrPA enhanced DNR antitumor activity in breast cancer cells involved MCT-1, suggesting that inhibition of glycolysis could be an effective therapeutic approach for breast cancer treatment.

  13. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    Science.gov (United States)

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells.

    Science.gov (United States)

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Siddiqui, Imtiaz Ahmad; Verma, Ajit Kumar; Mukhtar, Hasan

    2016-12-01

    Although treatment of prostate cancer has improved over the past several years, taxanes, such as cabazitaxel, remain the only form of effective chemotherapy that improves survival in patients with metastatic castration-resistant prostate cancer. However, the effectiveness of this class of drugs has been associated with various side effects and drug resistance. We previously reported that fisetin, a hydroxyflavone, is a microtubule-stabilizing agent and inhibits prostate cancer cell proliferation, migration, and invasion and suggested its use as an adjuvant for treatment of prostate and other cancer types. In this study, we investigated the effect of fisetin in combination with cabazitaxel with the objective to achieve maximum therapeutic benefit, reduce dose and toxicity, and minimize or delay the induction of drug resistance and metastasis. Our data show for the first time that a combination of fisetin (20 μmol/L) enhances cabazitaxel (5 nmol/L) and synergistically reduces 22Rν1, PC-3M-luc-6, and C4-2 cell viability and metastatic properties with minimal adverse effects on normal prostate epithelial cells. In addition, the combination of fisetin with cabazitaxel was associated with inhibition of proliferation and enhancement of apoptosis. Furthermore, combination treatment resulted in the inhibition of tumor growth, invasion, and metastasis when assessed in two in vivo xenograft mouse models. These results provide evidence that fisetin may have therapeutic benefit for patients with advanced prostate cancer through enhancing the efficacy of cabazitaxel under both androgen-dependent and androgen-independent conditions. This study underscores the benefit of the combination of fisetin with cabazitaxel for the treatment of advanced and resistant prostate cancer and possibly other cancer types. Mol Cancer Ther; 15(12); 2863-74. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Sulindac enhances the killing of cancer cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Maria Marchetti

    2009-06-01

    Full Text Available Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID that affects prostaglandin production by inhibiting cyclooxygenases (COX 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.Pretreatment of human colon and lung cancer cells with sulindac enhances killing by an oxidizing agent such as tert-butyl hydroperoxide (TBHP or hydrogen peroxide. This effect does not involve cyclooxygenase (COX inhibition. However, under the conditions used, there is a significant increase in reactive oxygen species (ROS within the cancer cells and a loss of mitochondrial membrane potential, suggesting that cell death is due to apoptosis, which was confirmed by Tunel assay. In contrast, this enhanced killing was not observed with normal lung or colon cells.These results indicate that normal and cancer cells handle oxidative stress in different ways and sulindac can enhance this difference. The combination of sulindac and an oxidizing agent could have therapeutic value.

  16. Enhancement of Bleomycin Sensitivity in Human Lung Cancer Cell ...

    African Journals Online (AJOL)

    Methods: The inhibitory effect of bleomycin on A549 cells was determined by incubating the cells for 24 h in different .... also include advantageous psychological effects such as .... cyclooxygenase-2 enzyme inhibitors: A rational advance?

  17. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    International Nuclear Information System (INIS)

    Zhou, Xuezhang; Zhang, Yuyan; Li, Yong; Hao, Xiujing; Liu, Xiaoming; Wang, Yujiong

    2012-01-01

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC 50 ) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC 50 values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs

  18. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Zhu, Shenglong; Lin, Guangxiao; Song, Ci; He, Zhao

    2017-08-01

    Breast cancer is a leading type of cancer in women and generally classified into three subtypes of ER + /PR + , HER2 + and triple negative. Both omega-3 polyunsaturated fatty acids and vitamin D 3 play positive role in the reduction of breast cancer incidence. However, whether combination of omega-3 polyunsaturated fatty acids and vitamin D 3 has stronger protective effect on breast carcinogenesis still remains unknown. In this study, we show that the combination of ω-3 free fatty acids (ω-3 FFAs) and 1α, 25-dihydroxy-vitamin D 3 (VD 3 ) dramatically enhances cell apoptosis among three subtypes of breast cancer cell lines. Bcl-2 and total PARP protein levels are decreased in combined treatment MCF-7 and SK-BR-3 cells. Caspase signals play a vital role in cell apoptosis induced by combination. Moreover, Raf-MAPK signaling pathway is involved in the apoptosis induction by combination of ω-3 FFAs+VD 3 . These results demonstrate that the induction of cell apoptosis by combined treatment is dependent on different signaling pathways in three subtypes of breast cancer cell lines. © 2017 International Federation for Cell Biology.

  19. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    International Nuclear Information System (INIS)

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-01-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of γ-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G 2 /M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  20. Irigenin sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells.

    Science.gov (United States)

    Xu, Ying; Gao, Cheng-Cheng; Pan, Zhen-Guo; Zhou, Chuan-Wen

    2018-02-12

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promising value for cancer therapy due to its capacity to induce apoptosis in cancer cells. Nevertheless, TRAIL therapy is greatly hampered by its resistance. Irigenin (Iri), isoflavonoids, can be isolated from the rhizome of Belamcanda chinensis, and has been shown anti-cancer properties. In this study, we explored if Iri could enhance TRAIL-regulated apoptosis in TRAIL resistant gastric cancer cells. Iri significantly potentiated TRAIL-triggered cytotoxicity. Iri alone and TRAIL alone showed no effective role in apoptosis induction, whereas combined treatment with Iri and TRAIL markedly induced apoptosis in cancer cells, as evidenced by the up-regulation of cleaved Caspase-8/-9/-3 and PARP. Additionally, the sensitization to TRAIL was along with the enhancement of pro-apoptotic proteins, including FAS-associated protein with death domain (FADD), death receptor 5 (DR5) and Bax. And suppressing FADD, DR5 and Bax by si RNA significantly reduced the apoptosis and enhanced the cell viability induced by the co-application of Iri and TRAIL. Moreover, the sensitization to TRAIL was accompanied by the decrease of Cellular-FLICE inhibitory protein (c-FLIP), Bcl-2 and Survivin. Additionally, Iri could sensitize TRAIL to produce reactive oxygen species (ROS). Pre-treatment of N-acetyl-cysteine (NAC), ROS scavenger, attenuated Iri plus TRAIL-induced apoptosis and improved cell viability. Finally, combination of Iri and TRAIL inhibited tumor growth in the xenograft model. Collectively, our present study gave new insights into the effects of Iri on potentiating TRAIL-sensitivity, and suggested that Iri could be a potential candidate for sensitizer of TRAIL-resistant cancer cell treatment. Copyright © 2018. Published by Elsevier Inc.

  1. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC (China); Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Kuo, Shyh Ming [Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Guei-Sheung [Centre for Eye Research Australia, University of Melbourne (Australia); Chen, Wan-Nan U. [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China); Chuang, Chin-Wen [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Li-Feng, E-mail: liulf@isu.edu.tw [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  2. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-01-01

    Highlights: ► Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. ► Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. ► 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 μm porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  3. Frondoside A Enhances the Anti-Cancer Effects of Oxaliplatin and 5-Fluorouracil on Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Samir Attoub

    2018-05-01

    Full Text Available Over recent years, we have demonstrated that Frondoside A, a triterpenoid glycoside isolated from an Atlantic sea cucumber, has potent in vitro and in vivo anti-cancer effects against human pancreatic, breast, and lung cancer. We have also demonstrated that Frondoside A is able to potentiate and/or synergize the anti-cancer effects of major classical cytotoxic agents, namely, gemcitabine, paclitaxel, and cisplatin, in the treatment of pancreatic, breast, and lung cancer, respectively. This study evaluates the impact of Frondoside A alone and in combination with the standard cytotoxic drugs oxaliplatin and 5-fluorouracil (5-FU in the treatment of colon cancer using three human colon cancer cell lines, namely, HT-29, HCT-116, and HCT8/S11. We demonstrate that Frondoside A, oxaliplatin, and 5-FU cause a concentration- and time-dependent reduction in the number of HT-29 colon cancer cells. A concentration of 2.5 µM of Frondoside A led to almost 100% inhibition of cell numbers at 72 h. A similar effect was only observed with a much higher concentration (100 µM of oxaliplatin or 5-FU. The reduction in cell numbers by Frondoside A, oxaliplatin, and 5-FU was also confirmed in two other colon cancer cell lines, namely, HCT8/S11 and HCT-116, treated for 48 h. The combinations of low concentrations of these drugs for 48 h in vitro clearly demonstrated that Frondoside A enhances the inhibition of cell numbers induced by oxaliplatin or 5-FU. Similarly, such a combination also efficiently inhibited colony growth in vitro. Interestingly, we found that the inhibition of ERK1/2 phosphorylation was significantly enhanced when Frondoside A was used in combination treatments. Moreover, we show that Frondoside A and 5-FU, when used alone, induce a concentration-dependent induction of apoptosis and that their pro-apoptotic effect is dramatically enhanced when used in combination. We further demonstrate that apoptosis induction upon the treatment of colon cancer

  4. [Monocarboxylate transporter 1 enhances the sensitivity of breast cancer cells to 3-bromopyruvate in vitro].

    Science.gov (United States)

    Li, Qi-Xiang; Zhang, Pei; Liu, Fang; Wang, Xian-Zhi; Li, Lu; Wang, Zhong-Kun; Jiang, Chen-Chen; Zheng, Hai-Lun; Liu, Hao

    2017-05-20

    To investigate the role of monocarboxylate transporter 1 (MCT1) in enhancing the sensitivity of breast cancer cells to 3-bromopyruvate (3-BrPA). The inhibitory effect of 3-BrPA on the proliferation of breast cancer cells was assessed with MTT assay, and brominated propidium bromide single staining flow cytometry was used for detecting the cell apoptosis. An ELISA kit was used to detect the intracellular levels of hexokinase II, lactate dehydrogenase, lactate, and adenosine triphosphate, and Western blotting was performed to detect the expression of MCT1. MDA-MB-231 cells were transiently transfected with MCT1 cDNA for over-expressing MCT1, and the effect of 3-BrPA on the cell proliferation and adenosine triphosphate level was deteced. 3-BrPA did not produce significant effects on the proliferation and apoptosis of MDA-MB-231 cells, and the cells treated with 200 µmol/L 3-BrPA for 24 h showed an inhibition rate and an apoptosis rate of only 8.72% and 7.8%, respectively. The same treatment, however, produced an inhibition rate and an apoptosis rate of 84.6% and 82.3% in MCF-7 cells, respectively. In MDA-MB-231 cells with MCT1 overexpression, 200 µmol/L 3-BrPA resulted in an inhibition rate of 72.44%, significantly higher than that in the control cells (P<0.05); treatment of the cells with 25, 50, 100, and 200 µmol/L 3-BrPA for 6 h resulted in intracellular adenosine triphosphate levels of 96.98%, 88.44%, 43.3% and 27.56% relative to the control level respectively. MCT1 can enhance the sensitivity of breast cancer cells to 3-BrPA possibly by transporting 3-BrPA into cells to inhibit cell glycolysis.

  5. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway.

    Directory of Open Access Journals (Sweden)

    Igor Paron

    Full Text Available BACKGROUND: Pancreatic cancer (PDAC is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC, a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs. In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. METHODS: Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. RESULTS: Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. CONCLUSION: TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.

  6. Sensitization of gastric cancer cells to alkylating agents by glaucocalyxin B via cell cycle arrest and enhanced cell death.

    Science.gov (United States)

    Ur Rahman, Muhammad Saif; Zhang, Ling; Wu, Lingyan; Xie, Yuqiong; Li, Chunchun; Cao, Jiang

    2017-01-01

    Severe side effects are major problems with chemotherapy of gastric cancer (GC). These side effects can be reduced by using sensitizing agents in combination with therapeutic drugs. In this study, the low/nontoxic dosage of glaucocalyxin B (GLB) was used with other DNA linker agents mitomycin C (MMC), cisplatin (DDP), or cyclophosphamide (CTX) to treat GC cells. Combined effectiveness of GLB with drugs was determined by proliferation assay. The molecular mechanisms associated with cell proliferation, migration, invasion, cell cycle, DNA repair/replication, apoptosis, and autophagy were investigated by immunoblotting for key proteins involved. Cell cycle and apoptosis analysis were performed by flow cytometry. Reactive oxygen species level was also examined for identification of its role in apoptosis. Proliferation assay revealed that the addition of 5 µM GLB significantly sensitizes gastric cancer SGC-7901 cells to MMC, DDP, and CTX by decreasing half-maximal inhibitory concentration (IC 50 ) by up to 75.40%±5%, 45.10%±5%, and 52.10%±5%, respectively. GLB + drugs decreased the expression level of proteins involved in proliferation and migration, suggesting the anticancer potential of GLB + drugs. GLB + MMC, GLB + CTX, and GLB + DDP arrest the cells in G 0 /G 1 and G 1 /S phase, respectively, which may be the consequence of significant decrease in the level of enzymes responsible for DNA replication and telomerase shortening. Combined use of GLB with these drugs also induces DNA damage and apoptosis by activating caspase/PARP pathways and increased production of reactive oxygen species and increased autophagy in GC cells. GLB dosage sensitizes GC cells to the alkylating agents via arresting the cell cycle and enhancing cell death. This is of significant therapeutic importance in the reduction of side effects associated with these drugs.

  7. Functionalization of nanotextured substrates for enhanced identification of metastatic breast cancer cells

    Science.gov (United States)

    Mansur, Nuzhat; Raziul Hasan, Mohammad; Kim, Young-tae; Iqbal, Samir M.

    2017-09-01

    Metastasis is the major cause of low survival rates among cancer patients. Once cancer cells metastasize, it is extremely difficult to contain the disease. We report on a nanotextured platform for enhanced detection of metastatic cells. We captured metastatic (MDA-MDB-231) and non-metastatic (MCF-7) breast cancer cells on anti-EGFR aptamer modified plane and nanotextured substrates. Metastatic cells were seen to change their morphology at higher rates when captured on nanotextured substrates than on plane substrates. Analysis showed statistically different morphological behaviors of metastatic cells that were very pronounced on the nanotextured substrates. Several distance matrices were calculated to quantify the dissimilarity of cell shape change. Nanotexturing increased the dissimilarity of the metastatic cells and as a result the contrast between metastatic and non-metastatic cells increased. Jaccard distance measurements found that the shape change ratio of the non-metastatic and metastatic cells was enhanced from 1:1.01 to 1:1.81, going from plane to nanotextured substrates. The shape change ratio of the non-metastatic to metastatic cells improved from 1:1.48 to 1:2.19 for the Hausdorff distance and from 1:1.87 to 1:4.69 for the Mahalanobis distance after introducing nanotexture. Distance matrix analysis showed that nanotexture increased the shape change ratios of non-metastatic and metastatic cells. Hence, the detectability of metastatic cells increased. These calculated matrices provided clear and explicit measures to discriminate single cells for their metastatic state on functional nanotextured substrates.

  8. Enhancement of radiation effect on cancer cells by gold-pHLIP

    Science.gov (United States)

    Antosh, Michael P.; Wijesinghe, Dayanjali D.; Shrestha, Samana; Lanou, Robert; Huang, Yun Hu; Hasselbacher, Thomas; Fox, David; Neretti, Nicola; Sun, Shouheng; Katenka, Natallia; Cooper, Leon N; Andreev, Oleg A.; Reshetnyak, Yana K.

    2015-01-01

    Previous research has shown that gold nanoparticles can increase the effectiveness of radiation on cancer cells. Improved radiation effectiveness would allow lower radiation doses given to patients, reducing adverse effects; alternatively, it would provide more cancer killing at current radiation doses. Damage from radiation and gold nanoparticles depends in part on the Auger effect, which is very localized; thus, it is important to place the gold nanoparticles on or in the cancer cells. In this work, we use the pH-sensitive, tumor-targeting agent, pH Low-Insertion Peptide (pHLIP), to tether 1.4-nm gold nanoparticles to cancer cells. We find that the conjugation of pHLIP to gold nanoparticles increases gold uptake in cells compared with gold nanoparticles without pHLIP, with the nanoparticles distributed mostly on the cellular membranes. We further find that gold nanoparticles conjugated to pHLIP produce a statistically significant decrease in cell survival with radiation compared with cells without gold nanoparticles and cells with gold alone. In the context of our previous findings demonstrating efficient pHLIP-mediated delivery of gold nanoparticles to tumors, the obtained results serve as a foundation for further preclinical evaluation of dose enhancement. PMID:25870296

  9. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    International Nuclear Information System (INIS)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo

    2016-01-01

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  10. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2016-02-12

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  11. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    Science.gov (United States)

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  12. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  13. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1.

    Directory of Open Access Journals (Sweden)

    Benedikta S Haflidadóttir

    Full Text Available Aberrant expression of miR-96 in prostate cancer has previously been reported. However, the role and mechanism of action of miR-96 in prostate cancer has not been determined. In this study, the diagnostic and prognostic properties of miR-96 expression levels were investigated by qRT-PCR in two well documented prostate cancer cohorts. The miR-96 expression was found to be significantly higher in prostate cancer patients and correlate with WHO grade, and decreased overall survival time; patients with low levels of miR-96 lived 1.5 years longer than patients with high miR-96 levels. The therapeutic potential was further investigated in vitro, showing that ectopic levels of miR-96 enhances growth and cellular proliferation in prostate cancer cells, implying that miR-96 has oncogenic properties in this setting. We demonstrate that miR-96 expression decreases the transcript and protein levels of FOXO1 by binding to one of two predicted binding sites in the FOXO1 3'UTR sequence. Blocking this binding site completely inhibited the growth enhancement conveyed by miR-96. This finding was corroborated in a large external prostate cancer patient cohort where miR-96 expression inversely correlated to FOXO1 expression. Taken together these findings indicate that miR-96 plays a key role in prostate cancer cellular proliferation and can enhance prostate cancer progression. This knowledge might be utilized for the development of novel therapeutic tools for prostate cancer.

  14. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Hage-Sleiman, Rouba; Herveau, Stéphanie; Matera, Eva-Laure; Laurier, Jean-Fabien; Dumontet, Charles

    2010-01-01

    Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and in xenografts. These

  15. X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex.

    Science.gov (United States)

    Imaizumi, Hiromasa; Sato, Katsutoshi; Nishihara, Asuka; Minami, Kazumasa; Koizumi, Masahiko; Matsuura, Nariaki; Hieda, Miki

    2018-04-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell migration and invasion. A sublethal dose of X-ray radiation promoted human breast cancer MDA-MB-231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose-dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X-ray-enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X-ray-enhanced migration and invasion. In addition, the results suggested that X-ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon-enhanced cell migration and invasion. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  17. Sensitization of gastric cancer cells to alkylating agents by glaucocalyxin B via cell cycle arrest and enhanced cell death

    Directory of Open Access Journals (Sweden)

    Ur Rahman MS

    2017-08-01

    cells to the alkylating agents via arresting the cell cycle and enhancing cell death. This is of significant therapeutic importance in the reduction of side effects associated with these drugs. Keywords: glaucocalyxin B, mitomycin C, cisplatin, cyclophosphamide, DNA linkers, side effects, gastric cancer

  18. Cisplatin Induces Bmi-1 and Enhances the Stem Cell Fraction in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Carolina Nör

    2014-02-01

    Full Text Available Recent evidence has unveiled a subpopulation of highly tumorigenic, multipotent cells capable of self-renewal in head and neck squamous cell carcinomas (HNSCCs. These unique cells, named here cancer stem cells (CSCs, proliferate slowly and might be involved in resistance to conventional chemotherapy. We have shown that CSCs are found in perivascular niches and rely on endothelial cell-secreted factors [particularly interleukin-6 (IL-6] for their survival and self-renewal in HNSCC. Here, we hypothesized that cisplatin enhances the stem cell fraction in HNSCC. To address this hypothesis, we generated xenograft HNSCC tumors with University of Michigan-squamous cell carcinoma 22B (UM-SCC-22B cells and observed that cisplatin treatment increased (P = .0013 the fraction of CSCs [i.e., aldehyde dehydrogenase activity high and cluster of differentiation 44 high (ALDHhighCD44high]. Cisplatin promoted self-renewal and survival of CSCs in vitro, as seen by an increase in the number of orospheres in ultralow attachment plates and induction in B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1 and octamer-binding transcription factor 4 expression. Cisplatin-resistant cells expressed more Bmi-1 than cisplatinsensitive cells. IL-6 potentiated cisplatin-induced orosphere formation generated when primary human HNSCC cells were sorted for ALDHhighCD44high immediately after surgery and plated onto ultralow attachment plates. IL-6-induced signal transducer and activator of transcription 3 (STAT3 phosphorylation (indicative of stemness was unaffected by treatment with cisplatin in UM-SCC-22B cells, whereas IL-6-induced extracellular signal-regulated kinase (ERK phosphorylation (indicative of differentiation processes was partially inhibited by cisplatin. Notably, cisplatin-induced Bmi-1 was inhibited by interleukin-6 receptor blockade in parental and cisplatin-resistant cells. Taken together, these results demonstrate that cisplatin enhances the fraction of CSCs

  19. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway.

    Science.gov (United States)

    Yao, Xiangyang; Zhu, Fenfen; Zhao, Zhihui; Liu, Chang; Luo, Lan; Yin, Zhimin

    2011-10-01

    Arctigenin is a dibenzylbutyrolactone lignan isolated from Bardanae fructus, Arctium lappa L, Saussureamedusa, Torreya nucifera, and Ipomea cairica. It has been reported to exhibit anti-inflammatory activities, which is mainly mediated through its inhibitory effect on nuclear transcription factor-kappaB (NF-κB). But the role of arctigenin in JAK-STAT3 signaling pathways is still unclear. In present study, we investigated the effect of arctigenin on signal transducer and activator of transcription 3 (STAT3) pathway and evaluated whether suppression of STAT3 activity by arctigenin could sensitize cancer cells to a chemotherapeutic drug cisplatin. Our results show that arctigenin significantly suppressed both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Inhibition of STAT3 tyrosine phosphorylation was found to be achieved through suppression of Src, JAK1, and JAK2, while suppression of STAT3 serine phosphorylation was mediated by inhibition of ERK activation. Pervanadate reversed the arctigenin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, arctigenin can obviously induce the expression of the PTP SHP-2. Furthermore, the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to cisplatin-induced apoptosis. Arctigenin dramatically promoted cisplatin-induced cell death in cancer cells, indicating that arctigenin enhanced the sensitivity of cancer cells to cisplatin mainly via STAT3 suppression. These observations suggest a novel anticancer function of arctigenin and a potential therapeutic strategy of using arctigenin in combination with chemotherapeutic agents for cancer treatment. Copyright © 2011 Wiley-Liss, Inc.

  20. Micro+nanotexturing of substrates to enhance ligand-assisted cancer cell isolation

    International Nuclear Information System (INIS)

    Mahmood, Mohammed Arif I; Islam, Muhymin; Ali, Waqas; Hanif, Madiha; Iqbal, Samir M; Wan, Yuan; Kim, Young-tae

    2014-01-01

    This paper presents a simple approach to create a two-tiered surface for superior cancer cell isolation. The idea is inspired by the interactions of cells with a nanotextured basement membrane. The texture mimicked the extracellular matrix and basement membrane for superior target cell adhesion. Prepared micro+nanotextured surfaces showed enhanced cell capture. Preparation of the two-tiered surface was done using micro- and nanotexturing and was easily reproducible. It has been shown before that the larger surface area of a nanotextured surface assists the cell’s attachment through surface-anchored ligands. Taking it a step further, ligand functionalized two-level micro+nanotextured surfaces improved the sensitivity of the cancer cell isolation over simple flat nanotexturing. The isolation efficiency increased by 208% compared to the surface with a single-level nanotexture. The two-tiered surface was compatible with previously reported nanotextured devices used for cancer cell isolation. Micro-texture on the glass surface was created using simple sand gritting, followed by reactive ion etching (RIE) of the entire surface. The approach could create large surface areas within a short time while maintaining superior cell isolation efficiency. (paper)

  1. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells.

    Science.gov (United States)

    Hu, Kunpeng; Huang, Pinzhu; Luo, Hui; Yao, Zhicheng; Wang, Qingliang; Xiong, Zhiyong; Lin, Jizong; Huang, He; Xu, Shilei; Zhang, Peng; Liu, Bo

    2017-08-01

    Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.

  2. Insulin-induced enhancement of MCF-7 breast cancer cell response to 5-fluorouracil and cyclophosphamide.

    Science.gov (United States)

    Agrawal, Siddarth; Łuc, Mateusz; Ziółkowski, Piotr; Agrawal, Anil Kumar; Pielka, Ewa; Walaszek, Kinga; Zduniak, Krzysztof; Woźniak, Marta

    2017-06-01

    The study was designed to evaluate the potential use of insulin for cancer-specific treatment. Insulin-induced sensitivity of MCF-7 breast cancer cells to chemotherapeutic agents 5-fluorouracil and cyclophosphamide was evaluated. To investigate and establish the possible mechanisms of this phenomenon, we assessed cell proliferation, induction of apoptosis, activation of apoptotic and autophagic pathways, expression of glucose transporters 1 and 3, formation of reactive oxygen species, and wound-healing assay. Additionally, we reviewed the literature regarding theuse of insulin in cancer-specific treatment. We found that insulin increases the cytotoxic effect of 5-fluorouracil and cyclophosphamide in vitro up to two-fold. The effect was linked to enhancement of apoptosis, activation of apoptotic and autophagic pathways, and overexpression of glucose transporters 1 and 3 as well as inhibition of cell proliferation and motility. We propose a model for insulin-induced sensitization process. Insulin acts as a sensitizer of cancer cells to cytotoxic therapy through various mechanisms opening a possibility for metronomic insulin-based treatments.

  3. Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel

    International Nuclear Information System (INIS)

    Zou, Chun-Fang; Yu, Yinhua; Jia, Luoqi; Jin, Hongyan; Yao, Ming; Zhao, Naiqing; Huan, Jin; Lu, Zhen; Bast, Robert C Jr; Feng, Youji

    2011-01-01

    ARHI is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma in situ (DCIS) to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel. Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA) or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC) in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts. ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest. ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest

  4. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  5. Reduction of nitric oxide level enhances the radiosensitivity of hypoxic non-small cell lung cancer

    International Nuclear Information System (INIS)

    Saleem, Wael; Suzuki, Yoshiyuki; Mobaraki, Abdulelah; Yoshida, Yukari; Noda, Shinei; Saitoh, Jun-ichi; Nakano, Takashi

    2011-01-01

    The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (E-TKI) resistance has emerged as an important clinical issue. To overcome this resistance, researchers have examined different modalities, either for use as a monotherapy or in combination with E-TKI therapy. In the present study, we investigated whether a decrease in nitric oxide (NO) levels affects the radiosensitization of non-small cell lung cancer (NSCLC) cell lines. A549 and H3255 NSCLC cells were examined. They were subjected to hypoxic conditions and monotherapy, or combined therapy using radiation and N G -monomethyl- L -arginine, monoacetate (LNMMA). Reductions in nitric oxide levels enhanced the radiosensitivity of both cell lines and significantly reduced the expression of both hypoxia-inducible factor-1α (HIF-1α) and EGFR in H3255 cells compared to A549 cells. Since NO is significantly associated with cell metabolism, we measured the levels of pyruvate dehydrogenase kinase-1 (PDK-1), reactive oxygen species, and oxygen and observed that the expression of PDK-1 was significantly reduced. This reduction was seen simultaneously after the silencing of HIF-1α; however, not following LNMMA treatment. The oxygen concentration was significantly increased in the treated cells, and their viability decreased in parallel. Reactive oxygen species were decreased after LNMMA and radiation treatment. Adding EGFR-TKI to cells with reduced NO levels further suppressed cell viability when combined with radiation. This study suggests that a reduction in the NO level might substantially overcome the radioresistance of mutant NSCLC cells. (author)

  6. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing

    NARCIS (Netherlands)

    Tesori, V.; Piscaglia, A.C.; Samengo, D.; Barba, M.; Bernardini, C.; Scatena, R.; Pontoglio, A.; Castellini, L.; Spelbrink, H.; Maulucci, G.; Puglisi, M.A.; Pani, G.; Gasbarrini, A.

    2015-01-01

    Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to

  7. Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells

    Science.gov (United States)

    Wang, Qiang; Jiang, Jun; Ying, Guoguang; Xie, Xiao-Qing; Zhang, Xia; Xu, Wei; Zhang, Xuemin; Song, Erwei; Bu, Hong; Ping, Yi-Fang; Yao, Xiao-Hong; Wang, Bin; Xu, Shilei; Yan, Ze-Xuan; Tai, Yanhong; Hu, Baoquan; Qi, Xiaowei; Wang, Yan-Xia; He, Zhi-Cheng; Wang, Yan; Wang, Ji Ming; Cui, You-Hong; Chen, Feng; Meng, Kun; Wang, Zhaoyi; Bian, Xiu-Wu

    2018-01-01

    The 66 kDa estrogen receptor alpha (ERα66) is the main molecular target for endocrine therapy such as tamoxifen treatment. However, many patients develop resistance with unclear mechanisms. In a large cohort study of breast cancer patients who underwent surgery followed by tamoxifen treatment, we demonstrate that ERα36, a variant of ERα66, correlates with poor prognosis. Mechanistically, tamoxifen directly binds and activates ERα36 to enhance the stemness and metastasis of breast cancer cells via transcriptional stimulation of aldehyde dehydrogenase 1A1 (ALDH1A1). Consistently, the tamoxifen-induced stemness and metastasis can be attenuated by either ALDH1 inhibitors or a specific ERα36 antibody. Thus, tamoxifen acts as an agonist on ERα36 in breast cancer cells, which accounts for hormone therapy resistance and metastasis of breast cancer. Our study not only reveals ERα36 as a stratifying marker for endocrine therapy but also provides a promising therapeutic avenue for tamoxifen-resistant breast cancer. PMID:29393296

  8. Regulator of G-protein signaling 5 (RGS5) inhibits cell proliferation and enhances radiosensitivity of human lung cancer cells

    International Nuclear Information System (INIS)

    Xu Zumin; Wang Jin; Zuo Yufang; Yu Zhonghua; Peng Fang; Hu Xiao; Zhou Qichao; Ma Honglian; Bao Yong; Chen Ming

    2014-01-01

    Objective: To investigate the effects of regulator and the underlying molecular mechanisms of G-protein signaling 5 (RGS5) on radiation response in human lung cancer cells. Methods: The effects of RGS5 on viability were determined by MTT assay, and apoptosis rate was detected by flow cytometry, in human lung cancer cells. The combined effect of ionizing radiation and RGS5 on tumor cells was detected by colony formation assay. The protein expression was detected by Western blot. Results: RGS5 overexpression remarkably inhibited the survival of human lung cancer cells, and the growth inhibition rate of RGS5 overexpression on A549 and Calu-3 cells were 44.4% (F = 29.18, P < 0.05) and 39.27% (F = 23.04, P < 0.05) at 48 h, and 54.3%(F = 103.45, P < 0.05), 44.7%(F = 108.02, P < 0.05) at 72 h post-irradiation, respectively. RGS5 might exert its inhibitory effects on human lung cancer cells by inducing tumor cell apoptosis, while the apoptotic cells rate in A549 and Calu-3 cells in control group, pTRiEX group and pTRiEX-RGS5 group were (1.3±0.2)%, (3.4±0.6)%, (19.6±2.3)% (F = 86.62, P < 0.05), and (3.2±0.8)%, (3.0±0.9)%, (12.8±1.8)% (F = 28.80, P < 0.05) at 36 h post-irradiation, respectively. Furthermore, RGS5 could sensitize the lung cancer cells to radiation. Conclusions: RGS5 might play an inhibitory role in human lung cancer cell proliferation, which may explain the pathoclinical observation thet high expression of RGSS is a favorable prognostic factor in NSCLC patients. In addition, RGS5 also enhance the anti-tumor effects of radiation in human lung cancer cells. (authors)

  9. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Brechbuhl, Heather M. [Pediatrics, National Jewish Health, Denver, Colorado (United States); Kachadourian, Remy; Min, Elysia [Department of Medicine, National Jewish Health, Denver, Colorado (United States); Chan, Daniel [Medical Oncology, University of Colorado Denver Health Sciences Center (United States); Day, Brian J., E-mail: dayb@njhealth.org [Department of Medicine, University of Colorado Denver Health Sciences Center (United States); Immunology, University of Colorado Denver Health Sciences Center (United States); Pharmaceutical Sciences, University of Colorado Denver Health Sciences Center (United States); Department of Medicine, National Jewish Health, Denver, Colorado (United States)

    2012-01-01

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression and total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 μM) and DOX (0.025–3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ► Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ► Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ► Cancer cell sensitivity correlated with GSH and MRP gene network expression. ► This approach could allow for lower side effects and targeting resistant tumors.

  10. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xuchen Cao; Bowen Liu; Wenfeng Cao; Weiran Zhang; Fei Zhang; Hongmeng Zhao; Ran Meng

    2013-01-01

    Apigenin (4',5,7-trihydroxyflavone) is a member of the flavone subclass of flavonoids present in fruits and vegetables.The involvement of autophagy in the apigenin-induced apoptotic death of human breast cancer cells was investigated.Cell proliferation and viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays.Flow cytometry,fluorescent staining and Western blot analysis were employed to detect apoptosis and autophagy,and the role of autophagy was assessed using autophagy inhibitors.Apigenin dose-and time-dependently repressed the proliferation and clonogenic survival of the human breast cancer T47D and MDA-MB-231 cell lines.The death of T47D and MDA-MB-231 cells was due to apoptosis associated with increased levels of Caspase3,PARP cleavage and Bax/Bcl-2 ratios.The results from flow cytometry and fluorescent staining also verified the occurrence of apoptosis.In addition,the apigenin-treated cells exhibited autophagy,as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles (AVOs)by flow cytometry.Furthermore,the results of the Western blot analysis revealed that the level of LC3-Ⅱ,the processed form of LC3-Ⅰ,was increased.Treatment with the autophagy inhibitor,3-methyladenine (3-MA),significantly enhanced the apoptosis induced by apigenin,which was accompanied by an increase in the level of PARP cleavage.Similar results were also confirmed by flow cytometry and fluorescence microscopy.These results indicate that apigenin has apoptosis-and autophagy-inducing effects in breast cancer cells.Autophagy plays a cyto-protective role in apigenin-induced apoptosis,and the combination of apigenin and an autophagy inhibitor may be a promising strategy for breast cancer control.

  11. Polymeric Nanoparticles Containing Taxanes Enhance Chemoradiotherapeutic Efficacy in Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Jung, Joohee; Park, Sung-Jin; Chung, Hye Kyung; Kang, Hye-Won; Lee, Sa-Won; Seo, Min Hyo; Park, Heon Joo; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2012-01-01

    Purpose: To reduce the side effects and improve the efficacy of chemoradiation therapy, taxanes were incorporated into polymeric nanoparticles (PNP), and their synergic effect on radiation therapy in non-small cell lung cancer was evaluated. Methods and Materials: The properties of PNP-taxanes were characterized by transmission electron microscopy and dynamic light scattering. The chemoradiotherapeutic efficacy of PNP-taxanes was determined by clonogenic assay, cellular morphology, and flow cytometry in A549 cells. In mice bearing A549-derived tumors, the tumor growth delay was examined after the treatment of PNP-taxanes and/or ionizing radiation (IR). Results: The PNP-taxanes were found to be approximately 45 nm in average diameter and to have high solubility in water. They showed the properties of active internalization into cells and preserved the anticancer effect of free taxanes. The survival fraction of A549 cells by clonogenic assay was significantly reduced in the group receiving combined treatment of PNP-taxanes and IR. In addition, in vivo radiotherapeutic efficacy was markedly enhanced by the intravenous injection of PNP-taxanes into the xenograft mice. Conclusions: We have demonstrated the feasibility of PNP-taxanes to enhance the efficacy of chemoradiation therapy. These results suggest PNP-taxanes can hold an invaluable and promising position in treating human cancers as a novel and effective chemoradiation therapy agent.

  12. Orlistat Reduces Proliferation and Enhances Apoptosis in Human Pancreatic Cancer Cells (PANC-1).

    Science.gov (United States)

    Sokolowska, Ewa; Presler, Malgorzata; Goyke, Elzbieta; Milczarek, Ryszard; Swierczynski, Julian; Sledzinski, Tomasz

    2017-11-01

    Pancreatic cancer is a disease with very poor prognosis, and none of currently available pharmacotherapies have proven to be efficient in this indication. The aim of this study was to analyze the expression of fatty acid synthase (FASN) gene as a potential therapeutic target in proliferating human pancreatic cancer cells (PANC-1), and verify if orlistat, originally developed as an anti-obesity drug, inhibits PANC-1 proliferation. The effects of orlistat on gene expression, lipogenesis, proliferation and apoptosis was studied in PANC-1 cell culture. Expression of FASN increased during proliferation of PANC-1. Inhibition of FASN by orlistat resulted in a significant reduction of PANC-1 proliferation and enhanced apoptosis of these cells. This study showed, to our knowledge for the first time, that orlistat exhibits significant antitumor activity against PANC-1 cells. This implies that orlistat analogs with good oral bioavailability may find application in pharmacotherapy of pancreatic cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor.

    Science.gov (United States)

    Eguchi, Daiki; Ikenaga, Naoki; Ohuchida, Kenoki; Kozono, Shingo; Cui, Lin; Fujiwara, Kenji; Fujino, Minoru; Ohtsuka, Takao; Mizumoto, Kazuhiro; Tanaka, Masao

    2013-05-01

    Pancreatic cancer (PC), a hypovascular tumor, thrives under hypoxic conditions. Pancreatic stellate cells (PSCs) promote PC progression by secreting soluble factors, but their functions in hypoxia are poorly understood. This study aimed to clarify the effects of hypoxic conditions on the interaction between PC cells and PSCs. We isolated human PSCs from fresh pancreatic ductal adenocarcinomas and analyzed functional differences in PSCs between normoxia (21% O2) and hypoxia (1% O2), including expression of various factors related to tumor-stromal interactions. We particularly analyzed effects on PC invasiveness of an overexpressed molecule-connective tissue growth factor (CTGF)-in PSCs under hypoxic conditions, using RNA interference techniques. Conditioned media from hypoxic PSCs enhanced PC cell invasiveness more intensely than that from normoxic PSCs (P cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition.

    Science.gov (United States)

    Roy, L D; Sahraei, M; Subramani, D B; Besmer, D; Nath, S; Tinder, T L; Bajaj, E; Shanmugam, K; Lee, Y Y; Hwang, S I L; Gendler, S J; Mukherjee, P

    2011-03-24

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic ductal adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT, which translates to increased invasiveness and metastasis. EMT was significantly reduced when MUC1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR and western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared with cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus, thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer.

  15. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage.

    Directory of Open Access Journals (Sweden)

    Katja Storch

    Full Text Available Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease.

  16. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    Energy Technology Data Exchange (ETDEWEB)

    Tanti, Goutam Kumar, E-mail: goutamjnu@hotmail.com; Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.

  17. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    International Nuclear Information System (INIS)

    Tanti, Goutam Kumar; Pandey, Shweta; Goswami, Shyamal K.

    2015-01-01

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy

  18. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    International Nuclear Information System (INIS)

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu; Park, Sang Jun; Kim, Chun-Ho; Lee, Kee-Ho

    2014-01-01

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells

  19. Vaccination efficacy with marrow mesenchymal stem cell against cancer was enhanced under simulated microgravity

    International Nuclear Information System (INIS)

    Li, Jing; Chen, Jun; Li, Xiuyu; Qian, Yanfang

    2017-01-01

    Stem cell vaccination can induce consistent and strong anti-tumor immunity against cancer in mice model. The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine MSCs. Based on this conception, we first compared their tumor vaccines intervention effects of adult MSCs and MSCs under simulated microgravity (MSC/SMG). In this study, BALB/c mice were vaccinated with MSCs or MSC/SMG, compared with mice vaccinated with phosphate buffered saline (PBS) as negative controls. We then subcutaneously implanted the A549 human lung cancer cell line into vaccinated mice and monitored tumor growth potential in vivo. The smaller tumor size and less tumor weight were observed in mice vaccinated with MSCs or MSC/SMG, compared with that of the Control group. Particularly, it was much more significant in the group of MSC/SMG than that group of the MSCs. Vaccination with SMG treated MSCs inhibited proliferation and promoted apoptosis of tumor tissue. SMG/MSC vaccination induced bothTh1-mediated cytokine response; CD8-dependent cytotoxic response which reduced the proportion of Treg cells. Furthermore, SMG/MSC vaccination significantly increased MHC1 and HSPs proteins expression. In conclusion, we demonstrated the SMG could improve tumor-suppressive activity of MSC. The enhanced anti-tumor immune response of MSCs/SMG was strongly associated with the higher expression of MHC class I molecule on DCs, and the abundance of HSPs in the SMG treated MSCs may make antigens in the MSC more cross-presentable to the host DCs for generating protective antitumor activity. This study gains an insight into the mechanism of MSCs anti-tumor efficacy and gives a new strategy for cancer therapies in the future. - Highlights: • Vaccination with SMG

  20. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  1. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  2. Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Suma [Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India); Ananthanarayanan, Preeta; Aziz, Sajida Kannangar [Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India); Rai, Sharada [Department of Pathology, Kasturba Medical College, Mangalore Campus, Manipal University, Mangalore 575 001, Karnataka (India); Mutalik, Srinivas [Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576 104, Karnataka (India); Sadashiva, Satish Rao Bola, E-mail: rao.satish@manipal.edu [Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India)

    2017-04-01

    Despite enormous advances in remedies developed for breast cancer, an effective therapeutic strategy by targeting malignant cells with the least normal tissue toxicity is yet to be developed. Hsp90 is considered to be an important therapeutic target to inhibit cell proliferation. Geldanamycin (GDM), a potent inhibitor of Hsp90 was withdrawn from clinical trials due to its undesirable hepatotoxicity. We report a superparamagnetic iron oxide (SPION) based polymeric nanocomposite of GDM augmenting anticancer competence with decreased hepatic toxicity. The particle size of nanocomposite was ascertained to be 76 ± 10 nm with acceptable stability. A comparative dose dependent in vitro validation of cytotoxicity showed an enhanced cellular damage and necrosis in breast cancer (MCF-7) cell line at a low dose of 5.49 nM (in GDM nanocomposite) in contrast to 20 nM of pure GDM, while normal breast epithelial cells (MCF-10A) were least affected. Besides, in vivo study (in breast cancer xenografts) substantiated 2.7 fold delay in tumor progression mediated by redundancy in the downstream functions of p-Akt and MAPK-Erk leading to apoptosis with negligible hepatotoxicity. Pure GDM disrupted the function and morphology of liver with lesser therapeutic efficacy than the GDM nanocomposite. These findings deduce that GDM based polymeric magnetite nanocomposite play a vital role in efficacious therapy while vanquishing normal cells and hepatic toxicity and thereby promising it to be reinstated in clinics. - Highlights: • GDM nanocomposite shows selective cell kill of cancerous breast cells. • Nanocomposite delays the growth of tumor in comparison to pure GDM treatment. • GDM promotes apoptosis by down-regulation of p-Akt and MAPK-Erk. • GDM nanocomposite nullifies the hepatotoxicity generally exhibited by pure GDM.

  3. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Science.gov (United States)

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  4. The enhancement of radiosensitivity by celecoxib, selective cyclooxygenase-2 inhibitor, on human cancer cells expressing differential levels of cyclooxygenase-2

    International Nuclear Information System (INIS)

    Pyo, Hong Ryull; Shin, You Keun; Kim, Hyun Seok; Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    2003-01-01

    To investigate the modulation of radiosensitivity by celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on cancer cells over- and under-expressing COX-2. A clonogenic radiation survival analysis was performed on A549 human lung and MCF-7 human breast cancer cell lines incubated in both 1 and 10% fetal bovine serum (FBS) containing media. The apoptosis in both cell lines was measured after treatment with radiation and/or celecoxib. Celecoxib enhanced the radiation sensitivity of the A549 cells in the medium containing the 10% FBS, with radiation enhancement ratios of 1.58 and 1.81 respectively, at surviving fractions of 0.1, with 30 μ M and 50 μ M celecoxib. This enhanced radiosensitivity disappeared in the medium containing the 1% FBS. Celecoxib did not change the radiation sensitivity of the MCF-7 cells in either media. The induction of apoptosis by celecoxib and radiation was not synergistic in either cell line. Celecoxib, a selective COX-2 inhibitor, preferentially enhanced the effect of radiation on COX-2 over-expressing cancer cells compared to the cells with a low expression, and this effect disappeared on incubation of the cells during drug treatment in the medium with suboptimal serum concentration. Apoptosis did not appear to be the underlying mechanism of this radiation enhancement effect due to celecoxib on the A549 cells. These findings suggest radiosensitization by a selective COX-2 inhibitor is COX-2 dependent

  5. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sharma, Deepak [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2016-09-09

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.

  6. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    International Nuclear Information System (INIS)

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti; Sharma, Deepak; Sandur, Santosh K.

    2016-01-01

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.

  7. Prevalence of Enhancer of Zeste Homolog 2 in Patients with Resected Small Cell Lung Cancer.

    Science.gov (United States)

    Toyokawa, Gouji; Takada, Kazuki; Tagawa, Tetsuzo; Kinoshita, Fumihiko; Kozuma, Yuka; Matsubara, Taichi; Haratake, Naoki; Takamori, Shinkichi; Akamine, Takaki; Hirai, Fumihiko; Yamada, Yuichi; Hamamoto, Ryuji; Oda, Yoshinao; Maehara, Yoshihiko

    2018-06-01

    Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that is deeply involved in cancer pathogenesis. Although clinicopathological significance of EZH2 in non-small cell lung cancer has been gradually elucidated, such significance in small cell lung cancer (SCLC) has yet to be fully investigated. Forty patients with resected SCLC were analyzed for EZH2. EZH2 expression was evaluated using the Allred score (0-8) and was classified into negative (0-6) and positive (7 and 8). We evaluated the association between EZH2 and the clinicopathological characteristics and postoperative survivals. Among 40 patients, 15 (37.5%) and 25 (62.5%) were classified as being negative and positive for EZH2, respectively. Fisher's exact test demonstrated no significant associations between the positivity for EZH2 and clinicopathological characteristics. No significant differences were observed in recurrence-free and overall survivals between EZH2-negative/low and EZH2-high patients. EZH2 was frequently observed in patients with resected SCLC, but no significant associations were found between its expression and the clinicopathological characteristics and postoperative survivals. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion.

    Science.gov (United States)

    Zhou, Yang; Wu, Bo; Li, Jiang-Hua; Nan, Gang; Jiang, Jian-Li; Chen, Zhi-Nan

    2017-08-01

    Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  9. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells

    OpenAIRE

    Baghdadi, Muhammad; Wada, Haruka; Nakanishi, Sayaka; Abe, Hirotake; Han, Nanumi; Putra, Wira Eka; Endo, Daisuke; Watari, Hidemichi; Sakuragi, Noriaki; Hida, Yasuhiro; Kaga, Kichizo; Miyagi, Yohei; Yokose, Tomoyuki; Takano, Atsushi; Daigo, Yataro

    2016-01-01

    The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance lo...

  10. Polychlorinated biphenyls (PCBs enhance metastatic properties of breast cancer cells by activating Rho-associated kinase (ROCK.

    Directory of Open Access Journals (Sweden)

    Sijin Liu

    Full Text Available BACKGROUND: Polychlorinated biphenyls (PCBs are a family of structurally related chlorinated aromatic hydrocarbons. Numerous studies have documented a wide spectrum of biological effects of PCBs on human health, such as immunotoxicity, neurotoxicity, estrogenic or antiestrogenic activity, and carcinogenesis. The role of PCBs as etiologic agents for breast cancer has been intensively explored in a variety of in vivo, animal and epidemiologic studies. A number of investigations indicated that higher levels of PCBs in mammary tissues or sera correlated to breast cancer risk, and PCBs might be implicated in advancing breast cancer progression. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, we for the first time report that PCBs greatly promote the ROCK activity and therefore increase cell motility for both non-metastatic and metastatic human breast cancer cells in vitro. In the in vivo study, PCBs significantly advance disease progression, leading to enhanced capability of metastatic breast cancer cells to metastasize to bone, lung and liver. Additionally, PCBs robustly induce the production of intracellular reactive oxygen species (ROS in breast cancer cells; ROS mechanistically elevate ROCK activity. CONCLUSIONS/SIGNIFICANCE: PCBs enhance the metastatic propensity of breast cancer cells by activating the ROCK signaling, which is dependent on ROS induced by PCBs. Inhibition of ROCK may stand for a unique way to restrain metastases in breast cancer upon PCB exposure.

  11. Quercetin-Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin-Resistant Cancer Cells.

    Science.gov (United States)

    Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A

    2017-02-01

    One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells.

    Science.gov (United States)

    Shen, Haifa; Sun, Tong; Hoang, Hanh H; Burchfield, Jana S; Hamilton, Gillian F; Mittendorf, Elizabeth A; Ferrari, Mauro

    2017-12-01

    Cancer immunotherapy has become arguably the most promising advancement in cancer research and therapy in recent years. The efficacy of cancer immunotherapy is critically dependent on specific physiological and physical processes - collectively referred to as transport barriers - including the activation of T cells by antigen presenting cells, T cells migration to and penetration into the tumor microenvironment, and movement of nutrients and other immune cells through the tumor microenvironment. Nanotechnology-based approaches have great potential to help overcome these transport barriers. In this review, we discuss the ways that nanotechnology is being leveraged to improve the efficacy and potency of various cancer immunotherapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy

    Directory of Open Access Journals (Sweden)

    Hwai-Jeng Lin

    2017-06-01

    Full Text Available Cytolethal distending toxin (CDT produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa. However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR. In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1 expression and the inhibition of acidic vesicular organelle (AVO formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa.

  14. Inhibition of Glutathione and Thioredoxin Metabolism Enhances Sensitivity to Perifosine in Head and Neck Cancer Cells

    Directory of Open Access Journals (Sweden)

    Andrean L. Simons

    2009-01-01

    Full Text Available The hypothesis that the Akt inhibitor, perifosine (PER, combined with inhibitors of glutathione (GSH and thioredoxin (Trx metabolism will induce cytotoxicity via metabolic oxidative stress in human head and neck cancer (HNSCC cells was tested. PER induced increases in glutathione disulfide (%GSSG in FaDu, Cal-27, and SCC-25 HNSCCs as well as causing significant clonogenic cell killing in FaDu and Cal-27, which was suppressed by simultaneous treatment with N-acetylcysteine (NAC. An inhibitor of GSH synthesis, buthionine sulfoximine (BSO, sensitized Cal-27 and SCC-25 cells to PER-induced clonogenic killing as well as decreased total GSH and increased %GSSG. Additionally, inhibition of thioredoxin reductase activity (TrxRed with auranofin (AUR was able to induce PER sensitization in SCC-25 cells that were initially refractory to PER. These results support the conclusion that PER induces oxidative stress and clonogenic killing in HNSCC cells that is enhanced with inhibitors of GSH and Trx metabolism.

  15. Magnetic nanoparticles of Fe3O4 enhance docetaxel-induced prostate cancer cell death

    Directory of Open Access Journals (Sweden)

    Sato A

    2013-08-01

    Full Text Available Akiko Sato,1 Naoki Itcho,1 Hitoshi Ishiguro,2,3 Daiki Okamoto,1 Naohito Kobayashi,4 Kazuaki Kawai,5 Hiroshi Kasai,5 Daisuke Kurioka,1 Hiroji Uemura,2 Yoshinobu Kubota,2 Masatoshi Watanabe11Laboratory for Medical Engineering, Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Japan; 2Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; 3Photocatalyst Group, Kanagawa Academy of Science and Technology, Kawasaki, Japan; 4Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; 5Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, JapanAbstract: Docetaxel (DTX is one of the most important anticancer drugs; however, the severity of its adverse effects detracts from its practical use in the clinic. Magnetic nanoparticles of Fe3O4 (MgNPs-Fe3O4 can enhance the delivery and efficacy of anticancer drugs. We investigated the effects of MgNPs-Fe3O4 or DTX alone, and in combination with prostate cancer cell growth in vitro, as well as with the mechanism underlying the cytotoxic effects. MgNPs-Fe3O4 caused dose-dependent increases in reactive oxygen species levels in DU145, PC-3, and LNCaP cells; 8-hydroxydeoxyguanosine levels were also elevated. MgNPs-Fe3O4 alone reduced the viability of LNCaP and PC-3 cells; however, MgNPs-Fe3O4 enhanced the cytotoxic effect of a low dose of DTX in all three cell lines. MgNPs-Fe3O4 also augmented the percentage of DU145 cells undergoing apoptosis following treatment with low dose DTX. Expression of nuclear transcription factor κB in DU145 was not affected by MgNPs-Fe3O4 or DTX alone; however, combined treatment suppressed nuclear transcription factor κB expression. These findings offer the possibility that MgNPs-Fe3O4–low dose DTX combination therapy may be

  16. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  17. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells.

    Science.gov (United States)

    Baghdadi, Muhammad; Wada, Haruka; Nakanishi, Sayaka; Abe, Hirotake; Han, Nanumi; Putra, Wira Eka; Endo, Daisuke; Watari, Hidemichi; Sakuragi, Noriaki; Hida, Yasuhiro; Kaga, Kichizo; Miyagi, Yohei; Yokose, Tomoyuki; Takano, Atsushi; Daigo, Yataro; Seino, Ken-Ichiro

    2016-10-15

    The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance local immunosuppression and to promote the survival of chemoresistant cancer cells by activating AKT signaling. Targeting IL34 in chemoresistant tumors resulted in a remarkable inhibition of tumor growth when accompanied with chemotherapy. Our results define a pathogenic role for IL34 in mediating immunosuppression and chemoresistance and identify it as a tractable target for anticancer therapy. Cancer Res; 76(20); 6030-42. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  19. Arctigenin enhances chemosensitivity to cisplatin in human nonsmall lung cancer H460 cells through downregulation of survivin expression.

    Science.gov (United States)

    Wang, Huan-qin; Jin, Jian-jun; Wang, Jing

    2014-01-01

    Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin-mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin-treated non-small-cell lung cancer (NSCLC) H460 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and annexin-V/propidium iodide staining were performed to analyze the proliferation and apoptosis of H460 cells. Arctigenin dose-dependently suppressed cell proliferation and potentiated cell apoptosis, coupled with increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. Moreover, arctigenin sensitized H460 cells to cisplatin-induced proliferation inhibition and apoptosis. Arctigenin alone or in combination with cisplatin had a significantly lower amount of survivin. Ectopic expression of survivin decreased cell apoptosis induced by arctigenin (P arctigenin (P arctigenin has a therapeutic potential in combina-tion with chemotherapeutic agents for NSLC. © 2013 Wiley Periodicals, Inc.

  20. Enhancement of Radiation Effects by Ursolic Acid in BGC-823 Human Adenocarcinoma Gastric Cancer Cell Line.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Recent research has suggested that certain plant-derived polyphenols, i.e., ursolic acid (UA, which are reported to have antitumor activities, might be used to sensitize tumor cells to radiation therapy by inhibiting pathways leading to radiation therapy resistance. This experiment was designed to investigate the effects and possible mechanism of radiosensitization by UA in BGC-823 cell line from human adenocarcinoma gastric cancer in vitro. UA caused cytotoxicity in a dose-dependent manner, and we used a sub-cytotoxicity concentration of UA to test radioenhancement efficacy with UA in gastric cancer. Radiosensitivity was determined by clonogenic survival assay. Surviving fraction of the combined group with irradiation and sub-cytotoxicity UA significantly decreased compared with the irradiation group. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, increased reactive oxygen species (ROS, down-regulated Ki-67 level and improved apoptosis. In conclusion, as UA demonstrated potent antiproliferation effect and synergistic effect, it could be used as a potential drug sensitizer for the application of radiotherapy.

  1. Silencing the expression of Cbl-b enhances the immune activation of T lymphocytes against RM-1 prostate cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Shu-Kui Zhou

    2014-12-01

    Conclusion: Silencing Cbl-b significantly enhanced T lymphocyte function and T lymphocyte cytotoxicity activity against a model prostate cancer cell line in vitro. This study suggests a potentially novel immunotherapeutic strategy against prostate cancer.

  2. Trichostatin A Enhances the Apoptotic Potential of Palladium Nanoparticles in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-08-01

    Full Text Available Cervical cancer ranks seventh overall among all types of cancer in women. Although several treatments, including radiation, surgery and chemotherapy, are available to eradicate or reduce the size of cancer, many cancers eventually relapse. Thus, it is essential to identify possible alternative therapeutic approaches for cancer. We sought to identify alternative and effective therapeutic approaches, by first synthesizing palladium nanoparticles (PdNPs, using a novel biomolecule called saponin. The synthesized PdNPs were characterized by several analytical techniques. They were significantly spherical in shape, with an average size of 5 nm. Recently, PdNPs gained much interest in various therapies of cancer cells. Similarly, histone deacetylase inhibitors are known to play a vital role in anti-proliferative activity, gene expression, cell cycle arrest, differentiation and apoptosis in various cancer cells. Therefore, we selected trichostatin A (TSA and PdNPs and studied their combined effect on apoptosis in cervical cancer cells. Cells treated with either TSA or PdNPs showed a dose-dependent effect on cell viability. The combinatorial effect, tested with 50 nM TSA and 50 nMPdNPs, had a more dramatic inhibitory effect on cell viability, than either TSA or PdNPs alone. The combination of TSA and PdNPs had a more pronounced effect on cytotoxicity, oxidative stress, mitochondrial membrane potential (MMP, caspase-3/9 activity and expression of pro- and anti-apoptotic genes. Our data show a strong synergistic interaction between TSA and PdNPs in cervical cancer cells. The combinatorial treatment increased the therapeutic potential and demonstrated relevant targeted therapy for cervical cancer. Furthermore, we provide the first evidence for the combinatory effect and cytotoxicity mechanism of TSA and PdNPs in cervical cancer cells.

  3. Autophagy Enhances the Aggressiveness of Human Colorectal Cancer Cells and Their Ability to Adapt to Apoptotic Stimulus

    International Nuclear Information System (INIS)

    Zheng, Hai-yang; Zhang, Xiao-yang; Wang, Xing-fen; Sun, Bao-cun

    2012-01-01

    To investigate LC3B-II and active caspase-3 expression in human colorectal cancer to elucidate the role of autophagy, and to explore the relationship of autophagy with apoptosis in human colorectal cancer. LC3B expression was detected by immunohistochemistry in 53 human colorectal cancer tissues and 20 normal colon tissues. The protein levels of LC3B-II and active caspase-3 were also determined by Western blot analysis in 23 human colorectal cancer tissues and 10 normal colon tissues. LC3B was expressed both in cancer cells and normal epithelial cells. LC3B expression in the peripheral area of cancer tissues was correlated with several clinicopathological factors, including tumor differentiation (P=0.002), growth pattern of the tumor margin (P=0.028), pN (P=0.002), pStage (P=0.032), as well as vessel and nerve plexus invasion (P=0.002). The protein level of LC3B-II in cancer tissue was significantly higher than in normal tissue (P=0.038), but the expression of active forms of procaspase-3 in cancer tissue was lower (P=0.041). There was a statistically significant positive correlation between the expression levels of LC3B-II and the active forms of procaspase-3 (r=0.537, P=0.008). Autophagy has a prosurvival role in human colorectal cancer. Autophagy enhances the aggressiveness of colorectal cancer cells and their ability to adapt to apoptotic stimulus

  4. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis

    Directory of Open Access Journals (Sweden)

    Yi-Chia Lin

    2017-05-01

    Full Text Available Chloroquine (CQ and hydroxychloroquine (HCQ, two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24 in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24 compared to immortalized uroepithelial cells (SV-Huc-1 or other reference cancer cell lines (PC3 and MCF-7. We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose polymerase (PARP, caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer.

  5. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis.

    Science.gov (United States)

    Lin, Yi-Chia; Lin, Ji-Fan; Wen, Sheng-I; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2017-05-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer. Copyright © 2017. Published by Elsevier Taiwan.

  6. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine

    Directory of Open Access Journals (Sweden)

    Zhengdong Jiang

    2016-09-01

    Full Text Available Resveratrol, a natural polyphenol present in most plants, inhibits the growth of numerous cancers both in vitro and in vivo. Aberrant expression of YAP has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of resveratrol in YES-activated protein (YAP expression and that of YAP in pancreatic cancer cells’ response to gemcitabine resistance remain elusive. In this study, we found that resveratrol suppressed the proliferation and cloning ability and induced the apoptosis of pancreatic cancer cells. These multiple biological effects might result from the activation of AMP-activation protein kinase (AMPK (Thr172 and, thus, the induction of YAP cytoplasmic retention, Ser127 phosphorylation, and the inhibition of YAP transcriptional activity by resveratrol. YAP silencing by siRNA or resveratrol enhanced the sensitivity of gemcitabine in pancreatic cancer cells. Taken together, these findings demonstrate that resveratrol could increase the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting YAP expression. More importantly, our work reveals that resveratrol is a potential anticancer agent for the treatment of pancreatic cancer, and YAP may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy.

  7. Increased diacylglycerol kinase ζ expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion

    International Nuclear Information System (INIS)

    Cai, Kun; Mulatz, Kirk; Ard, Ryan; Nguyen, Thanh; Gee, Stephen H

    2014-01-01

    their invasiveness. Elevated DGKζ expression contributes to increased Rho GTPase activation and the enhanced motility of metastatic cancer cells. These findings warrant further investigation of the clinical relevance of DGKζ upregulation in colon and other cancers. Interfering with DGKζ function could provide a means of inhibiting invasion and metastasis

  8. DNA Tetrahedron Delivery Enhances Doxorubicin-Induced Apoptosis of HT-29 Colon Cancer Cells

    Science.gov (United States)

    Zhang, Guiyu; Zhang, Zhiyong; Yang, Junen

    2017-08-01

    As a nano-sized drug carrier with the advantage of modifiability and proper biocompatibility, DNA tetrahedron (DNA tetra) delivery is hopeful to enhance the inhibitory efficiency of nontargeted anticancer drugs. In this investigation, doxorubicin (Dox) was assembled to a folic acid-modified DNA tetra via click chemistry to prepare a targeted antitumor agent. Cellular uptake efficiency was measured via fluorescent imaging. Cytotoxicity, inhibition efficiency, and corresponding mechanism on colon cancer cell line HT-29 were evaluated by MTT assay, cell proliferation curve, western blot, and flow cytometry. No cytotoxicity was induced by DNA tetra, but the cellular uptake ratio increased obviously resulting from the DNA tetra-facilitated penetration through cellular membrane. Accordingly, folic acid-DNA tetra-Dox markedly increased the antitumor efficiency with increased apoptosis levels. In details, 100 μM was the effective concentration and a 6-h incubation period was needed for apoptosis induction. In conclusion, nano-sized DNA tetrahedron was a safe and effective delivery system for Dox and correspondingly enhanced the anticancer efficiency.

  9. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    Directory of Open Access Journals (Sweden)

    Zhong Rong Zhang

    Full Text Available Andrographolide (Andro suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC, alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  10. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation

    Science.gov (United States)

    Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC. PMID:23382917

  11. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  12. Acriflavine enhances the antitumor activity of the chemotherapeutic drug 5-fluorouracil in colorectal cancer cells.

    Science.gov (United States)

    Zargar, Parisa; Ghani, Esmaeel; Mashayekhi, Farideh Jalali; Ramezani, Amin; Eftekhar, Ebrahim

    2018-06-01

    5-Fluorouracil (5-FU)-based chemotherapy improves the overall survival rates of patients with colorectal cancer (CRC). However, only a small proportion of patients respond to 5-FU when used as a single agent. The aim of the present study was to investigate whether the anticancer property of 5-FU is potentiated by combination treatment with acriflavine (ACF) in CRC cells. Additionally, the potential underlying molecular mechanisms of the cytotoxic effect of ACF were determined. The cytotoxic effects of ACF, 5-FU and irinotecan on different CRC cell lines with different p53 status were investigated using an MTT assay. SW480 cells that express a mutated form of p53 and two other CRC cell lines were used, HCT116 and LS174T, with wild-type p53. To determine the effect of ACF on the sensitivity of cells to 5-FU, cells were co-treated with the 30% maximal inhibitory concentration (IC 30 ) of ACF and various concentrations of 5-FU, or pretreated with the IC 30 of ACF and various concentrations of 5-FU. To assess the mechanism of action of ACF, cells were treated with IC 30 values of the compound and then the reverse transcription-quantitative polymerase chain reaction was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α) and topoisomerase 2. Results indicate that pretreatment with ACF markedly sensitized CRC cells to the cytotoxic effects of 5-FU, whereas simultaneous treatment with ACF and 5-FU were not able to alter the resistance of CRC cells to 5-FU. In comparison with irinotecan, ACF was a more potent agent for enhancing the antitumor activity of 5-FU. ACF did not alter the mRNA levels of either HIF-1α or topoisomerase 2. The results of the present study reveal for the first time that pretreatment of CRC cells with ACF markedly increases the cytotoxic effects of 5-FU, regardless of the p53 status of cells.

  13. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin.

    Science.gov (United States)

    Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu

    2018-05-01

    PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    International Nuclear Information System (INIS)

    Lin, Gaoyang; Liu, Boning; Meng, Zhaowei; Liu, Yunde; Li, Xuebing; Wu, Xiang; Zhou, Qinghua; Xu, Ke

    2017-01-01

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression in lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.

  15. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Gaoyang; Liu, Boning [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Meng, Zhaowei [Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052 (China); Liu, Yunde [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300052 (China); Li, Xuebing [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wu, Xiang [Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhou, Qinghua [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Xu, Ke, E-mail: ke_xu@hotmail.com [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2017-03-15

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression in lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.

  16. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    International Nuclear Information System (INIS)

    Erdmann, Kati; Ringel, Jessica; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P; Fuessel, Susanne; Hampel, Silke

    2014-01-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  17. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  18. Cell Spheroids with Enhanced Aggressiveness to Mimic Human Liver Cancer In Vitro and In Vivo.

    Science.gov (United States)

    Jung, Hong-Ryul; Kang, Hyun Mi; Ryu, Jea-Woon; Kim, Dae-Soo; Noh, Kyung Hee; Kim, Eun-Su; Lee, Ho-Joon; Chung, Kyung-Sook; Cho, Hyun-Soo; Kim, Nam-Soon; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2017-09-05

    We fabricated a spheroid-forming unit (SFU) for efficient and economic production of cell spheroids. We optimized the protocol for generating large and homogenous liver cancer cell spheroids using Huh7 hepatocellular carcinoma (HCC) cells. The large Huh7 spheroids showed apoptotic and proliferative signals in the centre and at the surface, respectively. In particular, hypoxia-induced factor-1 alpha (HIF-1α) and ERK signal activation were detected in the cell spheroids. To diminish core necrosis and increase the oncogenic character, we co-cultured spheroids with 2% human umbilical vein endothelial cells (HUVECs). HUVECs promoted proliferation and gene expression of HCC-related genes and cancer stem cell markers in the Huh7 spheroidsby activating cytokine signalling, mimicking gene expression in liver cancer. HUVECs induced angiogenesis and vessel maturation in Huh7 spheroids in vivo by activating epithelial-mesenchymal transition and angiogenic pathways. The large Huh7 cell spheroids containing HUVECs survived at higher concentrations of anti-cancer drugs (doxorubicin and sorafenib) than did monolayer cells. Our large cell spheroid provides a useful in vitro HCC model to enable intuitive observation for anti-cancer drug testing.

  19. Immunotherapy with Dendritic Cells Modified with Tumor-Associated Antigen Gene Demonstrates Enhanced Antitumor Effect Against Lung Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-04-01

    Full Text Available BACKGROUND: Immunotherapy using dendritic cell (DC vaccine has the potential to overcome the bottleneck of cancer therapy. METHODS: We engineered Lewis lung cancer cells (LLCs and bone marrow–derived DCs to express tumor-associated antigen (TAA ovalbumin (OVA via lentiviral vector plasmid encoding OVA gene. We then tested the antitumor effect of modified DCs both in vitro and in vivo. RESULTS: The results demonstrated that in vitro modified DCs could dramatically enhance T-cell proliferation (P < .01 and killing of LLCs than control groups (P < .05. Moreover, modified DCs could reduce tumor size and prolong the survival of LLC tumor-bearing mice than control groups (P < .01 and P < .01, respectively. Mechanistically, modified DCs demonstrated enhanced homing to T-cell–rich compartments and triggered more naive T cells to become cytotoxic T lymphocytes, which exhibited significant infiltration into the tumors. Interestingly, modified DCs also markedly reduced tumor cells harboring stem cell markers in mice (P < .05, suggesting the potential role on cancer stem-like cells. CONCLUSION: These findings suggested that DCs bioengineered with TAA could enhance antitumor effect and therefore represent a novel anticancer strategy that is worth further exploration.

  20. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  1. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells.

    Science.gov (United States)

    Baumgart, Judith; Humbert, Laure; Boulais, Étienne; Lachaine, Rémi; Lebrun, Jean-Jaques; Meunier, Michel

    2012-03-01

    A femtosecond laser based transfection method using off-resonance plasmonic gold nanoparticles is described. For human cancer melanoma cells, the treatment leads to a very high perforation rate of 70%, transfection efficiency three times higher than for conventional lipofection, and very low toxicity (transfection for skin cancer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Kocdor H

    2015-07-01

    Full Text Available Hilal Kocdor,1,2 Halil Ates,1 Suleyman Aydin,3 Ruksan Cehreli,1 Firat Soyarat,2 Pinar Kemanli,2 Duygu Harmanci,2 Hakan Cengiz,2 Mehmet Ali Kocdor4 1Institute of Oncology, Dokuz Eylul University, 2Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey; 3Department of Biochemistry, Firat University School of Medicine, Elazig, 4Department of Surgery, School of Medicine, Dokuz Eylul University, Izmir, Turkey Background: Exposure to exogenous zinc results in increased apoptosis, growth inhibition, and altered oxidative stress in cancer cells. Previous studies also suggested that zinc sensitizes some cancer cells to cytotoxic agents depending on the p53 status. Therefore, zinc supplementation may show anticancer efficacy solely and may increase docetaxel-induced cytotoxicity in non-small-cell lung cancer cells.Methods: Here, we report the effects of several concentrations of zinc combined with docetaxel on p53-wild-type (A549 and p53-null (H1299 cells. We evaluated cellular viability, apoptosis, and cell cycle progression as well as oxidative stress parameters, including superoxide dismutase, glutathione peroxidase, and malondialdehyde levels.Results: Zinc reduced the viability of A549 cells and increased the apoptotic response in both cell lines in a dose-dependent manner. Zinc also amplified the docetaxel effects and reduced its inhibitory concentration 50 (IC50 values. The superoxide dismutase levels increased in all treatment groups; however, glutathione peroxidase was slightly increased in the combination treatments. Zinc also caused malondialdehyde elevations at 50 µM and 100 µM.Conclusion: Zinc has anticancer efficacy against non-small-cell lung cancer cells in the presence of functionally active p53 and enhances docetaxel efficacy in both p53-wild-type and p53-deficient cancer cells. Keywords: lung cancer, zinc, docetaxel, A549, H1299

  3. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    Science.gov (United States)

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  4. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment.

    Science.gov (United States)

    Wada, M; Canals, D; Adada, M; Coant, N; Salama, M F; Helke, K L; Arthur, J S; Shroyer, K R; Kitatani, K; Obeid, L M; Hannun, Y A

    2017-11-23

    The protein p38 mitogen-activated protein kinase (MAPK) delta isoform (p38δ) is a poorly studied member of the MAPK family. Data analysis from The Cancer Genome Atlas database revealed that p38δ is highly expressed in all types of human breast cancers. Using a human breast cancer tissue array, we confirmed elevation in cancer tissue. The breast cancer mouse model, MMTV-PyMT (PyMT), developed breast tumors with lung metastasis; however, mice deleted in p38δ (PyMT/p38δ -/- ) exhibited delayed primary tumor formation and highly reduced lung metastatic burden. At the cellular level, we demonstrate that targeting of p38δ in breast cancer cells, MCF-7 and MDA-MB-231 resulted in a reduced rate of cell proliferation. In addition, cells lacking p38δ also displayed an increased cell-matrix adhesion and reduced cell detachment. This effect on cell adhesion was molecularly supported by the regulation of the focal adhesion kinase by p38δ in the human breast cell lines. These studies define a previously unappreciated role for p38δ in breast cancer development and evolution by regulating tumor growth and altering metastatic properties. This study proposes MAPK p38δ protein as a key factor in breast cancer. Lack of p38δ resulted in reduced primary tumor size and blocked the metastatic potential to the lungs.

  5. Long-term exposure to estrogen enhances chemotherapeutic efficacy potentially through epigenetic mechanism in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chang

    Full Text Available Chemotherapy is the most common clinical option for treatment of breast cancer. However, the efficacy of chemotherapy depends on the age of breast cancer patients. Breast tissues are estrogen responsive and the levels of ovarian estrogen vary among the breast cancer patients primarily between pre- and post-menopausal age. Whether this age-dependent variation in estrogen levels influences the chemotherapeutic efficacy in breast cancer patients is not known. Therefore, the objective of this study was to evaluate the effects of natural estrogen 17 beta-estradiol (E2 on the efficacy of chemotherapeutic drugs in breast cancer cells. Estrogen responsive MCF-7 and T47D breast cancer cells were long-term exposed to 100 pg/ml estrogen, and using these cells the efficacy of chemotherapeutic drugs doxorubicin and cisplatin were determined. The result of cell viability and cell cycle analysis revealed increased sensitivities of doxorubicin and cisplatin in estrogen-exposed MCF-7 and T47D cells as compared to their respective control cells. Gene expression analysis of cell cycle, anti-apoptosis, DNA repair, and drug transporter genes further confirmed the increased efficacy of chemotherapeutic drugs in estrogen-exposed cells at molecular level. To further understand the role of epigenetic mechanism in enhanced chemotherapeutic efficacy by estrogen, cells were pre-treated with epigenetic drugs, 5-aza-2-deoxycytidine and Trichostatin A prior to doxorubicin and cisplatin treatments. The 5-aza-2 deoxycytidine pre-treatment significantly decreased the estrogen-induced efficacy of doxorubicin and cisplatin, suggesting the role of estrogen-induced hypermethylation in enhanced sensitivity of these drugs in estrogen-exposed cells. In summary, the results of this study revealed that sensitivity to chemotherapy depends on the levels of estrogen in breast cancer cells. Findings of this study will have clinical implications in selecting the chemotherapy strategies for

  6. Niche Inheritance: A Cooperative Pathway to Enhance Cancer Cell Fitness Through Ecosystem Engineering

    Science.gov (United States)

    Yang, Kimberline R; Mooney, Steven M; Zarif, Jelani C; Coffey, Donald S; Taichman, Russell S; Pienta, Kenneth J

    2014-01-01

    Cancer cells can be described as an invasive species that is able to establish itself in a new environment. The concept of niche construction can be utilized to describe the process by which cancer cells terraform their environment, thereby engineering an ecosystem that promotes the genetic fitness of the species. Ecological dispersion theory can then be utilized to describe and model the steps and barriers involved in a successful diaspora as the cancer cells leave the original host organ and migrate to new host organs to successfully establish a new metastatic community. These ecological concepts can be further utilized to define new diagnostic and therapeutic areas for lethal cancers. 115: 1478–1485, 2014. © 2014 Wiley Periodicals, Inc. PMID:24700698

  7. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    Science.gov (United States)

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  8. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance

    DEFF Research Database (Denmark)

    D’Andrea, Filippo P.; Safwat, Akmal; Kassem, Moustapha

    2011-01-01

    BackgroundCancer stem cells are thought to be a radioresistant population and may be the seeds for recurrence after radiotherapy. Using tumorigenic clones of retroviral immortalized human mesenchymal stem cell with small differences in their phenotype, we investigated possible genetic expression...

  9. Combination of Quercetin and Kaempferol enhances in vitro Cytotoxicity on Human Colon Cancer (HCT-116 Cells

    Directory of Open Access Journals (Sweden)

    Sara Jaramillo-Carmona

    2014-05-01

    Full Text Available Colon cancer is one of the most common types of cancer malignancy. Although flavonoids naturally occur as mixtures, little information is available regarding the additive or synergistic biochemical interactions between flavonoids. The objectives of this study were to examine the feasibility of combining two major structurally related flavonoids, quercetin and kaempferol, to affect the cell viability, cell cycle, and proliferation of the human colon cancer HCT-116 cell line. The combination of quercetin and kaempferol exhibited a greater cytotoxic efficacy than did either quercetin or kaempferol alone. This effect was highest and acted in a synergistic fashion in a 2-fold quercetin and 1-fold kaempferol IC50 combination, which also arrested cell growth in the G2/M phase and suppressed proliferation. Our observations support a structure-activity relationship based on the presence of 3’–OH moiety and/or 4’–OH moiety on the B-ring of flavonoids.

  10. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Zunich Samantha M

    2012-07-01

    Full Text Available Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA, a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis

  11. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    International Nuclear Information System (INIS)

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-01-01

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: ► ATO and SAHA are therapeutic agents with different action modes. ► Combination of ATO and SAHA synergistically inhibits tumor cell growth. ► SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. ► ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  12. Correlation of contrast-enhanced ultrasound parameters with oncogene expression and cell proliferation activity in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Ce Zhang

    2017-01-01

    Objective: To study the correlation of contrast-enhanced ultrasound parameters with oncogene expression and cell proliferation activity in breast cancer. Methods: Breast cancer lesions and benign breast lesions surgically removed in Zigong Third People's Hospital between May 2014 and February 2017 were selected, contrast-enhanced ultrasound was done before operation to draw the time-intensity curve and calculate the area under the curve (AUC), and the expression of proliferation molecules and tumor suppressor genes were detected after operation. Results:The contrast-enhanced ultrasound parameter AUC of the breast cancer lesion was greatly higher than that of the benign breast lesion; ECT2, ZKSCAN3, USP39 and EphA2 mRNA expression in breast cancer lesions were obviously higher than those in benign breast lesions whereas HPK1, TCEAL17, CCN5, ATG2B and ATG4D mRNA expression were greatly lower than those in benign breast lesions; ECT2, ZKSCAN3, USP39 and EphA2 mRNA expression in breast cancer lesions with high AUC were greatly higher than those in breast cancer lesions with low AUC whereas HPK1, TCEAL17, CCN5, ATG2B and ATG4D mRNA expression were greatly lower than those in breast cancer lesions with low AUC. Conclusion: The contrast-enhanced ultrasound parameter AUC of breast cancer lesion significantly increases and is closely related to the higher expression of pro-proliferation molecules and the lower expression of tumor suppressor genes.

  13. Cabazitaxel-induced stabilization of microtubules enhances radiosensitivity in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Charles eKunos

    2013-09-01

    Full Text Available Background: Up to 40% of women with ovarian cancer have short disease-free intervals due to molecular mechanisms of chemotherapy resistance. New therapeutic strategies are sought. Ovarian cancers are sensitive to radiochemotherapy. The taxane cabazitaxel (XRP6258, Jevtana promotes tubulin assembly and stabilizes microtubules against depolymerization in cells, acting similarly in mechanism to paclitaxel. Here, sequences of cabazitaxel-radiation co-administration are tested for drug-alone cytotoxicity and optimal radiosensitization.Methods: SKOV3, OVCAR3, and TOV-112D ovarian cancer cells were administered cabazitaxel 24 h before (first, 18 h before (second, together (third, or 24 h after (fourth a single radiation dose, and then, investigated by clonogenic assay and flow cytometric assays. Radiation dose-cell survival data were fitted by two-stage multivariate analyses of variance. High content flow cytometry partitioned cabazitaxel effects into G2-phase versus M-phase events by DNA content, cyclin A2, and phospho-S10-histone H3 (PHH3. Paclitaxel served as a comparator. Findings: Cabazitaxel cytotoxicity and radiosensitization were dose dependent. Cabazitaxel added 24 h before radiation was the most lethal schedule. DNA content measurements by flow cytometry showed that cabazitaxel-treated cells accumulated in the radiosensitive G2/M 4C DNA complement compartment. Cytometry also showed that surviving cabazitaxel-induced cell cycle arrested cells resolve the arrest by entering 4C or by 8C DNA complement cell cycles.Interpretation: The radiosensitizing effect of cabazitaxel was schedule dependent, due to cell cycle redistribution, and best when cabazitaxel was given 24 h before radiation. Clinical trials of administering both cabazitaxel and radiation should be explored in women with chemoresistant ovarian cancer. Funding: Case Comprehensive Cancer Center and Sanofi-Aventis

  14. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    Science.gov (United States)

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its

  15. Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening

    International Nuclear Information System (INIS)

    Feng, Shangyuan; Li, Zhihua; Chen, Guannan; Huang, Shaohua; Huang, Zufang; Li, Yongzeng; Lin, Juqiang; Chen, Rong; Lin, Duo; Zeng, Haishan

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technology for providing finger-printing information of cells. A big challenge has been the long time duration and inefficient uptake of metal nano-particles into living cells as substrate for SERS analysis. Herein, a simple method (based on ultrasound) for the rapid transfer of silver nanoparticles (NPs) into living cells for intracellular SERS spectroscopy was presented. In this study, the ultrasound-mediated method for NP delivery overcame the shortcoming of ‘passive uptake’, and achieved quick acquisition of reproducible SERS spectra from living human nasopharyngeal carcinoma cell lines (C666 and CNE1) and normal nasopharyngeal cell line (NP69). Tentative assignment of the Raman bands in the measured SERS spectra showed cancer cell specific biomolecular differences, including significantly lower DNA concentrations and higher protein concentrations in cancerous nasopharyngeal cells as compared to those of normal cells. Combined with PCA–LDA multivariate analysis, ultrasound-mediated cell SERS spectroscopy differentiated the cancerous cells from the normal nasopharyngeal cells with high diagnostic accuracy (98.7%), demonstrating great potential for high-throughput cancer cell screening applications. (paper)

  16. Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane

    Directory of Open Access Journals (Sweden)

    Huaping Chen

    2013-01-01

    Full Text Available Advanced-stage ovarian cancer is characterized by high mortality due to development of resistance to conventional chemotherapy. Novel compounds that can enhance the efficacy of conventional chemotherapy in ovarian cancer may overcome this drug resistance. Consumption of green tea (epigallocatechin gallate, EGCG and cruciferous vegetables (sulforaphane, SFN is inversely associated with occurrence of ovarian cancer and has anticancer effects through targeting multiple molecules in cancer cells. However, the effects of EGCG and SFN combinational treatment on ovarian cancer cells and on efficacy of cisplatin to these cells are unknown. In this study, EGCG or SFN was used to treat both cisplatin-sensitive (A2780 and cisplatin-resistant (A2780/CP20 ovarian cancer cells alone or in combination with cisplatin. We found that EGCG and SFN combinational treatment can reduce cell viability of both ovarian cancer cell lines time- and dose-dependently. Furthermore, EGCG and SFN combinational treatment can enhance cisplatin-induced apoptosis and G2/M phase arrest, thereby enhancing the efficacy of cisplatin on both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. EGCG and SFN combinational treatment upregulated p21 expression induced by cisplatin in cisplatin-sensitive ovarian cancer cells, while p27 expression was not regulated by these treatments. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer.

  17. HSP90 Inhibitors, Geldanamycin and Radicicol, Enhance Fisetin-Induced Cytotoxicity via Induction of Apoptosis in Human Colonic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ming-Shun Wu

    2013-01-01

    Full Text Available We revealed the cytotoxic effect of the flavonoid, fisetin (FIS, on human COLO205 colon cancer cells in the presence and absence of the HSP90 inhibitors, geldanamycin (GA and radicicol (RAD. Compared to FIS treatment alone of COLO205 cells, GA and RAD significantly enhanced FIS-induced cytotoxicity, increased expression of cleaved caspase-3 and the PAPR protein, and produced a greater density of DNA ladder formation. GA and RAD also reduced the MMPs with induction of caspase-9 protein cleavage in FIS-treated COLO205 cells. Increased caspase-3 and -9 activities were detected in COLO205 cells treated with FIS+GA or FIS+RAD, and the intensity of DNA ladder formation induced by FIS+GA was reduced by adding the caspase-3 inhibitor, DEVD-FMK. A decrease in Bcl-2 but not Bcl-XL or Bax protein by FIS+GA or FIS+RAD was identified in COLO205 cells by Western blotting. A reduction in p53 protein with increased ubiquitin-tagged proteins was observed in COLO205 cells treated with FIS+GA or FIS+RAD. Furthermore, GA and RAD reduced the stability of the p53 protein in COLO205 cells under FIS stimulation. The evidence supports HSP90 inhibitors possibly sensitizing human colon cancer cells to FIS-induced apoptosis, and treating colon cancer by combining HSP90 inhibitors with FIS deserves further in vivo study.

  18. A novel double-enhanced suicide gene therapy in a colon cancer cell line mediated by gef and apoptin.

    Science.gov (United States)

    Boulaiz, Houria; Aránega, Antonia; Cáceres, Blanca; Blanca, Cáceres; Alvarez, Pablo; Pablo, Alvarez; Serrano-Rodríguez, Fernando; Fernando, Rodríguez-Serrano; Carrillo, Esmeralda; Esmeralda, Carrillo; Melguizo, Consolación; Consolación, Melguizo; Prados, Jose; Jose, Prados

    2014-02-01

    Double-suicide gene therapy is a promising strategy for the treatment of advanced cancer. It has become an important research line in the development of gene therapy to overcome the drawbacks of single-gene therapy. The aim of this study was to investigate the usefulness of double-suicide gene therapy with the two suicide genes, gef and apoptin, in colon carcinoma. gef and apoptin genes were cloned into a doxycycline-regulated retrovirus-mediated gene expression system. Expression of both genes in the DLD-1 cell line was confirmed by reverse transcriptase polymerase chain reaction (RT-PCR). Cell viability was determined with the sulforhodamine B colorimetric assay, and the cell cycle was studied by propidium iodide (PI) staining. Annexin V-FITC and PI assays were used to evaluate apoptosis, and the results were confirmed by electron microscopy. The mitochondrial membrane potential was measured by JC-1 assay. Our results showed that the combined expression of gef and apoptin genes was strikingly more effective than the expression of either gene alone. Co-expression of gef and apoptin synergistically enhanced the decrease in cell viability, increasing necrosis and inducing apoptosis in colon cancer cells via the mitochondrial pathway, which can be deficient in advanced or metastatic colon cancer. Double-suicide gene therapy based on gef and apoptin genes may be a candidate for the development of new colon cancer strategies, and further studies are warranted to establish the usefulness of double-suicide gene therapy in vivo.

  19. Susceptibility of cancer cells to β-lapachone is enhanced by ionizing radiation

    International Nuclear Information System (INIS)

    Park, Heon Joo; Ahn, Ki-Jung; Ahn, Seung-Do; Choi, Eunkyung; Lee, Sang Wook; Williams, Brent; Kim, Eun Jung; Griffin, Robert; Bey, Erik A.; Bornmann, William G.; Gao, Jinming; Park, Heon Jin; Boothman, David A.; Song, Chang W.

    2005-01-01

    Purpose: To reveal the interaction between β-lapachone (β-lap) and ionizing radiation (IR) in causing clonogenic death in cancer cells and to elucidate the potential usefulness of β-lap treatment in combination with radiotherapy of cancer. Methods and materials: FSaII tumor cells of C3H mice were used. The cytotoxicity of β-lap alone or in combination with IR in vitro was determined using clonogenic survival assay method. The IR-induced changes in the expression and the enzymatic activity of NAD(P)H:quinone oxidoreductase (NQO1), a mediator of β-lap cytotoxicity, were elucidated and the relationship between the NQO1 level and the sensitivity of cells to β-lap was investigated. The combined effect of IR and β-lap to suppress tumor growth was studied using FSaII tumors grown subcutaneously in the thigh of C3H mice. Results: β-Lap caused clonogenic death of FSaII tumor cells in vitro in a dose- and time-dependent manner. When cells were treated first with β-lap and then exposed to IR in vitro, the resultant cell death was only additive. On the contrary, exposing cells to IR at 2.5 Gy first and then treating the cells with β-lap killed the cells in a synergistic manner. Importantly, the 2.5 Gy cells were sensitive to β-lap as long as 10 h after irradiation, which was long after the sublethal radiation damage was repaired. Irradiation of FSaII cells in vitro with 2.5 Gy significantly increased the expression and enzymatic activity of NQO1. The growth delay of FSaII tumors caused by an intraperitoneal injection of β-lap in combination with 20 Gy irradiation of tumor was significantly greater than that caused by β-lap or 20 Gy irradiation alone. Conclusion: The sensitivity of cells to β-lap is dependent on NQO1 activity. IR caused a long-lasting increase in NQO1 activity in cancer cells, thereby sensitizing cells to β-lap and treatment of experimental mouse tumors with IR and β-lap suppressed tumor growth in a synergistic manner. The combination of

  20. R-spondin1/Wnt-enhanced Ascl2 autoregulation controls the self-renewal of colorectal cancer progenitor cells.

    Science.gov (United States)

    Ye, Jun; Liu, Shanxi; Shang, Yangyang; Chen, Haoyuan; Wang, Rongquan

    2018-06-25

    The Wnt signaling pathway controls stem cell identity in the intestinal epithelium and cancer stem cells (CSCs). The transcription factor Ascl2 (Wnt target gene) is fate decider of intestinal cryptic stem cells and colon cancer stem cells. It is unclear how Wnt signaling is translated into Ascl2 expression and keeping the self-renewal of CRC progenitor cells. We showed that the exogenous Ascl2 in colorectal cancer (CRC) cells activated the endogenous Ascl2 expression via a direct autoactivatory loop, including Ascl2 binding to its own promoter and further transcriptional activation. Higher Ascl2 expression in human CRC cancerous tissues led to greater enrichment in Ascl2 immunoprecipitated DNA within the Ascl2 promoter in the CRC cancerous sample than the peri-cancerous mucosa. Ascl2 binding to its own promoter and inducing further transcriptional activation of the Ascl2 gene was predominant in the CD133 + CD44 + CRC population. R-spondin1/Wnt activated Ascl2 expression dose-dependently in the CD133 + CD44 + CRC population, but not in the CD133 - CD44 - CRC population, which was caused by differences in Ascl2 autoregulation under R-spondin1/Wnt activation. R-spondin1/Wnt treatment in the CD133 + CD44 + or CRC CD133 - CD44 - populations exerted a different pattern of stemness maintenance, which was defined by alterations of the mRNA levels of stemness-associated genes, the protein expression levels (Bmi1, C-myc, Oct-4 and Nanog) and tumorsphere formation. The results indicated that Ascl2 autoregulation formed a transcriptional switch that was enhanced by Wnt signaling in the CD133 + CD44 + CRC population, thus conferring their self-renewal.

  1. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Iván González-Chavarría

    Full Text Available Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.

  2. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus.

    Science.gov (United States)

    Liang, Lijia; Huang, Dianshuai; Wang, Hailong; Li, Haibo; Xu, Shuping; Chang, Yixin; Li, Hui; Yang, Ying-Wei; Liang, Chongyang; Xu, Weiqing

    2015-02-17

    Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules.

  3. Icotinib enhances lung cancer cell radiosensitivity in vitro and in vivo by inhibiting MAPK/ERK and AKT activation.

    Science.gov (United States)

    Fu, Yonghong; Zhang, Sen; Wang, Dongjie; Wang, Jing

    2018-05-16

    Icotinib hydrochloride is a small epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that was developed by Chinese scientists. While clinical trials have revealed its efficacy in the treatment of lung cancer, very little is known about its role in enhancing radiosensitivity. In this study, we investigated the effectiveness of Icotinib in enhancing lung cancer cell radiosensitivity and have detailed its underlying molecular mechanism. The lung cancer cell line H1650 was pretreated with or without Icotinib for 24 hours before radiation, and clonogenic survival assay was performed. Cell apoptosis was also analyzed by flow cytometry, while western blotting was performed to examine the activation of EGFR and its downstream kinases in H1650 cells after Icotinib and radiation treatment. Furthermore, a xenograft animal model was established to evaluate the radiosensitivity of Icotinib in vivo and to confirm its mechanism. Our results demonstrate that pretreatment with Icotinib reduced clonogenic survival after radiation, inhibited EGFR activation, and increased radiation-induced apoptosis in H1650 cells. The phosphorylation of protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), and EGFR was inhibited after Icotinib and radiation combination treatment in vitro and in vivo compared with individual treatments. Combination treatment also affected the expression of the DNA repair protein H2A histone family member X (γ-H2AX). In conclusion, our results reveal that Icotinib enhances radiosensitivity in lung cancers in vitro and in vivo and the mechanism of this may involve blocking the EGFR-AKT and MAPK-ERK pathways and limiting DNA repair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Enhancement of radioresponse by combined treatment with flavopiridol, a cycline dependent kinase (CDK) inhibitor, in oral cancer cells

    International Nuclear Information System (INIS)

    Mihara, Mariko; Mano, Takamitsu; Ueyama, Yoshiya; Shintani, Satoru; Li, Syunnann; Klosek, S.; Hamakawa, Hiroyuki

    2005-01-01

    Cyclin dependent kinases (CDKs) play a pivotal role in cell cycle regulation. Flavopiridol is known to potently inhibit such CDKs as CDK1, CDK2, CDK4, CDK7. We already reported that flavopiridol inhibited the growth of oral squamous cell carcinoma (OSCC) cells and induced apoptosis in OSCC cells. In the present study, we investigated whether the treatment with flavopiridol improves the response to radiosensitivity in OSCC cell lines. In an in vitro study, there was a cooperative antiproliferative effect of combined treatment with flavopiridol and radiation in OSCC cell lines. Tumor xenograft studies demonstrated that the combination of flavopiridol and radiation caused growth inhibition and tumor regression of well-established OSCC tumor in athymic mice. Overall, we concluded that flavopiridol enhances tumor radioresponse and it is considered a suitable candidate drug in the treatment of oral cancer. (author)

  5. A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells.

    Science.gov (United States)

    Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A

    2014-08-01

    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.

  6. AT-101 enhances gefitinib sensitivity in non-small cell lung cancer with EGFR T790M mutations

    International Nuclear Information System (INIS)

    Zhao, Ren; Zhou, Shun; Xia, Bing; Zhang, Cui-ying; Hai, Ping; Zhe, Hong; Wang, Yan-yang

    2016-01-01

    Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard care of patients with advanced EGFR-mutant non-small cell lung cancer (NSCLC), development of acquired resistance is inevitable. A secondary mutation of threonine 790 (T790M) is associated with approximately half of the cases of acquired resistance. Strategies or agents to overcome this type of resistance are still limited. In this study, enhanced antitumor effect of AT-101, a-pan-Bcl-2 inhibitor, on gefitinib was explored in NSCLC with T790M mutation. The effect of cotreatment with AT-101 and gefitinib on the viability of NSCLC cell lines harboring acquired T790M mutation was investigated using the MTT assay. The cellular apoptosis of NSCLC cells after cotreatment with AT-101 and gefitinib was assessed by FITC-annexin V/PI assay and Western blots analysis. The potential underlying mechanisms of the enhanced therapeutic effect for AT-101 was also studied using Western blots analysis. The in vivo anti-cancer efficacy of the combination with AT-101 and gefitinib was examined in a mouse xenograft model. In this study, we found that treatment with AT-101 in combination with gefitinib significantly inhibited cell proliferation, as well as promoted apoptosis of EGFR TKIs resistant lung cancer cells. The apoptotic effects of the use of AT-101 was related to the blocking of antiapoptotic protein: Bcl-2, Bcl-xl, and Mcl-1 and downregrulation of the molecules in EGFR pathway. The observed enhancements of tumor growth suppression in xenografts supported the reverse effect of AT-101 in NSCLC with T790M mutation, which has been found in in vitro studies before. AT-101 enhances gefitinib sensitivity in NSCLC with EGFR T790M mutations. The addition of AT-101 to gefitinib is a promising strategy to overcome EGFR TKIs resistance in NSCLC with EGFR T790M mutations

  7. Resveratrol enhances radiosensitivity of human non-small cell lung cancer NCI-H838 cells accompanied by inhibition of nuclear factor-kappa B activation

    International Nuclear Information System (INIS)

    Liao, Hui-Fen; Kuo Cheng-Deng; Yang, Yuh-Cheng; Lin, Chin-Ping; Tai, Hung-Chi; Chen, Yu-Jen; Chen, Yu-Yawn

    2005-01-01

    Resveratrol, a polyphenol in red wine, possesses many pharmacological activities including cardio-protection, chemoprevention, anti-tumor effects, and nuclear factor-kappa B (NF-κB) inactivation. The present study was designed to evaluate the effects and possible mechanism of resveratrol in enhancing radiosensitivity of lung cancer cells. Human non-small cell lung cancer NCI-H838 cells were irradiated with or without resveratrol pretreatment. The surviving fraction and sensitizer enhancement ratio (SER) were estimated by using a colony formation assay and linear-quadratic model. The cell-cycle distribution was evaluated by using prospidium iodide staining and flow cytometry. An enzyme-linked immunosorbent assay (ELISA)-based assay with immobilized oligonucleotide was performed to assess the DNA binding activity of NF-κB. Resveratrol had no direct growth-inhibitory effect on NCI-H838 cells treated for 24 hours with doses up to 25 μM. Pretreatment with resveratrol significantly enhanced cell killing by radiation, with an SER up to 2.2. Radiation activated NF-κB, an effect reversed by resveratrol pretreatment. Resveratrol resulted in a decrease of cells in the G 0 /G 1 phase and an increase in the S phase. Our results demonstrate that resveratrol enhances the radiosensitivity of NCI-H838 cells accompanied by NF-κB inhibition and S-phase arrest. (author)

  8. Sulforaphane enhances irradiation effects in terms of perturbed cell cycle progression and increased DNA damage in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Patrick Naumann

    Full Text Available Sulforaphane (SFN, an herbal isothiocyanate enriched in cruciferous vegetables like broccoli and cauliflower, has gained popularity for its antitumor effects in cell lines such as pancreatic cancer. Antiproliferative as well as radiosensitizing properties were reported for head and neck cancer but little is known about its effects in pancreatic cancer cells in combination with irradiation (RT.In four established pancreatic cancer cell lines we investigated clonogenic survival, analyzed cell cycle distribution and compared DNA damage via flow cytometry and western blot after treatment with SFN and RT.Both SFN and RT show a strong and dose dependent survival reduction in clonogenic assays, an induction of a G2/M cell cycle arrest and an increase in γH2AX protein level indicating DNA damage. Effects were more pronounced in combined treatment and both cell cycle perturbation and DNA damage persisted for a longer period than after SFN or RT alone. Moreover, SFN induced a loss of DNA repair proteins Ku 70, Ku 80 and XRCC4.Our results suggest that combination of SFN and RT exerts a more distinct DNA damage and growth inhibition than each treatment alone. SFN seems to be a viable option to improve treatment efficacy of chemoradiation with hopefully higher rates of secondary resectability after neoadjuvant treatment for pancreatic cancer.

  9. Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70

    Science.gov (United States)

    Endo, H; Yano, M; Okumura, Y; Kido, H

    2014-01-01

    Hsp70 is often overexpressed in cancer cells, and the selective cellular survival advantage that it confers may contribute to the process of tumour formation. Thus, the pharmacological manipulation of Hsp70 levels in cancer cells may be an effective means of preventing the progression of tumours. We found that the downregulation of Hsp70 by ibuprofen in vitro enhances the antitumoural activity of cisplatin in lung cancer. Ibuprofen prominently suppressed the expression of Hsp70 in A549 cells derived from lung adenocarcinoma and sensitized them to cisplatin in association with an increase in the mitochondrial apoptotic cascade, whereas ibuprofen alone did not induce cell death. The cisplatin-dependent events occurring up- and downstream of mitochondrial disruption were accelerated by treatment with ibuprofen. The increase in cisplatin-induced apoptosis caused by the depletion of Hsp70 by RNA interference is evidence that the increased apoptosis by ibuprofen is mediated by its effect on Hsp70. Our observations indicate that the suppression of Hsp70 by ibuprofen mediates the sensitivity to cisplatin by enhancing apoptosis at several stages of the mitochondrial cascade. Ibuprofen, therefore, is a potential therapeutic agent that might allow lowering the doses of cisplatin and limiting the many challenge associated with its toxicity and development of drug resistance. PMID:24481441

  10. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  11. Auxotrophic recombinant Mycobacterium bovis BCG overexpressing Ag85B enhances cytotoxicity on superficial bladder cancer cells in vitro.

    Science.gov (United States)

    Begnini, Karine Rech; Rizzi, Caroline; Campos, Vinicius Farias; Borsuk, Sibele; Schultze, Eduarda; Yurgel, Virginia Campello; Nedel, Fernanda; Dellagostin, Odir Antônio; Collares, Tiago; Seixas, Fabiana Kömmling

    2013-02-01

    BCG therapy remains at the forefront of immunotherapy for treating patients with superficial bladder cancer. The high incidence of local side effects and the presence of non-responder diseases have led to efforts to improve the therapy. Hence, we proposed that an auxotrophic recombinant BCG strain overexpressing Ag85B (BCG ∆leuD/Ag85B), could enhance the cytotoxicity to the human bladder carcinoma cell line 5637. The rBCG was generated using an expression plasmid encoding the mycobacterial antigen Ag85B to transform a BCG ∆leuD strain. The inhibitory effect of BCG ∆leuD/Ag85B on 5637 cells was determined by the MTT method, morphology observation and a LIVE/DEAD assay. Gene expression profiles for apoptotic, cell cycle-related and oxidative stress-related genes were investigated by qRT-PCR. Bax, bcl-2 and p53 induction by BCG ∆leuD/Ag85B treatment was evaluated by Western blotting. BCG ∆leuD/Ag85B revealed a superior cytotoxicity effect compared to the control strains used in this study. The results showed that the expression level of pro-apoptotic and cell cycle-related genes increased after BCG ∆leuD/Ag85B treatment, whereas the mRNA levels of anti-apoptotic genes decreased. Interestingly, BCG ∆leuD/Ag85B also increased the mRNA level of antioxidant enzymes in the bladder cancer cell line. Bax and p53 proteins levels increased following treatment. In conclusion, these results suggest that treatment with BCG ∆leuD/Ag85B enhances cytotoxicity for superficial bladder cancer cells in vitro. Therefore, rBCG therapy may have potential benefits in the treatment of bladder cancer.

  12. Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model

    Directory of Open Access Journals (Sweden)

    Touboul Cyril

    2013-01-01

    Full Text Available Abstract Background The early peritoneal invasion of epithelial ovarian cancer (EOC by tumoral aggregates presents in ascites is a major concern. The role of the microenvironment seems to be important in this process but the lack of adequate models to study cellular interactions between cancer cells and stromal cells does not allow to uncover the molecular pathways involved. Our goal was to study the interactions between ovarian cancer cells (OCC and mesenchymal stem cells (MSC using a 3D model. Methods We used millimetric pieces of amniochorionic membrane - referred to as amniotic membrane scaffold (AMS - to create 3D peritoneal nodules mimicking EOC early invasion. We were able to measure the distribution and the depth of infiltration using confocal microsopy. We extracted MSC from the amniochorionic membrane using the markers CD34-, CD45-, CD73+, CD90+, CD105+ and CD29+ at the Fluorescence Activated Cell Sorting (FACS analysis. We used transwell and wound healing tests to test OCC migration and invasion in vitro. Results Here we show that OCC tumors were located in regions rich in MSC (70%. The tumors infiltrated deeper within AMS in regions rich in MSC (p Conclusions The use of tridimensional models using AMS could be a useful tool to decipher early molecular events in ovarian cancer metastasis. Cytokine inhibitors interrupting the cross-talk between OCCs and MSCs such as IL6 should be investigated as a new therapeutic approach in ovarian cancer.

  13. Enhanced CAR T cell therapy: A novel approach for head and neck cancers.

    Science.gov (United States)

    Wang, Songlin; Zhu, Zhao

    2018-05-05

    Head and neck cancer that presents in locally advanced stages often results in a bad prognosis with an increased recurrence rate even after curative resections. Radiation therapy is then applied, with multiple side effects, as adjuvant regional therapy. Because of the high rate of recurrence and mortality, new therapies are needed for patients suffering from head and neck malignant tumors.CAR (chimeric antigen receptor) T cell therapy, which was first devised about 25 years ago, causes the killing or apoptosis of target tumor cells through inducing the secretion of cytokines and granzymes by T cells (Cheadle et al., 2014). CARs are comprised of three canonical domains for antigen recognition, T cell activation, and co-stimulation, and are synthetic receptors that reprogram immune cells for therapeutic treatment of multiple tumors (Sadelain, 2017). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  15. Co-culture with NK-92MI cells enhanced the anti-cancer effect of bee venom on NSCLC cells by inactivation of NF-κB.

    Science.gov (United States)

    Kollipara, Pushpa Saranya; Kim, Jung Hyun; Won, Dohee; Lee, Sang Min; Sung, Ha Chang; Chang, Hyun Sok; Lee, Kang Tae; Lee, Kang Sik; Park, Mi Hee; Song, Min Jong; Song, Ho Sueb; Hong, Jin Tae

    2014-03-01

    In the present study we experimented on a multimodal therapeutic approach, such as combining chemotherapy agent (Bee venom) with cellular (NK-92MI) immunotherapy. Previously bee venom has been found to show anti-cancer effect in various cancer cell lines. In lung cancer cells bee venom showed an IC(50) value of 3 μg/ml in both cell lines. The co-culture of NK-92MI cell lines with lung cancer cells also show a decrease in viability upto 50 % at 48 h time point. Hence we used bee venom treated NK-92MI cells to co-culture with NSCLC cells and found that there is a further decrease in cell viability upto 70 and 75 % in A549 and NCI-H460 cell lines respectively. We further investigated the expression of various apoptotic and anti-apoptotic proteins and found that Bax, cleaved caspase-3 and -8 were increasing where as Bcl-2 and cIAP-2 was decreasing. The expression of various death receptor proteins like DR3, DR6 and Fas was also increasing. Concomitantly the expression of various death receptor ligands (TNFalpha, Apo3L and FasL) was also increasing of NK-92MI cells after co-culture. Further the DNA binding activity and luciferase activity of NF-κB was also inhibited after co-culture with bee venom treated NK-92MI cell lines. The knock down of death receptors with si-RNA has reversed the decrease in cell viability and NF-κB activity after co-culture with bee venom treated NK-92MI cells. Thus this new approach can enhance the anti-cancer effect of bee venom at a much lower concentration.

  16. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Xie, Jing [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Peng, Jianjun, E-mail: jianjunpeng@126.com [College of Life Sciences, Chongqing Normal University, Chongqing 401331 (China); Han, Yantao, E-mail: hanyt19@126.com [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Jiang, Qixiao; Han, Mei; Wang, Chunbo [Medical College, Qingdao University, Qingdao, Shandong 266071 (China)

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  17. Adenovirus-mediated IL-24 expression enhances the chemosensitivity of multidrug-resistantgastric cancer cells to cisplatin.

    Science.gov (United States)

    Mao, Zonglei; Bian, Guochun; Sheng, Weihua; He, Songbin; Yang, Jicheng; Dong, Xiaoqiang

    2013-11-01

    Chemotherapy is one of the commonly used strategies in gastric cancer, especially for unresectable patients, but it becomes insensitive to repeated administration of even the most effective chemotherapeutic agents, such as cisplatin. Given this, there is an urgent need for developing chemosensitizers to overcome acquired resistance to chemotherapeutic agents. Interleukin-24 (IL-24), a cytokine-tumor suppressor, shows broad-spectrum and tumor-specific antitumor properties, and studies have demonstrated that IL-24 could conspicuously restore the chemosensitivity of MDR cancer cells. Herein, we developed a human MDR gastric cancer cell subline, SGC7901/CDDP, by repeated selection of resistant clones of parental sensitive cells, and further investigated the chemosensitizing effects and the underlying mechanisms of adenovirus-mediated IL-24 (Ad-IL-24) gene therapy plus CDDP for the human MDR gastric cancer cells SGC7901/CDDP in vitro and in vivo. The results demonstrated that the expression of IL-24 mRNA and protein was profoundly downregulated in SGC7901/CDDP cells by RT-PCR and western blot analysis. In addition, the cell viability assay showed that the IC50 of SGC7901/CDDP cells to CDDP, 5-FU, ADM and MTX was significantly enhanced compared to parental sensitive SGC7901 cells. Ad-IL-24-induced IL-24 overexpression decreased the IC50 of the above agents (not MTX), induced G2/M cell cycle arrest, and Ad-IL-24 plus CDDP elicited significant apoptosis and tumor suppression of SGC7901/CDDP cells in vitro and SGC7901/CDDP cell xenograft tumors in vivo, respectively. Moreover, our results demonstrated that the mechanisms of Ad-IL-24-elicited chemosensitizing effects were closely associated with a substantial upregulation of Bax and downregulation of P-gp and Bcl-2 in SGC7901/CDDP cells in vitro and SGC7901/CDDP xenograft tissues in vivo. Thus, this study indicates that overexpression of IL-24 gene can significantly promote chemosensitivity in MDR phenotype SGC7901

  18. Enhanced pulmonary toxicity with bleomycin and radiotherapy in oat cell lung cancer

    International Nuclear Information System (INIS)

    Einhorn, L.; Krause, M.; Hornback, N.; Furnas, B.

    1976-01-01

    In a recently completed study, combination chemotherapy consisting of bleomycin, adriamycin, cyclophosphamide, and vincristine was given to 29 patients with oat cell lung cancer. There were no cases of pulmonary fibrosis in these 29 patients. Although several of these patients had prior radiotherapy, none had concomitant radiotherapy and chemotherapy. This same four-drug chemotherapy regimen was combined with concomitant radiotherapy in 13 patients with oat cell lung cancer. There were three cases of fatal pulmonary fibrosis and two other cases of clinically significant pulmonary fibrosis. All five cases of pulmonary fibrosis occurred several weeks after completion of a six-week course of bleomycin (total dosage 90 units). It is concluded that bleomycin cannot be safely administered while patients are receiving radiotherapy of the lung

  19. Phenolic compounds from Viscum album tinctures enhanced antitumor activity in melanoma murine cancer cells.

    Science.gov (United States)

    Melo, Michelle Nonato de Oliveira; Oliveira, Adriana Passos; Wiecikowski, Adalgisa Felippe; Carvalho, Renato Sampaio; Castro, Juliana de Lima; de Oliveira, Felipe Alves Gomes; Pereira, Henrique Marcelo Gualberto; da Veiga, Venicio Feo; Capella, Marcia Marques Alves; Rocha, Leandro; Holandino, Carla

    2018-03-01

    Cancer is one of the biggest problems in public health worldwide. Plants have been shown important role in anticancer research. Viscum album L. (Santalaceae), commonly known as mistletoe, is a semi-parasitic plant that grows on different host trees. In complementary medicine, extracts from European mistletoe ( Viscum album L.) have been used in the treatment of cancer. The study was conducted to identify chemical composition and antitumor potential of Viscum album tinctures. Chemical analysis performed by high resolution chromatography equipped with high resolution mass spectrometer identified caffeic acid, chlorogenic acid, sakuranetin, isosakuranetin, syringenin 4-O-glucoside, syringenin 4-O-apiosyl-glucoside, alangilignoside C and ligalbumoside A compounds. Some of these compounds are probably responsible for the reduction of tumoral cellular growth in a dose-dependent manner. It was observed that melanoma murine cells (B16F10) were more sensitive to V. album tinctures than human leukaemic cells (K562), besides non-tumoral cells (MA-104) had a much lower cytotoxicity to them. Apoptotic-like cells were observed under light microscopy and were confirmed by a typical DNA fragmentation pattern. Additionally, flow cytometry results using Annexin-V/FITC permitted to quantify increased expression of early and late apoptotic markers on tumoral cells, confirming augmented Sub G0 population, which was probably associated with a consistent decrease in G1, and an increase in S or G2/M populations. Results indicate the chemical composition of V. album tinctures influences the mechanisms of in vitro tumoral cell death, suggesting a potential use in cancer pharmacotherapy research.

  20. Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway.

    Science.gov (United States)

    Li, Gang; Wang, Ziming; Chong, Tie; Yang, Jie; Li, Hongliang; Chen, Haiwen

    2017-10-01

    The radiation resistance of renal cell carcinoma (RCC) remains the primary obstacle to improve patient survival. This study aimed to investigate the effects of curcumin on the radiosensitivity of RCC cells. Human RCC cell (ACHN) was exposed to irradiation (IR) and/or curcumin treatment. Cell viability, DNA repair, cell cycle, and apoptosis, were evaluated by MTT, immunofluoresence staining and flow cytometry. Moreover, ACHN cells were xenografted into nude mice and subjected to IR and/or curcumin treatment. The expression of NF-κB signaling related proteins in ACHN cells and xenografts was detected by western blot analysis. The results showed that curcumin significantly increased radiosensitivity of ACHN cells by inhibiting the cell proliferation and DNA damage repair, causing cell cycle arrest at G2/M phase, inducing apoptosis in vitro, and suppressing the growth of xenografts in vivo. In addition, curcumin enhanced radiosensitivity was through markedly inhibiting IR-induced NF-κB signaling by modulating the related protein expressions including NF-κBP65, I-κB, VEGF, COX2, and Bcl-2 in ACHN cells, which was further strengthened by NF-κB inhibitor PDTC treatment. Thus, curcumin may confer radiosensitivity on RCC via inhibition of NF-κB activation and its downstream regulars, suggesting the potential application of curcumin as an adjuvant in radiotherapy of RCC. Copyright © 2017. Published by Elsevier Masson SAS.

  1. Inhibition of Sphingolipid Metabolism Enhances Resveratrol Chemotherapy in Human Gastric Cancer Cells

    OpenAIRE

    Shin, Kyong-Oh; Park, Nam-Young; Seo, Cho-Hee; Hong, Seon-Pyo; Oh, Ki-Wan; Hong, Jin-Tae; Han, Sang-Kil; Lee, Yong-Moon

    2012-01-01

    Resveratrol, a chemopreventive agent, is rapidly metabolized in the intestine and liver via glucuronidation. Thus, the pharmacokinetics of resveratrol limits its efficacy. To improve efficacy, the activity of resveratrol was investigated in the context of sphingolipid metabolism in human gastric cancer cells. Diverse sphingolipid metabolites, including dihydroceramides (DHCer), were tested for their ability to induce resveratrol cytotoxicity. Exposure to resveratrol (100 ?M) for 24 hr induced...

  2. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  3. Enhancing the potency and specificity of engineered T cells for cancer treatment.

    Science.gov (United States)

    Sukumaran, Sujita; Watanabe, Norihiro; Bajgain, Pradip; Raja, Kanchana; Mohammed, Somala; Fisher, William E; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-06-07

    The adoptive transfer of chimeric antigen receptor (CAR)-modified T cells has produced tumor responses even in patients with refractory diseases. However, the paucity of antigens that are tumor selective has resulted, on occasion, in "on-target, off-tumor" toxicities. To address this issue, we developed an approach to render T cells responsive to an expression pattern present exclusively at the tumor by using a trio of novel chimeric receptors. Using pancreatic cancer as a model, we demonstrate how T cells engineered with receptors that recognize PSCA, TGFβ, and IL4, and whose endodomains recapitulate physiologic T cell signaling by providing signals for activation, co-stimulation and cytokine support, produce potent anti-tumor effects selectively at the tumor site. In addition, this strategy has the benefit of rendering our cells resistant to otherwise immunosuppressive cytokines (TGFβ and IL4) and can be readily extended to other inhibitory molecules present at the tumor site (e.g. PD-L1, IL10, IL13). Copyright ©2018, American Association for Cancer Research.

  4. Cetuximab Enhanced the Cytotoxic Activity of Immune Cells during Treatment of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-11-01

    Full Text Available Background/Aims: Cetuximab is a chimeric IgG1 monoclonal antibody which targets the extracellular domain of epidermal growth factor receptor. This antibody is widely used for colorectal cancer (CRC treatment but its influence on the immune system is incompletely understood. Methods: The immune influence of cetuximab therapy in CRC patients was investigated by analyzing peripheral blood mononuclear cells using flow cytometry. We undertook in vitro cytotoxicity and cytokine-profile assays to ascertain the immunomodulatory effect of cetuximab treatment. Results: The number of CD3+ T, CD8+ T, and natural killer (NK cells was increased significantly and T-regulatory cells reduced gradually after cetuximab treatment. Percentage of CD4+ T, natural killer T (NKT-like, invariant NKT, and dendritic cells was similar between baseline patients and cetuximab patients. Expression of CD137 on NK and CD8+ T cells was increased significantly after 4 weeks of cetuximab therapy. In vitro cetuximab treatment markedly increased expression of CD137 and CD107a on NK and CD8+ T cells. Cetuximab treatment promoted the cytotoxic activity of NK and CD8+ T cells against tumor cells. Conclusion: Cetuximab treatment promotes activation of the immune response but alleviates immunosuppression: this might be the underlying anti-CRC effect of cetuximab.

  5. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin

    International Nuclear Information System (INIS)

    Lee, Y.-J.; Sheu, T.-J.; Keng, Peter C.

    2005-01-01

    Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity

  6. Black Raspberries Enhance Natural Killer Cell Infiltration into the Colon and Suppress the Progression of Colorectal Cancer

    Science.gov (United States)

    Pan, Pan; Kang, Siwen; Wang, Youwei; Liu, Ka; Oshima, Kiyoko; Huang, Yi-Wen; Zhang, Jianying; Yearsley, Martha; Yu, Jianhua; Wang, Li-Shu

    2017-01-01

    Natural killer (NK) cells are an essential component of innate immunity against cancer development. Many studies have been conducted to evaluate immune-modulating effects using dietary compounds. Our laboratory has been investigating the chemopreventive potential of black raspberries (BRBs) and previously demonstrated their beneficial modulation of genetic and epigenetic biomarkers in patients with colorectal cancer (CRC). The current study investigated their potential on modulating NK cells. To avoid the excessive inflammation caused by the dextran sulfate sodium (DSS) treatment that leads to colitis, we treated the mice with overnight DSS so that it would slightly irritate the colon but still promote colon carcinogenesis with 100% incidence in both the ApcMin/+ mice and azoxymethane (AOM)-treated mice. A significant decrease of tissue-infiltrating NK cells along the progression of microadenoma-to-adenoma and adenoma-to-adenocarcinoma was observed in the ApcMin/+/DSS and AOM/DSS mice, respectively. Depletion of NK cells significantly promoted the development of CRC, suggesting a critical role of NK cells in combating CRC progression. BRBs significantly suppressed the CRC progression and increased the number of tissue-infiltrating NK cells in both mouse models. Moreover, we further determined BRBs’ effects on NK cells in the human biopsy specimens collected from our previously completed clinical trial, in which CRC patients consumed BRBs for an average of 4 weeks during a presurgical window. We observed an increased number and an enhanced cytotoxicity of NK cells by BRB intervention. The current study provides evidence that BRBs have the potential to enhance the tumor immunesurveillance of NK cells that can be beneficial in the setting of CRC prevention and treatment. PMID:28861089

  7. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    Science.gov (United States)

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  8. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells.

    Science.gov (United States)

    Saneja, Ankit; Nayak, Debasis; Srinivas, M; Kumar, Amit; Khare, Vaibhav; Katoch, Archana; Goswami, Anindya; Vishwakarma, Ram A; Sawant, Sanghapal D; Gupta, Prem N

    2017-01-15

    The overexpression of CD44 in cancer cells reroutes number of oncogenic pathways including the central Pi3K/Akt/NF-kB pathway leading to cancer progression and malignancy. Herein, we developed hyaluronic acid-modified poly(dl-lactic-co-glycolic acid)-poly (ethylene glycol) nanoparticles (PLGA-PEG-HA NPs) for targeted delivery of TTQ (thio-tetrazolyl analog of a clinical candidate, IC87114) to CD44 overexpressing cancer cells. The PLGA-PEG co-polymer was synthesized and characterized by NMR and FTIR. The co-polymer based nanoparticles were prepared by solvent evaporation method and hyaluronic acid (HA) was conjugated on to the nanoparticle surface via EDC/NHS chemistry. The PLGA-PEG-HA NPs had a desirable particle size (AFM). In vitro cytotoxicity and cellular uptake studies demonstrated higher cytotoxicity and enhanced intracellular accumulation of PLGA-PEG-HA NPs compared to PLGA-PEG NPs in high CD44 expressing MiaPaca-2 cells compared to MDA-MB-231 and MCF7 cells. At the molecular level, the PLGA-PEG-HA NPs were found to be inducing premature senescence with increase in senescence associated β-galactosidase activity and senescence specific marker p21 expression through modulation of Pi3K/Akt/NF-kB signaling pathway in MiaPaca-2 cells. These findings collectively indicated that HA-modified nanoparticles might serve as a promising nanocarrier for site-specific drug delivery, and can be explored further to increase the therapeutic efficacy of anticancer drugs via targeting to CD44 over-expressing cancer cells. Copyright © 2016. Published by Elsevier B.V.

  9. Histone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Watanabe, Kousuke; Amano, Yosuke; Ishikawa, Rie; Sunohara, Mitsuhiro; Kage, Hidenori; Ichinose, Junji; Sano, Atsushi; Nakajima, Jun; Fukayama, Masashi; Yatomi, Yutaka; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-01-01

    MicroRNA expression is frequently altered in human cancers, and some microRNAs act as oncogenes or tumor suppressors. MiR-139-5p (denoted thereafter as miR-139) has recently been reported to function as a tumor suppressor in several types of human cancer (hepatocellular carcinoma, colorectal cancer, breast cancer, and gastric cancer), but its function in non-small-cell lung cancer (NSCLC) and the mechanism of its suppression have not been studied in detail. MiR-139 was suppressed frequently in primary NSCLCs. MiR-139 is located within the intron of PDE2A and its expression was significantly correlated with the expression of PDE2A. A chromatin immunoprecipitation assay revealed that miR-139 was epigenetically silenced by histone H3 lysine 27 trimethylation (H3K27me3) of its host gene PDE2A and this process was independent of promoter DNA methylation. Pharmacological inhibition of both histone methylation and deacetylation-induced miR-139 with its host gene PDE2A. Ectopic expression of miR-139 in lung cancer cell lines did not affect the proliferation nor the migration but significantly suppressed the invasion through the extracellular matrix. In primary NSCLCs, decreased expression of miR-139 was significantly associated with distant lymph node metastasis and histological invasiveness (lymphatic invasion and vascular invasion) on both univariate and multivariate analyses. Collectively, these results suggest that H3K27me3-mediated silencing of miR-139 enhances an invasive and metastatic phenotype of NSCLC

  10. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    International Nuclear Information System (INIS)

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-01-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton

  11. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xiangyang [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006 (China); State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Wang, Yao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Liu, Chengmei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Lu, Quqin [Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006 (China); Liu, Tao [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China); Chen, Guoan [Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006 (China); Rao, Hai [Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Luo, Shiwen, E-mail: shiwenluo@ncu.edu.cn [Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006 (China)

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  12. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells

    Science.gov (United States)

    Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi

    2017-01-01

    Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685

  13. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Qiuqiang; Qian Jun; Li Xin; He Sailing, E-mail: qianjun@coer.zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China)

    2010-02-05

    Mesoporous encapsulation of gold nanorods (GNRs) in a silica shell of controllable thickness (4.5-25.5 nm) was realized through a single-step coating method without any intermediary coating. The dependence of localized surface plasmon resonance (LSPR) extinction spectra of the coated GNRs on the thickness of the silica shell was investigated with both simulation and experiments, which agreed well with each other. It was found that cetyltrimethyl ammonium bromide (CTAB) molecules, which act as surfactants for the GNRs and dissociate in the solution, greatly affect the silica coating. Mesoporous silica-encapsulated GNRs were also shown to be highly biocompatible and stable in bio-environments. Based on LSPR enhanced scattering, mesoporous silica-encapsulated GNRs were utilized for dark field scattering imaging of cancer cells. Biomolecule-conjugated mesoporous silica-encapsulated GNRs were specifically taken up by cancer cells in vitro, justifying their use as effective optical probes for early cancer diagnosis. Mesoporous silica can also be modified with functional groups and conjugated with certain biomolecules for specific labeling on mammalian cells as well as carrying drugs or biomolecules into biological cells.

  14. CTGF enhances resistance to 5-FU-mediating cell apoptosis through FAK/MEK/ERK signal pathway in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Yang K

    2016-11-01

    Full Text Available Kai Yang, Kai Gao, Gui Hu, Yanguang Wen, Changwei Lin, Xiaorong Li Department of General Surgery, The Third Affiliated Hospital of Central South University, Central South University, Changsha, Hunan, People’s Republic of China Abstract: Colorectal cancer (CRC is one of the most commonly diagnosed cancers among both males and females; the chemotherapy drug 5-fluorouracil (5-FU is one of a doctors’ first lines of defense against CRC. However, therapeutic failures are common because of the emergence of drug resistance. Connective tissue growth factor (CTGF is a secreted protein that binds to integrins, and regulates the invasiveness and metastasis of certain carcinoma cells. Here, we found that CTGF was upregulated in drug-resistant phenotype of human CRC cells. Overexpression of CTGF enhanced the resistance to 5-FU-induced cell apoptosis. Moreover, downregulating the expression of CTGF promoted the curative effect of chemotherapy and blocked the cell cycle in the G1 phase. We also found that CTGF facilitated resistance to 5-FU-induced apoptosis by increasing the expression of B-cell lymphoma-extra large (Bcl-xL and survivin. Then we pharmacologically blocked MEK/ERK signal pathway and assessed 5-FU response by MTT assays. Our current results indicate that the expression of phosphorylated forms of MEK/ERK increased in high CTGF expression cells and MEK inhibited increases in 5-FU-mediated apoptosis of resistant CRC cells. Therefore, our data suggest that MEK/ERK signaling contributes to 5-FU resistance through upstream of CTGF, and supports CRC cell growth. Comprehending the molecular mechanism underlying 5-FU resistance may ultimately aid the fight against CRC. Keywords: connective tissue growth factor, 5-fluorouracil, mitogen-activated protein kinase/extracellular regulated protein kinases, phosphatidyl inositol 3-kinase/serine/threonine kinase Akt, colorectal cancer

  15. Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7

    Directory of Open Access Journals (Sweden)

    Catiúscia P. de Oliveira

    2018-01-01

    Full Text Available Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT and in human breast carcinoma cells (MCF-7. Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors, while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7 being promising products for further in vivo pre-clinical evaluations.

  16. Graphene Oxide–Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs: A Novel Approach for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2018-03-01

    Full Text Available The use of graphene to target and eliminate cancer stem cells (CSCs is an alternative approach to conventional chemotherapy. We show the biomolecule-mediated synthesis of reduced graphene oxide–silver nanoparticle nanocomposites (rGO–Ag using R-phycoerythrin (RPE; the resulting RPE–rGO–Ag was evaluated in human ovarian cancer cells and ovarian cancer stem cells (OvCSCs. The synthesized RPE–rGO–Ag nanocomposite (referred to as rGO–Ag was characterized using various analytical techniques. rGO–Ag showed significant toxicity towards both ovarian cancer cells and OvCSCs. After 3 weeks of incubating OvCSCs with rGO–Ag, the number of A2780 and ALDH+CD133+ colonies was significantly reduced. rGO–Ag was toxic to OvCSCs and reduced cell viability by mediating the generation of reactive oxygen species, leakage of lactate dehydrogenase, reduced mitochondrial membrane potential, and enhanced expression of apoptotic genes, leading to mitochondrial dysfunction and possibly triggering apoptosis. rGO–Ag showed significant cytotoxic potential towards highly tumorigenic ALDH+CD133+ cells. The combination of rGO–Ag and salinomycin induced 5-fold higher levels of apoptosis than each treatment alone. A combination of rGO–Ag and salinomycin at very low concentrations may be suitable for selectively killing OvCSCs and sensitizing tumor cells. rGO–Ag may be a novel nano-therapeutic molecule for specific targeting of highly tumorigenic ALDH+CD133+ cells and eliminating CSCs. This study highlights the potential for targeted therapy of tumor-initiating cells.

  17. Methylferulate from Tamarix aucheriana inhibits growth and enhances chemosensitivity of human colorectal cancer cells: possible mechanism of action.

    Science.gov (United States)

    Abaza, Mohamed Salah I; Afzal, Mohammad; Al-Attiyah, Raja'a J; Guleri, Radhika

    2016-10-01

    Natural products are valuable sources for anticancer agents. In the present study, methylferulate (MF) was identified for the first time from Tamarix aucheriana. Spectral data were used for identification of MF. The potential of MF to control cell growth, cell cycle, apoptosis, generation of reactive oxygen species (ROS), cancer cell invasion, nuclear factor kappa B (NFkB) DNA-binding activity and proteasomal activities, as well as the enhancement of chemosensitivity in human colorectal cancer cells, were evaluated. The possible molecular mechanism of MF's therapeutic efficacy was also assessed. Column chromatography and spectral data were used for isolation and identification of MF. MTT, immunofluorescence, flow cytometry, in vitro invasion, fluoremetry, EIA and Real time qPCR were used to measure antiproliferative, chemo-sensitizing effects and other biochemical parameters. MF showed a dose-dependent anti-proliferative effect on colorectal cancer cells (IC 50  = 1.73 - 1.9 mM) with a nonsignificant cytotoxicity toward normal human fibroblast. Colony formation inhibition (P ≤ 0.001, 0.0001) confirmed the growth inhibition by MF. MF arrested cell cycle progression in the S and G2/M phases; induced apoptosis and ROS generation; and inhibited NF-kB DNA-binding activity, proteasomal activities and cell invasion in colorectal cancer cells. MF up-regulated cyclin-dependent kinase inhibitors (p19 INK4D , p21 WAF1/CIP1 , p27 KIP1 ), pro-apoptotic gene expression (Bax, Bad, Apaf1, Bid, Bim, Smac) and caspases (caspase 2, 3, 6, 7, 8, 9). Moreover, MF down-regulated cyclin-dependent kinases (Cdk1, Cdk2) and anti-apoptotic gene expression (c-IAP-1, c-IAP-2, Bcl2,FLIP). In addition, MF differentially potentiated the sensitivity of colorectal cancer cells to standard chemotherapeutic drugs. MF showed a multifaceted anti-proliferative and chemosensitizing effects. These results suggest the chemotherapeutic and co-adjuvant potential of MF.

  18. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  19. Inhibition of inducible heat shock protein-70 (hsp72 enhances bortezomib-induced cell death in human bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Wei Qi

    Full Text Available The proteasome inhibitor bortezomib (Velcade is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A(high cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1A(low cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1 to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1A(low cell lines (UM-UC10 and UM-UC13, and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.

  20. Podoplanin enhances lung cancer cell growth in vivo by inducing platelet aggregation.

    Science.gov (United States)

    Miyata, Kenichi; Takemoto, Ai; Okumura, Sakae; Nishio, Makoto; Fujita, Naoya

    2017-06-22

    Podoplanin/Aggrus, known as a platelet aggregation-inducing factor, is frequently overexpressed in lung squamous cell carcinomas (LSCC) and glioblastomas among other tumours, and its expression has been reported to be correlated with poor prognosis. However, the contribution of podoplanin to malignant progression has been elusive. Here we demonstrate that in podoplanin-positive LSCC cells, their growth was abrogated by podoplanin knockout in vivo but not in vitro. Conversely, ectopic expression of podoplanin promoted cell growth in vivo and facilitated intratumoral platelet activation. Consistently, LSCC cells evoked podoplanin-mediated platelet aggregation (PMPA), and the releasates from platelets during PMPA promoted the growth of LSCC cells in vitro. Phospho-receptor-tyrosine-kinase array analysis revealed that epidermal growth factor receptor (EGFR) phosphorylation of LSCC cells was responsible for the growth promotion induced by platelet releasates. Treatment with an antiplatelet agent or podoplanin-neutralizing antibody depressed the growth of an LSCC tumour xenograft via suppression of EGFR phosphorylation. These results suggested that podoplanin in LSCC enhanced cell growth by inducing PMPA in vivo and contributed to malignant progression.

  1. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells

    International Nuclear Information System (INIS)

    Villanueva, Angeles; Canete, Magdalena; Calero, Macarena; Roca, Alejandro G; Veintemillas-Verdaguer, Sabino; Serna, Carlos J; Del Puerto Morales, Maria; Miranda, Rodolfo

    2009-01-01

    The internalization and biocompatibility of iron oxide nanoparticles surface functionalized with four differently charged carbohydrates have been tested in the human cervical carcinoma cell line (HeLa). Neutral, positive, and negative iron oxide nanoparticles were obtained by coating with dextran, aminodextran, heparin, and dimercaptosuccinic acid, resulting in colloidal suspensions stable at pH 7 with similar aggregate size. No intracellular uptake was detected in cells incubated with neutral charged nanoparticles, while negative particles showed different behaviour depending on the nature of the coating. Thus, dimercaptosuccinic-coated nanoparticles showed low cellular uptake with non-toxic effects, while heparin-coated particles showed cellular uptake only at high nanoparticle concentrations and induced abnormal mitotic spindle configurations. Finally, cationic magnetic nanoparticles show excellent properties for possible in vivo biomedical applications such as cell tracking by magnetic resonance imaging (MRI) and cancer treatment by hyperthermia: (i) they enter into cells with high effectiveness, and are localized in endosomes; (ii) they can be easily detected inside cells by optical microscopy, (iii) they are retained for relatively long periods of time, and (iv) they do not induce any cytotoxicity.

  2. Squamous cell cancer (image)

    Science.gov (United States)

    Squamous cell cancer involves cancerous changes to the cells of the middle portion of the epidermal skin layer. It is ... malignant tumor, and is more aggressive than basal cell cancer, but still may be relatively slow-growing. It ...

  3. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets.

    Science.gov (United States)

    Best, Myron G; Sol, Nik; In 't Veld, Sjors G J G; Vancura, Adrienne; Muller, Mirte; Niemeijer, Anna-Larissa N; Fejes, Aniko V; Tjon Kon Fat, Lee-Ann; Huis In 't Veld, Anna E; Leurs, Cyra; Le Large, Tessa Y; Meijer, Laura L; Kooi, Irsan E; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Wedekind, Laurine E; Bracht, Jillian; Esenkbrink, Michelle; Wils, Leon; Favaro, Francesca; Schoonhoven, Jilian D; Tannous, Jihane; Meijers-Heijboer, Hanne; Kazemier, Geert; Giovannetti, Elisa; Reijneveld, Jaap C; Idema, Sander; Killestein, Joep; Heger, Michal; de Jager, Saskia C; Urbanus, Rolf T; Hoefer, Imo E; Pasterkamp, Gerard; Mannhalter, Christine; Gomez-Arroyo, Jose; Bogaard, Harm-Jan; Noske, David P; Vandertop, W Peter; van den Broek, Daan; Ylstra, Bauke; Nilsson, R Jonas A; Wesseling, Pieter; Karachaliou, Niki; Rosell, Rafael; Lee-Lewandrowski, Elizabeth; Lewandrowski, Kent B; Tannous, Bakhos A; de Langen, Adrianus J; Smit, Egbert F; van den Heuvel, Michel M; Wurdinger, Thomas

    2017-08-14

    Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.94; 95% CI, 0.92-0.96; p swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy biosources. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lee, Hyung-Ok; Mullins, Stefanie R; Franco-Barraza, Janusz; Valianou, Matthildi; Cukierman, Edna; Cheng, Jonathan D

    2011-01-01

    Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP + matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP + matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP + matrix-induced tumor invasion phenotype is β 1 -integrin/FAK mediated. Cancer cell invasiveness can be affected by alterations in the tumor

  5. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.

    Science.gov (United States)

    Imani, Rana; Shao, Wei; Taherkhani, Samira; Emami, Shahriar Hojjati; Prakash, Satya; Faghihi, Shahab

    2016-11-01

    The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed. The siRNA loaded nano-carrier is used for internalization to MCF-7 cells and its gene silencing ability is compared with AllStars Hs Cell Death siRNA as a model gene. The nano-carrier remains stable in biological solution, exhibits excellent cytocompatibility, retards the siRNA migration and protects it against enzyme degradation. The buffering capacity analysis shows that incorporation of the peptide in nano-carrier structure would increase the resistance to endo/lysosomal like acidic condition (pH 6-4) The functionalized nano-carrier which is loaded with siRNA in an optimal N:P ratio presents superior internalization efficiency (82±5.1% compared to HiPerFect(®)), endosomal escape quality and capable of inducing cell death in MCF-7 cancer cells (51±3.1% compared to non-treated cells). The success of siRNA-based therapy is largely dependent on the safe and efficient delivery system, therefore; the dual functionalized rGO introduced here could have a great potential to be used as a carrier for siRNA delivery with relevancy in therapeutics and clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  7. [Molecular mechanism of cisplatin to enhance the ability of TRAIL in reversing multidrug resistance in gastric cancer cells].

    Science.gov (United States)

    Zhu, Xingchao; Zhang, Kaiguang; Wang, Qiaomin; Chen, Si; Gou, Yawen; Cui, Yufang; Li, Qin

    2015-06-01

    To study the molecular mechanism of cisplatin to enhance the ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in reversing multidrug resistance in vincristine-resistant human gastric cancer SGC7901/VCR cells. MTT assay was used to measure the 50% inhibiting concentration (IC₅₀) and cell survival in SGC7901 and SGC7901/VCR cells after different treatments. SGC7901/VCR cells were treated with different concentrations of DDP, different concentrations of TRAIL alone or in combination, and then the mRNA and protein levels of several genes were determined by RT-PCR, RT-qPCR and Western-blot analysis. After targeted silencing with specific siRNA and transfection of recombinant plasmid c-myc into the SGC7901/VCR cells, the mRNA and protein levels of DR4, DR5 and c-myc were determined by RT-PCR and Western-blot analysis. After combined treatment with TRAIL and DDP of the SGC7901/VCR cells, the IC₅₀ of VCR, DDP, ADM, and 5-Fu treatment was significantly decreased compared with the control group or TRAIL-treated group (P mechanism of DDP-induced sensitization of TRAIL to reverse the multidrug resistancein SGC7901/VCR cells.

  8. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models.

    Directory of Open Access Journals (Sweden)

    Li Shen

    Full Text Available Immunosuppressive factors such as regulatory T cells (Tregs limit the efficacy of immunotherapies. Histone deacetylase (HDAC inhibitors have been reported to have antitumor activity in different malignancies and immunomodulatory effects. Herein, we report the Tregs-targeting and immune-promoting effect of a class I specific HDAC inhibitor, entinostat, in combination with either IL-2 in a murine renal cell carcinoma (RENCA model or a survivin-based vaccine therapy (SurVaxM in a castration resistant prostate cancer (CR Myc-CaP model.RENCA or CR Myc-CaP tumors were implanted orthotopically or subcutaneously, respectively. Inoculated mice were randomized into four treatment groups: vehicle, entinostat, cytokine or vaccine, and combination. Tregs in the blood were assessed by FACS analysis. Real time quantitative PCR and Western blot analysis of isolated T cell subpopulations from spleen were performed to determine Foxp3 gene and protein expression. The suppressive function of Tregs was tested by T cell proliferation assay. Low dose (5 mg/kg entinostat reduced Foxp3 levels in Tregs and this was associated with enhanced tumor growth inhibition in combination with either IL-2 or a SurVaxM vaccine. Entinostat down-regulated Foxp3 expression transcriptionally and blocked Tregs suppressive function without affecting T effector cells (Teffs. In vitro low dose entinostat (0.5 µM induced STAT3 acetylation and a specific inhibitor of STAT3 partially rescued entinostat-induced down-regulation of Foxp3, suggesting that STAT3 signaling is involved in Foxp3 down-regulation by entinostat.These results demonstrate a novel immunomodulatory effect of class I HDAC inhibition and provide a rationale for the clinical testing of entinostat to enhance cancer immunotherapy.

  9. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties.

    Directory of Open Access Journals (Sweden)

    Pegah Ghiabi

    Full Text Available Treating metastasis has been challenging due to tumors complexity and heterogeneity. This complexity is partly related to the crosstalk between tumor and its microenvironment. Endothelial cells -the building blocks of tumor vasculature- have been shown to have additional roles in cancer progression than angiogenesis and supplying oxygen and nutrients. Here, we show an alternative role for endothelial cells in supporting breast cancer growth and spreading independent of their vascular functions. Using endothelial cells and breast cancer cell lines MDA-MB231 and MCF-7, we developed co-culture systems to study the influence of tumor endothelium on breast tumor development by both in vitro and in vivo approaches. Our results demonstrated that endothelial cells conferred survival advantage to tumor cells under complete starvation and enriched the CD44HighCD24Low/- stem cell population in tumor cells. Moreover, endothelial cells enhanced the pro-metastatic potential of breast cancer cells. The in vitro and in vivo results concordantly confirmed a role for endothelial Jagged1 to promote breast tumor through notch activation. Here, we propose a role for endothelial cells in enhancing breast cancer progression, stemness, and pro-metastatic traits through a perfusion-independent manner. Our findings may be beneficial in developing novel therapeutic approaches.

  10. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Identification of an enhancer that increases miR-200b~200a~429 gene expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joanne L Attema

    Full Text Available The miR-200b~200a~429 gene cluster is a key regulator of EMT and cancer metastasis, however the transcription-based mechanisms controlling its expression during this process are not well understood. We have analyzed the miR-200b~200a~429 locus for epigenetic modifications in breast epithelial and mesenchymal cell lines using chromatin immunoprecipitation assays and DNA methylation analysis. We discovered a novel enhancer located approximately 5.1kb upstream of the miR-200b~200a~429 transcriptional start site. This region was associated with the active enhancer chromatin signature comprising H3K4me1, H3K27ac, RNA polymerase II and CpG dinucleotide hypomethylation. Luciferase reporter assays revealed the upstream enhancer stimulated the transcription of the miR-200b~200a~429 minimal promoter region approximately 27-fold in breast epithelial cells. Furthermore, we found that a region of the enhancer was transcribed, producing a short, GC-rich, mainly nuclear, non-polyadenylated RNA transcript designated miR-200b eRNA. Over-expression of miR-200b eRNA had little effect on miR-200b~200a~429 promoter activity and its production did not correlate with miR-200b~200a~429 gene expression. While additional investigations of miR-200b eRNA function will be necessary, it is possible that miR-200b eRNA may be involved in the regulation of miR-200b~200a~429 gene expression and silencing. Taken together, these findings reveal the presence of a novel enhancer, which contributes to miR-200b~200a~429 transcriptional regulation in epithelial cells.

  12. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chiu, Hsien-Chun; Syu, Jhan-Jhang; Jian, Yi-Jun; Chen, Chien-Yu; Jian, Yun-Ting; Huang, Yi-Jhen; Wo, Ting-Yu; Lin, Yun-Wei

    2014-03-01

    Tamoxifen is a triphenylethylene nonsteroidal estrogen receptor (ER) antagonist used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Thymidine phosphorylase (TP) is an enzyme of the pyrimidine salvage pathway which is upregulated in cancers. In this study, tamoxifen treatment inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with tamoxifen decreased TP mRNA and protein levels through AKT inactivation. Furthermore, expression of constitutively active AKT (AKT-CA) vectors significantly rescued the decreased TP protein and mRNA levels in tamoxifen-treated NSCLC cells. In contrast, combination treatment with PI3K inhibitors (LY294002 or wortmannin) and tamoxifen further decreased the TP expression and cell viability of NSCLC cells. Knocking down TP expression by transfection with small interfering RNA of TP enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Erlotinib (Tarceva, OSI-774), an orally available small molecular inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is approved for clinical treatment of NSCLC. Compared to a single agent alone, tamoxifen combined with erlotinib resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-AKT and phospho-ERK1/2, and reduced TP protein levels. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and erlotinib for the treatment of NSCLC. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Methylseleninic acid (MSA) inhibits 17β-estradiol-induced cell growth in breast cancer T47D cells via enhancement of the antioxidative thioredoxin/ thioredoxin reductase system.

    Science.gov (United States)

    Okuno, Tomofumi; Miura, Kiyoshi; Sakazaki, Fumitoshi; Nakamuro, Katsuhiko; Ueno, Hitoshi

    2012-01-01

    The purpose of this study was to clarify the cell growth inhibitory mechanism of human breast cancer cells caused by selenium (Se) compounds. In the presence of 17β-estradiol (E(2)) at physiological concentrations, growth of estrogen receptor α (ERα)-positive T47D cells was markedly inhibited by 1 × 10(-6) mol/L methylseleninic acid (MSA) with no Se related toxicity.Under conditions where cell growth was inhibited, MSA decreased ERα mRNA levels and subsequent protein levels; further decreasing expression of estrogen-responsive finger protein (Efp) which is a target gene product of ERα and promotes G2/M progression of the cell cycle. Therefore, the decline in Efp expression is presumed to be involved in G2 arrest. Coincidentally, the antioxidative thioredoxin/ thioredoxin reductase (Trx/TrxR) system in cells was enhanced by the synergistic action of E(2) and MSA. It has been reported that ROS-induced oxidative stress enhanced ERα expression. E(2) increased production of intracellular ROS in T47D cells. Meanwhile, MSA significantly decreased E(2)-induced ROS accumulation. From these results, activation of the Trx/TrxR system induced by the coexistence of MSA and E(2) suppresses oxidative stress and decreases expression of ERα, and finally induces the growth arrest of T47D cells through disruption of ERα signaling.

  14. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  15. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2018-01-01

    Full Text Available NAF-1 (nutrient-deprivation autophagy factor-1, which is an outer mitochondrial membrane protein, is known to play important roles in calcium metabolism, antiapoptosis, and antiautophagy. Resveratrol, a natural polyphenolic compound, is considered as a potent anticancer agent. Nevertheless, the molecular mechanisms underlying the effects of resveratrol and NAF-1 and their mediation of drug resistance in pancreatic cancer remain unclear. Here, we demonstrate that resveratrol suppresses the expression of NAF-1 in pancreatic cancer cells by inducing cellular reactive oxygen species (ROS accumulation and activating Nrf2 signaling. In addition, the knockdown of NAF-1 activates apoptosis and impedes the proliferation of pancreatic cancer cells. More importantly, the targeting of NAF-1 by resveratrol can improve the sensitivity of pancreatic cancer cells to gemcitabine. These results highlight the significance of strategies that target NAF-1, which may enhance the efficacy of gemcitabine in pancreatic cancer therapy.

  17. [Macrophage colony stimulating factor enhances non-small cell lung cancer invasion and metastasis by promoting macrophage M2 polarization].

    Science.gov (United States)

    Li, Y J; Yang, L; Wang, L P; Zhang, Y

    2017-06-23

    Objective: To investigate the key cytokine which polarizes M2 macrophages and promotes invasion and metastasis in non-small cell lung cancer (NSCLC). Methods: After co-culture with A549 cells in vitro, the proportion of CD14(+) CD163(+) M2 macrophages in monocytes and macrophage colony stimulating factor (M-CSF) levels in culture supernatant were detected by flow cytometry, ELISA assay and real-time qPCR, respectively. The effects of CD14(+) CD163(+) M2 macrophages on invasion of A549 cells and angiogenesis of HUVEC cells were measured by transwell assay and tubule formation assay, respectively. The clinical and prognostic significance of M-CSF expression in NSCLC was further analyzed. Results: The percentage of CD14(+) CD163(+) M2 macrophages in monocytes and the concentration of M-CSF in the supernatant followed by co-culture was (12.03±0.46)% and (299.80±73.76)pg/ml, respectively, which were significantly higher than those in control group [(2.80±1.04)% and (43.07±11.22)pg/ml, respectively, P macrophages in vitro . M2 macrophages enhanced the invasion of A549 cells (66 cells/field vs. 26 cells/field) and the angiogenesis of HUVEC cells (22 tubes/field vs. 8 tubes/field). The mRNA expression of M-CSF in stage Ⅰ-Ⅱ patients (16.23±4.83) was significantly lower than that in stage Ⅲ-Ⅳ (53.84±16.08; P macrophages, which can further promote the metastasis and angiogenesis of NSCLC. M-CSF could be used as a potential therapeutic target of NSCLC.

  18. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Enhancing Docetaxel Delivery to Multidrug-Resistant Cancer Cells with Albumin-Coated Nanocrystals.

    Science.gov (United States)

    Gad, Sheryhan F; Park, Joonyoung; Park, Ji Eun; Fetih, Gihan N; Tous, Sozan S; Lee, Wooin; Yeo, Yoon

    2018-01-29

    Intravenous delivery of poorly water-soluble anticancer drugs such as docetaxel (DTX) is challenging due to the low bioavailability and the toxicity related to solubilizing excipients. Colloidal nanoparticles are used as alternative carriers, but low drug loading capacity and circulation instability limit their clinical translation. To address these challenges, DTX nanocrystals (NCs) were prepared using Pluronic F127 as an intermediate stabilizer and albumin as a functional surface modifier, which were previously found to be effective in producing small and stable NCs. We hypothesize that the albumin-coated DTX NCs (DTX-F-alb) will remain stable in serum-containing medium so as to effectively leverage the enhanced permeability and retention effect. In addition, the surface-bound albumin, in its native form, may contribute to cellular transport of NCs through interactions with albumin-binding proteins such as secreted protein acidic and rich in cysteine (SPARC). DTX-F-alb NCs showed sheet-like structure with an average length, width, and thickness of 284 ± 96, 173 ± 56, and 40 ± 8 nm and remained stable in 50% serum solution at a concentration greater than 10 μg/mL. Cytotoxicity and cellular uptake of DTX-F-alb and unformulated (free) DTX were compared on three cell lines with different levels of SPARC expression and DTX sensitivity. While the uptake of free DTX was highly dependent on DTX sensitivity, DTX-F-alb treatment resulted in relatively consistent cellular levels of DTX. Free DTX was more efficient in entering drug-sensitive B16F10 and SKOV-3 cells than DTX-F-alb, with consistent cytotoxic effects. In contrast, multidrug-resistant NCI/ADR-RES cells took up DTX-F-alb more than free DTX with time and responded better to the former. This difference was reduced by SPARC knockdown. The high SPARC expression level of NCI/ADR-RES cells, the known affinity of albumin for SPARC, and the opposing effect of SPARC knockdown support that DTX-F-alb have exploited the

  20. Ectopic expression of miR-34a enhances radiosensitivity of non-small cell lung cancer cells, partly by suppressing the LyGDI signaling pathway

    International Nuclear Information System (INIS)

    Duan Weiming; Xu Yaxiang; Dong Yujin; Cao Lili; Tong Jian; Zhou Xinwen

    2013-01-01

    miR-34a is transcriptionally induced by the tumor suppressor gene p53, which is often downregulated in non-small cell lung cancer (NSCLC). To address whether the downstream signal of miR-34a is sufficient to induce apoptosis and to alter cellular radiosensitivity, a chemical synthetic miR-34a mimic was delivered into A549 and H1299 cells, with or without co-treatment of γ-irradiation. Results showed that ectopic expression of miR-34a induced dose-dependent cell growth inhibition and apoptosis in a p53-independent manner in both NSCLC cell lines. Interestingly, LyGDI was discovered as a new target gene of miR-34a, and downregulation of LyGDI promoted Rac1 activation and membrane translocation, resulting in cell apoptosis. Furthermore, restoration of miR-34a indirectly reduced cyclooxygenase-2 (COX-2) expression. Taken together, these results demonstrate that restoration of miR-34a expression enhances radiation-induced apoptosis, partly by suppressing the LyGDI signaling pathway, and miR-34a could possibly be used as a radiosensitizer for non-small cell lung cancer therapy. (author)

  1. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil.

    Science.gov (United States)

    Chen, Xiao-Xin; Leung, George Pak-Heng; Zhang, Zhang-Jin; Xiao, Jian-Bo; Lao, Li-Xing; Feng, Feng; Mak, Judith Choi-Wo; Wang, Ying; Sze, Stephen Cho-Wing; Zhang, Kalin Yan-Bo

    2017-09-01

    Breast cancer is the most frequently diagnosed cancer and cause of cancer death in women worldwide. Current treatments often result in systematic toxicity and drug resistance. Combinational use of non-toxic phytochemicals with chemotherapeutic agents to enhance the efficacy and reduce toxicity would be one promising approach. In this study, bioactive proanthocyanidins from Uncaria rhynchophylla (UPAs) were isolated and their anti-breast cancer effects alone and in combination with 5- fluorouracil (5-FU) were investigated in MDA-MB-231 breast cancer cells. The results showed that UPAs significantly inhibited cell viability and migration ability in a dose-dependent manner. Moreover, UPAs induced apoptosis in a dose-dependent manner which was associated with increased cellular reactive oxygen species production, loss of mitochondrial membrane potential, increases of Bax/Bcl-2 ratio and levels of cleaved caspase 3. Treatments of the cells with UPAs resulted in an increase in G2/M cell cycle arrest. Cytotoxic effects of 5-FU against MDA-MB-231 cells were enhanced by UPAs. The combination treatment of UPAs and 5-FU for 48 h elicited a synergistic cytotoxic effect on MDA-MB-231 cells. Altogether, these data suggest that UPAs are potential therapeutic agents for breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Huang, Yan-Feng; Zhu, Da-Jian; Chen, Xiao-Wu; Chen, Qi-Kang; Luo, Zhen-Tao; Liu, Chang-Chun; Wang, Guo-Xin; Zhang, Wei-Jie; Liao, Nv-Zhu

    2017-06-20

    Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.

  3. Aminopeptidase A initiates tumorigenesis and enhances tumor cell stemness via TWIST1 upregulation in colorectal cancer

    OpenAIRE

    Chuang, Hui-Yu; Jiang, Jeng-Kae; Yang, Muh-Hwa; Wang, Hsei-Wei; Li, Ming-Chun; Tsai, Chan-Yen; Jhang, Yau-Yun; Huang, Jason C.

    2017-01-01

    Metastasis accounts for the high mortality rate associated with colorectal cancer (CRC), but metastasis regulators are not fully understood. To identify a novel gene involved in tumor metastasis, we used oligonucleotide microarrays, transcriptome distance analyses, and machine learning algorithms to determine links between primary and metastatic colorectal cancers. Aminopeptidase A (APA; also known as ENPEP) was selected as our focus because its relationship with colorectal cancer requires cl...

  4. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-01-01

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα + ) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  5. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  6. Knockdown of UbcH10 Enhances the Chemosensitivity of Dual Drug Resistant Breast Cancer Cells to Epirubicin and Docetaxel

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2015-03-01

    Full Text Available Breast cancer is one of the most common and lethal cancers in women. As a hub gene involved in a diversity of tumors, the ubiquitin-conjugating enzyme H10 (UbcH10, may also play some roles in the genesis and development of breast cancer. In the current study, we found that the expression of UbcH10 was up-regulated in some breast cancer tissues and five cell lines. We established a dual drug resistant cell line MCF-7/EPB (epirubicin/TXT (docetaxel and a lentiviral system expressing UbcH10 shRNA to investigate the effects of UbcH10 knockdown on the chemosensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel. The knockdown of UbcH10 inhibited the proliferation of both MCF-7 and MCF-7/EPB/TXT cells, due to the G1 phase arrest in cell cycle. Furthermore, UbcH10 knockdown increased the sensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel and promoted the apoptosis induced by these two drugs. Protein detection showed that, in addition to inhibiting the expression of Ki67 and cyclin D1, UbcH10 RNAi also impaired the increased BCL-2 and MDR-1 expression levels in MCF-7/EPB/TXT cells, which may contribute to abating the drug resistance in the breast cancer cells. Our research in the current study demonstrated that up-regulation of UbcH10 was involved in breast cancer and its knockdown can inhibit the growth of cancer cells and increase the chemosensitivity of the dual drug resistant breast cancer cells to epirubicin and docetaxel, suggesting that UbcH10 may be a promising target for the therapy of breast cancer.

  7. Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin ?5?1 and Fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jin-Min; Onodera, Yasuhito; Bissell, Mina J; Park, Catherine C

    2010-04-07

    Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that {beta}1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D lrECM) or grown as xenografts in mice. Here, we show that a specific {alpha} heterodimer of {beta}1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D lrECM culture conditions were used to compare {alpha}-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of {alpha}5{beta}1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of {alpha}5{beta}1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of {alpha}5{beta}1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of {alpha}5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and {alpha}5{beta}1-integrin as targets for breast cancer therapy.

  8. Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins

    Czech Academy of Sciences Publication Activity Database

    Park, S.; Cho, D. J.; Anděra, Ladislav; Suh, N.; Kim, I.

    2013-01-01

    Roč. 383, 1-2 (2013), s. 39-48 ISSN 0300-8177 Institutional support: RVO:68378050 Keywords : TRAIL * curcumin * apoptosis * breast cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.388, year: 2013

  9. Non-small cell lung cancer: evaluation of the relationship between fibrosis and washout feature at dynamic contrast enhanced CT

    International Nuclear Information System (INIS)

    Ye Xiaodan; Yuan Zheng; Ye Jianding; Li Huimin; Zhu Yuzhao; Zhang Shunmin; Liu Shiyuan; Xiao Xiangsheng

    2010-01-01

    Objective: To correlate dynamic parameters at contrast enhanced CT and interstitial fibrosis grade of' non-small cell lung cancer (NSCLC). Methods: Twenty-nine patients with NSCLC were evaluated by multi-slice CT. Images were obtained before and at 20, 30, 45, 60, 75, 90, 120, 180, 300, 540, 720, 900 and 1200 s after the injection of contrast media, which was administered at a rate of 4 ml/s for a total of 420 mg I/kg body weight. Washout parameters were calculated. Lung cancer specimens were stained with hematoxylin-eosin stain and collagen and elastic double stain. Spearman test was made to analyze correlation between dynamic parameters and interstitial fibrosis grade of tumor. Results: Twenty- nine NSCLC demonstrated washout at 20 min 12.1 (0.32-58.0) HU, washout ratio at 20 minutes 15.3% (0.3%-39.2%), slope of washout at 20 minutes 0.0152%/s (0.0007%/s-0.0561%/s). Interstitial fibrosis of 29 lesions was graded as grade Ⅰ (10), grade Ⅱ (14) and grade Ⅲ (5). There were significant correlation between washout at 20 min (r=-0.402, P<0.05), washout ratio at 20 min (r= -0.372, P<0.05), slope of washout ratio (r=-0.459, P<0.05) and interstitial fibrosis grade in tumors. Conclusion: NSCLC washout features at dynamic multi-detector CT correlates with interstitial fibrosis in the tumor. (authors)

  10. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells.

    Science.gov (United States)

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-10-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.

  11. Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin.

    Science.gov (United States)

    Fatima, Munazza T; Chanchal, Abhishek; Yavvari, Prabhu S; Bhagat, Somnath D; Gujrati, Mansi; Mishra, Ram K; Srivastava, Aasheesh

    2016-07-11

    Many hydrophobic drugs encounter severe bioavailability issues owing to their low aqueous solubility and limited cellular uptake. We have designed a series of amphiphilic polyaspartamide polyelectrolytes (PEs) that solubilize such hydrophobic drugs in aqueous medium and enhance their cellular uptake. These PEs were synthesized through controlled (∼20 mol %) derivatization of polysuccinimide (PSI) precursor polymer with hydrophobic amines (of varying alkyl chain lengths, viz. hexyl, octyl, dodecyl, and oleyl), while the remaining succinimide residues of PSI were opened using a protonable and hydrophilic amine, 2-(2-amino-ethyl amino) ethanol (AE). Curcumin (Cur) was employed as a representative hydrophobic drug to explore the drug-delivery potential of the resulting PEs. Unprecedented enhancement in the aqueous solubility of Cur was achieved by employing these PEs through a rather simple protocol. In the case of PEs containing oleyl/dodecyl residues, up to >65000× increment in the solubility of Cur in aqueous medium could be achieved without requiring any organic solvent at all. The resulting suspensions were physically and chemically stable for at least 2 weeks. Stable nanosized polyelectrolyte complexes (PECs) with average hydrodynamic diameters (DH) of 150-170 nm (without Cur) and 220-270 nm (after Cur loading) were obtained by using submolar sodium polyaspartate (SPA) counter polyelectrolyte. The zeta potential of these PECs ranged from +36 to +43 mV. The PEC-formation significantly improved the cytocompatibility of the PEs while affording reconstitutable nanoformulations having up to 40 wt % drug-loading. The Cur-loaded PECs were readily internalized by mammalian cells (HEK-293T, MDA-MB-231, and U2OS), majorly through clathrin-mediated endocytosis (CME). Cellular uptake of Cur was directly correlated with the length of the alkyl chain present in the PECs. Further, the PECs significantly improved nuclear transport of Cur in cancer cells, resulting in their

  12. Loss of insulin-like growth factor II imprinting is a hallmark associated with enhanced chemo/radiotherapy resistance in cancer stem cells.

    Science.gov (United States)

    Zhao, Xin; Liu, Xiaoliang; Wang, Guanjun; Wen, Xue; Zhang, Xiaoying; Hoffman, Andrew R; Li, Wei; Hu, Ji-Fan; Cui, Jiuwei

    2016-08-09

    Insulin-like growth factor II (IGF2) is maternally imprinted in most tissues, but the epigenetic regulation of the gene in cancer stem cells (CSCs) has not been defined. To study the epigenetic mechanisms underlying self-renewal, we isolated CSCs and non-CSCs from colon cancer (HT29, HRT18, HCT116), hepatoma (Hep3B), breast cancer (MCF7) and prostate cancer (ASPC) cell lines. In HT29 and HRT18 cells that show loss of IGF2 imprinting (LOI), IGF2 was biallelically expressed in the isolated CSCs. Surprisingly, we also found loss of IGF2 imprinting in CSCs derived from cell lines HCT116 and ASPC that overall demonstrate maintenance of IGF2 imprinting. Using chromatin conformation capture (3C), we found that intrachromosomal looping between the IGF2 promoters and the imprinting control region (ICR) was abrogated in CSCs, in parallel with loss of IGF2 imprinting in these CSCs. Loss of imprinting led to increased IGF2 expression in CSCs, which have a higher rate of colony formation and greater resistance to chemotherapy and radiotherapy in vitro. These studies demonstrate that IGF2 LOI is a common feature in CSCs, even when the stem cells are derived from a cell line in which the general population of cells maintain IGF2 imprinting. This finding suggests that aberrant IGF2 imprinting may be an intrinsic epigenetic control mechanism that enhances stemness, self-renewal and chemo/radiotherapy resistance in cancer stem cells.

  13. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1.

    Science.gov (United States)

    Liu, Gui-Feng; Zhang, Shu-Hua; Li, Xue-Feng; Cao, Li-Yan; Fu, Zhan-Zhao; Yu, Shao-Nan

    2017-10-06

    We examined the effects of microRNA-132 (miR-132) on Bmi-1 expression and radiosensitivity in HeLa, SiHa, and C33A cervical cancer (CC) cells and 104 CC patients. MiR-132 expression was decreased and Bmi-1 expression was increased in tumor tissues compared to adjacent normal tissues and in radiotherapy-resistant patients compared to radiotherapy-sensitive patients. MiR-132 expression and Bmi-1 mRNA expression were also negatively correlated in tumor tissues. HeLa, SiHa, and C33A cells were divided into blank, miR-132 negative control (NC), miR-132 inhibitor, miR-132 mimics, siBmi-1, and miR-132 inhibitor + siBmi-1 groups, after which expression of miR-132 and Bmi-1, and the interaction between them and cell survival, proliferation, and apoptosis were examined. Bmi-1 was confirmed as a target of miRNA-132. Survival was higher and apoptosis lower in the miR-132 inhibitor group than the blank group after various doses of radiation. By contrast, survival was lower and apoptosis higher in the miRNA-132 mimics and siBmi-1 groups than in the blank group. Moreover, miR-132 expression increased and Bmi-1 mRNA expression decreased in each group at radiation doses of 6 and 8 Gy. Finally, co-administration of radiotherapy and exogenous miR-132 inhibited the growth of HeLa cell transplant-induced tumors in nude mice more effectively than radiotherapy alone. These results suggest overexpression of miR-132 enhances the radiosensitivity of CC cells by down-regulating Bmi-1 and that miR-132 may be a useful new target for the treatment of CC.

  14. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis.

    Science.gov (United States)

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK as well as MMP-9.

  15. The Replacement of five Consecutive Amino Acids in the Cyt1A Protein of Bacillus thuringiensis Enhances its Cytotoxic Activity against Lung Epithelial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kavita Nair

    2018-03-01

    Full Text Available Cyt1A protein is a cytolytic protein encoded by the cyt gene of Bacillus thuringiensis subsp. israelensis (Bti as part of the parasporal crystal proteins produced during the sporulation. Cyt1A protein is unique compared to the other endotoxins present in these parasporal crystals. Unlike δ-endotoxins, Cyt1A protein does not require receptors to bind to the target cell and activate the toxicity. It has the ability to affect a broad range of cell types and organisms, due to this characteristic. Cyt1A has been recognized to not only target the insect cells directly, but also recruit other endotoxins by acting as receptors. Due to these mode of actions, Cyt1A has been studied for its cytolytic activity against human cancer cell lines, although not extensively. In this study, we report a novel Cyt1A protein produced by a Bti strain QBT229 isolated from Qatar. When tested for its cytotoxicity against lung cancer cells, this local strain showed considerably higher activity compared to that of the reference Bti and other strains tested. The possible reasons for such enhanced activity were explored at the gene and protein levels. It was evidenced that five consecutive amino acid replacements in the β8 sheet of the Cyt1A protein enhanced the cytotoxicity against the lung epithelial cancer cells. Such novel Cyt1A protein with high cytotoxicity against lung cancer cells has been characterized and reported through this study.

  16. The Urtica dioica extract enhances sensitivity of paclitaxel drug to MDA-MB-468 breast cancer cells.

    Science.gov (United States)

    Mohammadi, Ali; Mansoori, Behzad; Aghapour, Mahyar; Shirjang, Solmaz; Nami, Sanam; Baradaran, Behzad

    2016-10-01

    Due to the chemo resistant nature of cancer cells and adverse effects of current therapies, researchers are looking for the most efficient therapeutic approach which has the lowest side effects and the highest toxicity on cancer cells. The aim of the present study was to investigate the synergic effect of Urtica dioica extract in combination with paclitaxel on cell death and invasion of human breast cancer MDA-MB-468 cell line. To determine the cytotoxic effects of Urtica dioica extract with paclitaxel, MTT assay was performed. The scratch test was exploited to assess the effects of Urtica dioica, Paclitaxel alone and combination on migration of cancer cells. The expression levels of snail-1, ZEB1, ZEB2, twist, Cdc2, cyclin B1 and Wee1 genes were quantified using qRT-PCR and western blot performed for snail-1expression. The effects of plant extract, Paclitaxel alone and combination on different phases of cell cycle was analyzed using flow cytometry. Results of MTT assay showed that Urtica dioica significantly destroyed cancer cells. Interestingly, Concurrent use of Urtica dioica extract with paclitaxel resulted in decreased IC50 dose of paclitaxel. Moreover, findings of scratch assay exhibited the inhibitory effects of Urtica dioica, Paclitaxel alone and combination on migration of MDA-MB-468 cell line. Our findings also demonstrated that the extract substantially decreased the Snail-1 and related gene expression. Ultimately, Cell cycle arrest occurred at G2/M phase post-treatment by deregulating Cdc2 and wee1. Our results demonstrated that the dichloromethane extract of Urtica dioica inhibit cell growth and migration. Also, Urtica dioica extract substantially increased sensitivity of breast cancer cells to paclitaxel. Therefore, it can be used as a potential candidate for treatment of breast cancer with paclitaxel. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells

    Directory of Open Access Journals (Sweden)

    Lu RQ

    2012-04-01

    Full Text Available Renquan Lu1, Dapeng Yang2, Daxiang Cui2, Zhongyang Wang3, Lin Guo11Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 2Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 3College of Chemistry and Chemical Engineering, Yantai University, Shan Dong Province, People's Republic of ChinaAbstract: A simple, cost-effective, and environmentally friendly approach to the aqueous-phase synthesis of silver (Ag nanoparticles was demonstrated using silver nitrate (AgNO3 and freshly extracted egg white. The bio-conjugates were characterized by UV-visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and dynamic light scattering. These results indicated that biomolecule-coated Ag nanoparticles are predominantly spherical in shape with an average size of 20 nm. The proteins of egg white, which have different functional groups, played important roles in reducing Ag+ and maintaining product attributes such as stability and dispersity. In vitro cytotoxicity assays showed that these Ag-protein bio-conjugates showed good biocompatibility with mouse fibroblast cell lines 3T3. Furthermore, X-ray irradiation tests on 231 tumor cells suggested that the biocompatible Ag-protein bio-conjugates enhanced the efficacy of irradiation, and thus may be promising candidates for use during cancer radiation therapy.Keywords: green chemistry, biosynthesis, egg white, Ag nanoparticles, X-ray irradiation

  18. Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy

    Science.gov (United States)

    Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong

    2016-01-01

    Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy. PMID:27698936

  19. IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2.

    Directory of Open Access Journals (Sweden)

    Ying-Wen Su

    Full Text Available BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN is the seventh most common cancer worldwide. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years, and thus new targets for therapy are needed. Recently, elevations in serum level of interleukin 6 (IL-6 and expression of Twist in tumor samples were found to be associated with poor clinical outcomes in multiple types of cancer, including SCCHN. Although Twist has been proposed as a master regulator of epithelial-mesenchymal transition and metastasis in cancers, the mechanisms by which Twist levels are regulated post-translationally are not completely understood. Tumor progression is characterized by the involvement of cytokines and growth factors and Twist induction has been connected with a number of these signaling pathways including IL-6. Since many of the effects of IL-6 are mediated through activation of protein phosphorylation cascades, this implies that Twist expression must be under a tight control at the post-translational level in order to respond in a timely manner to external stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that IL-6 increases Twist expression via a transcription-independent mechanism in many SCCHN cell lines. Further investigation revealed that IL-6 stabilizes Twist in SCCHN cell lines through casein kinase 2 (CK2 phosphorylation of Twist residues S18 and S20, and that this phosphorylation inhibits degradation of Twist. Twist phosphorylation not only increases its stability but also enhances cell motility. Thus, post-translational modulation of Twist contributes to its tumor-promoting properties. CONCLUSIONS/SIGNIFICANCE: Our study shows Twist expression can be regulated at the post-translational level through phosphorylation by CK2, which increases Twist stability in response to IL-6 stimulation. Our findings not only provide novel mechanistic insights into post-translational regulation of Twist but also suggest

  20. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF-κB

    Directory of Open Access Journals (Sweden)

    Md. Abdur Rakib

    2013-01-01

    Full Text Available The major conjugated linoleic acid (CLA isomers, c9,t11-CLA and t10,c12-CLA, have anticancer effects; however, the exact mechanisms underlying these effects are unknown. Evidence suggests that reversal of reduced gap junctional intercellular communication (GJIC in cancer cells inhibits cell growth and induces cell death. Hence, we determined that CLA isomers enhance GJIC in human MCF-7 breast cancer cells and investigated the underlying molecular mechanisms. The CLA isomers significantly enhanced GJIC of MCF-7 cells at 40 μM concentration, whereas CLA inhibited cell growth and induced caspase-dependent apoptosis. CLA increased connexin43 (Cx43 expression both at the transcriptional and translational levels. CLA inhibited nuclear factor-κB (NF-κB activity and enhanced reactive oxygen species (ROS generation. No significant difference was observed in the efficacy of c9,t11-CLA and t10,c12-CLA. These results suggest that the anticancer effect of CLA is associated with upregulation of GJIC mediated by enhanced Cx43 expression through inactivation of NF-κB and generation of ROS in MCF-7 cells.

  1. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block

  2. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tzu-Chin [Chest Clinic, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Lin, Yi-Chin [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Chen, Hsiao-Ling [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Huang, Pei-Ru; Liu, Shang-Yu [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Yeh, Shu-Lan, E-mail: suzyyeh@csmu.edu.tw [Department of Nutritional Science, Chung Shan Medical University, Taichung, Taiwan (China); Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2016-02-01

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in vivo.

  3. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase

    International Nuclear Information System (INIS)

    Wu, Tzu-Chin; Lin, Yi-Chin; Chen, Hsiao-Ling; Huang, Pei-Ru; Liu, Shang-Yu; Yeh, Shu-Lan

    2016-01-01

    Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation. - Highlights: • Genistein enhances the antitumor effect of TSA through p53-associated pathways. • Genistein enhances TSA-induced histone acetylation commonly. • An acetyltransferase inhibitor diminishes the antitumor effect of genistein + TSA. • TSA in combination with genistein increases the expression of p300. • Genistein given by i.p. injection increases the antitumor effect of TSA in vivo.

  4. Development of novel miR-129 mimics with enhanced efficacy to eliminate chemoresistant colon cancer stem cells

    Science.gov (United States)

    Ju, Jingfang

    2018-01-01

    Background Resistance to 5-Fluorouracil (5-FU) based chemotherapy is the major reason for failure of treating patients with advanced colorectal cancer. Materials and methods In this study, we developed a novel miR-129 mimic with potent efficacy in eliminating resistant colon cancer stem cells both in vitro and in vivo. We integrated 5-FU into miR-129 by replacing Uracil (U) to generate 5-FU-miR-129 mimics (Mimic-1). Results Mimic-1 is a strong therapeutic candidate with a number of unique features. Mimic-1 can be delivered to cancer cells without any transfection reagents (e.g. lipids, viral vector, nanoparticles). Mimic-1 is more potent at inhibiting cell proliferation and inducing cell cycle arrest at G1 phase than native miR-129 and the other mimics tested, while retaining target specificity. Mimic-1 prevents colon cancer metastasis in vivo without toxicity. Conclusion This represents a significant advancement in the development of a nontoxic and highly potent miRNA based cancer therapeutics and establishes a foundation for further developing Mimic-1 as a novel anti-cancer therapeutic for treating colorectal cancer. PMID:29507661

  5. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  6. Enhancing the Effectiveness of Breast Cancer Immunotherapy through Manipulation of the T Cell Cytoskeleton

    National Research Council Canada - National Science Library

    Ratner, Stuart

    2002-01-01

    Adoptive immunotherapy, the in vitro activation and infusion of patient T cells, is a potentially useful immunotherapeutic strategy, but its effectiveness is limited by the poor trafficking and tumor...

  7. Cooperative Enhancement of Radiosensitivity After Combined Treatment of 17-(Allylamino)-17-Demethoxygeldanamycin and Celecoxib in Human Lung and Colon Cancer Cell Lines

    Science.gov (United States)

    Kim, Young-Mee

    2012-01-01

    We investigated whether the combined treatment of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an inhibitor of heat-shock protein 90 (hsp90), and celecoxib, an inhibitor of cyclooxygenase-2, can cooperatively enhance the radiosensitivity of various human cancer cells. Combined treatment with 17-AAG and celecoxib, at clinically relevant concentrations, cooperatively induced radiosensitization in all tested cancer cells, but not in normal cells. Cooperative radiosensitization by the drug combination was also shown in a human tumor xenograft system. We found that ataxia-telangiectasia and rad3-related (ATR) and ataxia-telangiectasia mutated (ATM) are novel client proteins of hsp90. Combined treatment with 17-AAG and celecoxib cooperatively induced downregulation of ATR and ATM. In conclusion, combined treatment with 17-AAG and celecoxib at clinically relevant concentrations may significantly enhance the therapeutic efficacy of ionizing radiation. PMID:21830942

  8. Role of p38 MAPK in enhanced human cancer cells killing by the combination of aspirin and ABT-737

    Science.gov (United States)

    Zhang, Chong; Shi, Jing; Mao, Shi-ying; Xu, Ya-si; Zhang, Dan; Feng, Lin-yi; Zhang, Bo; Yan, You-you; Wang, Si-cong; Pan, Jian-ping; Yang, You-ping; Lin, Neng-ming

    2015-01-01

    Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated-PIK3CA colorectal cancer, but not among patients with wild-type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT-737 in combination could induce a synergistic growth arrest in several human PIK3CA wild-type cancer cells. In addition, our results also demonstrated that long-term combination treatment with aspirin and ABT-737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short-term aspirin plus ABT-737 combination treatment induced a greater autophagic response than did either drug alone and the combination-induced autophagy switched from a cytoprotective signal to a death-promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT-737. Moreover, the increased anti-cancer efficacy of aspirin combined with ABT-737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy. PMID:25388762

  9. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Kirkby, Charles, E-mail: charles.kirkby@albertahealthservices.ca; Ghasroddashti, Esmaeel [Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta T1J 1W5 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N2 (Canada)

    2015-02-15

    Purpose: Radiation damage to mitochondria has been shown to alter cellular processes and even lead to apoptosis. Gold nanoparticles (AuNPs) may be used to enhance these effects in scenarios where they collect on the outer membranes of mitochondria. A Monte Carlo (MC) approach is used to estimate mitochondrial dose enhancement under a variety of conditions. Methods: The PENELOPE MC code was used to generate dose distributions resulting from photons striking a 13 nm diameter AuNP with various thicknesses of water-equivalent coatings. Similar dose distributions were generated with the AuNP replaced by water so as to estimate the gain in dose on a microscopic scale due to the presence of AuNPs within an irradiated volume. Models of mitochondria with AuNPs affixed to their outer membrane were then generated—considering variation in mitochondrial size and shape, number of affixed AuNPs, and AuNP coating thickness—and exposed (in a dose calculation sense) to source spectra ranging from 6 MV to 90 kVp. Subsequently dose enhancement ratios (DERs), or the dose with the AuNPs present to that for no AuNPs, for the entire mitochondrion and its components were tallied under these scenarios. Results: For a representative case of a 1000 nm diameter mitochondrion affixed with 565 AuNPs, each with a 13 nm thick coating, the mean DER over the whole organelle ranged from roughly 1.1 to 1.6 for the kilovoltage sources, but was generally less than 1.01 for the megavoltage sources. The outer membrane DERs remained less than 1.01 for the megavoltage sources, but rose to 2.3 for 90 kVp. The voxel maximum DER values were as high as 8.2 for the 90 kVp source and increased further when the particles clustered together. The DER exhibited dependence on the mitochondrion dimensions, number of AuNPs, and the AuNP coating thickness. Conclusions: Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly

  10. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Elmpt, Wouter van; Das, Marco; Hüllner, Martin; Sharifi, Hoda; Zegers, Catharina M.L.; Reymen, Bart; Lambin, Philippe; Wildberger, Joachim E.; Troost, Esther G.C.; Veit-Haibach, Patrick; De Ruysscher, Dirk

    2013-01-01

    Purpose: Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. Methods: Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (⩾50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. Results: DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. Conclusions: No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging

  11. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil's cytotoxicity.

    Science.gov (United States)

    Xu, Yi; Qi, Jin; Yang, Xiaoyu; Wu, Erxi; Qian, Steven Y

    2014-01-01

    Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.

  12. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets

    NARCIS (Netherlands)

    Best, Myron G.; Sol, Nik; In ‘t Veld, Sjors G.J.G.; Vancura, Adrienne; Muller, Mirte; Niemeijer, Anna Larissa N.; Fejes, Aniko V.; Tjon Kon Fat, Lee Ann; Huis in 't Veld, Anna E; Leurs, Cyra; Le Large, Tessa Y.; Meijer, Laura L.; Kooi, Irsan E.; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Wedekind, Laurine E.; Bracht, Jillian; Esenkbrink, Michelle; Wils, Leon; Favaro, Francesca; Schoonhoven, Jilian D.; Tannous, Jihane; Meijers-Heijboer, Hanne; Kazemier, Geert; Giovannetti, Elisa; Reijneveld, Jaap C.; Idema, Sander; Killestein, Joep; Heger, Michal; de Jager, Saskia C.; Urbanus, Rolf T.; Hoefer, Imo E.; Pasterkamp, Gerard; Mannhalter, Christine; Gomez-Arroyo, Jose; Bogaard, Harm-Jan; Noske, David P.; Vandertop, W. Peter; van den Broek, Daan; Ylstra, Bauke; Nilsson, R. Jonas A; Wesseling, Pieter; Karachaliou, Niki; Rosell, Rafael; Lee-Lewandrowski, Elizabeth; Lewandrowski, Kent B.; Tannous, Bakhos A.; de Langen, Adrianus J.; Smit, Egbert F.; van den Heuvel, Michel M; Wurdinger, Thomas

    2017-01-01

    Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from

  13. Monoclonal antibody Zt/g4 targeting RON receptor tyrosine kinase enhances chemosensitivity of bladder cancer cells to Epirubicin by promoting G1/S arrest and apoptosis.

    Science.gov (United States)

    Chen, Jun-Feng; Yu, Bi-Xia; Yu, Rui; Ma, Liang; Lv, Xiu-Yi; Cheng, Yue; Ma, Qi

    2017-02-01

    Epirubicin (EPI) is one of the most used intravesical chemotherapy agents after transurethral resection to non-muscle invasive bladder tumors (NMIBC) to prevent cancer recurrence and progression. However, even after resection of bladder tumors and intravesical chemotherapy, half of them will recur and progress. RON is a membrane tyrosine kinase receptor usually overexpressed in bladder cancer cells and associated with poor pathological features. This study aims to investigate the effects of anti-RON monoclonal antibody Zt/g4 on the chemosensitivity of bladder cells to EPI. After Zt/g4 treatment, cell cytotoxicity was significantly increased and cell invasion was markedly suppressed in EPI-treated bladder cancer cells. Further investigation indicated that combing Zt/g4 with EPI promoted cell G1/S-phase arrest and apoptosis, which are the potential mechanisms that RON signaling inhibition enhances chemosensitivity of EPI. Thus, combing antibody-based RON targeted therapy enhances the therapeutic effects of intravesical chemotherapy, which provides new strategy for further improvement of NMIBC patient outcomes.

  14. Delivery of curcumin by directed self-assembled micelles enhances therapeutic treatment of non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhu WT

    2017-04-01

    Full Text Available Wen-Ting Zhu,1,2,* Sheng-Yao Liu,3,* Lei Wu,1,2 Hua-Li Xu,4 Jun Wang,1,2 Guo-Xin Ni,3,5 Qing-Bing Zeng1,2 1Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; 2Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; 3Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China; 4Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; 5Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China *These authors contributed equally to this work Background: It has been widely reported that curcumin (CUR exhibits anticancer activity and triggers the apoptosis of human A549 non-small-cell lung cancer (NSCLC cells. However, its application is limited owing to its poor solubility and bioavailability. Therefore, there is an urgent need to develop a new CUR formulation with higher water solubility and better biocompatibility for clinical application in the future. Materials and methods: In this study, CUR-loaded methoxy polyethylene glycol–polylactide (CUR/mPEG–PLA polymeric micelles were prepared by a thin-film hydration method. Their characteristics and antitumor effects were evaluated subsequently. Results: The average size of CUR/mPEG–PLA micelles was 34.9±2.1 nm with its polydispersity index (PDI in the range of 0.067–0.168. The encapsulation efficiency and drug loading were 90.2%±0.78% and 9.1%±0.07%, respectively. CUR was constantly released from the CUR/mPEG–PLA micelles, and its cellular uptake in A549 cells was significantly increased. It was also found that CUR/mPEG–PLA micelles inhibited A549 cell proliferation, increased the cell cytotoxicity, induced G2/M stage arrest and promoted cell apoptosis. Moreover, the CUR/mPEG–PLA micelles suppressed the

  15. Ampelopsin-induced reactive oxygen species enhance the apoptosis of colon cancer cells by activating endoplasmic reticulum stress-mediated AMPK/MAPK/XAF1 signaling

    Science.gov (United States)

    Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin

    2017-01-01

    Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183

  16. RITA enhances irradiation-induced apoptosis in p53-defective cervical cancer cells via upregulation of IRE1α/XBP1 signaling.

    Science.gov (United States)

    Zhu, Hong; Abulimiti, Muyasha; Liu, Huan; Su, Xiang-Jiang; Liu, Cai-Hong; Pei, Hai-Ping

    2015-09-01

    Radiation therapy is the most widely used treatment for patients with cervical cancer. Recent studies have shown that endoplasmic reticulum (ER) stress induces apoptosis and sensitizes tumor cells to radiotherapy, which reportedly induces ER stress in cells. Classical key tumor suppressor p53 is involved in the response to a variety of cellular stresses, including those incurred by ionizing irradiation. A recent study demonstrated that small-molecule RITA (reactivation of p53 and induction of tumor cell apoptosis) increased the radiosensitivity of tumor cells expressing mutant p53 (mtp53). In the present study, we explored the effects and the underlying mechanisms of RITA in regards to the radiosensitivity and ER stress in mtp53-expressing human cervix cancer cells. Treatment with 1 µM of RITA for 24 h before irradiation markedly decreased survival and increased apoptosis in C-33A and HT-3 cells; the effects were not significantly altered by knockdown of p53. In the irradiated C-33A and HT-3 cells, RITA significantly increased the expression of IRE1α, the spliced XBP1 mRNA level, as well as apoptosis; the effects were abolished by knockdown of IRE1α. Transcriptional pulse-chase assays revealed that RITA significantly increased the stability of IRE1α mRNA in the irradiated C-33A and HT-3 cells. In contrast, the same RITA treatment did not show any significant effect on sham-irradiated cells. In conclusion, the present study provides initial evidence that RITA upregulates the expression level of IRE1α by increasing the stability of IRE1α mRNA in irradiated mtp53-expressing cervical cancer cells; the effect leads to enhanced IRE1α/XBP1 ER stress signaling and increased apoptosis in the cells. The present study offers novel insight into the pharmacological potential of RITA in the radiotherapy for cervical cancer.

  17. Biopolymer mediated nanoparticles synthesized from Adenia hondala for enhanced tamoxifen drug delivery in breast cancer cell line

    Science.gov (United States)

    Varadharajaperumal, Pradeepa; Subramanian, Balakumar; Santhanam, Amutha

    2017-09-01

    Silver nanoparticles (AgNPs) are an important class of nanomaterials, which have used as antimicrobial and disinfectant agents due to their detrimental effect on target cells. In the present study it was explored to deliver a novel tamoxifen drug system that can be used in breast cancer treatment, based on chitosan coated silver nanoparticles on MCF-7 human breast cancer cells. AgNPs synthesized from Adenia hondala tuber extract were used to make the chitosan coated AgNPs (Ch-AgNPs), in which the drug tamoxifen was loaded on chitosan coated silver nanoparticles (Tam-Ch-AgNPs) to construct drug loaded nanoparticles as drug delivery system. The morphology and characteristics of the Ch-AgNPs were investigated by UV, FTIR, zeta potential and FESEM. Furthermore, the toxicity of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs was evaluated through cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3, DNA laddering, and TUNEL assay in human breast cancer cells (MCF-7) and HBL-100 continuous cell line as a control. Treatment of cancer cells with various concentrations of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs for 24 h revealed that Tam-Ch-AgNPs could inhibit cell viability and induce significant membrane leakage in a dose-dependent manner. Cells exposed to Tam-Ch-AgNPs showed increased reactive oxygen species and hydroxyl radical production when compared to AgNPs, Ch-AgNPs. Furthermore, the apoptotic effects of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs were confirmed by activation of caspase-3 and DNA nuclear fragmentation. The present findings suggest that Tam-Ch-AgNPs could contribute to the development of a suitable anticancer drug delivery.

  18. Cryotherapy for renal-cell cancer: diagnosis, treatment, and contrast-enhanced ultrasonography for follow-up

    NARCIS (Netherlands)

    Wink, M. H.; Lagerveld, B. W.; Laguna, M. P.; de la Rosette, J. J. M. C. H.; Wijkstra, H.

    2006-01-01

    Cryotherapy is a curative treatment option for patients with small ( <4 cm) renal-cell cancers. For the followup of ablated lesions, imaging is the only available method, but the best tool has not yet been determined. The method selected should be able to determine the presence or absence of

  19. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition

    Science.gov (United States)

    Gill, Martin R.; Harun, Siti Norain; Halder, Swagata; Boghozian, Ramon A.; Ramadan, Kristijan; Ahmad, Haslina; Vallis, Katherine A.

    2016-08-01

    Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)]2+ before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.

  20. Enhancing chemosensitivity to gemcitabine via RNA interference targeting the catalytic subunits of protein kinase CK2 in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kreutzer, Jan N; Ruzzene, Maria; Guerra, Barbara

    2010-01-01

    Pancreatic cancer is a complex genetic disorder that is characterized by rapid progression, invasiveness, resistance to treatment and high molecular heterogeneity. Various agents have been used in clinical trials showing only modest improvements with respect to gemcitabine-based chemotherapy, which continues to be the standard first-line treatment for this disease. However, owing to the overwhelming molecular alterations that have been reported in pancreatic cancer, there is increasing focus on targeting molecular pathways and networks, rather than individual genes or gene-products with a combination of novel chemotherapeutic agents. Cells were transfected with small interfering RNAs (siRNAs) targeting the individual CK2 subunits. The CK2 protein expression levels were determined and the effect of its down-regulation on chemosensitization of pancreatic cancer cells was investigated. The present study examined the impact on cell death following depletion of the individual protein kinase CK2 catalytic subunits alone or in combination with gemcitabine and the molecular mechanisms by which this effect is achieved. Depletion of the CK2α or -α' subunits in combination with gemcitabine resulted in marked apoptotic and necrotic cell death in PANC-1 cells. We show that the mechanism of cell death is associated with deregulation of distinct survival signaling pathways. Cellular depletion of CK2α leads to phosphorylation and activation of MKK4/JNK while down-regulation of CK2α' exerts major effects on the PI3K/AKT pathway. Results reported here show that the two catalytic subunits of CK2 contribute differently to enhance gemcitabine-induced cell death, the reduced level of CK2α' being the most effective and that simultaneous reduction in the expression of CK2 and other survival factors might be an effective therapeutic strategy for enhancing the sensitivity of human pancreatic cancer towards chemotherapeutic agents

  1. Enhancement of radiotherapy efficacy by miR-200c-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Cui FB

    2014-05-01

    Full Text Available Fang-bo Cui,1,* Qin Liu,1,* Ru-Tian Li,1 Jie Shen,1 Pu-yuan Wu,1 Li-Xia Yu,1 Wen-jing Hu,1 Feng-lei Wu,2 Chun-Ping Jiang,1 Guo-feng Yue,2 Xiao-Ping Qian,1 Xi-Qun Jiang,3 Bao-Rui Liu11The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 2Nanjing Medical University, 3Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China*These authors contributed equally to this workAbstract: Radiotherapy is the main locoregional control modality for many types of unresectable tumors, including gastric cancer. However, many patients fail radiotherapy due to intrinsic radioresistance of cancer cells, which has been found to be strongly associated with cancer stem cell (CSC-like properties. In this study, we developed a nanoparticle formulation to deliver miR-200c, which is reported to inhibit CSC-like properties, and then evaluated its potential activity as a radiosensitizer. miR-200c nanoparticles significantly augmented radiosensitivity in three gastric cancer cell lines (sensitization enhancement ratio 1.13–1.25, but only slightly in GES-1 cells (1.06. In addition to radioenhancement, miR-200c nanoparticles reduced the expression of CD44, a putative CSC marker, and the percentage of CD44+ BGC823 cells. Meanwhile, other CSC-like properties, including invasiveness and resistance to apoptosis, could be suppressed by miR-200c nanoparticles. CSC-associated radioresistance mechanisms, involving reactive oxygen species levels and DNA repair capacity, were also attenuated. We have demonstrated that miR-200c nanoparticles are an effective radiosensitizer in gastric cancer cells and induce little radiosensitization in normal cells, which suggests that they are as a promising candidate for further preclinical and clinical evaluation

  2. Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells

    Directory of Open Access Journals (Sweden)

    Zhou Z

    2017-10-01

    Full Text Available Zhaoxiu Zhou,* Shuang Liu,* Yanfen Zhang, Xiantao Yang, Yuan Ma, Zhu Guan, Yun Wu, Lihe Zhang, Zhenjun Yang State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: In this study, through covalent conjugation and lipid material entrapment, a combined modification strategy was established for effective delivery of small interfering RNA (siRNA. Single strands of siRNA targeting to BRAFV600E gene (siMB3 conjugated with cRGD peptide at 3'-terminus or 5'-terminus via cleavable disulfide bond was synthesized and then annealed with corresponding strands to obtain single and bis-cRGD-siRNA conjugates. A cationic lipid material (CLD developed by our laboratory was mixed with the conjugates to generate nanocomplexes; their uniformity and electrical property were revealed by particle size and zeta potential measurement. Compared with CLD/siBraf, CLD/cRGD-siBraf achieved higher cell uptake and more excellent tumor-targeting ability, especially 21 (sense-5′/antisense-3″-cRGD-congjugate nanocomplex. Moreover, they can regulate multiple pathways to varying degree and reduce acidification of endosome. Compared with the gene silencing of different conjugates, single or bis-cRGD-conjugated siRNA showed little differences except 22 (5/5 which cRGD was conjugated at 5'-terminus of antisense strand and sense strand. However bis-cRGD conjugate 21 nanocomplex exhibited better specific target gene silencing at multiple time points. Furthermore, the serum stabilities of the bis-cRGD conjugates were higher than those of the single-cRGD conjugates. In conclusion, all these data suggested that CLD/bis-conjugates, especially CLD/21, can be an effective system for delivery of siRNA to target BRAFV600E gene for therapy of melanoma. Keywords: cRGD-siRNA conjugates, cationic lipids, targeting, silencing, intracellular pathways

  3. PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer.

    Science.gov (United States)

    Juang, Yu-Lin; Jeng, Yung-Ming; Chen, Chi-Long; Lien, Huang-Chun

    2016-12-01

    TGF-β and cancer progression share a multifaceted relationship. Despite the knowledge of TGF-β biology in the development of cancer, several factors that mediate the cancer-promoting role of TGF-β continue to be identified. This study aimed to identify and characterise novel factors potentially related to TGF-β-mediated tumour aggression in breast cells. We treated the human mammary epithelial cell line MCF10A with TGF-β and identified TGF-β-dependent upregulation of PRRX2, the gene encoding paired-related homeobox 2 transcription factor. Overexpression of PRRX2 enhanced migration, invasion and anchorage-independent growth of MCF10A cells and induced partial epithelial mesenchymal transition (EMT), as determined by partial fibroblastoid morphology of cells, upregulation of EMT markers and partially disrupted acinar structure in a three-dimensional culture. We further identified PLAT, the gene encoding tissue-type plasminogen activator (tPA), as the highest differentially expressed gene in PRRX2-overexpressing MCF10A cells, and demonstrated direct binding and transactivation of the PLAT promoter by PRRX2. Furthermore, PLAT knockdown inhibited PRRX2-mediated enhanced migration and invasion, suggesting that tPA may mediate PRRX2-induced migration and invasion. Finally, the significant correlation of PRRX2 expression with poor survival in 118 primary breast tumour samples (P = 0.027) and the increased PRRX2 expression in metaplastic breast carcinoma samples, which is pathogenetically related to EMT, validated the biological importance of PRRX2-enhanced migration and invasion and PRRX2-induced EMT. Thus, our data suggest that upregulation of PRRX2 may be a mechanism contributing to TGF-β-induced invasion and EMT in breast cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Predicting the prognosis of non-small cell lung cancer patient treated with conservative therapy using contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Ohno, Y.; Adachi, S.; Motoyama, A.; Sugimura, K.; Kono, M.; Kusumoto, M.

    2000-01-01

    The aim of this study was to evaluate the therapeutic effect more accurately and predict the prognosis of treated non-small cell lung cancer by using contrast-enhanced magnetic resonance imaging (CE-MRI). Contrast-enhanced computed tomography (CE-CT) and CE-MRI were examined 90 non-small cell lung cancer patients treated with conservative therapies. Enhancement patterns of CE-MRI were classified into three types: peripheral; mottled; and homogeneous. Reduction ratio of tumor size (RRT) based on the World Health Organization response criteria and a new response rate; reduction ratio of viable tumor size (RRVT) which evaluates not only the reduction of tumor size but also changes in necrosis and/or cavity size, were evaluated. Changes of enhancement pattern were compared and correlated with pathological diagnosis. The RRTs, RRVTs, and interobserver agreements evaluated by all modalities were compared. The RRTs and RRVTs in each subgroup were correlated and compared with prognoses. Change of enhancement pattern depended on therapy had no tendency (p = 0.06). Enhancement pattern had significant correlation with pathological diagnosis (p < 0.0001). Partial response (PR) case of RRVT had significant difference between imaging techniques (p = 0.04). The RRVT of other cases and RRT had no significant difference. Interobserver agreements of RRT and RRVT were almost perfect (κ≥ 0.93). Prognosis had better correlation with RRVT than with RRT. Differences of relapse-free survival and survival between patients considered as having no change (NC) by RRT and PR by RRVT (NC-PR) and patients considered as having NC by RRT and RRVT were significant (p = 0.03, p = 0.01). There were no significant differences of relapse-free survival and survival between NC-PR patients and patients considered as having PR by RRT and RRVT. The CE-MRI technique could accurately evaluate the therapeutic effect and predict the prognosis of treated non-small cell lung cancer. (orig.)

  5. Autophagy Inhibition Enhances the Mitochondrial-Mediated Apoptosis Induced by Mangrove (Avicennia marina) Extract in Human Breast Cancer Cells

    KAUST Repository

    Esau, Luke

    2015-01-10

    Aims: Avicennia marina (AM) is a widely distributed mangrove plant that has been used in traditional medicine for centuries for the treatment of a number of diseases. The objective of the present study was to evaluate the leaf ethyl acetate extract of AM for its cytotoxic and apoptotic potential along with in-depth investigations of its mechanism of action in breast cancer MCF-7 cells. Study Design: The ethyl acetate extract of leaves and stems of AM was tested against estrogen positive breast cancer cell line MCF-7 using various assays. Place and Duration of Study: The study was carried out at King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, from July 2013-June 2014. Methodology: Dose- and time-dependent growth inhibition of cancer cells was measured using MTT assay. The mechanisms of apoptosis induction were determined using various assays: phosphatidylserine exposure, caspase-3/7 activation, mitochondrial membrane potential disruption, reactive oxygen species (ROS) production, cell cycle analysis, autophagy, and protein expression using western blotting. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp7) was also determined using real time PCR. Results: The AM extract inhibited breast cancer cell growth and induced apoptosis in a concentration dependent manner. We demonstrated a non-classical mode of apoptosis induction in MCF-7 cells by AM extract, where ROS production altered the mitochondrial membrane potential to induce apoptosis. Breast cancer cells treated with 200 µg/ml concentration of AM extract showed increased ROS production and disrupted MMP but no PARP-1 cleavage and a marked decrease in Caspase-7 protein levels (24 and 48 h) were detected. A significant amount of autophagy was also observed at the same concentration. However, treatment of MCF-7 cells with 200 µg/ml of AM extract along with the inhibition of autophagy by chloroquine, significantly increased the apoptosis from 20% to 45

  6. Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Yuan YG

    2017-09-01

    Full Text Available Yu-Guo Yuan,1,2 Sangiliyandi Gurunathan3 1College of Veterinary Medicine/Animal Science and Technology/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; 2Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China; 3Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea Background: Cisplatin (Cis is a widely used chemotherapeutic drug for treating a variety of cancers, due to its ability to induce cell death in cancer cells significantly. Recently, graphene and its modified nanocomposites have gained much interest in cancer therapy, due to their unique physicochemical properties. The objective of this study was to investigate the combination effect of Cis and a reduced graphene oxide–silver nanoparticle nanocomposite (rGO-AgNPs in human cervical cancer (HeLa cells.Materials and methods: We synthesized AgNPs, rGO, and rGO-AgNP nanocomposites using C-phycocyanin. The synthesized nanomaterials were characterized using various analytical techniques. The anticancer properties of the Cis, rGO-AgNPs, and combination of Cis and rGO-AgNPs were evaluated using a series of cellular assays, such as cell viability, cell proliferation, LDH leakage, reactive oxygen species generation, and cellular levels of oxidative and antioxidative stress markers such as malondialdehyde, glutathione, SOD, and CAT. The expression of proapoptotic, antiapoptotic, and autophagy genes were measured using real-time reverse-transcription polymerase chain reaction.Results: The synthesized AgNPs were well dispersed, homogeneous, and spherical, with an average size of 10 nm and uniformly distributed on graphene sheets. Cis, GO, rGO, AgNPs, and rGO-AgNPs inhibited cell viability in a dose-dependent manner. The combination of Cis

  7. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.

    Science.gov (United States)

    Patil, Sharvil; Choudhary, Bhavana; Rathore, Atul; Roy, Krishtey; Mahadik, Kakasaheb

    2015-11-15

    Curcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation. The objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549. 3(2) Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch. CUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats. The average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44. Thus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Bevacizumab and gefitinib enhanced whole-brain radiation therapy for brain metastases due to non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R.F.; Yu, B.; Zhang, R.Q.; Wang, X.H.; Li, C.; Wang, P.; Zhang, Y.; Han, B.; Gao, X.X.; Zhang, L. [Taian City Central Hospital, Taian, Shandong (China); Jiang, Z.M., E-mail: dmyh2436@126.com [Qianfoshan Hospital of Shandong Province, Shandong University, Ji’nan, Shandong (China)

    2018-02-01

    Non-small-cell lung cancer (NSCLC) patients who experience brain metastases are usually associated with poor prognostic outcomes. This retrospective study proposed to assess whether bevacizumab or gefitinib can be used to improve the effectiveness of whole brain radiotherapy (WBRT) in managing patients with brain metastases. A total of 218 NSCLC patients with multiple brain metastases were retrospectively included in this study and were randomly allocated to bevacizumab-gefitinibWBRT group (n=76), gefitinib-WBRT group (n=77) and WBRT group (n=75). Then, tumor responses were evaluated every 2 months based on Response Evaluation Criteria in Solid Tumors version 1.0. Karnofsky performance status and neurologic examination were documented every 6 months after the treatment. Compared to the standard WBRT, bevacizumab and gefitinib could significantly enhance response rate (RR) and disease control rate (DCR) of WBRT (Po0.001). At the same time, RR and DCR of patients who received bevacizumab-gefitinib-WBRT were higher than those who received gefitinib-WBRT. The overall survival (OS) rates and progression-free survival (PFS) rates also differed significantly among the bevacizumab-gefitinib-WBRT (48.6 and 29.8%), gefitinib-WBRT (36.7 and 29.6%) and WBRT (9.8 and 14.6%) groups (Po0.05). Although bevacizumabgefitinib-WBRT was slightly more toxic than gefitinib-WBRT, the toxicity was tolerable. As suggested by prolonged PFS and OS status, bevacizumab substantially improved the overall efficacy of WBRT in the management of patients with NSCLC. (author)

  9. Dynamic contrast-enhanced computed tomography as a potential biomarker in patients with metastatic renal cell carcinoma: preliminary results from the Danish Renal Cancer Group Study-1

    DEFF Research Database (Denmark)

    Mains, Jill Rachel; Donskov, Frede; Pedersen, Erik Morre

    2014-01-01

    OBJECTIVES: The aim of this study was to explore the impact of dynamic contrast-enhanced (DCE) computer tomography (CT) as a biomarker in metastatic renal cell carcinoma (mRCC). MATERIALS AND METHODS: Twelve patients with favorable or intermediate Memorial Sloan Kettering Cancer Center risk group...... blinded to treatment group. The DCE-CT scans were performed at baseline, at weeks 5 and 10, and thereafter every third month. Blood flow (BF; mL/min/100 mL), peak enhancement (Hounsfield units), time to peak (seconds), and blood volume (BV; mL/100 g) were calculated. Parameters for DCE-CT were correlated...

  10. Vitamin E analogue, D-alpha tocopherol succinate, enhances x-ray induced growth delay of human adenocarcinoma cancer cell line

    International Nuclear Information System (INIS)

    Jaworska, A.; Ottesen, T.E.

    2003-01-01

    The purpose of this study was to assess the effects of d-alpha Tocopherol succinate (alpha-TS) in modifying radiation-induced viability reduction and apoptosis occurrence in the model for normal and cancer cells. Our hypothesis was that alpha-TS enhances the growth-inhibitory effect of x-irradiation in cancer cells and that the effect is more pronounced in these cells than in normal cells. Murine NIH 3T3 Swiss albino embryonic cells and HT29 human Caucasian colon adenocarcinoma cells were used in the experiments. Alpha-TS was added to the cultures 1 h prior to irradiation with doses of 2 or 5Gy of x-ray. After irradiation cells were incubated for 73 h. Trypan blue exclusion viability test and estimation of apoptosis and necrosis were made. Apoptotic and necrotic cells were counted in fluorescence microscope using fluorescence dyes: propidium iodide and Hoechst 33342. For experiments with the dose of 5 Gy at least five series of experiments were performed. At lower doses (up to approximately 25μM/ml) treatment with alpha-TS alone enhanced growth of both cell lines. At higher doses treatment with alpha-TS alone delayed the growth of the cell cultures, accompanied by 20-25% necrosis. At the concentrations higher than 25μM/mL alpha-TS alone caused growth delay of both cell cultures, being much more pronounced for the cancer cell line HT29. At the concentrations of 50 μM/mL, responsible for about 30-60% of growth delay, there was observed a synergy effect for x-rays and alpha-TS for both cell lines. The effect was more pronounced for HT29 cells (DMF=0.48 for HT29 versus DMF=0.73 for NIH 3T3). These results may confirm the views of the literature reports suggesting that use of vitamin E together with radiation could be favorable for colon cancer treatment; however, more experiments using more advanced techniques are needed

  11. 1,25-(OH)2-vitamin D3 enhances the cytotoxic effect of radioiodine therapy in prostate cancer cells expressing the sodium iodide symporter

    International Nuclear Information System (INIS)

    Spitzweg, Christine; Hirschmann, Martin; Unterholzner, Stefanie; Cengic, Neziha; Eckel, Petra; Sharif-Samani, Bibi-Rana; Willhauck, Michael J.; Goeke, Burkhard; Morris, John C.

    2005-01-01

    Full text: We reported recently the induction of androgen-dependent iodide uptake activity in human prostate cancer cells (LNCaP) utilizing a prostate-specific antigen (PSA)-promoter directed expression of the sodium iodide symporter (NIS) gene. This offers the potential to treat prostate cancer with radioiodine. In the current study we examined the regulation of PSA-promoter directed NIS expression and therapeutic effectiveness of 131 I in LNCaP cells by 1,25-(OH)2-Vitamin D3 (Vit D3). For this purpose, NIS mRNA and protein expression levels in the NIS-transfected LNCaP cell line NP-1 were examined by Northern and Western blot analysis following incubation with Vit D3 (10 -9 M - 10 -5 M) in the presence of mibolerone (10 -9 M). In addition, NIS functional activity was measured by iodide uptake assay, and in vitro cytotoxicity of 131 I was examined by in vitro clonogenic assay. Following incubation with Vit D3, NIS mRNA levels in NP-1 cells were stimulated 1.2-fold, whereas NIS protein levels increased 1.65-fold and iodide accumulation was stimulated 1.4-fold in a concentration-dependent manner. Further, the selective killing effect of 131 I in NP-1 cells was significantly increased from 55% in NP-1 cells incubated with mibolerone alone to 86 % in NP-1 cells treated with Vit D3 (10 -5 M) in the presence of mibolerone. In the absence of androgen, with or without Vit D3 no functional NIS expression was detected. Conclusion: Treatment with Vit D3 increases androgen-induced NIS expression levels and selective killing effect of 131 I in prostate cancer cells stably expressing NIS under the control of the PSA promoter. Vit D3 may therefore be used to enhance the therapeutic response to radioiodine in prostate cancer cells following PSA-promoter directed NIS gene delivery. (author)

  12. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Directory of Open Access Journals (Sweden)

    Mennerich Detlev

    2007-01-01

    Full Text Available Abstract Background Stromelysin-3 (ST-3 is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour

  13. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    International Nuclear Information System (INIS)

    Kasper, Grit; Lehmann, Kerstin E; Reule, Matthias; Tschirschmann, Miriam; Dankert, Niels; Stout-Weider, Karen; Lauster, Roland; Schrock, Evelin; Mennerich, Detlev; Duda, Georg N

    2007-01-01

    Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated 'early stage' breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in

  14. Ellagitannins from pomegranate ameliorates 5-fluorouracil-induced intestinal mucositis in rats while enhancing its chemotoxicity against HT-29 colorectal cancer cells through intrinsic apoptosis induction.

    Science.gov (United States)

    Chen, Xiao-Xin; Lam, Kar Ho; Feng, Yibin; Xu, Kai; Sze, Stephen C W; Tang, Chi Wai; Leung, George P H; Lee, Calvin Kai-Fai; Shi, Jun; Yang, Zhijun; Li, Sheng-Tao; Zhang, Zhang-Jin; Zhang, Yanbo

    2018-06-19

    Worldwide, colorectal cancer (CRC) is a deleterious disease causing millions of death annually. 5-Fluorouracil (5-FU) is a first-line chemotherapy for CRC, but chemoresistance and gastrointestinal mucositis limit its efficacy. Polyphenol-rich foods are increasingly popular due to their potential beneficial role in cancer. Ellagitannins is a group of phenolic compounds commonly found in pomegranate, strawberries, raspberries, etc. The objective of this study was to explore whether ellagitannins from pomegranate (PETs) could ameliorate 5-FU-induced intestinal mucositis and enhance its efficacy against CRC. The results showed that PETs (100 mg/kg) counteracted 5-FU-induced intestinal mucositis in rats. The number of apoptotic cells per crypt was reduced from 1.50±0.21 to 0.85±0.18 (P<0.05). Moreover, PETs induced HT-29 CRC cell death through intrinsic apoptosis as demonstrated by dissipation of mitochondrial membrane potential, increased Bax to Bcl-2 ratio, and cleavage of caspase 9 and caspase 3. PETs and 5-FU combination treatments exhibited synergistic cytotoxicity against HT-29 cells with a weighted combination index of 0.3494. PETs (80 µg/mL) and 5-FU (40 µg/mL) treatments for 48 h induced 14.03±0.76% and 16.42±1.15% of HT-29 cells to undergo apoptosis while the combination treatment further increased apoptosis cells to 34.00±1.54% (P<0.05). Combination treatment of the cells also enhanced S phase cell cycle arrest as compared with PETs or 5-FU monotherapy (P<0.05). These results suggest that dietary ellagitannins from pomegranate could alleviate intestinal mucositis in rats induced by 5-FU while enhancing its toxicity against HT-29 cells through potentiation of apoptosis and cell cycle arrest.

  15. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lu-Ying; Deng, Jun; Xiang, Xiao-Jun; Zhang, Ling; Yu, Feng; Chen, Jun; Sun, Zhe; Feng, Miao; Xiong, Jian-Ping, E-mail: jpxiong@medmail.com.cn

    2015-02-06

    Highlights: • miR-320 plays a significant role in chemoresistance. • This role might be attribute to targeting FOXM1. • The Wnt/β-catenin pathway also involves in this chemotherapy sensitivity. - Abstract: miR-320 expression level is found to be down-regulated in human colon cancer. To date, however, its underlying mechanisms in the chemo-resistance remain largely unknown. In this study, we demonstrated that ectopic expression of miR-320 led to inhibit HCT-116 cell proliferation, invasion and hypersensitivity to 5-Fu and Oxaliplatin. Also, knockdown of miR-320 reversed these effects in HT-29 cells. Furthermore, we identified an oncogene, FOXM1, as a direct target of miR-320. In addition, miR-320 could inactive the activity of Wnt/β-catenin pathway. Finally, we found that miR-320 and FOXM1 protein had a negative correlation in colon cancer tissues and adjacent normal tissues. These findings implied that miR-320–FOXM1 axis may overcome chemo-resistance of colon cancer cells and provide a new therapeutic target for the treatment of colon cancer.

  16. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration.

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-04-24

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration*

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-01-01

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors. PMID:25739439

  18. Arsenic trioxide synergistically enhances radiation response in human cervical cancer cells through ROS-dependent p38 MAPK and JNK signalling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young-Hee; Park, Seung-Moo; Kim, Min-Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2006-07-01

    Many factors affect susceptibility of tumor cells to ionizing radiation. Among them intrinsic apoptosis sensitivity or resistancy seems to play an important role. The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic efficacy by overcoming a high apoptotic threshold. Several recent studies demonstrated additive effects of As{sub 2}O{sub 3} with conventional chemotherapeutic agents such as cisplatin, adriamycin, and etoposide, but no synergism. Previously, we have shown for the first time that As{sub 2}O{sub 3} sensitize human cervical cancer cells to ionizing radiation. Treatment of As{sub 2}O{sub 3} in combination of ionizing radiation has synergistic effects in decreasing clonogenic survival and in the regression of tumor growth in xenografts. We also have shown that the combination treatment enhanced apoptotic cell death through a reactive oxygen species-dependent pathway in human cervical cancer cells. In this study, we investigated the regulatory mechanism of ROS-mediated mitochondrial apoptotic cell death induced by combination treatment with As{sub 2}O{sub 3} and ionizing radiation in human cervical cancer cells.

  19. Tumor-Associated Macrophages Recruit CCR6+ Regulatory T Cells and Promote the Development of Colorectal Cancer via Enhancing CCL20 Production in Mice

    Science.gov (United States)

    Li, Qun; Zhang, Weiwei; Ke, Fang; Leng, Qibin; Wang, Hong; Chen, Jinfei; Wang, Honglin

    2011-01-01

    Background Tumor-associated macrophages (TAMs) remodel the colorectal cancer (CRC) microenvironment. Yet, findings on the role of TAMs in CRC seem to be contradictory compared with other cancers. FoxP3+ regulatory T (Treg)-cells dominantly infiltrate CRC. However, the underlying molecular mechanism in which TAMs may contribute to the trafficking of Treg-cells to the tumor mass remains unknown. Methodology/Principal Findings CRC was either induced by N-methyl-N-nitrosourea (MNU) and H. pylori or established by subcutaneous injection of mouse colorectal tumor cell line (CMT93) in mice. CMT93 cells were co-cultured with primary macrophages in a transwell apparatus. Recruitment of FoxP3 green fluorescence protein positive (FoxP3GFP+) Treg-cells was assessed using the IVIS Imaging System or immunofluorescence staining. A role for macrophages in trafficking of Treg-cells and in the development of CRC was investigated in CD11b diphtheria toxin receptor (CD11b-DTR) transgenic C57BL/6J mice in which macrophages can be selectively depleted. Treg-cells remarkably infiltrated solid tumor, and predominantly expressed the homing chemokine receptor (CCR) 6 in the induced CRC model. Both CMT93 cancer cells and macrophages produced a large amount of CCL20, the sole ligand of CCR6 in vitro and in vivo. Injection of recombinant mouse CCL20 into tumor sites promoted its development with a marked recruitment of Treg-cells in the graft CRC model. Conditional macrophage ablation decreased CCL20 levels, blocked Treg-cell recruitment and inhibited tumor growth in CD11b-DTR mice grafted with CMT93. Conclusions/Significance TAMs recruit CCR6+ Treg-cells to tumor mass and promote its development via enhancing the production of CCL20 in a CRC mouse model. PMID:21559338

  20. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Sarah Fernandes Teixeira

    2013-12-01

    Full Text Available OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity.METHODS: We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and calculated the combination index for the drugs studied.RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy.CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher.

  1. The ultra-sensitive Nodewalk technique identifies stochastic from virtual, population-based enhancer hubs regulating MYC in 3D: Implications for the fitness of cancer cells

    KAUST Repository

    Sumida, Noriyuki

    2018-03-27

    The relationship between stochastic transcriptional bursts and dynamic 3D chromatin states is not well understood due to poor sensitivity and/or resolution of current chromatin structure-based assays. Consequently, it is not well established if enhancers operate individually and/or in clusters to coordinate gene transcription. In the current study, we introduce Nodewalk, which uniquely combines high sensitivity with high resolution to enable the analysis of chromatin networks in minute input material. The >10,000-fold increase in sensitivity over other many-to-all competing methods uncovered that active chromatin hubs identified in large input material, corresponding to 10 000 cells, flanking the MYC locus are primarily virtual. Thus, the close agreement between chromatin interactomes generated from aliquots corresponding to less than 10 cells with randomly re-sampled interactomes, we find that numerous distal enhancers positioned within flanking topologically associating domains (TADs) converge on MYC in largely mutually exclusive manners. Moreover, when comparing with several enhancer baits, the assignment of the MYC locus as the node with the highest dynamic importance index, indicates that it is MYC targeting its enhancers, rather than vice versa. Dynamic changes in the configuration of the boundary between TADs flanking MYC underlie numerous stochastic encounters with a diverse set of enhancers to depict the plasticity of its transcriptional regulation. Such an arrangement might increase the fitness of the cancer cell by increasing the probability of MYC transcription in response to a wide range of environmental cues encountered by the cell during the neoplastic process.

  2. The ultra-sensitive Nodewalk technique identifies stochastic from virtual, population-based enhancer hubs regulating MYC in 3D: Implications for the fitness of cancer cells

    KAUST Repository

    Sumida, Noriyuki; Sifakis, Emmanouil; Scholz, Barbara A; Fernandez Woodbridge, Alejandro; Kiani, Narsis A.; Gomez-Cabrero, David; Svensson, J Peter; Tegner, Jesper; Gondor, Anita; Ohlsson, Rolf

    2018-01-01

    The relationship between stochastic transcriptional bursts and dynamic 3D chromatin states is not well understood due to poor sensitivity and/or resolution of current chromatin structure-based assays. Consequently, it is not well established if enhancers operate individually and/or in clusters to coordinate gene transcription. In the current study, we introduce Nodewalk, which uniquely combines high sensitivity with high resolution to enable the analysis of chromatin networks in minute input material. The >10,000-fold increase in sensitivity over other many-to-all competing methods uncovered that active chromatin hubs identified in large input material, corresponding to 10 000 cells, flanking the MYC locus are primarily virtual. Thus, the close agreement between chromatin interactomes generated from aliquots corresponding to less than 10 cells with randomly re-sampled interactomes, we find that numerous distal enhancers positioned within flanking topologically associating domains (TADs) converge on MYC in largely mutually exclusive manners. Moreover, when comparing with several enhancer baits, the assignment of the MYC locus as the node with the highest dynamic importance index, indicates that it is MYC targeting its enhancers, rather than vice versa. Dynamic changes in the configuration of the boundary between TADs flanking MYC underlie numerous stochastic encounters with a diverse set of enhancers to depict the plasticity of its transcriptional regulation. Such an arrangement might increase the fitness of the cancer cell by increasing the probability of MYC transcription in response to a wide range of environmental cues encountered by the cell during the neoplastic process.

  3. Anti-Lung Cancer Activity through Enhancement of Immunomodulation and Induction of Cell Apoptosis of Total Triterpenes Extracted from Ganoderma luncidum (Leyss. ex Fr. Karst.

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2013-08-01

    Full Text Available Ganoderma luncidum (Leyss. ex Fr. Karst. (GLK has been used traditionally for the prevention and treatment of cancers or tumors for a long time in Traditional Chinese Medicine. The triterpenes as main effective components of GLK have been found to be beneficial for the efficacy. The purpose of this study was to examine the anti-lung cancer activity of triterpenes of GLK in vitro and in vivo and to explore their anti-lung cancer effects and potential mechanisms. A549 cells and Lewis tumor-bearing mice were used to evaluate the inhibition effects of triterpenes on cell proliferation and tumor growth. The IC50 of triterpenes of GLK on A549 cells was 24.63 μg/mL. Triterpenes of GLK could significantly inhibit tumor growth in mice (30, 60 and 120 mg/kg. The immune organs indexes including spleen and thymus were increased remarkedly by the treatment with triterpenes. Moreover, they were able to stimulate the immune response by increasing the expressions of IL-6 and TNF-α. Flow cytometric analysis revealed that cell arrest caused by triterpenes treatment (7.5, 15 and 30 μg/mL was in the G2/M phase in A549 cells. Triterpenes induced apoptosis by decreasing the expression of the antiapoptotic protein Bcl-2 and pro-caspase 9 and increasing the levels of cleaved-caspase 9. Our findings suggested that the triterpenes of GLK have anti-lung cancer activity in vitro and in vivo via enhancement of immunomodulation and induction of cell apoptosis. The study provides insights into the mechanism of GLK in the prevention and treatment of lung cancer.

  4. Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1, in vitro.

    Science.gov (United States)

    Fujita, Mayumi; Otsuka, Yoshimi; Imadome, Kaori; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi

    2012-04-01

    Pancreatic cancer is an aggressive disease that responds poorly to conventional photon radiotherapy. Carbon-ion (C-ion) radiation has advantages compared with conventional radiotherapy, because it enables more accurate dose distribution and more efficient tumor cell killing. To elucidate the effects of local radiotherapy on the characteristics of metastatic tumors, it is necessary to understand the nature of motility in irradiated tumor cells; this will, in turn, facilitate the development of effective strategies to counter tumor cell motility, which can be used in combination with radiotherapy. The aim of the present study was to examine the invasiveness of pancreatic cancer cells exposed to C-ion irradiation. We found that C-ion irradiation suppressed the migration of MIAPaCa-2, BxPC-3 and AsPC-1; diminished the invasiveness of MIAPaCa-2; and tended to reduce the invasion of BxPC-3 and AsPC-1. However, C-ion irradiation increased the invasiveness of PANC-1 through the activation of plasmin and urokinase-type plasiminogen activator. Administration of serine protease inhibitor (SerPI) alone failed to reduce C-ion-induced PANC-1 invasiveness, whereas the combination of SerPI and Rho-associated coiled-coil forming protein kinase (ROCK) inhibitor suppressed it. Furthermore, PANC-1 showed mesenchymal-amoeboid transition when we treated with SerPI alone. In conclusion, C-ion irradiation is effective in suppressing the invasive potential of several pancreatic tumor cell lines, but not PANC-1; this is the first study showing that C-ion irradiation induces the invasive potential of a tumor cell line. Further in vivo studies are required to examine the therapeutic effectiveness of radiotherapy combined with inhibitors of both mesenchymal and amoeboid modes of tumor cell motility. © 2011 Japanese Cancer Association.

  5. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  6. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells.

    Science.gov (United States)

    Smith, Matthew L; Murphy, Kaylee; Doucette, Carolyn D; Greenshields, Anna L; Hoskin, David W

    2016-08-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a flavonoid found in a number of fruits and vegetables, has diverse biological activities, including cytotoxic effects on cancer cells. In this study, we investigated the effect of fisetin on triple-negative breast cancer (TNBC) cells. TNBC has a poorer prognosis than other types of breast cancer and treatment options for this disease are limited. Fisetin inhibited the growth of MDA-MB-468 and MDA-MB-231 TNBC cells, as well as their ability to form colonies, without substantially affecting the growth of non-malignant cells. In addition, fisetin inhibited the growth of estrogen receptor-bearing MCF-7 breast cancer cells and human epidermal growth factor receptor 2-overexpressing SK-BR-3 breast cancer cells. Fisetin inhibited TNBC cell division and induced apoptosis, which was associated with mitochondrial membrane permeabilization and the activation of caspase-9 and caspase-8, as well as the cleavage of poly(ADP-ribose) polymerase-1. Induction of caspase-dependent apoptosis by fisetin was confirmed by reduced killing of TNBC cells in the presence of the pan-caspase inhibitors Z-VAD-FMK and BOC-D-FMK. Decreased phosphorylation of histone H3 at serine 10 in fisetin-treated TNBC cells at G2/M phase of the cell cycle suggested that fisetin-induced apoptosis was the result of Aurora B kinase inhibition. Interestingly, the cytotoxic effect of cisplatin, 5-fluorouracil, and 4-hydroxycyclophosphamide metabolite of cyclophosphamide on TNBC cells was increased in the presence of fisetin. These findings suggest that further investigation of fisetin is warranted for possible use in the management of TNBC. J. Cell. Biochem. 117: 1913-1925, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Apolipoprotein A-II Plus Lipid Emulsion Enhance Cell Growth via SR-B1 and Target Pancreatic Cancer In Vitro and In Vivo

    Science.gov (United States)

    Thanh LE, Thao N.; Gill, Anthony J.; Bulanadi, Jerikho C.; Patel, Mili; Waddington, Lynne J.; Rye, Kerry-Anne; Moghaddam, Minoo J.; Smith, Ross C.

    2016-01-01

    Background Apolipoprotein A-II (ApoA-II) is down regulated in the sera of pancreatic ductal adenocarcinoma (PDAC) patients, which may be due to increase utilization of high density lipoprotein (HDL) lipid by pancreatic cancer tissue. This study examined the influence of exogenous ApoA-II on lipid uptake and cell growth in pancreatic cancer (PC) both in vitro and in vivo. Methods Cryo transmission electron microscopy (TEM) examined ApoA-II’s influence on morphology of SMOFLipid emulsion. The influence of ApoA-II on proliferation of cancer cell lines was determined by incubating them with lipid+/-ApoA-II and anti-SR-B1 antibody. Lipid was labeled with the fluorophore, DiD, to trace lipid uptake by cancer cells in vitro by confocal microscopy and in vivo in PDAC patient derived xenograft tumours (PDXT) by fluorescence imaging. Scavenger receptor class B type-1(SR-B1) expression in PDAC cell lines and in PDAC PDXT was measured by western blotting and immunohistochemistry, respectively. Results ApoA-II spontaneously converted lipid emulsion into very small unilamellar rHDL like vesicles (rHDL/A-II) and enhanced lipid uptake in PANC-1, CFPAC-1 and primary tumour cells as shown by confocal microscopy. SR-B1 expression was 13.2, 10.6, 3.1 and 2.3 fold higher in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cell lines than the normal pancreatic cell line (HPDE6) and 3.7 fold greater in PDAC tissue than in normal pancreas. ApoA-II plus lipid significantly increased the uptake of labeled lipid and promoted cell growth in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cells which was inhibited by anti SR-B1 antibody. Further, ApoA-II increased the uptake of lipid in xenografts by 3.4 fold. Conclusion Our data suggest that ApoA-II enhance targeting potential of lipid in pancreatic cancer which may have imaging and drug delivery potentialities. PMID:27002321

  8. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells

    DEFF Research Database (Denmark)

    Reuter, Lauri J.; Shahbazi, Mohammad-Ali; Makila, Ermei M.

    2017-01-01

    can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration...... to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of concept for the functionalization...

  9. Aurora kinase inhibitors attached to iron oxide nanoparticles enhances inhibition of the growth of liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiquan [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Xie, Li [Southeast University, Zhongda Hospital, School of Medicine (China); Zheng, Ming; Yao, Juan [Jiangsu Chai Tai Tianqing Pharmaceutical Co. Ltd. (China); Song, Lina [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Chang, Weiwei [Jiangsu Chai Tai Tianqing Pharmaceutical Co. Ltd. (China); Zhang, Yu; Ji, Min, E-mail: minji888@hotmail.com; Gu, Ning, E-mail: guning@seu.edu.cn [Southeast University, State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering (China); Zhan, Xi, E-mail: zhan01@gmail.com [University of Maryland School of Medicine, The Center of Vascular and Inflammatory Diseases, The Department of Pathology (United States)

    2015-06-15

    We have developed a novel Aurora kinase inhibitor (AKI) AM-005, an analogue of pan-AKI AT-9283. To improve the intracellular efficacy of AM-005 and AT-9283, we utilized magnetite nanoparticles (NPs) to deliver AM-005 and AT-9283 into human SMMC-7721 and HepG2 liver cancer cells. The drug-loaded NPs were prepared through quasi-emulsion solvent diffusion of magnetite NPs with AM-005 or AT-9283. The encapsulated drugs were readily released from NPs, preferentially at low pHs. Upon exposure, cancer cells effectively internalized drug-loaded NPs into lysosome-like vesicles, which triggered a series of cellular changes, including the formation of enlarged cytoplasm, the significant increase of membrane permeability, and the generation of reactive oxygen species (ROS). The increased ROS synthesis sustained over 72 h, whereas that in the cells treated with free-form drugs declined rapidly after 48 h. However, chemical sequestration of the iron core of NPs had a minor influence on the generation of intracellular ROS. On the other hand, uncoupling of AM-005 uptake with NP internalization into cells failed to induce ROS synthesis. Overall, our approach achieved two-fold increase in suppressing the viability of tumor cells in vitro and the growth of tumors in vivo. We conclude that magnetite NPs can be used as pH responsive nanocarriers that are able to improve the efficacy of AKIs.

  10. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells

    International Nuclear Information System (INIS)

    Camirand, Anne; Zakikhani, Mahvash; Young, Fiona; Pollak, Michael

    2005-01-01

    Gefitinib (Iressa, ZD 1839, AstraZeneca) blocks the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and inhibits proliferation of several human cancer cell types including breast cancer. Phase II clinical trials with gefitinib monotherapy showed an objective response of 9 to 19% in non-small-cell lung cancer patients and less than 10% for breast cancer, and phase III results have indicated no benefit of gefitinib in combination with chemotherapy over chemotherapy alone. In order to improve the antineoplastic activity of gefitinib, we investigated the effects of blocking the signalling of the insulin-like growth factor 1 receptor (IGF-1R), a tyrosine kinase with a crucial role in malignancy that is coexpressed with EGFR in most human primary breast carcinomas. AG1024 (an inhibitor of IGF-1R) was used with gefitinib for treatment of MDA468, MDA231, SK-BR-3, and MCF-7 breast cancer lines, which express similar levels of IGF-1R but varying levels of EGFR. Proliferation assays, apoptosis induction studies, and Western blot analyses were conducted with cells treated with AG1024 and gefitinib as single agents and in combination. Gefitinib and AG1024 reduced proliferation in all lines when used as single agents, and when used in combination revealed an additive-to-synergistic effect on cell growth inhibition. Flow cytometry measurements of cells stained with annexin V-propidium iodide and cells stained for caspase-3 activation indicated that adding an IGF-1R-targeting strategy to gefitinib results in higher levels of apoptosis than are achieved with gefitinib alone. Gefitinib either reduced or completely inhibited p42/p44 Erk kinase phosphorylation, depending on the cell line, while Akt phosphorylation was reduced by a combination of the two agents. Overexpression of IGF-1R in SK-BR-3 cells was sufficient to cause a marked enhancement in gefitinib resistance. These results indicate that IGF-1R signaling reduces the antiproliferative effects of

  11. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Charalambous, Christiana; Pitta, Chara A; Constantinou, Andreas I

    2013-01-01

    Soy phytoestrogens, such as daidzein and its metabolite equol, have been proposed to be responsible for the low breast cancer rate in Asian women. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen, the basic objective of this study is to determine whether equol enhances tamoxifen’s anti-tumor effect, and to identify the molecular mechanisms involved. For this purpose, we examined the individual and combined effects of equol and tamoxifen on the estrogen-dependent MCF-7 breast cancer cells using viability assays, annexin-V/PI staining, cell cycle and western blot analysis. We found that equol (>50 μM) and 4-hydroxy-tamoxifen (4-OHT; >100 nM) significantly reduced the MCF-7 cell viability. Furthermore, the combination of equol (100 μM) and 4-OHT (10 μM) induced apoptosis more effectively than each compound alone. Subsequent treatment of MCF-7 cells with the pan-caspase inhibitor Z-VAD-FMK inhibited equol- and 4-OHT-mediated apoptosis, which was accompanied by PARP and α-fodrin cleavage, indicating that apoptosis is mainly caspase-mediated. These compounds also induced a marked reduction in the bcl-2:bax ratio, which was accompanied by caspase-9 and caspase-7 activation and cytochrome-c release to the cytosol. Taken together, these data support the notion that the combination of equol and tamoxifen activates the intrinsic apoptotic pathway more efficiently than each compound alone. Consequently, equol may be used therapeutically in combination treatments and clinical studies to enhance tamoxifen’s effect by providing additional protection against estrogen-responsive breast cancers

  12. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway.

    Science.gov (United States)

    Wu, Dapeng; Li, Lei; Yan, Wei

    2016-04-15

    Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blotin vitroandin vivo Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results fromin vitroandin vivostudies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. © 2016. Published by The Company of Biologists Ltd.

  13. N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2.

    Science.gov (United States)

    Yang, Xiao; Zhu, Fan; Yu, Chaoran; Lu, Jiaoyang; Zhang, Luyang; Lv, Yanfeng; Sun, Jing; Zheng, Minhua

    2017-07-18

    N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion,NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.

  14. Y-box Binding Protein-1 Enhances Oncogenic Transforming Growth Factor β Signaling in Breast Cancer Cells via Triggering Phospho-Activation of Smad2.

    Science.gov (United States)

    Stope, Matthias B; Weiss, Martin; Koensgen, Dominique; Popp, Simone L; Joffroy, Christian; Mustea, Alexander; Buck, Miriam B; Knabbe, Cornelius

    2017-12-01

    Transforming growth factor β (TGFβ) plays a role in diverse oncogenic pathways including cell proliferation and cell motility and is regulated by the pleiotropic factor Y-box binding protein-1 (YB-1). In breast cancer, Sma/Mad related protein 2 (Smad2) represents the most common downstream transducer in TGFβ signaling. Here, YB-1's impact on Smad2 phospho-activation was characterized by incubation of the breast cancer cell line MCF-7 with or without TGFβ1 in the absence or presence of overexpressed YB-1 protein. The phospho-status of Smad2 was assessed via western blotting. Analysis of MCF-7 cells revealed no induction of total Smad2 neither in the presence of TGFβ1, nor during YB-1 overexpression. In contrast, incubation with TGFβ1 led to an increase of phosphorylated Smad2 forms which was significantly amplified by simultaneously overexpressed YB-1 (2.8±0.2-fold). Oncogenic YB-1 indirectly enhances TGFβ signaling cascades via Smad2 phospho-activation and may represent a promising factor for future diagnosis and therapy of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. The Potent Humanin Analogue (HNG) Protects Germ Cells and Leucocytes While Enhancing Chemotherapy-Induced Suppression of Cancer Metastases in Male Mice.

    Science.gov (United States)

    Lue, YanHe; Swerdloff, Ronald; Wan, Junxiang; Xiao, Jialin; French, Samuel; Atienza, Vince; Canela, Victor; Bruhn, Kevin W; Stone, Brian; Jia, Yue; Cohen, Pinchas; Wang, Christina

    2015-12-01

    Humanin is a peptide that is cytoprotective against stresses in many cell types. We investigated whether a potent humanin analogue S14G-humanin (HNG) would protect against chemotherapy-induced damage to normal cells without interfering with the chemotherapy-induced suppression of cancer cells. Young adult male mice were inoculated iv with murine melanoma cells. After 1 week, cancer-bearing mice were randomized to receive either: no treatment, daily ip injection of HNG, a single ip injection of cyclophosphamide (CP), or CP+HNG and killed at the end of 3 weeks. HNG rescued the CP-induced suppression of leucocytes and protected germ cell from CP-induced apoptosis. Lung metastases were suppressed by HNG or CP alone, and further suppressed by CP+HNG treatment. Plasma IGF-1 levels were suppressed by HNG with or without CP treatment. To investigate whether HNG maintains its protective effects on spermatogonial stem cells, sperm output, and peripheral leucocytes after repeated doses of CP, normal adult male mice received: no treatment, daily sc injection of HNG, 6 ip injections of CP at 5-day intervals, and the same regimens of CP+HNG and killed at the end of 4 weeks of treatment. Cauda epididymal sperm counts were elevated by HNG and suppressed by CP. HNG rescued the CP-induced suppression of spermatogonial stem cells, sperm count and peripheral leucocytes. We conclude that HNG 1) protects CP-induced loss of male germ cells and leucocytes, 2) enhances CP-induced suppression of cancer metastases, and 3) acts as a caloric-restriction mimetic by suppressing IGF-1 levels. Our findings suggest that humanin analogues may be promising adjuvants to chemotherapy.

  16. d-Fructose Modification Enhanced Internalization of Mixed Micelles in Breast Cancer Cells via GLUT5 Transporters.

    Science.gov (United States)

    Zhou, Xu; Qin, Xianyan; Gong, Tao; Zhang, Zhi-Rong; Fu, Yao

    2017-07-01

    d-Fructose modified poly(ε-caprolactone)-polyethylene glycol (PCL-PEG-Fru) diblock amphiphile is synthesized via Cu(I)-catalyzed click chemistry, which self-assembles with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) into PCL-PEG-Fru/TPGS mixed micelles (PPF MM). It has been proven that glucose transporter (GLUT)5 is overexpressed in MCF-7 cells other than L929 cells. In this study, PPF MM exhibit a significantly higher uptake efficiency than fructose-free PCL-PEG-N 3 /TPGS mixed micelles in both 2D MCF-7 cells and 3D tumor spheroids. Also, the presence of free d-fructose competitively inhibits the internalization of PPF MM in MCF-7 cells other than L929 cells. PPF MM show selective tumor accumulation in MCF-7 breast tumor bearing mice xenografts. Taken together, PPF MM represent a promising nanoscale carrier system to achieve GLUT5-mediated cell specific delivery in cancer therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Colorectal cancer stem cells.

    Science.gov (United States)

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  18. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Hitron, John Andrew [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Wise, James T.F. [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Xu, Mei; Luo, Jia [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  19. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    International Nuclear Information System (INIS)

    Wang, Lei; Hitron, John Andrew; Wise, James T.F.; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-01-01

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  20. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells*

    Science.gov (United States)

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-01-01

    Objective: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. Methods: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. Results: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 μmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. Conclusions: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway. PMID:25091987

  1. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells.

    Science.gov (United States)

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-08-01

    The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.

  2. Androgen receptor (AR) degradation enhancer ASC-J9® in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth.

    Science.gov (United States)

    Cheng, Max A; Chou, Fu-Ju; Wang, Keliang; Yang, Rachel; Ding, Jie; Zhang, Qiaoxia; Li, Gonghui; Yeh, Shuyuan; Xu, Defeng; Chang, Chawnshang

    2018-03-28

    ASC-J9 ® is a recently-developed androgen receptor (AR)-degradation enhancer that effectively suppresses castration resistant prostate cancer (PCa) cell proliferation and invasion. The optimal half maximum inhibitory concentrations (IC 50 ) of ASC-J9 ® at various PCa cell confluences (20%, 50%, and 100%) were assessed via both short-term MTT growth assays and long-term clonogenic proliferation assays. Our results indicate that the IC 50 values for ASC-J9 ® increased with increasing cell confluency. The IC 50 values were significantly decreased in PCa AR-positive cells compared to PCa AR-negative cells or in normal prostate cells. This suggests that ASC-J9 ® may function mainly via targeting the AR-positive PCa cells with limited unwanted side-effects to suppress the surrounding normal prostate cells. Mechanism dissection indicated that ASC-J9 ® might function via altering the apoptosis signals to suppress the PCa AR-negative PC-3 cells. Preclinical studies using multiple in vitro PCa cell lines and an in vivo mouse model with xenografted castration-resistant PCa CWR22Rv1 cells demonstrated that ASC-J9 ® has similar AR degradation effects when dissolved in FDA-approved solvents, including DMSO, PEG-400:Tween-80 (95:5), DMA:Labrasol:Tween-80 (10:45:45), and DMA:Labrasol:Tween-20 (10:45:45). Together, results from preclinical studies suggest a potential new therapy with AR-degradation enhancer ASC-J9 ® may potentially be ready to be used in human clinical trials in order to better suppress PCa at later castration resistant stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Surface-Modification of Carbonate Apatite Nanoparticles Enhances Delivery and Cytotoxicity of Gemcitabine and Anastrozole in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fitya Syarifa Mozar

    2017-06-01

    Full Text Available pH sensitive nanoparticles of carbonate apatite (CA have been proven to be effective delivery vehicles for DNA, siRNAs and proteins. More recently, conventional anti-cancer drugs, such as doxorubicin, methotrexate and cyclophosphamide have been successfully incorporated into CA for intracellular delivery to breast cancer cells. However, physical and chemical properties of drug molecules appeared to affect their interactions with CA, with hydrophillic drug so far exhibiting better binding affinity and cellular uptakes compared to hydrophobic drugs. In this study, anastrozole, a non-steroidal aromatase inhibitor which is largely hydrophobic, and gemcitabine, a hydrophilic nucleoside inhibitor were used as solubility models of chemotherapy drug. Aggregation tendency of poorly soluble drugs resulting in larger particle-drug complex size might be the main factor hindering their delivery effectiveness. For the first time, surface modification of CA with poly(ethylene glycol (PEG has shown promising result to drastically reduce anastrozole- loaded CA particle size, from approximately 1000 to 500 nm based on zeta sizer analysis. Besides PEG, a cell specific ligand, in this case fibronectin, was attached to the particles in order to facilitate receptor mediated endocytosis based on fibronectin–integrin interaction. High-performance liquid chromatography (HPLC was performed to measure uptake of the drugs by breast cancer cells, revealing that surface modification increased the drug uptake, especially for the hydrophobic drug, compared to the uncoated particles and the free drug. In vitro chemosensitivity assay and in vivo tumor regression study also showed that coated apatite/drug nanoparticle complexes presented higher cytotoxicity and tumor regression effects than uncoated apatite/drug nanoparticles and free drugs, indicating that surface modification successfully created optimum particles size with the consequence of more effective uptake along with

  4. Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells

    OpenAIRE

    2009-01-01

    Abstract Purpose The potential use of combined therapy is under intensive study including the association between classical cytotoxic and genes encoding toxic proteins which enhanced the antitumour activity. The main aim of this work was to evaluate whether the gef gene, a suicide gene which has a demonstrated antiproliferative activity in tumour cells, improved the antitumour effect of chemotherapeutic drugs used as first-line treatment in the management...

  5. Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: Possible involvement of inhibition of survival signal transduction pathways

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Ishikawa, Hitoshi; Sakurai, Hideyuki; Saitoh, Jun-ichi; Takahashi, Takeo; Mitsuhashi, Norio

    2001-01-01

    Purpose: The effect of genistein, a tyrosine kinase inhibitor, on radiosensitivity was examined, especially focusing on 'survival signal transduction pathways'. Methods and Materials: Two human esophageal squamous cell cancer cell lines, TE-1 (p53, mutant) and TE-2 (p53, wild), were used. Radiosensitivity was determined by clonogenic assay, and activation of survival signals was examined by Western blot. Results: Genistein (30 μM) greatly enhanced radiosensitivity in these cell lines by suppressing radiation-induced activation of survival signals, p42/p44 extracellular signal-regulated kinase and AKT/PKB. Significant increase in the percentage of apoptotic cells and increased poly[ADP-ribose] polymerase cleavage were observed in TE-2, but not in TE-1 even after combination of genistein with irradiation. In terms of changes in expression of p53-related proteins, increase in expression of Bax and decrease in that of Bcl-2 were observed in TE-2 but not in TE-1, suggesting that the main mode of cell death induced by genistein in a cell line with wild type p53 differed from that with mutant p53. Conclusions: This study suggested that survival signals, including p42/p44 ERK and AKT/PKB, may be involved in determining radiosensitivity, and genistein would be a potent therapeutic agent that has an enhancing effect on radiation

  6. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Guo LG

    2012-03-01

    Full Text Available Liangran Guo1,2,4, Li Fan1,2, Jinfeng Ren1,2, Zhiqing Pang1,2, Yulong Ren1,2, Jingwei Li1,2, Ziyi Wen1,3, Yong Qian1,2, Lin Zhang1,2, Hang Ma4, Xinguo Jiang1,2 1School of Pharmacy, Fudan University, Zhangheng Road, Shanghai, 2Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai, 3School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China; 4College of Pharmacy, University of Rhode Island, RI, USAAbstract: The intractability of non-small cell lung cancer (NSCLC to multimodality treatments plays a large part in its extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising cytokine for selective induction of apoptosis in cancer cells; however, many NSCLC cell lines are resistant to TRAIL-induced apoptosis. The therapeutic effect can be restored by treatments combining TRAIL with chemotherapeutic agents. Actinomycin D (ActD can sensitize NSCLC cells to TRAIL-induced apoptosis by upregulation of death receptor 4 (DR4 or 5 (DR5. However, the use of ActD has significant drawbacks due to the side effects that result from its nonspecific biodistribution in vivo. In addition, the short half-life of TRAIL in serum also limits the antitumor effect of treatments combining TRAIL and ActD. In this study, we designed a combination treatment of long-circulating TRAIL liposomes and ActD liposomes with the aim of resolving these problems. The combination of TRAIL liposomes and ActD liposomes had a synergistic cytotoxic effect against A-549 cells. The mechanism behind this combination treatment includes both increased expression of DR5 and caspase activation. Moreover, systemic administration of the combination of TRAIL liposomes and ActD liposomes suppressed both tumor formation and growth of established subcutaneous NSCLC xenografts in nude mice, inducing apoptosis without causing significant general toxicity. These results provide preclinical proof

  7. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  8. Polymeric Nano-Encapsulation of Curcumin Enhances its Anti-Cancer Activity in Breast (MDA-MB231) and Lung (A549) Cancer Cells Through Reduction in Expression of HIF-1α and Nuclear p65 (Rel A).

    Science.gov (United States)

    Khan, Mohammed N; Haggag, Yusuf A; Lane, Majella E; McCarron, Paul A; Tambuwala, Murtaza M

    2018-02-14

    The anti-cancer potential of curcumin, a natural NFκβ inhibitor, has been reported extensively in breast, lung and other cancers. In vitro and in vivo studies indicate that the therapeutic efficacy of curcumin is enhanced when formulated in a nanoparticulate carrier. However, the mechanism of action of curcumin at the molecular level in the hypoxic tumour micro-environment is not fully understood. Hence, the aim of our study was to investigate the mechanism of action of curcumin formulated as nanoparticles in in vitro models of breast and lung cancer under an hypoxic microenvironment. Biodegradable poly(lactic-co-glycolic acid) PLGA nanoparticles (NP), loaded with curcumin (cur-PLGA-NP), were fabricated using a solvent evaporation technique to overcome solubility issues and to facilitate intracellular curcumin delivery. Cytotoxicity of free curcumin and cur-PLGA-NP was evaluated in MDA-MB-231 and A549 cell lines using migration, invasion and colony formation assays. All treatments were performed under an hypoxic micro-environment and whole cell lysates from controls and test groups were used to determine the expression of HIF-1α and p65 levels using ELISA assays. A ten-fold increase in solubility, three-fold increase in anti-cancer activity and a significant reduction in the levels of cellular HIF-1α and nuclear p65 (Rel A) were observed for cur-PLGA-NP, when compared to free curcumin. Our findings indicate that curcumin can effectively lower the elevated levels of HIF-1α and nuclear p65 (Rel A) in breast and lung cancer cells under an hypoxic tumour micro-environment when delivered in nanoparticulate form. This applied means of colloidal delivery could explain the improved anti-cancer efficacy of curcumin and has further potential applications in enhancing the activity of anti-cancer agents of low solubility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Low molecular weight procyanidins from grape seeds enhance the impact of 5-Fluorouracil chemotherapy on Caco-2 human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Ker Y Cheah

    Full Text Available OBJECTIVE: Grape seed procyanidins (PC are flavan-3-ol oligomers and polymers known for their biological activity in the gut. Grape seed extract (GSE have been reported to reduce intestinal injury in a rat model of mucositis. We sought to investigate effects of purified PC fractions differing in mean degree of polymerization (mDP combined with 5-Fluorouracil (5-FU chemotherapy on the viability of colon cancer cells (Caco-2. DESIGN: SixPC fractions (F1-F6 were isolated from Cabernet Sauvignon seeds at two ripeness stages: pre-veraison unripe (immature and ripe (mature, utilizing step gradient, low-pressure chromatography on a Sephadex LH-20 resin. Fractions were tested on Caco-2 cells, alone and in combination with 5-FU. Eluted fractions were characterized by phloroglucinolysis and gel permeation chromatography. Cell viability was determined by the 3-(4,5-Dimethylthiazol-2yl-2,5-diphenyl-tetrazolium bromide (MTT assay. RESULTS: All isolated fractions significantly reduced Caco-2 cell viability compared to the control (P<0.05, but F2 and F3 (mDP 2-6 were the most active fractions (immature F2 = 32% mDP 2.4, F3 = 35% mDP 5.8 and mature F2 = 13% mDP 3.6 and F3 = 17% mDP 5.9; percentage of viable cells remaining on Caco-2 cells. When combined with 5-FU, immature fractions F1-F3 enhanced the cell toxicity effects of 5-FU by 27-73% (P<0.05. Mature seed PC fractions (F1-F4 significantly enhanced the toxicity of 5-FU by 60-83% against Caco-2 cells (P<0.05. Moreover, some fractions alone were more potent at decreasing viability in Caco-2 cells (P<0.05; immature fractions = 65-68% and mature fractions = 83-87% compared to 5-FU alone (37%. CONCLUSIONS: PCs of mDP 2-6 (immature F1-F3 and mature F1 and F4not only enhanced the impact of 5-FU in killing Caco-2 cells, but also surpassed standard 5-FU chemotherapy as an anti-cancer agent.The bioactivity of PC is therefore attributed primarily to lower molecular weight PCs.

  10. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells.

    Science.gov (United States)

    Fu, G; Peng, C

    2011-09-15

    Nodal, a member of the transforming growth factor-β superfamily, has been recently shown to suppress cell proliferation and to stimulate the expression of cyclin G2 (CCNG2) in human epithelial ovarian cancer cells. However, the precise mechanisms underlying these events are not fully understood. In this study, we investigated the transcriptional regulation of CCNG2 by the Nodal signaling pathway. In ovarian cancer cells, overexpression of Nodal or its receptors, activin receptor-like kinase 7 (ALK7) or ALK4, resulted in an increase in the CCNG2 promoter activity. Several putative Forkhead box class O (FoxO)3a-binding sites are present in the human CCNG2 promoter and overexpression of FoxO3a enhanced the CCNG2 promoter activity. The functional FoxO3a-binding element (FBE) was mapped to a proximal region located between -398 and -380 bp (FBE1) through deletion and mutation analyses, as well as chromatin immunoprecipitation (IP) assay. Interestingly, mutation of the FBE1 not only abolished the effect of FoxO3a, but also blocked Nodal-induced CCNG2 transcription. Nodal stimulated FoxO3a mRNA and protein expression through the canonical Smad pathway and suppressed FoxO3a inactivation by inhibiting AKT activity. Silencing of FoxO3a using small interfering RNA significantly reduced the effect of Nodal on the CCNG2 promoter activity. On the other hand, overexpression of Smad2 and Smad3 enhanced the FoxO3a-induced CCNG2 promoter activity whereas knockdown of Smad4 blocked the activity of FoxO3a. Furthermore, IP assays revealed that FoxO3a formed complexes with Smad proteins and that Nodal enhanced the binding of FoxO3a to the CCNG2 promoter. Finally, silencing of FoxO3a reversed the inhibitory effect of Nodal on cell proliferation. Taken together, these findings demonstrated that Nodal signaling promotes CCNG2 transcription by upregulating FoxO3a expression, inhibiting FoxO3a phosphorylation and enhancing its synergistic interaction with Smads. These results also suggest

  11. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    International Nuclear Information System (INIS)

    Yu, Cheng-Chia; Chang, Yu-Chao

    2013-01-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  12. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  13. Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer.

    Science.gov (United States)

    Zhou, Chunxia; Ye, Lincai; Jiang, Chuan; Bai, Jie; Chi, Yongbin; Zhang, Haibo

    2015-12-01

    Despite the fact that great advances have been made in the management of non-small cell lung cancer (NSCLC), the prognosis of advanced NSCLC remains very poor. HOX transcript antisense intergenic RNA (HOTAIR) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in the progression of a variety of carcinomas and acts as a negative prognostic biomarker. Yet, little is known about the effect of HOTAIR in the hypoxic microenvironment of NSCLC. The expression and promoter activity of HOTAIR were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The function of the hypoxia-inducible factor-1α (HIF-1α) binding site to hypoxia-responsive elements (HREs) in the HOTAIR promoter region was tested by luciferase reporter assay with nucleotide substitutions. The binding of HIF-1α to the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay (CHIP) and electrophoretic mobility shift assay (EMSA). The effect of HIF-1α suppression by small interference RNA or YC-1 on HOTAIR expression was also determined. In the present study, we demonstrated that HOTAIR was upregulated by hypoxia in NSCLC cells. HOTAIR is a direct target of HIF-1α through interaction with putative HREs in the upstream region of HOTAIR in NSCLC cells. Furthermore, HIF-1α knockdown or inhibition could prevent HOTAIR upregulation under hypoxic conditions. Under hypoxic conditions, HOTAIR enhanced cancer cell proliferation, migration, and invasion. These data suggested that suppression of HOTAIR upon hypoxia of NSCLC could be a novel therapeutic strategy.

  14. Novel effector phenotype of Tim-3+ regulatory T cells leads to enhanced suppressive function in head and neck cancer patients.

    Science.gov (United States)

    Liu, Zhuqing; McMichael, Elizabeth L; Shayan, Gulidanna; Li, Jing; Chen, Kevin; Srivastava, Raghvendra M; Kane, Lawrence P; Lu, Binfeng; Ferris, Robert L

    2018-04-30

    Regulatory T (Treg) cells are important suppressive cells among tumor infiltrating lymphocytes (TIL). Treg express the well-known immune checkpoint receptor PD-1, which is reported to mark "exhausted" Treg with lower suppressive function. T cell immunoglobulin mucin (Tim)-3, a negative regulator of Th1 immunity, is expressed by a sizeable fraction of TIL Tregs, but the functional status of Tim-3+ Tregs remains unclear. CD4+CTLA-4+CD25high Treg were sorted from freshly excised head and neck squamous cell carcinoma (HNSCC) TIL based on Tim-3 expression. Functional and phenotypic features of these Tim-3+ and Tim-3- TIL Tregs were tested by in vitro suppression assays and multi-color flow cytometry. Gene expression profiling and NanoString analysis of Tim-3+ TIL Treg were performed. A murine HNSCC tumor model was used to test the effect of anti-PD-1 immunotherapy on Tim-3+ Treg.  Results: Despite high PD-1 expression, Tim-3+ TIL Treg displayed a greater capacity to inhibit naïve T cell proliferation than Tim-3- Treg. Tim-3+ Treg from human HNSCC TIL also displayed an effector-like phenotype, with more robust expression of CTLA-4, PD-1, CD39 and IFN-γ receptor. Exogenous IFN-γ treatment could partially reverse the suppressive function of Tim-3+ TIL Treg. Anti-PD-1 immunotherapy downregulated Tim-3 expression on Tregs isolated from murine HNSCC tumors, and this treatment reversed the suppressive function of HNSCC TIL Tregs. Tim-3+ Treg are functionally and phenotypically distinct in HNSCC TIL, and are highly effective at inhibiting T cell proliferation despite high PD-1 expression.  IFN-γ induced by anti-PD-1 immunotherapy may be beneficial by reversing Tim-3+ Treg suppression. Copyright ©2018, American Association for Cancer Research.

  15. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    Science.gov (United States)

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  16. Hyperthermia-enhanced TRAIL- and mapatumumab-induced apoptotic death is mediated through mitochondria in human colon cancer cells.

    Science.gov (United States)

    Song, Xinxin; Kim, Han-Cheon; Kim, Seog-Young; Basse, Per; Park, Bae-Hang; Lee, Byeong-Chel; Lee, Yong J

    2012-05-01

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; death usually results from uncontrolled metastatic disease. Previously, we developed a novel strategy of TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) in combination with hyperthermia to treat hepatic colorectal metastases. However, previous studies suggest a potential hepatocyte cytotoxicity with TRAIL. Unlike TRAIL, anti-human TRAIL receptor antibody induces apoptosis without hepatocyte toxicity. In this study, we evaluated the anti-tumor efficacy of humanized anti-death receptor 4 (DR4) antibody mapatumumab (Mapa) by comparing it with TRAIL in combination with hyperthermia. TRAIL, which binds to both DR4 and death receptor 5 (DR5), was approximately tenfold more effective than Mapa in inducing apoptosis. However, hyperthermia enhances apoptosis induced by either agent. We observed that the synergistic effect was mediated through elevation of reactive oxygen species, c-Jun N-terminal kinase activation, Bax oligomerization, and translocalization to the mitochondria, loss of mitochondrial membrane potential, release of cytochrome c to cytosol, activation of caspases, and increase in poly(ADP-ribose) polymerase cleavage. We believe that the successful outcome of this study will support the application of Mapa in combination with hyperthermia to colorectal hepatic metastases. Copyright © 2011 Wiley Periodicals, Inc.

  17. Fingerprints in cancer cells

    International Nuclear Information System (INIS)

    Servomaa, K.

    1994-01-01

    Gene research has shown that factors causing cancer, or carcinogens, may leave marks typical of each particular carcinogen (fingerprints) in the genotype of the cell. Radiation, for instance, may leave such fingerprints in a cancer cell. In particular, the discovery of a gene called p53 has yielded much new information on fingerprints. It has been discovered, for example, that toxic fungus and UV-radiation each leave fingerprints in the p53 gene. Based on the detection of fingerprints, it may be possible in the future to tell a cancer patient what factor had trigged the maglinancy

  18. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    (10 nmol/L treatment, MMP-9 mRNA expression and activity were significant increased; This TCDD-induced MMP-9 expression and activity increase could be abolished by c-Jun siRNA transfection. Conclusion AhR pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of MMP-9. Our results provide insight into the mechanism and function of the AhR pathway and its impact on gastric cancer progression.

  19. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Miret, Noelia; Pontillo, Carolina; Ventura, Clara; Carozzo, Alejandro; Chiappini, Florencia

    2016-01-01

    Highlights: • HCB enhances TGF-β1 expression and activation levels in breast cancer cells. • HCB activates TGF-β1 pathways: Smad3, JNK and p38. • The HCB- induced migration and invasion involves TGF-β1 signaling pathways. • HCB modulates AhR levels and activation. • HCB enhances TGF-β1 mRNA expression in an AhR-dependent manner. - Abstract: Given the number of women affected by breast cancer, considerable interest has been raised in understanding the relationships between environmental chemicals and disease onset. Hexachlorobenzene (HCB) is a dioxin-like compound that is widely distributed in the environment and is a weak ligand of the aryl hydrocarbon receptor (AhR). We previously demonstrated that HCB acts as an endocrine disruptor capable of stimulating cell proliferation, migration, invasion, and metastasis in different breast cancer models. In addition, increasing evidence indicates that transforming growth factor-β1 (TGF-β1) can contribute to tumor maintenance and progression. In this context, this work investigated the effect of HCB (0.005, 0.05, 0.5, and 5 μM) on TGF-β1 signaling and AhR/TGF-β1 crosstalk in the human breast cancer cell line MDA-MB-231 and analyzed whether TGF-β1 pathways are involved in HCB-induced cell migration and invasion. RT-qPCR results indicated that HCB reduces AhR mRNA expression through TGF-β1 signaling but enhances TGF-β1 mRNA levels involving AhR signaling. Western blot analysis demonstrated that HCB could increase TGF-β1 protein levels and activation, as well as Smad3, JNK, and p38 phosphorylation. In addition, low and high doses of HCB were determined to exert differential effects on AhR protein levels, localization, and activation, with a high dose (5 μM) inducing AhR nuclear translocation and AhR-dependent CYP1A1 expression. These findings also revealed that c-Src and AhR are involved in HCB-mediated activation of Smad3. HCB enhances cell migration (scratch motility assay) and invasion (Transwell

  20. Extragonadal Germ Cell Cancer (EGC)

    Science.gov (United States)

    The Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell tumors. That is, the tumors originate in the sperm forming cells in the testicles ( ...

  1. Autophagy inhibition synergistically enhances anti-cancer efficacy of RAMBA, VN/12-1 in SKBR-3 cells and tumor xenografts

    Science.gov (United States)

    Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.

    2012-01-01

    VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589

  2. 50Hz Extremely Low Frequency Electromagnetic Fields Enhance Protein Carbonyl Groups Content in Cancer Cells: Effects on Proteasomal Systems

    Directory of Open Access Journals (Sweden)

    A. M. Eleuteri

    2009-01-01

    Full Text Available Electromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of oxidized proteins. Caco 2 cells were exposed, for 24–72 hours, to 1 mT, 50 Hz electromagnetic fields. The treatment induced a time-dependent increase both in cell growth and in protein oxidation, more evident in the presence of TPA, while no changes in cell viability were detected. Exposing the cells to 50 Hz electromagnetic fields caused a global activation of the 20S proteasome catalytic components, particularly evident at 72 hours exposure and in the presence of TPA. The finding that EGCG, a natural antioxidant compound, counteracted the field-related pro-oxidant effects demonstrates that the increased proteasome activity was due to an enhancement in intracellular free radicals.

  3. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    Science.gov (United States)

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  4. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  5. Enhanced Anticancer Activity of PF-04691502, a Dual PI3K/mTOR Inhibitor, in Combination With VEGF siRNA Against Non–small-cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Laura Espana-Serrano

    2016-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths in both men and women in the United States accounting for about 27% of all cancer deceases. In our effort to develop newer therapy for lung cancer, we evaluated the combinatory antitumor effect of siRNA targeting VEGF and the PI3K/mTOR dual inhibitor PF-04691502. We analyzed the anticancer effect of siRNA VEGF and PF-04691502 combination on proliferation, colony formation and migration of A549 and H460 lung cancer cells. Additionally, we assessed the combination treatment antiangiogenic effect on human umbilical vein endothelial cells. Here, we show for the first time that the antiangiogenic siRNA VEGF potentiates the PF-04691502 anticancer activity against non–small-cell lung cancer. We observed a significant (P < 0.05 decrease in cell viability, colony formation, and migration for the combination comparing with the single drug treatment. We also showed a significant (P < 0.05 enhanced effect of the combination treatment inhibiting angiogenesis progression and tube formation organization compared to the single drug treatment groups. Our findings demonstrated an enhanced synergistic anticancer effect of siRNA VEGF and PF-04691502 combination therapy by targeting two main pathways involved in lung cancer cell survival and angiogenesis which will be useful for future preclinical studies and potentially for lung cancer patient management.

  6. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Grant A Howe

    Full Text Available Blockade of epidermal growth factor receptor (EGFR activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC. As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs, there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975 were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271 both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be

  7. Review: Natural killer cells enhance the immune surveillance of ...

    African Journals Online (AJOL)

    All the cells of the immune system cooperatively work against infectious agents and cancerous cells but Natural killer (NK) cells are playing an important role to respond to tumor by enhancing the expression of complementary domain (CD86) on dendritic cells (DCs) and production of IL-12. NK cells demolished tumor ...

  8. Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway.

    Science.gov (United States)

    Won, Hee-Young; Lee, Jeong-Yeon; Shin, Dong-Hui; Park, Ji-Hye; Nam, Jeong-Seok; Kim, Hyoung-Chin; Kong, Gu

    2012-12-01

    Mel-18 has been proposed as a negative regulator of Bmi-1, a cancer stem cell (CSC) marker, but it is still unclear whether Mel-18 is involved in CSC regulation. Here, we examined the effect of Mel-18 on the stemness of human breast CSCs. In Mel-18 small hairpin RNA (shRNA)-transduced MCF-7 cells, side population (SP) cells and breast CSC surface marker (CD44(+)/CD24(-)/ESA(+))-expressing cells, which imply a CSC population, were enriched. Moreover, the self-renewal of CSCs was enhanced by Mel-18 knockdown, as measured by the ability for tumorsphere formation in vitro and tumor-initiating capacity in vivo. Similarly, Mel-18 overexpression inhibited the number and self-renewal activity of breast CSCs in SK-BR-3 cells. Furthermore, our data showed that Mel-18 blockade up-regulated the expression of the Wnt/TCF target Jagged-1, a Notch ligand, and consequently activated the Notch pathway. Pharmacologic inhibition of the Notch and Wnt pathways abrogated Mel-18 knockdown-mediated tumorsphere formation ability. Taken together, our findings suggest that Mel-18 is a novel negative regulator of breast CSCs that inhibits the stem cell population and in vitro and in vivo self-renewal through the inactivation of Wnt-mediated Notch signaling.

  9. ERK inhibition enhances TSA-induced gastric cancer cell apoptosis via NF-κB-dependent and Notch-independent mechanism.

    Science.gov (United States)

    Yao, Jun; Qian, Cui-Juan; Ye, Bei; Zhang, Xin; Liang, Yong

    2012-09-04

    To analyze the combined impact of the histone deacetylase inhibitor (HDACI) Trichostatin A (TSA) and the extracellular-signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 on gastric cancer (GC) cell line SGC7901 growth. SGC7901 cells were treated with TSA, PD98059 or with a TSA-PD98059 combination. Effects of drug treatment on tumor cell proliferation, apoptosis, cell cycle progression, and cell signaling pathways were investigated by MTS assay, flow cytometry, Western blotting, chromatin immunoprecipitation (ChIP) assay, electrophoretic mobility shift assay (EMSA), and luciferase reporter assay, respectively. PD98059 enhanced TSA-induced cell growth arrest, apoptosis and activation of p21(WAF1/CIP1), but reversed TSA-induced activation of ERK1/2 and nuclear factor-κB (NF-κB). TSA alone up-regulated Notch1 and Hes1, and down-regulated Notch2, but PD98059 did not affect the trends of Notch1 and Notch2 induced by TSA. Particularly, PD98059 did potentiate the ability of TSA to down-regulate phospho-histone H3 protein, but increased levels of the acetylated forms of histone H3 bound to the p21(WAF1/CIP1) promoter, leading to enhanced expression of p21(WAF1/CIP1) in SGC7901 cells. PD98059 synergistically potentiates TSA-induced GC growth arrest and apoptosis by manipulating NF-κB and p21(WAF1/CIP1) independent of Notch. Therefore, concomitant administration of HDACIs and ERK1/2 inhibitors may be a promising treatment strategy for individuals with GC. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Vorinostat enhances protein stability of p27 and p21 through negative regulation of Skp2 and Cks1 in human breast cancer cells.

    Science.gov (United States)

    Uehara, Norihisa; Yoshizawa, Katsuhiko; Tsubura, Airo

    2012-07-01

    Vorinostat is a histone deacetylase inhibitor that blocks cancer cell proliferation through the regulation of cyclin-dependent kinase inhibitors. We, herein, examined the involvement of S-phase kinase-associated protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1), the components of the SCFSkp2-Cks1 (Skp1/Cul1/F-box protein) ubiquitin ligase complex, in the regulation of p27 and p21 during vorinostat-induced growth arrest of MDA-MB-231 and MCF-7 human breast cancer cells. Vorinostat significantly reduced BrdU incorporation in MDA-MB-231 and MCF-7 cells, which was associated with increased p27 and p21 protein levels without concomitant induction of p27 mRNA. Vorinostat-induced accumulation of p27 and p21 proteins was inversely correlated with the mRNA and protein levels of Skp2 and Cks1. Cycloheximide chase analysis revealed that vorinostat increased the half-life of p27 and p21 proteins. The accumulation of p27 and p21 proteins was attenuated by forced expression of Skp2 and Cks1, which conferred resistance to the vorinostat-induced S-phase reduction. These results suggest that vorinostat-induced growth arrest may be in part due to the enhanced protein stability of p27 and p21 through the downregulation of Skp2 and Cks1.

  11. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-01-01

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  12. Stem cells and cancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-05-01

    Full Text Available Stem cells are the small units of multicellular creature. Regeneration and self-renewal are the ability of the stem cells. Each tissue is having particular stem cells, specific to it. These normal stem cells are converted into cancer stem cells through mutations in it. Although the expression of oncogenes is enhanced a lot, the tumor-supressing gene is lessened. Cancer stem cells are isolated and visualized through different techniques like immunocytochemical staining, spectral karyotyping, immunohistochemistry, induction method and dissection measures, then are performed histological procedures which include fascination, immunohistochemistry, dispensation, in situ hybridization and also quantitative examination of tissue flow cytometric analysis. For the analysis of quantization, statistical tests are also performed as two-sample t-test, Chi-square test, SD and arithmetic mean. Tumor cells generate glioma spheres. These are used in cancer study. Axin 1 is the gene suppressing cancer. Its removal causes the generation of liver cancer. Curcumin is the most effective for suppressing cancer as it increases the normal stem cell function and decreases the cancer stem cell function. Brahma-related gene 1 is crucial for the safeguarding of the stem cell residents in tissue-specific comportment. Different types of cancers originate through genetic mutation, tissue disorganization and cell proliferation. Tumor configuration is produced by the alteration in original cell culture having stem cells and progenitor cell populations. The developmental facets about cancer cells and cancer stem cells as well as their personal natal functions sustain an intricate steadiness to settle on their personal donations to the efficacy or harmfulness of the biological organization.

  13. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells.

    Science.gov (United States)

    Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J

    2013-04-04

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIP(L)), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIP(L) in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIP(L) protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIP(L) was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIP(L). These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIP(L) ubiquitination and proteolysis, as mutant c-FLIP(L) lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIP(L) by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.

  14. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2-ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Ko, Jen-Chung; Tsai, Min-Shao; Weng, Shao-Hsing; Kuo, Ya-Hsun; Chiu, Yu-Fan; Lin, Yun-Wei

    2011-01-01

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC) cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: → Curcumin downregulates MKK-ERK-mediated Rad51 expression. → Curcumin enhances mitomycin C-induced cytotoxicity. → Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. → Rad51 inhibition enhances the chemosensitization of

  15. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Erickson, Ariane E; Silber, John R; Ellenbogen, Richard G; Zhang, Miqin

    2016-12-01

    The lack of in vitro models that support the growth of glioblastoma (GBM) stem cells (GSCs) that underlie clinical aggressiveness hinders developing new, effective therapies for GBM. While orthotopic patient-derived xenograft models of GBM best reflect in vivo tumor behavior, establishing xenografts is a time consuming, costly, and frequently unsuccessful endeavor. To address these limitations, a 3D porous scaffold composed of chitosan and hyaluronic acid (CHA) is synthesized. Growth and expression of the cancer stem cell (CSC) phenotype of the GSC GBM6 taken directly from fresh xenogratfs grown on scaffolds or as adherent monolayers is compared. While 2D adherent cultures grow as monolayers of flat epitheliod cells, GBM6 cells proliferate within pores of CHA scaffolds as clusters of self-adherent ovoid cells. Growth on scaffolds is accompanied by greater expression of genes that mediate epithelial-mesenchymal transition and maintain a primitive, undifferentiated phenotype, hallmarks of CSCs. Scaffold-grown cells also display higher expression of genes that promote resistance to hypoxia-induced oxidative stress. In accord, scaffold-grown cells show markedly greater resistance to clinically utilized alkylating agents compared to adherent cells. These findings suggest that our CHA scaffolds better mimic in vivo biological and clinical behavior and provide insights for developing novel individualized treatments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reactivating p53 and Inducing Tumor Apoptosis (RITA Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin

    Directory of Open Access Journals (Sweden)

    Armin Wiegering

    2017-04-01

    Full Text Available Colorectal carcinoma (CRC is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n = 9 including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n = 5 with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC50< 3.0 μmol/l were identified within established (4/9 and primary patient-derived (2/5 CRC cell lines harboring wild-type or mutant p53 protein. Sensitivity to RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number

  17. LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis

    Directory of Open Access Journals (Sweden)

    Wang P

    2017-10-01

    Full Text Available Pei Wang,* Dong Chen,* Hongbing Ma, Yong LiDepartment of Cardiothoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, People’s Republic of China *These authors contributed equally to this work Background: Long noncoding RNAs (lncRNAs have been revealed to play essential role in drug resistance of multiple cancers. LncRNA MEG3 was previously reported to be associated with cisplatin (DDP resistance in non-small cell lung cancer (NSCLC cells. However, the molecular mechanism of MEG3 affecting DDP resistance in NSCLC remains to be further illustrated. In this study, we attempted to discuss whether MEG3 also could function as a competing endogenous RNA to regulate DDP resistance in NSCLC.Materials and methods: The expression of MEG3, miR-21-5p, and sex-determining region Y-box 7 (SOX7 in NSCLC tissues or cells was examined by quantitative real-time polymerase chain reaction (qRT-PCR. 3-(4,5-Dimethylthazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, flow cytometry, and caspase-3 activity analysis were applied to assess the DDP sensitivity of NSCLC cells. The interaction between MEG3, miR-21-5p, and SOX7 was explored by luciferase reporter assay, RNA immunoprecipitation (RIP assay, qRT-PCR, and Western blot. Mouse NSCLC transplanted tumor was established to verify the functional role of MEG3 in DDP resistance in vivo.Results: MEG3 was downregulated in DDP-resistant NSCLC cells. Overexpression of MEG3 enhanced DDP sensitivity of NSCLC cells in vitro. MEG3 directly interacted with miR-21-5p and suppressed its expression. miR-21-5p significantly abolished the effects of MEG3 on DDP resistance via modulating cell proliferation and apoptosis. SOX7 was identified as a direct target of miR-21-5p and MEG3 positively regulated SOX7 expression by suppressing miR-21-5p. Moreover, MEG3 knockdown-induced pro-proliferative and anti-apoptotic effects were reversed in DDP-resistant NSCLC cells by upregulating SOX7. Furthermore, upregulation of MEG3 induced

  18. Combinational Therapy Enhances the Effects of Anti-IGF-1R mAb Figitumumab to Target Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Hongxin Cao

    Full Text Available Small cell lung cancer (SCLC is a recalcitrant malignancy with distinct biologic properties. Antibody targeting therapy has been actively investigated as a new drug modality.We tested the expression of IGF-1R and calculated the survival in 61 SCLC patients. We also evaluated the anti-tumor effects of anti-IGF-1R monoclonal antibody Figitumumab (CP on SCLC, and tried two drug combinations to improve CP therapy.Our clinical data suggested that high IGF-1R expression was correlated with low SCLC patient survival. We then demonstrated the effect of CP was likely through IGF-1R blockage and down-regulation without IGF-1R auto-phosphorylation and PI3K/AKT activation. However, we observed elevated MEK/ERK activation upon CP treatment in SCLC cells, and this MEK/ERK activation was enhanced by ß-arrestin1 knockdown while attenuated by ß-arrestin2 knockdown. We found both MEK/ERK inhibitor and metformin could enhance CP treatment in SCLC cells. We further illustrated the additive effect of metformin was likely through promoting further IGF-1R down-regulation.Our results highlighted the potential of anti-IGF-1R therapy and the adjuvant therapy strategy with either MEK/ERK inhibitor or metformin to target SCLC, warranting further studies.

  19. STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV+ status in head and neck cancer.

    Science.gov (United States)

    Lu, Shanhong; Concha-Benavente, Fernando; Shayan, Gulidanna; Srivastava, Raghvendra M; Gibson, Sandra P; Wang, Lin; Gooding, William E; Ferris, Robert L

    2018-03-01

    The intracellular DNA sensor stimulator of interferon genes (STING) has recently been shown to play a vital role in anti-viral and anti-tumor immune responses stimulating cytokine production. While human papillomavirus (HPV) is a causative agent for a subset of head and neck squamous cell carcinoma (HNSCC) with unique etiology and clinical outcome, how the STING pathway is regulated in a virus-induced tumor microenvironment is not well understood. Since STING inactivation likely reflects immunoescape via innate immunity, we hypothesized that its restoration would improve efficacy of the immune modulatory monoclonal antibody (mAb), cetuximab. We correlated STING protein expression with clinical parameters by immunohistochemistry (n = 106) and its mRNA expression from The Cancer Genome Atlas (TCGA) in HNSCC tissue specimens. STING protein expression was tested for association with cancer-specific survival (CSS). We further examined the impact of STING activation on cetuximab-mediated immunity using an in vitro NK:DC:tumor cells co-culture system. In this study, we found that expression of STING both at the protein and mRNA level was higher in HPV positive (HPV + ) specimens but unrelated to TNM stage or cancer-specific survival. Our in vitro studies verified that STING activation enhanced cetuximab mediated NK cell activation and DC maturation. Our findings suggest a novel role of STING in HPV-related carcinogenesis, in which activation of the STING signaling pathway may facilitate anti-tumor response in HNSCC patients, particularly in combination with therapeutic monoclonal antibodies (mAbs) such as cetuximab, an epidermal growth factor receptor (EGFR) inhibitor. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Cancer Stem Cells in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J., E-mail: christiane.bruns@med.uni-muenchen.de [Department of Surgery, Ludwig Maximilian University of Munich, Klinikum Grosshadern, Marchioninistr. 15, D-81377, Munich (Germany)

    2010-08-19

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  1. Cancer Stem Cells in Pancreatic Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer. PMID:24281178

  2. Cancer Stem Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Karl-Walter Jauch

    2010-08-01

    Full Text Available Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs. Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  3. Enhancing the Anti-tumor Activity of ErbB Blockers with Histone Deaccetylase(HDAC)Inhibition in Prostate Cancer Cell Lines

    National Research Council Canada - National Science Library

    Chinnaiyan, Prakash; Harari, Paul M

    2007-01-01

    .... Continuing work with additional prostate cancer cell lines and examining other biologic end-points, including cell cycle kinetics, angiogenesis, and invasion. Promising results will then be evaluated in vivo.

  4. Reactivating p53 and Inducing Tumor Apoptosis (RITA) Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin.

    Science.gov (United States)

    Wiegering, Armin; Matthes, Niels; Mühling, Bettina; Koospal, Monika; Quenzer, Anne; Peter, Stephanie; Germer, Christoph-Thomas; Linnebacher, Michael; Otto, Christoph

    2017-04-01

    Colorectal carcinoma (CRC) is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU) and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA) is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n=9) including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n=5) with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC 50 RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number of RITA-sensitive CRC cells within both panels of established CRC cell lines and primary patient-derived CRC cell lines (6/14) that provide a rationale for combining RITA with 5FU or

  5. Pre-Treatment of Platinum Resistant Ovarian Cancer Cells with an MMP-9/MMP-2 Inhibitor Prior to Cisplatin Enhances Cytotoxicity as Determined by High Content Screening

    Directory of Open Access Journals (Sweden)

    John J. O'Leary

    2013-01-01

    Full Text Available Platinum resistance is a major cause of treatment failure in ovarian cancer. We previously identified matrix metalloproteinase 9 (MMP-9 as a potential therapeutic target of chemoresistant disease. A2780cis (cisplatin-resistant and A2780 (cisplatin-sensitive ovarian carcinoma cell lines were used. The cytotoxic effect of MMP-9/MMP-2 inhibitor, (2R-2-[(4-Biphenylsulfonyl amino]-3 phenylpropionic acid (C21H19NO4S alone or in combination with cisplatin was determined using high content screening. Protein expression was examined using immunohistochemistry and ELISA. Co-incubation of cisplatin and an MMP-9/MMP-2 inhibitor, (2R-2-[(4-Biphenylsulfonyl amino]-3 phenylpropionic acid (C21H19NO4S resulted in significantly greater cytotoxicity as compared to either treatment alone in a cisplatin resistant MMP-9 overexpressing cell line; A2780cis. In addition, pre-incubating with MMP-9i prior to cisplatin further enhances the cytotoxic effect. No significant difference was observed in MMP-9 protein in tissue but a trend towards increased MMP-9 was observed in recurrent serum. We propose that MMP-9/MMP-2i may be utilized in the treatment of recurrent/chemoresistant ovarian cancers that overexpress MMP-9 mRNA but its role in vivo remains to be evaluated.

  6. Sublethal concentrations of 17-AAG suppress homologous recombination DNA repair and enhance sensitivity to carboplatin and olaparib in HR proficient ovarian cancer cells.

    Science.gov (United States)

    Choi, Young Eun; Battelli, Chiara; Watson, Jacqueline; Liu, Joyce; Curtis, Jennifer; Morse, Alexander N; Matulonis, Ursula A; Chowdhury, Dipanjan; Konstantinopoulos, Panagiotis A

    2014-05-15

    The promise of PARP-inhibitors(PARPis) in the management of epithelial ovarian cancer(EOC) is tempered by the fact that approximately 50% of patients with homologous recombination (HR)-proficient tumors do not respond well to these agents. Combination of PARPis with agents that inhibit HR may represent an effective strategy to enhance their activity in HR-proficient tumors. Using a bioinformatics approach, we identified that heat shock protein 90 inhibitors(HSP90i) may suppress HR and thus revert HR-proficient to HR-deficient tumors. Analysis of publicly available gene expression data showed that exposure of HR-proficient breast cancer cell lines to HSP90i 17-AAG(17-allylamino-17-demethoxygeldanamycin) downregulated HR, ATM and Fanconi Anemia pathways. In HR-proficient EOC cells, 17-AAG suppressed HR as assessed using the RAD51 foci formation assay and this was further confirmed using the Direct Repeat-GFP reporter assay. Furthermore, 17-AAG downregulated BRCA1 and/or RAD51 protein levels, and induced significantly more γH2AX activation in combination with olaparib compared to olaparib alone. Finally, sublethal concentrations of 17-AAG sensitized HR-proficient EOC lines to olaparib and carboplatin but did not affect sensitivity of the HR-deficient OVCAR8 line arguing that the 17-AAG mediated sensitization is dependent on suppression of HR. These results provide a preclinical rationale for using a combination of olaparib/17-AAG in HR-proficient EOC.

  7. In Vitro and In Vivo Enhancement of Chemoradiation Using the Oral PARP Inhibitor ABT-888 in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, Joseph W., E-mail: jwshelt@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Waxweiler, Timothy V.; Landry, Jerome; Gao, Huiying; Xu, Yanbo; Wang, Lanfang [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); El-Rayes, Bassel [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Shu, Hui-Kuo G. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2013-07-01

    Purpose: Poly(ADP-ribose) polymerase plays a critical role in the recognition and repair of DNA single-strand breaks and double-strand breaks (DSBs). ABT-888 is an orally available inhibitor of this enzyme. This study seeks to evaluate the use of ABT-888 combined with chemotherapy and radiation therapy (RT) in colorectal carcinoma models. Methods and Materials: RT clonogenic assays were performed on HCT116 and HT29 cells treated with 5-fluorouracil, irinotecan, or oxaliplatin with or without ABT. The surviving fraction at 2 Gy and dose-modifying factor at 10% survival were analyzed. Synergism was assessed by isobologram analysis for combination therapies. γH2AX and neutral comet assays were performed to assess the effect of therapy on DSB formation/repair. In vivo assessments were made by use of HCT116 cells in a xenograft mouse model. Tumor growth delay was measured at a volume of 500 mm{sup 3}. Results: Both lines were radiosensitized by ABT alone, and ABT further increased chemotherapy dose-modifying factors to the 1.6 to 1.8 range. All combinations were synergistic (combination indices <0.9). ABT treatment significantly increased DSB after RT (γH2AX, 69% vs 43%; P=.017) and delayed repair. We found tumor growth delays of 7.22 days for RT; 11.90 days for RT and ABT; 13.5 days for oxaliplatin, RT, and ABT; 14.17 days for 5-fluorouracil, RT, and ABT; and 23.81 days for irinotecan, RT, and ABT. Conclusion: ABT-888 radiosensitizes at similar or higher levels compared with classic chemotherapies and acts synergistically with these chemotherapies to enhance RT effects. In vivo confirmation of these results indicates a potential role for combining its use with existing chemoradiation regimens.

  8. Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin

    International Nuclear Information System (INIS)

    Liu, Yu; Du, Feiya; Chen, Wei; Yao, Minya; Lv, Kezhen; Fu, Peifen

    2013-01-01

    Background: Breast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial. Methods: We used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms. Results: Knockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin. Conclusions: DUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer. - Highlights: • We used different technologies to prove our conclusion. • DUSP4 knockdown increased doxorubicin chemosensitivity in breast cancer cells. • DUSP4 is a potential target for combating drug resistance in breast cancer. • DUSP4 is a potential target for regulating the EMT in breast cancer

  9. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  10. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63.

    Science.gov (United States)

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-11-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.

  11. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  12. Heat shock protein 90 chaperone complex inhibitor enhanced radiosensitivity through modification of response to hormone and degradation of androgen receptor in hormone sensitive prostate cancer cell line

    International Nuclear Information System (INIS)

    Mitsuhashi, N.; Harashima, K.; Akimoto, T.

    2003-01-01

    . DHT or OH-flutamide made cells radioresistant compared with radiation alone, and radicicol enhanced radiosensitivity through modification of response to hormone and degradation of AR in hormone-responsive prostate cancer cell line

  13. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  14. Semiautomatic determination of arterial input functions for quantitative dynamic contrast-enhanced magnetic resonance imaging in non-small cell lung cancer patients.

    Science.gov (United States)

    Chung, Julius; Kim, Jae-Hun; Lee, Eun Ju; Kim, Yoo Na; Yi, Chin A

    2015-03-01

    The aim of this study was to validate a semiautomatic detection method for the arterial input functions (AIFs) using Kendall coefficient of concordance (KCC) for quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging in non-small cell lung cancer patients. We prospectively enrolled 28 patients (17 men, 11 women; mean age, 62 years) who had biopsy-proven non-small cell lung cancer. All enrolled patients underwent dynamic contrast-enhanced magnetic resonance imaging of the entire thorax. For the quantitative measurement of pharmacokinetic parameters, K and ve, of the lung cancers, AIFs were determined in 2 different ways: a manual method that involved 3 independent thoracic radiologists selecting a region of interest (ROI) within the aortic arch in the 2D coronal plane and a semiautomatic method that used in-house software to establish a KCC score, which provided a measure of similarity to typical AIF pattern. Three independent readers selected voxel clusters with high KCC scores calculated 3-dimensionally across planes in the data set. K and ve were correlated using intraclass correlation coefficients (ICCs), and Bland-Altman plots were used to examine agreement across methods and reproducibility within a method. Arterial input functions were determined using the data from ROI volumes that were significantly larger in the semiautomatic method (mean ± SD, 3360 ± 768 mm) than in the manual method (677 ± 380 mm) (P < 0.001). K showed very strong agreement (ICC, 0.927) and ve showed moderately strong agreement (ICC, 0.718) between the semiautomatic and manual methods. The reproducibility for K (ICCmanual, 0.813 and ICCsemiautomatic, 0.998; P < 0.001) and ve (ICCmanual, 0.455 and ICCsemiautomatic, 0.985, P < 0.001) was significantly better with the semiautomatic method than the manual method. We found semiautomated detection using KCC to be a robust method for determining the AIF. This method allows for larger ROIs specified in 3D across planes

  15. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells.

    Science.gov (United States)

    Wang, Qian; Acharya, Narayan; Liu, Zhongwei; Zhou, Xianmei; Cromie, Meghan; Zhu, Jia; Gao, Weimin

    2018-05-10

    Experience-based herbal medicine as a complementary to modern western medicine has triggered an array of studies in quest of novel anticancer drugs. Scutellaria barbata D. Don (SB) is commonly used to treat different types of cancers, but its molecular mechanism of action is not clearly understood. In this study, we attempted to elucidate the mode of action of a traditional Chinese medicine prescription with a total of 14 components, named Lian-Jia-San-Jie-Fang (LJSJF, in Chinese), where SB works as the "principle" against non-small cell lung cancer (NSCLC) cells. Four different NSCLC cell lines (A549, H460, H1650, and H1975) were used. Cytotoxicity, in vitro tumorigenicity, gene expression, and protein expression were analyzed by MTT assay, soft agar assay, real-time PCR, and Western blots, respectively. Among the 14 components in LJSJF, SB was the only one to possess cytotoxic effects at its pharmacologically relevant doses. Additionally, we observed synergistically dose-dependent cytotoxic effects of SB in combination with other LJSJF components. After SB or LJSJF treatment, significant reductions in colony number and/or size were observed in A549 and H460; a notable dose-dependent decrease in EGFR was observed in A549, H460, and H1650; significant downregulation in EGFR and its downstream signaling targets mTOR and p38MAPK were also observed in A549 and H460; and p53 and p21 were significantly increased while survivin, cyclin D1, and MDM2 were significantly decreased in A549. Additionally, p53, p21, and Mettl7b were decreased, but p73 was increased in H460. Neither EGFR nor p53 was changed in H1975. Therefore, SB or LJSJF may induce cytotoxic effects by regulating multiple and/or distinct apoptotic pathways in different NSCLC cells. LJSJF exerts more pronounced cytotoxic effects against NSCLC cells than SB does by synergistically regulating the underlining molecular mechanisms including EGFR and/or p53 signaling pathways. Copyright © 2018 Elsevier B.V. All

  16. The PIKfyve–ArPIKfyve–Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines

    International Nuclear Information System (INIS)

    Ikonomov, Ognian C.; Filios, Catherine; Sbrissa, Diego; Chen, Xuequn; Shisheva, Assia

    2013-01-01

    Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P 2 synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P 2 conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P 2 in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or indirectly the

  17. Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and β1-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro

    International Nuclear Information System (INIS)

    Cordes, N.; Beinke, C.; Beuningen, D. van; Plasswilm, L.

    2004-01-01

    Background and purpose: interactions of cells with a substratum, especially extracellular matrix proteins, initiate clustering of integrin receptors in the cell membrane. This process represents the initial step for the activation of signaling pathways regulating survival, proliferation, differentiation, adhesion, and migration, and could, furthermore, be important for cellular resistance-mediating mechanisms against radiation or cytotoxic drugs. The lack of data elucidating the impact of irradiation or cytotoxic drugs on this important phenomenon led to this study on human A549 lung cancer cells in vitro. Material and methods: the human lung carcinoma cell line A549 grown on polystyrene or fibronectin (FN) was irradiated with 0-8 Gy or treated with cisplatin (0.1-50 μM), paclitaxel (0.1-50 nM), or mitomycin (0.1-50 μM). Colony formation assays, immunofluorescence staining in combination with activation of integrin clustering using anti-β 1 -integrin antibodies (K20), and Western blotting for tyrosine phosphorylation under treatment of cells with the IC 50 for irradiation (2 Gy; IC 50 = 2.2 Gy), cisplatin (2 μM), paclitaxel (5 nM), or mitomycin (7 μM) were performed. Results: attachment of cells to FN resulted in a significantly reduced radio- and chemosensitivity compared to polystyrene. The clustering of β 1 -integrins examined by immunofluorescence staining was only stimulated by irradiation, cisplatin, paclitaxel, or mitomycin in case of cell attachment to FN. By contrast, tyrosine phosphorylation, as one of the major events following β 1 -integrin clustering, showed a 3.7-fold, FN-related enhancement, and treatment of cells with the IC 50 of radiation, cisplatin, paclitaxel, or mitomycin showed a substratum-dependent induction. Conclusion: for the first time, a strong influence of irradiation and a variety of cytotoxic drugs on the clustering of β 1 -integrins could be shown. This event is a prerequisite for tyrosine phosphorylation and, thus, the

  18. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells

    Science.gov (United States)

    Song, Chang W.; Lee, Hyemi; Dings, Ruud P. M.; Williams, Brent; Powers, John; Santos, Troy Dos; Choi, Bo-Hwa; Park, Heon Joo

    2012-01-01

    The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR. PMID:22500211

  19. Nanoparticles for cells proliferation enhancement

    International Nuclear Information System (INIS)

    Popa, V.; Braniste, F.; Tiginyanu, I.M.; Lisii, C.; Nacu, V.

    2013-01-01

    The potential of semiconductor nanoparticles as stimulator for avian mesenchyme stem cells proliferation enhancement is demonstrated. The effect is related to nanoparticles polarization due to external ultrasound field resulting in local electrical stimulation. Our preliminary results demonstrates that the number of cells have been increased by 23 % ±2%) in cell cultures under the action of external ultrasound stimulation. Morphological analysis and viability shows no differences between the control group and the group studied. These results suggest the possibility for tissue regeneration enhancement by remote stimulation of implanted semiconductor nanoparticles. (authors)

  20. Enhancement of the Efficacy of Conventional Anticancer Compounds Through the Repression of SNAI Proteins in Aggressive Breast Cancer Cells

    Science.gov (United States)

    2014-04-01

    breasthealth/statistics.asp] Breast Cancer: Statistics on Incidence, Survival, and Screening . [2] Vargo-Gogola, T., and Rosen, J. M (2007) Modeling...tissues. J Steroid Biochem Mol Biol. 97 (1-2), 153-64. [14] Adams, L. S., and Chen, S. (2009) Phytochemicals for breast cancer prevention by...Zhang, X., Jia, Y., Subramanian, K. K., Jo, H., Loison, F., Newburger, P. E., and Luo, H. R. (2007) RNAi screen identifies UbE2D3 as a mediator of all

  1. Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway

    Directory of Open Access Journals (Sweden)

    Gong C

    2017-12-01

    Full Text Available Cheng Gong,1 Zongyuan Yang,1 Lingyun Zhang,2 Yuehua Wang,2 Wei Gong,2 Yi Liu3 1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 2Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang, 3Department of Medicinal Chemistry, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China Abstract: Quercetin is proven to have anticancer effects for many cancers. However, the role of tumor suppressor p53 on quercetin’s radiosensitization and regulation of endoplasmic reticulum (ER stress response in this process remains obscure. Here, quercetin exposure resulted in ER stress, prolonged DNA repair, and the expression of p53 protein; phosphorylation on serine 15 and 20 increased in combination with X-irradiation. Quercetin pretreatment could potentiate radiation-induced cell death. The combination of irradiation and quercetin treatment aggravated DNA damages and caused typical apoptotic cell death; as well the expression of Bax and p21 elevated and the expression of Bcl-2 decreased. Knocking down of p53 could reverse all the above effects under quercetin in combination with radiation. In addition, quercetin-induced radiosensitization was through stimulation of ATM phosphorylation. In human ovarian cancer xenograft model, combined treatment of quercetin and radiation significantly restrained the growth of tumors, accompanied with the activation of p53, CCAAT/enhancer-binding protein homologous protein, and γ-H2AX. Overall, these results indicated that quercetin acted as a promising radiosensitizer through p53-dependent ER stress signals. Keywords: quercetin, p53, endoplasmic reticulum stress, DNA double-strand breaks, eIF-2α (eukaryotic initiation factor 2α, ATM kinase

  2. Autophagy Inhibition Enhances the Mitochondrial-Mediated Apoptosis Induced by Mangrove (Avicennia marina) Extract in Human Breast Cancer Cells

    KAUST Repository

    Esau, Luke; Sagar, Sunil; Bajic, Vladimir B.; Kaur, Mandeep

    2015-01-01

    Conclusion: Our data provide evidence that AM extract triggers ROS-mediated autophagy as well as caspase-independent apoptosis. The results also strengthen the view that concurrent targeting of apoptotic and autophagic pathways may provide effective therapeutic strategy against cancer.

  3. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.

    Science.gov (United States)

    Adarsh, Nagappanpillai; Ramya, Adukkadan N; Maiti, Kaustabh Kumar; Ramaiah, Danaboyina

    2017-10-12

    The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface. Among the newly revealed Raman reporters, the amino substituted derivative 4 showed high signal intensity at very low concentrations (ca. 0.4 μm for 4-Au). Interestingly, an efficient nanoprobe has been constructed by using gold nanoparticles as SERS substrate, and 4 as the Raman reporter (4-Au@PEG), which unexpectedly showed efficient recognition of three human cancer cells (lung: A549, cervical: HeLa, Fibrosarcoma: HT-1080) without any specific surface marker. We observed well reflected and resolved Raman mapping and characteristic signature peaks whereas, such recognition was not observed in normal fibroblast (3T3L1) cells. To confirm these findings, a SERS nanoprobe was conjugated with a specific tumour targeting marker, EGFR (Epidermal Growth Factor Receptor), a well known targeted agent for Human Fibrosarcoma (HT1080). This nanoprobe efficiently targeted the surface marker of HT1080 cells, threreby demonstrating its use as an ultrasensitive Raman probe for detection and targeted imaging, leaving normal cells unaffected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Research shows that smoking marijuana may help cancer cells grow. But there is no direct link between ...

  5. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  6. Mechanisms of therapeutic resistance in cancer (stem cells with emphasis on thyroid cancer cells.

    Directory of Open Access Journals (Sweden)

    Sabine eHombach-Klonisch

    2014-03-01

    Full Text Available Tissue invasion, metastasis and therapeutic resistance to anti-cancer treatments are common and main causes of death in cancer patients. Tumor cells mount complex and still poorly understood molecular defense mechanisms to counteract and evade oxygen deprivation, nutritional restrictions as well as radio- and chemotherapeutic treatment regimens aimed at destabilizing their genomes and important cellular processes. In thyroid cancer, as in other tumors, such defense strategies include the reactivation in cancer cells of early developmental programs normally active exclusively in stem cells, the stimulation of cancer stem-like cells resident within the tumor tissue and the recruitment of bone marrow-derived progenitors into the tumor (Thomas et al., 2008;Klonisch et al., 2009;Derwahl, 2011. Metastasis and therapeutic resistance in cancer (stem cells involves the epithelial-to-mesenchymal transition- (EMT- mediated enhancement in cellular plasticity, which includes coordinated dynamic biochemical and nuclear changes (Ahmed et al., 2010. The purpose of the present review is to provide an overview of the role of DNA repair mechanisms contributing to therapeutic resistance in thyroid cancer and highlight the emerging roles of autophagy and damage associated molecular pattern (DAMP responses in EMT and chemoresistance in tumor cells. Finally, we use the stem cell factor and nucleoprotein High Mobility Group A2 (HMGA2 as an example to demonstrate how factors intended to protect stem cells are wielded by cancer (stem cells to gain increased transformative cell plasticity which enhances metastasis, therapeutic resistance and cell survival. Wherever possible, we have included information on these cellular processes and associated factors as they relate to thyroid cancer cells.

  7. Multiorganelle Localization of Metallated Phthalocyanine Photosensitizer in Colorectal Cancer Cells (DLD-1 and CaCo-2 Enhances Efficacy of Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Palesa Rose Sekhejane

    2014-01-01

    Full Text Available Colorectal cancer is the third most commonly diagnosed cancer. Amongst treatments that have been explored, photodynamic therapy (PDT is a treatment that is of interest as it poses ideal advantages such as affinity for cancer cells. This study aimed to determine the correlation between the localization site of a sulfonated zinc phthalocyanine (ZnPcSmix photosensitizer (PS and its associated cell death pathway in vitro in colorectal cancer cell lines (DLD-1 and CaCo-2. Visible morphological changes were observed in PDT treated cells after 24 h. Reactive oxygen species (ROS were detected and visualized 1 h after PDT. ZnPcSmix was predominantly localized in lysosomes and partially in the mitochondria. FITC Annexin V staining showed a significant decrease in the percentage of viable DLD-1 and CaCo-2 cells 24 h after PDT, with an increase in apoptotic cell population. Moreover, there was a significant increase in both cathepsin D and cytochrome C at 1 and 24 h. In conclusion, ZnPcSmix showed the ability of inducing apoptotic cell death features in PDT treated cells.

  8. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  10. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  11. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway.

    Science.gov (United States)

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-11-08

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy.

  12. Overexpression of the Anthocyanidin Synthase Gene in Strawberry Enhances Antioxidant Capacity and Cytotoxic Effects on Human Hepatic Cancer Cells.

    Science.gov (United States)

    Giampieri, Francesca; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Mazzoni, Luca; Capocasa, Franco; Sabbadini, Silvia; Alvarez-Suarez, Josè M; Afrin, Sadia; Rosati, Carlo; Pandolfini, Tiziana; Molesini, Barbara; Sánchez-Sevilla, José F; Amaya, Iraida; Mezzetti, Bruno; Battino, Maurizio

    2018-01-24

    Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.

  13. Bone morphogenetic protein 2 (BMP2) induces growth suppression and enhances chemosensitivity of human colon cancer cells

    DEFF Research Database (Denmark)

    Vishnubalaji, Radhakrishnan; Yue, Shijun; Alfayez, Musaad

    2016-01-01

    expression were assessed using qRT-PCR. AlamarBlue assay was used to assess cell viability in vitro. In vivo experiments were conducted using SCID mice. RESULTS: Our data revealed frequent downregulation of BMP2 in primary CRC tissues. Additionally, interrogation of publically available gene expression......, suggesting that restoration of BMP2 expression could be a potential therapeutic strategy for CRC....

  14. Local advanced transitional cell cancer and squamous cell cancer of ...

    African Journals Online (AJOL)

    Case report: A 51-year-old man presented with a locally advanced squamous cell cancer of the periurethral tissues as well as an underlying isolated transitional cell cancer of the urethra. Chemotherapy with Gemcitabin and Cisplatinum together with local radiation to the pelvis and the perineum was given. There was ...

  15. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  16. Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy

    International Nuclear Information System (INIS)

    Farina, Davide; Morassi, Mauro; Maroldi, Roberto; Roca, Elisa; Tassi, Gianfranco; Cavalleri, Giuseppe

    2013-01-01

    To assess whether tumour heterogeneity, quantified by texture analysis (TA) on contrast-enhanced computed tomography (CECT), can predict response to chemotherapy in advanced non-small cell lung cancer (NSCLC). Fifty-three CECT studies of patients with advanced NSCLC who had undergone first-line chemotherapy were retrospectively reviewed. Response to chemotherapy was evaluated according to RECIST1.1. Tumour uniformity was assessed by a TA method based on Laplacian of Gaussian filtering. The resulting parameters were correlated with treatment response and overall survival by multivariate analysis. Thirty-one out of 53 patients were non-responders and 22 were responders. Average overall survival was 13 months (4-35), minimum follow-up was 12 months. In the adenocarcinoma group (n = 31), the product of tumour uniformity and grey level (GL*U) was the unique independent variable correlating with treatment response. Dividing the GL*U (range 8.5-46.6) into tertiles, lesions belonging to the second and the third tertiles had an 8.3-fold higher probability of treatment response compared with those in the first tertile. No association between texture features and response to treatment was observed in the non-adenocarcinoma group (n = 22). GL*U did not correlate with overall survival. TA on CECT images in advanced lung adenocarcinoma provides an independent predictive indicator of response to first-line chemotherapy. (orig.)

  17. Estrogen-dependent downregulation of hairy and enhancer of split homolog-1 gene expression in breast cancer cells is mediated via a 3' distal element.

    Science.gov (United States)

    Müller, Patrick; Merrell, Kenneth W; Crofts, Justin D; Rönnlund, Caroline; Lin, Chin-Yo; Gustafsson, Jan-Ake; Ström, Anders

    2009-03-01

    Regulation of hairy and enhancer of split homologue-1 (HES-1) by estradiol and all-trans retinoic acid affects proliferation of human breast cancer cells. Here, we identify and characterize cis-regulatory elements involved in HES-1 regulation. In the distal 5' promoter of the HES-1 gene, we found a retinoic acid response element and in the distal 3' region, an estrogen receptor alpha(ER)alpha binding site. The ERalpha binding site, composed of an estrogen response element (ERE) and an ERE half-site, is important for both ERalpha binding and transcriptional regulation. Chromatin immunoprecipitation assays revealed that ERalpha is recruited to the ERE and associates with the HES-1 promoter. We also show recruitment of nuclear receptor co-regulators to the ERE in response to estradiol, followed by a decrease in histone acetylation and RNA polymerase II docking in the HES-1 promoter region. Our findings are consistent with a novel type of repressive estrogen response element in the distal 3' region of the HES-1 gene.

  18. Response assessment of stereotactic body radiation therapy using dynamic contrast-enhanced integrated MR-PET in non-small cell lung cancer patients.

    Science.gov (United States)

    Huang, Yu-Sen; Chen, Jenny Ling-Yu; Hsu, Feng-Ming; Huang, Jei-Yie; Ko, Wei-Chun; Chen, Yi-Chang; Jaw, Fu-Shan; Yen, Ruoh-Fang; Chang, Yeun-Chung

    2018-01-01

    To evaluate the response in patients undergoing SBRT using dynamic contrast-enhanced (DCE) integrated magnetic resonance positron emission tomography (MR-PET). Stereotactic body radiation therapy (SBRT) is efficacious as a front-line local treatment for non-small cell lung cancer (NSCLC). We prospectively enrolled 19 lung tumors in 17 nonmetastatic NSCLC patients who were receiving SBRT as a primary treatment. They underwent DCE-integrated 3T MR-PET before and 6 weeks after SBRT. The following image parameters were analyzed: tumor size, standardized uptake value (SUV), apparent diffusion coefficient, K trans , k ep , v e , v p , and iAUC 60 . Chest computed tomography (CT) was performed at 3 months after SBRT. SBRT treatment led to tumor changes including significant decreases in the SUV max (-61%, P PET SUV max was correlated with the MR k ep mean (P = 0.002) and k ep SD (P 10 (P = 0.083). In patients with NSCLC who are receiving SBRT, DCE-integrated MR-PET can be used to evaluate the response after SBRT and to predict the local treatment outcome. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:191-199. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Extracellular matrix metalloproteinase inducer (EMMPRIN) remodels the extracellular matrix through enhancing matrix metalloproteinases (MMPs) and inhibiting tissue inhibitors of MMPs expression in HPV-positive cervical cancer cells.

    Science.gov (United States)

    Xu, Q; Cao, X; Pan, J; Ye, Y; Xie, Y; Ohara, N; Ji, H

    2015-01-01

    PUPOSE OF INVESTIGATION: To study the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinases (MMPs), and tissue inhibitors of MMP (TIMPs) in uterine cervical cancer cell lines in vitro. EMMPRIN, MMPs, and TIMPs expression were assessed by Western blot and real-time RT-PCR from cervical carcinoma SiHa, HeLa, and C33-A cells. EMMPRIN recombinant significantly increased MMP-2, MMP-9 protein and mRNA expression in SiHa and Hela cells, but not in C33-A cells by Western blot analysis and real-time RT-PCR. EMMPRIN recombinant significantly inhibited TIMP-1 protein and mRNA levels in SiHa and Hela cells, but not in C33-A cells. There was no difference on the TIMP-2 expression in those cells with the treatment of EMMPRIN recombinant. EMMPRIN RNAi decreased MMP-2 and MMP-9 and increased TIMP-1 expression in SiHa and HeLa cells, but not in C33-A cells. There was no change on the expression of TIMP-2 mRNA levels in SiHa, HeLa and C33-A cells transfected with siEMMPRIN. EMMPRIN may induce MMP-2 and MMP-9, and downregulate TIMP-1 in HPV-positive cervical cancer cells in vitro.

  20. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  1. Enhanced expression in vivo of HLA-ABC antigens and beta 2-microglobulin on human lymphoid cells induced by human interferon-alpha in patients with lung cancer. Enhanced expression of class I major histocompatibility antigens prior to treatment

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Plesner, T; Larsen, J K

    1985-01-01

    than 0.5, respectively) by day-to-day analysis of an untreated healthy control group. An increased expression of both HLA-ABC (mean 55%, P less than 0.0005) and beta 2m (mean 23%, P less than 0.01) was also observed prior to treatment in the lung cancer patients when compared to a group of age matched......The effect of cloned human interferon-alpha (IFN-alpha) on the expression of HLA-ABC antigens (HLA-ABC) and beta 2-microglobulin (beta 2m) on human peripheral lymphoid cells in vivo was studied by cytofluorometry using monoclonal antibodies and fluorescein-labelled rabbit anti-mouse immunoglobulin....... A significant increase in the mean fluorescence intensity of HLA-ABC (median 59%, P less than 0.001) and beta 2m (median 57%, P less than 0.001) on small lymphoid cells was observed 24 h after initiation of IFN-alpha treatment (50 X 10(6) units IFN-alpha/m2 three times a week). The enhanced expression...

  2. A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells.

    Science.gov (United States)

    Raja, Srikumar M; Clubb, Robert J; Bhattacharyya, Mitra; Dimri, Manjari; Cheng, Hao; Pan, Wei; Ortega-Cava, Cesar; Lakku-Reddi, Alagarsamy; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2008-10-01

    ErbB2 (or Her2/Neu) overexpression in breast cancer signifies poorer prognosis, yet it has provided an avenue for targeted therapy as demonstrated by the success of the humanized monoclonal antibody Trastuzumab (Herceptin). Resistance to Trastuzumab and eventual failure in most cases, however, necessitate alternate ErbB2-targeted therapies. HSP90 inhibitors such as 17-allylaminodemethoxygeldanamycin (17-AAG), potently downregulate the cell surface ErbB2. While the precise mechanisms of Trastuzumab or 17-AAG action remain unclear, ubiquitinylation-dependent proteasomal or lysosomal degradation of ErbB2 appears to play a substantial role. As Trastuzumab and 17-AAG induce the recruitment of distinct E3 ubiquitin ligases, Cbl and CHIP respectively, to ErbB2, we hypothesized that 17-AAG and Trastuzumab combination could induce a higher level of ubiquitinylation and downregulation of ErbB2 as compared to single drug treatments. We present biochemical and cell biological evidence that combined 17-AAG and Trastuzumab treatment of ErbB2-overexpressing breast cancer cell lines leads to enhanced ubiquitinylation, downregulation from the cell surface and lysosomal degradation of ErbB2. Importantly, combined 17-AAG and Trastuzumab treatment induced synergistic growth arrest and cell death specifically in ErbB2-overexpressing but not in ErbB2-low breast cancer cells. Our results suggest the 17-AAG and Trastuzumab combination as a mechanism-based combinatorial targeted therapy for ErbB2-overexpressing breast cancer patients.

  3. Long term imaging of living brain cancer cells

    Science.gov (United States)

    Farias, Patricia M. A.; Galembeck, André; Milani, Raquel; Andrade, Arnaldo C. D. S.; Stingl, Andreas

    2018-02-01

    QDs synthesized in aqueous medium and functionalized with polyethylene glycol were used as fluorescent probes. They label and monitor living healthy and cancer brain glial cells in culture. Physical-chemical characterization was performed. Toxicological studies were performed by in vivo short and long-term inhalation in animal models. Healthy and cancer glial living cells were incubated in culture media with highly controlled QDs. Specific features of glial cancer cells were enhanced by QD labelling. Cytoplasmic labelling pattern was clearly distinct for healthy and cancer cells. Labelled cells kept their normal activity for same period as non-labelled control samples.

  4. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  5. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3

    Directory of Open Access Journals (Sweden)

    Zhu Liang

    2012-03-01

    RNA silencing and gene overexpression, we further demonstrated that RGC-32 mediated TGF-β-induced EMT and migration in BxPC-3 cells. Conclusions The results above indicated that RGC-32 might be a novel metastasis promoting gene in pancreatic cancer and it enhances metastatic phenotype by mediating TGF-β-induced EMT in human pancreatic cancer cell line BxPC-3.

  6. TAS-116, a novel Hsp90 inhibitor, selectively enhances radio-sensitivity of human cancer cells to X-rays and carbon ion radiation

    Science.gov (United States)

    Lee, Younghyun; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A.; Okayasu, Ryuichi

    2016-01-01

    Hsp90 inhibitors have been investigated as cancer therapeutics in mono-therapy and to augment radiotherapy, however serious adverse effects of early generation Hsp90 inhibitors limited their development. TAS-116 is a novel Hsp90 inhibitor with lower adverse effects than other Hsp90 inhibitors, and here we investigated the radio-sensitizing effects of TAS-116 in low LET X-ray, and high LET carbon ion irradiated human cancer cells and mouse tumor xenografts. TAS-116 decreased cell survival of both X-ray and carbon ion-irradiated human cancer cell lines (HeLa and H1299 cells), and similar to other Hsp90 inhibitors, it did not affect radiosensitivity of non-cancerous human fibroblasts. TAS-116 increased the number of radiation-induced γ-H2AX foci, and delayed the repair of DNA double-strand breaks (DSBs). TAS-116 reduced the expression of proteins that mediate repair of DSBs by homologous recombination (RAD51) and non-homologous end joining (Ku, DNA-PKcs), and suppressed formation of RAD51 foci and phosphorylation/activation of DNA-PKcs. TAS-116 also decreased expression of the cdc25 cell cycle progression marker, markedly increasing G2/M arrest. Combined treatment of mouse tumor xenografts with carbon ions and TAS-116 showed promising delay in tumor growth compared to either individual treatment. These results demonstrate that TAS-116 radio-sensitizes human cancer cells to both X rays and carbon ions by inhibiting the two major DSB repair pathways, and these effects were accompanied by marked cell cycle arrest. The promising results of combination TAS-116 + carbon ion radiation therapy of tumor xenografts justify further exploration of TAS-116 as an adjunct to radiotherapy using low or high LET radiation. PMID:28062703

  7. Radiation Enhances Regulatory T Cell Representation

    Energy Technology Data Exchange (ETDEWEB)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Economou, James S. [Department of Surgical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  8. Radiation Enhances Regulatory T Cell Representation

    International Nuclear Information System (INIS)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Dörthe

    2011-01-01

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4 + CD25 hi Foxp3 + lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4 + CD25 hi Foxp3 + Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  9. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  10. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  11. Fisetin Enhances the Cytotoxicity of Gemcitabine by Down-regulating ERK-MYC in MiaPaca-2 Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Kim, Nayoung; Kang, Min-Jung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Ji Eun; Paik, Woo Hyun; Ryu, Ji Kon; Kim, Yong-Tae

    2018-06-01

    Pancreatic cancer is a highly lethal malignancy with a poor prognosis. This study was set up to investigate the combined effect of gemcitabine and fisetin, a natural flavonoid from plants, on human pancreatic cancer cells. Meterials and Methods: Cytotoxic effect of fisetin in combination with gemcitabine on MiaPaca-2 cells was evaluated by the MTT assay, caspase 3/7 assay and propidium iodide/Annexin V. Extracellular signal-regulated kinase (ERK)-v-myc avian myelocytomatosis viral oncogene homolog (MYC) pathway was investigated by western blotting and quantitative real-time polymerase chain reaction. Combination treatment with fisetin and gemcitabine inhibited the proliferation of pancreatic cancer cells within 72 h and induced apoptosis, as indicated by activation of caspase 3/7. Fisetin down-regulated ERK at the protein and mRNA levels, and reduced ERK-induced MYC instability at the protein level. Fisetin sensitized human pancreatic cancer cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling. These results suggest that the combination of fisetin and gemcitabine could be developed as a novel potent therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Li, Zhengkun; Chen, Wei

    2014-07-01

    Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

  13. Suppression of microRNA-629 enhances sensitivity of cervical cancer cells to 1'S-1'-acetoxychavicol acetate via regulating RSU1.

    Science.gov (United States)

    Phuah, Neoh Hun; Azmi, Mohamad Nurul; Awang, Khalijah; Nagoor, Noor Hasima

    2017-01-01

    Cervical cancer is the fourth most frequent malignancy affecting women worldwide, but drug resistance and toxicities remain a major challenge in chemotherapy. The use of natural compounds is promising because they are less toxic and able to target multiple signaling pathways. The 1'S-1'-acetoxychavicol acetate (ACA), a natural compound isolated from wild ginger Alpinia conchigera , induced cytotoxicity on various cancer cells including cervical cancer. MicroRNAs (miRNAs) are short noncoding RNAs that regulate numerous biological processes, such as apoptosis and chemosensitivity. Past studies reported that miR-629 is upregulated in many cancers, and its expression was altered in ACA-treated cervical cancer cells. However, the role of miR-629 in regulating sensitivity toward ACA or other anticancer agents has not been reported. Hence, this study aims to investigate the role of miR-629 in regulating response toward ACA on cervical cancer cells. The miR-629 expression following transfection with miR-629 hairpin inhibitor and hairpin inhibitor negative control was measured using quantitative real-time polymerase chain reaction (RT-qPCR). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to investigate sensitivity toward ACA. Apoptosis was detected using Annexin V/propidium iodide and Caspase 3/7 assays. The gene target for miR-629 was identified using miRNA target prediction programs, luciferase reporter assay and Western blots. Gene overexpression studies were performed to evaluate its role in regulating response toward ACA. Transfection with miR-629 hairpin inhibitor downregulated its expression in both cervical cancer cell lines. Suppression of miR-629 increased sensitivity toward ACA by reducing cell proliferation and inducing apoptosis. Luciferase reporter assay confirmed RSU1 as a direct target of miR-629. Overexpression of miR-629 decreased RSU1 protein expression, while inhibition of miR-629 increased RSU1 protein expression

  14. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  15. Cancer vaccine enhanced, non-tumor-reactive CD8(+) T cells exhibit a distinct molecular program associated with "division arrest anergy".

    Science.gov (United States)

    Beyer, Marc; Karbach, Julia; Mallmann, Michael R; Zander, Thomas; Eggle, Daniela; Classen, Sabine; Debey-Pascher, Svenja; Famulok, Michael; Jäger, Elke; Schultze, Joachim L

    2009-05-15

    Immune-mediated tumor rejection relies on fully functional T-cell responses and neutralization of an adverse tumor microenvironment. In clinical trials, we detected peptide-specific but non-tumor-reactive and therefore not fully functional CD8(+) T cells post-vaccination against tumor antigens. Understanding the molecular mechanisms behind nontumor reactivity will be a prerequisite to overcome this CD8(+) T-cell deviation. We report that these non-tumor-reactive CD8(+) T cells are characterized by a molecular program associated with hallmarks of "division arrest anergy." Non-tumor-reactive CD8(+) T cells are characterized by coexpression of CD7, CD25, and CD69 as well as elevated levels of lck(p505) and p27(kip1). In vivo quantification revealed high prevalence of non-tumor-reactive CD8(+) T cells with increased levels during cancer vaccination. Furthermore, their presence was associated with a trend toward shorter survival. Dynamics and frequencies of non-target-reactive CD8(+) T cells need to be further addressed in context of therapeutic vaccine development in cancer, chronic infections, and autoimmune diseases.

  16. Enhancement of the radiation-lethal effect of hypoxic cancer cells by some nitroheterocyclic compounds. Part of a coordinated programme on the improvement of radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Chiricuta, I.

    1981-12-01

    The possibilities to enhance the lethal effect of ionizing radiation on hypoxic cells by electron-affinic compounds have stimulated the investigations for finding new chemicals with radiobiological and pharmacological features as adequate as possible. On the other hand, the experimental studies and clinical trials had shown that the aerobic toxicity seems to be the major limiting factor in the use of large doses of radiosensitizers required to achieve significant therapeutic efficiency. The investigations in the present paper were attempted to join these two main directions of research and comprised the syntheses of new nitroheterocyclic compounds with potential radiosensitization properties and the knowledge of biochemical alterations involved in the producing of aerobic toxicity of radiosensitizers aiming to find practical solutions to enhance the efficiency of radiotherapy. Several newly synthesized compounds were tested for their radiosensitizing effect. The experiments carried out on hypoxic cells V 79 showed that only 1-(hydroxyethyl-2'-phosphate)-2-methyl-5-nitroimidazole, dipotassium salt displayed an enhancement ratio of 1.17 (at 8 mM), but lower than in case of parent compound, metronidazole (enhancement ratio = 1.53). It was shown that hypoxic cell radiosensitizers interfere with the cellular energy metabolism. These interferences were found dependent on the electron affinity of drugs. In addition, those radiosensitizers producing a decrease in oxygen consumption caused a supplementary oxygenation of both normal and tumour tissues. It is concluded that the improvement of therapeutic efficiency of radiosensitizers by reducing their aerobic toxicity might be achieved by diminishing their effects on the energy metabolism or by the stimulation of this metabolism and restoration of tissue redox equilibrium

  17. MiR-124 Inhibits Growth and Enhances Radiation-Induced Apoptosis in Non-Small Cell Lung Cancer by Inhibiting STAT3

    Directory of Open Access Journals (Sweden)

    Mengjie Wang

    2017-12-01

    Full Text Available Background/Aims: A growing body of evidence indicates that the abnormal expression of microRNAs (miRNAs play an important role in sensitizing the cellular response to ionizing radiation (IR. The aim of this study was to investigate whether the expression of miR-124 correlated with radiosensitivity in the context of non-small-cell lung carcinoma (NSCLC. Methods: Quantitative reverse transcription polymerase chain reaction (RT-PCR was used to quantify miR-124 expression in NSCLC tissues and cell lines. The role of miR-124 in NSCLC proliferation and radiosensitivity was analyzed using CCK-8 and flow cytometry apoptosis assays. Luciferase activity assays, RT-PCR, and Western blot assays were performed to confirm the target gene of miR-124. Results: In this study, we found that miR-124 was downregulated both in clinical NSCLC samples and in cell lines. miR-124 inhibited the proliferation of NSCLC cells and enhanced the apoptosis of NSCLC cells exposed to ionizing radiation. We identified signal transducer and activator of transcription 3 (STAT3 as a direct target of miR-124 by using target prediction algorithms and luciferase assays. Overexpression of STAT3 in A549 cell lines restored the enhanced radiosensitivity induced by miR-124. Conclusion: Taking these observations into consideration, we illustrated that miR-124 is a potential target for enhancing the radiosensitivity of NSCLC cells by targeting STAT3.

  18. Enhancing Cold Atmospheric Plasma Treatment Efficiency for Cancer Therapy

    Science.gov (United States)

    Cheng, Xiaoqian

    To improve efficiency and safety of anti-cancer therapies the researchers and clinicians alike are prompted to develop targeted combined therapies that especially minimize damage to healthy tissues while eradicating the body of cancerous tissues. Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that cold plasma induced cell death. In this study, we seek to integrate the medical application of CAP. We proposed and implemented 3 novel ideas to enhance efficacy and selectivity of cancer therapy. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. We determined a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of CAP, including output voltage, treatment time, and gas flow-rate. We varied the characteristics of the cold plasma in order to obtain different major species (such as O, OH, N2+, and N2 lines). "plasma dosage" D ~ Q * V * t. is defined, where D is the entire "plasma dosage"; Q is the flow rate of feeding gas; V is output voltage; t is treatment time. The proper CAP dosage caused 3-fold cell death in the U87 cells compared to the normal human astrocytes E6/E7 cells. We demonstrated there is a synergy between AuNPS and CAP in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce U87 cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The ROS intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the

  19. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  20. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  1. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs approved by the ... not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) Axitinib Bevacizumab Cabometyx ( ...

  2. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    Science.gov (United States)

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-07-21

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  3. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells.

    Science.gov (United States)

    Wang, Xin; Low, Xinyi Casuarine; Hou, Weixin; Abdullah, Lissa Nurrul; Toh, Tan Boon; Mohd Abdul Rashid, Masturah; Ho, Dean; Chow, Edward Kai-Hua

    2014-12-23

    Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond-drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers.

  4. Enhancing the Efficacy of Prostate Cancer Immunotherapy by Manipulating T-Cell Receptor Signaling in Order to Alter Peripheral Regulatory T-Cell Activity

    Science.gov (United States)

    2009-07-01

    27] Ross S, Spencer SD, Holcomb I, Tan C, Hongo J, Devaux B, et al. Prostate stem cell antigen as therapy target: tissue expression and in vivo...Holcomb I, Tan C, Hongo J, Devaux B, et al. Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate

  5. Exogenous Restoration of TUSC2 Expression Induces Responsiveness to Erlotinib in Wildtype Epidermal Growth Factor Receptor (EGFR Lung Cancer Cells through Context Specific Pathways Resulting in Enhanced Therapeutic Efficacy.

    Directory of Open Access Journals (Sweden)

    Bingbing Dai

    Full Text Available Expression of the tumor suppressor gene TUSC2 is reduced or absent in most lung cancers and is associated with worse overall survival. In this study, we restored TUSC2 gene expression in several wild type EGFR non-small cell lung cancer (NSCLC cell lines resistant to the epidermal growth factor receptor (EGFR tyrosine kinase inhibitor erlotinib and analyzed their sensitivity to erlotinib in vitro and in vivo. A significant inhibition of cell growth and colony formation was observed with TUSC2 transient and stable expression. TUSC2-erlotinib cooperativity in vitro could be reproduced in vivo in subcutaneous tumor growth and lung metastasis formation lung cancer xenograft mouse models. Combination treatment with intravenous TUSC2 nanovesicles and erlotinib synergistically inhibited tumor growth and metastasis, and increased apoptotic activity. High-throughput qRT-PCR array analysis enabling multi-parallel expression profile analysis of eighty six receptor and non-receptor tyrosine kinase genes revealed a significant decrease of FGFR2 expression level, suggesting a potential role of FGFR2 in TUSC2-enhanced sensitivity to erlotinib. Western blots showed inhibition of FGFR2 by TUSC2 transient transfection, and marked increase of PARP, an apoptotic marker, cleavage level after TUSC2-erlotinb combined treatment. Suppression of FGFR2 by AZD4547 or gene knockdown enhanced sensitivity to erlotinib in some but not all tested cell lines. TUSC2 inhibits mTOR activation and the latter cell lines were responsive to the mTOR inhibitor rapamycin combined with erlotinib. These results suggest that TUSC2 restoration in wild type EGFR NSCLC may overcome erlotinib resistance, and identify FGFR2 and mTOR as critical regulators of this activity in varying cellular contexts. The therapeutic activity of TUSC2 could extend the use of erlotinib to lung cancer patients with wildtype EGFR.

  6. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  7. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    Science.gov (United States)

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  8. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest

    International Nuclear Information System (INIS)

    Uchida, Fumihiko; Uzawa, Katsuhiro; Kasamatsu, Atsushi; Takatori, Hiroaki; Sakamoto, Yosuke; Ogawara, Katsunori; Shiiba, Masashi; Tanzawa, Hideki; Bukawa, Hiroki

    2012-01-01

    Cell division cycle associated 3 (CDCA3), part of the Skp1-cullin-F-box (SCF) ubiquitin ligase, refers to a trigger of mitotic entry and mediates destruction of the mitosis inhibitory kinase. Little is known about the relevance of CDCA3 to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of CDCA3 in OSCC. We evaluated CDCA3 mRNA and protein expression in both OSCC-derived cell lines and primary OSCCs and performed functional analyses of CDCA3 in OSCC-derived cells using the shRNA system. The CDCA3 expression at both the mRNA and protein levels was frequently up-regulated in all cell lines examined and primary tumors (mRNA, 51/69, 74 %; protein, 79/95, 83 %) compared to normal controls (p < 0.001). In contrast, no significant level of CDCA3 protein expression was seen in oral premalignant lesions (OPLs) (n = 20) compared with the expression in OSCCs. Among the clinical variables analyzed, the CDCA3 expression status was closely related to tumor size (p < 0.05). In addition, suppression of CDCA3 expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase. Further, there was up-regulation of the cyclin-dependent kinase inhibitors (p21 Cip1 , p27 Kip1 , p15 INK4B , and p16 INK4A ) in the knockdown cells. The current results showed that overexpression of CDCA3 occurs frequently during oral carcinogenesis and this overexpression might be associated closely with progression of OSCCs by preventing the arrest of cell-cycle progression at the G1 phase via decreased expression of the cyclin-dependent kinase inhibitors

  9. Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Spink, Barbara C.; Bennett, James A.; Pentecost, Brian T.; Lostritto, Nicole; Englert, Neal A.; Benn, Geoffrey K.; Goodenough, Angela K.; Turesky, Robert J.; Spink, David C.

    2009-01-01

    The cumulative exposure to estrogens is an important determinant in the risk of breast cancer, yet the full range of mechanisms involving estrogens in the genesis and progression of breast cancer remains a subject of debate. Interactions of estrogens and environmental toxicants have received attention as putative factors contributing to carcinogenesis. Mechanistic studies have demonstrated interactions between estrogen receptor α (ERα) and the aryl hydrocarbon receptor (AhR), with consequences on the genes that they regulate. Many studies of ERα and AhR-mediated effects and crosstalk between them have focused on the initial molecular events. In this study, we investigated ERα- and AhR-mediated effects in long-term estrogen exposed (LTEE) MCF-7 human breast cancer cells, which were obtained by continuous culturing for at least 12 weeks in medium supplemented with 1 nM of 17β-estradiol (E 2 ). With these LTEE cells and with parallel control cells cultured without E 2 supplementation, we performed an extensive study of cytochrome P450 (CYP) induction, carcinogen bioactivation, global gene expression, and tumorigenicity in immunocompromised mice. We found that LTEE cells, in comparison with control cells, had higher levels of AhR mRNA and protein, greater responsiveness for AhR-regulated CYP1A1 and CYP1B1 induction, a 6-fold higher initial level of benzo(a)pyrene-DNA adducts as determined by liquid chromatography tandem mass spectrometry, marked differences in the expression of numerous genes, and a higher rate of E 2 -dependent tumor growth as xenografts. These studies indicate that LTEE causes adaptive responses in MCF-7 cells, which may reflect processes that contribute to the overall carcinogenic effect of E 2 .

  10. Integrity of the LXXLL motif in Stat6 is required for the inhibition of breast cancer cell growth and enhancement of differentiation in the context of progesterone

    International Nuclear Information System (INIS)

    Wei, Min; Zhu, Zhenggang; Zhang, Guofeng; He, Qi; Yang, Zhongyin; Wang, Zhiwei; Zhang, Qing; Liu, Bingya; Gu, Qinlong; Su, Liping; Yu, Yingyan

    2014-01-01

    Progesterone is essential for the proliferation and differentiation of mammary gland epithelium. Studies of breast cancer cells have demonstrated a biphasic progesterone response consisting of an initial proliferative burst followed by sustained growth arrest. However, the transcriptional factors acting with the progesterone receptor (PR) to mediate the effects of progesterone on mammary cell growth and differentiation remain to be determined. Recently, it was demonstrated that signal transducer and activator of transcription 6 (Stat6) is a cell growth suppressor. Similar to progesterone-bound PR, Stat6 acts by inducing the expression of the G1 cyclin-dependent kinase inhibitors p21 and p27. The possible interaction between Stat6 and progesterone pathways in mammary cells was therefore investigated in the present study. ChIP and luciferase were assayed to determine whether Stat6 induces p21 and p27 expression by recruitment at the proximal Sp1-binding sites of the gene promoters. Immunoprecipitation and Western blotting were performed to investigate the interaction between Stat6 and PR-B. The cellular DNA content and cell cycle distribution in breast cancer cells were analyzed by FACS. We found that Stat6 interacts with progesterone-activated PR in T47D cells. Stat6 synergizes with progesterone-bound PR to transactivate the p21 and p27 gene promoters at the proximal Sp1-binding sites. Moreover, Stat6 overexpression and knockdown, respectively, increased or prevented the induction of p21 and p27 gene expression by progesterone. Stat6 knockdown also abolished the inhibitory effects of progesterone on pRB phosphorylation, G1/S cell cycle progression, and cell proliferation. In addition, knockdown of Stat6 expression prevented the induction of breast cell differentiation markers, previously identified as progesterone target genes. Finally, Stat6 gene expression levels increased following progesterone treatment, indicating a positive auto-regulatory loop between PR and

  11. Enhancing cytotoxic and apoptotic effect in OVCAR-3 and MDAH-2774 cells with all-trans retinoic acid and zoledronic acid: a paradigm of synergistic molecular targeting treatment for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kısım Aslı

    2010-07-01

    Full Text Available Abstract Background Ovarian cancer is the most fatal gynecologic malignancies in the world. Although, platinum based treatments are widely used, the disease becomes treatment refractory within two years, and novel treatment options should be searched. All- trans retinoic acid (ATRA induces growth arrest, differentiation and cell death in some types of cancer cells and its combination with various anticancer agents results in enhanced cytotoxicity. Zoledronic acid is a common bisphosphonate known for its anticancer effects beyond its current use in the treatment of cancer-induced bone disease. We aimed to investigate the possible additive/synergistic effect of both agents in OVCAR-3 and MDAH-2774 ovarian cancer cell lines, since both agents show superiority to conventional cytotoxics in terms of adverse events. Methods XTT cell proliferation assay was used for showing cytotoxicity. For verifying apoptosis, both DNA Fragmentation by ELISA assay and caspase 3/7 activity measurement were used. OligoGeArray® which consists of 112 apoptosis related genes was used to elucidate the genetic changes within cancer cells. To validate our oligoarray results, quantitative real-time PCR was performed on four selected genes that were maximally effected by the combination treatment: lymphotoxin beta receptor (LTBR, myeloid cell leukemia-1 (MCL-1, tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A, TNFRSF1A-associated death domain protein (TRADD. Results We demonstrated that a novel combination of ATRA and zoledronic acid is a strong inducer of apoptotic related cell death in both ovarian cancer cells. While the combination therapy significantly induced proapoptotic genes such as tumor necrosis factor receptor superfamily (TNFRSF, TRADD and caspase 4, some of the antiapoptotic genes such as members of MCL-1, LTBR, BAG3 and Bcl-2 family members were inhibited. Conclusions These are the preliminary molecular results of a novel combination treatment of

  12. Suppression of microRNA-629 enhances sensitivity of cervical cancer cells to 1′S-1′-acetoxychavicol acetate via regulating RSU1

    Directory of Open Access Journals (Sweden)

    Phuah NH

    2017-03-01

    Full Text Available Neoh Hun Phuah,1 Mohamad Nurul Azmi,2 Khalijah Awang,2 Noor Hasima Nagoor1,3 1Faculty of Science, Institute of Biological Science (Genetics and Molecular Biology, 2Faculty of Science, Department of Chemistry, Centre for Natural Product Research and Drug Discovery (CENAR, 3Centre for Research in Biotechnology for Agriculture (CEBAR, University of Malaya, Kuala Lumpur, Malaysia Background: Cervical cancer is the fourth most frequent malignancy affecting women worldwide, but drug resistance and toxicities remain a major challenge in chemotherapy. The use of natural compounds is promising because they are less toxic and able to target multiple signaling pathways. The 1'S-1'-acetoxychavicol acetate (ACA, a natural compound isolated from wild ginger Alpinia conchigera, induced cytotoxicity on various cancer cells including cervical cancer. MicroRNAs (miRNAs are short noncoding RNAs that regulate numerous biological processes, such as apoptosis and chemosensitivity. Past studies reported that miR-629 is upregulated in many cancers, and its expression was altered in ACA-treated cervical cancer cells. However, the role of miR-629 in regulating sensitivity toward ACA or other anticancer agents has not been reported. Hence, this study aims to investigate the role of miR-629 in regulating response toward ACA on cervical cancer cells.  Methods: The miR-629 expression following transfection with miR-629 hairpin inhibitor and hairpin inhibitor negative control was measured using quantitative real-time polymerase chain reaction (RT-qPCR. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was used to investigate sensitivity toward ACA. Apoptosis was detected using Annexin V/propidium iodide and Caspase 3/7 assays. The gene target for miR-629 was identified using miRNA target prediction programs, luciferase reporter assay and Western blots. Gene overexpression studies were performed to evaluate its role in regulating response toward ACA

  13. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Clausen, Mathias Porsmose; Bennetzen, Martin

    2009-01-01

    , the compound is now also recognized as a multitargeting drug with diverse potential applications, for example, it has antiproliferative properties and it can reverse resistance toward antibiotics in bacteria. Furthermore, chlorpromazine can reverse multidrug resistance caused by overexpression of P......Tamoxifen resistance is a major clinical problem in the treatment of estrogen receptor a-positive breast tumors. It is, at present, unclear what exactly causes tamoxifen resistance. For decades, chlorpromazine has been used for treating psychotic diseases, such as schizophrenia. However......-sensitive breast cancer cell line, MCF-7, and in a tamoxifen-resistant cell line, established from the MCF-7 cells. Tamoxifen-sensitive and tamoxifen-resistant cells were killed equally well by combined treatment with chlorpromazine and tamoxifen. This synergistic effect could be prevented by addition of estrogen...

  14. Multifaceted Interpretation of Colon Cancer Stem Cells.

    Science.gov (United States)

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-07-05

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but essential to cure the malignant foci completely. Herein, we review the recent evidence for intestinal stem cells and colon cancer stem cells, methods to detect the tumor-initiating cells, and clinical significance of cancer stem cell markers. We also describe the emerging problems of cancer stem cell theory, including bidirectional conversion and intertumoral heterogeneity of stem cell phenotype.

  15. Temozolomide Enhances Triple-Negative Breast Cancer Virotherapy In Vitro

    Directory of Open Access Journals (Sweden)

    Rodolfo Garza-Morales

    2018-05-01

    Full Text Available Triple-negative breast cancer (TNBC is one of the most aggressive types of cancer, and treatment is limited to chemotherapy and radiation. Oncolytic virotherapy may be a promising approach to treat TNBC. However, oncolytic adenovirus (OAd-based mono-therapeutic clinical trials have resulted in modest outcomes. The OAd potency could be increased by chemotherapy-induced autophagy, an intracellular degradation system that delivers cytoplasmic constituents to the lysosome. In this study, the ability of alkylating agent temozolomide (TMZ-induced autophagy to increase OAd replication and oncolysis in TNBC cells was evaluated. Human TNBC MDA-MB-231 and HCC1937 cells and mouse 4T1 cells were infected with an OAd expressing the red fluorescent protein mCherry on the virus capsid (OAdmCherry alone or in combination with TMZ. TNBC cells treated with OAdmCherry/TMZ displayed greater mCherry and adenovirus (Ad early region 1A (E1A expression and enhanced cancer-cell killing compared to OAdmCherry or TMZ alone. The combined therapy-mediated cell death was associated with virus replication and accumulation of the autophagy marker light chain 3 (LC3-II. Overall, this study provides experimental evidence of TMZ’s ability to increase oncolytic virotherapy in both human and murine TNBC cells.

  16. Predicting tumor hypoxia in non-small cell lung cancer by combining CT, FDG PET and dynamic contrast-enhanced CT.

    Science.gov (United States)

    Even, Aniek J G; Reymen, Bart; La Fontaine, Matthew D; Das, Marco; Jochems, Arthur; Mottaghy, Felix M; Belderbos, José S A; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-11-01

    Most solid tumors contain inadequately oxygenated (i.e., hypoxic) regions, which tend to be more aggressive and treatment resistant. Hypoxia PET allows visualization of hypoxia and may enable treatment adaptation. However, hypoxia PET imaging is expensive, time-consuming and not widely available. We aimed to predict hypoxia levels in non-small cell lung cancer (NSCLC) using more easily available imaging modalities: FDG-PET/CT and dynamic contrast-enhanced CT (DCE-CT). For 34 NSCLC patients, included in two clinical trials, hypoxia HX4-PET/CT, planning FDG-PET/CT and DCE-CT scans were acquired before radiotherapy. Scans were non-rigidly registered to the planning CT. Tumor blood flow (BF) and blood volume (BV) were calculated by kinetic analysis of DCE-CT images. Within the gross tumor volume, independent clusters, i.e., supervoxels, were created based on FDG-PET/CT. For each supervoxel, tumor-to-background ratios (TBR) were calculated (median SUV/aorta SUV mean ) for HX4-PET/CT and supervoxel features (median, SD, entropy) for the other modalities. Two random forest models (cross-validated: 10 folds, five repeats) were trained to predict the hypoxia TBR; one based on CT, FDG, BF and BV, and one with only CT and FDG features. Patients were split in a training (trial NCT01024829) and independent test set (trial NCT01210378). For each patient, predicted, and observed hypoxic volumes (HV) (TBR > 1.2) were compared. Fifteen patients (3291 supervoxels) were used for training and 19 patients (1502 supervoxels) for testing. The model with all features (RMSE training: 0.19 ± 0.01, test: 0.27) outperformed the model with only CT and FDG-PET features (RMSE training: 0.20 ± 0.01, test: 0.29). All tumors of the test set were correctly classified as normoxic or hypoxic (HV > 1 cm 3 ) by the best performing model. We created a data-driven methodology to predict hypoxia levels and hypoxia spatial patterns using CT, FDG-PET and DCE-CT features in NSCLC. The

  17. Phytochemicals radiosensitize cancer cells by inhibiting DNA repair

    International Nuclear Information System (INIS)

    Singh, Rana P.

    2017-01-01

    Solid tumors are mostly treated with radiotherapy. Radiotherapy is toxic to normal tissues and also promote the invasiveness and radioresistance in cancer cells. The resistance against radiotherapy and adverse effects to normal cells reduce the overall therapeutic effects of the treatment. Radiosensitizing agents usually show limited success during clinical trials. Therefore, the search and development of new radiosensitizers showing selective response to only cancer cells is desirable. We analyzed the radiosensitizing effects including cell death effect of silibinin, a phytochemical on prostate cancer cells. Silibinin enhanced gamma radiation (2.5-10 Gy) induced inhibition in colony formation selectively in prostate cancer