WorldWideScience

Sample records for enhanced ultrasound visualization

  1. Results of vardenafil mediated power Doppler ultrasound, contrast enhanced ultrasound and systematic random biopsies to detect prostate cancer.

    Science.gov (United States)

    Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea

    2011-06-01

    We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. The role of contrast-enhanced endoscopic ultrasound in pancreatic adenocarcinoma

    DEFF Research Database (Denmark)

    Saftoiu, Adrian; Vilmann, Peter; Bhutani, Manoop S

    2016-01-01

    contrast agents for early detection, tridimensional and fusion techniques for enhanced staging and resectability assessment but also novel applications of perfusion imaging for monitoring ablative therapy, improved local detection through EUS-guided sampling of portal vein flow or enhanced drug delivery......Contrast-enhanced endoscopic ultrasound (CE-EUS) allows characterization, differentiation, and staging of focal pancreatic masses. The method has a high sensitivity and specificity for the diagnosis of pancreatic adenocarcinoma which is visualized as hypo-enhanced as compared to the rest...... of the parenchyma while chronic pancreatitis and neuroendocrine tumors are generally either iso-enhanced or hyper-enhanced. The development of contrast-enhanced low mechanical index harmonic imaging techniques used in real time during endoscopic ultrasound (EUS) allowed perfusion imaging and the quantification...

  3. The role of contrast-enhanced ultrasound in risk assessment of carotid atheroma

    Directory of Open Access Journals (Sweden)

    Silviu Stanciu

    2016-07-01

    Full Text Available Background and objective: Contrast-enhanced ultrasound, used to assess atherosclerotic carotid plaques, improves visualization of vessel wall irregularities and depicts intraplaque neovascularization. This article illustrates the use of contrast-enhanced ultrasound in the risk assessment of carotid atherosclerotic lesions, especially in challenging plaques evaluation. Materials and methods: For 23 patients with difficult duplex ultrasound examination due to carotid tortuosity or calcifications we assessed plaque morphology (contour, echogenicity and stenosis degree using contrast substance (Sonovue, Braco with dedicated vascular low mechanical index CPC software. Conclusion: Contrast-enhanced ultrasound is a new, noninvasive, and safe procedure for imaging carotid atherosclerotic lesions. It is a valuable tool for evaluating the vulnerable plaque at risk for rupture and for the diagnostic of the development and severity of systemic atherosclerotic disease

  4. Ceramic membrane ultrafiltration of natural surface water with ultrasound enhanced backwashing.

    Science.gov (United States)

    Boley, A; Narasimhan, K; Kieninger, M; Müller, W-R

    2010-01-01

    Ultrafiltration membrane cleaning with ultrasound enhanced backwashing was investigated with two ceramic membrane systems in parallel. One of them was subjected to ultrasound during backwashing, the other acted as a reference system. The feed water was directly taken from a creek with a sedimentation process as only pre-treatment. The cleaning performance was improved with ultrasound but after 3 weeks of operation damages occurred on the membranes. These effects were studied with online measurements of flux, trans-membrane-pressure and temperature, but also with integrity tests, turbidity measurements and visual examination.

  5. Contrast enhanced ultrasound of sentinel lymph nodes

    Directory of Open Access Journals (Sweden)

    XinWu Cui

    2013-03-01

    Full Text Available Sentinel lymph nodes are the first lymph nodes in the region that receive lymphatic drainage from a primary tumor. The detection or exclusion of sentinel lymph node micrometastases is critical in the staging of cancer, especially breast cancer and melanoma because it directly affects patient’s prognosis and surgical management. Currently, intraoperative sentinel lymph node biopsies using blue dye and radioisotopes are the method of choice for the detection of sentinel lymph node with high identification rate. In contrast, conventional ultrasound is not capable of detecting sentinel lymph nodes in most cases. Contrast enhanced ultrasound with contrast specific imaging modes has been used for the evaluation and diagnostic work-up of peripherally located suspected lymphadenopathy. The method allows for real-time analysis of all vascular phases and the visualization of intranodal focal “avascular” areas that represent necrosis or deposits of neoplastic cells. In recent years, a number of animal and human studies showed that contrast enhanced ultrasound can be also used for the detection of sentinel lymph node, and may become a potential application in clinical routine. Several contrast agents have been used in those studies, including albumin solution, hydroxyethylated starch, SonoVue®, Sonazoid® and Definity®. This review summarizes the current knowledge about the use of ultrasound techniques in detection and evaluation of sentinel lymph node.

  6. Contrast-enhanced harmonic endoscopic ultrasound

    DEFF Research Database (Denmark)

    Săftoiu, A; Dietrich, C F; Vilmann, P

    2012-01-01

    Second-generation intravenous blood-pool ultrasound contrast agents are increasingly used in endoscopic ultrasound (EUS) for characterization of microvascularization, differential diagnosis of benign and malignant focal lesions, and improving staging and guidance of therapeutic procedures. Although...... initially used as Doppler signal enhancers, second-generation microbubble contrast agents are now used with specific contrast harmonic imaging techniques, which benefit from the highly nonlinear behavior of the microbubbles. Contrast-specific modes based on multi-pulse technology are used to perform...... contrast-enhanced harmonic EUS based on a very low mechanical index (0.08 - 0.12). Quantification techniques based on dynamic contrast-enhanced ultrasound have been recommended for perfusion imaging and monitoring of anti-angiogenic treatment, mainly based on time-intensity curve analysis. Most...

  7. Hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound in the treatment of a rabbit liver trauma model

    Science.gov (United States)

    Zhao, Da-wei; Tian, Meng; Yang, Jian-zheng; Du, Peng; Bi, Jie; Zhu, Xinjian

    2016-01-01

    The aim of our study was to investigate the hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound treatment of liver trauma. Thirty rabbits with liver trauma were randomly divided into three groups—the microbubble-enhanced ultrasound (MEUS; further subdivided based on exposure intensity into MEUS1 [0.11 W/cm2], MEUS2 [0.55 W/cm2], and MEUS3 [1.1 W/cm2]), ultrasound without microbubbles (US), and microbubbles without ultrasound (MB) groups. The pre- and post-treatment bleeding weight and visual bleeding scores were evaluated. The serum liver enzyme concentrations as well as the blood perfusion level represented by mean peak contrast intensity (PI) ratio in the treatment area were analyzed. The hemostatic mechanism was evaluated by histological and transmission electron microscopic examination of liver tissue samples. The MEUS subgroups 1–3 (grade 0–1, grade 0–2, and grade 1–2, respectively) exhibited significantly lower post-treatment visual bleeding scores than the US and MB groups (both, grade 3–4; all, P hepatic cells became edematous and compressed the hepatic sinus and associated blood vessels. However, the serum liver enzyme levels were not significantly altered. Microbubble-enhanced non-focused ultrasound does not significantly affect blood perfusion and liver function and can be used to induce rapid hemostasis in case of liver trauma. PMID:27633577

  8. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Contrast enhanced ultrasound in liver imaging

    International Nuclear Information System (INIS)

    Nielsen, Michael Bachmann; Bang, Nanna

    2004-01-01

    Ultrasound contrast agents were originally introduced to enhance the Doppler signals when detecting vessels with low velocity flow or when imaging conditions were sub-optimal. Contrast agents showed additional properties, it was discovered that a parenchymal enhancement phase in the liver followed the enhancement of the blood pool. Contrast agents have made ultrasound scanning more accurate in detection and characterization of focal hepatic lesions and the sensitivity is now comparable with CT and MRI scanning. Further, analysis of the transit time of contrast agent through the liver seems to give information on possible hepatic involvement, not only from focal lesions but also from diffuse benign parenchymal disease. The first ultrasound contrast agents were easily destroyed by the energy from the sound waves but newer agents have proved to last for longer time and hereby enable real-time scanning and make contrast enhancement suitable for interventional procedures such as biopsies and tissue ablation. Also, in monitoring the effect of tumour treatment contrast agents have been useful. A brief overview is given on some possible applications and on different techniques using ultrasound contrast agents in liver imaging. At present, the use of an ultrasound contrast agent that allows real-time scanning with low mechanical index is to be preferred

  10. Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging.

    Science.gov (United States)

    Bandaru, Raja Sekhar; Sornes, Anders Rasmus; Hermans, Jeroen; Samset, Eigil; D'hooge, Jan

    2016-12-01

    Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.

  11. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh

    International Nuclear Information System (INIS)

    Sokka, S D; King, R; Hynynen, K

    2003-01-01

    In this study, we propose a focused ultrasound surgery protocol that induces and then uses gas bubbles at the focus to enhance the ultrasound absorption and ultimately create larger lesions in vivo. MRI and ultrasound visualization and monitoring methods for this heating method are also investigated. Larger lesions created with a carefully monitored single ultrasound exposure could greatly improve the speed of tumour coagulation with focused ultrasound. All experiments were performed under MRI (clinical, 1.5 T) guidance with one of two eight-sector, spherically curved piezoelectric transducers. The transducer, either a 1.1 or 1.7 MHz array, was driven by a multi-channel RF driving system. The transducer was mounted in an MRI-compatible manual positioning system and the rabbit was situated on top of the system. An ultrasound detector ring was fixed with the therapy transducer to monitor gas bubble activity during treatment. Focused ultrasound surgery exposures were delivered to the thighs of seven New Zealand white rabbits. The experimental, gas-bubble-enhanced heating exposures consisted of a high amplitude 300 acoustic watt, half second pulse followed by a 7 W, 14 W or 21 W continuous wave exposure for 19.5 s. The respective control sonications were 20 s exposures of 14 W, 21 W and 28 W. During the exposures, MR thermometry was obtained from the temperature dependency of the proton resonance frequency shift. MR T2-enhanced imaging was used to evaluate the resulting lesions. Specific metrics were used to evaluate the differences between the gas-bubble-enhanced exposures and their respective control sonications: temperatures with respect to time and space, lesion size and shape, and their agreement with thermal dose predictions. The bubble-enhanced exposures showed a faster temperature rise within the first 4 s and higher overall temperatures than the sonications without bubble formation. The spatial temperature maps and the thermal dose maps derived from the MRI

  12. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder.

    Science.gov (United States)

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-11-01

    were 0.717, 0.794 and 0.914. Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder

    International Nuclear Information System (INIS)

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-01-01

    for inter-reader agreements were 0.717, 0.794 and 0.914. Conclusion: Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively.

  14. Bas-relief map using texture analysis with application to live enhancement of ultrasound images.

    Science.gov (United States)

    Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-05-01

    For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Feasibility of contrast-enhanced ultrasound-guided biopsy of sentinel lymph nodes in dogs.

    Science.gov (United States)

    Gelb, Hylton R; Freeman, Lynetta J; Rohleder, Jacob J; Snyder, Paul W

    2010-01-01

    Our goal was to develop and validate a technique to identify the sentinel lymph nodes of the mammary glands of healthy dogs with contrast-enhanced ultrasound, and evaluate the feasibility of obtaining representative samples of a sentinel lymph node under ultrasound guidance using a new biopsy device. Three healthy intact female adult hounds were anesthetized and each received an injection of octafluoropropane-filled lipid microspheres and a separate subcutaneous injection of methylene blue dye around a mammary gland. Ultrasound was then used to follow the contrast agent through the lymphatic channel to the sentinel lymph node. Lymph node biopsy was performed under ultrasound guidance, followed by an excisional biopsy of the lymph nodes and a regional mastectomy procedure. Excised tissues were submitted for histopathologic examination and evaluated as to whether they were representative of the node. The ultrasound contrast agent was easily visualized with ultrasound leading up to the sentinel lymph nodes. Eight normal lymph nodes (two inguinal, one axillary in two dogs; two inguinal in one dog) were identified and biopsied. Lymphoid tissue was obtained from all biopsy specimens. Samples from four of eight lymph nodes contained both cortical and medullary lymphoid tissue. Contrast-enhanced ultrasound can be successfully used to image and guide minimally invasive biopsy of the normal sentinel lymph nodes draining the mammary glands in healthy dogs. Further work is needed to evaluate whether this technique may be applicable in patients with breast cancer or other conditions warranting evaluation of sentinel lymph nodes in animals.

  16. Contrast-enhanced ultrasound of the kidneys

    NARCIS (Netherlands)

    Beemster, P.; Pes, P.L.; Wijkstra, H.

    2009-01-01

    Several imaging techniques can be used for visualization of the kidneys dependent on the indication. Ultrasound (US), computerized tomography (CT), and magnetic resonance imaging (MRI) are most commonly used. US is a safe, relatively inexpensive, noninvasive, and widely available imaging method. It

  17. Contrast-enhanced ultrasound-guided radiofrequency ablation in inconspicuous hepatocellular carcinoma on B-mode ultrasound.

    Science.gov (United States)

    Kim, Eui Joo; Kim, Yun Soo; Shin, Seung Kak; Kwon, Oh Sang; Choi, Duck Joo; Kim, Ju Hyun

    2017-11-01

    B-mode ultrasound (US) has difficulty targeting small hepatocellular carcinomas (HCCs) with poor conspicuity during radiofrequency ablation (RFA). Contrast-enhanced ultrasound (CEUS) can improve visualization of small or inconspicuous HCCs. This study was conducted to evaluate the effectiveness of CEUS-guided RFA electrode insertion during the arterial phase in inconspicuous HCCs. Ninety-three treatment-naïve HCCs from 80 patients treated with RFA from August 2012 to December 2014 were retrospectively reviewed. Seventy-five HCCs from 65 patients underwent B-mode US-guided RFA, and 15 HCCs from 14 patients that were inconspicuous on B-mode US underwent CEUS-guided RFA during the arterial phase after injection of sulfur hexafluoride microbubbles (SonoVue®). Technical success was assessed by contrast-enhanced computed tomography within 1 week and 3 months after the procedure. The mean size of HCCs treated with CEUS-guided RFA was smaller than that of HCCs treated with B-mode US-guided RFA (1.17±0.36 vs. 1.63±0.55 cm, p=0.003). Technical success rates of CEUS-guided RFA within 1 week and 3 months were 100% (15/15) and 93.3% (14/15), respectively. Technical success rates of B-mode US-guided RFA were 97.3% (73/75) and 94.5% (69/73), respectively. CEUS-guided RFA is highly efficacious for ablation of very small and inconspicuous HCCs.

  18. Contrast-Enhanced Ultrasound in Vascular Surgery

    DEFF Research Database (Denmark)

    Bredahl, Kim; Mestre, Xavier Marti; Coll, Ramon Vila

    2017-01-01

    modalities. Ultrasound has only challenged these methods in assessment of carotid disease, aortic aneurysms, venous insufficiency, and thromboembolism and in surveillance of in situ bypasses. These practice patterns may change with the introduction of second-generation ultrasound contrast agents which...... are easy to use, manageable, and safe. This topical review attempts to summarize and highlight the current evidence and future prospects for contrast-enhanced ultrasound in vascular surgery, with a particular focus on opportunities in carotid and lower limb arteriosclerotic disease and surveillance after...

  19. Applicability of contrast-enhanced ultrasound in the diagnosis of plantar fasciitis.

    Science.gov (United States)

    Broholm, R; Pingel, J; Simonsen, L; Bülow, J; Johannsen, F

    2017-12-01

    Contrast-enhanced ultrasound (CEUS) is used to visualize the microvascularization in various tissues. The purpose of this study was to investigate whether CEUS could be used to visualize the microvascular volume (MV) in the plantar fascia, and to compare the method to clinical symptoms and B-mode ultrasound (US) in patients with plantar fasciitis (PF). Twenty patients with unilateral PF were included and were divided by US in insertional thickening (10), midsubstance thickening (5), and no US changes (5). The MV was measured simultaneously in both heels. Four areas in the plantar fascia and plantar fat pad were measured independently by two observers. Inter- and intra-observer correlation analyses were performed. The asymptomatic heels showed a constantly low MV, and for the whole group of patients, a significantly higher MV was found in the symptomatic plantar fascia and plantar fat pad. Inter-observer correlation as well as intra-observer agreement was excellent. The MV in the plantar fascia and plantar fat pad can be measured reliably using CEUS, suggesting that it is a reproducible method to examine patients with plantar fasciitis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A contrast-enhanced ultrasound study of benign and malignant ...

    African Journals Online (AJOL)

    A contrast-enhanced ultrasound study of benign and malignant breast tissue. S Barnard, E Leen, T Cooke, W Angerson. Abstract. Objective. To determine the diagnostic value of haemodynamic contrast-enhanced ultrasound assessment in benign and malignant breast tissue, using histological examination as the reference ...

  1. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    Science.gov (United States)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  2. Five-dimensional ultrasound system for soft tissue visualization.

    Science.gov (United States)

    Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M

    2015-12-01

    A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.

  3. Data on consistency among different methods to assess atherosclerotic plaque echogenicity on standard ultrasound and intraplaque neovascularization on contrast-enhanced ultrasound imaging in human carotid artery

    Directory of Open Access Journals (Sweden)

    Mattia Cattaneo

    2016-12-01

    Full Text Available Here we provide the correlation among different carotid ultrasound (US variables to assess echogenicity n standard carotid US and to assess intraplaque neovascularization on contrast enhanced US. We recruited 45 consecutive subjects with an asymptomatic≥50% carotid artery stenosis. Carotid plaque echogenicity at standard US was visually graded according to Gray–Weale classification (GW and measured by the greyscale median (GSM, a semi-automated computerized measurement performed by Adobe Photoshop®. On CEUS imaging IPNV was graded according to the visual appearance of contrast within the plaque according to three different methods: CEUS_A (1=absent; 2=present; CEUS_B a three-point scale (increasing IPNV from 1 to 3; CEUS_C a four-point scale (increasing IPNV from 0 to 3. We have also implemented a new simple quantification method derived from region of interest (ROI signal intensity ratio as assessed by QLAB software. Further information is available in “Contrast-enhanced ultrasound imaging of intraplaque neovascularization and its correlation to plaque echogenicity in human carotid arteries atherosclerosis (M. Cattaneo, D. Staub, A.P. Porretta, J.M. Gallino, P. Santini, C. Limoni et al., 2016 [1].

  4. Resolution enhancement in medical ultrasound imaging.

    Science.gov (United States)

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  5. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.

    Science.gov (United States)

    Azizi, Shekoofeh; Van Woudenberg, Nathan; Sojoudi, Samira; Li, Ming; Xu, Sheng; Abu Anas, Emran M; Yan, Pingkun; Tahmasebi, Amir; Kwak, Jin Tae; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Wood, Bradford; Mousavi, Parvin; Abolmaesumi, Purang

    2018-03-27

    We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation. In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client-server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution. The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85. Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.

  6. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound.

    Science.gov (United States)

    Seo, Joonho; Koizumi, Norihiro; Mitsuishi, Mamoru; Sugita, Naohiko

    2017-12-01

    Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory-induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three-axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. In the experiments, respiratory-induced organ motion was simulated in a water tank with a linear actuator and kidney-shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU-ablated lesion in the desired position of the respiratory-moving phantom model. We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment. © 2016 The Authors The International Journal of Medical Robotics and Computer Assisted Surgery Published by John Wiley & Sons Ltd.

  7. Microwave ablation of liver metastases guided by contrast-enhanced ultrasound

    DEFF Research Database (Denmark)

    Lorentzen, T; Skjoldbye, B O; Nolsoe, C P

    2011-01-01

    The aim of our study was to evaluate the efficacy of microwave (MW) ablation of liver metastases guided by B-mode ultrasound (US) and contrast-enhanced US (CEUS).......The aim of our study was to evaluate the efficacy of microwave (MW) ablation of liver metastases guided by B-mode ultrasound (US) and contrast-enhanced US (CEUS)....

  8. The 'humble' bubble: Contrast-enhanced ultrasound

    International Nuclear Information System (INIS)

    Marshall, Gill; Sykes, Anne; Berry, Jonathan; Jonker, Leon

    2011-01-01

    The use of contrast-enhanced ultrasound (CEUS) is increasing within the field of medical imaging. Ultrasonic contrast agent (UCA) contain gas microbubbles similar in size to red corpuscles which provide highly reflective interfaces, enabling dynamic demonstration of echogenic streams of the contrast within the anatomical area of interest on real-time grey scale ultrasound. Longevity of the microbubbles has been improved by changing their composition. The application of CEUS in the UK continues to grow, bringing it into territories historically occupied by computerised tomography (CT) scanning and magnetic resonance imaging (MRI). Hence, the role of CEUS may be of interest to all diagnostic imaging practitioners. Here we summarise the mode of action and use of CEUS, and its role within a range of applications. The potential risks of CEUS are compared to other contrast-enhanced imaging techniques. The benefits of CEUS and its implications for diagnostic imaging practice are also covered.

  9. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  10. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  11. Model-based ultrasound temperature visualization during and following HIFU exposure.

    Science.gov (United States)

    Ye, Guoliang; Smith, Penny Probert; Noble, J Alison

    2010-02-01

    This paper describes the application of signal processing techniques to improve the robustness of ultrasound feedback for displaying changes in temperature distribution in treatment using high-intensity focused ultrasound (HIFU), especially at the low signal-to-noise ratios that might be expected in in vivo abdominal treatment. Temperature estimation is based on the local displacements in ultrasound images taken during HIFU treatment, and a method to improve robustness to outliers is introduced. The main contribution of the paper is in the application of a Kalman filter, a statistical signal processing technique, which uses a simple analytical temperature model of heat dispersion to improve the temperature estimation from the ultrasound measurements during and after HIFU exposure. To reduce the sensitivity of the method to previous assumptions on the material homogeneity and signal-to-noise ratio, an adaptive form is introduced. The method is illustrated using data from HIFU exposure of ex vivo bovine liver. A particular advantage of the stability it introduces is that the temperature can be visualized not only in the intervals between HIFU exposure but also, for some configurations, during the exposure itself. 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Quantitative ultrasound characterization of tumor cell death: ultrasound-stimulated microbubbles for radiation enhancement.

    Directory of Open Access Journals (Sweden)

    Hyunjung Christina Kim

    Full Text Available The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy. In parallel, in situ end-labelling (ISEL staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.

  13. Robotic 4D ultrasound solution for real-time visualization and teleoperation

    Directory of Open Access Journals (Sweden)

    Al-Badri Mohammed

    2017-09-01

    Full Text Available Automation of the image acquisition process via robotic solutions offer a large leap towards resolving ultrasound’s user-dependency. This paper, as part of a larger project aimed to develop a multipurpose 4d-ultrasonic force-sensitive robot for medical applications, focuses on achieving real-time remote visualisation for 4d ultrasound image transfer. This was possible through implementing our software modification on a GE Vivid 7 Dimension workstation, which operates a matrix array probe controlled by a KUKA LBR iiwa 7 7-DOF robotic arm. With the help of robotic positioning and the matrix array probe, fast volumetric imaging of target regions was feasible. By testing ultrasound volumes, which were roughly 880 kB in size, while using gigabit Ethernet connection, a latency of ∼57 ms was achievable for volume transfer between the ultrasound station and a remote client application, which as a result allows a frame count of 17.4 fps. Our modification thus offers for the first time real-time remote visualization, recording and control of 4d ultrasound data, which can be implemented in teleoperation.

  14. Contrast-enhanced ultrasound for extrahepatic lesions: preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Thorelius, Lars E-mail: lars@thorelius.com

    2004-06-01

    Ultrasound imaging (US) is a convenient, inexpensive and non-invasive investigation. Its use is limited by low sensitivity in the detection of a number of parenchymal lesions, especially those produced by trauma, such as infarctions. Contrast enhancement with SonoVue{sup [reg]} improves the sensitivity of ultrasound in the detection and characterization of focal liver lesions to such an extent, that it may replace computed tomography (CT) and magnetic resonance imaging (MRI). Preliminary experience suggests that SonoVue-enhanced sonography may be useful in the detection of lesions in which blood flow is severely reduced as compared to surrounding parenchyma, such as infarctions, lacerations, hematomas, necrotic tissue and non-vascular cysts, especially in the spleen, kidney and pancreas. This technique can also rule out occlusion of the superior mesenteric, splenic and portal veins, and dilation of the biliary tree. Clinical trials comparing contrast-enhanced sonography with contrast-enhanced computed tomography are warranted to establish the role of this inexpensive and non-invasive technique in the routine work-up of patients with abdominal trauma or presenting with sudden flank pain.

  15. Impact of Focused Ultrasound-enhanced Drug Delivery on Survival in Rats with Glioma

    Science.gov (United States)

    Treat, Lisa Hsu; Zhang, Yongzhi; McDannold, Nathan; Hynynen, Kullervo

    2009-04-01

    Malignancies of the brain remain difficult to treat with chemotherapy because the selective permeability of the blood-brain barrier (BBB) blocks many potent agents from reaching their target. Previous studies have illustrated the feasibility of drug and antibody delivery across the BBB using MRI-guided focused ultrasound. In this study, we investigated the impact of focused ultrasound-enhanced delivery of doxorubicin on survival in rats with aggressive glioma. Sprague-Dawley rats were implanted with 9 L gliosarcoma cells in the brain. Eight days after implantation, each rat received one of the following: (1) no treatment (control), (2) a single treatment with microbubble-enhanced MRI-guided focused ultrasound (FUS only), (3) a single treatment with i.v. liposomal doxorubicin (DOX only), or (4) a single treatment with microbubble-enhanced MRI-guided focused ultrasound and concurrent i.v. injections of liposomal doxorubicin (FUS+DOX). The survival time from implantation to death or euthanasia was recorded. We observed a modest but significant increase in median survival time in rats treated with combined MRI-guided focused ultrasound chemotherapy, compared to chemotherapy alone (p0.10). Our study demonstrates for the first time a therapeutic benefit achieved with ultrasound-enhanced drug delivery across the blood-brain barrier. This confirmation of efficacy in an in vivo tumor model indicates that targeted drug delivery using MRI-guided focused ultrasound has the potential to have a major impact on the treatment of patients with brain tumors and other neurological disorders.

  16. Radiofrequency ablation guided by contrast-enhanced ultrasound for hepatic malignancies: Preliminary results

    International Nuclear Information System (INIS)

    Dong, Y.; Wang, W.-P.; Gan, Y.-H.; Huang, B.-J.; Ding, H.

    2014-01-01

    Aim: To evaluate whether contrast-enhanced ultrasound (CEUS)-guided radiofrequency ablation (RFA) can be performed effectively in small hepatic malignancies that are invisible or poorly visualized at traditional grey-scale ultrasonography (US). Materials and methods: The institutional ethics committee approved the study, and all patients provided written informed consent before their enrolment. The study focused on 55 patients (43 men, 12 women, age 57.4 ± 10.9 years) with 60 hepatic lesions from May 2010 to March 2011. All lesions were treated with multipolar radiofrequency ablation (RFA). During the RFA procedure, with the injection of ultrasound contrast agent (sulphur hexafluoride; SonoVue, Bracco Imaging Spa, Milan, Italy), RFA was conducted under CEUS guidance when the optimal depiction of a lesion was obtained. Artificial pleural effusions were used in those cases obstructed by the lungs. Twenty-four hours after RFA, contrast-enhanced MRI was used as the reference standard to evaluate the primary effectiveness rate and complete tumour necrosis. The follow-up time was 12–24 months (median 15 months). Results: Among 60 hepatic malignancies, CEUS detected 57 lesions (95%), which was higher than that at US (26.6%). Artificial pleural effusions were performed in three cases, resulting in the detection of three additional lesions. The insertion of RFA electrodes was monitored by CEUS in all lesions. Immediately after RFA, complete tumour necrosis were achieved in all 60 lesions as apparent at MRI, for a primary effectiveness rate of 100%. Conclusion: CEUS-guided RFA is a promising technique for targeting and improving the efficiency of treatment of hepatic malignancies. - Highlights: • CEUS guided RFA improved the detectability of hepatic malignancies indistinctive on gray-scale ultrasound. • Pre-operation CEUS helped localization of indistinctive hepatic malignancies. • CEUS guided RFA of hepatic malignancies achieved a more complete ablation

  17. Usefulness of contrast-enhanced transabdominal ultrasound for tumor classification and tumor staging in the pancreatic head

    DEFF Research Database (Denmark)

    Grossjohann, Hanne Sønder; Rappeport, Eli David; Jensen, Claus Verner

    2010-01-01

    To evaluate contrast-enhanced ultrasound (CEUS) and compare it to ultrasound (US) and 64-slice-CT (64-CT) for diagnosing, staging and evaluation of resectability of pancreatic cancer.......To evaluate contrast-enhanced ultrasound (CEUS) and compare it to ultrasound (US) and 64-slice-CT (64-CT) for diagnosing, staging and evaluation of resectability of pancreatic cancer....

  18. Evaluation of the thrombus of abdominal aortic aneurysms using contrast enhanced ultrasound - preliminary results

    Science.gov (United States)

    Łukasiewicz, Adam; Garkowski, Adam; Rutka, Katarzyna; Janica, Jacek; Łebkowska, Urszula

    2016-09-01

    It is hypothesized that the degree of vascularization of the thrombus may have a significant impact on the rupture of aortic aneurysms. The presence of neovascularization of the vessel wall and mural thrombus has been confirmed only in histopathological studies. However, no non-invasive imaging technique of qualitative assessment of thrombus and neovascularization has been implemented so far. Contrast-enhanced ultrasound (CEUS) has been proposed as a feasible and minimally invasive technique for in vivo visualization of neovascularization in the evaluation of tumors and atherosclerotic plaques. The aim of this study was the evaluation of mural thrombus and AAAs wall with CEUS. CEUS was performed in a group of seventeen patients with AAAs. The mural thrombus enhancement was recognized in 12 cases, yet no significant correlation between the degree of contrast enhancement and AAAs diameter, thrombus width, and thrombus echogenicity was found. We observed a rise in AAAs thrombus heterogeneity with the increase in the aneurysm diameter (r = 0.62, p = 0.017). In conclusion CEUS can visualize small channels within AAAs thrombus, which could be a result of an ongoing angiogenesis. There is a need for further research to find out whether the degree of vascularization of the thrombus may have a significant impact on the rupture of aneurysms.

  19. THE EXPERIENCE OF USING ULTRASOUND WITH CONTRAST ENHANCEMENT IN THE DIAGNOSIS OF CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    M. A. Chekalova

    2017-01-01

    Full Text Available The purpose of the study was to evaluate the value of contrast-enhanced ultrasound in detecting local spread, regional and distant metastases from cervical cancer. Materials and methods. The findings of contrast-enhanced ultrasound examination of 4 cervical cancer patients (IB1–IVB treated at N.N. Blokhin Russian Cancer Research Center from September to October 2016 were evaluated. The HI VISION Ascendus device was used. Ultrasound patterns in different phases of contrast-enhanced accumulation and excretion were analyzed. Results. Our first experience in using contrast-enhanced ultrasound in the detection of local spread, regional and distant metastases from cervical cancer allowed us to study the structure of the tumor and its spread in greater detail. Conclusion. A small number of observations do not yet allow us to draw serious conclusions about the capabilities of this modern technology. 

  20. Enhancement or Reduction of Sonochemical Activity of Pulsed Ultrasound Compared to Continuous Ultrasound at 20 kHz?

    Directory of Open Access Journals (Sweden)

    Yujing Sun

    2013-04-01

    Full Text Available Little is known about the efficacy of pulsed ultrasound compared with continuous ultrasound. Previous studies on the efficacy of pulsed ultrasound were not systematic and gave different results. In this study, the effects of pulse length, pulse interval, pulse length × pulse intervals, and treatment time on sonochemical activity were investigated using a simple oxidation of iodide method and a comparison of the efficacy of pulsed ultrasound and continuous ultrasound is made. The results showed that the main factor in the efficacy of pulsed ultrasound was pulse length when pulse length varied from 0.1 to 1 s. However, the main factors were pulse length, the pulse length × pulse interval, and pulse interval when pulse length varied from 1 to 9 s. Pulsed ultrasound had no effect when the pulse length was 0.1 s; however, the sonochemical activity of pulsed ultrasound decreased compared to continuous ultrasound as the pulse length varied from 0.1 to 1 s. The sonochemical activity of pulsed ultrasound either increased or decreased compared to continuous ultrasound when pulse length varied from 1 to 9 s, but the increase or decrease had no clear trend. The sonochemical activity was constant at Ton/Toff = 2 s/2 s and slightly decreased at Ton/Toff = 3 s/2 s with time, whereas the sonochemical activity of continuous ultrasound significantly decreased with time. Enhancement or reduction of sonochemical activity of pulsed ultrasound compared to continuous ultrasound depended on the pulse length and pulse interval.

  1. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    Science.gov (United States)

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  2. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    Science.gov (United States)

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  3. Enhancement pattern of hilar cholangiocarcinoma: Contrast-enhanced ultrasound versus contrast-enhanced computed tomography

    International Nuclear Information System (INIS)

    Xu Huixiong; Chen Lida; Xie Xiaoyan; Xie Xiaohua; Xu Zuofeng; Liu Guangjian; Lin Manxia; Wang Zhu; Lu Mingde

    2010-01-01

    Objective: To compare the enhancement pattern of hilar cholangiocarcinoma on contrast-enhanced ultrasound (CEUS) with that on contrast-enhanced computed tomography (CECT). Methods: Thirty-two consecutive patients with pathologically proven hilar cholangiocarcinomas were evaluated by both low mechanical index CEUS and CECT. The enhancement feature of the tumor, portal vein infiltration, and lesion conspicuity on them was investigated. Results: In the arterial phase, the numbers of the lesions showing hyperenhancement, isoenhancement, and hypoenhancement, were 14 (43.8%), 14 (43.8%), and 4 (12.6%), on CEUS, and 12 (37.5%), 9 (28.1%), and 11 (34.4%), on CECT (P = 0.162). In portal phase, the numbers of the lesions showing hypoenhancement, isoenhancement, and hyperenhancement were 30 (93.8%), 1 (3.1%), and 1 (3.1%), on CEUS, and 23 (71.9%), 8 (25.0%), and 1 (3.1%), on CECT (P = 0.046). The detection rates for portal vein infiltration were 84.2% (16/19) for baseline ultrasound, 89.5% (17/19) for CEUS, and 78.9% (15/19) for CECT (all P > 0.05 between every two groups). CEUS significantly improved the lesion conspicuity in comparison with CECT. CEUS and CECT made correct diagnoses in 30 (93.8%) and 25 (78.1%) lesions prior to pathological examination (P = 0.125). Conclusion: The enhancement pattern of hilar cholangiocarcinoma on CEUS was similar with that on CECT in arterial phase, whereas in portal phase hilar cholangiocarcinoma shows hypoenhancement more likely on CEUS. CEUS and CECT lead to similar results in evaluating portal vein infiltration and diagnosis of this entity.

  4. Enhancement pattern of hilar cholangiocarcinoma: Contrast-enhanced ultrasound versus contrast-enhanced computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huixiong, E-mail: xuhuixiong@hotmail.co [Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou 510080 (China); Chen Lida; Xie Xiaoyan; Xie Xiaohua; Xu Zuofeng; Liu Guangjian; Lin Manxia; Wang Zhu [Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou 510080 (China); Lu Mingde, E-mail: lumd@21cn.co [Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou 510080 (China)

    2010-08-15

    Objective: To compare the enhancement pattern of hilar cholangiocarcinoma on contrast-enhanced ultrasound (CEUS) with that on contrast-enhanced computed tomography (CECT). Methods: Thirty-two consecutive patients with pathologically proven hilar cholangiocarcinomas were evaluated by both low mechanical index CEUS and CECT. The enhancement feature of the tumor, portal vein infiltration, and lesion conspicuity on them was investigated. Results: In the arterial phase, the numbers of the lesions showing hyperenhancement, isoenhancement, and hypoenhancement, were 14 (43.8%), 14 (43.8%), and 4 (12.6%), on CEUS, and 12 (37.5%), 9 (28.1%), and 11 (34.4%), on CECT (P = 0.162). In portal phase, the numbers of the lesions showing hypoenhancement, isoenhancement, and hyperenhancement were 30 (93.8%), 1 (3.1%), and 1 (3.1%), on CEUS, and 23 (71.9%), 8 (25.0%), and 1 (3.1%), on CECT (P = 0.046). The detection rates for portal vein infiltration were 84.2% (16/19) for baseline ultrasound, 89.5% (17/19) for CEUS, and 78.9% (15/19) for CECT (all P > 0.05 between every two groups). CEUS significantly improved the lesion conspicuity in comparison with CECT. CEUS and CECT made correct diagnoses in 30 (93.8%) and 25 (78.1%) lesions prior to pathological examination (P = 0.125). Conclusion: The enhancement pattern of hilar cholangiocarcinoma on CEUS was similar with that on CECT in arterial phase, whereas in portal phase hilar cholangiocarcinoma shows hypoenhancement more likely on CEUS. CEUS and CECT lead to similar results in evaluating portal vein infiltration and diagnosis of this entity.

  5. Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound.

    Science.gov (United States)

    Bazan-Peregrino, Miriam; Rifai, Bassel; Carlisle, Robert C; Choi, James; Arvanitis, Costas D; Seymour, Leonard W; Coussios, Constantin C

    2013-07-10

    Oncolytic viruses (OV) and ultrasound-enhanced drug delivery are powerful novel technologies. OV selectively self-amplify and kill cancer cells but their clinical use has been restricted by limited delivery from the bloodstream into the tumor. Ultrasound has been previously exploited for targeted release of OV in vivo, but its use to induce cavitation, microbubble oscillations, for enhanced OV tumor extravasation and delivery has not been previously reported. By identifying and optimizing the underlying physical mechanism, this work demonstrates that focused ultrasound significantly enhances the delivery and biodistribution of systemically administered OV co-injected with microbubbles. Up to a fiftyfold increase in tumor transgene expression was achieved, without any observable tissue damage. Ultrasound exposure parameters were optimized as a function of tumor reperfusion time to sustain inertial cavitation, a type of microbubble activity, throughout the exposure. Passive detection of acoustic emissions during treatment confirmed inertial cavitation as the mechanism responsible for enhanced delivery and enabled real-time monitoring of successful viral delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Enhancement of bone shadow region using local phase-based ultrasound transmission maps.

    Science.gov (United States)

    Hacihaliloglu, Ilker

    2017-06-01

    Ultrasound is increasingly being employed in different orthopedic procedures as an imaging modality for real-time guidance. Nevertheless, low signal-to-noise-ratio and different imaging artifacts continue to hamper the success of ultrasound-based procedures. Bone shadow region is an important feature indicating the presence of bone/tissue interface in the acquired ultrasound data. Enhancement and automatic detection of this region could improve the sensitivity of ultrasound for imaging bone and result in improved guidance for various orthopedic procedures. In this work, a method is introduced for the enhancement of bone shadow regions from B-mode ultrasound data. The method is based on the combination of three different image phase features: local phase tensor, local weighted mean phase angle, and local phase energy. The combined local phase image features are used as an input to an [Formula: see text] norm-based contextual regularization method which emphasizes uncertainty in the shadow regions. The enhanced bone shadow images are automatically segmented and compared against expert segmentation. Qualitative and quantitative validation was performed on 100 in vivo US scans obtained from five subjects by scanning femur and vertebrae bones. Validation against expert segmentation achieved a mean dice similarity coefficient of 0.88. The encouraging results obtained in this initial study suggest that the proposed method is promising enough for further evaluation. The calculated bone shadow maps could be incorporated into different ultrasound bone segmentation and registration approaches as an additional feature.

  7. Visual Biofeedback using trans-perineal ultrasound during the second stage of labor.

    Science.gov (United States)

    Gilboa, Yinon; Frenkel, Tahl I; Schlesinger, Yael; Rousseau, Sofie; Hamiel, Daniel; Achiron, Reuven; Perlman, Sharon

    2017-11-20

    to assess the obstetrical and psychological effect of visual biofeedback using trans-perineal ultrasound (TPU) during the second stage of labor. Visual biofeedback using TPU was performed prospectively during the second stage of labor in twenty-six low risk nulliparous women. Pushing efficacy was assessed by the angle of progression at rest and during pushing efforts before and after observing the ultrasound screen. Obstetrical outcomes included level of perineal tearing, mode of delivery and length of the second stage. Psychological outcomes were assessed via self-report measures during the postnatal hospital stay. These included measures of perceived control and maternal satisfaction with childbirth as well as level of maternal feelings of connectedness toward her newborn. Obstetrical and psychological results were compared to a control group (n=69) who received standard obstetrical coaching by midwifes. Pushing efficacy significantly increased following visual biofeedback by TPU (p = 0.01). A significant association was found between the visual biofeedback and an intact perineum following delivery (p = 0.03). No significant differences were found in regard to mode of delivery or the length of the second stage. Feelings of maternal connectedness towards the newborn were significantly higher in the visual biofeedback group relative to non-biofeedback controls (p = 0.003). The results of this pilot study implicate that TPU may serve as a complementary tool to coached maternal pushing during the second stage of labor with obstetrical as well as psychological benefits. Further studies are required to confirm our findings and define the exact timing for optimal results. This article is protected by copyright. All rights reserved.

  8. Contrast-enhanced ultrasound for diagnosis of prostate cancer and kidney lesions

    International Nuclear Information System (INIS)

    Mitterberger, Michael; Pelzer, Alexandre; Colleselli, Daniela; Bartsch, Georg; Strasser, Hannes; Pallwein, Leo; Aigner, Friedrich; Gradl, Johann; Frauscher, Ferdinand

    2007-01-01

    Purpose of review: Conventional ultrasonography of both, kidney and prostate, is limited due to the poor contrast of B-mode imaging for parenchymal disease and limited sensitivity of colour Doppler for the detection of capillaries and deep pedicular vessels. Contrast-enhanced ultrasound (CEUS) overcomes these limitations. Recent findings: CEUS investigates the blood flow of the prostate, allows for prostate cancer visualization and for targeted biopsies. Comparisons between systematic and CEUS-targeted biopsies have shown that the targeted approach detects more cancers with a lower number of biopsy cores and with higher Gleason scores compared with the systematic approach. Also the kidney offers promising applications as CEUS improves the detection of abnormal microvascular and macrovascular disorders. Summary: In recent literature CEUS has shown its value for diagnosis of both, prostate cancer and kidney lesions. This paper describes recent improvements and future perspectives of CEUS

  9. Contrast-enhanced ultrasound study of primary hepatic angiosarcoma: A pitfall of non-enhancement

    International Nuclear Information System (INIS)

    Wang, Liang; Lv, Ke; Chang, Xiao-Yan; Xia, Yu; Yang, Zhi-Ying; Jiang, Yu-Xin; Dai, Qing; Tan, Li; Li, Jian-Chu

    2012-01-01

    Highlights: ► The contrast-enhanced ultrasound (CEUS) characteristics of primary hepatic angiosarcoma (PHA) in three patients were retrospectively analyzed. ► PHA appeared similar peripheral enhancement pattern in our series. ► Non-necrotic tumor tissue of PHA unexpectedly demonstrated non-enhancement on CEUS. ► It may be associated with the very low velocity of blood flow in the central region of tumors. ► This interesting finding warrants further investigations, particularly on intratumoral hemodynamics. -- Abstract: Objective: To investigate the contrast-enhanced ultrasound (CEUS) characteristics of primary hepatic angiosarcoma (PHA). Methods: The sonographic findings and CEUS images of PHA in three patients were retrospectively analyzed. Results: In our study, 3 cases of PHA (2 multiple nodules and 1 solitary mass) showed similar enhancement pattern on CEUS, characterized by remarkable central non-enhancement and peripheral irregular enhancement in the arterial and portal phase, and complete wash-out in the late phase. Furthermore, we unexpectedly found that abundant neoplastic tissues were present in the central area of non-enhancement on pathological evaluation. Based on literature review, we supposed that the unusual finding may be associated with the very low velocity of blood flow in the central region of tumors. Conclusion: CEUS could well depict PHA with some common features, which may provide valuable clues in diagnosis of this rare disease. And non-necrotic tumor tissue of PHA could also demonstrate non-enhancement on CEUS, which warrant further investigations

  10. Contrast-enhanced Ultrasound for Non-tumor Liver Diseases

    Directory of Open Access Journals (Sweden)

    H Maruyama

    2012-03-01

    Full Text Available Contrast-enhanced ultrasound (CEUS is a simple, safe and reliable technique for the clinical management of patients with various liver diseases. Although the major target of the technique may be focal hepatic lesions, it is also effective for the diagnosis of non-tumor liver diseases, such as grading hepatic fibrosis, characterization of chronic liver diseases and diagnosis of portal vein thrombosis. This review article aimed to overview the recent application of CEUS in the assessment of non-tumor liver diseases. Keywords: Cirrhosis, contrast agent, fibrosis, idiopathic portal hypertension, microbubble, portal vein thrombosis, ultrasound.

  11. Visual Functions in Relation with Neonatal Cerebral Ultrasound, Neurology and Cognitive Development in Very-Low-Birthweight Children

    NARCIS (Netherlands)

    Weisglas-Kuperus, N.; Heersema, D. J.; Baerts, W.; Fetter, W. P. F.; Smrkovsky, M.; van Hof-van Duin, J.; Sauer, P. J. J.

    In order to determine the relationship between visual functions and neonatal cerebral ultrasound, neurological examinations and cognitive development, a prospective longitudinal study was conducted in 69 high-risk very-low-birthweight children. Visual development was studied at 1 and 2.6 years of

  12. Enhancement characteristics of benign and malignant focal peripheral nodules in the peripheral zone of the prostate gland studied using contrast-enhanced transrectal ultrasound

    International Nuclear Information System (INIS)

    Tang, J.; Yang, J.-C.; Luo, Y.; Li, J.; Li, Y.; Shi, H.

    2008-01-01

    Aim: To assess the value of contrast-enhanced grey-scale transrectal ultrasound (CETRUS) in predicting the nature of peripheral zone hypoechoic lesions of the prostate. Materials and Methods: Ninety-one patients with peripheral zone hypoechoic lesions on ultrasound were evaluated with CETRUS followed by lesion-specific and sextant transrectal ultrasound-guided biopsies. The enhancement patterns of the lesions were observed and graded subjectively using adjacent peripheral zone tissue as the reference. Time to enhancement (AT), time to peak intensity (TTP) and peak intensity (PI) were quantified within each nodule. Ultrasound findings were correlated with biopsy findings. Results: Transrectal ultrasound-guided biopsy of the hypoechoic lesions revealed prostate cancer in 44 patients and benign prostatic diseases in 47. The intensity of enhancement within the lesions were graded as no enhancement, increased, equal, or decreased compared with adjacent peripheral zone tissue in two, 30, five and seven in the prostate cancer group and 14, 15, four and 14 in the benign group, respectively. The difference was statistically significant (p < 0.05). The peak enhancement intensity was found to be the most optimal discriminatory parameter (area under curve AUC 0.70; 95% CI: 0.58, 0.82). Conclusion: Malignant hypoechoic nodules in the peripheral zone of the prostate are more likely to enhance early and more intensely on CETRUS. A non-enhanced hypoechoic peripheral zone lesion was more likely to be benign

  13. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Adam; Nunn, John, E-mail: adam.shaw@npl.co.u [National Physical Laboratory, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-06-07

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45{sup 0} to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 {sup 0}C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible. (note)

  14. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    International Nuclear Information System (INIS)

    Shaw, Adam; Nunn, John

    2010-01-01

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45 0 to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 0 C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible. (note)

  15. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    Science.gov (United States)

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  16. Reproducibility of contrast-enhanced transrectal ultrasound of the prostate

    NARCIS (Netherlands)

    Sedelaar, J. P.; Goossen, T. E.; Wijkstra, H.; de la Rosette, J. J.

    2001-01-01

    Transrectal three-dimensional (3-D) contrast-enhanced power Doppler ultrasound (US) is a novel technique for studying possible prostate malignancy. Before studies can be performed to investigate the clinical validity of the technique, reproducibility of the contrast US studies must be proven.

  17. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    Directory of Open Access Journals (Sweden)

    Elisee Ilunga-Mbuyamba

    2016-04-01

    Full Text Available In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t and after (3D-iCEUS e n d tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation. Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified.

  18. Evaluation of the diagnosis on staging of the bladder cancers by contrast-enhanced ultrasound

    International Nuclear Information System (INIS)

    Gao Yong; Xu Haiyan; Huan Haiming; Chen Yane

    2010-01-01

    Objective: To study the value of the staging of the bladder cancers with the contrast-enhanced ultrasound. Methods: After rapid injection of the contrast agent SonoVue through the elbow vein, the staging of images was completed in 18 cases of bladder cancer. Results: The results of contrast-enhanced ultrasound were compared with post-operative pathological analysis, the rate of accuracy of diagnosis on T1, T2, T3 and T4 stage was 100%, 80%, 83% and 100% respectively. The accuracy made by new methods higher than those of other imaging examinations in T1 stage; the other stages were similar to those of other imaging examinations. Conclusion: The evaluation of Contrast-enhanced ultrasound on the staging of the bladder cancer is higher than that of the conventional ultrasound examination, while the observation of blood flow in the tumor can make accurate diagnosis and differential diagnosis, this method can be complement each other with CT and MRI to improve the rate of accuracy on the staging of bladder cancer. (authors)

  19. Intraoperative Cerebral Glioma Characterization with Contrast Enhanced Ultrasound

    Directory of Open Access Journals (Sweden)

    Francesco Prada

    2014-01-01

    Full Text Available Background. Contrast enhanced ultrasound (CEUS is a dynamic and continuous modality providing real-time view of vascularization and flow distribution patterns of different organs and tumors. Nevertheless its intraoperative use for brain tumors visualization has been performed few times, and a thorough characterization of cerebral glioma had never been performed before. Aim. To perform the first characterization of cerebral glioma using CEUS and to possibly achieve an intraoperative differentiation of different gliomas. Methods. We performed CEUS in an off-label setting in 69 patients undergoing surgery for cerebral glioma. An intraoperative qualitative analysis was performed comparing iCEUS with B-mode imaging. A postprocedural semiquantitative analysis was then performed for each case, according to EFSUMB criteria. Results were related to histopathology. Results. We observed different CE patterns: LGG show a mild, dotted CE with diffuse appearance and slower, delayed arterial and venous phase. HGG have a high CE with a more nodular, nonhomogeneous appearance and fast perfusion patterns. Conclusion. Our study characterizes for the first time human brain glioma with CEUS, providing further insight regarding these tumors’ biology. CEUS is a fast, safe, dynamic, real-time, and economic tool that might be helpful during surgery in differentiating malignant and benign gliomas and refining surgical strategy.

  20. The Safety of Using High Frequency, Low Intensity Ultrasound to Enhance Thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita

    2006-01-01

    The EKOS Ultrasound Infusion Systems (EKOS Corporation, Bothell, WA) use high frequency, low intensity ultrasound to accelerate thrombolysis by enhancing clot permeability and lytic drug penetration into thrombus. These systems are designed to provide efficacious catheter-directed treatment for the management of stroke, peripheral arterial occlusion and deep vein thrombosis. The in vitro and in vivo results of investigating the stability of therapeutic and diagnostic compounds used in combination with EKOS devices, the potential for adverse biological effects and the clot fragmentation confirmed the safety of EKOS ultrasound infusion systems in thrombolysis treatment

  1. Visualization of the diaphragm muscle with ultrasound improves diagnostic accuracy of phrenic nerve conduction studies.

    Science.gov (United States)

    Johnson, Nicholas E; Utz, Michael; Patrick, Erica; Rheinwald, Nicole; Downs, Marlene; Dilek, Nuran; Dogra, Vikram; Logigian, Eric L

    2014-05-01

    Evaluation of phrenic neuropathy (PN) with phrenic nerve conduction studies (PNCS) is associated with false negatives. Visualization of diaphragmatic muscle twitch with diaphragm ultrasound (DUS) when performing PNCS may help to solve this problem. We performed bilateral, simultaneous DUS-PNCS in 10 healthy adults and 12 patients with PN. The amplitude of the diaphragm compound muscle action potential (CMAP) (on PNCS) and twitch (on DUS) was calculated. Control subjects had phrenic CMAP (on PCNS). In the 12 patients with PN, 12 phrenic neuropathies were detected. Three of these patients had either significant side-to-side asymmetry or absolute reduction in diaphragm movement that was not detected with PNCS. There were no cases in which the PNCS showed an abnormality but the DUS did not. The addition of DUS to PNCS enhances diagnostic accuracy in PN. Copyright © 2013 Wiley Periodicals, Inc.

  2. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.

    Science.gov (United States)

    Arvanitis, Costas D; McDannold, Nathan

    2013-11-01

    Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM

  3. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    V. Daeichin (Verya); T. van Rooij (Tom); I. Skachkov (Ilya); B. Ergin (Bulent); P. Specht (Patricia); A.A.P. Lima (Alexandre ); C. Ince (Can); J.G. Bosch (Hans); A.F.W. van der Steen (Ton); N. de Jong (Nico); K. Kooiman (Klazina)

    2017-01-01

    textabstractAlthough high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited

  4. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging : In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A.C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, A.F.W.; de Jong, N.; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially

  5. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A. C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, Antonius F. W.; de Jong, Nico; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available

  6. Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model.

    Science.gov (United States)

    Hitchcock, Kathryn E; Caudell, Danielle N; Sutton, Jonathan T; Klegerman, Melvin E; Vela, Deborah; Pyne-Geithman, Gail J; Abruzzo, Todd; Cyr, Peppar E P; Geng, Yong-Jian; McPherson, David D; Holland, Christy K

    2010-06-15

    The goal of this study was to determine whether targeted, Rhodamine-labeled echogenic liposomes (Rh-ELIP) containing nanobubbles could be delivered to the arterial wall, and whether 1-MHz continuous wave ultrasound would enhance this delivery profile. Aortae excised from apolipoprotein-E-deficient (n=8) and wild-type (n=8) mice were mounted in a pulsatile flow system through which Rh-ELIP were delivered in a stream of bovine serum albumin. Half the aortae from each group were treated with 1-MHz continuous wave ultrasound at 0.49 MPa peak-to-peak pressure, and half underwent sham exposure. Ultrasound parameters were chosen to promote stable cavitation and avoid inertial cavitation. A broadband hydrophone was used to monitor cavitation activity. After treatment, aortic sections were prepared for histology and analyzed by an individual blinded to treatment conditions. Delivery of Rh-ELIP to the vascular endothelium was observed, and sub-endothelial penetration of Rh-ELIP was present in five of five ultrasound-treated aortae and was absent in those not exposed to ultrasound. However, the degree of penetration in the ultrasound-exposed aortae was variable. There was no evidence of ultrasound-mediated tissue damage in any specimen. Ultrasound-enhanced delivery within the arterial wall was demonstrated in this novel model, which allows quantitative evaluation of therapeutic delivery. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Contrast-Enhanced Ultrasound Guided Biopsy of Undetermined Abdominal Lesions: A Multidisciplinary Decision-Making Approach

    Directory of Open Access Journals (Sweden)

    Feng Mao

    2017-01-01

    Full Text Available Aim. To investigate the value of contrast-enhanced ultrasound (CEUS guided biopsy of undetermined abdominal lesions in multidisciplinary treatment (MDT decision-making approach. Methods. Between Jan 2012 and Dec 2015, 60 consecutive patients (male, 37; female, 23; mean age, 51.3 years ± 14.6 who presented with undetermined abdominal lesions were included. CEUS and core needle percutaneous biopsy was performed under real-time CEUS guidance in all lesions. Data were recorded and compared with conventional ultrasound (US guidance group (n=75. All CEUS findings and clinical data were evaluated in MDT. Results. CEUS enabled the delimitation of more (88.3% versus 41.3% and larger (14.1 ± 10.7 mm versus 32.3 ± 18.5 mm nonenhanced necrotic areas. More inner (20.0% versus 6.7% and surrounding (18.3% versus 2.7% major vessels were visualized and avoided during biopsies. CEUS-guided biopsy increased the diagnostic accuracy from 93.3% to 98.3%, with correct diagnosis in 57 of 60 lesions (95.0%. The therapeutic plan was influenced by CEUS guided biopsies findings in the majority of patients (98.3%. Conclusion. The combination of CEUS guided biopsy and MDT decision-making approach is useful in the diagnostic work-up and therapeutic management.

  8. Contrast-Enhanced Ultrasound Guided Biopsy of Undetermined Abdominal Lesions: A Multidisciplinary Decision-Making Approach.

    Science.gov (United States)

    Mao, Feng; Dong, Yi; Ji, Zhengbiao; Cao, Jiaying; Wang, Wen-Ping

    2017-01-01

    Aim. To investigate the value of contrast-enhanced ultrasound (CEUS) guided biopsy of undetermined abdominal lesions in multidisciplinary treatment (MDT) decision-making approach. Methods. Between Jan 2012 and Dec 2015, 60 consecutive patients (male, 37; female, 23; mean age, 51.3 years ± 14.6) who presented with undetermined abdominal lesions were included. CEUS and core needle percutaneous biopsy was performed under real-time CEUS guidance in all lesions. Data were recorded and compared with conventional ultrasound (US) guidance group ( n = 75). All CEUS findings and clinical data were evaluated in MDT. Results. CEUS enabled the delimitation of more (88.3% versus 41.3%) and larger (14.1 ± 10.7 mm versus 32.3 ± 18.5 mm) nonenhanced necrotic areas. More inner (20.0% versus 6.7%) and surrounding (18.3% versus 2.7%) major vessels were visualized and avoided during biopsies. CEUS-guided biopsy increased the diagnostic accuracy from 93.3% to 98.3%, with correct diagnosis in 57 of 60 lesions (95.0%). The therapeutic plan was influenced by CEUS guided biopsies findings in the majority of patients (98.3%). Conclusion. The combination of CEUS guided biopsy and MDT decision-making approach is useful in the diagnostic work-up and therapeutic management.

  9. Intra-biliary contrast-enhanced ultrasound for evaluating biliary obstruction during percutaneous transhepatic biliary drainage: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Er-jiao [Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630 (China); Zheng, Rong-qin, E-mail: zhengrq@mail.sysu.edu.cn [Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630 (China); Su, Zhong-zhen; Li, Kai; Ren, Jie; Guo, Huan-yi [Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630 (China)

    2012-12-15

    Objectives: The aimed of this study was to investigate the value of intra-biliary contrast-enhanced ultrasound (IB-CEUS) for evaluating biliary obstruction during percutaneous transhepatic biliary drainage (PTBD). Materials and methods: 80 patients with obstructive jaundice who underwent IB-CEUS during PTBD were enrolled. The diluted ultrasound contrast agent was injected via the drainage catheter to perform IB-CEUS. Both conventional ultrasound and IB-CEUS were used to detect the tips of the drainage catheters and to compare the detection rates of the tips. The obstructive level and degree of biliary tract were evaluated by IB-CEUS. Fluoroscopic cholangiography (FC) and computer tomography cholangiography (CTC) were taken as standard reference for comparison. Results: Conventional ultrasound displayed only 43 tips (43/80, 53.8%) of the drainage catheters within the bile ducts while IB-CEUS identified all 80 tips (80/80, 100%) of the drainage catheters including 4 of them out of the bile duct (P < 0.001). IB-CEUS made correct diagnosis in 44 patients with intrahepatic and 36 patients with extrahepatic biliary obstructions. IB-CEUS accurately demonstrated complete obstruction in 56 patients and incomplete obstruction in 21 patients. There were 3 patients with incomplete obstruction misdiagnosed to be complete obstruction by IB-CEUS. The diagnostic accuracy of biliary obstruction degree was 96.3% (77/80). Conclusion: IB-CEUS could improve the visualization of the drainage catheters and evaluate the biliary obstructive level and degree during PTBD. IB-CEUS may be the potential substitute to FC in the PTBD procedure.

  10. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis

    International Nuclear Information System (INIS)

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R

    2008-01-01

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p -2 ± 0.01 μm and 1.99 x 10 -2 ± 0.004 μm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  11. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    International Nuclear Information System (INIS)

    Vachutka, J; Grec, P; Mornstein, V; Caruana, C J

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology

  12. Microbubble-Mediated Ultrasound Enhances the Lethal Effect of Gentamicin on Planktonic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Han-Xiao Zhu

    2014-01-01

    Full Text Available Previous research has found that low-intensity ultrasound enhanced the lethal effect of gentamicin on planktonic E. coli. We aimed to further investigate whether microbubble-mediated low-intensity ultrasound could further enhance the antimicrobial efficacy of gentamicin. The planktonic E. coli (ATCC 25922 was distributed to four different interventions: control (GCON, microbubble only (GMB, ultrasound only (GUS, and microbubble-mediated ultrasound (GMUS. Ultrasound was applied with 100 mW/cm2 (average intensity and 46.5 KHz, which presented no bactericidal activity. After 12 h, plate counting was used to estimate the number of bacteria, and bacterial micromorphology was observed with transmission electron microscope. The results showed that the viable counts of E. coli in GMUS were decreased by 1.01 to 1.42 log10 CFU/mL compared with GUS (P<0.01. The minimal inhibitory concentration (MIC of gentamicin against E. coli was 1 μg/mL in the GMUS and GUS groups, lower than that in the GCON and GMB groups (2 μg/mL. Transmission electron microscopy (TEM images exhibited more destruction and higher thickness of bacterial cell membranes in the GMUS than those in other groups. The reason might be the increased permeability of cell membranes for gentamicin caused by acoustic cavitation.

  13. Intensive treatment with ultrasound visual feedback for speech sound errors in childhood apraxia

    Directory of Open Access Journals (Sweden)

    Jonathan L Preston

    2016-08-01

    Full Text Available Ultrasound imaging is an adjunct to traditional speech therapy that has shown to be beneficial in the remediation of speech sound errors. Ultrasound biofeedback can be utilized during therapy to provide clients additional knowledge about their tongue shapes when attempting to produce sounds that are in error. The additional feedback may assist children with childhood apraxia of speech in stabilizing motor patterns, thereby facilitating more consistent and accurate productions of sounds and syllables. However, due to its specialized nature, ultrasound visual feedback is a technology that is not widely available to clients. Short-term intensive treatment programs are one option that can be utilized to expand access to ultrasound biofeedback. Schema-based motor learning theory suggests that short-term intensive treatment programs (massed practice may assist children in acquiring more accurate motor patterns. In this case series, three participants ages 10-14 diagnosed with childhood apraxia of speech attended 16 hours of speech therapy over a two-week period to address residual speech sound errors. Two participants had distortions on rhotic sounds, while the third participant demonstrated lateralization of sibilant sounds. During therapy, cues were provided to assist participants in obtaining a tongue shape that facilitated a correct production of the erred sound. Additional practice without ultrasound was also included. Results suggested that all participants showed signs of acquisition of sounds in error. Generalization and retention results were mixed. One participant showed generalization and retention of sounds that were treated; one showed generalization but limited retention; and the third showed no evidence of generalization or retention. Individual characteristics that may facilitate generalization are discussed. Short-term intensive treatment programs using ultrasound biofeedback may result in the acquisition of more accurate motor

  14. Value of contrast-enhanced ultrasound in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Zordo, Tobias de; Mlekusch, Sabine P.; Feuchtner, Gudrun M.; Mur, Erich; Schirmer, Michael; Klauser, Andrea S.

    2007-01-01

    The purpose of this review is to describe the spectrum of sonographic findings in rheumatic diseases with respect to the diagnostic potential using US contrast media which prove activity or inactivity in synovial tissue where new treatment regimes target. Synovial activity can be found in non-erosive and erosive forms of primary and secondary osteoarthritis, and in inflammatory forms of joint diseases like rheumatoid arthritis and peripheral manifestations of spondyloarthritis including, ankylosing spondylitis, Reiter's syndrome, psoriatic arthritis and enteropathic arthritis. It can also be present in metabolic and endocrine forms of arthritis, in connective tissue arthropathies like systemic lupus erythematosus or scleroderma and in infectious arthritis. Ultrasound should be used as first-line imaging modality in suspected early cases of RA and other forms of arthritis, whereas contrast-enhanced ultrasound (CEUS) can further enable for sensitive assessment of vascularity which correlates with disease activity

  15. Value of contrast-enhanced ultrasound in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Zordo, Tobias de; Mlekusch, Sabine P.; Feuchtner, Gudrun M. [Department of Radiology II, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck (Austria); Mur, Erich [Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck (Austria); Schirmer, Michael [Department of Internal Medicine, Hospital of the Elisabethines Klagenfurt, Voelkermarkter Strasse 15-19, 9020 Klagenfurt (Austria); Klauser, Andrea S. [Department of Radiology II, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck (Austria)], E-mail: andrea.klauser@i-med.ac.at

    2007-11-15

    The purpose of this review is to describe the spectrum of sonographic findings in rheumatic diseases with respect to the diagnostic potential using US contrast media which prove activity or inactivity in synovial tissue where new treatment regimes target. Synovial activity can be found in non-erosive and erosive forms of primary and secondary osteoarthritis, and in inflammatory forms of joint diseases like rheumatoid arthritis and peripheral manifestations of spondyloarthritis including, ankylosing spondylitis, Reiter's syndrome, psoriatic arthritis and enteropathic arthritis. It can also be present in metabolic and endocrine forms of arthritis, in connective tissue arthropathies like systemic lupus erythematosus or scleroderma and in infectious arthritis. Ultrasound should be used as first-line imaging modality in suspected early cases of RA and other forms of arthritis, whereas contrast-enhanced ultrasound (CEUS) can further enable for sensitive assessment of vascularity which correlates with disease activity.

  16. Ultrasound-enhanced bioscouring of greige cotton: regression analysis of process factors

    Science.gov (United States)

    Ultrasound-enhanced bioscouring process factors for greige cotton fabric are examined using custom experimental design utilizing statistical principles. An equation is presented which predicts bioscouring performance based upon percent reflectance values obtained from UV-Vis measurements of rutheniu...

  17. Ultrasound-enhanced delivery of doxorubicin/all-trans retinoic acid-loaded nanodiamonds into tumors.

    Science.gov (United States)

    Li, Huanan; Zeng, Deping; Wang, Zhenyu; Fang, Liaoqiong; Li, Faqi; Wang, Zhibiao

    2018-03-14

    To build up a combined therapy strategy to address limitations of the enhanced permeability and retention (EPR) effect and improve the efficiency of tumor therapy. A pH-sensitive nanocomplex for co-delivery of doxorubicin (DOX) and all-trans retinoic acid (ATRA) was developed based on nanodiamonds (DOX/ATRA-NDs) to enhance intracellular retention of drugs. Meanwhile, ultrasound was employed to enhance tumor vascular penetration of DOX-ATRA-NDs. The distribution of DOX/ATRA-NDs in the tumor tissues increased threefold when ultrasound was applied at 1 MHz and 0.6 W/cm 2 . Comparing with unmodified chemotherapeutics, the combined therapy induced more tumor cells apoptosis and greater tumor growth inhibition in both liver and breast tumor models. DOX-ATRA-NDs demonstrate great potential in clinical applications.

  18. Visual Working Memory Enhances the Neural Response to Matching Visual Input.

    Science.gov (United States)

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-07-12

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response. SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind

  19. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation

    International Nuclear Information System (INIS)

    Huang, C H; Hsieh, C H; Lee, J D; Huang, W C; Lee, S T; Wu, C T; Sun, Y N; Wu, Y T

    2012-01-01

    With the combined view on the physical space and the medical imaging data, augmented reality (AR) visualization can provide perceptive advantages during image-guided surgery (IGS). However, the imaging data are usually captured before surgery and might be different from the up-to-date one due to natural shift of soft tissues. This study presents an AR-enhanced IGS system which is capable to correct the movement of soft tissues from the pre-operative CT images by using intra-operative ultrasound images. First, with reconstructing 2-D free-hand ultrasound images to 3-D volume data, the system applies a Mutual-Information based registration algorithm to estimate the deformation between pre-operative and intra-operative ultrasound images. The estimated deformation transform describes the movement of soft tissues and is then applied to the pre-operative CT images which provide high-resolution anatomical information. As a result, the system thus displays the fusion of the corrected CT images or the real-time 2-D ultrasound images with the patient in the physical space through a head mounted display device, providing an immersive augmented-reality environment. For the performance validation of the proposed system, a brain phantom was utilized to simulate brain-shift scenario. Experimental results reveal that when the shift of an artificial tumor is from 5mm ∼ 12mm, the correction rates can be improved from 32% ∼ 45% to 87% ∼ 95% by using the proposed system.

  20. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    Science.gov (United States)

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    Science.gov (United States)

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Transcranial focused ultrasound stimulation of human primary visual cortex

    Science.gov (United States)

    Lee, Wonhye; Kim, Hyun-Chul; Jung, Yujin; Chung, Yong An; Song, In-Uk; Lee, Jong-Hwan; Yoo, Seung-Schik

    2016-09-01

    Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.

  3. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent.

    Science.gov (United States)

    Datta, Saurabh; Coussios, Constantin-C; Ammi, Azzdine Y; Mast, T Douglas; de Courten-Myers, Gabrielle M; Holland, Christy K

    2008-09-01

    Ultrasound has been shown previously to act synergistically with a thrombolytic agent, such as recombinant tissue plasminogen activator (rt-PA) to accelerate thrombolysis. In this in vitro study, a commercial contrast agent, Definity, was used to promote and sustain the nucleation of cavitation during pulsed ultrasound exposure at 120 kHz. Ultraharmonic signals, broadband emissions and harmonics of the fundamental were measured acoustically by using a focused hydrophone as a passive cavitation detector and used to quantify the level of cavitation activity. Human whole blood clots suspended in human plasma were exposed to a combination of rt-PA, Definity and ultrasound at a range of ultrasound peak-to-peak pressure amplitudes, which were selected to expose clots to various degrees of cavitation activity. Thrombolytic efficacy was determined by measuring clot mass loss before and after the treatment and correlated with the degree of cavitation activity. The penetration depth of rt-PA and plasminogen was also evaluated in the presence of cavitating microbubbles using a dual-antibody fluorescence imaging technique. The largest mass loss (26.2%) was observed for clots treated with 120-kHz ultrasound (0.32-MPa peak-to-peak pressure amplitude), rt-PA and stable cavitation nucleated by Definity. A significant correlation was observed between mass loss and ultraharmonic signals (r = 0.85, p cavitation activity. Stable cavitation activity plays an important role in enhancement of thrombolysis and can be monitored to evaluate the efficacy of thrombolytic treatment.

  4. Visual Contrast Enhancement Algorithm Based on Histogram Equalization

    Science.gov (United States)

    Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching

    2015-01-01

    Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219

  5. Visual Contrast Enhancement Algorithm Based on Histogram Equalization

    Directory of Open Access Journals (Sweden)

    Chih-Chung Ting

    2015-07-01

    Full Text Available Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods.

  6. Peripheral visual performance enhancement by neurofeedback training.

    Science.gov (United States)

    Nan, Wenya; Wan, Feng; Lou, Chin Ian; Vai, Mang I; Rosa, Agostinho

    2013-12-01

    Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.

  7. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    Science.gov (United States)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  8. Mechanistic insight into ultrasound induced enhancement of simultaneous saccharification and fermentation of Parthenium hysterophorus for ethanol production.

    Science.gov (United States)

    Singh, Shuchi; Agarwal, Mayank; Sarma, Shyamali; Goyal, Arun; Moholkar, Vijayanand S

    2015-09-01

    This paper presents investigations into mechanism of ultrasound assisted bioethanol synthesis using Parthenium hysterophorus biomass through simultaneous saccharification and fermentation (SSF) mode. Approach of coupling experimental results to mathematical model for SSF using Genetic Algorithm based optimization has been adopted. Comparison of model parameters for experiments with mechanical shaking and sonication (10% duty cycle) give an interesting mechanistic account of influence of ultrasound on SSF system. A 4-fold rise in ethanol and cell mass productivity is seen with ultrasound. The analysis reveals following facets of influence of ultrasound on SSF: increase in Monod constant for glucose for cell growth, maximal specific growth rate and inhibition constant of cell growth by glucose and reduction in specific cell death rate. Values of inhibition constant of cell growth by ethanol (K3E), and constants for growth associated (a) and non-growth associated (b) ethanol production remained unaltered with sonication. Beneficial effects of ultrasound are attributed to enhanced cellulose hydrolysis, enhanced trans-membrane transport of substrate and products as well as dilution of the toxic substances due to micro-convection induced by ultrasound. Intrinsic physiological functioning of cells remained unaffected by ultrasound as indicated by unaltered values of K3E, a and b. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. MRI and contrast-enhanced ultrasound imaging for evaluation of focal irreversible electroporation treatment: results from a phase I-II study in patients undergoing IRE followed by radical prostatectomy

    International Nuclear Information System (INIS)

    Bos, Willemien van den; Bruin, D.M. de; Randen, A. van; Engelbrecht, M.R.W.; Postema, A.W.; Muller, B.G.; Zondervan, P.J.; Laguna Pes, M.P.; Reijke, T.M. de; Rosette, J.J.M.C.H. de la; Varkarakis, I.M.; Skolarikos, A.; Savci-Heijink, C.D.; Jurhill, R.R.; Wijkstra, H.

    2016-01-01

    Irreversible electroporation (IRE) is an ablative therapy with a low side-effect profile in prostate cancer. The objective was: 1) To compare the volumetric IRE ablation zone on grey-scale transrectal ultrasound (TRUS), contrast-enhanced ultrasound (CEUS) and multiparametric MRI (mpMRI) with histopathology findings; 2) To determine a reliable imaging modality to visualize the IRE ablation effects accurately. A prospective phase I-II study was performed in 16 patients scheduled for radical prostatectomy (RP). IRE of the prostate was performed 4 weeks before RP. Prior to, and 4 weeks after the IRE treatment, imaging was performed by TRUS, CEUS, and mpMRI. 3D-analysis of the ablation volumes on imaging and on H and E-stained whole-mount sections was performed. The volumes were compared and the correlation was calculated. Evaluation of the imaging demonstrated that with T2-weighted MRI, dynamic contrast enhanced (DCE) MRI, and CEUS, effects of IRE are visible. T2MRI and CEUS closely match the volumes on histopathology (Pearson correlation r = 0.88 resp. 0.80). However, IRE is not visible with TRUS. mpMRI and CEUS are appropriate for assessing IRE effects and are the most feasible imaging modalities to visualize IRE ablation zone. The imaging is concordant with results of histopathological examination. (orig.)

  10. [Application of ultrasound-enhanced gene and drug delivery to the ocular tissue].

    Science.gov (United States)

    Sonoda, Shozo; Yamashita, Toshifumi; Suzuki, Ryo; Maruyama, Kazuo; Sakamoto, Taiji

    2013-01-01

    Visual images provide an immensely rich source of information about the external world. Eye has characteristic structure sensory cells are arranged along the eye wall, and is filled inside with vitreous body. In recent years, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agent had widely spread, and numerous number of patients who suffered ocular angiogenic disease such as diabetic retinopathy, age-related macular degeneration and retinal vascular occlusion for the disease, were treated and spared the blindness. Vitreous cavity was regarded as reservoir of drug, intravitreal injection is thought a sort of drug delivery. However, with regard to the administration of a selective drug deliver, it has not yet been solved. Our aim is to establish a new method of gene transfer, drug delivery using low-energy ultrasound to the eye, to date, we confirmed drug and gene deliver to the ocular tissue such as cornea, conjunctiva and retina with high efficiency. In addition, tissue damage was minimal. We have also shown that ultrasound irradiation with combination of a microbubbles or bubble liposome could be introduced drug and gene more effectively. Based on these knowledge, we will focus on development of a new device for intraocular ultrasound exposure and potential for therapeutic application of ultrasound to humans retinal disease such as retinal artery obstruction.

  11. Auditory Emotional Cues Enhance Visual Perception

    Science.gov (United States)

    Zeelenberg, Rene; Bocanegra, Bruno R.

    2010-01-01

    Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by…

  12. Making the invisible visible: verbal but not visual cues enhance visual detection.

    Science.gov (United States)

    Lupyan, Gary; Spivey, Michael J

    2010-07-07

    Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d'). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.

  13. Making the invisible visible: verbal but not visual cues enhance visual detection.

    Directory of Open Access Journals (Sweden)

    Gary Lupyan

    Full Text Available BACKGROUND: Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d'. A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. CONCLUSIONS/SIGNIFICANCE: Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.

  14. Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes

    Science.gov (United States)

    Nahire, Rahul; Paul, Shirshendu; Scott, Michael D.; Singh, Raushan K.; Muhonen, Wallace W.; Shabb, John; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2012-01-01

    The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the plaques and for the invasion and metastasis of a large number of cancers. The ability of ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs from different carriers. However, majority of these studies were performed with low frequency ultrasound (LFUS) at kHz frequencies. Clinical usage of LFUS excitations will be limited due to harmful biological effects. Herein, we report our results on the release of encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered by recombinant human MMP-9. The contents release was further enhanced by the application of diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged employing a medical ultrasound transducer (4 – 15 MHz). The conditioned cell culture media from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30 – 50%) and this release is also increased (50 – 80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 minutes. With further developments, these liposomes have the potential to serve as multimodal carriers for triggered release and simultaneous ultrasound imaging. PMID:22849291

  15. Dynamic contrast enhanced ultrasound for therapy monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, John M. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Williams, Ross [Imaging Research, Sunnybrook Research Institute, Toronto, ON (Canada); Tremblay-Darveau, Charles; Sheeran, Paul S. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Milot, Laurent [Department of Medical Imaging, University of Toronto, Toronto, ON (Canada); Bjarnason, Georg A. [Department of Medical Oncology, University of Toronto, and Sunnybrook Odette Cancer Centre, Toronto, ON (Canada); Burns, Peter N., E-mail: burns@sri.utoronto.ca [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Imaging Research, Sunnybrook Research Institute, Toronto, ON (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON (Canada)

    2015-09-15

    Quantitative imaging is a crucial component of the assessment of therapies that target the vasculature of angiogenic or inflamed tissue. Dynamic contrast-enhanced ultrasound (DCE-US) using microbubble contrast offers the advantages of being sensitive to perfusion, non-invasive, cost effective and well suited to repeated use at the bedside. Uniquely, it employs an agent that is truly intravascular. This papers reviews the principles and methodology of DCE-US, especially as applied to anti-angiogenic cancer therapies. Reproducibility is an important attribute of such a monitoring method: results are discussed. More recent technical advances in parametric and 3D DCE-US imaging are also summarised and illustrated.

  16. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds

    OpenAIRE

    Lediju Bell, Muyinatu A.; Kuo, Nathanael; Song, Danny Y.; Boctor, Emad M.

    2013-01-01

    Prostate brachytherapy, administered by implanting tiny radioactive seeds to treat prostate cancer, currently relies on transrectal ultrasound imaging for intraoperative visualization of the metallic seeds. Photoacoustic (PA) imaging has been suggested as a feasible alternative to ultrasound imaging due to its superior sensitivity to metal surrounded by tissue. However, PA images suffer from poor contrast when seeds are distant from the light source. We propose a transperineal light delivery ...

  17. Ultrasound-enhanced nanotherapy of pancreatic cancer

    Science.gov (United States)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.

    2010-03-01

    The paper reports in vivo results of ultrasonic nanotherapy of orthotopically grown pancreatic cancer. Phase-shift paclitaxel (PTX) loaded perfluoropentane (PFP) nanoemusions combined with tumor-directed ultrasound have been used with a considerable success for tumor-targeted chemotherapy of gemcitabin (GEM)-refractory pancreatic cancer (PC). The GEM-resistant pancreatic cancer proved sensitive to treatment by a micellar PTX formulation Genexol PM (GEN) andor nanodroplet PTX formulation ndGEN. Due to increased permeability of tumor blood vessels, drug-loaded nanodroplets accumulated in the tumor via passive targeting, which was confirmed by ultrasound imaging. Nanodroplets converted into microbubbles in situ under the action of tumor-directed 1-MHz therapeutic ultrasound. The strongest therapeutic effect was observed for the combination therapy by PTX-loaded nanodroplets, GEM and ultrasound (ndGEN+GEM+ultrasound). This combination therapy resulted in a spectacular tumor regression and in some cases complete tumor resolution. Moreover, formation of metastases was dramatically decreased and ascitis generation was completely suppressed. However for all animal groups, local tumor recurrence was observed after the completion of the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more resistant to the repeated therapy than initial tumors.

  18. Correlation of contrast-enhanced ultrasound parameters with oncogene expression and cell proliferation activity in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Ce Zhang

    2017-01-01

    Objective: To study the correlation of contrast-enhanced ultrasound parameters with oncogene expression and cell proliferation activity in breast cancer. Methods: Breast cancer lesions and benign breast lesions surgically removed in Zigong Third People's Hospital between May 2014 and February 2017 were selected, contrast-enhanced ultrasound was done before operation to draw the time-intensity curve and calculate the area under the curve (AUC), and the expression of proliferation molecules and tumor suppressor genes were detected after operation. Results:The contrast-enhanced ultrasound parameter AUC of the breast cancer lesion was greatly higher than that of the benign breast lesion; ECT2, ZKSCAN3, USP39 and EphA2 mRNA expression in breast cancer lesions were obviously higher than those in benign breast lesions whereas HPK1, TCEAL17, CCN5, ATG2B and ATG4D mRNA expression were greatly lower than those in benign breast lesions; ECT2, ZKSCAN3, USP39 and EphA2 mRNA expression in breast cancer lesions with high AUC were greatly higher than those in breast cancer lesions with low AUC whereas HPK1, TCEAL17, CCN5, ATG2B and ATG4D mRNA expression were greatly lower than those in breast cancer lesions with low AUC. Conclusion: The contrast-enhanced ultrasound parameter AUC of breast cancer lesion significantly increases and is closely related to the higher expression of pro-proliferation molecules and the lower expression of tumor suppressor genes.

  19. The role of contrast-enhanced ultrasound (CEUS) in visualizing atherosclerotic carotid plaque vulnerability: Which injection protocol? Which scanning technique?

    Energy Technology Data Exchange (ETDEWEB)

    Iezzi, Roberto, E-mail: roberto.iezzi@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168 Rome (Italy); Petrone, Gianluigi [Institute of Pathology, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168, Rome (Italy); Ferrante, Angela [Department of Vascular Surgery, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168 Rome (Italy); Lauriola, Libero [Institute of Pathology, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168, Rome (Italy); Vincenzoni, Claudio [Department of Vascular Surgery, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168 Rome (Italy); Torre, Michele Fabio la [Department of Bioimaging and Radiological Sciences, Institute of Radiology, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168 Rome (Italy); Snider, Francesco [Department of Vascular Surgery, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168 Rome (Italy); Rindi, Guido [Institute of Pathology, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168, Rome (Italy); Bonomo, Lorenzo [Department of Bioimaging and Radiological Sciences, Institute of Radiology, “A. Gemelli” Hospital—Catholic University, L.go A Gemelli 8, 00168 Rome (Italy)

    2015-05-15

    Highlights: • CEUS is a safe and efficacious technique for the identification and characterization of carotid plaque. • CEUS represents a diagnostic tool for the management of patients with carotid plaque, particularly in asymptomatic patients. • Improved diagnostic performance is achieved with the injection of 4 mL bolus of contrast-medium. • Improved diagnostic performance is achieved with the use of Dynamic Imaging rather than late-phase imaging. - Abstract: Purpose: To correlate the degree of plaque vulnerability as determined by contrast-enhanced ultrasound (CEUS) with histological findings. Secondary objectives were to optimize the CEUS acquisition technique and image evaluation methods. Materials and methods: Fifty consecutive patients, either symptomatic and asymptomatic referring to our department in order to perform carotid endarterectomy (TEA), were enrolled. Each patient provided informed consent before undergoing CEUS. Ultrasound examination was performed using high-frequency (8–14 MHz) linear probe and a non-linear pulse inversion technique (mechanical index: 0.09–1.3). A double contrast media injection (Sonovue, 2 mL and 4 mL; Bracco, Italy) was performed. Two videotapes were recorded for every injection: early “dynamic” phase and late “flash” phase, performed with 6 high mechanical index impulses. Movies were quantitatively and qualitatively evaluated. Qualitative and quantitative evaluation were statistically compared to immunohistological diagnosis of vulnerable plaque, considered as gold standard. Results: Qualitative CEUS evaluation obtained high statistical results when compared to immunohistological results, with values of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of 94%, 68%, 87%, 85% and 86%, respectively, which became higher if considering only asymptomatic patient, with a NPV of 91%. Nevertheless, quantitative software evaluation proved less

  20. Contrast Enhanced Ultrasound of the Kidneys: What Is It Capable of?

    Directory of Open Access Journals (Sweden)

    Demosthenes D. Cokkinos

    2013-01-01

    Full Text Available One of the many imaging uses of contrast enhanced ultrasound (CEUS is studying a wide variety of kidney pathology, due to its ability to detect microvascular blood flow in real time without affecting renal function. CEUS enables dynamic assessment and quantification of microvascularisation up to capillary perfusion. The objective of this paper is to briefly refresh basic knowledge of ultrasound (US contrast agents’ physical properties, to study technical details of CEUS scanning in the kidneys, and to review the commonest renal indications for CEUS, with imaging examples in comparison to baseline unenhanced US and computed tomography when performed. Safety matters and limitations of CEUS of the kidneys are also discussed.

  1. Hemocoagulase Combined with Microbubble-Enhanced Ultrasound Cavitation for Augmented Ablation of Microvasculature in Rabbit VX2 Liver Tumors.

    Science.gov (United States)

    Yang, Qian; Tang, Peng; He, Guangbin; Ge, Shuping; Liu, Liwen; Zhou, Xiaodong

    2017-08-01

    We investigated a new method for combining microbubble-enhanced ultrasound cavitation (MEUC) with hemocoagulase (HC) atrox. Our goal was to induce embolic effects in the vasculature and combine these with an anti-angiogenic treatment strategy. Fourteen days after being implanted with a single slice of the liver VX2 tumor, rabbits were randomly divided into five groups: (i) a control group injected intra-venously with saline using a micropump; (ii) a group given only an injection of HC; (iii) a group treated only with ultrasound cavitation; (iv) a group treated with MEUC; (v) a group treated with MEUC + HC. Contrast-enhanced ultrasound was performed before treatment and 1 h and 7 d post-treatment to measure tumor size, enhancement and necrosis range. QontraXt software was used to determine the time-intensity curve of tumor blood perfusion and microvascular changes. At 1 h and 7 d after treatment with MEUC + HC, the parameters of the time-intensity curve, which included peak value, regional blood volume, regional blood flow and area under the curve value and which were measured using contrast-enhanced ultrasound, were significantly lower than those of the other treatment groups. The MEUC + HC treatment group exhibited significant growth inhibition relative to the ultrasound cavitation only, HC and MEUC treatment groups. No damage was observed in the surrounding normal tissues. These results support the feasibility of reducing the blood perfusion of rabbit VX2 liver tumors using a new method that combines MEUC and HC. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  2. Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential new physical therapy of anti-angiogenesis.

    Science.gov (United States)

    Liu, Zheng; Gao, Shunji; Zhao, Yang; Li, Peijing; Liu, Jia; Li, Peng; Tan, Kaibin; Xie, Feng

    2012-02-01

    Tumor angiogenesis is of vital importance to the growth and metastasis of solid tumors. The angiogenesis is featured with a defective, leaky and fragile vascular construction. Microbubble enhanced ultrasound (MEUS) cavitation is capable of mechanical disruption of small blood vessels depending on effective acoustic pressure amplitude. We hypothesized that acoustic cavitation combining high-pressure amplitude pulsed ultrasound (US) and circulating microbubble could potentially disrupt tumor vasculature. A high-pressure amplitude, pulsed ultrasound device was developed to induce inertial cavitation of circulating microbubbles. The tumor vasculature of rat Walker 256 was insonated percutaneously with two acoustic pressures, 2.6 MPa and 4.8 MPa, both with intravenous injection of a lipid microbubble. The controls were treated by the ultrasound only or sham ultrasound exposure. Contrast enhanced ultrasound (CEUS) and histology were performed to assess tumor circulation and pathological changes. The CEUS results showed that the circulation of Walker 256 tumors could be completely blocked off for 24 hours in 4.8 MPa treated tumors. The CEUS gray scale value (GSV) indicated that there was significant GSV drop-off in both of the two experimental groups but none in the controls. Histology showed that the tumor microvasculature was disrupted into diffuse hematomas accompanied by thrombosis, intercellular edema and multiple cysts formation. The 24 hours of tumor circulation blockage resulted in massive necrosis of the tumor. MEUS provides a new, simple physical method for anti-angiogenic therapy and may have great potential for clinical applications. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Real-time contrast-enhanced ultrasound in diagnosing of focal spleen lesions

    International Nuclear Information System (INIS)

    Yu Xiaoling; Yu Jie; Liang Ping; Liu Fangyi

    2012-01-01

    Objective: To investigate the features of focal spleen lesions (FSLs) on contrast-enhanced ultrasound (CEUS) imaging. Materials and methods: CEUS with a blot injection of SonoVue was performed in 48 patients with 75 FSLs (median diameter 2.6 cm) and their perfusion characteristics were analyzed by using contrast pulse sequences (CPS) technique. Results: Among 19 malignant lesions (10 metastases, 7 lymphoma, 1 hemangiosarcoma, 1 epithelioid hemangioendothelioma) and 56 benign lesion (23 hemangiomas, 14 cysts, 8 infarctions, 4 splenic ruptures, 3 tuberculosis, 2 abscess, 1 pseudoaneurysm, 1 lymphangioma), 25 benign lesions were demonstrated nonenhancement. For malignancy, 50.0% (5/10) metastases and 57.1% (4/7) lymphomas were showed hypoenhancement in the arterial phase, and 18 (94.7%) of malignant lesions were hypo-enhancement in the parenchymal phase. Among 31 benign lesions with enhancement, 27 (87.1%) were showed isoenhancement or hyperenhancement in the arterial phase and 22 (71.0%) lesions were isoenhancement or hyperenhancement in the parenchymal phase. The sensitivity, specificity and accuracy of diagnosis for FSLs were 91.1%, 95.0% and 92.0% for CEUS and 75.0%, 84.2% and 77.3% respectively, for the conventional baseline ultrasound (BUS). Conclusion: Real-time CEUS can provide valuable information for the diagnosis and differential diagnosis of FSLs.

  4. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    Science.gov (United States)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  5. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Renaud, G; Bosch, J G; Ten Kate, G L; De Jong, N; Van der Steen, A F W; Shamdasani, V; Entrekin, R

    2012-01-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image. (fast track communication)

  6. Ultrasound skin tightening.

    Science.gov (United States)

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Detection of vascularity in wrist tenosynovitis: power doppler ultrasound compared with contrast-enhanced grey-scale ultrasound.

    Science.gov (United States)

    Klauser, Andrea S; Franz, Magdalena; Arora, Rohit; Feuchtner, Gudrun M; Gruber, Johann; Schirmer, Michael; Jaschke, Werner R; Gabl, Markus F

    2010-01-01

    We sought to assess vascularity in wrist tenosynovitis by using power Doppler ultrasound (PDUS) and to compare detection of intra- and peritendinous vascularity with that of contrast-enhanced grey-scale ultrasound (CEUS). Twenty-six tendons of 24 patients (nine men, 15 women; mean age ± SD, 54.4 ± 11.8 years) with a clinical diagnosis of tenosynovitis were examined with B-mode ultrasonography, PDUS, and CEUS by using a second-generation contrast agent, SonoVue (Bracco Diagnostics, Milan, Italy) and a low-mechanical-index ultrasound technique. Thickness of synovitis, extent of vascularized pannus, intensity of peritendinous vascularisation, and detection of intratendinous vessels was incorporated in a 3-score grading system (grade 0 to 2). Interobserver variability was calculated. With CEUS, a significantly greater extent of vascularity could be detected than by using PDUS (P < 0.001). In terms of peri- and intratendinous vessels, CEUS was significantly more sensitive in the detection of vascularization compared with PDUS (P < 0.001). No significant correlation between synovial thickening and extent of vascularity could be found (P = 0.089 to 0.097). Interobserver reliability was calculated to be excellent when evaluating the grading score (κ = 0.811 to 1.00). CEUS is a promising tool to detect tendon vascularity with higher sensitivity than PDUS by improved detection of intra- and peritendinous vascularity.

  8. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  9. Application of contrast-enhanced ultrasound in the diagnosis of solid pancreatic lesions—A comparison of conventional ultrasound and contrast-enhanced CT

    International Nuclear Information System (INIS)

    Fan, Zhihui; Li, Ying; Yan, Kun; Wu, Wei; Yin, Shanshan; Yang, Wei; Xing, Baocai

    2013-01-01

    Objective: To explore the diagnostic value of contrast-enhanced ultrasound (CEUS) by comparison with conventional ultrasound (US) and contrast-enhanced CT (CECT) in solid pancreatic lesions. Method: Ninety patients with solid pancreatic focal lesions were enrolled, including 36 cases of pancreatic carcinoma, 28 cases of pancreatitis, 6 cases of pancreatic neuroendocrine tumor, 12 cases of solid pseudopapillary tumor of the pancreas, 6 cases of pancreatic metastases, 1 case of cavernous hemolymphangioma and 1 case of lymphoma. US and CEUS were applied respectively for the diagnosis of a total of 90 cases of solid pancreatic lesions. The diagnostic results were scored on a 5-point scale. Results of CEUS were compared with CECT. Results: (1) 3-score cases (undetermined) diagnosed by CEUS were obviously fewer than that of US, while the number of 1-score (definitely benign) and 5-score (definitely malignant) cases diagnosed by CEUS was significantly more than that of US. There was a significant difference in the distribution of final scores using the two methods (p < 0.001). The overall diagnostic accuracies of the 90 cases for CEUS and US were 83.33% and 44.44%, respectively, which indicated an obvious advantage for CEUS (p < 0.001). (2) The diagnostic consistency among three ultrasound doctors: the kappa values calculated for US were 0.537, 0.444 and 0.525, compared with 0.748, 0.645 and 0.795 for CEUS. The interobserver agreement for CEUS was higher than that for US. (3) The sensitivity, specificity and accuracy of the diagnosis of pancreatic carcinoma with CEUS and CECT were 91.7% and 97.2%, 87.0% and 88.9%, and 88.9% and 92.2%, respectively, while for the diagnosis of pancreatitis, the corresponding indices were 82.1% and 67.9%, 91.9% and 100%, and 88.9% and 90%, respectively, showing no significant differences (p > 0.05). Conclusion: CEUS has obvious superiority over conventional US in the general diagnostic accuracy of solid pancreatic lesions and in the

  10. Application of contrast-enhanced ultrasound in the diagnosis of solid pancreatic lesions—A comparison of conventional ultrasound and contrast-enhanced CT

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhihui, E-mail: fanzhihui_1026@163.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Li, Ying, E-mail: 18901033676@126.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Radiology, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Yan, Kun, E-mail: ydbz@sina.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Wu, Wei, E-mail: wuwei@163.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Yin, Shanshan, E-mail: yshshmd@yahoo.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Yang, Wei, E-mail: weiwei02032001@gmail.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Ultrasound, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); Xing, Baocai, E-mail: xinbaocai88@sina.com [Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepatic Biliary and Pancreatic Surgery, Peking University Cancer Hospital and Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142 (China); and others

    2013-09-15

    Objective: To explore the diagnostic value of contrast-enhanced ultrasound (CEUS) by comparison with conventional ultrasound (US) and contrast-enhanced CT (CECT) in solid pancreatic lesions. Method: Ninety patients with solid pancreatic focal lesions were enrolled, including 36 cases of pancreatic carcinoma, 28 cases of pancreatitis, 6 cases of pancreatic neuroendocrine tumor, 12 cases of solid pseudopapillary tumor of the pancreas, 6 cases of pancreatic metastases, 1 case of cavernous hemolymphangioma and 1 case of lymphoma. US and CEUS were applied respectively for the diagnosis of a total of 90 cases of solid pancreatic lesions. The diagnostic results were scored on a 5-point scale. Results of CEUS were compared with CECT. Results: (1) 3-score cases (undetermined) diagnosed by CEUS were obviously fewer than that of US, while the number of 1-score (definitely benign) and 5-score (definitely malignant) cases diagnosed by CEUS was significantly more than that of US. There was a significant difference in the distribution of final scores using the two methods (p < 0.001). The overall diagnostic accuracies of the 90 cases for CEUS and US were 83.33% and 44.44%, respectively, which indicated an obvious advantage for CEUS (p < 0.001). (2) The diagnostic consistency among three ultrasound doctors: the kappa values calculated for US were 0.537, 0.444 and 0.525, compared with 0.748, 0.645 and 0.795 for CEUS. The interobserver agreement for CEUS was higher than that for US. (3) The sensitivity, specificity and accuracy of the diagnosis of pancreatic carcinoma with CEUS and CECT were 91.7% and 97.2%, 87.0% and 88.9%, and 88.9% and 92.2%, respectively, while for the diagnosis of pancreatitis, the corresponding indices were 82.1% and 67.9%, 91.9% and 100%, and 88.9% and 90%, respectively, showing no significant differences (p > 0.05). Conclusion: CEUS has obvious superiority over conventional US in the general diagnostic accuracy of solid pancreatic lesions and in the

  11. Detection of cavernous transformation of the portal vein by contrast-enhanced ultrasound.

    Science.gov (United States)

    Hwang, Misun; Thimm, Matthew A; Guerrerio, Anthony L

    2018-06-01

    Cavernous transformation of the portal vein can be missed on color Doppler exam or arterial phase cross-sectional imaging due to their slow flow and delayed enhancement. Contrast-enhanced ultrasound (CEUS) offers many advantages over other imaging techniques and can be used to successfully detect cavernous transformations of the portal vein. A 10-month-old female was followed for repeat episodes of hematemesis. Computed tomography angiography (CTA) and magnetic resonance arteriogram (MRA) and portal venography were performed. Color Doppler exam of the portal vein was performed followed by administration of Lumason, a microbubble US contrast agent. Magnetic resonance arteriogram, CTA, and color Doppler exam at the time of initial presentation was unremarkable without obvious vascular malformation within the limits of motion degraded exam. At 8-month follow-up, esophagogastroduodenoscopy revealed a vascular malformation in the distal esophagus which was sclerosed. At 6 month after sclerosis of the lesion, portal venography revealed occlusion of the portal vein with extensive collateralization. Color Doppler revealed subtle hyperarterialization and periportal collaterals. CEUS following color Doppler exam demonstrated extensive enhancement of periportal collaterals. Repeat color Doppler after contrast administration demonstrated extensive Doppler signal in the collateral vessels, suggestive of cavernous transformation. We describe a case of cavernous transformation of the portal vein missed on initial color Doppler, CTA and MRA, but detected with contrast-enhanced ultrasound technique.

  12. Ultrasound in Space Medicine

    Science.gov (United States)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  13. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    International Nuclear Information System (INIS)

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-01-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization. (fast track communication)

  14. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model.

    Science.gov (United States)

    Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin

    2018-04-01

    Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Sentinel node detection in melanomas using contrast-enhanced ultrasound

    DEFF Research Database (Denmark)

    Nielsen, K. Rue; Klyver, H.; Chakera, A. Hougaard

    2009-01-01

    in humans. PURPOSE: To investigate the possible use of CEUS in detecting SN in patients with malignant melanomas (MM), and to improve the method by using different concentrations of contrast agent and various positions of the extremity. MATERIAL AND METHODS: Ten patients with MM on an extremity and one...... healthy volunteer were included. One milliliter of a contrast agent (Sonovue; Bracco, Milan, Italy) was injected subcutaneously on both sides of the scar from the excised tumor. Contrast-enhanced lymph channels and lymph nodes (LNs) were searched for using low-mechanical-index CEUS and by stimulated...... tissue damage, as the contrast agent was not registered for subcutaneous administration. RESULTS: In one patient, two contrast-enhanced inguinal LNs were visualized by CEUS, corresponding to two inguinal SNs found by scintigraphic imaging. No contrast-enhanced lymph channels or LNs were visualized in any...

  16. Visual distinctiveness can enhance recency effects.

    Science.gov (United States)

    Bornstein, B H; Neely, C B; LeCompte, D C

    1995-05-01

    Experimental efforts to meliorate the modality effect have included attempts to make the visual stimulus more distinctive. McDowd and Madigan (1991) failed to find an enhanced recency effect in serial recall when the last item was made more distinct in terms of its color. In an attempt to extend this finding, three experiments were conducted in which visual distinctiveness was manipulated in a different manner, by combining the dimensions of physical size and coloration (i.e., whether the stimuli were solid or outlined in relief). Contrary to previous findings, recency was enhanced when the size and coloration of the last item differed from the other items in the list, regardless of whether the "distinctive" item was larger or smaller than the remaining items. The findings are considered in light of other research that has failed to obtain a similar enhanced recency effect, and their implications for current theories of the modality effect are discussed.

  17. THE ABILITY OF CONTRAST-ENHANCED ULTRASOUND IN THE DIAGNOSIS OF LIVER METASTASES IN CERVICAL CANCER

    OpenAIRE

    V. S. Kryazheva; M. A. Chekalova; Z. R-B. Musaeva; V. V. Kuznetsov

    2017-01-01

    Objective: to explore the possibilities of contrast-enhanced ultrasound (CEUS) in the diagnosis of liver metastases in patients with a diagnosis of cervical cancer.Materials and methods. We analyzed the results of 4 clinical cases, of which 3 cases according CEUS diagnosed with liver metastases, in 1 case – nodular hyperplasia.Results and conclusions. Despite the small number of observations, we have concluded that the use of CEUS allows to expand possibilities of the ultrasound method in the...

  18. Contrast-enhanced ultrasound vs multidetector-computed tomography for detecting liver metastases in colorectal cancer: a prospective, blinded, patient-by-patient analysis

    DEFF Research Database (Denmark)

    Rafaelsen, S R; Jakobsen, A

    2011-01-01

    This study compared the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and multidetector-computed tomography (MDCT) in the detection of liver metastases in patients with colorectal cancer.......This study compared the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and multidetector-computed tomography (MDCT) in the detection of liver metastases in patients with colorectal cancer....

  19. Assessment of portal venous system patency in the liver transplant candidate: A prospective study comparing ultrasound, microbubble-enhanced colour Doppler ultrasound, with arteriography and surgery

    International Nuclear Information System (INIS)

    Marshall, M.M.; Beese, R.C.; Muiesan, P.; Sarma, D.I.; O'Grady, J.; Sidhu, P.S.

    2002-01-01

    AIM: To determine the role of microbubble-enhanced colour Doppler ultrasound (CDUS) in assessing portal venous patency prior to liver transplantation. MATERIALS AND METHODS: Over a 2-year period, all patients with chronic liver disease undergoing routine pre-transplant CDUS examination in whom the portal venous system was inadequately demonstrated were recruited to the study. CDUS was performed in 368 patients and 33 patients (9%) were recruited. A repeat CDUS examination following an intravenous bolus injection of the microbubble contrast agent Levovist[reg] (Schering Healthcare AG, Berlin, Germany) was performed. Diagnostic confidence was recorded on a free linear analogue scale for both examinations. Findings were compared with indirect portography and surgery. RESULTS: Of the 33 patients with sub-optimal baseline examinations, improvement in portal vein visualization was achieved in 31 patients (94%). Median diagnostic confidence increased from 50% (interquartile range 30-60) to 90% (interquartile range 75-98) (P < 0.001) following administration of Levovist[reg]. Overall accuracy of portal vein assessment using microbubble-enhanced CDUS in 15 patients in whom a definitive diagnosis was made within 2 months was 87%. CONCLUSION: Microbubble-enhanced CDUS is a simple, inexpensive adjunct to standard pre liver transplant screening of the portal vein. It is particularly helpful in patients with end-stage cirrhosis who are at high risk of portal vein thrombosis and in whom the conventional examination is sub-optimal.Marshall, M.M. et al. (2002)

  20. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  1. Using low frequency and intensity ultrasound to enhance start-up and operation performance of Anammox process inoculated with the conventional sludge.

    Science.gov (United States)

    Wang, Tao; Zhang, Diandian; Sun, Yating; Zhou, Shanshan; Li, Lin; Shao, Jingjing

    2018-04-01

    A lab-scale ultrasound enhancing Anammox reactor (R1) was established and irradiated once a week by ultrasound with the optimal parameter (frequency of 25 kHz, intensity of 0.2 W cm -2 and exposure time of 3 min) obtained by batch experiments. R1 and the controlled Anammox reactor (R2) without exposure to the ultrasound were operated in parallel. The start-up period of Anammox process (53 days) in R1 was shorter than that (61 days) in R2. The nitrogen loading-enhancing period (day 53-day 135) in R1 was also shorter than that (day 61-day 151) in R2. At the end of the nitrogen loading-enhancing period, NLR (0.76 kg N m -3  d -1 ) and NRR (0.68 kg N m -3  d -1 ) of R1 were both higher than NLR (0.66 kg N m -3  d -1 ) and NRR (0.56 kg N m -3  d -1 ) of R2. Moreover, The stability of Anammox process in R1 was better than that in R2. The results demonstrated that the periodical irradiation of ultrasound enhanced the start-up and operational performance of Anammox reactor. Microbial community analysis indicated that the ultrasound accelerated the microbial succession from some other bacteria to Anammox bacteria so that shorten the start-up period of Anammox process from the conventional activated sludge. It also indicated that the ultrasound strengthened the competitive advantage of Candidatus Kuenenia stuttgartiensis in Anammox bacteria of the mature sludge so as to enhance the nitrogen removal performance of the Anammox reactor under the operation condition of high nitrogen loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver - update 2012

    DEFF Research Database (Denmark)

    Claudon, Michel; Dietrich, Christoph F; Choi, Byung Ihn

    2013-01-01

    Initially, a set of guidelines for the use of ultrasound contrast agents was published in 2004 dealing only with liver applications. A second edition of the guidelines in 2008 reflected changes in the available contrast agents and updated the guidelines for the liver, as well as implementing some...... Medizin/European Journal of Ultrasound for EFSUMB). These guidelines and recommendations provide general advice on the use of all currently clinically available ultrasound contrast agents (UCA). They are intended to create standard protocols for the use and administration of UCA in liver applications...... non-liver applications. Time has moved on, and the need for international guidelines on the use of CEUS in the liver has become apparent. The present document describes the third iteration of recommendations for the hepatic use of contrast enhanced ultrasound (CEUS) using contrast specific imaging...

  3. Analysis of achilles tendon vascularity with second-generation contrast-enhanced ultrasound.

    Science.gov (United States)

    Genovese, Eugenio; Ronga, Mario; Recaldini, Chiara; Fontana, Federico; Callegari, Leonardo; Maffulli, Nicola; Fugazzola, Carlo

    2011-01-01

    To compare morphological, power Doppler, and contrast-enhanced ultrasound (CEUS) features of the Achilles tendon between asymptomatic athletes and athletes who had undergone surgical repair of a previous rupture. Twenty-four athletes were divided in two groups (A and B). Group A included 14 patients with a median age of 32 years (range 27 to 47 years) who had undergone surgical repair for unilateral Achilles tendon rupture. Group B (control group) included 10 subjects with a median age of 34 years (range 27 to 40 years) with no previous or present history of tendinopathy. All patients were evaluated with ultrasound, power Doppler, and CEUS with second-generation contrast agent. We studied the uninjured Achilles tendon in athletes of group A and either the left or the right Achilles tendon of the athletes in group B. CEUS showed a significantly greater ability to detect a greater number of vascular spots within the uninjured tendon of group A compared to group B (power Doppler ultrasound in the uninjured contralateral Achilles tendon. CEUS is useful to evaluate vascularity not detected by other imaging techniques. Vascularity in the uninjured tendon seems to be increased in patients who had a previous rupture. Copyright © 2011 Wiley Periodicals, Inc.

  4. Comparison of Oral Contrast-Enhanced Transabdominal Ultrasound Imaging With Transverse Contrast-Enhanced Computed Tomography in Preoperative Tumor Staging of Advanced Gastric Carcinoma.

    Science.gov (United States)

    He, Xuemei; Sun, Jing; Huang, Xiaoling; Zeng, Chun; Ge, Yinggang; Zhang, Jun; Wu, Jingxian

    2017-12-01

    This study assessed the diagnostic performance of transabdominal oral contrast-enhanced ultrasound (US) imaging for preoperative tumor staging of advanced gastric carcinoma by comparing it with transverse contrast-enhanced computed tomography (CT). This retrospective study included 42 patients with advanced gastric cancer who underwent laparoscopy, radical surgery, or palliative surgery because of serious complications and had a body mass index of less than 25 kg/m 2 . A cereal-based oral contrast agent was used for transabdominal oral contrast-enhanced US. Retrospective analyses were conducted using preoperative tumor staging data acquired by either transabdominal oral contrast-enhanced US or transverse contrast-enhanced CT. Both contrast-enhanced US and contrast-enhanced CT examinations were reviewed by 2 experienced radiologists independently for preoperative tumor staging according to the seventh edition of the TNM classification. The accuracy, sensitivity, and specificity were calculated by comparing the results of contrast-enhanced US and contrast-enhanced CT with pathologic findings. The overall accuracies of the imaging modalities were compared by the McNemar test. No significant difference was noted in the overall accuracy of transabdominal oral contrast-enhanced US (86% [36 of 42]) and transverse contrast-enhanced CT (83% [35 of 42] P > .999). For stage T2 to T4 gastric cancer, the accuracies of transabdominal oral contrast-enhanced US were 88%, 86%, and 98%, respectively, and those of transverse contrast-enhanced CT were 93%, 83%, and 90%. The overall accuracy of transabdominal oral contrast-enhanced US was comparable with that of transverse contrast-enhanced CT for preoperative tumor staging of advanced gastric cancer. © 2017 by the American Institute of Ultrasound in Medicine.

  5. Novelty enhances visual perception.

    Directory of Open Access Journals (Sweden)

    Judith Schomaker

    Full Text Available The effects of novelty on low-level visual perception were investigated in two experiments using a two-alternative forced-choice tilt detection task. A target, consisting of a Gabor patch, was preceded by a cue that was either a novel or a familiar fractal image. Participants had to indicate whether the Gabor stimulus was vertically oriented or slightly tilted. In the first experiment tilt angle was manipulated; in the second contrast of the Gabor patch was varied. In the first, we found that sensitivity was enhanced after a novel compared to a familiar cue, and in the second we found sensitivity to be enhanced for novel cues in later experimental blocks when participants became more and more familiarized with the familiar cue. These effects were not caused by a shift in the response criterion. This shows for the first time that novel stimuli affect low-level characteristics of perception. We suggest that novelty can elicit a transient attentional response, thereby enhancing perception.

  6. Novelty enhances visual perception.

    Science.gov (United States)

    Schomaker, Judith; Meeter, Martijn

    2012-01-01

    The effects of novelty on low-level visual perception were investigated in two experiments using a two-alternative forced-choice tilt detection task. A target, consisting of a Gabor patch, was preceded by a cue that was either a novel or a familiar fractal image. Participants had to indicate whether the Gabor stimulus was vertically oriented or slightly tilted. In the first experiment tilt angle was manipulated; in the second contrast of the Gabor patch was varied. In the first, we found that sensitivity was enhanced after a novel compared to a familiar cue, and in the second we found sensitivity to be enhanced for novel cues in later experimental blocks when participants became more and more familiarized with the familiar cue. These effects were not caused by a shift in the response criterion. This shows for the first time that novel stimuli affect low-level characteristics of perception. We suggest that novelty can elicit a transient attentional response, thereby enhancing perception.

  7. THE ABILITY OF CONTRAST-ENHANCED ULTRASOUND IN THE DIAGNOSIS OF LIVER METASTASES IN CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    V. S. Kryazheva

    2017-01-01

    Full Text Available Objective: to explore the possibilities of contrast-enhanced ultrasound (CEUS in the diagnosis of liver metastases in patients with a diagnosis of cervical cancer.Materials and methods. We analyzed the results of 4 clinical cases, of which 3 cases according CEUS diagnosed with liver metastases, in 1 case – nodular hyperplasia.Results and conclusions. Despite the small number of observations, we have concluded that the use of CEUS allows to expand possibilities of the ultrasound method in the differential diagnosis of focal changes in the liver.

  8. Splenic abnormalities: a comparative review of ultrasound, microbubble-enhanced ultrasound and computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Peddu, P.; Shah, M.; Sidhu, P.S. E-mail: paul.sidhu@kingsch.nhs.uk

    2004-09-01

    The ultrasound appearances of abnormalities of the spleen are reviewed and images compared with computed tomography. Focal lesions, both benign and malignant, trauma, infarction and congenital abnormalities are presented. The use of microbubble ultrasound contrast media as an aid to identifying and characterizing abnormalities is discussed.

  9. Contrast enhanced ultrasound in the assessment of urogenital pathology

    Directory of Open Access Journals (Sweden)

    Libero Barozzi

    2014-12-01

    Full Text Available Contrast enhanced ultrasound (CEUS is an innovative technique that employs microbubble contrast agents to demonstrate parenchymal perfusion. Although initial clinical application was focused on the liver pathology, a wide variety of clinical conditions can be assessed now with CEUS. CEUS is a well-tolerated technique and is acquiring an increasing role in the assessment of renal pathology because contrast agents are not excreted by the kidney and do not affect the renal function. CEUS demonstrated an accuracy similar to contrast enhanced multi-detector computed tomography (CEMDCT in detecting focal lesions, with the advantage of the real-time assessment of microvascular perfusion by using time-intensity curves. The aim of this paper is to review the main indications of CEUS in the assessment of renal and urogenital pathology. Imaging examples are presented and described. Advantages and limitations of CEUS with reference to conventional US and CE-MDCT are discussed.

  10. Recent Visual Experience Shapes Visual Processing in Rats through Stimulus-Specific Adaptation and Response Enhancement.

    Science.gov (United States)

    Vinken, Kasper; Vogels, Rufin; Op de Beeck, Hans

    2017-03-20

    From an ecological point of view, it is generally suggested that the main goal of vision in rats and mice is navigation and (aerial) predator evasion [1-3]. The latter requires fast and accurate detection of a change in the visual environment. An outstanding question is whether there are mechanisms in the rodent visual system that would support and facilitate visual change detection. An experimental protocol frequently used to investigate change detection in humans is the oddball paradigm, in which a rare, unexpected stimulus is presented in a train of stimulus repetitions [4]. A popular "predictive coding" theory of cortical responses states that neural responses should decrease for expected sensory input and increase for unexpected input [5, 6]. Despite evidence for response suppression and enhancement in noninvasive scalp recordings in humans with this paradigm [7, 8], it has proven challenging to observe both phenomena in invasive action potential recordings in other animals [9-11]. During a visual oddball experiment, we recorded multi-unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), which is a higher area of the rodent ventral visual stream. In rat V1, there was only evidence for response suppression related to stimulus-specific adaptation, and not for response enhancement. However, higher up in area LI, spiking activity showed clear surprise-based response enhancement in addition to stimulus-specific adaptation. These results show that neural responses along the rat ventral visual stream become increasingly sensitive to changes in the visual environment, suggesting a system specialized in the detection of unexpected events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Visualizing intramyocardial steam formation with a radiofrequency ablation catheter incorporating near-field ultrasound.

    Science.gov (United States)

    Wright, Matthew; Harks, Erik; Deladi, Szabolcs; Fokkenrood, Steven; Zuo, Fei; Van Dusschoten, Anneke; Kolen, Alexander F; Belt, Harm; Sacher, Frederic; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre

    2013-12-01

    Steam pops are a risk of irrigated RF ablation even when limiting power delivery. There is currently no way to predict gas formation during ablation. It would be useful to visualize intramyocardial gas formation prior to a steam pop occurring using near-field ultrasound integrated into a RF ablation catheter. In an in vivo open-chest ovine model (n = 9), 86 lesions were delivered to the epicardial surface of the ventricles. Energy was delivered for 15-60 seconds, to achieve lesions with and without steam pops, based on modeling data. The ultrasound image was compared to a digital audio recording from within the pericardium by a blinded observer. Of 86 lesions, 28 resulted in an audible steam pop. For lesions that resulted in a steam pop compared to those that did not (n = 58), the mean power delivered was 8.0 ± 1.8 W versus 6.7 ± 2.0 W, P = 0.006. A change in US contrast due to gas formation in the tissue occurred in all lesions that resulted in a steam pop. In 4 ablations, a similar change in US contrast was observed in the tissue and RF delivery was stopped; in these cases, no pop occurred. The mean depth of gas formation was 0.9 ± 0.8 mm, which correlated with maximal temperature predicted by modeling. Changes in US contrast occurred 7.6 ± 7.2 seconds before the impedance rise and 7.9 ± 6.2 seconds (0.1-17.0) before an audible pop. Integrated US in an RF ablation catheter is able to visualize gas formation intramyocardially several seconds prior to a steam pop occurring. This technology may help prevent complications arising from steam pops. © 2013 Wiley Periodicals, Inc.

  12. Investigation of echogenic surface enhancements for improved needle visualization in ultrasonography: A PRISMA systematic review

    DEFF Research Database (Denmark)

    Hovgesen, Caroline Harder; Wilhjelm, Jens E.; Vilmann, Peter

    : A systematic search was performed in five databases: Cochrane Library, Embase (through Ovid), MEDLINE (through PubMed), Scopus, and Web of Science from inception to April 12th, 2017. Each search was based on the search terms: ultrasound, needle, visualization, and comparison, with related synonyms and spelling...

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the transducer for analysis. Ultrasound has difficulty penetrating bone and, therefore, can only see the outer surface ... children or adults). For visualizing internal structure of bones or certain joints, other imaging modalities such as ...

  14. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    Science.gov (United States)

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  15. Laser-enhanced cavitation during high intensity focused ultrasound: An in vivo study

    OpenAIRE

    Cui, Huizhong; Zhang, Ti; Yang, Xinmai

    2013-01-01

    Laser-enhanced cavitation during high intensity focused ultrasound (HIFU) was studied in vivo using a small animal model. Laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected with a passive cavitation detector. The in vivo measurements were made under different combinations of HIFU treatment depths, laser wavelengths, and HIFU durations. The results demonstrated that concurrent light illumination during HIFU has the potentia...

  16. Enhanced alpha-oscillations in visual cortex during anticipation of self-generated visual stimulation.

    Science.gov (United States)

    Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray

    2014-11-01

    The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.

  17. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  18. Design evolution enhances patient compliance for low-intensity pulsed ultrasound device usage

    Directory of Open Access Journals (Sweden)

    Pounder NM

    2016-11-01

    Full Text Available Neill M Pounder, John T Jones, Kevin J Tanis Bioventus LLC, Durham, NC, USA Abstract: Poor patient compliance or nonadherence with prescribed treatments can have a significant unfavorable impact on medical costs and clinical outcomes. In the current study, voice-of-the-customer research was conducted to aid in the development of a next-generation low-intensity pulsed ultrasound (LIPUS bone healing product. An opportunity to improve patient compliance reporting was identified, resulting in the incorporation into the next-generation device of a visual calendar that provides direct feedback to the patient, indicating days for which they successfully completed treatment. Further ­investigation was done on whether inclusion of the visual calendar improved patient adherence to the prescribed therapy (20 minutes of daily treatment over a 6-month period. Thus, 12,984 data files were analyzed from patients prescribed either the earlier- or the next-generation LIPUS device. Over the 6-month period, overall patient compliance was 83.8% with the next-generation LIPUS device, compared with 74.2% for the previous version (p<0.0001. Incorporation of the calendar feature resulted in compliance never decreasing below 76% over the analysis period, whereas compliance with the earlier-generation product fell to 51%. A literature review on the LIPUS device shows a correlation between clinical effectiveness and compliance rates more than 70%. Incorporation of stakeholder feedback throughout the design and innovation process of a next-generation LIPUS device resulted in a measurable improvement in patient adherence, which may help to optimize clinical outcomes. Keywords: LIPUS, ultrasound, compliance, patient adherence, medical device design

  19. Ultrasound elastography as an adjuvant to conventional ultrasound in the preoperative assessment of axillary lymph nodes in suspected breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, K., E-mail: kathryn.taylor@addenbrookes.nhs.uk [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom); O' Keeffe, S.; Britton, P.D.; Wallis, M.G. [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom); Treece, G.M.; Housden, J. [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Parashar, D.; Bond, S. [Cambridge Cancer Trials Centre, Department of Oncology, University of Cambridge, Addenbrookes Hospital, Cambridge (United Kingdom); Cambridge Hub in Trials Methodology Research, MRC Biostatics Unit, University Forvie Site, Cambridge (United Kingdom); Sinnatamby, R. [Department of Radiology, Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge (United Kingdom)

    2011-11-15

    Aims: To compare the performance of ultrasound elastography with conventional ultrasound in the assessment of axillary lymph nodes in suspected breast cancer and whether ultrasound elastography as an adjunct to conventional ultrasound can increase the sensitivity of conventional ultrasound used alone. Materials and methods: Fifty symptomatic women with a sonographic suspicion for breast cancer underwent ultrasound elastography of the ipsilateral axilla concurrent with conventional ultrasound being performed as part of triple assessment. Elastograms were visually scored, strain measurements calculated and node area and perimeter measurements taken. Theoretical biopsy cut points were selected. The sensitivity, specificity, positive predictive value (PPV), and negative predictive values (NPV) were calculated and receiver operating characteristic (ROC) analysis was performed and compared for elastograms and conventional ultrasound images with surgical histology as the reference standard. Results: The mean age of the women was 57 years. Twenty-nine out of 50 of the nodes were histologically negative on surgical histology and 21 were positive. The sensitivity, specificity, PPV, and NPV for conventional ultrasound were 76, 78, 70, and 81%, respectively; 90, 86, 83, and 93%, respectively, for visual ultrasound elastography; and for strain scoring, 100, 48, 58 and 100%, respectively. There was no significant difference between any of the node measurements Conclusions: Initial experience with ultrasound elastography of axillary lymph nodes, showed that it is more sensitive than conventional ultrasound in detecting abnormal nodes in the axilla in cases of suspected breast cancer. The specificity remained acceptable and ultrasound elastography used as an adjunct to conventional ultrasound has the potential to improve the performance of conventional ultrasound alone.

  20. Application of single-image camera calibration for ultrasound augmented laparoscopic visualization.

    Science.gov (United States)

    Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj

    2015-03-01

    Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool ( rdCalib ; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker ® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.

  1. Application of single-image camera calibration for ultrasound augmented laparoscopic visualization

    Science.gov (United States)

    Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj

    2015-03-01

    Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.

  2. Point of Care Ultrasound

    DEFF Research Database (Denmark)

    Dietrich, Christoph F; Goudie, Adrian; Chiorean, Liliana

    2017-01-01

    Over the last decade, the use of portable ultrasound scanners has enhanced the concept of point of care ultrasound (PoC-US), namely, "ultrasound performed at the bedside and interpreted directly by the treating clinician." PoC-US is not a replacement for comprehensive ultrasound, but rather allows...... and critical care medicine, cardiology, anesthesiology, rheumatology, obstetrics, neonatology, gynecology, gastroenterology and many other applications. In the future, PoC-US will be more diverse than ever and be included in medical student training....

  3. Parametric imaging for characterizing focal liver lesions in contrast-enhanced ultrasound.

    Science.gov (United States)

    Rognin, Nicolas G; Arditi, Marcel; Mercier, Laurent; Frinking, Peter J A; Schneider, Michel; Perrenoud, Geneviève; Anaye, Anass; Meuwly, Jean-Yves; Tranquart, François

    2010-11-01

    The differentiation between benign and malignant focal liver lesions plays an important role in diagnosis of liver disease and therapeutic planning of local or general disease. This differentiation, based on characterization, relies on the observation of the dynamic vascular patterns (DVP) of lesions with respect to adjacent parenchyma, and may be assessed during contrast-enhanced ultrasound imaging after a bolus injection. For instance, hemangiomas (i.e., benign lesions) exhibit hyper-enhanced signatures over time, whereas metastases (i.e., malignant lesions) frequently present hyperenhanced foci during the arterial phase and always become hypo-enhanced afterwards. The objective of this work was to develop a new parametric imaging technique, aimed at mapping the DVP signatures into a single image called a DVP parametric image, conceived as a diagnostic aid tool for characterizing lesion types. The methodology consisted in processing a time sequence of images (DICOM video data) using four consecutive steps: (1) pre-processing combining image motion correction and linearization to derive an echo-power signal, in each pixel, proportional to local contrast agent concentration over time; (2) signal modeling, by means of a curve-fitting optimization, to compute a difference signal in each pixel, as the subtraction of adjacent parenchyma kinetic from the echopower signal; (3) classification of difference signals; and (4) parametric image rendering to represent classified pixels as a support for diagnosis. DVP parametric imaging was the object of a clinical assessment on a total of 146 lesions, imaged using different medical ultrasound systems. The resulting sensitivity and specificity were 97% and 91%, respectively, which compare favorably with scores of 81 to 95% and 80 to 95% reported in medical literature for sensitivity and specificity, respectively.

  4. Active ultrasound pattern injection system (AUSPIS for interventional tool guidance.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Guo

    Full Text Available Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  5. Contrast-enhanced ultrasound in diagnosis and characterization of focal hepatic lesions.

    Science.gov (United States)

    Molins, Inés Gómez; Font, Juan Manuel Fernández; Alvaro, Juan Carrero; Navarro, Jose Luís Lledó; Gil, Marta Fernández; Rodríguez, Conrado M Fernández

    2010-12-28

    The extensive use of imaging techniques in differential diagnosis of abdominal conditions and screening of hepatocellular carcinoma in patients with chronic hepatic diseases, has led to an important increase in identification of focal liver lesions. The development of contrast-enhanced ultrasound (CEUS) opens a new window in the diagnosis and follow-up of these lesions. This technique offers obvious advantages over the computed tomography and magnetic resonance, without a decrease in its sensitivity and specificity. The new second generation contrast agents, due to their intravascular distribution, allow a continuous evaluation of the enhancement pattern, which is crucial in characterization of liver lesions. The dual blood supply in the liver shows three different phases, namely arterial, portal and late phases. The enhancement during portal and late phases can give important information about the lesion's behavior. Each liver lesion has a different enhancement pattern that makes possible an accurate approach to their diagnosis. The role of emerging techniques as a contrast-enhanced three-dimensional US is also discussed. In this article, the advantages, indications and technique employed during CEUS and the different enhancement patterns of most benign and malignant focal liver lesions are discussed.

  6. Contrast-enhanced ultrasound features of hepatocellular carcinoma not detected during the screening procedure.

    Science.gov (United States)

    Dong, Yi; Wang, Wen-Ping; Mao, Feng; Dietrich, Christoph

    2017-08-01

    Aim  The aim of this retrospective study is to report on the characteristics of contrast-enhanced ultrasound (CEUS) of primarily not detected hepatocellular carcinoma (HCC) during the screening procedure of patients at risk. Methods  Sixty-four patients with a finally solitary and histologically proven HCC not detected HCC during the screening procedure were retrospectively analyzed. Most of HCC lesions (90.6 %, 58/64) measured < 20 mm in diameter. All HCC lesions were not detected during the initial screening procedure but suspected using contrast-enhanced magnetic resonance imaging. The final gold standard was biopsy or surgery with histological examination. Results  On CEUS, 62/64 (96.8 %) of HCC were characterized as an obviously hyperenhanced lesion in arterial phase, and 41/64 (64.1 %) of HCC were characterized as hypoenhancing lesions in the portal venous and late phases. During the arterial phase of CEUS, 96.8 % of HCC displayed homogeneous hyperenhancement. Knowing the CEUS and magnetic resonance imaging findings, 45/64 (70.3 %) could have been detected using B-mode ultrasound (BMUS). Conclusion  BMUS as a screening procedure is generally accepted. Contrast-enhanced imaging modalities have improved detection and characterization of HCC. Homogeneous hyperenhancement during the arterial phase and mild washout are indicative for HCC in liver cirrhosis. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Despeckle filtering for ultrasound imaging and video II selected applications

    CERN Document Server

    Loizou, Christos P

    2015-01-01

    In ultrasound imaging and video visual perception is hindered by speckle multiplicative noise that degrades the quality. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image/video segmentation, texture analysis and encoding in ultrasound imaging and video. The goal of the first book (book 1 of 2 books) was to introduce the problem of speckle in ultrasound image and video as well as the theoretical background, algorithmic steps, and the MatlabTM for the following group of despeckle filters:

  8. Colour Doppler ultrasound of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, C.J.; Sriprasad, S.; Sidhu, P.S. E-mail: paulsidhu@compuserve.com

    2003-07-01

    Because it is a superficial structure, the penis is ideally suited to ultrasound imaging. A number of disease processes, including Peyronie's disease, penile fractures and penile tumours, are clearly visualized with ultrasound. An assessment of priapism can also be made using spectral Doppler waveform technology. Furthermore, dynamic assessment of cavernosal arterial changes after pharmaco-stimulation allows diagnosis of arterial and venogenic causes for impotence. This pictorial review illustrates the range of diseases encountered with ultrasound of the penis.

  9. Enhanced learning of natural visual sequences in newborn chicks.

    Science.gov (United States)

    Wood, Justin N; Prasad, Aditya; Goldman, Jason G; Wood, Samantha M W

    2016-07-01

    To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.

  10. Contrast-enhanced ultrasound of focal nodular hyperplasia: a matter of size

    Energy Technology Data Exchange (ETDEWEB)

    Bertin, Caroline [Hopital Beaujon APHP, Radiology Department, Clichy (France); Egels, Sophie; Huynh-Charlier, Isabelle [Hopital Pitie-Salpetriere APHP, Radiology Department, Paris (France); Wagner, Mathilde [Hopital Pitie-Salpetriere APHP, Radiology Department, Paris (France); Universite Paris Diderot, INSERM, UMR 1149, Laboratoire IPMA, Centre de Recherche sur l' Inflammation, Faculte de Medecine X Bichat, Paris (France); Vilgrain, Valerie [Hopital Beaujon APHP, Radiology Department, Clichy (France); Universite Paris Diderot, INSERM, UMR 1149, Laboratoire IPMA, Centre de Recherche sur l' Inflammation, Faculte de Medecine X Bichat, Paris (France); Lucidarme, Olivier [Hopital Pitie-Salpetriere APHP, Radiology Department, Paris (France); Sorbonne Universites, UPMC Univ Paris 06, CNRS UMR 7371, INSERM UMRS 1146, Laboratoire d' Imagerie Biomedicale, Paris (France); Groupe Hospitalier Pitie-Salpetriere - Charles Foix, Service de Radiologie Polyvalente et Oncologique, Paris (France)

    2014-10-15

    To assess the contrast-enhanced ultrasound (CEUS) frequencies of centrifugal enhancement, spoke-wheel sign and central scar in focal nodular hyperplasia (FNH) as a function of lesion size. Ninety-four FNHs were retrospectively reviewed to assess their largest diameter and enhancement pattern, including centrifugal enhancement from one central artery, spoke-wheel sign, diffuse or centripetal enhancement, central scar and late-phase washout. Mean FNH-lesion size was 3.7 ± 2.1 cm. Only 43.6 % of FNHs had centrifugal enhancement, with a spoke-wheel pattern (23.4 %) or without (20.2 %), while 56.4 % showed diffuse or centripetal enhancement. Centrifugal enhancement was observed in 73.9 % of FNHs ≤3.1 cm and 14.6 % of FNHs >3.1 cm (P < 10{sup -4}). Size and frequency of centrifugal enhancement were negatively correlated (r = -0.57, P < 10{sup -4}). The spoke-wheel pattern was also seen more frequently in smaller (37 %) than in larger FNHs (10.4 %) (P < 10{sup -3}). Late-phase washout was described in 5.3 % of FNHs and was not size-dependent. Lesions with a central scar were larger than those without, respectively, 5.7 ± 1.7 and 3.6 ± 2.0 cm (P = 0.012). Typical centrifugal enhancement yielding a confident FNH diagnosis is seen significantly more frequently when the lesion is ≤3.1 cm. (orig.)

  11. Analysis of Achilles tendon vascularity with second generation Contrast-Enhanced Ultrasound (CEUS)

    OpenAIRE

    Genovese , Eugenio; Ronga , Mario; Recaldini , Chiara; Fontana , Federico; Callegari , Leonardo; Fugazzola , Carlo

    2011-01-01

    Abstract Purpose: To compare morphological and power Doppler features of the Achilles tendon and Contrast-Enhanced Ultrasound (CEUS) behaviour between asymptomatic athletes and athletes who had undergone surgery for repair of an Achilles tendon rupture. Materials and Methods: 24 athletes were divided in two groups (A and B). Group A included 14 patients with a median age of 32 years (range 27 to 47 years) who had undergone surgical repair for unilateral Achilles tendon ...

  12. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    Science.gov (United States)

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact.

  13. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    Directory of Open Access Journals (Sweden)

    Vera ePaefgen

    2015-09-01

    Full Text Available Ultrasound is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents. There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular contrast agents enable functional analyses, e.g. to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by ultrasound pulses to locally release the entrapped agent. Recent studies show that ultrasound contrast agents are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of ultrasound contrast agents and introduces the current clinical applications of contrast-enhanced ultrasound. Additionally, an overview of the recent developments in ultrasound probe design for functional and molecular diagnosis as well as for drug delivery is given.

  14. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo.

    Science.gov (United States)

    Qiu, L; Zhang, L; Wang, L; Jiang, Y; Luo, Y; Peng, Y; Lin, L

    2012-07-01

    The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.

  15. Effect of contrast-enhanced ultrasound on differential diagnosis of intrahepatic cholangiocarcinoma and arterial phase enhanced hepatic inflammatory lesions

    Institute of Scientific and Technical Information of China (English)

    Shanshan Yin; Qiuli Cui; Kun Yan; Wei Yang; Wei Wu; Liping Bao; Minhua Chen

    2017-01-01

    Objective:To investigate differential diagnosis between intrahepatic cholangiocarcinoma (ICC) and arterial phase enhanced hepatic inflammatory lesions in patients without liver cirrhosis using contrast-enhanced ultrasound (CEUS).Methods:ICC and hepatic inflammatory lesions cases with CEUS and pathological diagnosis between Sep 2013 and Oct 2016 were investigated retrospectively.Imaging features of conventional ultrasound and CEUS were analyzed.The parameters of time intensity curve (TIC),including the arrival time,peak intensity (PI) in the lesions,the starting time for washout,and the intensity difference at 3 min (△I3) after contrast agent infection between the lesion and the liver parenchyma,were compared between ICC and hepatic inflammatory lesions.Results:Twenty-five ICC and fifteen inflammatory patients were included in this study.Seventeen ICC (68.0%) and two inflammatory cases (13.3%) showed bile duct dilatation on conventional ultrasound.Using CEUS,three ICC cases (12.0%) were misdiagnosed as inflammatory lesions and three inflammatory lesions (20.0%) as ICC;two ICC (8.0%) and one inflammatory case (6.7%) could not be made definite diagnosis.Washout started at 34.5±3.5 s and 61.5± 12.9 s for ICC and inflammatory lesions respectively (P<0.001).The intensity difference between lesion and liver parenchyma at 3 min after contrast agent injection was 10.8±3.1 dB in ICC and 4.2±2.3 dB in inflammatory group (P<0.00 1).The sensitivity and specificity differentiating ICC and inflammatory lesions were 76% and 87% if the cut-offvalue of the intensity difference was 7.7 dB.Conclusions:Combined with TIC analysis,and particularly with the characteristic of the early-starting and obvious washout in ICC,CEUS can be useful in differential diagnosis between hepatic inflammatory lesions and ICC.

  16. Ultrasound-Enhanced Biogas Production from Different Substrates

    DEFF Research Database (Denmark)

    González-Fernández, Cristina; Timmers, Rudolphus Antonius; Ruiz, Begona

    2015-01-01

    Among the biofuel production processes using different substrates, the biogas generation process is one of the simplest. Compared with bioethanol or biodiesel production processes, anaerobic digestion is a process where all the organic matter (carbohydrates, lipids and proteins) can be biologically...... production. The present chapter is dedicated to providing a review of ultrasound pretreatment applied to different substrates (lignocelullosic materials, manures, sludge and microalgae). The advantages and constraints, that ultrasound pretreatment exhibit towards biogas production, are discussed and compared...

  17. Evaluation of frequency-dependent ultrasound attenuation in transparent medium using focused shadowgraph technique

    Science.gov (United States)

    Iijima, Yukina; Kudo, Nobuki

    2017-07-01

    Acoustic fields of a short-pulsed ultrasound propagating through a transparent medium with ultrasound attenuation were visualized by the focused shadowgraph technique. A brightness waveform and its spatial integrations were derived from a visualized field image and compared with a pressure waveform measured by a membrane hydrophone. The experimental results showed that first-order integration of the brightness wave has good agreement with the pressure waveforms. Frequency-dependent attenuation of the pulse propagating through castor oil was derived from brightness and pressure waveforms, and attenuation coefficients determined from focused shadowgraphy and hydrophone techniques showed good agreement. The results suggest the usefulness of the shadowgraph technique not only for the visualization of ultrasound fields but also for noncontact estimation of rough pressure waveforms and correct ultrasound attenuation.

  18. Enhancing online timeline visualizations with events and images

    Science.gov (United States)

    Pandya, Abhishek; Mulye, Aniket; Teoh, Soon Tee

    2011-01-01

    The use of timeline to visualize time-series data is one of the most intuitive and commonly used methods, and is used for widely-used applications such as stock market data visualization, and tracking of poll data of election candidates over time. While useful, these timeline visualizations are lacking in contextual information of events which are related or cause changes in the data. We have developed a system that enhances timeline visualization with display of relevant news events and their corresponding images, so that users can not only see the changes in the data, but also understand the reasons behind the changes. We have also conducted a user study to test the effectiveness of our ideas.

  19. [Value of contrast-enhanced ultrasound (CEUS) in the differential diagnosis between benign and malignant renal neoplasms].

    Science.gov (United States)

    Zhang, Sheng; Wang, Xiao-qing; Xin, Xiao-jie; Xu, Yong

    2013-05-01

    To investigate the value of contrast enhanced ultrasound (CEUS) imaging in the differential diagnosis between benign and malignant renal neoplasms. Two hundred and forty-five cases of renal space-occupying lesions confirmed by biopsy or surgical pathology were included in this study. The CEUS features of the renal space-occupying lesions, i.e., the enhancement degree, homogeneity of enhancement, washing-in and washing-out time and enhancement pattern, were retrospectively analyzed. There were 210 cases of malignant renal tumors and 35 cases of benign lesions. The CEUS modes of the malignant renal tumors included "quick in and quick out" 82 cases, "quick in and slow out" 64 cases, "slow in and quick out" 18 cases and "slow in and slow out" 46 cases; good enhancement 150 cases (71.4%) and inhomogeneous enhancement 180 cases (85.7%).Both the contrast agent filling defect area and solid component enhancement of solid-cystic tumors were important features of malignant renal tumors. In the 35 cases of benign lesions,the CEUS modes included "quick in and quick out" 4 cases, "quick in and slow out" 8 cases, "slow in and quick out" 10 cases and "slow in and slow out" 13 cases. Most of the benign tumors showed low enhancement 51.4% (18/35) and inhomogeneous enhancement 54.3% (19/35). There were significant differences between the malignant and benign renal neoplasms in CEUS mode, degree of enhancement and homogeneity of enhancement (P benign and malignant tumors were 77.1% and 83.8%, respectively, while the two-dimensional ultrasound diagnosis of benign and malignant tumors were 68.6% and 76.7%, respectively, with a significant difference (P benign and malignant renal lesions.

  20. Ultrasound-induced radical polymerization

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Kemmere, M.F.; Keurentjes, J.T.F.

    2004-01-01

    Sonochemistry comprises all chemical effects that are induced by ultrasound. Most of these effects are caused by cavitations, ie, the collapse of microscopic bubbles in a liquid. The chemical effects of ultrasound include the formation of radicals and the enhancement of reaction rates at ambient

  1. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    , indicating the system’s ability to visualize low contrast objects 5.4 cm into a patient. PET-CT system’s performance evaluation also produced satisfactory results in accordance with set tolerances as recommended by IAEA Human Health Series 1. Computed tomography laser alignment test ensured that all CT gantry lasers were properly aligned with the patient bed. Image display width test ensured that volume of patient or organ being measured and displayed was equivalent to that selected on the CT scanner console, to a deviation of ± 1 mm. Results from CT image uniformity test showed that mean CT numbers in peripheral regions of interest deviated from the central mean to within recommended tolerance level of ± 5 HU, indicating a good level of uniformity. Computed tomographic dose indices for head and body phantoms were estimated as 44.30 mGy and 20.08 mGy, comparative to console displayed doses of 42.40 mGy and 19.49 mGy respectively. Registration accuracy for PET-CT images was to have displacements of less than 1 mm in x, y and z directions. Image quality of PET-CT images was performed to produce images simulating those obtained in a total body imaging study involving both hot and cold lesions. Percentage contrast estimates of 49.3% and 52.6% were obtained for hot spheres of diameters 1.3 cm and 2.2 cm respectively, while contrast estimates of 74.8% and 75.6% were obtained for cold spheres of diameters 2.8 cm and 3.7 cm respectively. The PET-CT system resolution was estimated as 0.5 ± 0.01 cm, indicating the system’s ability to image tumours of the size of about 5 mm. Satisfactory results from the performance evaluation of ultrasound and PET-CT systems, paved way for them to be used in acquiring prostatic images for the study. Developed MATLAB image enhancement algorithm enhanced the quality of prostatic images before fusion. The algorithm was developed by mapping the intensity values in raw images to new values in a modified image using imadjust function. Contrast

  2. Contrast-enhanced harmonic endoscopic ultrasound in solid lesions of the pancreas: results of a pilot study.

    Science.gov (United States)

    Napoleon, B; Alvarez-Sanchez, M V; Gincoul, R; Pujol, B; Lefort, C; Lepilliez, V; Labadie, M; Souquet, J C; Queneau, P E; Scoazec, J Y; Chayvialle, J A; Ponchon, T

    2010-07-01

    Distinguishing pancreatic adenocarcinoma from other pancreatic masses remains challenging with current imaging techniques. This prospective study aimed to evaluate the accuracy of a new procedure, imaging the microcirculation pattern of the pancreas by contrast-enhanced harmonic endoscopic ultrasound (CEH-EUS) with a new Olympus prototype echo endoscope. 35 patients presenting with solid pancreatic lesions were prospectively enrolled. All patients had conventional B mode and power Doppler EUS. After an intravenous bolus injection of 2.4 ml of a second-generation ultrasound contrast agent (SonoVue) CEH-EUS was then performed with a new Olympus prototype echo endoscope (xGF-UCT 180). The microvascular pattern was compared with the final diagnosis based on the pathological examination of specimens from surgery or EUS-guided fine-needle aspiration (EUS-FNA) or on follow-up for at least 12 months. The final diagnoses were: 18 adenocarcinomas, 9 neuroendocrine tumors, 7 chronic pancreatitis, and 1 stromal tumor. Power Doppler failed to display microcirculation, whereas harmonic imaging demonstrated it in all cases. Out of 18 lesions with a hypointense signal on CEH-EUS, 16 were adenocarcinomas. The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and accuracy of hypointensity for diagnosing pancreatic adenocarcinoma were 89 %, 88 %, 88 %, 89 %, and 88.5 %, compared with corresponding values of 72 %, 100 %, 77 %, 100 %, and 86 % for EUS-FNA. Of five adenocarcinomas with false-negative results at EUS-FNA, four had a hypointense echo signal at CEH-EUS. CEH-EUS with the new Olympus prototype device successfully visualizes the microvascular pattern in pancreatic solid lesions, and may be useful for distinguishing adenocarcinomas from other pancreatic masses.

  3. Haptic and Audio-visual Stimuli: Enhancing Experiences and Interaction

    NARCIS (Netherlands)

    Nijholt, Antinus; Dijk, Esko O.; Lemmens, Paul M.C.; Luitjens, S.B.

    2010-01-01

    The intention of the symposium on Haptic and Audio-visual stimuli at the EuroHaptics 2010 conference is to deepen the understanding of the effect of combined Haptic and Audio-visual stimuli. The knowledge gained will be used to enhance experiences and interactions in daily life. To this end, a

  4. Feasibility and usefulness of using swallow contrast-enhanced ultrasound to diagnose Zenker's diverticulum: preliminary results.

    Science.gov (United States)

    Cui, Xin-Wu; Ignee, Andre; Baum, Ulrich; Dietrich, Christoph F

    2015-04-01

    Zenker's diverticulum (ZD) may be misdiagnosed on conventional ultrasound as a thyroid nodule or other lesion. A barium esophagram is usually used to confirm the diagnosis; however, this procedure exposes the patient to radiation. The aim of this study was to evaluate the feasibility of using swallow contrast-enhanced ultrasound (swallow-CEUS) to diagnose ZD. Ten consecutive patients with ZD (7 men and 3 women, aged 67 ± 11 y) were included in the study. In 4 patients, ZD was incidentally found on head and neck ultrasound, and in 6 patients, ZD was suspected because of dysphagia. All lesions could be detected on conventional ultrasound before swallow-CEUS. Ten healthy volunteers (8 men and 2 women, aged 60 ± 12 y) were chosen as a control group. Written informed consent was obtained. With the patient in the sitting or upright position, conventional ultrasound was performed first to image the lesion, then the patient was asked to swallow ultrasound contrast agent (UCA) (2-4 drops of SonoVue diluted with about 200 mL of tap water). Transity of the contrast agent in the esophagus was imaged with CEUS. Retention of the UCA in the diverticulum was monitored for at least 3 min. All patients underwent a barium esophagram as the gold standard. Swallow-CEUS revealed that in all patients (100%), the UCA was transported from the pharynx to the esophagus while the patient swallowed. ZD appeared as a pouch-shaped structure at the posterior pharyngo-esophageal junction that retained UCA longer than 3 min. The barium esophagram confirmed the diagnosis of ZD in all patients. For the 10 volunteers, no abnormal structure (retaining UCA) was detected during or after swallowing of UCA. With the advantages of no radiation and bedside availability, swallow-CEUS may become a method of choice in confirmation of the diagnosis of ZD, especially when ZD is suspected on conventional ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier

  5. Contrast enhanced ultrasound of splenic lymphoma involvement

    International Nuclear Information System (INIS)

    Goerg, Christian; Faoro, Charis; Bert, Tillmann; Tebbe, Johannes; Neesse, Albrecht; Wilhelm, Christian

    2011-01-01

    Objective: The aim of this study was to compare the value of contrast-enhanced ultrasonography (CEUS) with standard B-mode ultrasound (US) for diagnosis of splenic lymphoma involvement. Methods: From 04/2005 to 10/2008 n = 250 lymphoma patients were investigated by standard B-mode US. A homogeneous splenic echotexture was found in 199 patients (79%). To clarify the benefit of CEUS in this group a pilot series was performed with 16 of the 199 lymphoma patients. All patients with an abnormal splenic echotexture on standard B-Mode US (n = 51) including focal hypoechoic splenic lesions (n = 41) and an inhomogeneous splenic texture (n = 10) were studied by CEUS. CEUS data were retrospectively evaluated. The diagnoses included indolent lymphoma (n = 27), aggressive lymphoma (n = 14), and Hodgkin's disease (n = 10). Number and size of lesions were determined by B-mode US and CEUS. The visualisation of splenic lymphoma involvement by CEUS in comparison to B-mode US was classified as worse, equal, or better. Results: All patients with a homogeneous spleen on B-mode US (n = 16) had no visible focal lesions on CEUS. Study patients with focal lesions (n = 41) had a hypoechoic (n = 22) or isoechoic (n = 19) enhancement during the arterial phase, and a hypoechoic enhancement during the parenchymal phase (n = 41). The visualisation of focal splenic lymphoma was equal (n = 32), better (n = 6), or worse (n = 3). In all study patients with an inhomogeneous spleen on B-mode US (n = 10) no focal lesions were found by CEUS and the value of CEUS therefore was classified as worse. Conclusion: CEUS has no clear advantage for diagnosis of splenic lymphoma involvement.

  6. Contrast enhanced ultrasound of splenic lymphoma involvement

    Energy Technology Data Exchange (ETDEWEB)

    Goerg, Christian, E-mail: goergc@med.uni-marburg.de [Medizinische Universitaetsklinik, Baldingerstrasse, 35033 Marburg/Lahn (Germany); Faoro, Charis [Medizinische Universitaetsklinik, Baldingerstrasse, 35033 Marburg/Lahn (Germany); Bert, Tillmann [Zentralklinik Bad Berka GmbH, Robert-Koch-Allee 9, 99437 Bad Berka (Germany); Tebbe, Johannes [Klinikum Lippe-Detmold, Roentgenstrasse 18, 32756 Detmold (Germany); Neesse, Albrecht; Wilhelm, Christian [Medizinische Universitaetsklinik, Baldingerstrasse, 35033 Marburg/Lahn (Germany)

    2011-11-15

    Objective: The aim of this study was to compare the value of contrast-enhanced ultrasonography (CEUS) with standard B-mode ultrasound (US) for diagnosis of splenic lymphoma involvement. Methods: From 04/2005 to 10/2008 n = 250 lymphoma patients were investigated by standard B-mode US. A homogeneous splenic echotexture was found in 199 patients (79%). To clarify the benefit of CEUS in this group a pilot series was performed with 16 of the 199 lymphoma patients. All patients with an abnormal splenic echotexture on standard B-Mode US (n = 51) including focal hypoechoic splenic lesions (n = 41) and an inhomogeneous splenic texture (n = 10) were studied by CEUS. CEUS data were retrospectively evaluated. The diagnoses included indolent lymphoma (n = 27), aggressive lymphoma (n = 14), and Hodgkin's disease (n = 10). Number and size of lesions were determined by B-mode US and CEUS. The visualisation of splenic lymphoma involvement by CEUS in comparison to B-mode US was classified as worse, equal, or better. Results: All patients with a homogeneous spleen on B-mode US (n = 16) had no visible focal lesions on CEUS. Study patients with focal lesions (n = 41) had a hypoechoic (n = 22) or isoechoic (n = 19) enhancement during the arterial phase, and a hypoechoic enhancement during the parenchymal phase (n = 41). The visualisation of focal splenic lymphoma was equal (n = 32), better (n = 6), or worse (n = 3). In all study patients with an inhomogeneous spleen on B-mode US (n = 10) no focal lesions were found by CEUS and the value of CEUS therefore was classified as worse. Conclusion: CEUS has no clear advantage for diagnosis of splenic lymphoma involvement.

  7. Audio-visual speech timing sensitivity is enhanced in cluttered conditions.

    Directory of Open Access Journals (Sweden)

    Warrick Roseboom

    2011-04-01

    Full Text Available Events encoded in separate sensory modalities, such as audition and vision, can seem to be synchronous across a relatively broad range of physical timing differences. This may suggest that the precision of audio-visual timing judgments is inherently poor. Here we show that this is not necessarily true. We contrast timing sensitivity for isolated streams of audio and visual speech, and for streams of audio and visual speech accompanied by additional, temporally offset, visual speech streams. We find that the precision with which synchronous streams of audio and visual speech are identified is enhanced by the presence of additional streams of asynchronous visual speech. Our data suggest that timing perception is shaped by selective grouping processes, which can result in enhanced precision in temporally cluttered environments. The imprecision suggested by previous studies might therefore be a consequence of examining isolated pairs of audio and visual events. We argue that when an isolated pair of cross-modal events is presented, they tend to group perceptually and to seem synchronous as a consequence. We have revealed greater precision by providing multiple visual signals, possibly allowing a single auditory speech stream to group selectively with the most synchronous visual candidate. The grouping processes we have identified might be important in daily life, such as when we attempt to follow a conversation in a crowded room.

  8. Working memory can enhance unconscious visual perception.

    Science.gov (United States)

    Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying

    2012-06-01

    We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.

  9. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina.

    Directory of Open Access Journals (Sweden)

    Sachin S Thakur

    Full Text Available Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM. The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.

  11. Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning

    Science.gov (United States)

    Rau, Martina A.

    2017-01-01

    Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students' learning of content knowledge, compared to text-only. But should students learn with a single type of visual…

  12. Contrast-enhanced voiding urosonography: in vitro evaluation of a second-generation ultrasound contrast agent for in vivo optimization.

    Science.gov (United States)

    Back, Susan J; Edgar, J Christopher; Canning, Douglas A; Darge, Kassa

    2015-09-01

    Pediatric contrast-enhanced ultrasound (CEUS) is primarily performed outside the United States where a track record for safety in intravenous and intravesical applications has been established. Contrast-enhanced voiding urosonography (ceVUS) has also been shown to have a much higher rate of vesicoureteral reflux detection compared to voiding cystourethrography. US contrast agents available in the United States differ from those abroad. Optison® (GE Healthcare, Princeton, NJ) is such an US contrast agent. While Optison® has similar characteristics to other second-generation agents, it has never been used for ceVUS. In vitro optimization of dose and imaging parameters as well as assessment of contrast visualization when delivered in conditions similar to ceVUS are necessary starting points prior to in vivo applications. To optimize the intravesical use of Optison® in vitro for ceVUS before its use in pediatric studies. The experimental design simulated intravesical use. Using 9- and 12-MHz linear transducers, we scanned 20-mL syringes varying mechanical index, US contrast agent concentration (0.25%, 0.5%, 1.0%), solvent (saline, urine, radiographic contrast agent) and time out of refrigeration. We evaluated mechanical index settings and contrast duration, optimized the contrast dose, measured the effect of urine and radiographic contrast agent, and the impact of length of time of contrast outside of the refrigerator on US contrast appearance. We scanned 50-ml saline bags to assess the appearance and duration of US contrast with different delivery systems (injection vs. infusion). Consistent contrast visualization was achieved at a mechanical index of 0.06-0.17 and 0.11-0.48 for the L9 and L12 MHz transducers (P contrast visualization of the microbubbles with a higher transducer frequency. The lowest mechanical index for earliest visible microbubble destruction was 0.21 for the 9 MHz and 0.39 for the 12 MHz (P contrast agent volume to bladder filling was the

  13. Detection of the Single-Session Complete Ablation Rate by Contrast-Enhanced Ultrasound during Ultrasound-Guided Laser Ablation for Benign Thyroid Nodules: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    2016-01-01

    Full Text Available This study aimed to investigate the single-session complete ablation rate of ultrasound-guided percutaneous laser ablation (LA for benign thyroid nodules. LA was performed in 90 patients with 118 benign thyroid nodules. Contrast-enhanced ultrasound (CEUS was used to evaluate complete nodule ablation one day after ablation. Thyroid nodule volumes, thyroid functions, clinical symptoms and complications were evaluated 1, 3, 6, 12, and 18 months after ablation. Results showed that all benign thyroid nodules successfully underwent LA. The single-session complete ablation rates for nodules with maximum diameters ≤2 cm, 2-3 cm and ≥3 cm were 93.4%, 70.3% and 61.1%, respectively. All nodule volumes significantly decreased than that one day after ablation (P0.05. Three patients had obvious pain during ablation; one (1.1% had recurrent laryngeal nerve injury, but the voice returned to normal within 6 months after treatment. Thus, ultrasound-guided LA can effectively inactivate benign thyroid nodules. LA is a potentially viable minimally invasive treatment that offers good cosmetic effects.

  14. Clinical Applications of Contrast-Enhanced Ultrasound in the Pediatric Work-Up of Focal Liver Lesions and Blunt Abdominal Trauma

    DEFF Research Database (Denmark)

    Laugesen, Nicolaj Grønbæk; Nolsoe, Christian Pallson; Rosenberg, Jacob

    2017-01-01

    of CEUS is indeed promising. However, no ultrasound contrast agent manufactured today is registered for pediatric use in Europe. The contrast agent SonoVue(®) has recently been approved by the FDA under the name of Lumason(®) to be used in hepatic investigations in adults and children. This article...... help reduce radiation exposure and use of iodinated contrast agents in pediatrics, thereby potentially reducing complications in routine imaging.......In pediatrics ultrasound has long been viewed more favorably than imaging that exposes patients to radiation and iodinated contrast or requires sedation. It is child-friendly and diagnostic capabilities have been improved with the advent of contrast-enhanced ultrasound (CEUS). The application...

  15. Semi-automatic motion compensation of contrast-enhanced ultrasound images from abdominal organs for perfusion analysis

    Czech Academy of Sciences Publication Activity Database

    Schafer, S.; Nylund, K.; Saevik, F.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Dimcevski, G.; Gilja, O.H.; Tönnies, K.

    2015-01-01

    Roč. 63, AUG 1 (2015), s. 229-237 ISSN 0010-4825 R&D Projects: GA ČR GAP102/12/2380 Institutional support: RVO:68081731 Keywords : ultrasonography * motion analysis * motion compensation * registration * CEUS * contrast-enhanced ultrasound * perfusion * perfusion modeling Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.521, year: 2015

  16. Portable Ultrasound Imaging

    DEFF Research Database (Denmark)

    di Ianni, Tommaso

    This PhD project investigates hardware strategies and imaging methods for hand-held ultrasound systems. The overall idea is to use a wireless ultrasound probe linked to general-purpose mobile devices for the processing and visualization. The approach has the potential to reduce the upfront costs...... beamforming strategies are simulated from a system-level perspective. The quality of the B-mode image is evaluated and the minimum specifications are derived for the design of a portable probe with integrated electronics in-handle. The system is based on a synthetic aperture sequential beamforming approach...... that allows to significantly reduce the data rate between the probe and processing unit. The second part investigates the feasibility of vector flow imaging in a hand-held ultrasound system. Vector flow imaging overcomes the limitations of conventional imaging methods in terms of flow angle compensation...

  17. Breast tumor size assessment: comparison of conventional ultrasound and contrast-enhanced ultrasound.

    Science.gov (United States)

    Jiang, Yu-Xin; Liu, He; Liu, Ji-Bin; Zhu, Qing-Li; Sun, Qiang; Chang, Xiao-Yan

    2007-12-01

    Accurate assessment of tumor size is necessary when selecting patients for breast-conserving surgery. In the study of breast contrast-enhanced ultrasound (CEUS), we found that tumor size discrepancy between CEUS and conventional ultrasound (US) existed in some breast lesions, for which the reasons are not clear. Breast CEUS examinations were performed in 104 patients with breast lesions. The measurement of the 104 breast tumors on conventional US was obtained and compared with the measurement on CEUS. A difference in measuring tumor size of >3 mm for tumors up to 1.7 cm and 4 mm for tumors >or=1.7 cm, was defined as a significant discrepancy between conventional US and CEUS. The histopathological examination of size discrepancy was performed and the margin characteristics of breast cancers with larger measurements were compared with those with unchanged measurements. Among the 104 lesions (43 malignant, 60 benign, 1 borderline), the size of 27 breast cancers and one granulomatous mastitis appeared larger at CEUS. Pathologic examinations of the region corresponding to the measurement discrepancy were mainly ductal carcinomas in situ (DCIS), invasive carcinoma with a DCIS component, adenosis with lobular hyperplasia in breast cancers and inflammatory cell infiltration in one granulomatous mastitis. Well-defined margin characteristics were significantly different between breast cancers with larger measurements at CEUS and those with unchanged measurements of size (p = 0.002), whereas no significant difference was found between the two groups in ill-defined, spiculated, hyperechoic halo, microlobulated and angulated margins (p = 0.463, 0.117, 0.194, 0.666 and 0.780, respectively). This initial study suggests that significant discrepancy of breast lesion measurement between conventional US and CEUS is more likely presented in breast cancer than benign lesions. The pathologic findings corresponding to the region of size increased at CEUS are malignant in most malignant

  18. Experience-dependent plasticity from eye opening enables lasting, visual cortex-dependent enhancement of motion vision.

    Science.gov (United States)

    Prusky, Glen T; Silver, Byron D; Tschetter, Wayne W; Alam, Nazia M; Douglas, Robert M

    2008-09-24

    Developmentally regulated plasticity of vision has generally been associated with "sensitive" or "critical" periods in juvenile life, wherein visual deprivation leads to loss of visual function. Here we report an enabling form of visual plasticity that commences in infant rats from eye opening, in which daily threshold testing of optokinetic tracking, amid otherwise normal visual experience, stimulates enduring, visual cortex-dependent enhancement (>60%) of the spatial frequency threshold for tracking. The perceptual ability to use spatial frequency in discriminating between moving visual stimuli is also improved by the testing experience. The capacity for inducing enhancement is transitory and effectively limited to infancy; however, enhanced responses are not consolidated and maintained unless in-kind testing experience continues uninterrupted into juvenile life. The data show that selective visual experience from infancy can alone enable visual function. They also indicate that plasticity associated with visual deprivation may not be the only cause of developmental visual dysfunction, because we found that experientially inducing enhancement in late infancy, without subsequent reinforcement of the experience in early juvenile life, can lead to enduring loss of function.

  19. [Dome-shaped macula: appearance on ultrasound and optical coherence tomography].

    Science.gov (United States)

    Chéour, M; Ben Aleya, N; Brour, J; Falfoul, Y; Agrebi, S; Skhiri, M; Kraïem, A

    2013-10-01

    The purpose of our work is to demonstrate the role of optical coherence tomography and ocular ultrasound in the diagnosis of the dome-shaped macula in high myopia. We report the case of a patient with high myopia who presented with a decrease in visual acuity and metamorphopsia in the left eye. She underwent visual acuity measurement, biomicroscopic examination and measurement of axial length. B-mode ultrasound and optical coherence tomography showed a projection of the macula in the convexity of the myopic staphyloma confirming the diagnosis of dome-shaped macula. Dome-shaped macula is a recently discovered entity, which may be responsible for a decrease in visual acuity in patients with high myopic posterior staphyloma. Ultrasound and optical coherence tomography are very helpful in making the diagnosis. Copyright © 2013. Published by Elsevier Masson SAS.

  20. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  1. Enhancing Assisted Living Technology with Extended Visual Memory

    Directory of Open Access Journals (Sweden)

    Joo-Hwee Lim

    2011-05-01

    Full Text Available Human vision and memory are powerful cognitive faculties by which we understand the world. However, they are imperfect and further, subject to deterioration with age. We propose a cognitive-inspired computational model, Extended Visual Memory (EVM, within the Computer-Aided Vision (CAV framework, to assist human in vision-related tasks. We exploit wearable sensors such as cameras, GPS and ambient computing facilities to complement a user's vision and memory functions by answering four types of queries central to visual activities, namely, Retrieval, Understanding, Navigation and Search. Learning of EVM relies on both frequency-based and attention-driven mechanisms to store view-based visual fragments (VF, which are abstracted into high-level visual schemas (VS, both in the visual long-term memory. During inference, the visual short-term memory plays a key role in visual similarity computation between input (or its schematic representation and VF, exemplified from VS when necessary. We present an assisted living scenario, termed EViMAL (Extended Visual Memory for Assisted Living, targeted at mild dementia patients to provide novel functions such as hazard-warning, visual reminder, object look-up and event review. We envisage EVM having the potential benefits in alleviating memory loss, improving recall precision and enhancing memory capacity through external support.

  2. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Doppler ultrasound imaging techniques for assessment of synovial inflammation

    Directory of Open Access Journals (Sweden)

    Filippucci E

    2013-09-01

    Full Text Available Emilio Filippucci,1 Fausto Salaffi,1 Marina Carotti,2 Walter Grassi1 1Rheumatology Department, Polytechnic University of the Marche, Ancona, Italy; 2Department of Radiology, Polytechnic University of the Marche, Ancona, Italy Abstract: Ultrasound is an evolving technique, and the rapid progress made in ultrasound technology over the past ten years has dramatically increased its range of applications in rheumatology. One of the most exciting advances is the use of Doppler ultrasound imaging in the assessment of blood flow abnormalities at the synovial tissue level in patients with chronic inflammatory arthritis. This review describes the Doppler techniques available and their main applications in patients with inflammatory arthritis, discusses the evidence supporting their use, and outlines the latest advances in hardware and software. Spectral, color, and power Doppler allow sensitive assessment of vascular abnormalities at the synovial tissue level. Use of contrast agents enhances visualization of the small synovial vessels using color or power Doppler ultrasound and allows for accurate characterization of the rheumatoid pannus. Doppler techniques represent a unique method for assessment of synovial inflammation, showing blood flow characteristics in real time. They are safe, noninvasive, cost-effective, and have high sensitivity in revealing and monitoring synovitis. However, several questions still need to be answered. In the near future, the Doppler techniques described here, together with upcoming hardware and software facilities, will be investigated further and a consensus will be reached on their feasibility and appropriate use in daily rheumatologic practice. Keywords: power and color Doppler techniques, ultrasound, contrast media, synovitis, rheumatoid arthritis

  4. Synchronous Sounds Enhance Visual Sensitivity without Reducing Target Uncertainty

    Directory of Open Access Journals (Sweden)

    Yi-Chuan Chen

    2011-10-01

    Full Text Available We examined the crossmodal effect of the presentation of a simultaneous sound on visual detection and discrimination sensitivity using the equivalent noise paradigm (Dosher & Lu, 1998. In each trial, a tilted Gabor patch was presented in either the first or second of two intervals consisting of dynamic 2D white noise with one of seven possible contrast levels. The results revealed that the sensitivity of participants' visual detection and discrimination performance were both enhanced by the presentation of a simultaneous sound, though only close to the noise level at which participants' target contrast thresholds started to increase with the increasing noise contrast. A further analysis of the psychometric function at this noise level revealed that the increase in sensitivity could not be explained by the reduction of participants' uncertainty regarding the onset time of the visual target. We suggest that this crossmodal facilitatory effect may be accounted for by perceptual enhancement elicited by a simultaneously-presented sound, and that the crossmodal facilitation was easier to observe when the visual system encountered a level of noise that happened to be close to the level of internal noise embedded within the system.

  5. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  6. Self-demodulation effect on subharmonic response of ultrasound contrast agent

    Science.gov (United States)

    Daeichin, V.; Faez, T.; Needles, A.; Renaud, G.; Bosch, J. G.; van der Steen, A. F. W.; de Jong, N.

    2012-03-01

    In this work the use of the self-demodulation (S-D) signal as a mean of microbubble excitation at the subharmonic (SH) frequency to enhance the SH emission of ultrasound contrast agent (UCA) is studied. SH emission from the UCA is of interest since it is produced only by the UCA and is free of the artifacts produced in harmonic imaging modes. The S-D wave is a low-frequency signal produced by nonlinear propagation of an ultrasound wave in the medium. Single element transducer experiments and numerical simulations were conducted at 10 MHz to study the effect of the S-D signal on the SH response of the UCA by modifying the envelope of the excitation bursts. For 6 and 20 transmitted cycles, the SH response is increased up to 25 dB and 22 dB because of the S-D stimulation for a burst with a rectangular envelope compared with a Gaussian envelope burst. Such optimized excitations were used in an array-based micro-ultrasound system (Vevo 2100, VisualSonics Inc., Toronto, ON, Canada) at 18 MHz for in vitro validation of SH imaging. This study suggests that a suitable design of the envelope of the transmit excitation to generate a S-D signal at the SH frequency can enhance the SH emission of UCA and real-time SH imaging is feasible with shorter transmit burst (6- cycle) and low acoustic pressure (~150 KPa) at high frequencies (>15 MHz).

  7. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    Science.gov (United States)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; hide

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  8. Attention Determines Contextual Enhancement versus Suppression in Human Primary Visual Cortex.

    Science.gov (United States)

    Flevaris, Anastasia V; Murray, Scott O

    2015-09-02

    Neural responses in primary visual cortex (V1) depend on stimulus context in seemingly complex ways. For example, responses to an oriented stimulus can be suppressed when it is flanked by iso-oriented versus orthogonally oriented stimuli but can also be enhanced when attention is directed to iso-oriented versus orthogonal flanking stimuli. Thus the exact same contextual stimulus arrangement can have completely opposite effects on neural responses-in some cases leading to orientation-tuned suppression and in other cases leading to orientation-tuned enhancement. Here we show that stimulus-based suppression and enhancement of fMRI responses in humans depends on small changes in the focus of attention and can be explained by a model that combines feature-based attention with response normalization. Neurons in the primary visual cortex (V1) respond to stimuli within a restricted portion of the visual field, termed their "receptive field." However, neuronal responses can also be influenced by stimuli that surround a receptive field, although the nature of these contextual interactions and underlying neural mechanisms are debated. Here we show that the response in V1 to a stimulus in the same context can either be suppressed or enhanced depending on the focus of attention. We are able to explain the results using a simple computational model that combines two well established properties of visual cortical responses: response normalization and feature-based enhancement. Copyright © 2015 the authors 0270-6474/15/3512273-08$15.00/0.

  9. Hilar biliary neurofibroma without neurofibromatosis: case report with contrast-enhanced ultrasound findings.

    Science.gov (United States)

    Guo, Huan-Ling; Chen, Li-da; Wang, Zhu; Huang, Yang; Liu, Jin-Ya; Shan, Quan-Yuan; Xie, Xiao-Yan; Lu, Ming-de; Wang, Wei

    2016-10-01

    Solitary neurofibroma located in the hilum of the liver is extremely rare, particularly without neurofibromatosis. We herein report a case of hilar biliary neurofibroma without signs of von Recklinghausen's disease. A 36-year-old man was admitted to our department with progressive jaundice. The case was diagnosed as hilar cholangiocarcinoma based on preoperative imaging. The patient consequently received a Roux-en-Y hepaticojejunostomy and was confirmed with neurofibroma pathologically. This is the first reported imaging finding of hilar biliary neurofibroma using contrast-enhanced ultrasound, emphasizing the differential diagnosis of biliary tumors.

  10. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    Science.gov (United States)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  11. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    Science.gov (United States)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  12. Cholinergic pairing with visual activation results in long-term enhancement of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Jun Il Kang

    Full Text Available Acetylcholine (ACh contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1 that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs in V1 of rats during a 4-8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine, nicotinic (mecamylamine, alpha7 (methyllycaconitine, and NMDA (CPP receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56% during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while alpha7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.

  13. Perfusion quantification in contrast-enhanced ultrasound (CEUS)--ready for research projects and routine clinical use.

    Science.gov (United States)

    Tranquart, F; Mercier, L; Frinking, P; Gaud, E; Arditi, M

    2012-07-01

    With contrast-enhanced ultrasound (CEUS) now established as a valuable imaging modality for many applications, a more specific demand has recently emerged for quantifying perfusion and using measured parameters as objective indicators for various disease states. However, CEUS perfusion quantification remains challenging and is not well integrated in daily clinical practice. The development of VueBox™ alleviates existing limitations and enables quantification in a standardized way. VueBox™ operates as an off-line software application, after dynamic contrast-enhanced ultrasound (DCE-US) is performed. It enables linearization of DICOM clips, assessment of perfusion using patented curve-fitting models, and generation of parametric images by synthesizing perfusion information at the pixel level using color coding. VueBox™ is compatible with most of the available ultrasound platforms (nonlinear contrast-enabled), has the ability to process both bolus and disruption-replenishment kinetics loops, allows analysis results and their context to be saved, and generates analysis reports automatically. Specific features have been added to VueBox™, such as fully automatic in-plane motion compensation and an easy-to-use clip editor. Processing time has been reduced as a result of parallel programming optimized for multi-core processors. A long list of perfusion parameters is available for each of the two administration modes to address all possible demands currently reported in the literature for diagnosis or treatment monitoring. In conclusion, VueBox™ is a valid and robust quantification tool to be used for standardizing perfusion quantification and to improve the reproducibility of results across centers. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Comparison of IOL--master and ultrasound biometry in preoperative intra ocular lens (IOL) power calculation.

    Science.gov (United States)

    Kolega, Marija Škara; Kovačević, Suzana; Čanović, Samir; Pavičić, Ana Didović; Bašić, Jadranka Katušić

    2015-03-01

    Postoperative refractive outcome largely depends on the accuracy of calculating power of implanted IOL. Lens power calculation can be done by conventional ultrasound biometry and partial coherence laser interferometry (IOL Master). The aim was to compare the accuracy of IOL power calculations using conventional ultrasound biometry and partial coherence laser interferometry.40 eyes were included in this prospective randomized trial. Twenty eyes underwent IOL master and 20 eyes had aplanation ultrasound biometry. There were included only eyes with age-related cataract and postoperative natural visual acuity (VA) 0.7. Visual acuity was performed 6 weeks after cataract surgery. After 6 weeks best natural visual acuity were 0.9 (± 0.1) in IOL-Master group and 0.85 (± 0.15) in ultrasound biometry. The postoperative mean absolute refractive error was 0.75 (± 0.5) D for ultrasound biometry and 0.50 (± 0.50) D for IOL-Master. Optical biometry with the IOL-Master proved to be slightly more accurate than ultrasound biometry for IOL power calculation.

  15. Visualization of disciplinary profiles: Enhanced science overlay maps

    NARCIS (Netherlands)

    Carley, S.; Porter, A.L.; Rafols, I.; Leydesdorff, L.

    Purpose The purpose of this study is to modernize previous work on science overlay maps by updating the underlying citation matrix, generating new clusters of scientific disciplines, enhancing visualizations, and providing more accessible means for analysts to generate their own maps.

  16. Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2002-01-01

    .... Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  17. Estimation of Tumor Angiogenesis with Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2004-01-01

    .... Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  18. Estimation of Tumor Angiogenesis With Constrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Fleming

    2003-01-01

    .... Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between denign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  19. Low-intensity pulsed ultrasound enhances bone formation around miniscrew implants.

    Science.gov (United States)

    Ganzorig, Khaliunaa; Kuroda, Shingo; Maeda, Yuichi; Mansjur, Karima; Sato, Minami; Nagata, Kumiko; Tanaka, Eiji

    2015-06-01

    Miniscrew implants (MSIs) are currently used to provide absolute anchorage in orthodontics; however, their initial stability is an issue of concern. Application of low-intensity pulsed ultrasound (LIPUS) can promote bone healing. Therefore, LIPUS application may stimulate bone formation around MSIs and enhance their initial stability. To investigate the effect of LIPUS exposure on bone formation after implantation of titanium (Ti) and stainless steel (SS) MSIs. MSIs made of Ti-6Al-4V and 316L SS were placed on rat tibiae and treated with LIPUS. The bone morphology around MSIs was evaluated by scanning electron microscopy and three-dimensional micro-computed tomography. MC3T3-E1 cells cultured on Ti and SS discs were treated with LIPUS, and the temporary expression of alkaline phosphatase (ALP) was examined. Bone-implant contact increased gradually from day 3 to day 14 after MSI insertion. LIPUS application increased the cortical bone density, cortical bone thickness, and cortical bone rate after implantation of Ti and SS MSIs (P<0.05). LIPUS exposure induced ALP upregulation in MC3T3-E1 cells at day 3 (P<0.05). LIPUS enhanced bone formation around Ti and SS MSIs, enhancing the initial stability of MSIs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Studies of nonlinear ultrasound propagation: safety considerations in the use of ultrasound for medical diagnosis - nonlinear propagation

    International Nuclear Information System (INIS)

    Egerton, B.; Barnett, S.; Vella, G.

    1994-01-01

    Diagnostic ultrasound is an established imaging modality without any documented harmful effects. New developments such as pulsed Doppler and intracavity investigations may result in increases in ultrasound exposures which could cause harm. Thermal mechanisms and cavitation may become relevant sources of bioeffects. The preliminary study described here investigates the distribution and amplitude of harmonics generated through nonlinear propagation of ultrasound in water. Knowledge of harmonic attenuation will help predict sites of enhanced heating and enable accurate modelling of clinical situations. This presentation is concerned with thermal safety guidelines, their relationship to a typical ultrasound beam profile for a single, medium focussed, transducer operating in water and possible sites of enhanced heating due to nonlinear propagation effects. Measurements were made of the amplitudes of the harmonics generated by the nonlinear propagation of ultrasound in water. The amplitudes of the harmonics were detected up to frequencies of 35 MHz and displayed using Fast Fourier Transform facilities within the oscilloscope. The nonlinearity parameter of the ultrasonic waveforms has been identified as an important factor in thermal effects of ultrasound interactions. The appearance of nonlinear distortion is shown to be dependant on the peak compressional pressure and distance from the ultrasound source. 20 refs., 2 figs

  1. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    Science.gov (United States)

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  2. Common and uncommon features of focal splenic lesions on contrast-enhanced ultrasound: a pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Zavariz, Julia D., E-mail: julia.zavariz@hc.fm.usp.br [Universidade de São Paulo (HC/FMUSP), São Paulo, SP (Brazil). Faculdade de Medicina. Hospital das Clínicas; Konstantatou, Eleni; Deganello Annamaria; Bosanac, Diana; Huang, Dean Y.; Sellars, Maria E.; Sidhu, Paul S. [Department of Radiology, King’s College Hospital, Denmark Hill, London (United Kingdom)

    2017-11-15

    The characterization of focal splenic lesions by ultrasound can be quite challenging. The recent introduction of contrast-enhanced ultrasound (CEUS) has come to play a valuable role in the field of imaging splenic pathologies, offering the possibility of an ionizing radiation-free investigation. Because CEUS has been incorporated into everyday clinical practice, malignant diseases such as focal lymphomatous infiltration, metastatic deposits, benign cysts, traumatic fractures, and hemangiomas can now be accurately depicted and characterized without the need for further imaging. More specifically, splenic traumatic fractures do not require additional imaging by computed tomography (with ionizing radiation exposure) for follow-up, because splenic fractures and their complications are safely imaged with CEUS. In the new era of CEUS, more patients benefit from radiation-free investigation of splenic pathologies with high diagnostic accuracy. (author)

  3. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Nabili, Marjan, E-mail: mnabili@gwmail.gwu.edu [Department of Electrical and Computer Engineering, The George Washington University, 800 22nd Street NW, Room 5000, Washington, DC 20052 (United States); Geist, Craig, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu [Department of Ophthalmology, The George Washington University, 2150 Pennsylvania Avenue NW, Floor 2A, Washington, DC 20037 (United States); Zderic, Vesna, E-mail: cgeist@mfa.gwu.edu, E-mail: zderic@gwu.edu [Department of Biomedical Engineering, The George Washington University, 800 22nd Street NW, Room 6670, Washington, DC 20052 (United States)

    2015-10-15

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm{sup 2}, and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm{sup 2} (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety

  5. Thermal safety of ultrasound-enhanced ocular drug delivery: A modeling study

    International Nuclear Information System (INIS)

    Nabili, Marjan; Geist, Craig; Zderic, Vesna

    2015-01-01

    Purpose: Delivery of sufficient amounts of therapeutic drugs into the eye for treatment of various ocular diseases is often a challenging task. Ultrasound was shown to be effective in enhancing ocular drug delivery in the authors’ previous in vitro and in vivo studies. Methods: The study reported here was designed to investigate the safety of ultrasound application and its potential thermal effects in the eye using PZFlex modeling software. The safety limit in this study was set as a temperature increase of no more than 1.5 °C based on regulatory recommendations and previous experimental safety studies. Acoustic and thermal specifications of different human eye tissues were obtained from the published literature. The tissues of particular interest in this modeling safety study were cornea, lens, and the location of optic nerve in the posterior eye. Ultrasound application was modeled at frequencies of 400 kHz–1 MHz, intensities of 0.3–1 W/cm 2 , and exposure duration of 5 min, which were the parameters used in the authors’ previous drug delivery experiments. The baseline eye temperature was 37 °C. Results: The authors’ results showed that the maximal tissue temperatures after 5 min of ultrasound application were 38, 39, 39.5, and 40 °C in the cornea, 39.5, 40, 42, and 43 °C in the center of the lens, and 37.5, 38.5, and 39 °C in the back of the eye (at the optic nerve location) at frequencies of 400, 600, 800 kHz, and 1 MHz, respectively. Conclusions: The ocular temperatures reached at higher frequencies were considered unsafe based on current recommendations. At a frequency of 400 kHz and intensity of 0.8 W/cm 2 (parameters shown in the authors’ previous in vivo studies to be optimal for ocular drug delivery), the temperature increase was small enough to be considered safe inside different ocular tissues. However, the impact of orbital bone and tissue perfusion should be included in future modeling efforts to determine the safety of this

  6. Interobserver Variation of the Bolus-and-Burst Method for Pancreatic Perfusion with Dynamic – Contrast-Enhanced Ultrasound

    Czech Academy of Sciences Publication Activity Database

    Stangeland, M.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Gilja, O.H.; Dimcevski, G.; Nylund, K.

    2017-01-01

    Roč. 3, č. 3 (2017), E99-E106 E-ISSN 2199-7152 Institutional support: RVO:68081731 Keywords : interobserver * dynamic contrast-enhanced ultrasound * perfusion * pancreas Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Medical engineering https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0043-110475

  7. Ultrasound and MR imaging of diabetic mastopathy

    International Nuclear Information System (INIS)

    Wong, K.T.; Tse, G.M.K.; Yang, W.T.

    2002-01-01

    AIM: To review the imaging findings of diabetic mastopathy, and document the colour flow ultrasound and MR imaging features in this benign condition. MATERIALS AND METHODS: Diabetic mastopathy was clinically and histologically diagnosed in eight lesions in six women. All six women underwent conventional mammography and high frequency grey-scale ultrasound. Colour flow ultrasound was performed additionally in six lesions in four women and MR imaging in four lesions in three women before biopsy. The imaging findings were reviewed and correlated with final histological diagnosis. RESULTS: Mammography showed regional asymmetric increased opacity with ill-defined margins in all lesions. A heterogeneously hypoechoic mass with ill-defined margins was identified on high frequency grey-scale ultrasound in all lesions. Marked posterior acoustic shadowing was present in seven of eight (88%) lesions. Six lesions interrogated with colour flow ultrasound showed absence of Doppler signal. MR imaging in three women revealed non-specific stromal enhancement. CONCLUSION: Diabetic mastopathy shows absence of Doppler signal on colour flow ultrasound and non-specific stromal enhancement on MR imaging. Wong K.T. et al. (2002)

  8. Estimation of Tumor Angiogenesis With Contrast Enhanced Subharmonic Ultrasound Imaging

    National Research Council Canada - National Science Library

    Forsberg, Flemming

    2005-01-01

    ...) and receiving at the subharmonic (f0). Hence, the current project proposes to increase the ability of breast ultrasound to differentiate between benign and malignant lesions by combining injection of an ultrasound contrast agent with SHI...

  9. Ultrasound imaging in urogynecology – state of the art 2016

    Directory of Open Access Journals (Sweden)

    Michał Bogusiewicz

    2016-11-01

    Full Text Available The role of ultrasound imaging in urogynecology is not clearly defined. Despite significant developments in visualization techniques and interpretation of images, pelvic ultrasound is still more a tool for research than for clinical practice. Structures of the lower genitourinary tract and pelvic floor can be visualized from different approaches: transperineal, introital, transvaginal, abdominal or endoanal. According to contemporary guidelines and recommendations, the role of ultrasound in urogynecology is limited to the measurement of post-void residue. However, in many instances, including planning and audit of surgical procedures, management of recurrences or complications, ultrasound may be proposed as the initial examination of choice. Ultrasound may be used for assessment of bladder neck mobility before anti-incontinence procedures. On rare occasions it is helpful in recognition of pathologies mimicking vaginal prolapse such as vaginal cyst, urethral diverticula or rectal intussusception. In patients subjected to suburethral slings, causes of surgery failure or postsurgical voiding dysfunctions can be revealed by imaging. Many reports link the location of a tape close to the bladder neck to unfavorable outcomes of sling surgery. Some postoperative complications, such as urinary retention, mesh malposition, hematoma, or urinary tract injury, can be diagnosed by ultrasound. On the other hand, the clinical value of some applications of ultrasound in urogynecology, for example measurement of the bladder wall thickness as a marker of detrusor overactivity, has not been proved.

  10. Ultrasound-guided block of the suprascapular nerve - a volunteer study of a new proximal approach

    DEFF Research Database (Denmark)

    Rothe, C; Steen-Hansen, C; Lund, J

    2014-01-01

    BACKGROUND: The standard approach for the suprascapular nerve block is deep in the supraspinous fossa. However, with this approach, the suprascapular nerve is difficult to visualize by ultrasound. The aim of this study was to describe a new method to visualize and selectively block the suprascapu......BACKGROUND: The standard approach for the suprascapular nerve block is deep in the supraspinous fossa. However, with this approach, the suprascapular nerve is difficult to visualize by ultrasound. The aim of this study was to describe a new method to visualize and selectively block...... the suprascapular nerve in a more superficial and proximal location. METHODS: Twelve healthy volunteers were included. We located the brachial plexus in transverse section with ultrasound, and by longitudinal slide, we identified the departure of the suprascapular nerve from the superior trunk. The suprascapular...

  11. Supporting Knowledge Integration in Chemistry with a Visualization-Enhanced Inquiry Unit

    Science.gov (United States)

    Chiu, Jennifer L.; Linn, Marcia C.

    2014-01-01

    This paper describes the design and impact of an inquiry-oriented online curriculum that takes advantage of dynamic molecular visualizations to improve students' understanding of chemical reactions. The visualization-enhanced unit uses research-based guidelines following the knowledge integration framework to help students develop coherent…

  12. Contrast-enhanced harmonic ultrasound imaging in ablation therapy for primary hepatocellular carcinoma.

    Science.gov (United States)

    Minami, Yasunori; Kudo, Masatoshi

    2009-12-31

    The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.

  13. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    Science.gov (United States)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  14. Speckle Reduction on Ultrasound Liver Images Based on a Sparse Representation over a Learned Dictionary

    Directory of Open Access Journals (Sweden)

    Mohamed Yaseen Jabarulla

    2018-05-01

    Full Text Available Ultrasound images are corrupted with multiplicative noise known as speckle, which reduces the effectiveness of image processing and hampers interpretation. This paper proposes a multiplicative speckle suppression technique for ultrasound liver images, based on a new signal reconstruction model known as sparse representation (SR over dictionary learning. In the proposed technique, the non-uniform multiplicative signal is first converted into additive noise using an enhanced homomorphic filter. This is followed by pixel-based total variation (TV regularization and patch-based SR over a dictionary trained using K-singular value decomposition (KSVD. Finally, the split Bregman algorithm is used to solve the optimization problem and estimate the de-speckled image. The simulations performed on both synthetic and clinical ultrasound images for speckle reduction, the proposed technique achieved peak signal-to-noise ratios of 35.537 dB for the dictionary trained on noisy image patches and 35.033 dB for the dictionary trained using a set of reference ultrasound image patches. Further, the evaluation results show that the proposed method performs better than other state-of-the-art denoising algorithms in terms of both peak signal-to-noise ratio and subjective visual quality assessment.

  15. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Scott B Raymond

    Full Text Available Alzheimer's disease is a neurodegenerative disorder typified by the accumulation of a small protein, beta-amyloid, which aggregates and is the primary component of amyloid plaques. Many new therapeutic and diagnostic agents for reducing amyloid plaques have limited efficacy in vivo because of poor transport across the blood-brain barrier. Here we demonstrate that low-intensity focused ultrasound with a microbubble contrast agent may be used to transiently disrupt the blood-brain barrier, allowing non-invasive, localized delivery of imaging fluorophores and immunotherapeutics directly to amyloid plaques. We administered intravenous Trypan blue, an amyloid staining red fluorophore, and anti-amyloid antibodies, concurrently with focused ultrasound therapy in plaque-bearing, transgenic mouse models of Alzheimer's disease with amyloid pathology. MRI guidance permitted selective treatment and monitoring of plaque-heavy anatomical regions, such as the hippocampus. Treated brain regions exhibited 16.5+/-5.4-fold increase in Trypan blue fluorescence and 2.7+/-1.2-fold increase in anti-amyloid antibodies that localized to amyloid plaques. Ultrasound-enhanced delivery was consistently reproduced in two different transgenic strains (APPswe:PSEN1dE9, PDAPP, across a large age range (9-26 months, with and without MR guidance, and with little or no tissue damage. Ultrasound-mediated, transient blood-brain barrier disruption allows the delivery of both therapeutic and molecular imaging agents in Alzheimer's mouse models, which should aid pre-clinical drug screening and imaging probe development. Furthermore, this technique may be used to deliver a wide variety of small and large molecules to the brain for imaging and therapy in other neurodegenerative diseases.

  16. Steato-Score: Non-Invasive Quantitative Assessment of Liver Fat by Ultrasound Imaging.

    Science.gov (United States)

    Di Lascio, Nicole; Avigo, Cinzia; Salvati, Antonio; Martini, Nicola; Ragucci, Monica; Monti, Serena; Prinster, Anna; Chiappino, Dante; Mancini, Marcello; D'Elia, Domenico; Ghiadoni, Lorenzo; Bonino, Ferruccio; Brunetto, Maurizia R; Faita, Francesco

    2018-05-04

    Non-alcoholic fatty liver disease is becoming a global epidemic. The aim of this study was to develop a system for assessing liver fat content based on ultrasound images. Magnetic resonance spectroscopy measurements were obtained in 61 patients and the controlled attenuation parameter in 54. Ultrasound images were acquired for all 115 participants and used to calculate the hepatic/renal ratio, hepatic/portal vein ratio, attenuation rate, diaphragm visualization and portal vein wall visualization. The Steato-score was obtained by combining these five parameters. Magnetic resonance spectroscopy measurements were significantly correlated with hepatic/renal ratio, hepatic/portal vein ratio, attenuation rate, diaphragm visualization and portal vein wall visualization; Steato-score was dependent on hepatic/renal ratio, attenuation rate and diaphragm visualization. Area under the receiver operating characteristic curve was equal to 0.98, with 89% sensitivity and 94% specificity. Controlled attenuation parameter values were significantly correlated with hepatic/renal ratio, attenuation rate, diaphragm visualization and Steato-score; the area under the curve was 0.79. This system could be a valid alternative as a non-invasive, simple and inexpensive assessment of intrahepatic fat. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  17. Ultrasound and CT findings of primary leiomyosacoma in the gallbladder: A case report

    International Nuclear Information System (INIS)

    Im, A Lan; Lee, Young Hwan; Yoon, Kwan Ha; Park, Dong Eun; Choi, Keum Ha; Lim, Se Woong

    2014-01-01

    Leiomyosarcoma of the gallbladder is a very rare subgroup for gallbladder sarcoma. Herein, we report the ultrasound, computed tomography and positron emission tomography-computed tomography imaging findings on a case of primary leiomyosarcoma of the gallbladder. Abdominal ultrasonography indicates a heterogeneous hyperechoic submucosal mass with hypervascularity and displacement of overlying mucosal layers by the mass. Computed tomography reveal that the tumor is a well-defined and heterogeneously enhancing solid mass with overlying thick mucosal layers. Positron emission tomography-computed tomography visualizes the large gallbladder mass as a hypermetabolic lesion.

  18. Economic analysis of ultrasound-assisted oxidative desulfurization

    OpenAIRE

    Anderson, K.; Atkins, M.P.; Borges, P; Chan, Z.P.; Rafeen, M.S.; Sebran, N.H.; van der Pool, E; Vleeming, J.H.

    2017-01-01

    Oxidative desulfurization is a method of removing sulfur from diesel fuel that has the potential to compete with conventional hydrodesulfurization processes in refineries. Ultrasound has been shown to greatly increase peroxide oxidation rates of sulfur compounds and can thereby enhance the technology. Through the use of conceptual design modeling, this article critically assesses a range of novel process options. Calculations show that the rate enhancement achieved by ultrasound can translate...

  19. Rapid visualization of latent fingermarks using gold seed-mediated enhancement

    Directory of Open Access Journals (Sweden)

    Chia-Hao Su

    2016-11-01

    Full Text Available Abstract Background Fingermarks are one of the most important and useful forms of physical evidence in forensic investigations. However, latent fingermarks are not directly visible, but can be visualized due to the presence of other residues (such as inorganic salts, proteins, polypeptides, enzymes and human metabolites which can be detected or recognized through various strategies. Convenient and rapid techniques are still needed to provide obvious contrast between the background and the fingermark ridges and to then visualize latent fingermark with a high degree of selectivity and sensitivity. Results In this work, lysozyme-binding aptamer-conjugated Au nanoparticles (NPs are used to recognize and target lysozyme in the fingermark ridges, and Au+-complex solution is used as a growth agent to reduce Au+ from Au+ to Au0 on the surface of the Au NPs. Distinct fingermark patterns were visualized on a range of professional forensic within 3 min; the resulting images could be observed by the naked eye without background interference. The entire processes from fingermark collection to visualization only entails two steps and can be completed in less than 10 min. The proposed method provides cost and time savings over current fingermark visualization methods. Conclusions We report a simple, inexpensive, and fast method for the rapid visualization of latent fingermarks on the non-porous substrates using Au seed-mediated enhancement. Au seed-mediated enhancement is used to achieve the rapid visualization of latent fingermarks on non-porous substrates by the naked eye without the use of expensive or sophisticated instruments. The proposed approach offers faster detection and visualization of latent fingermarks than existing methods. The proposed method is expected to increase detection efficiency for latent fingermarks and reduce time requirements and costs for forensic investigations.

  20. Multiparametric ultrasound in the detection of prostate cancer: a systematic review

    OpenAIRE

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-01-01

    Purpose To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). Methods A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Results Limited research available on combining ultrasound modal...

  1. Ethical analysis of non-medical fetal ultrasound.

    Science.gov (United States)

    Leung, John Lai Yin; Pang, Samantha Mei Che

    2009-09-01

    Obstetric ultrasound is the well-recognized prenatal test used to visualize and determine the condition of a pregnant woman and her fetus. Apart from the clinical application, some businesses have started promoting the use of fetal ultrasound machines for nonmedical reasons. Non-medical fetal ultrasound (also known as 'keepsake' ultrasound) is defined as using ultrasound to view, take a picture, or determine the sex of a fetus without a medical indication. Notwithstanding the guidelines and warnings regarding ultrasound safety issued by governments and professional bodies, the absence of scientifically proven physical harm to fetuses from this procedure seems to provide these businesses with grounds for rapid expansion. However, this argument is too simplistic because current epidemiological evidence is not synchronous with advancing ultrasound technology. As non-medical fetal ultrasound has aroused very significant public attention, a thorough ethical analysis of this topic is essential. Using a multifaceted approach, we analyse the ethical perspective of non-medical fetal ultrasound in terms of the expectant mother, the fetus and health professionals. After applying four major theories of ethics and principles (the precautionary principle; theories of consequentialism and impartiality; duty-based theory; and rights-based theories), we conclude that obstetric ultrasound practice is ethically justifiable only if the indication for its use is based on medical evidence. Non-medical fetal ultrasound can be considered ethically unjustifiable. Nevertheless, the ethical analysis of this issue is time dependent owing to rapid advancements in ultrasound technology and the safety issue. The role of health professionals in ensuring that obstetric ultrasound is an ethically justifiable practice is also discussed.

  2. Use of Contrast-Enhanced Ultrasound to Study Relationship between Serum Uric Acid and Renal Microvascular Perfusion in Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2015-01-01

    Full Text Available Purpose. To investigate the relationship between uric acid and renal microvascular perfusion in diabetic kidney disease (DKD using contrast-enhanced ultrasound (CEUS method. Materials and Methods. 79 DKD patients and 26 healthy volunteers were enrolled. Renal function and urine protein markers were tested. DKD patients were subdivided into two groups including a normal serum uric acid (SUA group and a high SUA group. Contrast-enhanced ultrasound (CEUS was performed, and low acoustic power contrast-specific imaging was used for quantitative analysis. Results. Normal controls (NCs had the highest levels of AUC, AUC1, and AUC2. Compared to the normal SUA DKD group, high SUA DKD patients had significantly higher IMAX, AUC, and AUC1 (P<0.05. DKD patients with low urinary uric acid (UUA excretion had significantly higher AUC2 compared to DKD patients with normal UUA (P<0.05. Conclusion. Hyperuricemia in DKD patients was associated with a renal ultrasound image suggestive of microvascular hyperperfusion. The CEUS parameter AUC1 holds promise as an indicator for renal microvascular hyperperfusion, while AUC2 might be a useful indicator of declining glomerular filtration rate in DKD patients with decreased excretion of uric acid.

  3. Saccade-induced image motion cannot account for post-saccadic enhancement of visual processing in primate MST

    Directory of Open Access Journals (Sweden)

    Shaun L Cloherty

    2015-09-01

    Full Text Available Primates use saccadic eye movements to make gaze changes. In many visual areas, including the dorsal medial superior temporal area (MSTd of macaques, neural responses to visual stimuli are reduced during saccades but enhanced afterwards. How does this enhancement arise – from an internal mechanism associated with saccade generation or through visual mechanisms activated by the saccade sweeping the image of the visual scene across the retina? Spontaneous activity in MSTd is elevated even after saccades made in darkness, suggesting a central mechanism for post-saccadic enhancement. However, based on the timing of this effect, it may arise from a different mechanism than occurs in normal vision. Like neural responses in MSTd, initial ocular following eye speed is enhanced after saccades, with evidence suggesting both internal and visually mediated mechanisms. Here we recorded from visual neurons in MSTd and measured responses to motion stimuli presented soon after saccades and soon after simulated saccades – saccade-like displacements of the background image during fixation. We found that neural responses in MSTd were enhanced when preceded by real saccades but not when preceded by simulated saccades. Furthermore, we also observed enhancement following real saccades made across a blank screen that generated no motion signal within the recorded neurons’ receptive fields. We conclude that in MSTd the mechanism leading to post-saccadic enhancement has internal origins.

  4. Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆

    Science.gov (United States)

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-01-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185

  5. Microbubbles in macrocysts - Contrast-enhanced ultrasound assisted sclerosant therapy of a congenital macrocystic lymphangioma: a case report.

    Science.gov (United States)

    Menendez-Castro, Carlos; Zapke, Maren; Fahlbusch, Fabian; von Goessel, Heiko; Rascher, Wolfgang; Jüngert, Jörg

    2017-07-06

    Congenital cystic lymphangiomas are benign malformations due to a developmental disorder of lymphatic vessels. Besides surgical excision, sclerosant therapy of these lesions by intracavitary injection of OK-432 (Picibanil®), a lyophilized mixture of group A Streptococcus pyogenes, is a common therapeutical option. For an appropriate application of OK-432, a detailed knowledge about the structure and composition of the congenital cystic lymphangioma is essential. SonoVue® is a commercially available contrast agent commonly used in sonography by intravenous and intracavitary application. Here we report the case of 2 month old male patient with a large thoracic congenital cystic lymphangioma. Preinterventional imaging of the malformation was performed by contrast-enhanced ultrasound after intracavitary application of SonoVue® immediately followed by a successful sclerotherapy with OK-432. Contrast agent-enhanced ultrasound imaging offers a valuable option to preinterventionally clarify the anatomic specifications of a congenital cystic lymphangioma in more detail than by single conventional sonography. By the exact knowledge about the composition and especially about the intercystic communications of the lymphangioma sclerosant therapy becomes safer and more efficient.

  6. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    Science.gov (United States)

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  7. Ultrasound in chemical processes

    International Nuclear Information System (INIS)

    Baig, S.; Farooq, R.; Malik, A.H.

    2009-01-01

    The use of ultrasound to promote chemical reactions or sono chemistry is a field of chemistry which involves the process of acoustic cavitations i.e. the collapse of microscopic bubbles in liquid. There are two essential components for the application of sono chemistry, a liquid medium and a source of high-energy vibrations. The liquid medium is necessary because sono chemistry is driven by acoustic cavitations that can only occur in liquids. The source of the vibrational energy is the transducer. The chemical effects of ultrasound include the enhancement of reaction rates at ambient temperatures and striking advancements in stoichiometric and catalytic reactions In some cases, ultrasonic irradiation can increase reactivities by nearly million fold. The ultrasound has large number of applications not only in emending old chemical processes but also in developing new synthetic strategies. Ultrasound enhances all chemical and physical processes e.g., crystallization, vitamin synthesis, preparation of catalysts, dissolution of chemicals, organometallic reactions, electrochemical processes, etc. High-power ultrasonics is a new powerful technology that is not only safe and environmentally friendly in its application but is also efficient and economical. It can be applied to existing processes to eliminate the need for chemicals and/or heat application in a variety of industrial processes. (author)

  8. Percutaneous antegrade pyelgraphy guided by ultrasound

    International Nuclear Information System (INIS)

    Kim, Jin Gyoo; Chung, Chun Phil; Lee, Suk Hong; Sol, Chang Hyo; Kim, Byung Soo

    1985-01-01

    The authors performed percutaneous antegrade pyelography guided by ultrasound on 33 patients, from June 1982 to October 1984, at the Department of Radiology, Busan National University Hospital. The results obtained were as follows: 1. Of the 31 cases, 17 cases (51.5%) were female and 16 cases (48.5%) were male, and age distribution was nearly even, but most prevalent age group was third decade. 2. Comparing intravenous pyelographic findings with ultrasonographic findings, pyelographically nonvisualized kidney 15 cases (45.5%) were hydronephrosis 12 cases, multiple cysts 2 cases, and intrarenal cystic mass 1 case, ultrasonographically. Pyelographically hydronephrosis 9 cases (27.3%) were all hydronephrosis, ultrasonographically. Intrarenal mass 5 cases (15.2%) were all intrarenal cystic mass, NVK with air kidney 1 case (3.0%) was air in perirenal space, partial NVK 1 case (3.0%) was perirenal fluid, suprarenal mass 1 case (3.0%) was suprarenal intrarenal and huge perirenal cystic masses, ultrasonographically. 3. On technical reliability of antegrade pyelography under ultrasound guide, 31 cases (93.9%) could be done fluid aspiration and visualization, and 2 cases (6.1%) could be only done fluid aspiration but failed visualization. 31 successful cases were visualization of collecting systems 23 cases, visualization of cyst 6 case, and visualization of perirenal space 2 cases. 2 partical successful cases were perirenal injection 1 case and parenchymal injection 1 case. 4. On fluid aspiration, 22 cases (66.7%) were clear, but 11 cases (33.3%) were not clear, which were pus 7 cases, turbid urine 2 cases, bloody urine 1 case, and bloody pus and air 1 case. 5. Comparing ultrasonographic findings with antegrade pyelographic findings, ultrasonographiclly hydronephrosis 21 cases revealed obstruction in 16 cases, antegrade pyelographicaaly, which were consisted of ureteral stricture 14 case, ureteral stone 1 case, and ureteral mass 1 case, non-obstruction in 4 cases, which

  9. Portable bedside ultrasound: the visual stethoscope of the 21st century

    Directory of Open Access Journals (Sweden)

    Gillman Lawrence M

    2012-03-01

    Full Text Available Abstract Over the past decade technological advances in the realm of ultrasound have allowed what was once a cumbersome and large machine to become essentially hand-held. This coupled with a greater understanding of lung sonography has revolutionized our bedside assessment of patients. Using ultrasound not as a diagnostic test, but instead as a component of the physical exam, may allow it to become the stethoscope of the 21st century.

  10. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  11. Schizophrenia and visual backward masking: a general deficit of target enhancement

    Directory of Open Access Journals (Sweden)

    Michael H Herzog

    2013-05-01

    Full Text Available The obvious symptoms of schizophrenia are of cognitive and psychopathological nature. However, schizophrenia affects also visual processing which becomes particularly evident when stimuli are presented for short durations and are followed by a masking stimulus. Visual deficits are of great interest because they might be related to the genetic variations underlying the disease (endophenotype concept. Visual masking deficits are usually attributed to specific dysfunctions of the visual system such as a hypo- or hyper-active magnocellular system. Here, we propose that visual deficits are a manifestation of a general deficit related to the enhancement of weak neural signals as occurring in all other sorts of information processing. We summarize previous findings with the shine-through masking paradigm where a shortly presented vernier target is followed by a masking grating. The mask deteriorates visual processing of schizophrenic patients by almost an order of magnitude compared to healthy controls. We propose that these deficits are caused by dysfunctions of attention and the cholinergic system leading to weak neural activity corresponding to the vernier. High density electrophysiological recordings (EEG show that indeed neural activity is strongly reduced in schizophrenic patients which we attribute to the lack of vernier enhancement. When only the masking grating is presented, EEG responses are roughly comparable between patients and control. Our hypothesis is supported by findings relating visual masking to genetic deviants of the nicotinic 7 receptor (CHRNA7.

  12. Contrast-enhanced ultrasound in the diagnosis of nodules in liver cirrhosis.

    Science.gov (United States)

    Kim, Tae Kyoung; Jang, Hyun-Jung

    2014-04-07

    Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents are useful for the diagnosis of the nodules in liver cirrhosis. CEUS can be used as a problem-solving method for indeterminate nodules on computed tomography (CT) or magnetic resonance imaging (MRI) or as an initial diagnostic test for small newly detected liver nodules. CEUS has unique advantages over CT and MRI including no renal excretion of contrast, real-time imaging capability, and purely intravascular contrast. Hepatocellular carcinoma (HCC) is characterized by arterial-phase hypervascularity and later washout (negative enhancement). Benign nodules such as regenerative nodules or dysplastic nodules are usually isoechoic or slightly hypoechoic in the arterial phase and isoechoic in the late phase. However, there are occasional HCC lesions with atypical enhancement including hypovascular HCC and hypervascular HCC without washout. Cholangiocarcinomas are infrequently detected during HCC surveillance and mostly show rim-like or diffuse hypervascularity followed by rapid washout. Hemangiomas are often found at HCC surveillance and are easily diagnosed by CEUS. CEUS can be effectively used in the diagnostic work-up of small nodules detected at HCC surveillance. CEUS is also useful to differentiate malignant and benign venous thrombosis and to guide and monitor the local ablation therapy for HCC.

  13. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.

    Science.gov (United States)

    Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C

    2016-09-28

    Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (pultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  15. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

    Science.gov (United States)

    Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.

    2013-01-01

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388

  16. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  17. Enhancing Nuclear Training with 3D Visualization

    International Nuclear Information System (INIS)

    Gagnon, V.; Gagnon, B.

    2016-01-01

    Full text: While the nuclear power industry is trying to reinforce its safety and regain public support post-Fukushima, it is also faced with a very real challenge that affects its day-to-day activities: a rapidly aging workforce. Statistics show that close to 40% of the current nuclear power industry workforce will retire within the next five years. For newcomer countries, the challenge is even greater, having to develop a completely new workforce. The workforce replacement effort introduces nuclear newcomers of a new generation with different backgrounds and affinities. Major lifestyle differences between the two generations of workers result, amongst other things, in different learning habits and needs for this new breed of learners. Interactivity, high visual content and quick access to information are now necessary to achieve a high level of retention. To enhance existing training programmes or to support the establishment of new training programmes for newcomer countries, L-3 MAPPS has devised learning tools to enhance these training programmes focused on the “Practice-by-Doing” principle. L-3 MAPPS has coupled 3D computer visualization with high-fidelity simulation to bring real-time, simulation-driven animated components and systems allowing immersive and participatory, individual or classroom learning. (author

  18. StentBoost Visualization for the Evaluation of Coronary Stent Expansion During Percutaneous Coronary Interventions

    OpenAIRE

    Cura, Fernando; Albertal, Mariano; Candiello, Alfonsina; Nau, Gerardo; Bonvini, Victor; Tricherri, Hernan; Padilla, Lucio T.; Belardi, Jorge A.

    2013-01-01

    Introduction Inadequate stent implantation is associated with stent thrombosis and restenosis. StentBoost can enhance stent visualization and evaluate stent expansion. Currently, there are limited comparison studies between StentBoost and intravascular ultrasound (IVUS). We aimed to test the correlation and agreement between IVUS and StentBoost measurements. Methods From December 2010 to December 2011, 38 patients (54 stents) were analyzed using IVUS and StentBoost. Minimal stent diameter and...

  19. Simple visual review of pre- to post-operative renal ultrasound images predicts pyeloplasty success equally as well as geometric measurements: A blinded comparison with a gold standard.

    Science.gov (United States)

    Kern, Adam J M; Schlomer, Bruce J; Timberlake, Matthew D; Peters, Craig A; Hammer, Matthew R; Jacobs, Micah A

    2017-08-01

    MAG3 diuretic renal scan remains the gold standard for determination of improvement in renal drainage following pyeloplasty for ureteropelvic junction obstruction. We hypothesized that (i) a change in geometric measurements between pre-operative and post-operative renal ultrasound (RUS) images and (ii) blinded simple visual review of images both would predict pyeloplasty success. To determine if simple visual review and/or novel geometric measurement of renal ultrasounds can detect pyeloplasty failure. This study was a retrospective, blinded comparison with a gold standard. Included were children aged ≤18 years undergoing pyeloplasty at our institution from 2009 to 2015. For each kidney, representative pre-operative and post-operative RUS images were chosen. Our standard for pyeloplasty success was improved drainage curve on MAG3 and lack of additional surgery. Measurements for collecting system circularity, roundness, and renal parenchymal to collecting system area ratio (RPCSR) were obtained by three raters (Figure), who were blinded to the outcome of the pyeloplasty. Changes in geometric measurements were analyzed as a diagnostic test for MAG3-defined pyeloplasty success using ROC curve analysis. In addition, six reviewers blinded to pyeloplasty success reviewed pre-operative and post-operative images visually for improved hydronephrosis and categorized pyeloplasty as success or failure based on simple visual review of RUS. Fifty-three repaired renal units were identified (50 children). There were five pyeloplasty failures, four of which underwent revision or nephrectomy. While all geometric measurements could discriminate pyeloplasty failure and success, the geometric measurements that discriminated best between pyeloplasty failure and success were change in collecting system roundness and change in RPCSR. Consensus opinion among six blinded reviewers using simple visual review had a sensitivity of 94% and PPV of 100% with respect to identifying pyeloplasty

  20. Ultrasound of the acute abdomen performed by surgeons in training

    DEFF Research Database (Denmark)

    Eiberg, J.P.; Grantcharov, T.P.; Eriksen, J.R.

    2008-01-01

    , specificity and kappa-agreement of the surgeon performed ultrasound examination was 1.00 (0.77-1.00), 0.96 (0.79-0.99), 0.94 (0.3-1.00) and 0.40 (0.12-0.77), 0.97 (0.83-0.99), 0.44 (0.00-0.96); respectively. Visualization of the common bile duct was poor having 73% non-diagnostic surgeon-performed ultrasound...... perform valid abdominal ultrasound examinations of patients referred with acute abdominal pain. METHODS: Patients referred with acute abdominal pain had an ultrasound examination by a surgeon in training as well as by an experienced consultant radiologist whose results served as the gold standard. All...... participating surgeons were without any pre-existing ultrasound experience and received one hour of introduction to abdominal ultrasound. RESULTS: Thirty patients underwent 40 surgeon performed and 30 radiologist performed ultrasound examinations. Regarding gallstone and cholecholecystitis the sensitivity...

  1. Microalgae as feedstock for biodiesel production under ultrasound treatment - A review.

    Science.gov (United States)

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2018-02-01

    The application of ultrasound in biodiesel production has recently emerged as a novel technology. Ultrasound treatment enhances the mass transfer characteristics leading to the increased reaction rate with short reaction time and potentially reduces the production cost. In this review, application of ultrasound-assisted biodiesel production using acid, base and enzyme catalysts is presented. A critical assessment of the current status of ultrasound in biodiesel production was discussed with the emphasis on using ultrasound for efficient microalgae biodiesel production. The ultrasound in the biodiesel production enhances the emulsification of immiscible liquid reactant by microturbulence generated by cavitation bubbles. The major benefit of the ultrasound-assisted biodiesel production is a reduction in reaction time. Several different methods have been discussed to improve the biodiesel production. Overall, this review focuses on the current understanding of the application of ultrasound in biodiesel production from microalgae and to provide insights into future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  3. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    Directory of Open Access Journals (Sweden)

    Marxa Figueiredo

    2012-01-01

    Full Text Available This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid (PLGA or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound composed either of polymers (PLGA, polystyrene or other contrast agent materials (Optison, SonoVue microbubbles. The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.

  4. Enhanced dimension-specific visual working memory in grapheme-color synesthesia.

    Science.gov (United States)

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-10-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme-color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Endobronchial ultrasound elastography: a new method in endobronchial ultrasound-guided transbronchial needle aspiration.

    Science.gov (United States)

    Jiang, Jun-Hong; Turner, J Francis; Huang, Jian-An

    2015-12-01

    TBNA through the flexible bronchoscope is a 37-year-old technology that utilizes a TBNA needle to puncture the bronchial wall and obtain specimens of peribronchial and mediastinal lesions through the flexible bronchoscope for the diagnosis of benign and malignant diseases in the mediastinum and lung. Since 2002, the Olympus Company developed the first generation ultrasound equipment for use in the airway, initially utilizing an ultrasound probe introduced through the working channel followed by incoroporation of a fixed linear ultrasound array at the distal tip of the bronchoscope. This new bronchoscope equipped with a convex type ultrasound probe on the tip was subsequently introduced into clinical practice. The convex probe (CP)-EBUS allows real-time endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) of mediastinal and hilar lymph nodes. EBUS-TBNA is a minimally invasive procedure performed under local anesthesia that has been shown to have a high sensitivity and diagnostic yield for lymph node staging of lung cancer. In 10 years of EBUS development, the Olympus Company developed the second generation EBUS bronchoscope (BF-UC260FW) with the ultrasound image processor (EU-M1), and in 2013 introduced a new ultrasound image processor (EU-M2) into clinical practice. FUJI company has also developed a curvilinear array endobronchial ultrasound bronchoscope (EB-530 US) that makes it easier for the operator to master the operation of the ultrasonic bronchoscope. Also, the new thin convex probe endobronchial ultrasound bronchoscope (TCP-EBUS) is able to visualize one to three bifurcations distal to the current CP-EBUS. The emergence of EBUS-TBNA has also been accompanied by innovation in EBUS instruments. EBUS elastography is, then, a new technique for describing the compliance of structures during EBUS, which may be of use in the determination of metastasis to the mediastinal and hilar lymph nodes. This article describes these new EBUS

  6. Ultrasound in Biomedical Engineering: Ultrasound Microbubble Contrast Agents Promote Transdermal Permeation of Drugs

    OpenAIRE

    Ai-Ho Liao

    2016-01-01

    This report discusses a new development in the use of ultrasound microbubble contrast agents on transdermal drug delivery. The medium surrounding the microbubbles at the optimum concentration from liquid to gel can be modified and it can still achieve the same enhancement for transdermal drug permeation as liquid medium. It was also found that under the same ultrasound power density, microbubbles of larger particle sizes can extend the penetration depths of dye at the phantom surface.

  7. Augmented Reality Using Transurethral Ultrasound for Laparoscopic Radical Prostatectomy: Preclinical Evaluation.

    Science.gov (United States)

    Lanchon, Cecilia; Custillon, Guillaume; Moreau-Gaudry, Alexandre; Descotes, Jean-Luc; Long, Jean-Alexandre; Fiard, Gaelle; Voros, Sandrine

    2016-07-01

    To guide the surgeon during laparoscopic or robot-assisted radical prostatectomy an innovative laparoscopic/ultrasound fusion platform was developed using a motorized 3-dimensional transurethral ultrasound probe. We present what is to our knowledge the first preclinical evaluation of 3-dimensional prostate visualization using transurethral ultrasound and the preliminary results of this new augmented reality. The transurethral probe and laparoscopic/ultrasound registration were tested on realistic prostate phantoms made of standard polyvinyl chloride. The quality of transurethral ultrasound images and the detection of passive markers placed on the prostate surface were evaluated on 2-dimensional dynamic views and 3-dimensional reconstructions. The feasibility, precision and reproducibility of laparoscopic/transurethral ultrasound registration was then determined using 4, 5, 6 and 7 markers to assess the optimal amount needed. The root mean square error was calculated for each registration and the median root mean square error and IQR were calculated according to the number of markers. The transurethral ultrasound probe was easy to manipulate and the prostatic capsule was well visualized in 2 and 3 dimensions. Passive markers could precisely be localized in the volume. Laparoscopic/transurethral ultrasound registration procedures were performed on 74 phantoms of various sizes and shapes. All were successful. The median root mean square error of 1.1 mm (IQR 0.8-1.4) was significantly associated with the number of landmarks (p = 0.001). The highest accuracy was achieved using 6 markers. However, prostate volume did not affect registration precision. Transurethral ultrasound provided high quality prostate reconstruction and easy marker detection. Laparoscopic/ultrasound registration was successful with acceptable mm precision. Further investigations are necessary to achieve sub mm accuracy and assess feasibility in a human model. Copyright © 2016 American Urological

  8. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  9. Contrast-enhanced ultrasound features of histologically proven focal nodular hyperplasia: diagnostic performance compared with contrast-enhanced CT

    International Nuclear Information System (INIS)

    Wang, Wei; Chen, Li-Da; Liu, Guang-Jian; Xu, Zuo-Feng; Xie, Xiao-Yan; Wang, Yan; Zhou, Lu-Yao; Lu, Ming-De; Shen, Shun-Li

    2013-01-01

    To investigate and compare contrast-enhanced ultrasound (CEUS) in the characterisation of histologically proven focal nodular hyperplasia (FNH) with contrast-enhanced computed tomography (CECT). CEUS was performed in 85 patients with 85 histologically proven FNHs. Enhancement, centrifugal filling, spoke-wheel arteries, feeding artery and central scarring were reviewed and correlated with lesion size or liver background. Independent factors for predicting FNH from other focal liver lesions (FLLs) were evaluated. Forty-seven FLLs with CECT were randomly selected for comparison of diagnostic performance with CEUS. Centrifugal filling was more common (P = 0.002) and the significant predictor (P = 0.003) in FNHs ≤3 cm. Lesion size or liver background has no significant influence on the detection rate of the spoke-wheel arteries and feeding artery (P > 0.05). Central scarring was found in 42.6 % of FNHs ≥3 cm (P = 0.000). The area under the ROC curve, sensitivity and specificity showed no significant differences between CEUS and CECT (P > 0.05), except that the sensitivity of CEUS was better for reader 1 (P = 0.041). CEUS is valuable in characterising centrifugal filling signs or spoke wheels in small FNHs and should be employed as the first-line imaging technique for diagnosis of FNH. (orig.)

  10. Getting more from visual working memory: Retro-cues enhance retrieval and protect from visual interference.

    Science.gov (United States)

    Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus

    2016-06-01

    Visual working memory (VWM) has a limited capacity. This limitation can be mitigated by the use of focused attention: if attention is drawn to the relevant working memory content before test, performance improves (the so-called retro-cue benefit). This study tests 2 explanations of the retro-cue benefit: (a) Focused attention protects memory representations from interference by visual input at test, and (b) focusing attention enhances retrieval. Across 6 experiments using color recognition and color reproduction tasks, we varied the amount of color interference at test, and the delay between a retrieval cue (i.e., the retro-cue) and the memory test. Retro-cue benefits were larger when the memory test introduced interfering visual stimuli, showing that the retro-cue effect is in part because of protection from visual interference. However, when visual interference was held constant, retro-cue benefits were still obtained whenever the retro-cue enabled retrieval of an object from VWM but delayed response selection. Our results show that accessible information in VWM might be lost in the processes of testing memory because of visual interference and incomplete retrieval. This is not an inevitable state of affairs, though: Focused attention can be used to get the most out of VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. International guidelines for contrast-enhanced ultrasonography: Ultrasound imaging in the new millennium

    International Nuclear Information System (INIS)

    Nolsoe, Christian Pallson; Lorentzen, Torben

    2016-01-01

    The intent of this review is to discuss and comment on common clinical scenarios in which contrast-enhanced ultrasonography (CEUS) may play a decisive role and to illustrate important points with typical cases. With the advent of CEUS, the scope of indications for ultrasonography has been dramatically extended, and now includes functional imaging and tissue characterization, which in many cases enable tumor diagnosis without a biopsy. It is virtually impossible to imagine the practice of modern medicine as we know it in high-income countries without the use of imaging, and yet, an estimated two thirds of the global population may receive no such care. Ultrasound imaging with CEUS has the potential to correct this inequity

  12. International guidelines for contrast-enhanced ultrasonography: Ultrasound imaging in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    Nolsoe, Christian Pallson; Lorentzen, Torben [Ultrasound Section, Dept. of Gastric Surgery, Herlev Hospital, University of Copenhagen, Herlev (Denmark)

    2016-03-15

    The intent of this review is to discuss and comment on common clinical scenarios in which contrast-enhanced ultrasonography (CEUS) may play a decisive role and to illustrate important points with typical cases. With the advent of CEUS, the scope of indications for ultrasonography has been dramatically extended, and now includes functional imaging and tissue characterization, which in many cases enable tumor diagnosis without a biopsy. It is virtually impossible to imagine the practice of modern medicine as we know it in high-income countries without the use of imaging, and yet, an estimated two thirds of the global population may receive no such care. Ultrasound imaging with CEUS has the potential to correct this inequity.

  13. Ultrasound-Guided Regional Anesthesia for Procedures of the Upper Extremity

    Directory of Open Access Journals (Sweden)

    Farheen Mirza

    2011-01-01

    Full Text Available Anesthesia options for upper extremity surgery include general and regional anesthesia. Brachial plexus blockade has several advantages including decreased hemodynamic instability, avoidance of airway instrumentation, and intra-, as well as post-operative analgesia. Prior to the availability of ultrasound the risks of complications and failure of regional anesthesia made general anesthesia a more desirable option for anesthesiologists inexperienced in the practice of regional anesthesia. Ultrasonography has revolutionized the practice of regional anesthesia. By visualizing needle entry throughout the procedure, the relationship between the anatomical structures and the needle can reduce the incidence of complications. In addition, direct visualization of the spread of local anesthesia around the nerves provides instant feedback regarding the likely success of the block. This review article outlines how ultrasound has improved the safety and success of brachial plexus blocks. The advantages that ultrasound guidance provides are only as good as the experience of the anesthesiologist performing the block. For example, in experienced hands, with real time needle visualization, a supraclavicular brachial plexus block has changed from an approach with the highest risk of pneumothorax to a block with minimal risks making it the ideal choice for most upper extremity surgeries.

  14. Compensated Row-Column Ultrasound Imaging System Using Multilayered Edge Guided Stochastically Fully Connected Random Fields.

    Science.gov (United States)

    Ben Daya, Ibrahim; Chen, Albert I H; Shafiee, Mohammad Javad; Wong, Alexander; Yeow, John T W

    2017-09-06

    The row-column method received a lot of attention for 3-D ultrasound imaging. By reducing the number of connections required to address the 2-D array and therefore reducing the amount of data to handle, this addressing method allows for real time 3-D imaging. Row-column still has its limitations: the issues of sparsity, speckle noise inherent to ultrasound, the spatially varying point spread function, and the ghosting artifacts inherent to the row-column method must all be taken into account when building a reconstruction framework. In this research, we build on a previously published system and propose an edge-guided, compensated row-column ultrasound imaging system that incorporates multilayered edge-guided stochastically fully connected conditional random fields to address the limitations of the row-column method. Tests carried out on simulated and real row-column ultrasound images show the effectiveness of our proposed system over other published systems. Visual assessment show our proposed system's potential at preserving edges and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal-to-Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging.

  15. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.

    Science.gov (United States)

    Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing

    2015-07-01

    Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Temporal comparison of ultrasound vs. auscultation and capnography in verification of endotracheal tube placement.

    Science.gov (United States)

    Pfeiffer, P; Rudolph, S S; Børglum, J; Isbye, D L

    2011-11-01

    This study compared the time consumption of bilateral lung ultrasound with auscultation and capnography for verifying endotracheal intubation. A prospective, paired, and investigator-blinded study carried out in the operating theatre. Twenty-five adult patients requiring endotracheal intubation were included. During intubation, transtracheal ultrasound was performed to visualize passage of the endotracheal tube. During bag ventilation, bilateral lung ultrasound was performed for the detection of lung sliding as a sign of ventilation simultaneous with capnography and auscultation of the epigastrium and chest. Primary outcome measure was time difference to confirmed endotracheal intubation between ultrasound and auscultation alone. Secondary outcome measure was time difference between ultrasound and auscultation combined with capnography. Both methods verified endotracheal tube placement in all patients. In 68% of patients, endotracheal tube placement was visualized by real-time transtracheal ultrasound. Comparing ultrasound with the combination of auscultation and capnography, there was a significant difference between the two methods. Median time for ultrasound was 40 s [interquartile range (IQR) 35-48 s] vs. 48 s (IQR 45-53 s), P auscultation alone. Median time for auscultation alone was 42 s (IQR 37-47 s), P = 0.6, with a mean difference of -0.88 s in favour of ultrasound (95% CI -4.2-2.5 s). Verification of endotracheal tube placement with ultrasound is as fast as auscultation alone and faster than the standard method of auscultation and capnography. © 2011 The Authors. Acta Anaesthesiologica Scandinavica © 2011 The Acta Anaesthesiologica Scandinavica Foundation.

  17. Pulsed ultrasound enhances the delivery of nitric oxide from bubble liposomes to ex vivo porcine carotid tissue

    Directory of Open Access Journals (Sweden)

    Sutton JT

    2014-10-01

    Full Text Available JT Sutton,1 JL Raymond,1 MC Verleye,2 GJ Pyne-Geithman,3 CK Holland4 1University of Cincinnati, Biomedical Engineering Program, Cincinnati, OH, 2University of Notre Dame Department of Chemical Engineering, Notre Dame, IN, 3University of Cincinnati, College of Medicine, Department of Neurosurgery and the University of Cincinnati Neuroscience Institute, and Mayfield Clinic, Cincinnati, OH, 4University of Cincinnati, College of Medicine, Internal Medicine, Division of Cardiovascular Diseases, Cincinnati, OH, USA Abstract: Ultrasound-mediated drug delivery is a novel technique for enhancing the penetration of drugs into diseased tissue beds noninvasively. By encapsulating drugs into microsized and nanosized liposomes, the therapeutic can be shielded from degradation within the vasculature until delivery to a target site by ultrasound exposure. Traditional in vitro or ex vivo techniques to quantify this delivery profile include optical approaches, cell culture, and electrophysiology. Here, we demonstrate an approach to characterize the degree of nitric oxide (NO delivery to porcine carotid tissue by direct measurement of ex vivo vascular tone. An ex vivo perfusion model was adapted to assess ultrasound-mediated delivery of NO. This potent vasodilator was coencapsulated with inert octafluoropropane gas to produce acoustically active bubble liposomes. Porcine carotid arteries were excised post mortem and mounted in a physiologic buffer solution. Vascular tone was assessed in real time by coupling the artery to an isometric force transducer. NO-loaded bubble liposomes were infused into the lumen of the artery, which was exposed to 1 MHz pulsed ultrasound at a peak-to-peak acoustic pressure amplitude of 0.34 MPa. Acoustic cavitation emissions were monitored passively. Changes in vascular tone were measured and compared with control and sham NO bubble liposome exposures. Our results demonstrate that ultrasound-triggered NO release from bubble liposomes

  18. Enhanced visual statistical learning in adults with autism

    Science.gov (United States)

    Roser, Matthew E.; Aslin, Richard N.; McKenzie, Rebecca; Zahra, Daniel; Fiser, József

    2014-01-01

    Individuals with autism spectrum disorder (ASD) are often characterized as having social engagement and language deficiencies, but a sparing of visuo-spatial processing and short-term memory, with some evidence of supra-normal levels of performance in these domains. The present study expanded on this evidence by investigating the observational learning of visuospatial concepts from patterns of covariation across multiple exemplars. Child and adult participants with ASD, and age-matched control participants, viewed multi-shape arrays composed from a random combination of pairs of shapes that were each positioned in a fixed spatial arrangement. After this passive exposure phase, a post-test revealed that all participant groups could discriminate pairs of shapes with high covariation from randomly paired shapes with low covariation. Moreover, learning these shape-pairs with high covariation was superior in adults with ASD than in age-matched controls, while performance in children with ASD was no different than controls. These results extend previous observations of visuospatial enhancement in ASD into the domain of learning, and suggest that enhanced visual statistical learning may have arisen from a sustained bias to attend to local details in complex arrays of visual features. PMID:25151115

  19. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions

    OpenAIRE

    Kopechek, Jonathan A; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I; McDannold, Nathan J; Porter, Tyrone M

    2014-01-01

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acous...

  20. Varying ultrasound power level to distinguish surgical instruments and tissue.

    Science.gov (United States)

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  1. Contrast-enhanced versus systematic transrectal ultrasound-guided prostate cancer detection: An overview of techniques and a systematic review

    International Nuclear Information System (INIS)

    Heijmink, Stijn W.T.P.J.; Barentsz, Jelle O.

    2007-01-01

    An overview is given of the current conventional and contrast-specific transrectal ultrasound (TRUS) techniques for prostate imaging that may be used for guiding biopsy. Subsequently, a systematic literature search resulted in inclusion of four studies that directly compared systematic and contrast-enhanced-targeted TRUS-guided biopsy of the prostate. All four studies revealed that contrast-enhanced-targeted TRUS-guided biopsy significantly improved the positive biopsy core rate. In the largest study, the mean Gleason score of the contrast-enhanced-targeted TRUS-guided biopsies was significantly higher than that of the systematic biopsies. Future randomized clinical trials, preferably in a non-academic multi-institutional set-up, will have to be performed to confirm the value of contrast-enhanced-targeted TRUS-guided biopsy in regular clinical practice

  2. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    Science.gov (United States)

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.

  3. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic...

  4. Contrast-enhanced color Doppler ultrasound characteristics in hypervascular breast tumors: comparison with MRI

    International Nuclear Information System (INIS)

    Alamo, L.; Fischer, U.

    2001-01-01

    The aim of this study was to evaluate the accuracy of contrast-enhanced color Doppler ultrasound (CE-US) in comparison with contrast-enhanced MR imaging (CE-MRI) in the discrimination of hypervascularized breast tumors. An additional CE-US of the breast was preoperatively performed in 40 patients with a hypervascular breast lesion detected on CE-MRI. The presence of blood flow signals and the morphological characteristics of the vessels in the breast lesions were evaluated pre- and post-contrast administration, as well as the dynamic aspects of the Doppler signal, including time interval to maximum signal enhancement and persistence of the signal enhancement. Twenty-three carcinomas and 17 fibroadenomas were explored. Considering initial signal enhancement > 100 % after the administration of contrast material as a criterion suggesting malignancy, CE-MRI showed a sensitivity of 100 % and a specificity of 76.5 % in the detection of malignant breast tumors. Color Doppler signals were consistently demonstrated in all carcinomas and in 68.7 % of fibroadenomas after the administration of Levovist, with CE-US showing a sensitivity of 95.6 % and a specificity of 5.9 %. Neither the mean number of vessels per tumor, nor the location of vessels, the time to maximum increase of the Doppler signal or the persistence of signal enhancement showed significant differences between benign and malignant lesions. Additional CE-US does not increase the low specificity of MRI in patients with hypervascularized breast tumors. (orig.)

  5. Evaluation of breast lesions by contrast enhanced ultrasound: Qualitative and quantitative analysis

    International Nuclear Information System (INIS)

    Wan Caifeng; Du Jing; Fang Hua; Li Fenghua; Wang Lin

    2012-01-01

    Objective: To evaluate and compare the diagnostic performance of qualitative, quantitative and combined analysis for characterization of breast lesions in contrast enhanced ultrasound (CEUS), with histological results used as the reference standard. Methods: Ninety-one patients with 91 breast lesions BI-RADS 3–5 at US or mammography underwent CEUS. All lesions underwent qualitative and quantitative enhancement evaluation. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of different analytical method for discrimination between benign and malignant breast lesions. Results: Histopathologic analysis of the 91 lesions revealed 44 benign and 47 malignant. For qualitative analysis, benign and malignant lesions differ significantly in enhancement patterns (p z1 ), 0.768 (A z2 ) and 0.926(A z3 ) respectively. The values of A z1 and A z3 were significantly higher than that for A z2 (p = 0.024 and p = 0.008, respectively). But there was no significant difference between the values of A z1 and A z3 (p = 0.625). Conclusions: The diagnostic performance of qualitative and combined analysis was significantly higher than that for quantitative analysis. Although quantitative analysis has the potential to differentiate benign from malignant lesions, it has not yet improved the final diagnostic accuracy.

  6. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  7. Effect of low frequency ultrasound on combined rt-PA and eptifibatide thrombolysis in human clots.

    Science.gov (United States)

    Meunier, Jason M; Holland, Christy K; Pancioli, Arthur M; Lindsell, Christopher J; Shaw, George J

    2009-01-01

    Fibrinolytics such as recombinant tissue plasminogen activator (rt-PA) are used to treat thrombotic disease such as acute myocardial infarction (AMI) and ischemic stroke. Interest in increasing efficacy and reducing side effects has led to the study of adjuncts such as GP IIb-IIIa inhibitors and ultrasound (US) enhanced thrombolysis. Currently, GP IIb-IIIa inhibitor and fibrinolytic treatment are often used in AMI, and are under investigation for stroke treatment. However, little is known of the efficacy of combined GP IIb-IIIa inhibitor, fibrinolytic and ultrasound treatment. We measure the lytic efficacy of rt-PA, eptifibatide (Epf) and 120 kHz ultrasound treatment in an in-vitro human clot model. Blood was drawn from 15 subjects after IRB approval. Clots were made in 20 microL pipettes, and placed in a water tank for microscopic visualization during lytic treatment. Clots were exposed to control, rt-PA (rt-PA), eptifibatide (Epf), or rt-PA+eptifibatide (rt-PA + Epf), with (+US) or without (-US) ultrasound for 30 minutes at 37 degrees C in human plasma. Clot lysis was measured over time, using a microscopic imaging technique. The fractional clot loss (FCL) and initial lytic rate (LR) were used to quantify lytic efficacy. LR values for (- US) treated clots were 0.8+/-0.1(control), 1.8+/-0.3 (Epf), 1.5+/-0.2 (rt-PA), and 1.3+/-0.4 (rt-PA + Epf) (% clot width/minute) respectively. In comparison, the (+ US) group exhibited LR values of 1.6+/-0.2 (control), 4.3+/-0.4 (Epf), 6.3+/-0.4 (rt-PA), and 4.6+/-0.6 (rt-PA + Epf). For (- US) treated clots, FCL was 6.0+/-0.8 (control), 9.2+/-2.5 (Epf), 15.6+/-1.7 (rt-PA), and 28.0+/-2.2% (rt-PA + Epf) respectively. FCL for (+ US) clots was 13.5+/-2.4 (control), 20.7+/-6.4 (Epf), 44.4+/-3.6 (rt-PA) and 30.3+/-3.6% (rt-PA + Epf) respectively. Although the addition of eptifibatide enhances the in-vitro lytic efficacy of rt-PA in the absence of ultrasound, the efficacy of ultrasound and rt-PA is greater than that of combined

  8. Enhancement and suppression in the visual field under perceptual load.

    Science.gov (United States)

    Parks, Nathan A; Beck, Diane M; Kramer, Arthur F

    2013-01-01

    The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  9. Enhancement and Suppression in the Visual Field under Perceptual Load

    Directory of Open Access Journals (Sweden)

    Nathan A Parks

    2013-05-01

    Full Text Available The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task – greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs in conjunction with time-domain event-related potentials (ERPs to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2°, 6°, or 11° during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3Hz was attenuated under high perceptual load (relative to low load at the most proximal (2° eccentricity but not at more eccentric locations (6˚ or 11˚. Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  10. Control of treatment size in cavitation-enhanced high-intensity focused ultrasound using radio-frequency echo signals

    Science.gov (United States)

    Tomiyasu, Kentaro; Takagi, Ryo; Iwasaki, Ryosuke; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    In high-intensity focused ultrasound (HIFU) treatment, controlling the ultrasound dose at each focal target spot is important because it is a problem that the length of the coagulated region in front of the focal point deviates owing to the differences in absorption in each focal target spot and attenuation in the intervening tissues. In this study, the detected changes in the power spectra of HIFU echoes were used by controlling the HIFU duration in the “trigger HIFU” sequence with the aim to increase coagulation size through the enhancement of the ultrasonic heating by the cavitation induced by the preceding extremely high intensity short “trigger” pulse. The result shows that this method can be used to detect boiling bubbles and the following generated cavitation bubbles at their early stage. By automatically stopping HIFU exposure immediately after detecting the bubbles, overheating was prevented and the deviation of the length of the coagulated region was reduced.

  11. Multi-slice ultrasound image calibration of an intelligent skin-marker for soft tissue artefact compensation.

    Science.gov (United States)

    Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N

    2017-09-06

    In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function.

    Science.gov (United States)

    McDannold, Nathan; Zhang, Yong-Zhi; Power, Chanikarn; Jolesz, Ferenc; Vykhodtseva, Natalia

    2013-11-01

    Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in

  13. Twofold processing for denoising ultrasound medical images.

    Science.gov (United States)

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  14. Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage Induced in Rats by Contrast-Enhanced Diagnostic Ultrasound?

    Science.gov (United States)

    Miller, Douglas L; Lu, Xiaofang; Fabiilli, Mario; Dou, Chunyan

    2016-02-01

    Glomerular capillary hemorrhage can be induced by ultrasonic cavitation during contrast-enhanced diagnostic ultrasound (US) exposure, an important nonthermal US bioeffect. Recent studies of pulmonary US exposure have shown that thresholds for another nonthermal bioeffect of US, pulmonary capillary hemorrhage, is strongly influenced by whether xylazine is included in the specific anesthetic technique. The objective of this study was to determine the influence of xylazine on contrast-enhanced diagnostic US-induced glomerular capillary hemorrhage. In this study, anesthesia with ketamine only was compared to ketamine plus xylazine for induction of glomerular capillary hemorrhage in rats by 1.6-MHz intermittent diagnostic US with a microsphere contrast agent (similar to Definity; Lantheus Medical Imaging, Inc, North Billerica, MA). Glomerular capillary hemorrhage was measured as a percentage of glomeruli with hemorrhage found in histologic sections for groups of rats scanned at different peak rarefactional pressure amplitudes. There was a significant difference between the magnitude of the glomerular capillary hemorrhage between the anesthetics at 2.3 MPa, with 45.6% hemorrhage for ketamine only, increasing to 63.2% hemorrhage for ketamine plus xylazine (P Ultrasound in Medicine.

  15. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS.

    Science.gov (United States)

    Schellhaas, Barbara; Görtz, Ruediger S; Pfeifer, Lukas; Kielisch, Christian; Neurath, Markus F; Strobel, Deike

    2017-09-01

    A comparison is made of two contrast-enhanced ultrasound (CEUS) algorithms for the diagnosis of hepatocellular carcinoma (HCC) in high-risk patients: Erlanger Synopsis of Contrast-enhanced Ultrasound for Liver lesion Assessment in Patients at Risk (ESCULAP) and American College of Radiology Contrast-Enhanced Ultrasound-Liver Imaging Reporting and Data System (ACR-CEUS-LI-RADSv.2016). Focal liver lesions in 100 high-risk patients were assessed using both CEUS algorithms (ESCULAP and CEUS-LI-RADSv.2016) for a direct comparison. Lesions were categorized according to size and contrast enhancement in the arterial, portal venous and late phases.For the definite diagnosis of HCC, categories ESCULAP-4, ESCULAP-Tr and ESCULAP-V and CEUS-LI-RADS-LR-5, LR-Tr and LR-5-V were compared. In addition, CEUS-LI-RADS-category LR-M (definitely/probably malignant, but not specific for HCC) and ESCULAP-category C [intrahepatic cholangiocellular carcinoma (ICC)] were compared.Histology, CE-computed tomography and CE-MRI served as reference standards. The reference standard among 100 lesions included 87 HCCs, six ICCs and seven non-HCC-non-ICC-lesions. For the diagnosis of HCC, the diagnostic accuracy of CEUS was significantly higher with ESCULAP versus CEUS-LI-RADS (94.3%/72.4%; pdiagnostic accuracy for ICC (LR-M/ESCULAP-C) was identical with both algorithms (50%), with higher PPV for ESCULAP-C versus LR-M (75 vs. 50%). CEUS-based algorithms contribute toward standardized assessment and reporting of HCC-suspect lesions in high-risk patients. ESCULAP shows significantly higher diagnostic accuracy, sensitivity and negative predictive value with no loss of specificity compared with CEUS-LI-RADS. Both algorithms have an excellent PPV. Arterial hyperenhancement is the key feature for the diagnosis of HCC with CEUS. Washout should not be a necessary prerequisite for the diagnosis of definite HCC. CEUS-LI-RADS in its current version is inferior to ESCULAP for the noninvasive diagnosis of HCC

  16. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  17. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Chenot, J; Melodelima, D; N' Djin, W A; Souchon, Remi; Rivoire, M; Chapelon, J Y, E-mail: jeremy.chenot@inserm.f [Inserm, U556, Lyon, F-69003 (France)

    2010-06-07

    The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s{sup -1}, allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.

  18. Ultrasound-enhanced delivery of antibiotics and anti-inflammatory drugs into the eye.

    Science.gov (United States)

    Nabili, Marjan; Patel, Hetal; Mahesh, Sankaranarayana P; Liu, Ji; Geist, Craig; Zderic, Vesna

    2013-04-01

    Delivery of sufficient amounts of therapeutic drugs into the eye is often a challenging task. In this study, ultrasound application (frequencies of 400 KHz to 1 MHz, intensities of 0.3-1.0 W/cm(2) and exposure duration of 5 min) was investigated to overcome the barrier properties of cornea, which is a typical route for topical administration of ophthalmic drugs. Permeability of ophthalmic drugs, tobramycin and dexamethasone and sodium fluorescein, a drug-mimicking compound, was studied in ultrasound- and sham-treated rabbit corneas in vitro using a standard diffusion cell setup. Light microscopy observations were used to determine ultrasound-induced structural changes in the cornea. For tobramycin, an increase in permeability for ultrasound- and sham-treated corneas was not statistically significant. Increase of 46%-126% and 32%-109% in corneal permeability was observed for sodium fluorescein and dexamethasone, respectively, with statistical significance (p anti-inflammatory ocular drug dexamethasone. Future investigations are needed to determine the effectiveness and safety of this application in in vivo long-term survival studies. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Methodological developments of low field MRI: Elasto-graphy, MRI-ultrasound interaction and dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Madelin, Guillaume

    2005-01-01

    This thesis deals with two aspects of low field (0.2 T) Magnetic Resonance Imaging (MRI): the research of new contrasts due to the interaction between Nuclear Magnetic Resonance (NMR) and acoustics (elasto-graphy, spin-phonon interaction) and enhancement of the signal-to-noise ratio by Dynamic Nuclear Polarization (DNP). Magnetic Resonance Elasto-graphy (MRE) allows to assess some viscoelastic properties of tissues by visualization of the propagation of low frequency acoustic strain waves. A review on MRE is given, as well as a study on local measurement of the acoustic absorption coefficient. The next part is dedicated to MRI-ultrasound interaction. First, the ultrasonic transducer was calibrated for power and acoustic field using the comparison of two methods: the radiation force method (balance method) and laser interferometry. Then, we tried to modify the T1 contrast of tissues by spin-phonon interaction due to the application of ultrasound at the resonance frequency at 0.2 T, which is about 8.25 MHz. No modification of T1 contrast has been obtained, but the acoustic streaming phenomenon has been observed in liquids. MRI visualization of this streaming could make possible to calibrate transducers as well as to assess some mechanical properties of viscous fluids. The goal of the last part was to set up DNP experiments at 0.2 T in order to enhance the NMR signal. This double resonance method is based on the polarization transfer of unpaired electrons of free radicals to the surrounding protons of water. This transfer occurs by cross relaxation during the saturation of an electronic transition using Electronic Paramagnetic Resonance (EPR). Two EPR cavities operating at 5.43 GHz have been tested on oxo-TEMPO free radicals (nitroxide). An enhancement of the NMR signal by a factor 30 was obtained during these preliminary experiments. (author)

  20. Stone fragmentation by ultrasound

    Indian Academy of Sciences (India)

    Unknown

    In the present work, enhancement of the kidney stone fragmentation by using ultrasound is studied. The cavi- ... ment system like radiation pressure balance, the power is given by ... Thus the bubble size has direct relationship with its life and.

  1. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study.

    Science.gov (United States)

    Kang, Kyung Lhi; Kim, Eun-Cheol; Park, Joon Bong; Heo, Jung Sun; Choi, Yumi

    2016-02-01

    Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Therapeutic response assessment of high intensity focused ultrasound therapy for uterine fibroid: Utility of contrast-enhanced ultrasonography

    International Nuclear Information System (INIS)

    Zhou Xiaodong; Ren Xiaolong; Zhang Jun; He Guangbin; Zheng Minjuan; Tian Xue; Li Li; Zhu Ting; Zhang Min; Wang Lei; Luo Wen

    2007-01-01

    Purpose: To assess the utility of contrast-enhanced ultrasonography (ceUS) in the assessment of the therapeutic response to high intensity focused ultrasound (HIFU) ablation in patients with uterine fibroid. Materials and methods: Sixty-four patients with a total of 64 uterine fibroids (mean: 5.3 ± 1.2 cm; range: 3.2-8.9 cm) treated with HIFU ablation under the ultrasound guidance were evaluated with ceUS after receiving an intravenous bolus injection of a microbubble contrast agent (SonoVue) within 1 week after intervention. We obtained serial ceUS images during the time period from beginning to 5 min after the initiation of the bolus contrast injection. All of the patients underwent a contrast enhanced MRI (ceMRI) and ultrasound guided needle puncture biopsy within 1 week after HIFU ablation. And as a follow-up, all of the patients underwent US at 1, 3, 6 and 12 months after HIFU treatment. The volume change was observed and compared to pre- and post-HIFU ablation. The results of the ceUS were compared with those of the ceMRI in terms of the presence or absence of residual unablated tumor and pathologic change in the treated lesions. Results: On ceUS, diagnostic accuracy was 100%, while residual unablated tumors were found in three uterine fibroids (4.7%) and failed treatment was found in eight uterine fibroids (12.5%). All the 11 fibroids were subjected to additional HIFU ablation. Of the 58 ablated fibroids without residual tumors on both the ceUS and ceMRI after the HIFU ablation, the volumes of all the fibroids decreased in different degrees during the 1 year follow-up USs. And histologic examinations confirmed findings of necrotic and viable tumor tissue, respectively. Conclusion: CEUS is potentially useful for evaluating the early therapeutic effect of percutaneous HIFU ablation for uterine fibroids

  3. Pulsed-low intensity ultrasound enhances extracellular matrix production by fibroblasts encapsulated in alginate

    Directory of Open Access Journals (Sweden)

    Siti PM Bohari

    2012-12-01

    Full Text Available In this study, the effect of pulsed-low intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by 3T3 fibroblasts encapsulated in alginate was evaluated. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content and dimethylamine blue assay for glycosaminoglycan content were performed on samples from cell cultures treated with pulsed-low intensity ultrasound and a control group. Pulsed-low intensity ultrasound shows no effect on cell proliferation, while collagen and glycosaminoglycan contents were consistently higher in the samples treated with pulsed-low intensity ultrasound, showing a statistically significant difference (p < 0.05 on day 10. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both groups. These results suggest that pulsed-low intensity ultrasound shows no effect on cell proliferation but has potential for inducing collagen and glycosaminoglycan production in cells cultured in alginate gels.

  4. Gold nanoparticle nucleated cavitation for enhanced high intensity focused ultrasound therapy

    Science.gov (United States)

    McLaughlan, J. R.; Cowell, D. M. J.; Freear, S.

    2018-01-01

    High intensity focused ultrasound (HIFU) or focused ultrasound surgery is a non-invasive technique for the treatment of cancerous tissue, which is limited by difficulties in getting real-time feedback on treatment progress and long treatment durations. The formation and activity of acoustic cavitation, specifically inertial cavitation, during HIFU exposures has been demonstrated to enhance heating rates. However, without the introduction of external nuclei its formation an activity can be unpredictable, and potentially counter-productive. In this study, a combination of pulse laser illumination (839 nm), HIFU exposures (3.3 MHz) and plasmonic gold nanorods (AuNR) was demonstrated as a new approach for the guidance and enhancement of HIFU treatments. For imaging, short duration HIFU pulses (10 μs) demonstrated broadband acoustic emissions from AuNR nucleated cavitation with a signal-to-noise ranging from 5-35 dB for peak negative pressures between 1.19-3.19  ±  0.01 MPa. In the absence of either AuNR or laser illumination these emissions were either not present or lower in magnitude (e.g. 5 dB for 3.19 MPa). Continuous wave (CW) HIFU exposures for 15 s, were then used to generate thermal lesions for peak negative pressures from 0.2-2.71  ±  0.01 MPa at a fluence of 3.4 mJ cm-2 . Inertial cavitation dose (ICD) was monitored during all CW exposures, where exposures combined with both laser illumination and AuNRs resulted in the highest level of detectable emissions. This parameter was integrated over the entire exposure to give a metric to compare with measured thermal lesion area, where it was found that a minimum total ICD of 1.5 × 103 a.u. was correlated with the formation of thermal lesions in gel phantoms. Furthermore, lesion area (mm2) was increased for equivalent exposures without either AuNRs or laser illumination. Once combined with cancer targeting AuNRs this approach could allow for the future theranostic use of HIFU, such as

  5. Assessment of arterial hypervascularity of hepatocellular carcinoma: comparison of contrast-enhanced US and gadoxetate disodium-enhanced MR imaging

    International Nuclear Information System (INIS)

    Sugimoto, Katsutoshi; Moriyasu, Fuminori; Taira, Junichi; Imai, Yasuharu; Shiraishi, Junji; Saito, Kazuhiro; Saguchi, Toru

    2012-01-01

    To compare contrast-enhanced (CE) ultrasound with gadoxetate disodium-enhanced magnetic resonance (MR) imaging in the assessment of arterial hypervascularity of hepatocellular carcinoma (HCC) and dysplastic nodule (DN), with CT during hepatic arteriography (CTHA) as the reference standard. This study included 54 consecutively diagnosed patients, with 57 histologically confirmed HCCs and 3 DNs (high-grade). All patients underwent CE ultrasound, gadoxetate disodium-enhanced MR imaging and CTHA. Two trained diagnostic radiologists interpreted the CTHA images and rated the degree of intratumoral arterial vascularity by consensus using a five-point confidence scale as the reference standard. In the observer study, the degrees of vascularity on CE ultrasound and gadoxetate disodium-enhanced MR images were qualitatively analysed by four independent readers using a five-point confidence scale. Diagnostic accuracy was analysed by receiver-operating characteristic (ROC) analysis. The diagnostic accuracies of the average area under the ROC curve (AUC) were significantly greater with CE ultrasound (average AUC: 0.94; 95% confidence interval [CI]: 0.88-1.00) than with gadoxetate disodium-enhanced MR imaging (average AUC 0.84, 95% CI 0.74-0.93, P = 0.0014). Contrast-enhanced ultrasound yields a significantly higher AUC value than gadoxetate disodium-enhanced MR imaging in the assessment of arterial hypervascularity of HCC and DN. Key Points circle Arterial hypervascularity is an important feature determining treatment options in hepatocellular carcinoma. circle It can be assessed by contrast-enhanced (CE) ultrasound or magnetic resonance (MR) imaging. circle CE ultrasound was more accurate than Gd-EOB-DTPA MRI in assessing intratumoral vascularity. circle Hypovascular hepatic nodules should be further investigated using CE ultrasound. (orig.)

  6. Ultrasound-assisted endoscopic partial plantar fascia release.

    Science.gov (United States)

    Ohuchi, Hiroshi; Ichikawa, Ken; Shinga, Kotaro; Hattori, Soichi; Yamada, Shin; Takahashi, Kazuhisa

    2013-01-01

    Various surgical treatment procedures for plantar fasciitis, such as open surgery, percutaneous release, and endoscopic surgery, exist. Skin trouble, nerve disturbance, infection, and persistent pain associated with prolonged recovery time are complications of open surgery. Endoscopic partial plantar fascia release offers the surgeon clear visualization of the anatomy at the surgical site. However, the primary medial portal and portal tract used for this technique have been shown to be in close proximity to the posterior tibial nerves and their branches, and there is always the risk of nerve damage by introducing the endoscope deep to the plantar fascia. By performing endoscopic partial plantar fascia release under ultrasound assistance, we could dynamically visualize the direction of the endoscope and instrument introduction, thus preventing nerve damage from inadvertent insertion deep to the fascia. Full-thickness release of the plantar fascia at the ideal position could also be confirmed under ultrasound imaging. We discuss the technique for this new procedure.

  7. Villous adenoma of the common hepatic duct: the importance of contrast-enhanced ultrasound and endoscopic retrograde cholangiopancreatography for relevant diagnosis. A case report and review of the literature.

    Science.gov (United States)

    Tefas, Cristian; Tanţău, Marcel; Szenftleben, Alexandru; Chiorean, Liliana; Badea, Radu

    2015-12-01

    Adenomas are frequently encountered in the lower digestive tract but are rarely diagnosed in the biliary tree. We report a case of villous adenoma of the common hepatic duct. A 58-year old male was admitted with a four week history of intermittent upper right quadrant pain. Gray scale and contrast-enhanced abdominal ultrasound showed a mass inside the common hepatic duct with arterial enhancement and slow wash-out during the late venous phase. Subsequent endoscopic retrograde cholangiopancreatography and intraductal ultrasound confirmed the presence of the lesion. The final histopathological examination showed villous adenoma of the common hepatic duct with high-grade dysplasia. Contrast enhanced ultrasonography used in conjecture with endoscopic retrograde cholangiopancreatography can help in differentiating biliary tumors.

  8. An Algorithm of Image Heterogeneity with Contrast-Enhanced Ultrasound in Differential Diagnosis of Solid Thyroid Nodules.

    Science.gov (United States)

    Jin, Lifang; Xu, Changsong; Xie, Xueqian; Li, Fan; Lv, Xiuhong; Du, Lianfang

    2017-01-01

    Enhancement heterogeneity on contrast-enhanced ultrasonography (CEUS) is used to differentiate between benign and malignant thyroid nodules. In this study, we used an algorithm to quantify enhancement heterogeneity of solid thyroid nodules on CEUS. The heterogeneity value (HV) is calculated as standard deviation/mean intensity × 100 (using Adobe Photoshop). The heterogeneity ratio (HR) is calculated as the ratio of the HV of the nodule to that of the surrounding parenchyma. Three phases-ascending, peak and descending phases-were studied. HV values at ascending (HV a ) and peak (HV p ) phases were significantly higher in malignant nodules than in benign nodules (95.57 ± 43.87 vs. 73.06 ± 44.04, p = 0.009, and 32.53 ± 10.73 vs. 26.44 ± 8.25, p = 0.002, respectively). HR a , HR p and HR d were significantly higher in malignant nodules than in benign nodules (1.93 ± 1.03 vs. 1.00 ± 0.47, p = 0.000, 1.43 ± 0.51 vs. 1.09 ± 0.28, p = 0.000, and 1.33 ± 0.40 vs. 1.08 ± 0.33, p = 0.001, respectively). HR a achieved optimal diagnostic performance on receiver operating characteristic curve analysis. The algorithm used for assessment of image heterogeneity on CEUS examination may be a useful adjunct to conventional ultrasound for differential diagnosis of solid thyroid nodules. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Enhanced recognition memory in grapheme-color synaesthesia for different categories of visual stimuli.

    Science.gov (United States)

    Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas

    2013-01-01

    Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status.

  10. Characteristics on Temperature Evolution in the Metallic Specimen by Ultrasound-Excited Thermography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. Y.; Park, J. H. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kang, K. S. [Hyundai Steel Co., Dangjin (Korea, Republic of); Kim, W. T. [Kongju National University, Gongju (Korea, Republic of)

    2010-06-15

    In ultrasound-excited thermography, the injected ultrasound to an object is transformed to heat and the appearance of defects can be visualized by thermography camera. The advantage of this technology is selectively sensitive to thermally active defects. Despite the apparent simplicity of the scheme, there are a number of experimental considerations that can complicate the implementation of ultrasound excitation thermography inspection. Factors including acoustic horn location, horn-crack proximity, horn-sample coupling, and effective detection range all significantly affect the detect ability of this technology. As conclusions, the influence of coupling pressures between ultrasound exciter and specimen was analyzed, which was dominant factor in frictional heating model

  11. Implementation of Synthetic Aperture Imaging in Medical Ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Kortbek, Jacob; Nikolov, Svetoslav

    2010-01-01

    The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which currently cannot be met. A method for reducing the number...... of calculations and still retain the many advantages of SA imaging is described. It consists of a dual stage beamformer, where the first can be a simple fixed focus analog beamformer and the second an ordinary digital ultrasound beamformer. The performance and constrictions of the approach is described....

  12. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Anna, J Lakshmi; Vijayeeswarri, J; Swaminathan, G

    2009-08-01

    There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 degrees C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol-water with 80W ultrasonic power for 3h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80W as compared to MS process both using 1:1 ethanol-water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from

  13. Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding

    Directory of Open Access Journals (Sweden)

    Anna A. Kosovicheva

    2012-09-01

    Full Text Available Acetylcholine (ACh reduces the spatial spread of excitatory fMRI responses in early visual cortex and the receptive field sizes of V1 neurons. We investigated the perceptual consequences of these physiological effects of ACh with surround suppression and crowding, two tasks that involve spatial interactions between visual field locations. Surround suppression refers to the reduction in perceived stimulus contrast by a high-contrast surround stimulus. For grating stimuli, surround suppression is selective for the relative orientations of the center and surround, suggesting that it results from inhibitory interactions in early visual cortex. Crowding refers to impaired identification of a peripheral stimulus in the presence of flankers and is thought to result from excessive integration of visual features. We increased synaptic ACh levels by administering the cholinesterase inhibitor donepezil to healthy human subjects in a placebo-controlled, double-blind design. In Exp. 1, we measured surround suppression of a central grating using a contrast discrimination task with three conditions: 1 surround grating with the same orientation as the center (parallel, 2 surround orthogonal to the center, or 3 no surround. Contrast discrimination thresholds were higher in the parallel than in the orthogonal condition, demonstrating orientation-specific surround suppression (OSSS. Cholinergic enhancement reduced thresholds only in the parallel condition, thereby reducing OSSS. In Exp. 2, subjects performed a crowding task in which they reported the identity of a peripheral letter flanked by letters on either side. We measured the critical spacing between the target and flanking letters that allowed reliable identification. Cholinergic enhancement had no effect on critical spacing. Our findings suggest that ACh reduces spatial interactions in tasks involving segmentation of visual field locations but that these effects may be limited to early visual cortical

  14. Synthesis of Laboratory Ultrasound Contrast Agents

    Directory of Open Access Journals (Sweden)

    Jaemin Oh

    2013-10-01

    Full Text Available Ultrasound Contrast Agents (UCAs were developed to maximize reflection contrast so that organs can be seen clearly in ultrasound imaging. UCAs increase the signal to noise ratio (SNR by linear and non-linear mechanisms and thus help more accurately visualize the internal organs and blood vessels. However, the UCAs on the market are not only expensive, but are also not optimized for use in various therapeutic research applications such as ultrasound-aided drug delivery. The UCAs fabricated in this study utilize conventional lipid and albumin for shell formation and perfluorobutane as the internal gas. The shape and density of the UCA bubbles were verified by optical microscopy and Cryo SEM, and compared to those of the commercially available UCAs, Definity® and Sonovue®. The size distribution and characteristics of the reflected signal were also analyzed using a particle size analyzer and ultrasound imaging equipment. Our experiments indicate that UCAs composed of spherical microbubbles, the majority of which were smaller than 1 um, were successfully synthesized. Microbubbles 10 um or larger were also identified when different shell characteristics and filters were used. These laboratory UCAs can be used for research in both diagnoses and therapies.

  15. The future perspectives in transrectal prostate ultrasound guided biopsy

    Directory of Open Access Journals (Sweden)

    Sung Il Hwang

    2014-12-01

    Full Text Available Prostate cancer is one of the most common neoplasms in men. Transrectal ultrasound (TRUS-guided systematic biopsy has a crucial role in the diagnosis of prostate cancer. However, it shows limited value with gray-scale ultrasound alone because only a small number of malignancies are visible on TRUS. Recently, new emerging technologies in TRUS-guided prostate biopsy were introduced and showed high potential in the diagnosis of prostate cancer. High echogenicity of ultrasound contrast agent reflect the increased status of angiogenesis in tumor. Molecular imaging for targeting specific biomarker can be also used using ultrasound contrast agent for detecting angiogenesis or surface biomarker of prostate cancer. The combination of TRUS-guided prostate biopsy and ultrasound contrast agents can increase the accuracy of prostate cancer diagnosis. Elastography is an emerging ultrasound technique that can provide the information regarding tissue elasticity and stiffness. Tumors are usually stiffer than the surrounding soft tissue. In two types of elastography techniques, shearwave elastography has many potential in that it can provide quantitative information on tissue elasticity. Multiparametric magnetic resonance imaging (MRI from high resolution morphologic and functional magnetic resonance (MR technique enables to detect more prostate cancers. The combination of functional techniques including apparent diffusion coefficient map from diffusion weighted imaging, dynamic contrast enhanced MR and MR spectroscopy are helpful in the localization of the prostate cancer. MR-ultrasound (US fusion image can enhance the advantages of both two modalities. With MR-US fusion image, targeted biopsy of suspicious areas on MRI is possible and fusion image guided biopsy can provide improved detection rate. In conclusion, with recent advances in multiparametric-MRI, and introduction of new US techniques such as contrast-enhanced US and elastography, TRUS-guided biopsy

  16. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Venous catheterization with ultrasound navigation

    International Nuclear Information System (INIS)

    Kasatkin, A. A.; Nigmatullina, A. R.; Urakov, A. L.

    2015-01-01

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures

  18. Venous catheterization with ultrasound navigation

    Energy Technology Data Exchange (ETDEWEB)

    Kasatkin, A. A., E-mail: ant-kasatkin@yandex.ru; Nigmatullina, A. R. [Izhevsk State Medical Academy, Kommunarov street, 281, Izhevsk, Russia, 426034 (Russian Federation); Urakov, A. L., E-mail: ant-kasatkin@yandex.ru [Institute of Mechanics Ural Branch of Russian Academy of Sciences, T.Baramzinoy street 34, Izhevsk, Russia, 426067, Izhevsk (Russian Federation); Izhevsk State Medical Academy, Kommunarov street, 281, Izhevsk, Russia, 426034 (Russian Federation)

    2015-11-17

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.

  19. Visual Input Enhancement and Grammar Learning: A Meta-Analytic Review

    Science.gov (United States)

    Lee, Sang-Ki; Huang, Hung-Tzu

    2008-01-01

    Effects of pedagogical interventions with visual input enhancement on grammar learning have been investigated by a number of researchers during the past decade and a half. The present review delineates this research domain via a systematic synthesis of 16 primary studies (comprising 20 unique study samples) retrieved through an exhaustive…

  20. Ultrasound imaging with a micromotor; Micromotor ni yoru choonpa imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, O.; Salimuzzaman, M.; Matani, A.; Chihara, K. [Nara Institute of Science and Technology, Nara (Japan); Asao, M. [Osaka National Hospital, Osaka (Japan)

    1998-03-01

    This paper describes a new ultrasound intravascular imaging system. In this system, an ultrasound probe consists of a micromotor, an ultrasound reflecting mirror attached with the micromotor and an ultrasound transducer. Ultrasound is scanned radially by a micromotor instead of a rotation transmitting wire and the rotation of the micromotor is performed and controlled by an external magnetic field. This ultrasound imaging system with a micromotor was applied to observe the inside of blood vessels through in vitro experiments. The preliminary results suggest that this system has the sufficient ability to define the blood vessel morphology and that the simple image processing enhances signal-to-noise ratio of the reconstructed image. 12 refs., 5 figs.

  1. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    Science.gov (United States)

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  2. The Feasibility of Contrast-Enhanced Ultrasound During Uterine Artery Embolization: A Pilot Study

    International Nuclear Information System (INIS)

    Dorenberg, Eric J.; Jakobsen, Jarl A.; Brabrand, Knut; Hafsahl, Geir; Smith, Hans-Jorgen

    2007-01-01

    Purpose. To evaluate the feasibility of using contrast-enhanced ultrasound (CEUS) during uterine artery embolization (UAE) in order to define the correct end-point of embolization with complete devascularization of all fibroids. Methods. In this prospective study of 10 consecutive women undergoing UAE, CEUS was performed in the angiographic suite during embolization. When the angiographic end-point, defined as the 'pruned-tree' appearance of the uterine arteries was reached, CEUS was performed while the angiographic catheters to both uterine arteries were kept in place. The decision whether or not to continue the embolization was based on the findings at CEUS. The results of CEUS were compared with those of contrast-enhanced magnetic resonance imaging (MRI) 1 day as well as 3 months following UAE. Results. CEUS was successfully performed in all women. In 4 cases injection of particles was continued based on the findings at CEUS despite angiographically complete embolization. CEUS imaging at completion of UAE correlated well with the findings at MRI. Conclusion. The use of CEUS during UAE is feasible and may increase the quality of UAE

  3. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  4. Multiparametric ultrasound in the detection of prostate cancer: a systematic review.

    Science.gov (United States)

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-11-01

    To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Limited research available on combining ultrasound modalities has presented improvement in diagnostic performance. The data of two studies suggest that even adding a lower performing ultrasound modality to a better performing modality using crude methods can already improve the sensitivity by 13-51 %. The different modalities detect different tumours. No study has tried to combine ultrasound modalities employing a system similar to the PIRADS system used for mpMRI or more advanced classifying algorithms. Available evidence confirms that combining different ultrasound modalities significantly improves diagnostic performance.

  5. Assessment of renal perfusion with contrast-enhanced ultrasound: Preliminary results in early diabetic nephropathies.

    Science.gov (United States)

    Dong, Yi; Wang, Wen-Ping; Lin, Pan; Fan, Peili; Mao, Feng

    2016-01-01

    We performed a prospective study to evaluate the value of contrast-enhanced ultrasound (CEUS) in quantitative evaluation of renal cortex perfusion in patients suspected of early diabetic nephropathies (DN), with the estimated GFR (MDRD equation) as the gold standard. The study protocol was approved by the hospital review board; each patient gave written informed consent. Our study included 46 cases (21 males and 25 females, mean age 55.6 ± 4.14 years) of clinical confirmed early DN patients. After intravenous bolus injection of 1 ml sulfur hexafluoride microbubbles of ultrasound contrast agent, real time CEUS of renal cortex was performed successively using a 2-5 MHz convex probe. Time-intensity curves (TICs) and quantitative indexes were created with Qlab software. Receiver operating characteristic (ROC) curves were used to predict the diagnostic criteria of CEUS quantitative indexes, and their diagnostic efficiencies were compared with resistance index (RI) and peak systolic velocity (PSV) of renal segmental arteries by chi square test. Our control group included forty-five healthy volunteers. Difference was considered statistically significant with P  0.05). CEUS might be helpful to improve early diagnosis of DN by quantitative analyses. AUC and DPI might be valuable quantitative indexes.

  6. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    Science.gov (United States)

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  7. Effect of Power Point Enhanced Teaching (Visual Input) on Iranian Intermediate EFL Learners' Listening Comprehension Ability

    Science.gov (United States)

    Sehati, Samira; Khodabandehlou, Morteza

    2017-01-01

    The present investigation was an attempt to study on the effect of power point enhanced teaching (visual input) on Iranian Intermediate EFL learners' listening comprehension ability. To that end, a null hypothesis was formulated as power point enhanced teaching (visual input) has no effect on Iranian Intermediate EFL learners' listening…

  8. Increasing vaccine production using pulsed ultrasound waves.

    Directory of Open Access Journals (Sweden)

    Jida Xing

    Full Text Available Vaccination is a safe and effective approach to prevent deadly diseases. To increase vaccine production, we propose that a mechanical stimulation can enhance protein production. In order to prove this hypothesis, Sf9 insect cells were used to evaluate the increase in the expression of a fusion protein from hepatitis B virus (HBV S1/S2. We discovered that the ultrasound stimulation at a frequency of 1.5 MHz, intensity of 60 mW/cm2, for a duration of 10 minutes per day increased HBV S1/S2 by 27%. We further derived a model for transport through a cell membrane under the effect of ultrasound waves, tested the key assumptions of the model through a molecular dynamics simulation package, NAMD (Nanoscale Molecular Dynamics program and utilized CHARMM force field in a steered molecular dynamics environment. The results show that ultrasound waves can increase cell permeability, which, in turn, can enhance nutrient / waste exchange thus leading to enhanced vaccine production. This finding is very meaningful in either shortening vaccine production time, or increasing the yield of proteins for use as vaccines.

  9. Quality control culture of diagnostic ultrasound parameters

    International Nuclear Information System (INIS)

    Andam, A.A.B; Addison, E.C.K.; Aggry-Smith, S.; Nani, E.K.

    2003-01-01

    A phantom, consisting of two phases, has been designed and constructed to mimic the human body. The phase one phantom was designed to mimic a a surface lesion in the human body and the phase two phantom designed to mimic a section of the whole body. Ultrasound scans of the phantom were acquired for various material in the phantom at six hospitals in Kumasi, Ghana. A linear array transducer with parallel beams having a convex probe and a 3.5 MHz ultrasound frequency were used to carry out the experiment. It was observed that the depth of penetration of ultrasound, which constitutes the maximum depth of visualization or sensitivity, is determined by the frequency of the transducer, the attenuation of the medium being imaged and the system settings. Uniformity and linearity of the machines investigated were found to be within clinically acceptable standards. Spatial resolution, comprising axial and lateral resolutions, was observed to be satisfactory for the machines tested. It was observed that lateral resolution improved with the narrowing of the beam width. The ultrasound scanners at the selected hospitals were found to be operating at the expected level of performance. This work highlights the importance of putting in place a locally based mechanism for quality control of diagnostic ultrasound machines (author)

  10. Enhanced Recognition Memory in Grapheme-Colour Synaesthesia for Different Categories of Visual Stimuli

    Directory of Open Access Journals (Sweden)

    Jamie eWard

    2013-10-01

    Full Text Available Memory has been shown to be enhanced in grapheme-colour synaesthesia, and this enhancement extends to certain visual stimuli (that don’t induce synaesthesia as well as stimuli comprised of graphemes (which do. Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g. free recall, recognition, associative learning making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory for a variety of stimuli (written words, nonwords, scenes, and fractals and also check which memorisation strategies were used. We demonstrate that grapheme-colour synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory. In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing colour, orientation, or object presence. Again, grapheme-colour synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals and scenes for which colour can be used to discriminate old/new status.

  11. Enhanced audio-visual interactions in the auditory cortex of elderly cochlear-implant users.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Schulte, Svenja; Hauthal, Nadine; Kantzke, Christoph; Rach, Stefan; Büchner, Andreas; Dengler, Reinhard; Sandmann, Pascale

    2015-10-01

    Auditory deprivation and the restoration of hearing via a cochlear implant (CI) can induce functional plasticity in auditory cortical areas. How these plastic changes affect the ability to integrate combined auditory (A) and visual (V) information is not yet well understood. In the present study, we used electroencephalography (EEG) to examine whether age, temporary deafness and altered sensory experience with a CI can affect audio-visual (AV) interactions in post-lingually deafened CI users. Young and elderly CI users and age-matched NH listeners performed a speeded response task on basic auditory, visual and audio-visual stimuli. Regarding the behavioral results, a redundant signals effect, that is, faster response times to cross-modal (AV) than to both of the two modality-specific stimuli (A, V), was revealed for all groups of participants. Moreover, in all four groups, we found evidence for audio-visual integration. Regarding event-related responses (ERPs), we observed a more pronounced visual modulation of the cortical auditory response at N1 latency (approximately 100 ms after stimulus onset) in the elderly CI users when compared with young CI users and elderly NH listeners. Thus, elderly CI users showed enhanced audio-visual binding which may be a consequence of compensatory strategies developed due to temporary deafness and/or degraded sensory input after implantation. These results indicate that the combination of aging, sensory deprivation and CI facilitates the coupling between the auditory and the visual modality. We suggest that this enhancement in multisensory interactions could be used to optimize auditory rehabilitation, especially in elderly CI users, by the application of strong audio-visually based rehabilitation strategies after implant switch-on. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Ultrasound in obstetric anaesthesia: a review of current applications.

    LENUS (Irish Health Repository)

    Ecimovic, P

    2010-07-01

    Ultrasound equipment is increasingly used by non-radiologists to perform interventional techniques and for diagnostic evaluation. Equipment is becoming more portable and durable, with easier user-interface and software enhancement to improve image quality. While obstetric utilisation of ultrasound for fetal assessment has developed over more than 40years, the same technology has not found a widespread role in obstetric anaesthesia. Within the broader specialty of anaesthesia; vascular access, cardiac imaging and regional anaesthesia are the areas in which ultrasound is becoming increasingly established. In addition to ultrasound for neuraxial blocks, these other clinical applications may be of value in obstetric anaesthesia practice.

  13. Volume navigation with contrast enhanced ultrasound and image fusion for percutaneous interventions: first results.

    Directory of Open Access Journals (Sweden)

    Ernst Michael Jung

    Full Text Available OBJECTIVE: Assessing the feasibility and efficiency of interventions using ultrasound (US volume navigation (V Nav with real time needle tracking and image fusion with contrast enhanced (ce CT, MRI or US. METHODS: First an in vitro study on a liver phantom with CT data image fusion was performed, involving the puncture of a 10 mm lesion in a depth of 5 cm performed by 15 examiners with US guided freehand technique vs. V Nav for the purpose of time optimization. Then 23 patients underwent ultrasound-navigated biopsies or interventions using V Nav image fusion of live ultrasound with ceCT, ceMRI or CEUS, which were acquired before the intervention. A CEUS data set was acquired in all patients. Image fusion was established for CEUS and CT or CEUS and MRI using anatomical landmarks in the area of the targeted lesion. The definition of a virtual biopsy line with navigational axes targeting the lesion was achieved by the usage of sterile trocar with a magnetic sensor embedded in its distal tip employing a dedicated navigation software for real time needle tracking. RESULTS: The in vitro study showed significantly less time needed for the simulated interventions in all examiners when V Nav was used (p<0.05. In the study involving patients, in all 10 biopsies of suspect lesions of the liver a histological confirmation was achieved. We also used V Nav for a breast biopsy (intraductal carcinoma, for a biopsy of the abdominal wall (metastasis of ovarial carcinoma and for radiofrequency ablations (4 ablations. In 8 cases of inflammatory abdominal lesions 9 percutaneous drainages were successfully inserted. CONCLUSION: Percutaneous biopsies and drainages, even of small lesions involving complex access pathways, can be accomplished with a high success rate by using 3D real time image fusion together with real time needle tracking.

  14. Ultrasound and Perforated Viscus; Dirty Fluid, Dirty Shadows, and Peritoneal Enhancement

    Directory of Open Access Journals (Sweden)

    Hamid Shokoohi

    2016-04-01

    Full Text Available Early detection of free air in the peritoneal cavity is vital in diagnosis of life-threatening emergencies, and can play a significant role in expediting treatment. We present a series of cases in which bedside ultrasound (US in the emergency department accurately identified evidence of free intra-peritoneal air and echogenic (dirty free fluid consistent with a surgical final diagnosis of a perforated hollow viscus. In all patients with suspected perforated viscus, clinicians were able to accurately identify the signs of pneumoperitoneum including enhanced peritoneal stripe sign (EPSS, peritoneal stripe reverberations, and focal air collections associated with dirty shadowing or distal multiple reflections as ring down artifacts. In all cases, hollow viscus perforation was confirmed surgically. It seems that, performing US in patients with suspected perforated viscus can accurately identify presence of intra-peritoneal echogenic or “dirty” free fluid as well as evidence of free air, and may expedite patient management.

  15. Ultrasound-guided drug delivery in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Sayan Mullick; Lee, Tae Hwa; Willmann, Jugen K. [Dept. of Radiology, Stanford University School of Medicine, Stanford (United States)

    2017-07-15

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  16. Frequency-dependent ultrasound-induced transformation in E. coli.

    Science.gov (United States)

    Deeks, Jeremy; Windmill, James; Agbeze-Onuma, Maduka; Kalin, Robert M; Argondizza, Peter; Knapp, Charles W

    2014-12-01

    Ultrasound-enhanced gene transfer (UEGT) is continuing to gain interest across many disciplines; however, very few studies investigate UEGT efficiency across a range of frequencies. Using a variable frequency generator, UEGT was tested in E. coli at six ultrasonic frequencies. Results indicate frequency can significantly influence UEGT efficiency positively and negatively. A frequency of 61 kHz improved UEGT efficiency by ~70 % higher, but 99 kHz impeded UEGT to an extent worse than no ultrasound exposure. The other four frequencies (26, 133, 174, and 190 kHz) enhanced transformation compared to no ultrasound, but efficiencies did not vary. The influence of frequency on UEGT efficiency was observed across a range of operating frequencies. It is plausible that frequency-dependent dynamics of mechanical and chemical energies released during cavitational-bubble collapse (CBC) are responsible for observed UEGT efficiencies.

  17. Assessment of a Low-Cost Ultrasound Pericardiocentesis Model

    Directory of Open Access Journals (Sweden)

    Marco Campo dell'Orto

    2013-01-01

    Full Text Available Introduction. The use of ultrasound during resuscitation is emphasized in the latest European resuscitation council guidelines of 2013 to identify treatable conditions such as pericardial tamponade. The recommended standard treatment of tamponade in various guidelines is pericardiocentesis. As ultrasound guidance lowers the complication rates and increases the patient’s safety, pericardiocentesis should be performed under ultrasound guidance. Acute care physicians actually need to train emergency pericardiocentesis. Methods. We describe in detail a pericardiocentesis ultrasound model, using materials at a cost of about 60 euros. During training courses of focused echocardiography n=67, participants tested the phantom and completed a 16-item questionnaire, assessing the model using a visual analogue scale (VAS. Results. Eleven of fourteen questions were answered with a mean VAS score higher than 60% and thus regarded as showing the strengths of the model. Unrealistically outer appearance and heart shape were rated as weakness of the model. A total mean VAS score of all questions of 63% showed that participants gained confidence for further interventions. Conclusions. Our low-cost pericardiocentesis model, which can be easily constructed, may serve as an effective training tool of ultrasound-guided pericardiocentesis for acute and critical care physicians.

  18. Assessment of a Low-Cost Ultrasound Pericardiocentesis Model

    Science.gov (United States)

    Campo dell'Orto, Marco; Hempel, Dorothea; Starzetz, Agnieszka; Seibel, Armin; Hannemann, Ulf; Walcher, Felix; Breitkreutz, Raoul

    2013-01-01

    Introduction. The use of ultrasound during resuscitation is emphasized in the latest European resuscitation council guidelines of 2013 to identify treatable conditions such as pericardial tamponade. The recommended standard treatment of tamponade in various guidelines is pericardiocentesis. As ultrasound guidance lowers the complication rates and increases the patient's safety, pericardiocentesis should be performed under ultrasound guidance. Acute care physicians actually need to train emergency pericardiocentesis. Methods. We describe in detail a pericardiocentesis ultrasound model, using materials at a cost of about 60 euros. During training courses of focused echocardiography n = 67, participants tested the phantom and completed a 16-item questionnaire, assessing the model using a visual analogue scale (VAS). Results. Eleven of fourteen questions were answered with a mean VAS score higher than 60% and thus regarded as showing the strengths of the model. Unrealistically outer appearance and heart shape were rated as weakness of the model. A total mean VAS score of all questions of 63% showed that participants gained confidence for further interventions. Conclusions. Our low-cost pericardiocentesis model, which can be easily constructed, may serve as an effective training tool of ultrasound-guided pericardiocentesis for acute and critical care physicians. PMID:24288616

  19. Ultrasound guidance for internal jugular vein cannulation: Continuing Professional Development.

    Science.gov (United States)

    Ayoub, Christian; Lavallée, Catherine; Denault, André

    2010-05-01

    The objective of this continuing professional development module is to describe the role of ultrasound for central venous catheterization and to specify its benefits and limitations. Although ultrasound techniques are useful for all central venous access sites, the focus of this module is on the internal jugular vein approach. In recent years, several studies were published on the benefits of ultrasound use for central venous catheterization. This technique has evolved rapidly due to improvements in the equipment and technology available. Ultrasound helps to detect the anatomical variants of the internal jugular vein. The typical anterolateral position of the internal jugular vein with respect to the carotid is found in only 9-92% of cases. Ultrasound guidance reduces the rate of mechanical, infectious, and thrombotic complications by 57%, and it also reduces the failure rate by 86%. Cost-benefit analyses show that the cost of ultrasound equipment is compensated by the decrease in the expenses associated with the treatment of complications. In this article, we will review the history of ultrasound guidance as well as the reasons that account for its superiority over the classical anatomical landmark technique. We will describe the equipment needed for central venous catheterization as well as the various methods to visualize with ultrasound. To improve patient safety, we recommend the use of ultrasound for central venous catheterization using the internal jugular approach.

  20. Scientific visualization for enhanced interpretation and communication of geoscientific information

    International Nuclear Information System (INIS)

    Vorauer, A.; Cotesta, L.

    2006-01-01

    Ontario Power Generation's Deep Geologic Repository Technology Program has undertaken applied research into the application of scientific visualization technologies to: i) improve the interpretation and synthesis of complex geoscientific field data; ii) facilitate the development of defensible conceptual site descriptive models; and iii) enhance communication between multi-disciplinary site investigation teams and other stakeholders. Two scientific visualization projects are summarized that benefited from the use of the Gocad earth modelling software and were supported by an immersive virtual reality laboratory: i) the Moderately Fractured Rock experiment at the 125,000 m 3 block scale; and ii) the Sub-regional Flow System Modelling Project at the 100 km 2 scale. (author)

  1. Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer?

    International Nuclear Information System (INIS)

    Uematsu, Takayoshi; Kasami, Masako; Watanabe, Junichiro

    2011-01-01

    The purpose of this study was to assess the influence of background enhancement on the detection and staging of breast cancer using MRI as an adjunct to mammography or ultrasound. One hundred forty-six bilateral breast MRI examinations were evaluated to assess the extent of a known primary tumour and to problem solve after mammography or ultrasound without adjusting for the phase in the patients' menstrual cycle. The background enhancement was classified into four categories by visual evaluation: minimal, mild, moderate and marked. In total, 131 histologically confirmed abnormal cases (104 malignant and 27 benign) and 15 normal cases were included in the analysis. There was no tumour size-related bias between the groups (p = 0.522). For the primary index tumour, the sensitivities of MRI with minimal/mild and moderate/marked background enhancement were 100% and 76% (p = 0.001), respectively. Thus, the degree of background enhancement did not affect the specificity. For evaluating tumour extent (n = 104), the accuracy of MRI with moderate/marked background enhancement (52%) was significantly lower than that with minimal/mild background enhancement (84%; p = 0.002). The degree of background enhancement affected the detection and staging of breast cancer using MRI. (orig.)

  2. Renal Ultrasound in the Diagnosis of the Non-functioning Kidney

    International Nuclear Information System (INIS)

    Kang, Ik Won; Suh, Jeong Soo

    1982-01-01

    Renal ultrasound is independent of renal function and capable of renal imaging in impaired or dysplastic renal diseases. Authors reviewed renal ultrasonographic findings of 36 cases which showed non-visualization in intravenous pyelography from Feb. 1979 to Sep. 1982 at Seoul National university Hospital. The results are as follows: 1. Causes of non-visualization of the kidney in IVP were unilateral hydronephrosis(18 cases), renal tuberculosis(7), renal failure(6), renal agenesis(3), tumor(1),and pyonephrosis(1) 2. The sonographic findings were diagnostic in all the cases of unilateral hydronephrosis, renal agenesis and renal tumor. 3. The sonographic findings were not diagnostic but suggestive in more than half cases of renal tuberculosis. 4. Renal ultrasound was not helpful in the diagnosis of renal failure, but useful in delineation of renal size and shape

  3. Enhancements to VTK enabling Scientific Visualization in Immersive Environments

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick; Jhaveri, Sankhesh; Chaudhary, Aashish; Sherman, William; Martin, Ken; Lonie, David; Whiting, Eric; Money, James

    2017-04-01

    Modern scientific, engineering and medical computational sim- ulations, as well as experimental and observational data sens- ing/measuring devices, produce enormous amounts of data. While statistical analysis provides insight into this data, scientific vi- sualization is tactically important for scientific discovery, prod- uct design and data analysis. These benefits are impeded, how- ever, when scientific visualization algorithms are implemented from scratch—a time-consuming and redundant process in im- mersive application development. This process can greatly ben- efit from leveraging the state-of-the-art open-source Visualization Toolkit (VTK) and its community. Over the past two (almost three) decades, integrating VTK with a virtual reality (VR) environment has only been attempted to varying degrees of success. In this pa- per, we demonstrate two new approaches to simplify this amalga- mation of an immersive interface with visualization rendering from VTK. In addition, we cover several enhancements to VTK that pro- vide near real-time updates and efficient interaction. Finally, we demonstrate the combination of VTK with both Vrui and OpenVR immersive environments in example applications.

  4. Contrast-Enhanced Ultrasound Improves the Pathological Outcomes of US-Guided Core Needle Biopsy That Targets the Viable Area of Anterior Mediastinal Masses

    Directory of Open Access Journals (Sweden)

    Jian-hua Zhou

    2018-01-01

    Full Text Available Based on the option that ultrasound-guided core needle biopsy (US-CNB of the enhanced portion of anterior mediastinal masses (AMMs identified by contrast-enhanced ultrasound (CEUS would harvest viable tissue and benefit the histological diagnoses, a retrospective study was performed to elucidate the correlation between the prebiopsy CEUS and diagnostic yield of AMMs and found that CEUS potentially improved the diagnostic yield of AMMs compared with conventional US with a significant increase in the cellularity of samples. Furthermore, the marginal blood flow signals and absence of necrosis can predict the diagnostic yield of AMM. It was concluded that US-CNB of the viable part of AMMs, as verified by CEUS, was able to harvest sufficient tissue with more cellularity that could be used for ancillary studies and improve the diagnostic yield. And CEUS was recommended to those patients with AMMs undergoing repeated US-CNB, with the absence of marginal blood signals or presence of necrosis.

  5. An improved adaptive wavelet shrinkage for ultrasound despeckling

    Indian Academy of Sciences (India)

    Preservation Index (EPI). A comparison of the results shows that the proposed fil- ter achieves an improvement in terms of quantitative measures and in terms of visual quality of the images. Keywords. Wavelet; translation invariance; inter and intra scale dependency; speckle; adaptive thresholding; ultrasound images. ∗.

  6. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy.

    Science.gov (United States)

    Nemec, Ursula; Nemec, Stefan F; Novotny, Clemens; Weber, Michael; Czerny, Christian; Krestan, Christian R

    2012-06-01

    To investigate the diagnostic accuracy, through quantitative analysis, of contrast-enhanced ultrasound (CEUS), using a microbubble contrast agent, in the differentiation of thyroid nodules. This prospective study enrolled 46 patients with solitary, scintigraphically non-functional thyroid nodules. These patients were scheduled for surgery and underwent preoperative CEUS with pulse-inversion harmonic imaging after intravenous microbubble contrast medium administration. Using histology as a standard of reference, time-intensity curves of benign and malignant nodules were compared by means of peak enhancement and wash-out enhancement relative to the baseline intensity using a mixed model ANOVA. ROC analysis was performed to assess the diagnostic accuracy in the differentiation of benign and malignant nodules on CEUS. The complete CEUS data of 42 patients (31/42 [73.8%] benign and 11/42 [26.2%] malignant nodules) revealed a significant difference (P benign and malignant nodules. Furthermore, based on ROC analysis, CEUS demonstrated sensitivity of 76.9%, specificity of 84.8% and accuracy of 82.6%. Quantitative analysis of CEUS using a microbubble contrast agent allows the differentiation of benign and malignant thyroid nodules and may potentially serve, in addition to grey-scale and Doppler ultrasound, as an adjunctive tool in the assessment of patients with thyroid nodules. • Contrast-enhanced ultrasound (CEUS) helps differentiate between benign and malignant thyroid nodules. • Quantitative CEUS analysis yields sensitivity of 76.9% and specificity of 84.8%. • CEUS may be a potentially useful adjunct in assessing thyroid nodules.

  7. Visual cues in low-level flight - Implications for pilotage, training, simulation, and enhanced/synthetic vision systems

    Science.gov (United States)

    Foyle, David C.; Kaiser, Mary K.; Johnson, Walter W.

    1992-01-01

    This paper reviews some of the sources of visual information that are available in the out-the-window scene and describes how these visual cues are important for routine pilotage and training, as well as the development of simulator visual systems and enhanced or synthetic vision systems for aircraft cockpits. It is shown how these visual cues may change or disappear under environmental or sensor conditions, and how the visual scene can be augmented by advanced displays to capitalize on the pilot's excellent ability to extract visual information from the visual scene.

  8. Visualization of Disciplinary Profiles: Enhanced Science Overlay Maps

    Directory of Open Access Journals (Sweden)

    Stephen Carley

    2017-08-01

    Full Text Available Purpose: The purpose of this study is to modernize previous work on science overlay maps by updating the underlying citation matrix, generating new clusters of scientific disciplines, enhancing visualizations, and providing more accessible means for analysts to generate their own maps. Design/methodology/approach: We use the combined set of 2015 Journal Citation Reports for the Science Citation Index (n of journals = 8,778 and the Social Sciences Citation Index (n = 3,212 for a total of 11,365 journals. The set of Web of Science Categories in the Science Citation Index and the Social Sciences Citation Index increased from 224 in 2010 to 227 in 2015. Using dedicated software, a matrix of 227 × 227 cells is generated on the basis of whole-number citation counting. We normalize this matrix using the cosine function. We first develop the citing-side, cosine-normalized map using 2015 data and VOSviewer visualization with default parameter values. A routine for making overlays on the basis of the map (“wc15.exe” is available at http://www.leydesdorff.net/wc15/index.htm. Findings: Findings appear in the form of visuals throughout the manuscript. In Figures 1–9 we provide basemaps of science and science overlay maps for a number of companies, universities, and technologies. Research limitations: As Web of Science Categories change and/or are updated so is the need to update the routine we provide. Also, to apply the routine we provide users need access to the Web of Science. Practical implications: Visualization of science overlay maps is now more accurate and true to the 2015 Journal Citation Reports than was the case with the previous version of the routine advanced in our paper. Originality/value: The routine we advance allows users to visualize science overlay maps in VOSviewer using data from more recent Journal Citation Reports.

  9. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging.

    Science.gov (United States)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-15

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  10. Diagnosis of Complex Pulley Ruptures Using Ultrasound in Cadaver Models.

    Science.gov (United States)

    Schöffl, Isabelle; Hugel, Arnica; Schöffl, Volker; Rascher, Wolfgang; Jüngert, Jörg

    2017-03-01

    Pulley ruptures are common in climbing athletes. The purposes of this study were to determine the specific positioning of each pulley with regards to the joint, and to evaluate the ultrasound diagnostics of various pulley rupture combinations. For this, 34 cadaver fingers were analyzed via ultrasound, the results of which were compared to anatomic measurements. Different pulley ruptures were then simulated and evaluated using ultrasound in standardized dynamic forced flexion. Visualization of the A2 and A4 pulleys was achieved 100% of the time, while the A3 pulley was visible in 74% of cases. Similarly, injuries to the A2 and A4 pulleys were readily observable, while A3 pulley injuries were more challenging to identify (sensitivity of 0.2 for singular A3 pulley, 0.5 for A2/A4 pulley and 0.33 for A3/A4 pulley ruptures). Receiver operating characteristic analysis was used to evaluate the optimal tendon-bone distance for pulley rupture diagnosis, a threshold which was determined to be 1.9 mm for A2 pulley ruptures and 1.85 for A4 pulley ruptures. This study was the first to carry out a cadaver ultrasound examination of a wide variety of pulley ruptures. Ultrasound is a highly accurate tool for visualizing the A2 and A4 pulleys in a cadaver model. This method of pathology diagnosis was determined to be suitable for injuries to the A2 and A4 pulleys, but inadequate for A3 pulley injuries. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  12. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    Directory of Open Access Journals (Sweden)

    Farnaz Fekri

    Full Text Available Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR, and distinct mechanism(s that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may

  13. Determining the Effectiveness of Visual Input Enhancement across Multiple Linguistic Cues

    Science.gov (United States)

    Comeaux, Ian; McDonald, Janet L.

    2018-01-01

    Visual input enhancement (VIE) increases the salience of grammatical forms, potentially facilitating acquisition through attention mechanisms. Native English speakers were exposed to an artificial language containing four linguistic cues (verb agreement, case marking, animacy, word order), with morphological cues either unmarked, marked in the…

  14. Ultrasound-guided drug delivery in cancer

    Directory of Open Access Journals (Sweden)

    Sayan Mullick Chowdhury

    2017-07-01

    Full Text Available Recent advancements in ultrasound and microbubble (USMB mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  15. Short-term visual deprivation does not enhance passive tactile spatial acuity.

    Directory of Open Access Journals (Sweden)

    Michael Wong

    Full Text Available An important unresolved question in sensory neuroscience is whether, and if so with what time course, tactile perception is enhanced by visual deprivation. In three experiments involving 158 normally sighted human participants, we assessed whether tactile spatial acuity improves with short-term visual deprivation over periods ranging from under 10 to over 110 minutes. We used an automated, precisely controlled two-interval forced-choice grating orientation task to assess each participant's ability to discern the orientation of square-wave gratings pressed against the stationary index finger pad of the dominant hand. A two-down one-up staircase (Experiment 1 or a Bayesian adaptive procedure (Experiments 2 and 3 was used to determine the groove width of the grating whose orientation each participant could reliably discriminate. The experiments consistently showed that tactile grating orientation discrimination does not improve with short-term visual deprivation. In fact, we found that tactile performance degraded slightly but significantly upon a brief period of visual deprivation (Experiment 1 and did not improve over periods of up to 110 minutes of deprivation (Experiments 2 and 3. The results additionally showed that grating orientation discrimination tends to improve upon repeated testing, and confirmed that women significantly outperform men on the grating orientation task. We conclude that, contrary to two recent reports but consistent with an earlier literature, passive tactile spatial acuity is not enhanced by short-term visual deprivation. Our findings have important theoretical and practical implications. On the theoretical side, the findings set limits on the time course over which neural mechanisms such as crossmodal plasticity may operate to drive sensory changes; on the practical side, the findings suggest that researchers who compare tactile acuity of blind and sighted participants should not blindfold the sighted participants.

  16. Time-dependent change of blood flow in the prostate treated with high-intensity focused ultrasound.

    Science.gov (United States)

    Shoji, Sunao; Tonooka, Akiko; Hashimoto, Akio; Nakamoto, Masahiko; Tomonaga, Tetsuro; Nakano, Mayura; Sato, Haruhiro; Terachi, Toshiro; Koike, Junki; Uchida, Toyoaki

    2014-09-01

    Avascular areas on contrast-enhanced magnetic resonance imaging have been considered to be areas of localized prostate cancer successfully treated by high-intensity focused ultrasound. However, the optimal timing of magnetic resonance imaging has not been discussed. The thermal effect of high-intensity focused ultrasound is degraded by regional prostatic blood flow. Conversely, the mechanical effect of high-intensity focused ultrasound (cavitation) is not affected by blood flow, and can induce vessel damage. In this series, the longitudinal change of blood flow on contrast-enhanced magnetic resonance imaging was observed from postoperative day 1 to postoperative day 14 in 10 patients treated with high-intensity focused ultrasound. The median rates of increase in the non-enhanced volume of the whole gland, transition zone and peripheral zone from postoperative day 1 to postoperative day 14 were 36%, 39%, and 34%, respectively. In another pathological analysis of the prostate tissue of 17 patients immediately after high-intensity focused ultrasound without neoadjuvant hormonal therapy, we observed diffuse coagulative degeneration and partial non-coagulative prostate tissue around arteries with vascular endothelial cell detachment. These observations on contrast-enhanced magnetic resonance imaging support a time-dependent change of the blood flow in the prostate treated with high-intensity focused ultrasound. Additionally, our pathological findings support the longitudinal changes of these magnetic resonance imaging findings. Further large-scale studies will investigate the most appropriate timing of contrast-enhanced magnetic resonance imaging for evaluation of the effectiveness of high-intensity focused ultrasound for localized prostate cancer. © 2014 The Japanese Urological Association.

  17. First-in-Human Ultrasound Molecular Imaging With a VEGFR2-Specific Ultrasound Molecular Contrast Agent (BR55) in Prostate Cancer: A Safety and Feasibility Pilot Study.

    Science.gov (United States)

    Smeenge, Martijn; Tranquart, François; Mannaerts, Christophe K; de Reijke, Theo M; van de Vijver, Marc J; Laguna, M Pilar; Pochon, Sibylle; de la Rosette, Jean J M C H; Wijkstra, Hessel

    2017-07-01

    BR55, a vascular endothelial growth factor receptor 2 (VEGFR2)-specific ultrasound molecular contrast agent (MCA), has shown promising results in multiple preclinical models regarding cancer imaging. In this first-in-human, phase 0, exploratory study, we investigated the feasibility and safety of the MCA for the detection of prostate cancer (PCa) in men using clinical standard technology. Imaging with the MCA was performed in 24 patients with biopsy-proven PCa scheduled for radical prostatectomy using a clinical ultrasound scanner at low acoustic power. Safety monitoring was done by physical examination, blood pressure and heart rate measurements, electrocardiogram, and blood sampling. As first-in-human study, MCA dosing and imaging protocol were necessarily fine-tuned along the enrollment to improve visualization. Imaging data were correlated with radical prostatectomy histopathology to analyze the detection rate of ultrasound molecular imaging with the MCA. Imaging with MCA doses of 0.03 and 0.05 mL/kg was adequate to obtain contrast enhancement images up to 30 minutes after administration. No serious adverse events or clinically meaningful changes in safety monitoring data were identified during or after administration. BR55 dosing and imaging were fine-tuned in the first 12 patients leading to 12 subsequent patients with an improved MCA dosing and imaging protocol. Twenty-three patients underwent radical prostatectomy. A total of 52 lesions were determined to be malignant by histopathology with 26 (50%) of them seen during BR55 imaging. In the 11 patients that were scanned with the improved protocol and underwent radical prostatectomy, a total of 28 malignant lesions were determined: 19 (68%) were seen during BR55 ultrasound molecular imaging, whereas 9 (32%) were not identified. Ultrasound molecular imaging with BR55 is feasible with clinical standard technology and demonstrated a good safety profile. Detectable levels of the MCA can be reached in patients

  18. Soleus muscle injury: sensitivity of ultrasound patterns

    Energy Technology Data Exchange (ETDEWEB)

    Balius, Ramon [Sport Catalan Council, Generalitat de Catalunya, Barcelona (Spain); Clinica CMI Diagonal, Barcelona (Spain); Rodas, Gil [F.C. Barcelona Medical Services, Barcelona (Spain); Pedret, Carles [Clinica CMI Diagonal, Barcelona (Spain); Clinica Mapfre de Medicina del Tenis, Sports Medicine and Imaging Department, Barcelona (Spain); Centre de Diagnostic per Imatge de Tarragona, Tarragona (Spain); Capdevila, Lluis [Universitat Autonoma de Barcelona, Laboratory of Sport Psychology, Barcelona (Spain); Alomar, Xavier [Clinica Creu Blanca, Barcelona (Spain); Bong, David A. [Instituto Poal de Reumatologia, Barcelona (Spain)

    2014-06-15

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  19. Soleus muscle injury: sensitivity of ultrasound patterns.

    Science.gov (United States)

    Balius, Ramon; Rodas, Gil; Pedret, Carles; Capdevila, Lluís; Alomar, Xavier; Bong, David A

    2014-06-01

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the "gold standard." In MRI studies, 24 cases (43.7%) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3%) and in the anterior aponeurosis (AMF) in 9 (16.4%). Thirty-one cases (56.3%) were musculotendinous injuries, with 9 cases (16.4%) in the medial aponeurosis (MMT), 11 cases (20%) in the lateral aponeurosis (LMT), and 11 cases (20%) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2% of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area.

  20. Soleus muscle injury: sensitivity of ultrasound patterns

    International Nuclear Information System (INIS)

    Balius, Ramon; Rodas, Gil; Pedret, Carles; Capdevila, Lluis; Alomar, Xavier; Bong, David A.

    2014-01-01

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  1. Satisfactory rate of post-processing visualization of fetal cerebral axial, sagittal, and coronal planes from three-dimensional volumes acquired in routine second trimester ultrasound practice by sonographers of peripheral centers.

    Science.gov (United States)

    Rizzo, Giuseppe; Pietrolucci, Maria Elena; Capece, Giuseppe; Cimmino, Ernesto; Colosi, Enrico; Ferrentino, Salvatore; Sica, Carmine; Di Meglio, Aniello; Arduini, Domenico

    2011-08-01

    The aim of this study was to evaluate the feasibility to visualize central nervous system (CNS) diagnostic planes from three-dimensional (3D) brain volumes obtained in ultrasound facilities with no specific experience in fetal neurosonography. Five sonographers prospectively recorded transabdominal 3D CNS volumes starting from an axial approach on 500 consecutive pregnancies at 19-24 weeks of gestation undergoing routine ultrasound examination. Volumes were sent to the referral center (Department of Obstetrics and Gynecology, Università Roma Tor Vergata, Italy) and two independent reviewers with experience in 3D ultrasound assessed their quality in the display of axial, coronal, and sagittal planes. CNS volumes were acquired in 491/500 pregnancies (98.2%). The two reviewers acknowledged the presence of satisfactory images with a visualization rate ranging respectively between 95.1% and 97.14% for axial planes, 73.72% and 87.16% for coronal planes, and 78.41% and 94.29% for sagittal planes. The agreement rate between the two reviewers as expressed by Cohen's kappa coefficient was >0.87 for axial planes, >0.89 for coronal planes, and >0.94 for sagittal planes. The presence of a maternal body mass index >30 alters the probability of achieving satisfactory CNS views, while existence of previous maternal lower abdomen surgery does not affect the quality of the reconstructed planes. CNS volumes acquired by 3D ultrasonography in peripheral centers showed a quality high enough to allow a detailed fetal neurosonogram.

  2. Negative predictive value of ultrasound in predicting tumor-free margins in specimen sonography

    International Nuclear Information System (INIS)

    Naz, S.; Hafeez, S.; Hussain, Z.; Hilal, K.

    2017-01-01

    Objective: To evaluate the success of ultrasound in post-excision specimen visualization, and negative predictive value of ultrasound for estimation of tumor-free margins using histopathology as the gold standard. Study Design: Cross-sectional analytical study. Place and Duration of Study: The Aga Khan University Hospital, Karachi, Pakistan, from May 2010 till January 2013. Methodology: Sonography of all breast nodules was done before and after exicision by two female radiologists with at least five years clinical experience. All surgeries were performed by the same referring breast surgeons. All nodules were non-palpable and had histopathology as well as specimen sonography performed at AKUH. Subjects were excluded, if histopathology was not available, post-procedure sonogram not done or done in another hospital and nodules that were not seen on ultrasound. After needle localization in 47 patients using ultrasound and in 7 patients using mammogram was done, sonogram was conducted in all 54 lesions. These were then assessed by ultrasound for detection of lesion and tumor-free margins in malignant lesion. Post-excision ultrasound was performed for the evaluation of lesion whether visualized or absent with localizing needle in situ, lesion dimensions, depth measurement between the superior margin of the lesion and its edge. Results: All 54 lesions were present on post-exicison scan, out of which 28 were documented as malignant and 26 as benign. Ultrasound declared all specimens as tumor-free. On histopathology, two lesions were documented as having tumor-positive margins and were proven to be invasive lobular carcinoma. Therefore, the negative predictive value of the specimen sonography for margin detection was 26/28 (92.8%). Conclusion: Ultrasound of the excised breast tumor specimen is a simple and reliable technique for confirmation of the tumor-free margins in non-palpable breast lesions. (author)

  3. Contrast-enhanced ultrasound and computed tomography findings of granulomatosis with polyangiitis presenting with multiple intrarenal microaneurysms: A case report.

    Science.gov (United States)

    Kim, Youe Ree; Lee, Young Hwan; Lee, Jong-Ho; Yoon, Kwon-Ha

    Granulomatosis with polyangiitis (GPA) is a systemic disorder that affects small- and medium- sized vessels in many organs. Although the kidneys are the second most commonly involved organ in patients with GPA, its manifestation as multiple intrarenal aneurysms is rare. We report an unusual manifestation of GPA with multiple intrarenal microaneurysms, as demonstrated by contrast-enhanced ultrasound and computed tomography. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Histoscanning and shear wave ultrasound elastography for prostate cancer diagnosis

    Directory of Open Access Journals (Sweden)

    A. V. Amosov

    2016-01-01

    Full Text Available Introduction. The shear wave ultrasound elastography is a recently developed ultrasound-based method in the clinical practice, which allows the qualitative visual and quantitative measurements of tissue stiffness. In the 2010 this technology of the shear wave was called Shear Wave Elastograhpy. Due to the front of the shear waves the qualitative and quantitative assessment of the tissue stiffness is possible.Objective is to examine the efficacy of the shear wave ultrasound elastography in the evaluation of the prevalence of the oncological disease in patients with the prostate cancer and to compare the obtained results with the routine method X-ray diagnostics.Materials and methods. From the april 2015 in the I.M. Sechenov First Moscow State Medical University Urology Clinic there were conducted 314 shear wave ultrasound elastography examinations of the prostate. The ultrasound system Aixplorer® by SuperSonic Imagine was used. This system provides information provided by B-mode and shear wave ultrasound elastography mode. The transrectal echograms were made in 6 dimensions, so called Q-boxes (3 demensions in the every lobe on the segments from the base to the apex, according to the biopsy zone. The unit of measurement was the mean value in the kilopaskals (kPa. All the patients were randomized into 3 groups. There were 146 men with the possible prostate cancer in the first group (prospective study, 120 men with the certain diagnosis of the prostate cancer in the second group (retrospective study and 48 healthy men in the third group (control study. In all the patients of the first and the second groups the routine complete examination, including the prostate specific antigen (PSA level examination, digital rectal examination (DRE, doppler transrectal ultrasonography (TRUS, histoscanning and ultrasound shear wave elastography (SWE, was conducted. In the 229 patients of the first and the second groups the prostatectomy with the

  5. Small bowel ultrasound in patients with celiac disease

    Energy Technology Data Exchange (ETDEWEB)

    Bartusek, D. [Department of Radiology, Masaryk University hospital Brno (Czech Republic)], E-mail: dbartusek@fnbrno.cz; Valek, V. [Department of Radiology, Masaryk University hospital Brno (Czech Republic)], E-mail: v.valek@fnbrno.cz; Husty, J. [Department of Radiology, Masaryk University hospital Brno (Czech Republic)], E-mail: jhusty@fnbrno.cz; Uteseny, J. [Department of Pediatric Internal Medicine, Masaryk University hospital Brno (Czech Republic)], E-mail: juteseny@fnbrno.cz

    2007-08-15

    Objective: Celiac disease (CD) is a common, lifelong disease with small bowel malabsorption based on genetically conditioned gluten intolerance. The clinical manifestation could be very heterogeneous. The proof of celiac disease is now based mainly on clinical and laboratory (antibodies and enterobiopsy) signs, which are in some cases problematic and inconvenient. Materials and methods: In our study we have examined 250 patients with suspection or with proven celiac disease and we evaluated specific ultrasound small bowel changes in this group. In the next step, we chose 59 patients with laboratory proved celiac disease and we statistically compared ultrasound, other laboratory and clinical findings in different forms and stages of the disease. Results: Specific small bowel pathologies in patients with celiac disease (like changes of intestinal villi in different parts of small bowel, abnormal peristalsis and mesenterial lymphadenopathy) can be well visualized by ultrasound and in combination with clinical and laboratory signs ultrasound examination could have an important role in screening, determination of diagnosis and monitoring of patients with different forms of celiac disease.

  6. Small bowel ultrasound in patients with celiac disease

    International Nuclear Information System (INIS)

    Bartusek, D.; Valek, V.; Husty, J.; Uteseny, J.

    2007-01-01

    Objective: Celiac disease (CD) is a common, lifelong disease with small bowel malabsorption based on genetically conditioned gluten intolerance. The clinical manifestation could be very heterogeneous. The proof of celiac disease is now based mainly on clinical and laboratory (antibodies and enterobiopsy) signs, which are in some cases problematic and inconvenient. Materials and methods: In our study we have examined 250 patients with suspection or with proven celiac disease and we evaluated specific ultrasound small bowel changes in this group. In the next step, we chose 59 patients with laboratory proved celiac disease and we statistically compared ultrasound, other laboratory and clinical findings in different forms and stages of the disease. Results: Specific small bowel pathologies in patients with celiac disease (like changes of intestinal villi in different parts of small bowel, abnormal peristalsis and mesenterial lymphadenopathy) can be well visualized by ultrasound and in combination with clinical and laboratory signs ultrasound examination could have an important role in screening, determination of diagnosis and monitoring of patients with different forms of celiac disease

  7. CREATING AUDIO VISUAL DIALOGUE TASK AS STUDENTS’ SELF ASSESSMENT TO ENHANCE THEIR SPEAKING ABILITY

    Directory of Open Access Journals (Sweden)

    Novia Trisanti

    2017-04-01

    Full Text Available The study is about giving overview of employing audio visual dialogue task as students creativity task and self assessment in EFL speaking class of tertiary education to enhance the students speaking ability. The qualitative research was done in one of the speaking classes at English Department, Semarang State University, Central Java, Indonesia. The results that can be seen from the rubric of self assessment show that the oral performance through audio visual recorded tasks done by the students as their self assessment gave positive evidences. The audio visual dialogue task can be very beneficial since it can motivate the students learning and increase their learning experiences. The self-assessment can be a valuable additional means to improve their speaking ability since it is one of the motives that drive self- evaluatioan, along with self- verification and self- enhancement.

  8. Psychomotor skills in medical ultrasound imaging: an analysis of the core skill set.

    Science.gov (United States)

    Nicholls, Delwyn; Sweet, Linda; Hyett, Jon

    2014-08-01

    Sonographers use psychomotor skills to perform medical ultrasound examinations. Psychomotor skills describe voluntary movements of the limb, joints, and muscles in response to sensory stimuli and are regulated by the motor neural cortex in the brain. We define a psychomotor skill in relation to medical ultrasound imaging as "the unique mental and motor activities required to execute a manual task safely and efficiently for each clinical situation." Skills in clinical ultrasound practice may be open or closed; most skills used in medical ultrasound imaging are open. Open skills are both complex and multidimensional. Visuomotor and visuospatial psychomotor skills are central components of medical ultrasound imaging. Both types of skills rely on learners having a visual exemplar or standard of performance with which to reference their skill performance and evaluate anatomic structures. These are imperative instructional design principles when teaching psychomotor skills. © 2014 by the American Institute of Ultrasound in Medicine.

  9. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  10. Enhanced visual short-term memory in action video game players.

    Science.gov (United States)

    Blacker, Kara J; Curby, Kim M

    2013-08-01

    Visual short-term memory (VSTM) is critical for acquiring visual knowledge and shows marked individual variability. Previous work has illustrated a VSTM advantage among action video game players (Boot et al. Acta Psychologica 129:387-398, 2008). A growing body of literature has suggested that action video game playing can bolster visual cognitive abilities in a domain-general manner, including abilities related to visual attention and the speed of processing, providing some potential bases for this VSTM advantage. In the present study, we investigated the VSTM advantage among video game players and assessed whether enhanced processing speed can account for this advantage. Experiment 1, using simple colored stimuli, revealed that action video game players demonstrate a similar VSTM advantage over nongamers, regardless of whether they are given limited or ample time to encode items into memory. Experiment 2, using complex shapes as the stimuli to increase the processing demands of the task, replicated this VSTM advantage, irrespective of encoding duration. These findings are inconsistent with a speed-of-processing account of this advantage. An alternative, attentional account, grounded in the existing literature on the visuo-cognitive consequences of video game play, is discussed.

  11. Simulation and training of ultrasound supported anaesthesia: a low-cost approach

    Science.gov (United States)

    Schaaf, T.; Lamontain, M.; Hilpert, J.; Schilling, F.; Tolxdorff, T.

    2010-03-01

    The use of ultrasound imaging technology during techniques of peripheral nerve blockade offers several clinical benefits. Here we report on a new method to educate residents in ultrasound-guided regional anesthesia. The daily challenge for the anesthesiologists is the 3D angle-depending handling of the stimulation needle and the ultrasound probe while watching the 2D ultrasound image on the monitor. Purpose: Our approach describes how a computer-aided simulation and training set for ultrasound-guided regional anesthesia could be built based on wireless low-cost devices and an interactive simulation of a 2D ultrasound image. For training purposes the injection needle and the ultrasound probe are replaced by wireless Bluetooth-connected 3D tracking devices, which are embedded in WII-mote controllers (Nintendo-Brand). In correlation to the tracked 3D positions of the needle and transducer models the visibility and position of the needle should be simulated in the 2D generated ultrasound image. Conclusion: In future, this tracking and visualization software module could be integrated in a more complex training set, where complex injection paths could be trained based on a 3D segmented model and the training results could be part of a curricular e-learning module.

  12. Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening

    International Nuclear Information System (INIS)

    Feng, Shangyuan; Li, Zhihua; Chen, Guannan; Huang, Shaohua; Huang, Zufang; Li, Yongzeng; Lin, Juqiang; Chen, Rong; Lin, Duo; Zeng, Haishan

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technology for providing finger-printing information of cells. A big challenge has been the long time duration and inefficient uptake of metal nano-particles into living cells as substrate for SERS analysis. Herein, a simple method (based on ultrasound) for the rapid transfer of silver nanoparticles (NPs) into living cells for intracellular SERS spectroscopy was presented. In this study, the ultrasound-mediated method for NP delivery overcame the shortcoming of ‘passive uptake’, and achieved quick acquisition of reproducible SERS spectra from living human nasopharyngeal carcinoma cell lines (C666 and CNE1) and normal nasopharyngeal cell line (NP69). Tentative assignment of the Raman bands in the measured SERS spectra showed cancer cell specific biomolecular differences, including significantly lower DNA concentrations and higher protein concentrations in cancerous nasopharyngeal cells as compared to those of normal cells. Combined with PCA–LDA multivariate analysis, ultrasound-mediated cell SERS spectroscopy differentiated the cancerous cells from the normal nasopharyngeal cells with high diagnostic accuracy (98.7%), demonstrating great potential for high-throughput cancer cell screening applications. (paper)

  13. Tools for improving the diagnosis of atherosclerotic plaque using ultrasound

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh

    1997-01-01

    topics have been investigated: an ultrasound pulse-echo simulation tool and a new compound imaging technique for improving visualization of atherosclerotic disease.A tool for simulation of the received electrical signal in a pulse-echo ultrasound system, due to a reflector surface of arbitrary geometry......, has been developed. The method is denoted the Diffraction Response Interpolation Method (DRIM) and is based on the pulse-echo diffraction impulse response method. The DRIM is a computationally efficient tool for calculating the integral of the spatially varying pulse-echo diffraction impulse response...... definition of the interfaces in the cases where one or more of the beams had near-normal incidence on the interface, i.e. an improved visualization over an angular range of interface orientations roughly corresponding to the range of beam angles used. The speckle statistics and the speckle reduction have...

  14. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  15. Utilizing visual art to enhance the clinical observation skills of medical students.

    Science.gov (United States)

    Jasani, Sona K; Saks, Norma S

    2013-07-01

    Clinical observation is fundamental in practicing medicine, but these skills are rarely taught. Currently no evidence-based exercises/courses exist for medical student training in observation skills. The goal was to develop and teach a visual arts-based exercise for medical students, and to evaluate its usefulness in enhancing observation skills in clinical diagnosis. A pre- and posttest and evaluation survey were developed for a three-hour exercise presented to medical students just before starting clerkships. Students were provided with questions to guide discussion of both representational and non-representational works of art. Quantitative analysis revealed that the mean number of observations between pre- and posttests was not significantly different (n=70: 8.63 vs. 9.13, p=0.22). Qualitative analysis of written responses identified four themes: (1) use of subjective terminology, (2) scope of interpretations, (3) speculative thinking, and (4) use of visual analogies. Evaluative comments indicated that students felt the exercise enhanced both mindfulness and skills. Using visual art images with guided questions can train medical students in observation skills. This exercise can be replicated without specially trained personnel or art museum partnerships.

  16. Ultrasound-guided core needle biopsy for breast cancer

    International Nuclear Information System (INIS)

    Naqvi, S.Q.H.; Solangi, R.A.; Memon, M.; Solangi, R.A.

    2008-01-01

    To evaluate the efficacy of ultrasound-guided core needle biopsy (US-CNB) as a preoperative diagnostic modality for breast cancer. Females with solid and/or intermediate breast lesions visualized on ultrasonography. Apart from clinical work-up, all the above mentioned patients underwent ultrasound-guided core needle biopsy and excisional biopsy of their breast lesions. The histopathological diagnosis on ultrasound-guided core needle biopsy was then compared with the findings of the excisional biopsy. Out of the total 93 cases, 47(50.5%) had benign lesions on ultrasound; US-CNB showed 24 as fibroadenomata, four with chronic non-specific mastitis, five chronic suppurative mastitis, one tuberculosis, four fat necrosis, two lactational adenoma and seven cases with benign ductal hyperplasia without atypia. Nine (9.7%) cases showed suspicious abnormality on ultrasound; US-CNB revealed five cases with atypical ductal hyperplasia, one ductal carcinoma in situ and three invasive ductal carcinoma. Thirty seven (39.8%) cases were highly suggestive of malignancy on ultrasound; US-CNB showed 34 as invasive ductal carcinoma, two invasive lobular and one medullary carcinoma. Excisional biopsy confirmed the diagnosis of ultrasound-guided core needle biopsy in all cases except four; one case of chronic suppurative mastitis was diagnosed as that of tuberculosis and three cases of atypial ductal hyperplasia as invasive ductal carcinoma. Hence there was no false positive case, but four (4.3%) false negative cases. The sensitivity of the US-CNB was thus 100% and specificity 91.1%. Ultrasound guided core needle biopsy is a satisfactory procedure for the histopathological diagnosis of breast lesions. Any unsatisfactory, suspicious or atypical change on US-CNB should be followed by an open biopsy. (author)

  17. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration.

    Directory of Open Access Journals (Sweden)

    Donghee Park

    Full Text Available Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with

  18. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration.

    Science.gov (United States)

    Park, Donghee; Song, Gillsoo; Jo, Yongjun; Won, Jongho; Son, Taeyoon; Cha, Ohrum; Kim, Jinho; Jung, Byungjo; Park, Hyunjin; Kim, Chul-Woo; Seo, Jongbum

    2016-01-01

    Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the

  19. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-Il Kang

    Full Text Available Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1 induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR, M1 and M2 muscarinic (mAChR or GABAergic A (GABAAR receptors was performed during the training session and visual evoked potentials (VEPs were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD, suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by n

  20. Contrast-enhanced ultrasound imaging of active bleeding associated with hepatic and splenic trauma.

    Science.gov (United States)

    Lv, F; Tang, J; Luo, Y; Li, Z; Meng, X; Zhu, Z; Li, T

    2011-10-01

    The aim of this study was to evaluate contrast-enhanced ultrasound (CEUS) imaging of active bleeding from hepatic and splenic trauma. Three hundred and ninety-two patients with liver or/and spleen trauma (179 liver and 217 spleen injuries), who underwent CEUS examinations following contrast-enhanced computed tomography (CT), were enrolled in this retrospective study over a period of >4 years. CEUS detected contrast medium extravasation or pooling in 16% (63/396) of liver or spleen lesions in 61 patients, which was confirmed by contrast-enhanced CT. Special attention was paid to observing the presence, location, and characteristics of the extravasated or pooled contrast medium. The CEUS detection rate for active bleeding was not different from that of contrast-enhanced CT (p=0.333). Information from surgery, minimally invasive treatment and conservative treatment was used as reference standard, and the sensitivities of the two techniques were not different (p=0.122). Of 63 lesions in 61 patients, CEUS showed that 74.6% (47/63) (21 liver lesions and 26 spleen lesions) presented contrast medium extravasation or pooling, both in the organ and out the capsule, in 14.3% (9/63) and only outside the capsule in 11.1% (7/63). CEUS imaging of active bleeding from hepatic and splenic trauma presented various characteristics, and the sizes and shapes of the active bleeding due to contrast medium extravasation or pooling were variable. CEUS can show the active bleeding associated with hepatic and splenic trauma with various imaging characteristics, thus making it possible to diagnose active bleeding using CEUS.

  1. Sirenomelia apus after trimethoprim exposure: first-trimester ultrasound diagnosis-a case report.

    Science.gov (United States)

    Dosedla, Erik; Kalafusová, Michaela; Calda, Pavel

    2012-01-01

    We report the early prenatal ultrasound diagnosis of sirenomelia apus at 12+4 weeks in a patient with trimethoprim exposure in the vulnerable period. First-trimester scan revealed a malformed fetus with one femur, one small tibia, no feet, intraabdominal unilocular cystic structure, and two-vessel umbilical cord with allantoic cyst. Ultrasound visualization with two/three/four-dimensions was helpful in the process of parental counseling. Copyright © 2012 Wiley Periodicals, Inc.

  2. Fast and Automatic Ultrasound Simulation from CT Images

    Directory of Open Access Journals (Sweden)

    Weijian Cong

    2013-01-01

    Full Text Available Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  3. Early experience with multiparametric magnetic resonance imaging-targeted biopsies under visual transrectal ultrasound guidance in patients suspicious for prostate cancer undergoing repeated biopsy

    DEFF Research Database (Denmark)

    Boesen, Lars; Noergaard, Nis; Chabanova, Elizaveta

    2015-01-01

    OBJECTIVES: The purpose of this study was to investigate the detection rate of prostate cancer (PCa) by multiparametric magnetic resonance imaging-targeted biopsies (mp-MRI-bx) in patients with prior negative transrectal ultrasound biopsy (TRUS-bx) sessions without previous experience of this......-RADS) and Likert classification. All underwent repeated TRUS-bx (10 cores) and mp-MRI-bx under visual TRUS guidance of any mp-MRI-suspicious lesion not targeted by systematic TRUS-bx. RESULTS: PCa was found in 39 out of 83 patients (47%) and mp-MRI identified at least one lesion with some degree of suspicion...

  4. Background enhancement in breast MR: Correlation with breast density in mammography and background echotexture in ultrasound

    International Nuclear Information System (INIS)

    Ko, Eun Sook; Lee, Byung Hee; Choi, Hye Young; Kim, Rock Bum; Noh, Woo-Chul

    2011-01-01

    Objective: This study aimed to determine whether background enhancement on MR was related to mammographic breast density or ultrasonographic background echotexture in premenopausal and postmenopausal women. Materials and methods: We studied 142 patients (79 premenopausal, 63 postmenopausal) who underwent mammography, ultrasonography, and breast MR. We reviewed the mammography for overall breast density of the contralateral normal breast according to the four-point scale of the BI-RADS classification. Ultrasound findings were classified as homogeneous or heterogeneous background echotexture according to the BI-RADS lexicon. We rated background enhancement on a contralateral breast MR into four categories based on subtraction images: absent, mild, moderate, and marked. All imaging findings were interpreted independently by two readers without knowledge of menstrual status, imaging findings of other modalities. Results: There were significant differences between the premenopausal and postmenopausal group in distribution of mammographic breast density, ultrasonographic background echotexture, and degree of background enhancement. Regarding the relationship between mammographic density and background enhancement, there was no significant correlation. There was significant relationship between ultrasonographic background echotexture and background enhancement in both premenopausal and postmenopausal groups. Conclusion: There is a significant correlation between ultrasonographic background echotexture and background enhancement in MR regardless of menopausal status. Interpreting breast MR, or scheduling for breast MR of women showing heterogeneous background echotexture needs more caution.

  5. Post-operative monitoring of tissue transfers: advantages using contrast enhanced ultrasound (CEUS) and contrast enhanced MRI (ceMRI) with dynamic perfusion analysis?

    Science.gov (United States)

    Lamby, P; Prantl, L; Fellner, C; Geis, S; Jung, E M

    2011-01-01

    The immediate evaluation of microvascular tissue flaps with respect to microcirculation after transplantation is crucial for optimal monitoring and outcome. The purpose of our investigation was to evaluate the clinical value of contrast-enhanced ultrasound (CEUS) and contrast-enhanced MRI (ceMRI) for monitoring the integrity of tissue flaps in plastic surgery. To this end, we investigated 10 patients (47 ± 16 a) between postoperative day 7 and 14 who underwent flap surgery in order to cover tissue defects in various body regions. For CEUS we utilized the GE LOGIQ E9 equipped with a linear transducer (6-9 MHz). After application of 2.4 ml SonoVue, the tissue perfusion was detected in Low MI-Technique (MI present, both technologies provide an optimal assessment of perfusion in cutaneous, subcutaneous and muscle tissue layers, whereby the detection of fatty tissue perfusion is currently more easily detected using CEUS compared to ceMRI.

  6. Using low-frequency ultrasound to improve the optical clearing of porcine skin

    Science.gov (United States)

    Zhong, Huiqing; Guo, Zhouyi; Wei, Huajiang; Zhang, Zude; Zeng, Changchun; Zhai, Juan; He, Yonghong

    2008-12-01

    The glycerol used as an enhancer for tissue optical clearing technique has been researched. However, using it and a physical way of ultrasound enhance optical clearing of tissue reported a few. We researched that the ultrasound whether can improve the optical clearing of dealt with 80% glycerol tissue. The fresh porcine skins divided into four groups. The first group was not dealt with by ultrasound and 80% glycerol, the second group was dealt with by only ultrasound, the third group was dealt with by 80% glycerol and no by ultrasound, and the fourth group was dealt with by both 80% glycerol and ultrasound. And we measured changes in optical scattering of the porcine skins under treatment with OCT. From the OCT images show that the fourth group changed very faster than the other's during the 0~15 min. And it can be clearly seen that there is a significant improvement in the light penetration depth and imaging contrast in a shorter time. It is possible that the low-frequency ultrasound can make disordering of the stratum corneum lipids of the porcine skin (because the cavitation has happened), and improve the speed of 80% glycerol through the stratum corneum of skin. These results proved that using 80% glycerol with the ultrasound can better improve the optical clearing of tissue.

  7. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    Science.gov (United States)

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  8. Transvaginal Ultrasound for the Diagnosis of Abnormal Uterine Bleeding.

    Science.gov (United States)

    Wheeler, Karen C; Goldstein, Steven R

    2017-03-01

    Transvaginal ultrasound is the first-line imaging test for the evaluation of abnormal uterine bleeding in both premenopausal and postmenopausal women. Transvaginal ultrasound can be used to diagnose structural causes of abnormal bleeding such as polyps, adenomyosis, leiomyomas, hyperplasia, and malignancy, and can also be beneficial in making the diagnosis of ovulatory dysfunction. Traditional 2-dimensional imaging is often enhanced by the addition of 3-dimension imaging with coronal reconstruction and saline infusion sonohysterography. In this article we discuss specific ultrasound findings and technical considerations useful in the diagnosis of abnormal uterine bleeding.

  9. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  10. New image contrast method in magnetic resonance imaging via ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Radicke, Marcus, E-mail: radicke@hiskp.uni-bonn.de; Engelbertz, Andre; Habenstein, Bernd; Lewerenz, Meinert; Oehms, Ole [University of Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik (Germany); Trautner, Peter; Weber, Bernd [Life and Brain Research Center, Department Neurocognition (Germany); Wrede, Sarah; Maier, Karl [University of Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik (Germany)

    2008-01-15

    When applied to a sample, ultrasound (US) gives rise to a displacement of tissue and a flow in a liquid due to the acoustic radiation pressure. These movements depend on the viscoelastic properties of the sample and can be visualized precisely with an MRI scanner using diffusion- sensitive pulse sequences. In this paper, measurements will be presented, which show the visualization of the US under variation of its parameters in different liquids and in tissue.

  11. Blotting from PhastGel to Membranes by Ultrasound.

    Science.gov (United States)

    Kost, Joseph; Azagury, Aharon

    2015-01-01

    Ultrasound based approach for enhanced protein blotting is proposed. Three minutes of ultrasound exposure (1 MHz, 2.5 W/cm(2)) was sufficient for a clear transfer of proteins from a polyacrylamide gel (PhastGel) to nitrocellulose or Nylon 66 Biotrans membrane. The proteins evaluated were prestained sodium dodecyl sulfate-polyacrylamide standards (18,500-106,000 Da) and 14C-labeled Rainbow protein molecular weight markers (14,300-200,000 Da).

  12. [Congenital lens subluxation: visual acuity outcomes and intraocular lens postoperative position].

    Science.gov (United States)

    Arraes, Caroline; Endriss, Daniela; Lobato, Francisco; Arraes, João; Ventura, Marcelo

    2010-01-01

    To evaluate the visual acuity outcomes and to investigate the intraocular lens (IOL) and endocapsular ring positions with ultrasound biomicroscopy in 17 eyes of 10 patients with congenital lens subluxation who underwent the same surgical technique, by the same surgeon. The study was performed in the ''Hospital de Olhos de Pernambuco'' and ''Fundação Altino Ventura''. The surgical technique consisted of phacoaspiration with implant of endocapsular ring and intraocular lens with one loop haptic amputated. The age varied from 7 to 22 years. Data on visual acuity (VA) before and after surgery, surgery follow-up period, and complications were analyzed. All patients underwent ultrasound biomicroscopy. The mean follow-up period was 2.8 years. There was a VA improvement in 17 (100%) eyes: in 12 eyes (70.6%) the visual acuity was better than 20/40; 4 (23.5%) ranged from 20/40 to 20/100, and 1 (5.9%) had visual acuity worse than 20/100, however better than the preoperative visual acuity. The posterior capsular opacification occurred in 10 eyes (58.9%). Ultrasound biomicroscopy showed that all IOL were partially decentralized, however without surpassing the pupil border limit. Endocapsular ring position was correct and there was a good capsular support in all cases. The evaluated surgical treatment provided good intraocular lens and endocapsular ring position, with VA improvement Thus, this technique is a viable, effective and safe option for the visual rehabilitation of patients with congenital lens subluxation.

  13. Molecular Ultrasound Imaging for the Detection of Neural Inflammation

    Science.gov (United States)

    Volz, Kevin R.

    Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to selectively target biochemical markers, which permits their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing molecular probes into the body. Molecular probes are often contrast agents that have been nanoengineered to selectively target and tether to molecules, enabling their radiologic identification. Ultrasound contrast agents have been demonstrated as an effective method of detecting perfusion at the tissue level. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, thereby extending ultrasound's capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomical and functional information in the absence of ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging, and consequently remains largely preclinical. A review of the TCEUS literature revealed multiple preclinical studies demonstrating its success in detecting inflammation in a variety of tissues. Although, a gap was identified in the existing evidence, as TCEUS effectiveness for detection of neural inflammation in the spinal cord was unable to be uncovered. This gap in knowledge, coupled with the profound impacts that this TCEUS application could have clinically, provided rationale for its exploration, and use as contributory evidence for the molecular ultrasound body of literature. An animal model that underwent a contusive spinal cord injury was used to establish preclinical evidence of TCEUS to detect neural inflammation. Imaging was

  14. Bursting neurons and ultrasound avoidance in crickets

    Directory of Open Access Journals (Sweden)

    Gary eMarsat

    2012-07-01

    Full Text Available Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes –bursts– that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing –the auditory receptor- already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  15. Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Takayoshi [Shizuoka Cancer Center Hospital, Breast Imaging and Breast Intervention Section, Shizuoka (Japan); Kasami, Masako [Shizuoka Cancer Center Hospital, Department of Pathology, Naga-izumi, Shizuoka (Japan); Watanabe, Junichiro [Shizuoka Cancer Center Hospital, Division of Medical Oncology, Naga-izumi, Shizuoka (Japan)

    2011-11-15

    The purpose of this study was to assess the influence of background enhancement on the detection and staging of breast cancer using MRI as an adjunct to mammography or ultrasound. One hundred forty-six bilateral breast MRI examinations were evaluated to assess the extent of a known primary tumour and to problem solve after mammography or ultrasound without adjusting for the phase in the patients' menstrual cycle. The background enhancement was classified into four categories by visual evaluation: minimal, mild, moderate and marked. In total, 131 histologically confirmed abnormal cases (104 malignant and 27 benign) and 15 normal cases were included in the analysis. There was no tumour size-related bias between the groups (p = 0.522). For the primary index tumour, the sensitivities of MRI with minimal/mild and moderate/marked background enhancement were 100% and 76% (p = 0.001), respectively. Thus, the degree of background enhancement did not affect the specificity. For evaluating tumour extent (n = 104), the accuracy of MRI with moderate/marked background enhancement (52%) was significantly lower than that with minimal/mild background enhancement (84%; p = 0.002). The degree of background enhancement affected the detection and staging of breast cancer using MRI. (orig.)

  16. Density of Visual Input Enhancement and Grammar Learning: A Research Proposal

    Science.gov (United States)

    Tran, Thu Hoang

    2009-01-01

    Research in the field of second language acquisition (SLA) has been done to ascertain the effectiveness of visual input enhancement (VIE) on grammar learning. However, one issue remains unexplored: the effects of VIE density on grammar learning. This paper presents a research proposal to investigate the effects of the density of VIE on English…

  17. Circumvention of cisplatin resistance in ovarian cancer by combination of cyclosporin A and low-intensity ultrasound.

    Science.gov (United States)

    Yu, Tinghe; Yang, Yan; Zhang, Jiao; He, Haining; Ren, Xueyi

    2015-04-01

    Cisplatin resistance is a challenge in the treatment of ovarian cancer. The aim of this study was to explore if ultrasound can overcome chemoresistance and enhance chemosensitization due to cyclosporin A. Ultrasound and/or cyclosporin A were employed to overcome cisplatin resistance in human ovarian cancer cell line COC1/DDP. Mechanisms were explored from the perspective of: DNA damage, intracellular platinum level, detoxification, and genes related to drug efflux and DNA repair. In vivo therapeutic efficacy was validated in a short-term model (subrenal cell-clot transplantation) in mice and the survival benefit was investigated in an orthotopic cancer model in mice using HO-8910PM cells. The findings were: (i) ultrasound enhanced the effect of cisplatin leading to a lower cell-survival rate (IC50 decreased from 3.19 to 0.35 μg/ml); (ii) ultrasound enhanced cisplatin via direct (increasing the intercellular level of active platinum) and indirect (decreasing the glutathione level, and expression of LRP and ERCC1 genes) mechanisms that intensified cisplatin-induced DNA damage, thus enhancing cell apoptosis and necrosis; (iii) cisplatin followed by ultrasound led to small tumor sizes in the short-term model without exacerbation of the systemic toxicity, and prolonged the survival times in the orthotopic model; and (iv) ultrasound synergized the sensitization due to cyclosporin A in vitro and in vivo. These data demonstrated that ultrasound combined with cyclosporin A overcame cisplatin resistance in ovarian cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    Science.gov (United States)

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality.

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to ... Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces pictures ...

  20. The use of contrast-enhanced color doppler ultrasound in the differentiation of retinal detachment from vitreous membrane

    International Nuclear Information System (INIS)

    Han, Sang Suk; Chang, Seung Kook; Yoon, Jung Hee; Lee, Young Joon

    2001-01-01

    To compare the clinical utility of contrast-enhanced color Doppler US in the differentiation of retinal detachment (RD) from vitreous membrane (VM) with that of various conventional US modalities, and to analyze the enhancement patterns in cases showing an enhancement effect. In 32 eyes examined over a recent two-year period, RD (n=14) and VM (n=18) were confirmed by surgery (n=28) or clinical follow-up (n=4). In all cases, gray-scale, color Doppler, and power Doppler US were performed prior to contrast injection, and after the intravenous injection of Levovist (Schering, Berlin) by hand for 30 seconds at a dose of 2.5 g and a concentration of 300 mg/mL via an antecubital vein, contrast-enhanced color Doppler US was performed. At Doppler US, the diagnostic criterion for RD and VM was whether or not color signals were visualized in membranous structures. Diagnostic accuracy was 78% at gray-scale US, 81% at color Doppler US, 59% at power Doppler US, and 97% at contrast-enhanced color Doppler US. The sensitivity of color Doppler US to color signals in RD increased from 57% to 93% after contrast enhancement. The enhancement patterns observed were signal accentuation (n=3), signal extension (n=2), signal addition (n=3), and new signal visualization (n=5). Contrast-enhanced color Doppler US was the most accurate US modality for differentiating RD from VM, showing a significantly increased signal detection rate in RD

  1. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    Science.gov (United States)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  2. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    Science.gov (United States)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  3. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    International Nuclear Information System (INIS)

    Arvanitis, Costas D; McDannold, Nathan; Livingstone, Margaret S

    2013-01-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood–brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood–brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that

  4. A Visual Arts Education pedagogical approach for enhancing quality of life for persons with dementia (innovative practice).

    Science.gov (United States)

    Tietyen, Ann C; Richards, Allan G

    2017-01-01

    A new and innovative pedagogical approach that administers hands-on visual arts activities to persons with dementia based on the field of Visual Arts Education is reported in this paper. The aims of this approach are to enhance cognition and improve quality of life. These aims were explored in a small qualitative study with eight individuals with moderate dementia, and the results are published as a thesis. In this paper, we summarize and report the results of this small qualitative study and expand upon the rationale for the Visual Arts Education pedagogical approach that has shown promise for enhancing cognitive processes and improving quality of life for persons with dementia.

  5. 4D ultrasound and 3D MRI registration of beating heart

    International Nuclear Information System (INIS)

    Herlambang, N.; Matsumiya, K.; Masamune, K.; Dohi, T.; Liao, H.; Tsukihara, H.; Takamoto, S.

    2007-01-01

    To realize intra-cardiac surgery without cardio-pulmonary bypass, a medical imaging technique with both high image quality and data acquisition rate that is fast enough to follow heart beat movements is required. In this research, we proposed a method that utilized the image quality of MRI and the speed of ultrasound. We developed a 4D image reconstruction method using image registration of 3D MRI and 4D ultrasound images. The registration method consists of rigid registration between 3D MRI and 3D ultrasound with the same heart beat phase, and non-rigid registration between 3D ultrasound images from different heart beat phases. Non-rigid registration was performed with B-spline based registration using variable spring model. In phantom experiment using balloon phantom, registration accuracy was less than 2 mm for total heart volume variation range of 10%. We applied our registration method on 3D MRI and 4D ultrasound images of a volunteer's beating heart data and confirmed through visual observation that heart beat pattern was well reproduced. (orig.)

  6. Four-dimensional microscope- integrated optical coherence tomography to enhance visualization in glaucoma surgeries.

    Science.gov (United States)

    Pasricha, Neel Dave; Bhullar, Paramjit Kaur; Shieh, Christine; Viehland, Christian; Carrasco-Zevallos, Oscar Mijail; Keller, Brenton; Izatt, Joseph Adam; Toth, Cynthia Ann; Challa, Pratap; Kuo, Anthony Nanlin

    2017-01-01

    We report the first use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT) capable of live four-dimensional (4D) (three-dimensional across time) imaging intraoperatively to directly visualize tube shunt placement and trabeculectomy surgeries in two patients with severe open-angle glaucoma and elevated intraocular pressure (IOP) that was not adequately managed by medical intervention or prior surgery. We performed tube shunt placement and trabeculectomy surgery and used SS-MIOCT to visualize and record surgical steps that benefitted from the enhanced visualization. In the case of tube shunt placement, SS-MIOCT successfully visualized the scleral tunneling, tube shunt positioning in the anterior chamber, and tube shunt suturing. For the trabeculectomy, SS-MIOCT successfully visualized the scleral flap creation, sclerotomy, and iridectomy. Postoperatively, both patients did well, with IOPs decreasing to the target goal. We found the benefit of SS-MIOCT was greatest in surgical steps requiring depth-based assessments. This technology has the potential to improve clinical outcomes.

  7. Visual working memory enhances the neural response to matching visual input

    NARCIS (Netherlands)

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-01-01

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  9. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Science.gov (United States)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  10. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    Science.gov (United States)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

  11. Enhancing Nuclear Newcomer Training with 3D Visualization Learning Tools

    International Nuclear Information System (INIS)

    Gagnon, V.

    2016-01-01

    Full text: While the nuclear power industry is trying to reinforce its safety and regain public support post-Fukushima, it is also faced with a very real challenge that affects its day-to-day activities: a rapidly aging workforce. Statistics show that close to 40% of the current nuclear power industry workforce will retire within the next five years. For newcomer countries, the challenge is even greater, having to develop a completely new workforce. The workforce replacement effort introduces nuclear newcomers of a new generation with different backgrounds and affinities. Major lifestyle differences between the two generations of workers result, amongst other things, in different learning habits and needs for this new breed of learners. Interactivity, high visual content and quick access to information are now necessary to achieve a high level of retention. To enhance existing training programmes or to support the establishment of new training programmes for newcomer countries, L-3 MAPPS has devised learning tools to enhance these training programmes focused on the “Practice-by-Doing” principle. L-3 MAPPS has coupled 3D computer visualization with high-fidelity simulation to bring real-time, simulation-driven animated components and systems allowing immersive and participatory, individual or classroom learning. (author

  12. Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents.

    Science.gov (United States)

    Sheeran, Paul S; Rojas, Juan D; Puett, Connor; Hjelmquist, Jordan; Arena, Christopher B; Dayton, Paul A

    2015-03-01

    Many studies have explored phase-change contrast agents (PCCAs) that can be vaporized by an ultrasonic pulse to form microbubbles for ultrasound imaging and therapy. However, few investigations have been published on the utility and characteristics of PCCAs as contrast agents in vivo. In this study, we examine the properties of low-boiling-point nanoscale PCCAs evaluated in vivo and compare data with those for conventional microbubbles with respect to contrast generation and circulation properties. To do this, we develop a custom pulse sequence to vaporize and image PCCAs using the Verasonics research platform and a clinical array transducer. Results indicate that droplets can produce contrast enhancement similar to that of microbubbles (7.29 to 18.24 dB over baseline, depending on formulation) and can be designed to circulate for as much as 3.3 times longer than microbubbles. This study also reports for the first time the ability to capture contrast washout kinetics of the target organ as a measure of vascular perfusion. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  14. A review of computer-based simulators for ultrasound training.

    Science.gov (United States)

    Blum, Tobias; Rieger, Andreas; Navab, Nassir; Friess, Helmut; Martignoni, Marc

    2013-04-01

    Computer-based simulators for ultrasound training are a topic of recent interest. During the last 15 years, many different systems and methods have been proposed. This article provides an overview and classification of systems in this domain and a discussion of their advantages. Systems are classified and discussed according to the image simulation method, user interactions and medical applications. Computer simulation of ultrasound has one key advantage over traditional training. It enables novel training concepts, for example, through advanced visualization, case databases, and automatically generated feedback. Qualitative evaluations have mainly shown positive learning effects. However, few quantitative evaluations have been performed and long-term effects have to be examined.

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored by Please ...

  16. Visual Enhancement for Sports Entertainment by Vision-Based Augmented Reality

    OpenAIRE

    Uematsu, Yuko; Saito, Hideo

    2008-01-01

    This paper presents visually enhanced sports entertainment applications: AR Baseball Presentation System and Interactive AR Bowling System. We utilize vision-based augmented reality for getting immersive feeling. First application is an observation system of a virtual baseball game on the tabletop. 3D virtual players are playing a game on a real baseball field model, so that users can observe the game from favorite view points through a handheld monitor with a web camera....

  17. Unimodal Learning Enhances Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2017-01-01

    Crossmodal sensory integration is a fundamental feature of the brain that aids in forming an coherent and unified representation of observed events in the world. Spatiotemporally correlated sensory stimuli brought about by rich sensorimotor experiences drive the development of crossmodal integrat...... a non-holonomic robotic agent towards a moving audio-visual target. Simulation results demonstrate that unimodal learning enhances crossmodal learning and improves both the overall accuracy and precision of multisensory orientation response....

  18. Unimodal Learning Enhances Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2018-01-01

    Crossmodal sensory integration is a fundamental feature of the brain that aids in forming an coherent and unified representation of observed events in the world. Spatiotemporally correlated sensory stimuli brought about by rich sensorimotor experiences drive the development of crossmodal integrat...... a non-holonomic robotic agent towards a moving audio-visual target. Simulation results demonstrate that unimodal learning enhances crossmodal learning and improves both the overall accuracy and precision of multisensory orientation response....

  19. Dynamic Contrast-Enhanced Ultrasound of Colorectal Liver Metastases as an Imaging Modality for Early Response Prediction to Chemotherapy

    DEFF Research Database (Denmark)

    Mogensen, Marie Benzon; Hansen, Martin Lundsgaard; Henriksen, Birthe Merete

    2017-01-01

    Our aim was to investigate whether dynamic contrast-enhanced ultrasound (DCE-US) can detect early changes in perfusion of colorectal liver metastases after initiation of chemotherapy. Newly diagnosed patients with colorectal cancer with liver metastases were enrolled in this explorative prospective...... study. Patients were treated with capecitabine or 5-fluorouracil-based chemotherapy with or without bevacizumab. DCE-US was performed before therapy (baseline) and again 10 days after initiation of treatment. Change in contrast-enhancement in one liver metastasis (indicator lesion) was measured....... Treatment response was evaluated with a computed tomography (CT) scan after three cycles of treatment and the initially observed DCE-US change of the indicator lesion was related to the observed CT response. Eighteen patients were included. Six did not complete three series of chemotherapy...

  20. Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging.

    Science.gov (United States)

    Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R

    2006-10-01

    Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.

  1. N1 enhancement in synesthesia during visual and audio-visual perception in semantic cross-modal conflict situations: an ERP study

    Directory of Open Access Journals (Sweden)

    Christopher eSinke

    2014-01-01

    Full Text Available Synesthesia entails a special kind of sensory perception, where stimulation in one sensory modality leads to an internally generated perceptual experience of another, not stimulated sensory modality. This phenomenon can be viewed as an abnormal multisensory integration process as here the synesthetic percept is aberrantly fused with the stimulated modality. Indeed, recent synesthesia research has focused on multimodal processing even outside of the specific synesthesia-inducing context and has revealed changed multimodal integration, thus suggesting perceptual alterations at a global level. Here, we focused on audio-visual processing in synesthesia using a semantic classification task in combination with visually or auditory-visually presented animated and inanimated objects in an audio-visual congruent and incongruent manner. Fourteen subjects with auditory-visual and/or grapheme-color synesthesia and 14 control subjects participated in the experiment. During presentation of the stimuli, event-related potentials were recorded from 32 electrodes. The analysis of reaction times and error rates revealed no group differences with best performance for audio-visually congruent stimulation indicating the well-known multimodal facilitation effect. We found an enhanced amplitude of the N1 component over occipital electrode sites for synesthetes compared to controls. The differences occurred irrespective of the experimental condition and therefore suggest a global influence on early sensory processing in synesthetes.

  2. Light Video Game Play is Associated with Enhanced Visual Processing of Rapid Serial Visual Presentation Targets.

    Science.gov (United States)

    Howard, Christina J; Wilding, Robert; Guest, Duncan

    2017-02-01

    There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.

  3. Prehospital Ultrasound

    Directory of Open Access Journals (Sweden)

    Jen-Tang Sun

    2014-06-01

    Full Text Available Ultrasound is a commonly used diagnostic tool in clinical conditions. With recent developments in technology, use of portable ultrasound devices has become feasible in prehospital settings. Many studies also proved the feasibility and accuracy of prehospital ultrasound. In this article, we focus on the use of prehospital ultrasound, with emphasis on trauma and chest ultrasound.

  4. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  5. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    Science.gov (United States)

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  6. The growth of oscillating bubbles in an ultrasound field

    Science.gov (United States)

    Yamauchi, Risa; Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    From our recent experiments to test particle removal by underwater ultrasound, dissolved gas supersaturation is found to play an important role in physical cleaning; cavitation bubble nucleation can be triggered easily by weak ultrasound under the supersaturation and mild motion of the bubbles contributes to efficient cleaning without erosion. The state of gas bubble nuclei in water is critical to the determination of a cavitation inception threshold. Under ultrasound forcing, the size of bubble nuclei is varied by the transfer of dissolved gas (i.e., rectified diffusion); the growth rate will be promoted by the supersaturation and is thus expected to contribute to cavitation activity enhancement. In the present work, we experimentally study rectified diffusion for bubbles attached at glass surfaces in an ultrasound field. We will present the evolution of bubble nuclei sizes with varying parameters such as dissolved oxygen supersaturation, and ultrasound intensity and frequency. the Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  7. Line fiducial material and thickness considerations for ultrasound calibration

    Science.gov (United States)

    Ameri, Golafsoun; McLeod, A. J.; Baxter, John S. H.; Chen, Elvis C. S.; Peters, Terry M.

    2015-03-01

    Ultrasound calibration is a necessary procedure in many image-guided interventions, relating the position of tools and anatomical structures in the ultrasound image to a common coordinate system. This is a necessary component of augmented reality environments in image-guided interventions as it allows for a 3D visualization where other surgical tools outside the imaging plane can be found. Accuracy of ultrasound calibration fundamentally affects the total accuracy of this interventional guidance system. Many ultrasound calibration procedures have been proposed based on a variety of phantom materials and geometries. These differences lead to differences in representation of the phantom on the ultrasound image which subsequently affect the ability to accurately and automatically segment the phantom. For example, taut wires are commonly used as line fiducials in ultrasound calibration. However, at large depths or oblique angles, the fiducials appear blurred and smeared in ultrasound images making it hard to localize their cross-section with the ultrasound image plane. Intuitively, larger diameter phantoms with lower echogenicity are more accurately segmented in ultrasound images in comparison to highly reflective thin phantoms. In this work, an evaluation of a variety of calibration phantoms with different geometrical and material properties for the phantomless calibration procedure was performed. The phantoms used in this study include braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. Conventional B-mode and synthetic aperture images of the phantoms at different positions were obtained. The phantoms were automatically segmented from the ultrasound images using an ellipse fitting algorithm, the centroid of which is subsequently used as a fiducial for calibration. Calibration accuracy was evaluated for these procedures based on the leave-one-out target registration error. It was shown that larger diameter phantoms with lower

  8. Enhanced visual memory during hypnosis as mediated by hypnotic responsiveness and cognitive strategies.

    Science.gov (United States)

    Crawford, H J; Allen, S N

    1983-12-01

    To investigate the hypothesis that hypnosis has an enhancing effect on imagery processing, as mediated by hypnotic responsiveness and cognitive strategies, four experiments compared performance of low and high, or low, medium, and high, hypnotically responsive subjects in waking and hypnosis conditions on a successive visual memory discrimination task that required detecting differences between successively presented picture pairs in which one member of the pair was slightly altered. Consistently, hypnotically responsive individuals showed enhanced performance during hypnosis, whereas nonresponsive ones did not. Hypnotic responsiveness correlated .52 (p less than .001) with enhanced performance during hypnosis, but it was uncorrelated with waking performance (Experiment 3). Reaction time was not affected by hypnosis, although high hypnotizables were faster than lows in their responses (Experiments 1 and 2). Subjects reported enhanced imagery vividness on the self-report Vividness of Visual Imagery Questionnaire during hypnosis. The differential effect between lows and highs was in the anticipated direction but not significant (Experiments 1 and 2). As anticipated, hypnosis had no significant effect on a discrimination task that required determining whether there were differences between pairs of simultaneously presented pictures. Two cognitive strategies that appeared to mediate visual memory performance were reported: (a) detail strategy, which involved the memorization and rehearsal of individual details for memory, and (b) holistic strategy, which involved looking at and remembering the whole picture with accompanying imagery. Both lows and highs reported similar predominantly detail-oriented strategies during waking; only highs shifted to a significantly more holistic strategy during hypnosis. These findings suggest that high hypnotizables have a greater capacity for cognitive flexibility (Batting, 1979) than do lows. Results are discussed in terms of several

  9. Value of contrast-enhanced ultrasound in differential diagnosis of single metastatic liver cancer and solitary necrotic nodule of the liver

    Directory of Open Access Journals (Sweden)

    LI Jing

    2016-07-01

    Full Text Available Objective To investigate the value of contrast-enhanced ultrasound (CEUS in the differential diagnosis of single metastatic hepatic carcinoma (MHC and solitary necrotic nodule of the liver (SNNL. MethodsA retrospective analysis was performed for 12 patients with single MHC and 16 patients with SNNL who showed circular enhancement in arterial phase on CEUS. Age, size of lesion, and findings of two-dimensional gray-scale ultrasound and CEUS were compared between the two groups. The two-independent-samples t-test was used for comparison between groups, and the paired t-test was used for comparison within each group. ResultsThe MHC group had a significantly higher mean age than the SNNL group (60.2±11.3 years vs 41.0±9.1 years, t=4.970, P<0.001. The mean diameter of lesion was 2.86±1.22 cm in the MHC group and 2.97±0.96 cm in the SNNL group, and showed no significant difference between the two groups (t=-0.269, P=0.790. In the MHC group, the lesions had complex and uneven echoes and blurred boundaries, while in the SNNL group, most lesions were in the right lobe and were hypoechoic with clear boundaries. No blood flow signals were detected on CDFI in these two groups. Both groups had circular enhancement around the lesions in arterial phase on CEUS, and the mean thickness showed a significant difference between the MHC group and the SNNL group (5.00±1.69 mm vs 2.37±0.87 mm, t=5.374, P<0001. In the MHC group, the area in lesions without enhancement in delayed phase was significantly larger than that in arterial phase (t=-4.508, P=0001, while in the SNNL group, the area in lesions without enhancement showed no significant difference between delayed phase and arterial phase (t=-0.449, P=0.660. ConclusionThe thickness of circular enhancement in arterial phase on CEUS and the presence or absence of the enlargement in the area without enhancement contributes to the differential diagnosis of single MHC and SNNL.

  10. Enhancing performance expectancies through visual illusions facilitates motor learning in children.

    Science.gov (United States)

    Bahmani, Moslem; Wulf, Gabriele; Ghadiri, Farhad; Karimi, Saeed; Lewthwaite, Rebecca

    2017-10-01

    In a recent study by Chauvel, Wulf, and Maquestiaux (2015), golf putting performance was found to be affected by the Ebbinghaus illusion. Specifically, adult participants demonstrated more effective learning when they practiced with a hole that was surrounded by small circles, making it look larger, than when the hole was surrounded by large circles, making it look smaller. The present study examined whether this learning advantage would generalize to children who are assumed to be less sensitive to the visual illusion. Two groups of 10-year olds practiced putting golf balls from a distance of 2m, with perceived larger or smaller holes resulting from the visual illusion. Self-efficacy was increased in the group with the perceived larger hole. The latter group also demonstrated more accurate putting performance during practice. Importantly, learning (i.e., delayed retention performance without the illusion) was enhanced in the group that practiced with the perceived larger hole. The findings replicate previous results with adult learners and are in line with the notion that enhanced performance expectancies are key to optimal motor learning (Wulf & Lewthwaite, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  13. Monitoring health and reproductive status of olms (Proteus anguinus by ultrasound.

    Directory of Open Access Journals (Sweden)

    Susanne Holtze

    Full Text Available The olm (Proteus anguinus is a troglomorphic, neotenous amphibian with extraordinary life expectancy and unique adaptations that deserve further investigation. A low reproductive rate and habitat decline render it threatened by extinction. Establishing captive populations for maintenance and artificial breeding may one day become crucial to the species. Longitudinal, in-vivo assessment of inner organs is invaluable to our understanding of reproductive physiology, health, and behavior. Using ultrasound, we measured heart rate and assessed health and reproductive status of 13 captive olms at Zagreb Zoo. Heart rate averaged 42.9 ± 4.6 bpm (32-55 bpm, as determined via pulsed-wave Doppler at 4-12 MHz. By using frequencies of up to 70 MHz (ultrasound biomicroscopy, inner organs were visualized in detail. Assessment of the gastrointestinal tract provided insights into feeding status and digestive processes. Several subclinical pathologies were detected, including biliary sludge, subcutaneous edema, ascites, and skin lesions. Detection of skin lesions by ultrasound was more sensitive than visual adspection. Olms with ultrasonographically detected skin lesions tested positive for Saprolegnia and were treated. Three of the four affected individuals survived and subsequently tested negative for Saprolegnia. Sex was reliably determined; only one individual proved male. The reason for this extreme female-biased sex-ratio remains unknown. However, as most of the individuals were flushed from the caves by strong currents in spring, the sample may not be representative of natural populations. In female olms, different stages of ovarian follicular development were observed with diameters ranging between 0.1 and 1.1 mm. Results were confirmed by comparing ultrasound, necropsy, and histological findings of one dead specimen. In summary, ultrasound proved a valuable tool to support conservation and captive breeding programs by allowing non-invasive assessment of

  14. Monitoring health and reproductive status of olms (Proteus anguinus) by ultrasound.

    Science.gov (United States)

    Holtze, Susanne; Lukač, Maja; Cizelj, Ivan; Mutschmann, Frank; Szentiks, Claudia Anita; Jelić, Dušan; Hermes, Robert; Göritz, Frank; Braude, Stanton; Hildebrandt, Thomas Bernd

    2017-01-01

    The olm (Proteus anguinus) is a troglomorphic, neotenous amphibian with extraordinary life expectancy and unique adaptations that deserve further investigation. A low reproductive rate and habitat decline render it threatened by extinction. Establishing captive populations for maintenance and artificial breeding may one day become crucial to the species. Longitudinal, in-vivo assessment of inner organs is invaluable to our understanding of reproductive physiology, health, and behavior. Using ultrasound, we measured heart rate and assessed health and reproductive status of 13 captive olms at Zagreb Zoo. Heart rate averaged 42.9 ± 4.6 bpm (32-55 bpm), as determined via pulsed-wave Doppler at 4-12 MHz. By using frequencies of up to 70 MHz (ultrasound biomicroscopy), inner organs were visualized in detail. Assessment of the gastrointestinal tract provided insights into feeding status and digestive processes. Several subclinical pathologies were detected, including biliary sludge, subcutaneous edema, ascites, and skin lesions. Detection of skin lesions by ultrasound was more sensitive than visual adspection. Olms with ultrasonographically detected skin lesions tested positive for Saprolegnia and were treated. Three of the four affected individuals survived and subsequently tested negative for Saprolegnia. Sex was reliably determined; only one individual proved male. The reason for this extreme female-biased sex-ratio remains unknown. However, as most of the individuals were flushed from the caves by strong currents in spring, the sample may not be representative of natural populations. In female olms, different stages of ovarian follicular development were observed with diameters ranging between 0.1 and 1.1 mm. Results were confirmed by comparing ultrasound, necropsy, and histological findings of one dead specimen. In summary, ultrasound proved a valuable tool to support conservation and captive breeding programs by allowing non-invasive assessment of physiological

  15. The usefulness of contrast-enhanced sonography in the differential diagnostic of adrenal tumors

    International Nuclear Information System (INIS)

    Slonina, J.; Nienartowicz, E.; Malczewska, J.; Moron, K.; Kumar Agrawal, A.

    2006-01-01

    Introduction: The occurrence of gland tumors causes significant clinical problem. Non hormone-secreting tumors provide the most complicated diagnostic difficulties. The application of contrast-enhanced sonography could improve the vessels visualization and point out characteristic features of benign and malignant changes. The authors believe that this new method make possible the differential adrenal tumor diagnostic process more precise and increase the specificity of ultrasonography in the recognition of benign and malignant tumors. The aim of this study was to define the usefulness of contrasting agent Levovist in differential diagnostics of adrenal tumors and its influence on sensitivity and specificity of ultrasound examination and to establish patients qualification criteria for surgical procedures. Material and methods: Ultrasound examinations were made with the use of digital devise by GE Voluson 740, probe 4.6 MHz with Doppler options and volumetric probe 3D according to the following protocol: 26 patients with recognized adrenal tumor were qualified for the examination. Patients in the first stage of tumor vascularisation had Doppler examination with color (CD) and power Doppler (PD). Three-dimensional ultrasonography was used to improve visualization of vascularisation. In the final phase of the examination the patients were administrated of Levovist in the recommended by the producer dose: 2,5 g in the concentration of 400 mg/l. Results: 26 cases of adrenal gland tumours were subjected to analysis. In standard ultrasonographic examination focal changes in 25 patients were hipoechogenic focuses and in one case the focus was hyperechogenic. Heterogeneity of focuses was observed in 16 cases. In Doppler examination with color (CD) and power Doppler (PD) vascular blood flow was revealed within 12. After using contrasting agent Levovist vascular blood flow was achieved in 4 additional cases, which constituted 61% . Conclusions: 1. 3D ultrasound could be

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  17. Ultrasound -- Pelvis

    Science.gov (United States)

    ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  18. The Application of Ultrasound in 3D Bio-Printing.

    Science.gov (United States)

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  19. The Application of Ultrasound in 3D Bio-Printing

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2016-05-01

    Full Text Available Three-dimensional (3D bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  20. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    Science.gov (United States)

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ... Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding Ovarian Cancer Images related to Ultrasound - Pelvis Sponsored ...

  2. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging.

    Science.gov (United States)

    Theek, Benjamin; Gremse, Felix; Kunjachan, Sijumon; Fokong, Stanley; Pola, Robert; Pechar, Michal; Deckers, Roel; Storm, Gert; Ehling, Josef; Kiessling, Fabian; Lammers, Twan

    2014-05-28

    The Enhanced Permeability and Retention (EPR) effect is extensively used in drug delivery research. Taking into account that EPR is a highly variable phenomenon, we have here set out to evaluate if contrast-enhanced functional ultrasound (ceUS) imaging can be employed to characterize EPR-mediated passive drug targeting to tumors. Using standard fluorescence molecular tomography (FMT) and two different protocols for hybrid computed tomography-fluorescence molecular tomography (CT-FMT), the tumor accumulation of a ~10 nm-sized near-infrared-fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) was evaluated in CT26 tumor-bearing mice. In the same set of animals, two different ceUS techniques (2D MIOT and 3D B-mode imaging) were employed to assess tumor vascularization. Subsequently, the degree of tumor vascularization was correlated with the degree of EPR-mediated drug targeting. Depending on the optical imaging protocol used, the tumor accumulation of the polymeric drug carrier ranged from 5 to 12% of the injected dose. The degree of tumor vascularization, determined using ceUS, varied from 4 to 11%. For both hybrid CT-FMT protocols, a good correlation between the degree of tumor vascularization and the degree of tumor accumulation was observed, within the case of reconstructed CT-FMT, correlation coefficients of ~0.8 and p-values of EPR, and potentially also to pre-select patients likely to respond to passively tumor-targeted nanomedicine treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. [Which learning methods are expected for ultrasound training? Blended learning on trial].

    Science.gov (United States)

    Röhrig, S; Hempel, D; Stenger, T; Armbruster, W; Seibel, A; Walcher, F; Breitkreutz, R

    2014-10-01

    Current teaching methods in graduate and postgraduate training often include frontal presentations. Especially in ultrasound education not only knowledge but also sensomotory and visual skills need to be taught. This requires new learning methods. This study examined which types of teaching methods are preferred by participants in ultrasound training courses before, during and after the course by analyzing a blended learning concept. It also investigated how much time trainees are willing to spend on such activities. A survey was conducted at the end of a certified ultrasound training course. Participants were asked to complete a questionnaire based on a visual analogue scale (VAS) in which three categories were defined: category (1) vote for acceptance with a two thirds majority (VAS 67-100%), category (2) simple acceptance (50-67%) and category (3) rejection (learning program with interactive elements, short presentations (less than 20 min), incorporating interaction with the audience, hands-on sessions in small groups, an alternation between presentations and hands-on-sessions, live demonstrations and quizzes. For post-course learning, interactive and media-assisted approaches were preferred, such as e-learning, films of the presentations and the possibility to stay in contact with instructors in order to discuss the results. Participants also voted for maintaining a logbook for documentation of results. The results of this study indicate the need for interactive learning concepts and blended learning activities. Directors of ultrasound courses may consider these aspects and are encouraged to develop sustainable learning pathways.

  4. Learning Program for Enhancing Visual Literacy for Non-Design Students Using a CMS to Share Outcomes

    Science.gov (United States)

    Ariga, Taeko; Watanabe, Takashi; Otani, Toshio; Masuzawa, Toshimitsu

    2016-01-01

    This study proposes a basic learning program for enhancing visual literacy using an original Web content management system (Web CMS) to share students' outcomes in class as a blog post. It seeks to reinforce students' understanding and awareness of the design of visual content. The learning program described in this research focuses on to address…

  5. Enhanced Removal of Pb+2 from Wastewater Using Combination of Ultrasound and nZVI Methods

    Directory of Open Access Journals (Sweden)

    mirroozbeh jamei

    2017-07-01

    Full Text Available This research reported a new method of removal of Pb+2from water by using a nano zero valent iron (nZVI assisted ultrasonic wave. At first, nZVI was synthesized by an ultrasound assisted method. Particles morphology and surface composition were characterized by FESEM, XRD, and EDX. The XRD patterns showed that the crystallinity of the nZVI prepared using ultrasonic conditions was higher than the conventional method. According to the EDX pattern, 67% of particle composition was nZVI. The synthesized nanoparticles were then utilized as a Fenton-like catalyst for the removal of Pb+2from water using an ultrasound assisted method. In the present study, ultrasound power, temperature effects, nZVI, and reaction time were optimized. From the studies, it has been observed that removal does not increase indefinitely with an increase in ultrasound power, but it instead reaches an optimum value and decreases with a further increase in the ultrasound power. The removal of Pb+2increased with increasing temperature, nZVI, and H2O2 concentration. The result indicated that the efficiency of hydrocarbon removal by this novel method was 97.87%.

  6. Integrated ultrasound and gamma imaging probe for medical diagnosis

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; Vincentis, G. De

    2016-01-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures

  7. Absence of synergistic enhancement of non-thermal effects of ultrasound on cell killing induced by ionizing radiation

    International Nuclear Information System (INIS)

    Kondo, T.; Kano, E.

    1987-01-01

    The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continous wave, spatial peak temporal average intensity; 3.7 W/cm 2 ) simultaneously at 37 0 C under O 2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 0 C under N 2 O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O 2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N 2 O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing. (author)

  8. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment.

    Science.gov (United States)

    Yoshizawa, Shin; Matsuura, Keiko; Takagi, Ryo; Yamamoto, Mariko; Umemura, Shin-Ichiro

    2016-01-01

    A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

  9. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Swarupa Kancherla

    Full Text Available Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI. Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and Bladder Stones Abnormal Vaginal Bleeding ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  11. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    Science.gov (United States)

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Effect of Ultrasound on Physicochemical Properties of Wheat Starch

    Directory of Open Access Journals (Sweden)

    Mahsa Majzoobi

    2014-04-01

    Full Text Available Application of ultrasound process is growing in food industry for different purposes including homogenization, extraction, blanching and removal of microorganisms, etc. On the other hand, starch is a natural polymer which exists in many foods or added into the food as an additive. Therefore, determination of the effects of ultrasound on starch characteristics can be useful in interpretation of the properties of starch-containing products. The main aim of this study was to determine the physicochemical changes of wheat starch treated by ultrasound waves. Therefore, an ultrasound probe device was used which ran at 20 kHz, 100 W and 22°C. Starch suspension in distilled water (30% w/w was prepared and treated with ultrasound for 5, 10, 15 and 20 min. The results showed that increases in processing duration led to increases in water solubility of starch, water absorption and gel clarity (as determined by spectrophotometry. Starch intrinsic viscosity as measured using an Ostwald U-tube showed lower intrinsic viscosity with increases in ultrasound time. Gel strength of the samples as determined using a texture analyzer was reduced by longer processing time. The scanning electron microscopy revealed that increasing the duration time of the ultrasound treatment could produce some cracks and spots on the surface of the granules. In total, it was concluded that the ultrasound treatment resulted in some changes from the starch granular scale to molecular levels. Some of the starch molecules were degraded upon ultrasound processing. Such changes may be observed for the starch-containing foods treated with ultrasound and they are enhanced with increases in ultrasound time intervals.

  13. Enhanced Visualization of Hematoxylin and Eosin Stained Pathological Characteristics by Phasor Approach.

    Science.gov (United States)

    Luo, Teng; Lu, Yuan; Liu, Shaoxiong; Lin, Danying; Qu, Junle

    2017-09-05

    The phasor approach to fluorescence lifetime imaging microscopy (FLIM) is used to identify different types of tissues from hematoxylin and eosin (H&E) stained basal cell carcinoma (BCC) sections. The results suggest that working directly on the phasor space with the clustering assignment achieves immunofluorescence like simultaneous five or six-color imaging by using multiplexed fluorescence lifetimes of H&E. The phase approach is of particular effectiveness for enhanced visualization of the abnormal morphology of a suspected nidus. Moreover, the phasor approach to H&E FLIM data can determine the actual paths or the infiltrating trajectories of basophils and immune cells associated with the preneoplastic or neoplastic skin lesions. The integration of the phasor approach with routine histology proved its available value for skin cancer prevention and early detection. We therefore believe that the phasor analysis of H&E tissue sections is an enhanced visualization tool with the potential to simplify the preparation process of special staining and serve as color contrast aided imaging in clinical pathological examination.

  14. Signal enhancement, not active suppression, follows the contingent capture of visual attention.

    Science.gov (United States)

    Livingstone, Ashley C; Christie, Gregory J; Wright, Richard D; McDonald, John J

    2017-02-01

    Irrelevant visual cues capture attention when they possess a task-relevant feature. Electrophysiologically, this contingent capture of attention is evidenced by the N2pc component of the visual event-related potential (ERP) and an enlarged ERP positivity over the occipital hemisphere contralateral to the cued location. The N2pc reflects an early stage of attentional selection, but presently it is unclear what the contralateral ERP positivity reflects. One hypothesis is that it reflects the perceptual enhancement of the cued search-array item; another hypothesis is that it is time-locked to the preceding cue display and reflects active suppression of the cue itself. Here, we varied the time interval between a cue display and a subsequent target display to evaluate these competing hypotheses. The results demonstrated that the contralateral ERP positivity is tightly time-locked to the appearance of the search display rather than the cue display, thereby supporting the perceptual enhancement hypothesis and disconfirming the cue-suppression hypothesis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Conditioned sounds enhance visual processing.

    Directory of Open Access Journals (Sweden)

    Fabrizio Leo

    Full Text Available This psychophysics study investigated whether prior auditory conditioning influences how a sound interacts with visual perception. In the conditioning phase, subjects were presented with three pure tones ( =  conditioned stimuli, CS that were paired with positive, negative or neutral unconditioned stimuli. As unconditioned reinforcers we employed pictures (highly pleasant, unpleasant and neutral or monetary outcomes (+50 euro cents, -50 cents, 0 cents. In the subsequent visual selective attention paradigm, subjects were presented with near-threshold Gabors displayed in their left or right hemifield. Critically, the Gabors were presented in synchrony with one of the conditioned sounds. Subjects discriminated whether the Gabors were presented in their left or right hemifields. Participants determined the location more accurately when the Gabors were presented in synchrony with positive relative to neutral sounds irrespective of reinforcer type. Thus, previously rewarded relative to neutral sounds increased the bottom-up salience of the visual Gabors. Our results are the first demonstration that prior auditory conditioning is a potent mechanism to modulate the effect of sounds on visual perception.

  16. Is Visual Selective Attention in Deaf Individuals Enhanced or Deficient? The Case of the Useful Field of View

    Science.gov (United States)

    Dye, Matthew W. G.; Hauser, Peter C.; Bavelier, Daphne

    2009-01-01

    Background Early deafness leads to enhanced attention in the visual periphery. Yet, whether this enhancement confers advantages in everyday life remains unknown, as deaf individuals have been shown to be more distracted by irrelevant information in the periphery than their hearing peers. Here, we show that, in a complex attentional task, a performance advantage results for deaf individuals. Methodology/Principal Findings We employed the Useful Field of View (UFOV) which requires central target identification concurrent with peripheral target localization in the presence of distractors – a divided, selective attention task. First, the comparison of deaf and hearing adults with or without sign language skills establishes that deafness and not sign language use drives UFOV enhancement. Second, UFOV performance was enhanced in deaf children, but only after 11 years of age. Conclusions/Significance This work demonstrates that, following early auditory deprivation, visual attention resources toward the periphery slowly get augmented to eventually result in a clear behavioral advantage by pre-adolescence on a selective visual attention task. PMID:19462009

  17. Advances in Ultrasound Technology in Oncologic Urology

    NARCIS (Netherlands)

    Gravas, Stavros; Mamoulakis, Charalampos; Rioja, Jorge; Tzortzis, Vassilios; de Reijke, Theodor; Wijkstra, Hessel; de la Rosette, Jean

    2009-01-01

    Continuous innovations and clinical research in ultrasound (US) technology have upgraded the position of US in the imaging armamentarium of urologists. In particular, contrast-enhanced US and sonoelastography seem to be promising in the diagnosis of urologic cancers, implementation of ablative

  18. Ultrasound Guided Nerve Root Injection in Patients with Cervical Spondylytic Radicular Pain

    Directory of Open Access Journals (Sweden)

    LT Choong

    2009-05-01

    Full Text Available Selective cervical nerve root injection using a mixture of corticosteroid and lignocaine is a treatment option for managing cervical radiculopathic pain. The procedure is usually performed under image guided fluoroscopy or Computerized Tomograhy. Ultrasound-guided cervical nerve root block does not expose the patients and personnel to radiation. During injection, the fluid is mostly visualized in a real-time fashion. This retrospective study reviewed the effectiveness of ultrasound in guiding cervical peri-radicular injection for pain relief in patients with recalcitrant cervical radiculopathy. There were no complications reported in this series.

  19. Transabdominal Ultrasound Colonography for Detection of Colorectal Neoplasms: Initial Clinical Experience.

    Science.gov (United States)

    Liu, Jin-Ya; Chen, Li-Da; Xu, Jian-Bo; Wu, Hui; Ye, Jin-Ning; Zhang, Xin-Hua; Xie, Xiao-Yan; Wang, Wei; Lu, Ming-De

    2017-10-01

    We investigated the feasibility of using ultrasound colonography (USC) to visualize the healthy colon and rectum and detect colorectal polyps. Eight healthy volunteers underwent USC after standard bowel preparation. The feasibility and image quality of USC in different segments were evaluated. Then, USC was conducted on eight patients with known colonic neoplasms using colonoscopy as the reference standard. For volunteers, USC examinations were successfully performed on four (50.0%) ascending, three (37.5%) transverse and eight (100%) descending colons, as well as all sigmoid colons and rectums. One of four (25.0%) ascending, two of eight (25.0%) descending and all sigmoid colons and rectums were well visualized and free of artifacts. For patients, colonoscopy revealed that eight patients had 17 neoplasms in the distal sigmoid colon and rectum, which included 3 lesions ≤5 mm, 3 lesions 6-9 mm and 11 lesions ≥10 mm. USC visualized 12 of 17 (70.6%) neoplasms. Lesion detection by USC was 0% (0/3), 33.3% (1/3) and 100% (11/11) for neoplasms ≤5, 6-9 mm and ≥10 mm in size. USC can visualize the sigmoid colon and rectum well and detect distal sigmoid and rectal neoplasms ≥10 mm in diameter. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Visualization of ultrasound induced cavitation bubbles using the synchrotron x-ray Analyzer Based Imaging technique

    International Nuclear Information System (INIS)

    Izadifar, Zahra; Izadifar, Mohammad; Izadifar, Zohreh; Chapman, Dean; Belev, George

    2014-01-01

    Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry system, is reported here; this could possibly be extended to the study of therapeutic ultrasound in tissues. The two different x-ray imaging techniques of Analyzer Based Imaging (ABI) and phase contrast imaging (PCI) were examined in order to detect ultrasound induced cavitation bubbles. Cavitation was not observed by PCI, however it was detectable with ABI. Acoustic cavitation was imaged at six different acoustic power levels and six different locations through the acoustic beam in water at a fixed power level. The results indicate the potential utility of this technique for cavitation studies in tissues, but it is time consuming. This may be improved by optimizing the imaging method. (paper)

  1. Visualization of ultrasound induced cavitation bubbles using the synchrotron x-ray Analyzer Based Imaging technique.

    Science.gov (United States)

    Izadifar, Zahra; Belev, George; Izadifar, Mohammad; Izadifar, Zohreh; Chapman, Dean

    2014-12-07

    Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry system, is reported here; this could possibly be extended to the study of therapeutic ultrasound in tissues. The two different x-ray imaging techniques of Analyzer Based Imaging (ABI) and phase contrast imaging (PCI) were examined in order to detect ultrasound induced cavitation bubbles. Cavitation was not observed by PCI, however it was detectable with ABI. Acoustic cavitation was imaged at six different acoustic power levels and six different locations through the acoustic beam in water at a fixed power level. The results indicate the potential utility of this technique for cavitation studies in tissues, but it is time consuming. This may be improved by optimizing the imaging method.

  2. Motor Simulation without Motor Expertise: Enhanced Corticospinal Excitability in Visually Experienced Dance Spectators

    Science.gov (United States)

    Jola, Corinne; Abedian-Amiri, Ali; Kuppuswamy, Annapoorna; Pollick, Frank E.; Grosbras, Marie-Hélène

    2012-01-01

    The human “mirror-system” is suggested to play a crucial role in action observation and execution, and is characterized by activity in the premotor and parietal cortices during the passive observation of movements. The previous motor experience of the observer has been shown to enhance the activity in this network. Yet visual experience could also have a determinant influence when watching more complex actions, as in dance performances. Here we tested the impact visual experience has on motor simulation when watching dance, by measuring changes in corticospinal excitability. We also tested the effects of empathic abilities. To fully match the participants' long-term visual experience with the present experimental setting, we used three live solo dance performances: ballet, Indian dance, and non-dance. Participants were either frequent dance spectators of ballet or Indian dance, or “novices” who never watched dance. None of the spectators had been physically trained in these dance styles. Transcranial magnetic stimulation was used to measure corticospinal excitability by means of motor-evoked potentials (MEPs) in both the hand and the arm, because the hand is specifically used in Indian dance and the arm is frequently engaged in ballet dance movements. We observed that frequent ballet spectators showed larger MEP amplitudes in the arm muscles when watching ballet compared to when they watched other performances. We also found that the higher Indian dance spectators scored on the fantasy subscale of the Interpersonal Reactivity Index, the larger their MEPs were in the arms when watching Indian dance. Our results show that even without physical training, corticospinal excitability can be enhanced as a function of either visual experience or the tendency to imaginatively transpose oneself into fictional characters. We suggest that spectators covertly simulate the movements for which they have acquired visual experience, and that empathic abilities heighten

  3. More than visual literacy: art and the enhancement of tolerance for ambiguity and empathy.

    Science.gov (United States)

    Bentwich, Miriam Ethel; Gilbey, Peter

    2017-11-10

    Comfort with ambiguity, mostly associated with the acceptance of multiple meanings, is a core characteristic of successful clinicians. Yet past studies indicate that medical students and junior physicians feel uncomfortable with ambiguity. Visual Thinking Strategies (VTS) is a pedagogic approach involving discussions of art works and deciphering the different possible meanings entailed in them. However, the contribution of art to the possible enhancement of the tolerance for ambiguity among medical students has not yet been adequately investigated. We aimed to offer a novel perspective on the effect of art, as it is experienced through VTS, on medical students' tolerance of ambiguity and its possible relation to empathy. Quantitative method utilizing a short survey administered after an interactive VTS session conducted within mandatory medical humanities course for first-year medical students. The intervention consisted of a 90-min session in the form of a combined lecture and interactive discussions about art images. The VTS session and survey were filled by 67 students in two consecutive rounds of first-year students. 67% of the respondents thought that the intervention contributed to their acceptance of multiple possible meanings, 52% thought their visual observation ability was enhanced and 34% thought that their ability to feel the sufferings of other was being enhanced. Statistically significant moderate-to-high correlations were found between the contribution to ambiguity tolerance and contribution to empathy (0.528-0.744; p ≤ 0.01). Art may contribute especially to the development of medical students' tolerance of ambiguity, also related to the enhancement of empathy. The potential contribution of visual art works used in VTS to the enhancement of tolerance for ambiguity and empathy is explained based on relevant literature regarding the embeddedness of ambiguity within art works, coupled with reference to John Dewey's theory of learning. Given the

  4. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer.

    Science.gov (United States)

    Ninomiya, Kazuaki; Kawabata, Shinya; Tashita, Hiroyuki; Shimizu, Nobuaki

    2014-01-01

    Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm(2) for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm(2) for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio=1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Low-Intensity Pulsed Ultrasound Enhances Nerve Growth Factor-Induced Neurite Outgrowth through Mechanotransduction-Mediated ERK1/2-CREB-Trx-1 Signaling.

    Science.gov (United States)

    Zhao, Lu; Feng, Yi; Hu, Hong; Shi, Aiwei; Zhang, Lei; Wan, Mingxi

    2016-12-01

    Enhancing the action of nerve growth factor (NGF) is a potential therapeutic approach to neural regeneration. To facilitate neural regeneration, we investigated whether combining low-intensity pulsed ultrasound (LIPUS) and NGF could promote neurite outgrowth, an essential process in neural regeneration. In the present study, PC12 cells were subjected to a combination of LIPUS (1 MHz, 30 or 50 mW/cm 2 , 20% duty cycle and 100-Hz pulse repetition frequency, 10 min every other day) and NGF (50 ng/mL) treatment, and then neurite outgrowth was compared. Our findings indicated that the combined treatment with LIPUS (50 mW/cm 2 ) and NGF (50 ng/mL) promotes neurite outgrowth that is comparable to that achieved by NGF (100 ng/mL) treatment alone. LIPUS significantly increased NGF-induced neurite length, but not neurite branching. These effects were attributed to the enhancing effects of LIPUS on NGF-induced phosphorylation of ERK1/2 and CREB and the expression of thioredoxin (Trx-1). Furthermore, blockage of stretch-activated ion channels with Gd 3+ suppressed the stimulating effects of LIPUS on NGF-induced neurite outgrowth and the downstream signaling activation. Taken together, our findings suggest that LIPUS enhances NGF-induced neurite outgrowth through mechanotransduction-mediated signaling of the ERK1/2-CREB-Trx-1 pathway. The combination of LIPUS and NGF could potentially be used for the treatment of nerve injury and neurodegenerative diseases. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug

    Directory of Open Access Journals (Sweden)

    Lin CY

    2012-04-01

    Full Text Available Chung-Yin Lin1*, Hsiao-Ching Tseng1*, Heng-Ruei Shiu1, Ming-Fang Wu2, Cheng-Ying Chou3, Win-Li Lin1,41Institute of Biomedical Engineering, 2Laboratory Animal Center, 3Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan; 4Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan*These authors contributed equally to this workAbstract: Ultrasound (US sonication with microbubbles (MBs has the potential to disrupt blood vessels and enhance the delivery of drugs into the sonicated tissues. In this study, mouse ear tumors were employed to investigate the therapeutic effects of US, MBs, and pegylated liposomal doxorubicin (PLD on tumors. Tumors started to receive treatments when they grew up to about 15 mm3 (early stage with injection of PLD 10 mg/kg, or up to 50 mm3 (medium stage with PLD 6 (or 4 mg/kg. Experiments included the control, PLD alone, PLD + MBs + US, US alone, and MBs + US groups. The procedure for the PLD + MBs + US group was that PLD was injected first, MB (SonoVue injection followed, and then US was immediately sonicated on the tumor. The results showed that: (1 US sonication with MBs was always able to produce a further hindrance to tumor growth for both early and medium-stage tumors; (2 for the medium-stage tumors, 6 mg/kg PLD alone was able to inhibit their growth, while it did not work for 4 mg/kg PLD alone; (3 with the application of MBs + US, 4 mg/kg PLD was able to inhibit the growth of medium-stage tumors; (4 for early stage tumors after the first treatment with a high dose of PLD alone (10 mg/kg, the tumor size still increased for several days and then decreased (a biphasic pattern; (5 MBs + US alone was able to hinder the growth of early stage tumors, but unable to hinder that of medium stage tumors. The results of histological examinations and blood perfusion measurements indicated that the application of MBs + US disrupts the tumor blood

  7. MR-guided pulsed high intensity focused ultrasound enhancement of docetaxel combined with radiotherapy for prostate cancer treatment

    International Nuclear Information System (INIS)

    Mu Zhaomei; Ma, C-M; Chen Xiaoming; Cvetkovic, Dusica; Chen Lili; Pollack, Alan

    2012-01-01

    The purpose of this study is to evaluate the efficacy of the enhancement of docetaxel by pulsed focused ultrasound (pFUS) in combination with radiotherapy (RT) for treatment of prostate cancer in vivo. LNCaP cells were grown in the prostates of male nude mice. When the tumors reached a designated volume by MRI, tumor bearing mice were randomly divided into seven groups (n = 5): (1) pFUS alone; (2) RT alone; (3) docetaxel alone; (4) docetaxel + pFUS; (5) docetaxel + RT; (6) docetaxel + pFUS + RT, and (7) control. MR-guided pFUS treatment was performed using a focused ultrasound treatment system (InSightec ExAblate 2000) with a 1.5T GE MR scanner. Animals were treated once with pFUS, docetaxel, RT or their combinations. Docetaxel was given by i.v. injection at 5 mg kg −1 before pFUS. RT was given 2 Gy after pFUS. Animals were euthanized 4 weeks after treatment. Tumor volumes were measured on MRI at 1 and 4 weeks post-treatment. Results showed that triple combination therapies of docetaxel, pFUS and RT provided the most significant tumor growth inhibition among all groups, which may have potential for the treatment of prostate cancer due to an improved therapeutic ratio. (paper)

  8. MR-guided pulsed high intensity focused ultrasound enhancement of docetaxel combined with radiotherapy for prostate cancer treatment

    Science.gov (United States)

    Mu, Zhaomei; Ma, C.-M.; Chen, Xiaoming; Cvetkovic, Dusica; Pollack, Alan; Chen, Lili

    2012-01-01

    The purpose of this study is to evaluate the efficacy of the enhancement of docetaxel by pulsed focused ultrasound (pFUS) in combination with radiotherapy (RT) for treatment of prostate cancer in vivo. LNCaP cells were grown in the prostates of male nude mice. When the tumors reached a designated volume by MRI, tumor bearing mice were randomly divided into seven groups (n = 5): (1) pFUS alone; (2) RT alone; (3) docetaxel alone; (4) docetaxel + pFUS (5) docetaxel + RT (6) docetaxel + pFUS + RT, and (7) control. MR-guided pFUS treatment was performed using a focused ultrasound treatment system (InSightec ExAblate 2000) with a 1.5T GE MR scanner. Animals were treated once with pFUS, docetaxel, RT or their combinations. Docetaxel was given by i.v. injection at 5 mg kg-1 before pFUS. RT was given 2 Gy after pFUS. Animals were euthanized 4 weeks after treatment. Tumor volumes were measured on MRI at 1 and 4 weeks post-treatment. Results showed that triple combination therapies of docetaxel, pFUS and RT provided the most significant tumor growth inhibition among all groups, which may have potential for the treatment of prostate cancer due to an improved therapeutic ratio.

  9. Quantitative ultrasound and photoacoustic imaging for the assessment of vascular parameters

    CERN Document Server

    Meiburger, Kristen M

    2017-01-01

    This book describes the development of quantitative techniques for ultrasound and photoacoustic imaging in the assessment of architectural and vascular parameters. It presents morphological vascular research based on the development of quantitative imaging techniques for the use of clinical B-mode ultrasound images, and preclinical architectural vascular investigations on quantitative imaging techniques for ultrasounds and photoacoustics. The book is divided into two main parts, the first of which focuses on the development and validation of quantitative techniques for the assessment of vascular morphological parameters that can be extracted from B-mode ultrasound longitudinal images of the common carotid artery. In turn, the second part highlights quantitative imaging techniques for assessing the architectural parameters of vasculature that can be extracted from 3D volumes, using both contrast-enhanced ultrasound (CEUS) imaging and photoacoustic imaging without the addition of any contrast agent. Sharing and...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... inserted into a man's rectum to view the prostate. Transvaginal ultrasound. The transducer is inserted into a ... Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview Images related to General Ultrasound Videos ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce ... the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and ...

  12. Phase-space topography characterization of nonlinear ultrasound waveforms.

    Science.gov (United States)

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Model for Microcapsule Drug Release with Ultrasound-Activated Enhancement.

    Science.gov (United States)

    Tsao, Nadia H; Hall, Elizabeth A H

    2017-11-14

    Microbubbles and microcapsules of silane-polycaprolactone (SiPCL) have been filled with a fluorescent acridium salt (lucigenin) as a model for a drug-loaded delivery vehicle. The uptake and delivery were studied and compared with similar microbubbles and microcapsules of silica/mercaptosilica (S/M/S). Positively charged lucigenin was encapsulated through an electrostatic mechanism, following a Type I Langmuir isotherm as expected, but with an additional multilayer uptake that leads to a much higher loading for the SiPCL system (∼280 μg/2.4 × 10 9 microcapsules compared with ∼135 μg/2.4 × 10 9 microcapsules for S/M/S). Whereas the lucigenin release from the S/M/S bubbles and capsules loaded below the solubility limit is consistent with diffusion from a monolithic structure, the SiPCL structures show distinct release patterns; the Weibull function predicts a general trend for diffusion from normal Euclidean space at short times tending toward diffusion out of fractal spaces with increasing time. As a slow release system, the dissolution time (T d ) increases from 1 to 2 days for the S/M/S and for the low concentration, loaded SiPCl vehicles to ∼10 days for the high loaded microcapsules. However, T d can be reduced on insonation to 2 days, indicating the potential to gain control over the local enhanced release with ultrasound. This was tested for a docetaxel model and its effect on C4-2B prostate cancer cells, showing improved cell toxicity for concentrations below the normal EC 50 in solution.

  14. Influence of ageing on quantitative contrast-enhanced ultrasound of the kidneys in healthy cats.

    Science.gov (United States)

    Stock, Emmelie; Paepe, Dominique; Daminet, Sylvie; Duchateau, Luc; Saunders, Jimmy H; Vanderperren, Katrien

    2018-05-05

    The degenerative effects of ageing on the kidneys have been extensively studied in humans. However, only recently interest has been focused on renal ageing in veterinary medicine. Contrast-enhanced ultrasound allows non-invasive evaluation of renal perfusion in conscious cats. Renal perfusion parameters were obtained in 43 healthy cats aged 1-16 years old, and the cats were divided in four age categories: 1-3 years, 3-6 years, 6-10 years and over 10 years. Routine renal parameters as serum creatinine, serum urea, urine-specific gravity, urinary protein:creatinine ratio and systolic blood pressure were also measured. No significant differences in any of the perfusion parameters were observed among the different age categories. A trend towards a lower peak enhancement and wash-in area under the curve with increasing age, suggestive for a lower blood volume, was detected when comparing the cats over 10 years old with the cats of 1-3 years old. Additionally, no significant age-effect was observed for the serum and urine parameters, whereas a higher blood pressure was observed in healthy cats over 10 years old. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Ultrasound enhanced activation of peroxydisulfate by activated carbon fiber for decolorization of azo dye.

    Science.gov (United States)

    Huang, Tianyin; Zhang, Ke; Qian, Yajie; Fang, Cong; Chen, Jiabin

    2018-02-20

    Activated carbon fiber (ACF) has become an emerging activator for peroxydisulfate (PDS) to generate sulfate radical (SO 4 •- ). However, the relative low activation efficiency and poor contaminant mineralization limited its widespread application. Herein, ultrasound (US) was introduced to the ACF activated PDS system, and the synergistic effect of US and ACF in PDS activation and the enhancement of contaminant mineralization were investigated. The synergistic effect of US and ACF was observed in the PDS activation to decolorize orange G (OG). The decolorization efficiency increased with increasing ACF loading and US power, and PDS/OG ratio from 1 to 40. The activation energy was determined to be 24.065 kJ/mol. The radical-induced decolorization of OG took place on the surface of ACF, and both SO 4 •- and hydroxyl radical ( • OH) contributed to OG decolorization. The azo bond and naphthalene ring on OG were destructed to other aromatic intermediates and finally mineralized to CO 2 and H 2 O. The introduction of US in the ACF/PDS system significantly enhanced the mineralization of OG. The combination of US and PDS was highly efficient to activate PDS to decolorize azo dyes. Moreover, the introduction of US remarkably improved the contaminant mineralization.

  16. Perception Enhancement using Visual Attributes in Sequence Motif Visualization

    OpenAIRE

    Oon, Yin; Lee, Nung; Kok, Wei

    2016-01-01

    Sequence logo is a well-accepted scientific method to visualize the conservation characteristics of biological sequence motifs. Previous studies found that using sequence logo graphical representation for scientific evidence reports or arguments could seriously cause biases and misinterpretation by users. This study investigates on the visual attributes performance of a sequence logo in helping users to perceive and interpret the information based on preattentive theories and Gestalt principl...

  17. Cavernous hemangioma of liver: a comparative study of MRI and color Doppler ultrasound (with 58 case report)

    International Nuclear Information System (INIS)

    Luan Zhiyong; Xu Weidong; Wang Jiazhong

    2006-01-01

    Objective: To evaluate MRI and the color Doppler ultrasound in the diagnosis of cavernous hemangioma of liver. Methods: In total 58 patients with hemangioma of liver underwent dynamic enhanced MRI and the color Doppler ultrasound examination. The imaging manifestations obtained by both modalities were comparatively studied. Result: Highly echoic lesions were revealed in 36 cases out of 58; low echoic lesions were noted in 8; and in 14 cases the tumors were of mixed echoic. On T 1 WI the lesions were hypo- or slightly hypo-intense; while on T 2 WI they were hyper- or slightly hyper-intense. The nidi were hyper-intense on T 2 WI of CRE array. On enhanced scan the lesions were quickly fully enhanced in 25 cases out of 58. Peripheral nodular enhancement was seen in 19 cases, and centered spreading enhancement was demon- strated in 14 cases. On delayed scan remarkable homogenous enhancement was observed in all cases. Conclusion: The bigger size has the hemangioma, the smaller highly echoic proportion and bigger mixed echoic or poorly echoic proportion will be found within the lesions. More peripheral nodular enhancement will be revealed on enhanced MRI scan when the tumor size is getting larger, in which the proportion of quickly fully enhancement will decrease gradually. Ultrasound is better than MRI in the evaluation of the liver hemangioma smaller than 3 cm in diameter. MRI is superior to color Doppler ultrasound in diagnosing the lesion larger' than 3 cm in diameter. (authors)

  18. Combined Kinesiotaoe and Therapeutic Ultrasound in the Treatment of Carpal Tunnel Syndrome

    International Nuclear Information System (INIS)

    Mohamed, O.G.; Elhafez, H.M.; Alshatoury, H.A.; Refaat, R.

    2016-01-01

    Background : Carpal tunnel syndrome is the most common neuropathy of the upper limb and a significant contributor to hand functional impairment and disability. Hand is an Accepted November 2016 . important part of body to perform the complex daily living activities. Purpose: To find out effect of combined kinesiotape and therapeutic ultrasound in the treatment of carpal tunnel syndrome. Material and Methods :Thirty Carpal Tunnel Syndrome female patients with positive electro diagnostic findings (MMDL >4.2 ms) participated in this study, their ages ranged between 40 and 50 years. Design of study :They were divided randomly into two equal groups. Group (A) received kinesiotape applicatio n on the affected wrist for 3 days, then day off and then another three days each week for 4 weeks combined with a program of 12 sessions of continuous ultrasound, 3 sessions per week for 5 minute persession in addition nerve and tendon gliding exercise . While, Group (B) received a program of 12 sessions of continuous ultrasound, 3 sessions per week for 5 minute per session in addition tendon and nerve gliding exercise. The treatment program continued for 4 weeks. Boston carpal tunnel questionnaire and median motor distallatency, visual analogue scale and hand grip dynamometer were performed before and after the treatment program for all patients of the two groups. Results : The obtained results showed a highly statistically significant (P< 0.0001) improvement in both groups (A and B) concerning Boston carpal tunnel questionnaire , visual analogue scale and hand grip dynamometer but there was significant improvement in group (A) only concerning median motor distal latency. The improvement was highly significant (P< 0.0001) in group (A) when compared with group (B). Conclusion: It could be concluded that the use of combined kinesiotape and therapeutic ultrasound in the treatment of carpal tunnel syndrome appeared to be effective. Yet the combined effect of kinesiotape with

  19. Differential diagnosis of gastric cancer and gastritis: the role of contrast-enhanced ultrasound (CEUS).

    Science.gov (United States)

    Xue, Heng; Ge, Hui-Yu; Miao, Li-Ying; Wang, Shu-Min; Zhao, Bo; Wang, Jin-Rui; Cui, Li-Gang

    2017-03-01

    To evaluate the diagnostic performance of contrast-enhanced ultrasound (CEUS) in differential diagnosis of gastric cancer and gastritis, with histological results as reference standard. From September 2011 to August 2014, 82 patients (50 males and 32 females; mean age ± SD, 59.5 ± 15.0 years; range 19-91 years) with gastric cancer or gastritis were included in this Ethics Committee-approved prospective study. Conventional ultrasonography (US) and CEUS were applied to distinguish the two lesions, and both qualitative and quantitative features were evaluated. Of the 82 histopathologic-proven lesions, 58 were cancer and 24 were gastritis. For US, the gastric wall stratification was not preserved in about one-third of cancer (21/58, 36.2%) compared with gastritis (0/24, 0%) (p gastritis (19/24, 79.2%, p gastritis. CEUS has the potential to make the diagnosis more accurate.

  20. A brief history of ultrasound in rheumatology: where we were.

    Science.gov (United States)

    Grassi, Walter; Filippucci, Emilio

    2014-01-01

    Ultrasonography in the '70s was a well-known and widely used method within several medical specialties but not in rheumatology. Initial development of the field was led by radiologists who mainly investigated the potential of ultrasound in the assessment of large joints. In the late '80s, the first studies supporting the role of ultrasound in the detection of soft tissue changes and bone erosions in the hands of patients with rheumatoid arthritis were published. In the '90s, the dramatic improvement of spatial resolution due to the new generation high frequency probes opened up new avenues for the exploration of otherwise undetectable anatomical details. Ultrasound research during this period was enhanced by the growing use of colour Doppler and power Doppler and by the first prototypes of three dimensional ultrasound. Over the last 10 years, the buzz words in ultrasound research in rheumatology have been standardisation, early diagnosis and therapy monitoring.

  1. Acoustic Characterization and Enhanced Ultrasound Imaging of Long-Circulating Lipid-Coated Microbubbles.

    Science.gov (United States)

    Li, Hongbo; Yang, Yanye; Zhang, Meimei; Yin, Liping; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2018-05-01

    synthesized microbubbles might make it easier to access deep-seated organs and give prolonged imaging enhancement in the liver. © 2017 by the American Institute of Ultrasound in Medicine.

  2. Incidentally detection of non-palpable testicular nodules at scrotal ultrasound: What is new?

    Directory of Open Access Journals (Sweden)

    Massimo Valentino

    2014-12-01

    Full Text Available The increased use of ultrasound in patients with urological and andrological symptoms has given an higher detection of intra-testicular nodules. Most of these lesions are hypoechoic and their interpretation is often equivocal. Recently, new ultrasound techniques have been developed alongside of B-mode and color-Doppler ultrasound. Although not completely standardized, contrast-enhanced ultrasound (CEUS and tissue elastography (TE, added to traditional ultrasonography, can provide useful information about the correct interpretation of incidentally detected non-palpable testicular nodules. The purpose of this review article is to illustrate these new techniques in the patient management.

  3. Fetal movement detection: comparison of the Toitu actograph with ultrasound from 20 weeks gestation.

    Science.gov (United States)

    DiPietro, J A; Costigan, K A; Pressman, E K

    1999-01-01

    This study evaluates the validity of Doppler-detected fetal movement by a commercially available monitor and investigates whether characteristics of maternal body habitus and the intrauterine environment affect its performance. Fetal movement was evaluated in normal pregnancies using both ultrasound visualization and a fetal actocardiograph (Toitu MT320; Tofa Medical Inc., Malvern, PA). Data were collected for 32 min on 34 fetuses stratified by gestational age (20-25 weeks; 28-32 weeks; 35-39 weeks). Fetal and maternal characteristics were recorded. Comparisons between ultrasound-detected trunk and limb movements and actograph records were conducted based both on 10-s time intervals and on detection of individual movements. Time-based comparisons indicated agreement between ultrasound and actograph 94.7% of the time; this association rose to 98% when movements of less than 1 s duration were excluded. Individual movements observed on ultrasound were detected by the actograph 91% of the time, and 97% of the time when brief, isolated movements were excluded. The overall kappa value for agreement was 0.88. The actograph was reliable in detecting periods of quiescence as well as activity. These findings did not vary by gestational age. The number of movements detected by the actograph, but not the single-transducer ultrasound, significantly increased over gestation. Maternal age, parity, weight, height, or body mass index were not consistently associated with actograph validity. Characteristics of the uterine environment, including placenta location, fetal presentation, and amniotic fluid volume also did not affect results. The Toitu actograph accurately detects fetal movement and quiescence from as early as 20 weeks gestation and has utility in both clinical and research settings. Actographs are most useful for providing objective and quantifiable measures of fetal activity level, including number and duration of movements, while visualization through ultrasound is

  4. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    Directory of Open Access Journals (Sweden)

    Richard Chiou

    2010-06-01

    Full Text Available This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote controlling of the robots. The uniqueness of the project lies in making this process Internet-based, and remote robot operated and visualized in 3D. This 3D system approach provides the students with a more realistic feel of the 3D robotic laboratory even though they are working remotely. As a result, the 3D visualization technology has been tested as part of a laboratory in the MET 205 Robotics and Mechatronics class and has received positive feedback by most of the students. This type of research has introduced a new level of realism and visual communications to online laboratory learning in a remote classroom.

  5. Point-of-Care Ultrasound in Necrotizing Acute Pancreatitis Complicated by Perforated Ileum Due to Nonocclusive Mesenteric Ischemia

    Directory of Open Access Journals (Sweden)

    Sonia López-Cuenca

    2016-09-01

    Full Text Available Necrotizing acute pancreatitis is the most severe form of pancreatitis, and it is a potentially life-threatening condition. Its diagnosis and severity are based on radiological signs. Although computed tomography is the most used imaging tool, ultrasound can be a quick and useful technique in emergency and intensive care scenarios. The use of abdominal ultrasound is generally limited to ruling out cholecystitis. Bowel gas can limit the accuracy of pancreatic imaging. When the pancreas is visualized, ultrasound can reveal pancreatic enlargement, echotextural changes, and peripancreatic fluid. We present a patient with necrotizing pancreatitis who developed peritonitis due to ileal perforation, where the use of ultrasound as a bedside imaging technique was very useful.

  6. Ultrasound Pretreatment as an Useful Tool to Enhance Egg White Protein Hydrolysis: Kinetics, Reaction Model, and Thermodinamics.

    Science.gov (United States)

    Jovanović, Jelena R; Stefanović, Andrea B; Šekuljica, Nataša Ž; Tanasković, Sonja M Jakovetić; Dojčinović, Marina B; Bugarski, Branko M; Knežević-Jugović, Zorica D

    2016-09-28

    The impact of ultrasound waves generated by probe-type sonicator and ultrasound cleaning bath on egg white protein susceptibility to hydrolysis by alcalase compared to both thermal pretreatment and conventional enzymatic hydrolysis was quantitatively investigated. A series of hydrolytic reactions was carried out in a stirred tank reactor at different substrate concentrations, enzyme concentrations, and temperatures using untreated, and pretreated egg white proteins (EWPs). The kinetic model based on substrate inhibition and second-order enzyme deactivation successfully predicts the experimental behavior providing an effective tool for comparison and optimization. The ultrasound pretreatments appear to greatly improve the enzymatic hydrolysis of EWPs under different conditions when compare to other methods. The apparent reaction rate constants for proteolysis (k 2 ) are 0.009, 0.011, 0.053, and 0.045 min -1 for untreated EWPs, and those pretreated with heat, probe-type sonicator, and ultrasound cleaning bath technologies, respectively. The ultrasound pretreatment also decreases hydrolysis activation (E a ) and enzyme deactivation (E d ) energy, enthalpy (ΔH), and entropy (ΔS) of activation and for the probe-type sonication this decrease is 61.7%, 61.6%, 63.6%, and 32.2%, respectively, but ultrasound has little change in Gibbs free energy value in the temperature range of 318 to 338 K. The content of sulfhydryl groups and ζ potential show a significant increase (P < 0.05) for both applied ultrasound pretreatments and the reduction of particle size distribution are achieved, providing some evidence that the ultrasound causes EWP structural changes affecting the proteolysis rate. © 2016 Institute of Food Technologists®

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  8. Comparison of scintigraphy and ultrasound imaging in patients with primary, secondary and tertiary hyperparathyroidism – own experience

    Directory of Open Access Journals (Sweden)

    Małgorzata Kobylecka

    2017-03-01

    Full Text Available Background: The imaging techniques most commonly used in the diagnosis of hyperparathyroidisms are ultrasound and scintigraphy. The diagnostic algorithms vary, depending mainly on the population, and experience of physicians. Aim: Aim of the present research was to determine the usefulness of parathyroid scintigraphy and ultrasonography in patients diagnosed for hyperparathyroidism in own material. Material and method: In the present research, 96 operated patients with documented primary, secondary and tertiary hyperparathyroidism were retrospectively analyzed. All patients underwent a 99mTc hexakis- 2-methoxyisobutylisonitrile scintigraphy of the neck with the use of subtraction and twophase examinations. Ultrasonography of the neck was performed in all the patients in B mode 2D presentation. A total number of 172 parathyroid glands were analyzed. Results: The sensitivity and specificity of scintigraphy was 68% and 60%, respectively. The sensitivity of ultrasound was 49% and specificity 85%. Both techniques allowed visualization of 76 parathyroid glands. Ultrasound revealed 19 glands that were not visible in scintigraphy. Scintigraphy showed 76 parathyroid glands that were not visualized on ultrasound. Having combined the results of scintigraphy and ultrasound, the sensitivity of 76% and specificity of 50% were obtained. Considering the ability to locate the parathyroid glands in both techniques as a positive result, the sensitivity decreased to 37% and specificity rose to 95%. Conclusions: Scintigraphy showed greater sensitivity than ultrasound in the localization of enlarged parathyroid glands. Ultrasound, in turn, was characterized by a higher specificity. The combined use of scintigraphy and ultrasonography allowed to obtain the specificity of 95%. In the light of obtained results, scintigraphy and ultrasonography are complementary and should be used together.

  9. An Investigation of the Differential Effects of Visual Input Enhancement on the Vocabulary Learning of Iranian EFL Learners

    Directory of Open Access Journals (Sweden)

    Zhila Mohammadnia

    2014-07-01

    Full Text Available This study investigated the effect of visual input enhancement on the vocabulary learning of Iranian EFL learners. One hundred and thirty-two EFL learners from elementary, intermediate and advanced proficiency levels were assigned to six groups, two groups at each proficiency level with one being an experimental and the other a control group. The study employed pretests, treatment reading texts, and posttests. T-test was used for the analysis of the data. The results revealed positive effects for visual input enhancement in the advanced level based on within group and between groups’ comparisons. However this positive effect was not found for the elementary and intermediate levels based on between groups’ comparisons. It was concluded that although visual input enhancement may have beneficial effects for elementary and intermediate levels, it is much more effective for the advanced EFL learners. This study may provide useful guiding principles for EFL teachers and syllabus designers.

  10. Preliminary study of ergonomic behavior during simulated ultrasound-guided regional anesthesia using a head-mounted display.

    Science.gov (United States)

    Udani, Ankeet D; Harrison, T Kyle; Howard, Steven K; Kim, T Edward; Brock-Utne, John G; Gaba, David M; Mariano, Edward R

    2012-08-01

    A head-mounted display provides continuous real-time imaging within the practitioner's visual field. We evaluated the feasibility of using head-mounted display technology to improve ergonomics in ultrasound-guided regional anesthesia in a simulated environment. Two anesthesiologists performed an equal number of ultrasound-guided popliteal-sciatic nerve blocks using the head-mounted display on a porcine hindquarter, and an independent observer assessed each practitioner's ergonomics (eg, head turning, arching, eye movements, and needle manipulation) and the overall block quality based on the injectate spread around the target nerve for each procedure. Both practitioners performed their procedures without directly viewing the ultrasound monitor, and neither practitioner showed poor ergonomic behavior. Head-mounted display technology may offer potential advantages during ultrasound-guided regional anesthesia.

  11. Analgesic efficacy of ultrasound identified trigger point injection in myofascial pain syndrome: A pilot study in Indian patients

    Directory of Open Access Journals (Sweden)

    S Parthasarathy

    2016-01-01

    Full Text Available Background: Myofascial pain syndrome (MPS is described as sensory symptoms, sometimes with motor and autonomic symptoms caused by myofascial trigger points (TPs. Injection at TPs is most likely to benefit patients with such disorder. The identification of TPs is usually clinical. However, in sites where there are major vital structures, ultrasound guidance and real-time visualization may help in decreasing complications. Methodology: Twenty patients who presented to pain clinic with classic symptoms of MPS in the neck and shoulder area with clinically detectable TPs were selected. The points were imaged with ultrasound to find correlation with clinical positions. They were injected with a mixture of local anesthetic and steroid on TPs with real-time ultrasound guidance and needle visualization. Pretreatment visual analog scale (VAS scores and posttreatment (immediate and after 1 month were noted. The mean reduction in VAS scores was analyzed with paired Student′s t-test. Any side effect was observed and managed. Results: Clinically detectable TPs coincided with an echogenic point on the undersurface of the trapezius. There was a significant reduction in pain scores at both times. The needle sign was positive in all the cases. There were no major complications. Conclusion: The clinically identified TPs in trapezius muscle coincided well with ultrasound imaged echogenic structure in the muscle in all the cases. Ultrasound-assisted injections also produced the needle sign in all the cases. The achieved analgesia both immediately after the injection and a month later was satisfactory in the majority of cases. The echogenic mass corresponding to the TP is found to be on the undersurface of the muscle rather than inside the mass of the muscle.

  12. Using visual thinking strategies with nursing students to enhance nursing assessment skills: A qualitative design.

    Science.gov (United States)

    Nanavaty, Joanne

    2018-03-01

    This qualitative design study addressed the enhancement of nursing assessment skills through the use of Visual Thinking Strategies and reflection. This study advances understanding of the use of Visual Thinking Strategies and reflection as ways to explore new methods of thinking and observing patient situations relating to health care. Sixty nursing students in a licensed practical nursing program made up the sample of participants who attended an art gallery as part of a class assignment. Participants replied to a survey of interest for participation at the art gallery. Participants reviewed artwork at the gallery and shared observations with the larger group during a post-conference session in a gathering area of the museum at the end of the visit. A reflective exercise on the art gallery experience exhibited further thoughts about the art gallery experience and demonstrated the connections made to clinical practice by the student. The findings of this study support the use of Visual Thinking Strategies and reflection as effective teaching and learning tools for enhancing nursing skills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Perfusion characteristics of parotid gland tumors evaluated by contrast-enhanced ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Laura V., E-mail: Laura.Klotz@med.uni-muenchen.de [Department of Surgery, University of Munich, Munich (Germany); Gürkov, Robert [Department of Otorhinolaryngology, University of Munich, Munich (Germany); Eichhorn, Martin E. [Department of Surgery, University of Munich, Munich (Germany); Siedek, Vanessa; Krause, Eike [Department of Otorhinolaryngology, University of Munich, Munich (Germany); Jauch, Karl-Walter [Department of Surgery, University of Munich, Munich (Germany); Reiser, Maximilian F.; Clevert, Dirk-Andre [Department of Clinical Radiology, University of Munich, Munich (Germany)

    2013-12-01

    Purpose: Contrast enhanced ultrasound (CE-US) is a promising imaging modality for non-invasive analysis of parotid gland lesions because their vascularisation differs from normal gland tissue. This clinical study should further investigate CE-US as a diagnostic tool for parotid gland tumors. Materials and methods: 39 patients underwent CE-US measurements after intravenous application of a contrast agent (SonoVue, Bracco, Italy) before surgical tumor resection. Time–intensity curves gradients were calculated and parameters of intratumoral microcirculation were analysed. The vascularisation parameters were compared among the different tumor entities as defined per definitive histological diagnosis. Results: Histological analyses revealed 17 pleomorphic adenoma, 15 cystadenolymphoma and 7 malignoma. A significant difference of area below intensity time curve (AUC) and mean transit time (MTT) was measured in the malignant lesions compared to benign tumors (p < 0.05). A significant difference of AUC and maximum of signal increase (ΔSI{sub max}) for pleomorphic adenoma versus cystadenolymphoma was found (p < 0.05). Conclusion: CE-US seems to be a quantitative and independent method for the assessment of malign and benign parotid gland tumors. Further studies and clinical experience will have to validate this method as a reliable diagnostic tool that facilitates preoperative planning.

  14. Visual error augmentation enhances learning in three dimensions.

    Science.gov (United States)

    Sharp, Ian; Huang, Felix; Patton, James

    2011-09-02

    Because recent preliminary evidence points to the use of Error augmentation (EA) for motor learning enhancements, we visually enhanced deviations from a straight line path while subjects practiced a sensorimotor reversal task, similar to laparoscopic surgery. Our study asked 10 healthy subjects in two groups to perform targeted reaching in a simulated virtual reality environment, where the transformation of the hand position matrix was a complete reversal--rotated 180 degrees about an arbitrary axis (hence 2 of the 3 coordinates are reversed). Our data showed that after 500 practice trials, error-augmented-trained subjects reached the desired targets more quickly and with lower error (differences of 0.4 seconds and 0.5 cm Maximum Perpendicular Trajectory deviation) when compared to the control group. Furthermore, the manner in which subjects practiced was influenced by the error augmentation, resulting in more continuous motions for this group and smaller errors. Even with the extreme sensory discordance of a reversal, these data further support that distorted reality can promote more complete adaptation/learning when compared to regular training. Lastly, upon removing the flip all subjects quickly returned to baseline rapidly within 6 trials.

  15. Visual error augmentation enhances learning in three dimensions

    Directory of Open Access Journals (Sweden)

    Huang Felix

    2011-09-01

    Full Text Available Abstract Because recent preliminary evidence points to the use of Error augmentation (EA for motor learning enhancements, we visually enhanced deviations from a straight line path while subjects practiced a sensorimotor reversal task, similar to laparoscopic surgery. Our study asked 10 healthy subjects in two groups to perform targeted reaching in a simulated virtual reality environment, where the transformation of the hand position matrix was a complete reversal--rotated 180 degrees about an arbitrary axis (hence 2 of the 3 coordinates are reversed. Our data showed that after 500 practice trials, error-augmented-trained subjects reached the desired targets more quickly and with lower error (differences of 0.4 seconds and 0.5 cm Maximum Perpendicular Trajectory deviation when compared to the control group. Furthermore, the manner in which subjects practiced was influenced by the error augmentation, resulting in more continuous motions for this group and smaller errors. Even with the extreme sensory discordance of a reversal, these data further support that distorted reality can promote more complete adaptation/learning when compared to regular training. Lastly, upon removing the flip all subjects quickly returned to baseline rapidly within 6 trials.

  16. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  17. Embolic intracranial arterial occlusion visualized by non-enhanced computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Masaaki; Minematsu, Kazuo; Choki, Junichiro; Yamaguchi, Takenori [National Cardiovascular Center, Suita, Osaka (Japan)

    1984-12-01

    A 77-year-old woman with a history of valvular heart disease, atrial fibrillation and a massive infarction in the right cerebral hemisphere developed contralateral infarction due to occlusion of the internal carotid artery. A string-like structure with higher density than normal brain was demonstrated on non-enhanced computed tomography that was performed in the acute stage. This abnormal structure seen in the left hemisphere was thought to be consistent with the middle cerebral artery trunk of the affected side. Seventeen days after the onset, the abnormal structure was no more visualized on non-enhanced CT. These findings suggested that the abnormal structure with increased density was compatible with thromboembolus or intraluminal clot formed in the distal part of the occluded internal carotid artery. The importance of this finding as a diagnostic sign of the cerebral arterial occlusion was discussed.

  18. Embolic intracranial arterial occlusion visualized by non-enhanced computed tomography

    International Nuclear Information System (INIS)

    Tomita, Masaaki; Minematsu, Kazuo; Choki, Junichiro; Yamaguchi, Takenori

    1984-01-01

    A 77-year-old woman with a history of valvular heart disease, atrial fibrillation and a massive infarction in the right cerebral hemisphere developed contralateral infarction due to occlusion of the internal carotid artery. A string-like structure with higher density than normal brain was demonstrated on non-enhanced computed tomography that was performed in the acute stage. This abnormal structure seen in the left hemisphere was thought to be consistent with the middle cerebral artery trunk of the affected side. Seventeen days after the onset, the abnormal structure was no more visualized on non-enhanced CT. These findings suggested that the abnormal structure with increased density was compatible with thromboembolus or intraluminal clot formed in the distal part of the occluded internal ca rotid artery. An importance of this finding as a diagnostic sign of the cerebral arterial occlusion was discussed. (author)

  19. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation.

    Directory of Open Access Journals (Sweden)

    Yi-Da Liu

    Full Text Available Radiofrequency ablation (RFA has been widely used as an alternative treatment modality for liver tumors. Monitoring the temperature distribution in the tissue during RFA is required to assess the thermal dosage. Ultrasound temperature imaging based on the detection of echo time shifts has received the most attention in the past decade. The coefficient k, connecting the temperature change and the echo time shift, is a medium-dependent parameter used to describe the confounding effects of changes in the speed of sound and thermal expansion as temperature increases. The current algorithm of temperature estimate based on echo time shift detection typically uses a constant k, resulting in estimation errors when ablation temperatures are higher than 50°C. This study proposes an adaptive-k algorithm that enables the automatic adjustment of the coefficient k during ultrasound temperature monitoring of RFA. To verify the proposed algorithm, RFA experiments on in vitro porcine liver samples (total n = 15 were performed using ablation powers of 10, 15, and 20 W. During RFA, a clinical ultrasound system equipped with a 7.5-MHz linear transducer was used to collect backscattered signals for ultrasound temperature imaging using the constant- and adaptive-k algorithms. Concurrently, an infrared imaging system and thermocouples were used to measure surface temperature distribution of the sample and internal ablation temperatures for comparisons with ultrasound estimates. Experimental results demonstrated that the proposed adaptive-k method improved the performance in visualizing the temperature distribution. In particular, the estimation errors were also reduced even when the temperature of the tissue is higher than 50°C. The proposed adaptive-k ultrasound temperature imaging strategy has potential to serve as a thermal dosage evaluation tool for monitoring high-temperature RFA.

  20. A ?snapshot? of the visual search behaviours of medical sonographers

    OpenAIRE

    Carrigan, Ann J; Brennan, Patrick C; Pietrzyk, Mariusz; Clarke, Jillian; Chekaluk, Eugene

    2015-01-01

    Abstract Introduction: Visual search is a task that humans perform in everyday life. Whether it involves looking for a pen on a desk or a mass in a mammogram, the cognitive and perceptual processes that underpin these tasks are identical. Radiologists are experts in visual search of medical images and studies on their visual search behaviours have revealed some interesting findings with regard to diagnostic errors. In Australia, within the modality of ultrasound, sonographers perform the diag...

  1. Diagnostic Accuracy of Secondary Ultrasound Exam in Blunt Abdominal Trauma

    International Nuclear Information System (INIS)

    Rajabzadeh Kanafi, Alireza; Giti, Masoumeh; Gharavi, Mohammad Hossein; Alizadeh, Ahmad; Pourghorban, Ramin; Shekarchi, Babak

    2014-01-01

    In stable patients with blunt abdominal trauma, accurate diagnosis of visceral injuries is crucial. To determine whether repeating ultrasound exam will increase the sensitivity of focused abdominal sonography for trauma (FAST) through revealing additional free intraperitoneal fluid in patients with blunt abdominal trauma. We performed a prospective observational study by performing primary and secondary ultrasound exams in blunt abdominal trauma patients. All ultrasound exams were performed by four radiology residents who had the experience of more than 400 FAST exams. Five routine intraperitoneal spaces as well as the interloop space were examined by ultrasound in order to find free fluid. All patients who expired or were transferred to the operating room before the second exam were excluded from the study. All positive ultrasound results were compared with intra-operative and computed tomography (CT) findings and/or the clinical status of the patients. Primary ultrasound was performed in 372 patients; 61 of them did not undergo secondary ultrasound exam; thus, were excluded from the study.Three hundred eleven patients underwent both primary and secondary ultrasound exams. One hundred and two of all patients were evaluated by contrast enhanced CT scan and 31 underwent laparotomy. The sensitivity of ultrasound exam in detecting intraperitoneal fluid significantly increased from 70.7% for the primary exam to 92.7% for the secondary exam. Examining the interloop space significantly improved the sensitivity of ultrasonography in both primary (from 36.6% to 70.7%) and secondary (from 65.9% to 92.7%) exams. Performing a secondary ultrasound exam in stable blunt abdominal trauma patients and adding interloop space scan to the routine FAST exam significantly increases the sensitivity of ultrasound in detecting intraperitoneal free fluid

  2. Acute Caffeine Consumption Enhances the Executive Control of Visual Attention in Habitual Consumers

    Science.gov (United States)

    Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Giles, Grace E.; Taylor, Holly A.

    2010-01-01

    Recent work suggests that a dose of 200-400mg caffeine can enhance both vigilance and the executive control of visual attention in individuals with low caffeine consumption profiles. The present study seeks to determine whether individuals with relatively high caffeine consumption profiles would show similar advantages. To this end, we examined…

  3. Visualization: A Tool for Enhancing Students' Concept Images of Basic Object-Oriented Concepts

    Science.gov (United States)

    Cetin, Ibrahim

    2013-01-01

    The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey…

  4. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  5. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...... was that the rotational direction is constant within each artery. Three data sets of 10 seconds were obtained from three main arteries in healthy volunteers. For each data set the rotational flow patterns were identified during the diastole. Each data set contains a 2D vector field over time and with the vector angles...

  6. Effect of ultrasound on herpes simplex virus infection in cell culture

    Directory of Open Access Journals (Sweden)

    Iwai Soichi

    2011-09-01

    Full Text Available Abstract Background Ultrasound has been shown to increase the efficiency of gene expression from retroviruses, adenoviruses and adeno-associated viruses. The effect of ultrasound to stimulate cell membrane permeabilization on infection with an oncolytic herpes simplex virus type 1 (HSV-1 was examined. Results Vero monkey kidney cells were infected with HSV-1 and exposed to 1 MHz ultrasound after an adsorption period. The number of plaques was significantly greater than that of the untreated control. A combination of ultrasound and microbubbles further increased the plaque number. Similar results were obtained using a different type of HSV-1 and oral squamous cell carcinoma (SCC cells. The appropriate intensity, duty cycle and time of ultrasound to increase the plaque number were 0.5 W/cm2, 20% duty cycle and 10 sec, respectively. Ultrasound with microbubbles at an intensity of 2.0 W/cm2, at 50% duty cycle, or for 40 sec reduced cell viability. Conclusion These results indicate that ultrasound promotes the entry of oncolytic HSV-1 into cells. It may be useful to enhance the efficiency of HSV-1 infection in oncolytic virotherapy.

  7. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate.

    Science.gov (United States)

    Lopez, Renata F V; Seto, Jennifer E; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ∼0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500-1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Ultrasound assessment of great saphenous vein insufficiency

    Directory of Open Access Journals (Sweden)

    Chander RK

    2015-06-01

    Full Text Available Rajiv K Chander,1 Thomas S Monahan1,2 1Section of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 2Department of Surgery, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA Abstract: Duplex ultrasonography is the ideal modality to assess great saphenous vein insufficiency. Duplex ultrasonography incorporates both gray scale images to delineate anatomy and color-Doppler imaging that visualizes the flow of blood in a structure. Assessment of great saphenous vein requires definition of the anatomy, augmentation of flow, evaluation for both superficial and deep vein thrombosis, and determining the presence of reflux. Currently, evolution in the treatment of reflux also relies on ultrasound for the treatment of the disease. Understanding the utilization of the ultrasound for the diagnosis and treatment of greater saphenous vein reflux is important for practitioners treating reflux disease. Keywords: duplex ultrasonography, small saphenous vein 

  9. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    Science.gov (United States)

    Kopechek, Jonathan A.

    Cardiovascular disease (CVD) is the leading cause of death in the United States and globally. CVD-related mortality, including coronary heart disease, heart failure, or stroke, generally occurs due to atherosclerosis, a condition in which plaques build up within arterial walls, potentially causing blockage or rupture. Targeted therapies are needed to achieve more effective treatments. Echogenic liposomes (ELIP), which consist of a lipid membrane surrounding an aqueous core, have been developed to encapsulate a therapeutic agent and/or gas bubbles for targeted delivery and ultrasound image enhancement. Under certain conditions ultrasound can cause nonlinear bubble growth and collapse, known as "cavitation." Cavitation activity has been associated with enhanced drug delivery across cellular membranes. However, the mechanisms of ultrasound-mediated drug release from ELIP have not been previously investigated. Thus, the objective of this dissertation is to elucidate the role of acoustic cavitation in ultrasound-mediated drug release from ELIP. To determine the acoustic and physical properties of ELIP, the frequency-dependent attenuation and backscatter coefficients were measured between 3 and 30 MHz. The results were compared to a theoretical model by measuring the ELIP size distribution in order to determine properties of the lipid membrane. It was found that ELIP have a broad size distribution and can provide enhanced ultrasound image contrast across a broad range of clinically-relevant frequencies. Calcein, a hydrophilic fluorescent dye, and papaverine, a lipophilic vasodilator, were separately encapsulated in ELIP and exposed to color Doppler ultrasound pulses from a clinical diagnostic ultrasound scanner in a flow system. Spectrophotometric techniques (fluorescence and absorbance measurements) were used to detect calcein or papaverine release. As a positive control, Triton X-100 (a non-ionic detergent) was added to ELIP samples not exposed to ultrasound in order

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a pelvic ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are ... Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  14. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    Science.gov (United States)

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  15. The Right Hemisphere Planum Temporale Supports Enhanced Visual Motion Detection Ability in Deaf People: Evidence from Cortical Thickness.

    Science.gov (United States)

    Shiell, Martha M; Champoux, François; Zatorre, Robert J

    2016-01-01

    After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl's gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area's involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.

  16. Contrast-Enhanced Ultrasound and Near-Infrared Spectroscopy of the Neonatal Bowel: Novel, Bedside, Noninvasive, and Radiation-Free Imaging for Early Detection of Necrotizing Enterocolitis.

    Science.gov (United States)

    Al-Hamad, Suzanne; Hackam, David J; Goldstein, Seth D; Huisman, Thierry A G M; Darge, Kassa; Hwang, Misun

    2018-05-31

    Despite extensive research and improvements in the field of neonatal care, the morbidity and mortality associated with necrotizing enterocolitis (NEC) have remained unchanged over the past three decades. Early detection of ischemia and necrotic bowel is vital in improving morbidity and mortality associated with NEC; however, strategies for predicting and preventing NEC are lacking. Contrast-enhanced ultrasound (CEUS) and near-infrared spectroscopy (NIRS) are novel techniques in pediatrics that have been proven as safe modalities. CEUS has benefits over conventional ultrasound (US) by its improved real-time evaluation of the micro- and macrovascularities of normally and abnormally perfused tissue. US has been implemented as a useful adjunct to X-ray for earlier evaluation of NEC. NIRS is another noninvasive technique that has shown promise in improving early detection of NEC. The purpose of this article is to review the current understanding of changes in bowel perfusion in NEC, discuss the accuracy of abdominal US in detecting NEC, and explain how the use of CEUS and NIRS will enhance the precise and early detection of altered/pathological bowel wall perfusion in the initial development and course of NEC. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Pulmonary nodule characterization: A comparison of conventional with quantitative and visual semi-quantitative analyses using contrast enhancement maps

    International Nuclear Information System (INIS)

    Petkovska, Iva; Shah, Sumit K.; McNitt-Gray, Michael F.; Goldin, Jonathan G.; Brown, Matthew S.; Kim, Hyun J.; Brown, Kathleen; Aberle, Denise R.

    2006-01-01

    Purpose: To determine whether conventional nodule densitometry or analysis based on contrast enhancement maps of indeterminate lung nodules imaged with contrast-enhanced CT can distinguish benign from malignant lung nodules. Materials and method: Thin section, contrast-enhanced CT (baseline, and post-contrast series acquired at 45, 90,180, and 360 s) was performed on 29 patients with indeterminate lung nodules (14 benign, 15 malignant). A thoracic radiologist identified the boundary of each nodule using semi-automated contouring to form a 3D region-of-interest (ROI) on each image series. The post-contrast series having the maximum mean enhancement was then volumetrically registered to the baseline series. The two series were subtracted volumetrically and the subtracted voxels were quantized into seven color-coded bins, forming a contrast enhancement map (CEM). Conventional nodule densitometry was performed to obtain the maximum difference in mean enhancement values for each nodule from a circular ROI. Three thoracic radiologists performed visual semi-quantitative analysis of each nodule, scoring each map for: (a) magnitude and (b) heterogeneity of enhancement throughout the entire volume of the nodule on a five-point scale. Receiver operator characteristic (ROC) analysis was conducted on these features to evaluate their diagnostic efficacy. Finally, 14 quantitative texture features were calculated for each map. A statistical analysis was performed to combine the 14 texture features to a single factor. ROC analysis of the derived aggregate factor was done as an indicator of malignancy. All features were analyzed for differences between benign and malignant nodules. Results: Using 15 HU as a threshold, 93% (14/15) of malignant and 79% (11/14) of benign nodules demonstrated enhancement. The ROC curve when higher values of enhancement indicate malignancy was generated and area under the curve (AUC) was 0.76. The visually scored magnitude of enhancement was found to be

  18. Combining multi-pulse excitation and chirp coding in contrast-enhanced ultrasound imaging

    International Nuclear Information System (INIS)

    Crocco, M; Sciallero, C; Trucco, A; Pellegretti, P

    2009-01-01

    The development of techniques to separate the response of the contrast agent from that of the biological tissues is of great importance in ultrasound medical imaging. In the literature, one can find various solutions involving the use of multiple transmitted signals and the weighted sum of related echoes. In this paper, the combination of one of these multi-pulse techniques with a coded excitation is proposed and assessed. Coded excitation has been used mainly to increase the signal-to-noise ratio (SNR) and the penetration depth, provided that a matched filtering is applied in the reception chain. However, it has been shown that a signal with a long duration time also increases the backscattered echoes produced by the microbubbles and, consequently, the contrast-to-tissue ratio. Therefore, the implementation of a multi-pulse technique using a long coded pulse can yield a better contrast-to-tissue ratio and SNR. This paper investigates the combination of the linear chirp pulse with a multi-pulse technique based on the transmission of three pulses. The performance was evaluated using both simulated and real signals, assessing the improvement in the contrast-to-tissue ratio and SNR, the visual quality of the images obtained and the axial accuracy. A comparison with the same multi-pulse technique implemented using a traditional amplitude-modulated pulse revealed that the deployment of a chirp pulse produces several noticeable advantages and only a minor drawback

  19. Enhancing learning and comprehension through strengthening visual literacy

    Directory of Open Access Journals (Sweden)

    Le Roux, Cheryl

    2009-12-01

    Full Text Available Living in an image-rich world, as we currently do, does not mean that individuals naturally possess visual literacy skills. This article explores the concept of ‘visual literacy’, and the skills needed to develop visual literacy and visual intelligence. Developing visual literacy in educational environments is important because it can contribute to individual empowerment, and it is therefore necessary to take pedagogical advantage of visual literacy’s place across the disciplines. Doing this means tapping into experiences, expertise and interest in visual communication and building a new paradigm that takes visual education seriously.

  20. The short-term effects of TENS plus therapeutic ultrasound combinations in chronic neck pain.

    Science.gov (United States)

    Sayilir, Selcuk

    2018-05-01

    To investigate the effects of TENS plus therapeutic ultrasound combinations on symptom relief, physical functionality, perceived stress levels, daytime sleepiness and neck mobility in patients with chronic neck pain (CNP). A total of 64 patients were divided into two groups as the TENS plus ultrasound group (n = 39) and the control CNP group (n = 25). The therapy comprised TENS and therapeutic ultrasound applications for 10 sessions. The control subjects were discouraged from using analgesics but were allowed to use paracetamol daily, if necessary. The Neck Disability Index (NDI), Epworth Sleepiness Scale (ESS), Perceived Stress Scale (PSS), visual analog scale (VAS) and tragus-wall/chin-manubrium distances were recorded at the baseline and after therapy. Significant improvements were detected in the TENS plus ultrasound group compared to the control CNP subjects in respect of VAS, PSS and NDI scores after the TENS plus therapeutic ultrasound therapies (all p stress levels and improving functionality in the short-term of CNP. Copyright © 2018 Elsevier Ltd. All rights reserved.