WorldWideScience

Sample records for enhanced antitumor activities

  1. Jungle Honey Enhances Immune Function and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  2. Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.

    Science.gov (United States)

    Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P

    2015-05-21

    The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.

  3. Fraction From Lycium barbarum Polysaccharides Reduces Immunotoxicity and Enhances Antitumor Activity of Doxorubicin in Mice.

    Science.gov (United States)

    Deng, Xiangliang; Luo, Shuang; Luo, Xia; Hu, Minghua; Ma, Fangli; Wang, Yuanyuan; Zhou, Lian; Huang, Rongrong

    2018-01-01

    The aim of the present study was to investigate whether fraction from Lycium barbarum polysaccharide (LBP) could reduce immunotoxicity and enhance antitumor activity of doxorubicin (Dox) in mice. A water-soluble LBP fraction, designated LBP3, was isolated from edible Chinese herbal Lycium barbarum and used in this study. To investigate the effect of LBP3 on Dox-induced immunotoxicity, tumor-free mice were used and treated with either normal saline, Dox, or Dox plus LBP3. To investigate the effect of LBP3 on antitumor activity of Dox, H22 tumor-bearing mice were used and treated with either normal saline, Dox, LBP3, or Dox plus LBP3. The results showed that LBP3 did not protect against the body weight loss caused by Dox, but it promoted the recovery of body weight starting at day 5 after Dox treatment in tumor-free mice. LBP3 also improved peripheral blood lymphocyte counts, promoted cell cycle recovery in bone marrow cells, and restored the cytotoxicity of natural killer cells. Furthermore, in H22 tumor-bearing mice, LBP3 enhanced antitumor activity of Dox and improved peripheral blood lymphocyte counts and the cytotoxicity of splenocytes. In brief, our results demonstrated that LBP3 could reduce the immunotoxicity and enhance antitumor activity of Dox.

  4. Enhancement of intrinsic antitumor activity in spore-endotoxin mixtures of Bacillus thuringiensis by exposure to ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zamola, B; Karminski-Zamola, G; Fuks, Z; Kubovic, M [Zagreb Univ. (Yugoslavia); Wrishcer, M [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1985-03-01

    Irradiation of spore-endotoxin mixtures from Bacillus thuringiensis cultures at 254 nm (60 ..mu..W cm/sup -2/) enhances their intrinsic antitumor potency as well as that of either component. The extent of enhancement depends on the length of exposure (optimum: 35 min) and may thus be due to photochemical changes of the endotoxin protein or/and to photoproduction of additional compounds with antitumor activity. Antitumor effects, expressed as survival rates of C57BL/6 mice inoculated with Lewis' mouse lung carcinoma and subjected to treatments 24 h later, depended on the number of doses of preparations administered (mixture, separated components).

  5. Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-01-01

    Full Text Available Oridonin (ORI, a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs. ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.

  6. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wang

    2016-01-01

    Full Text Available Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents.

  7. Poly(γ-glutamic acid)-coated lipoplexes loaded with Doxorubicin for enhancing the antitumor activity against liver tumors

    Science.gov (United States)

    Qi, Na; Tang, Bo; Liu, Guang; Liang, Xingsi

    2017-05-01

    The study was to develop poly-γ-glutamic acid (γ-PGA)-coated Doxorubicin (Dox) lipoplexes that enhance the antitumor activity against liver tumors. γ-PGA-coated lipoplexes were performed by electrostatistically attracting to the surface of cationic charge liposomes with anionic γ-PGA. With the increasing of γ-PGA concentration, the particle size of γ-PGA-coated Dox lipoplexes slightly increased, the zeta potential from positive shifted to negative, and the entrapment efficiency (EE) were no significant change. The release rate of γ-PGA-coated Dox lipoplexes slightly increased at acidic pH, the accelerated Dox release might be attributed to greater drug delivery to tumor cells, resulting in a higher antitumor activity. Especially, γ-PGA-coated Dox lipoplexes exhibited higher cellular uptake, significant in vitro cytotoxicity in HepG2 cells, and improved in vivo antitumor efficacy toward HepG2 hepatoma-xenografted nude models in comparison with Dox liposomes and free Dox solution. In addition, the analysis results via flow cytometry showed that γ-PGA-coated Dox lipoplexes induce S phase cell cycle arrest and significantly increased apoptosis rate of HepG2 cells. In conclusion, the presence of γ-PGA on the surface of Dox lipoplexes enhanced antitumor effects of liver tumors.

  8. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    Science.gov (United States)

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  9. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-03-01

    Full Text Available Yi Liu,1 Hongyu Piao,1 Ying Gao,1 Caihong Xu,2 Ye Tian,1 Lihong Wang,1 Jinwen Liu,1 Bo Tang,1 Meijuan Zou,1 Gang Cheng1 1Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People’s Republic of China; 2Department of Food Science, Shenyang Normal University, Shenyang, Liaoning Province, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN38, an active metabolite of irinotecan (CPT-11, is a remarkably potent antitumor agent. The clinical application of SN38 has been extremely restricted by its insolubility in water. In this study, we successfully synthesized two macromolecular prodrugs of SN38 with different conjugate positions (chitosan-(C10-OHSN38 and chitosan-(C20-OHSN38 to improve the water solubility and antitumor activity of SN38. These prodrugs can self-assemble into micelles in aqueous medium. The particle size, morphology, zeta potential, and in vitro drug release of SN38 and its derivatives, as well as their cytotoxicity, pharmacokinetics, and in vivo antitumor activity in a xenograft BALB/c mouse model were studied. In vitro, chitosan-(C10-OHSN38 (CS-(10sSN38 and chitosan-(C20-OHSN38 (CS-(20sSN38 were 13.3- and 25.9-fold more potent than CPT-11 in the murine colon adenocarcinoma cell line CT26, respectively. The area under the curve (AUC0–24 of SN38 after intravenously administering CS-(10sSN38 and CS-(20sSN38 to Sprague Dawley rats was greatly improved when compared with CPT-11 (both P<0.01. A larger AUC0–24 of CS-(20sSN38 was observed when compared to CS-(10sSN38 (P<0.05. Both of the novel self-assembled chitosan-SN38 prodrugs demonstrated superior anticancer activity to CPT-11 in the CT26 xenograft BALB/c mouse model. We have also investigated the differences between these macromolecular prodrug micelles with regards to enhancing the antitumor activity of SN38. CS-(20sSN38 exhibited better in vivo antitumor activity than CS-(10sSN38 at a dose of 2.5 mg/kg (P<0

  10. Enhanced antitumor activity of 3-bromopyruvate in combination with rapamycin in vivo and in vitro.

    Science.gov (United States)

    Zhang, Qi; Pan, Jing; Lubet, Ronald A; Komas, Steven M; Kalyanaraman, Balaraman; Wang, Yian; You, Ming

    2015-04-01

    3-Bromopyruvate (3-BrPA) is an alkylating agent and a well-known inhibitor of energy metabolism. Rapamycin is an inhibitor of the serine/threonine protein kinase mTOR. Both 3-BrPA and rapamycin show chemopreventive efficacy in mouse models of lung cancer. Aerosol delivery of therapeutic drugs for lung cancer has been reported to be an effective route of delivery with little systemic distribution in humans. In this study, 3-BrPA and rapamycin were evaluated in combination for their preventive effects against lung cancer in mice by aerosol treatment, revealing a synergistic ability as measured by tumor multiplicity and tumor load compared treatment with either single-agent alone. No evidence of liver toxicity was detected by monitoring serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzymes. To understand the mechanism in vitro experiments were performed using human non-small cell lung cancer (NSCLC) cell lines. 3-BrPA and rapamycin also synergistically inhibited cell proliferation. Rapamycin alone blocked the mTOR signaling pathway, whereas 3-BrPA did not potentiate this effect. Given the known role of 3-BrPA as an inhibitor of glycolysis, we investigated mitochondrial bioenergetics changes in vitro in 3-BrPA-treated NSCLC cells. 3-BrPA significantly decreased glycolytic activity, which may be due to adenosine triphosphate (ATP) depletion and decreased expression of GAPDH. Our results demonstrate that rapamycin enhanced the antitumor efficacy of 3-BrPA, and that dual inhibition of mTOR signaling and glycolysis may be an effective therapeutic strategy for lung cancer chemoprevention. ©2015 American Association for Cancer Research.

  11. Enhancement of antitumor activity of OK-432 (picibanil) by Triton X-114 phase partitioning.

    Science.gov (United States)

    Hashimoto, Masahito; Takashige, Katsuhiro; Furuyashiki, Maiko; Yoshidome, Keitaro; Sano, Ryoko; Kawamura, Yutaka; Ijichi, Shinji; Morioka, Hirofumi; Koide, Hiroyuki; Oku, Naoto; Moriya, Yoichiro; Kusumoto, Shoich; Suda, Yasuo

    2008-01-01

    OK-432 (Picibanil), a Streptococcal immunotherapeutic agent, has been used for immunotherapy of various cancers as a biological response modifier (BRM). However, OK-432 contains multiple components consisting of immunotherapeutic ones and contaminants which may weaken the effects or exert side-effects. In this study, we investigated extraction of contaminants from OK-432 using Triton X-114 (TX-114)-water phase partitioning and examined an antitumor effect of the resulting preparation. OK-432 was subjected to TX-114 partitioning to give residual precipitate designated as OK-TX-ppt. OK-TX-ppt exerted no TLR2-mediated activity, but induced interleukin (IL)-6 in human PBMC. OK-TX-ppt also induced tumor necrosis factor (TNF)-alpha, IL-10, IL-12, and interferon (IFN)-gamma in PBMC. Moreover, IFN-gamma-inducing activity of OK-TX-ppt was significantly higher and IL-10 production was lower than that of OK-432. In tumor-bearing mice model, administration of OK-TX-ppt i.p. extended the survival time of Meth-A-bearing mice compared to OK-432. OK-TX-ppt also increased the levels of IL-12 and IFN-gamma in mouse spleen cells in vitro. These results indicated that TX-114 partitioning removed some contaminants, which attenuates the antitumor effect, from OK-432 and increase the immunotherapeutic effects of OK-432.

  12. Acriflavine enhances the antitumor activity of the chemotherapeutic drug 5-fluorouracil in colorectal cancer cells.

    Science.gov (United States)

    Zargar, Parisa; Ghani, Esmaeel; Mashayekhi, Farideh Jalali; Ramezani, Amin; Eftekhar, Ebrahim

    2018-06-01

    5-Fluorouracil (5-FU)-based chemotherapy improves the overall survival rates of patients with colorectal cancer (CRC). However, only a small proportion of patients respond to 5-FU when used as a single agent. The aim of the present study was to investigate whether the anticancer property of 5-FU is potentiated by combination treatment with acriflavine (ACF) in CRC cells. Additionally, the potential underlying molecular mechanisms of the cytotoxic effect of ACF were determined. The cytotoxic effects of ACF, 5-FU and irinotecan on different CRC cell lines with different p53 status were investigated using an MTT assay. SW480 cells that express a mutated form of p53 and two other CRC cell lines were used, HCT116 and LS174T, with wild-type p53. To determine the effect of ACF on the sensitivity of cells to 5-FU, cells were co-treated with the 30% maximal inhibitory concentration (IC 30 ) of ACF and various concentrations of 5-FU, or pretreated with the IC 30 of ACF and various concentrations of 5-FU. To assess the mechanism of action of ACF, cells were treated with IC 30 values of the compound and then the reverse transcription-quantitative polymerase chain reaction was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α) and topoisomerase 2. Results indicate that pretreatment with ACF markedly sensitized CRC cells to the cytotoxic effects of 5-FU, whereas simultaneous treatment with ACF and 5-FU were not able to alter the resistance of CRC cells to 5-FU. In comparison with irinotecan, ACF was a more potent agent for enhancing the antitumor activity of 5-FU. ACF did not alter the mRNA levels of either HIF-1α or topoisomerase 2. The results of the present study reveal for the first time that pretreatment of CRC cells with ACF markedly increases the cytotoxic effects of 5-FU, regardless of the p53 status of cells.

  13. The vitamin-like dietary supplement para-aminobenzoic acid enhances the antitumor activity of ionizing radiation

    International Nuclear Information System (INIS)

    Xavier, Sandhya; MacDonald, Shannon; Roth, Jennifer; Caunt, Maresa; Akalu, Abebe; Morais, Danielle; Buckley, Michael T.; Liebes, Leonard; Formenti, Silvia C.; Brooks, Peter C.

    2006-01-01

    Purpose: To determine whether para-aminobenzoic acid (PABA) alters the sensitivity of tumor cells to ionizing radiation in vitro and in vivo. Methods and Materials: Cellular proliferation was assessed by WST-1 assays. The effects of PABA and radiation on tumor growth were examined with chick embryo and murine models. Real-time reverse transcriptase-polymerase chain reaction and Western blotting were used to quantify p21 CIP1 and CDC25A levels. Results: Para-aminobenzoic acid enhanced (by 50%) the growth inhibitory activity of radiation on B16F10 cells, whereas it had no effect on melanocytes. Para-aminobenzoic acid enhanced (50-80%) the antitumor activity of radiation on B16F10 and 4T1 tumors in vivo. The combination of PABA and radiation therapy increased tumor apoptosis. Treatment of tumor cells with PABA increased expression of CDC25A and decreased levels of p21 CIP1 . Conclusions: Our findings suggest that PABA might represent a compound capable of enhancing the antitumor activity of ionizing radiation by a mechanism involving altered expression of proteins known to regulate cell cycle arrest

  14. 1,25D3 enhances antitumor activity of gemcitabine and cisplatin in human bladder cancer models

    Science.gov (United States)

    Ma, Yingyu; Yu, Wei-Dong; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Background 1,25 dihydroxyvitamin D3 (1,25D3) potentiates the cytotoxic effects of several common chemotherapeutic agents. The combination of gemcitabine and cisplatin (GC) is a current standard chemotherapy regimen for bladder cancer. We investigated whether 1,25D3 could enhance the antitumor activity of GC in bladder cancer model systems. Methods Human bladder cancer T24 and UMUC3 cells were pretreated with 1,25D3 followed by GC. Apoptosis were assessed by annexin V staining. Caspase activation was examined by immunoblot analysis and substrate-based caspase activity assay. The cytotoxic effects were examined using MTT and in vitro clonogenic assay. p73 protein levels were assessed by immunoblot analysis. Knockdown of p73 was achieved by siRNA. The in vivo antitumor activity was assessed by in vivo excision clonogenic assay and tumor regrowth delay in the T24 xenograft model. Results 1,25D3 pretreatment enhanced GC-induced apoptosis and the activities of caspases- 8, 9 and 3 in T24 and UMUC3 cells. 1,25D3 synergistically reduced GC-suppressed surviving fraction in T24 cells. 1,25D3, gemcitabine, or cisplatin induced p73 accumulation, which was enhanced by GC or 1,25D3 and GC. p73 expression was lower in human primary bladder tumor tissue compared with adjacent normal tissue. Knockdown of p73 increased clonogenic capacity of T24 cells treated with 1,25D3, GC or 1,25D3 and GC. 1,25D3 and GC combination enhanced tumor regression compared with 1,25D3 or GC alone. Conclusions 1,25D3 potentiates GC-mediated growth inhibition in human bladder cancer models in vitro and in vivo, which involves p73 induction and apoptosis. PMID:20564622

  15. MiR-143 enhances the antitumor activity of shikonin by targeting BAG3 expression in human glioblastoma stem cells.

    Science.gov (United States)

    Liu, Jing; Qu, Cheng-Bin; Xue, Yi-Xue; Li, Zhen; Wang, Ping; Liu, Yun-hui

    Therapeutic applications of microRNAs (miRNAs) in chemotherapy were confirmed to be valuable, but there is rare to identify their specific roles and functions in shikonin treatment toward tumors. Here, for the first time, we reported that miR-143 played a critical role in the antitumor activity of shikonin in glioblastoma stem cells (GSCs). The results showed that the expression of miR-143 was downregulated in shikonin treated GSCs within 24 h. MiR-143 overexpression significantly enhanced the inhibitory effect of shikonin toward GSCs on cell viability. Besides, miR-143 overexpression caused a significant increase in the apoptotic fraction and made apoptosis occur earlier. Further investigation identified that BAG3, an apoptotic regulator, was a functional target of miR-143 in shikonin treated GSCs. The expression of BAG3 was upregulated in shikonin treated GSCs within 24 h. MiR-143 overexpression significantly reversed the high expression of BAG3 in shikonin treated GSCs. Moreover, it was confirmed that the enhanced cytotoxicity of shikonin by miR-143 overexpression was reversed by BAG3 overexpression both in vitro and in vivo, suggesting that the enhanced tumor suppressive effects by miR-143 overexpression was at least partly through the regulation of BAG3. Taken together, for the first time, our results demonstrate that miR-143 could enhance the antitumor activity of shikonin toward GSCs through reducing BAG3 expression, which may provide a novel therapeutic strategy for enhancing the treatment efficacy of shikonin toward GSCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Pyrvinium targets the unfolded protein response to hypoglycemia and its anti-tumor activity is enhanced by combination therapy.

    Directory of Open Access Journals (Sweden)

    De-Hua Yu

    Full Text Available We identified pyrvinium pamoate, an old anthelminthic medicine, which preferentially inhibits anchorage-independent growth of cancer cells over anchorage-dependent growth (approximately 10 fold. It was also reported by others to have anti-tumor activity in vivo and selective toxicity against cancer cells under glucose starvation in vitro, but with unknown mechanism. Here, we provide evidence that pyrvinium suppresses the transcriptional activation of GRP78 and GRP94 induced by glucose deprivation or 2-deoxyglucose (2DG, a glycolysis inhibitor, but not by tunicamycin or A23187. Other UPR pathways induced by glucose starvation, e.g. XBP-1, ATF4, were also found suppressed by pyrvinium. Constitutive expression of GRP78 via transgene partially protected cells from pyrvinium induced cell death under glucose starvation, suggesting that suppression of the UPR is involved in pyrvinium mediated cytotoxicity under glucose starvation. Xenograft experiments showed rather marginal overall anti-tumor activity for pyrvinium as a monotherapy. However, the combination of pyrvinium and Doxorubicin demonstrated significantly enhanced efficacy in vivo, supporting a mechanistic treatment concept based on tumor hypoglycemia and UPR.

  17. Phenolic compounds from Viscum album tinctures enhanced antitumor activity in melanoma murine cancer cells.

    Science.gov (United States)

    Melo, Michelle Nonato de Oliveira; Oliveira, Adriana Passos; Wiecikowski, Adalgisa Felippe; Carvalho, Renato Sampaio; Castro, Juliana de Lima; de Oliveira, Felipe Alves Gomes; Pereira, Henrique Marcelo Gualberto; da Veiga, Venicio Feo; Capella, Marcia Marques Alves; Rocha, Leandro; Holandino, Carla

    2018-03-01

    Cancer is one of the biggest problems in public health worldwide. Plants have been shown important role in anticancer research. Viscum album L. (Santalaceae), commonly known as mistletoe, is a semi-parasitic plant that grows on different host trees. In complementary medicine, extracts from European mistletoe ( Viscum album L.) have been used in the treatment of cancer. The study was conducted to identify chemical composition and antitumor potential of Viscum album tinctures. Chemical analysis performed by high resolution chromatography equipped with high resolution mass spectrometer identified caffeic acid, chlorogenic acid, sakuranetin, isosakuranetin, syringenin 4-O-glucoside, syringenin 4-O-apiosyl-glucoside, alangilignoside C and ligalbumoside A compounds. Some of these compounds are probably responsible for the reduction of tumoral cellular growth in a dose-dependent manner. It was observed that melanoma murine cells (B16F10) were more sensitive to V. album tinctures than human leukaemic cells (K562), besides non-tumoral cells (MA-104) had a much lower cytotoxicity to them. Apoptotic-like cells were observed under light microscopy and were confirmed by a typical DNA fragmentation pattern. Additionally, flow cytometry results using Annexin-V/FITC permitted to quantify increased expression of early and late apoptotic markers on tumoral cells, confirming augmented Sub G0 population, which was probably associated with a consistent decrease in G1, and an increase in S or G2/M populations. Results indicate the chemical composition of V. album tinctures influences the mechanisms of in vitro tumoral cell death, suggesting a potential use in cancer pharmacotherapy research.

  18. The hTERT promoter enhances the antitumor activity of an oncolytic adenovirus under a hypoxic microenvironment.

    Directory of Open Access Journals (Sweden)

    Yuuri Hashimoto

    Full Text Available Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin, in which the human telomerase reverse transcriptase (hTERT promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5. In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen or a hypoxic (1% oxygen condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells.

  19. Enhanced Antitumoral Activity of Extracts Derived from Cultured Udotea flabellum (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Rosa Moo-Puc

    2011-01-01

    Full Text Available Very few studies have been performed to evaluate the effect of culture conditions on the production or activity of active metabolites in algae. Previous studies suggest that the synthesis of bioactive compounds is strongly influenced by irradiance level. To investigate whether the antiproliferative activity of Udotea flabellum extracts is modified after cultivation, this green alga was cultured under four photon flux densities (PFD for 30 days. After 10, 20, and 30 days, algae were extracted with dichloromethane: methanol and screened for antiproliferative activity against four human cancer cell lines (laryngeal—Hep-2, cervix—HeLa, cervix squamous—SiHa and nasopharynx—KB by SRB assay. Lipid and phenol content were evaluated by standardized methods on algae organic extracts. After 10 days of cultivation, organic U. flabellum extracts showed a significant increase in antiproliferative activity on Hela and SiHa cells when compared to noncultured algae extracts. Extracts obtained after 10 and 20 days of culture were active on KB and Hep-2 cells. Total phenol and polyunsaturated fatty acid content in organic extracts changed with cultivation time but not by irradiance treatment. Extracts from U. flabellum obtained after 10 and 20 days of culture have been selected for fractionation and isolation of active compounds.

  20. Glutamine deprivation enhances antitumor activity of 3-bromopyruvate through the stabilization of monocarboxylate transporter-1.

    Science.gov (United States)

    Cardaci, Simone; Rizza, Salvatore; Filomeni, Giuseppe; Bernardini, Roberta; Bertocchi, Fabio; Mattei, Maurizio; Paci, Maurizio; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2012-09-01

    Anticancer drug efficacy might be leveraged by strategies to target certain biochemical adaptations of tumors. Here we show how depriving cancer cells of glutamine can enhance the anticancer properties of 3-bromopyruvate, a halogenated analog of pyruvic acid. Glutamine deprival potentiated 3-bromopyruvate chemotherapy by increasing the stability of the monocarboxylate transporter-1, an effect that sensitized cells to metabolic oxidative stress and autophagic cell death. We further elucidated mechanisms through which resistance to chemopotentiation by glutamine deprival could be circumvented. Overall, our findings offer a preclinical proof-of-concept for how to employ 3-bromopyruvate or other monocarboxylic-based drugs to sensitize tumors to chemotherapy. ©2012 AACR.

  1. Enhanced antitumor activity of surface-modified iron oxide nanoparticles and an α-tocopherol derivative in a rat model of mammary gland carcinosarcoma.

    Science.gov (United States)

    Horák, Daniel; Pustovyy, Vitaliy Igorovych; Babinskyi, Andrii Valeriyovich; Palyvoda, Olga Mikhailovna; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2017-01-01

    Maghemite (γ-Fe 2 O 3 ) nanoparticles were obtained by coprecipitation of ferrous and ferric salts in an alkaline medium followed by oxidation; the nanoparticles were coated with poly( N,N -dimethylacrylamide) (PDMA) and characterized by transmission electron microscopy, attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering, thermogravimetric and elemental analyses, and magnetic measurements in terms of particle morphology, size, polydispersity, amount of coating, and magnetization, respectively. The effects of α-tocopherol (Toc) and its phenolic (Toc-6-OH) and acetate (Toc-6-Ac) derivatives on Fe 2+ release from γ-Fe 2 O 3 @PDMA, as well as from γ-Fe 2 O 3 and CuFe 2 O 4 nanoparticles (controls), were examined in vitro using 1,10-phenanthroline. The presence of tocopherols enhanced spontaneous Fe 2+ release from nanoparticles, with Toc-6-OH exhibiting more activity than neat Toc. All of the nanoparticles tested were found to initiate blood lipid oxidation in a concentration-dependent manner, as determined by analysis of 2-thiobarbituric acid reactive species. Wistar rats with Walker-256 carcinosarcoma (a model of mammary gland carcinosarcoma) received Toc-6-Ac, magnetic nanoparticles, or their combination per os, and the antitumor activity of each treatment was determined in vivo. γ-Fe 2 O 3 @PDMA nanoparticles exhibited increased antitumor activity compared to both commercial CuFe 2 O 4 particles and the antitumor drug doxorubicin. Moreover, increased antitumor activity was observed after combined administration of γ-Fe 2 O 3 @PDMA nanoparticles and Toc-6-Ac; however, levels of bilirubin, aspartate aminotransferase, and white bloods normalized and did not differ from those of the intact controls. The antitumor activity of the γ-Fe 2 O 3 nanoparticles strongly correlated with Fe 2+ release from the nanoparticles but not with nanoparticle-initiated lipid peroxidation in vitro.

  2. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  3. The effects of narrow-band middle infrared radiation in enhancing the antitumor activity of paclitaxel.

    Science.gov (United States)

    Tsai, Shang-Ru; Sheu, Bor-Ching; Huang, Pei-Shen; Lee, Si-Chen

    2016-01-01

    Paclitaxel is used as an adjuvant to enhance the effectiveness of ionization radiation therapy; however, high-energy radiation often damages the healthy cells surrounding cancer cells. Low-energy, middle-infrared radiation (MIR) has been shown to prevent tissue damage, and recent studies have begun combining MIR with paclitaxel. However, the cytotoxic effects of this treatment combination remain unclear, and the mechanism underlying its effects on HeLa cells has yet to be elucidated. This study investigated the effectiveness of treating HeLa human cervical cancer cells with a combination of paclitaxel for 48 h in conjunction with narrow-band MIR from 3.0 to 5.0 μm. This combined treatment significantly inhibited the growth of HeLa cells. Specifically, results from Annexin V-FITC/PI apoptosis detection and cell mitochondrial membrane potential analyses revealed an increase in apoptotic cell death and a collapse of mitochondrial membrane potential. One possible mechanism underlying cellular apoptosis is an increase in oxidative stress. These preliminary findings provide evidence to support the combination of narrow-band MIR with paclitaxel as an alternative approach in the treatment of human cervical cancer.

  4. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    Science.gov (United States)

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.

  5. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment.

    Science.gov (United States)

    Hardcastle, Jayson; Mills, Lisa; Malo, Courtney S; Jin, Fang; Kurokawa, Cheyne; Geekiyanage, Hirosha; Schroeder, Mark; Sarkaria, Jann; Johnson, Aaron J; Galanis, Evanthia

    2017-04-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor and has a dismal prognosis. Measles virus (MV) therapy of GBM is a promising strategy due to preclinical efficacy, excellent clinical safety, and its ability to evoke antitumor pro-inflammatory responses. We hypothesized that combining anti- programmed cell death protein 1 (anti-PD-1) blockade and MV therapy can overcome immunosuppression and enhance immune effector cell responses against GBM, thus improving therapeutic outcome. In vitro assays of MV infection of glioma cells and infected glioma cells with mouse microglia ± aPD-1 blockade were established to assess damage associated molecular pattern (DAMP) molecule production, migration, and pro-inflammatory effects. C57BL/6 or athymic mice bearing syngeneic orthotopic GL261 gliomas were treated with MV, aPD-1, and combination treatment. T2* weighted immune cell-specific MRI and fluorescence activated cell sorting (FACS) analysis of treated mouse brains was used to examine adaptive immune responses following therapy. In vitro, MV infection induced human GBM cell secretion of DAMP (high-mobility group protein 1, heat shock protein 90) and upregulated programmed cell death ligand 1 (PD-L1). MV infection of GL261 murine glioma cells resulted in a pro-inflammatory response and increased migration of BV2 microglia. In vivo, MV+aPD-1 therapy synergistically enhanced survival of C57BL/6 mice bearing syngeneic orthotopic GL261 gliomas. MRI showed increased inflammatory cell influx into the brains of mice treated with MV+aPD-1; FACS analysis confirmed increased T-cell influx predominantly consisting of activated CD8+ T cells. This report demonstrates that oncolytic measles virotherapy in combination with aPD-1 blockade significantly improves survival outcome in a syngeneic GBM model and supports the potential of clinical/translational strategies combining MV with αPD-1 therapy in GBM treatment. © The Author(s) 2016. Published by Oxford University Press

  6. Enhanced antitumor effects of novel intracellular delivery of an active form of menaquinone-4, menahydroquinone-4, into hepatocellular carcinoma.

    Science.gov (United States)

    Setoguchi, Shuichi; Watase, Daisuke; Matsunaga, Kazuhisa; Matsubara, Misa; Kubo, Yohei; Kusuda, Mariko; Nagata-Akaho, Nami; Enjoji, Munechika; Nakashima, Manabu; Takeshita, Morishige; Karube, Yoshiharu; Takata, Jiro

    2015-02-01

    Reduced cellular uptake of menaquinone-4 (MK-4), a vitamin K2 homolog, in human hepatocellular carcinoma (HCC) limits its usefulness as a safe long-term antitumor agent for recurrent HCC and produces des-γ-carboxy prothrombin (DCP). We hypothesized that effective delivery of menahydroquinone-4 (MKH), the active form of MK-4 for γ-glutamyl carboxylation, into HCC cells is critical for regulating HCC growth, and may enable it to be applied as a safe antitumor agent. In this study, we verified this hypothesis using menahydroquinone-4 1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG), a prodrug of MKH, and demonstrated its effectiveness. Intracellular delivery of MKH and subsequent growth inhibition of PLC/PRF/5 and Hep3B (DCP-positive) and SK-Hep-1 (DCP-negative) cells after MKH-DMG administration were determined and compared with MK-4. The activity of MKH-DMG against tumor progression in the liver alongside DCP formation was determined in a spleen-liver metastasis mouse model. MKH-DMG exhibited greater intracellular delivery of MKH in vitro (AUC0-72 hour of MKH) and increased growth-inhibitory activity against both DCP-positive and DCP-negative HCC cell lines. The phenomena of MKH delivery into cells in parallel with simultaneous growth inhibition suggested that MKH is the active form for growth inhibition of HCC cells. Cell-cycle arrest was determined to be involved in the growth inhibition mechanisms of MKH-DMG. Furthermore, MKH-DMG showed significant inhibition of tumor progression in the liver, and a substantial decrease in plasma DCP levels in the spleen-liver metastasis mouse model. Our results suggest that MKH-DMG is a promising new candidate antitumor agent for safe long-term treatment of HCC. ©2014 American Association for Cancer Research.

  7. Enhancement of anti-tumor activity of hybrid peptide in conjugation with carboxymethyl dextran via disulfide linkers.

    Science.gov (United States)

    Gaowa, Arong; Horibe, Tomohisa; Kohno, Masayuki; Tabata, Yasuhiko; Harada, Hiroshi; Hiraoka, Masahiro; Kawakami, Koji

    2015-05-01

    To improve the anti-tumor activity of EGFR2R-lytic hybrid peptide, we prepared peptide-modified dextran conjugates with the disulfide bonds between thiolated carboxymethyl dextran (CMD-Cys) and cysteine-conjugated peptide (EGFR2R-lytic-Cys). In vitro release studies showed that the peptide was released from the CMD-s-s-peptide conjugate in a concentration-dependent manner in the presence of glutathione (GSH, 2μM-2mM). The CMD-s-s-peptide conjugate exhibited a similar cytotoxic activity with free peptide alone against human pancreatic cancer BxPC-3 cells in vitro. Furthermore, it was shown that the CMD-s-s-peptide conjugates were highly accumulated in tumor tissue in a mouse xenograft model using BxPC-3 cells, and the anti-tumor activity of the conjugate was more effective than that of the free peptide. In addition, the plasma concentrations of peptide were moderately increased and the elimination half-life of the peptide was prolonged after intravenous injection of CMD-s-s-peptide conjugates. These results demonstrated that the conjugate based on thiolated CMD polymer would be potentially useful carriers for the sustained release of the hybrid peptide in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Inecalcitol, an analog of 1,25D₃, displays enhanced antitumor activity through the induction of apoptosis in a squamous cell carcinoma model system

    Science.gov (United States)

    Ma, Yingyu; Yu, Wei-Dong; Hidalgo, Alejandro A.; Luo, Wei; Delansorne, Remi; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Epidemiological data suggest an important role of vitamin D signaling in cancer development and progression, and experimental studies demonstrate that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D₃ (1,25D₃) has broad spectrum antitumor activity. Hypercalcemia has often been suggested to limit the clinical application of these data. The 14-epi-analog of 1,25D₃, inecalcitol [19-nor-14-epi-23-yne-1,25-(OH)₂D₃; TX522], was developed to have superagonistic antitumor activities but low hypercalcemia potential. We examined the antitumor activity of inecalcitol and the underlying mechanisms in a murine squamous cell carcinoma (SCC) model system. In vitro, compared with 1,25D₃, inecalcitol showed enhanced vitamin D receptor (VDR)-mediated transcriptional activity. Inecalcitol suppressed SCC cell proliferation in a dose-dependent manner with an IC₅₀ value 30 times lower than that of 1,25D₃. Both inecalcitol and 1,25D₃ induced a comparable level of G₀/G₁ cell cycle arrest in SCC cells. The level of apoptosis induced by inecalcitol was markedly higher than that of 1,25D₃. Apoptosis was mediated through the activation of the caspase 8/10- caspase 3 pathway. Further, inecalcitol markedly inhibited the mRNA and protein expression of c-IAP1 and XIAP compared with 1,25D₃. In vivo, inecalcitol inhibits SCC tumor growth in a dose-dependent fashion. Notably, inecalcitol induced a significantly higher level of apoptosis in the SCC xenograft model. While in vitro inecalcitol demonstrates apparent enhanced VDR binding and antiproliferative effects compared to 1,25D₃, in vivo these advantages disappear; at doses of inecalcitol that have equivalent antitumor effects, similar hypercalcemia is seen. This may be explained by the pharmacokinetics of 1,25D₃ vs. inecalcitol and attributed to the much shorter serum half-life of inecalcitol.We show that inecalcitol has potent antitumor activity in the SCC model system, and this is associated with a

  9. Enhanced antitumor activities of (-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo

    International Nuclear Information System (INIS)

    Matsumura, Kazuaki; Kaihatsu, Kunihiro; Mori, Shuichi; Cho, Han Hee; Kato, Nobuo; Hyon, Suong Hyu

    2008-01-01

    (-)-Epigallocatechin-3-O-gallate (EGCG) monoesters modified with butanoyl (EGCG-C4), octanoyl (EGCG-C8), palmitoyl groups (EGCG-C16) were synthesized by a lipase-catalyzed transesterification method and their antitumor activities were investigated in vitro and in vivo. The in vitro antitumor activities of EGCG-monoester derivatives increased in an alkyl chain length-dependent manner. The cytotoxicity of EGCG, EGCG-C4, EGCG-C8 was mainly caused by H 2 O 2 which was generated with their oxidation. On the other hand, EGCG-C16 was more stable than EGCG and it did not generate H 2 O 2 in the cell culture medium. Furthermore, EGCG-C16 inhibited cell proliferation and induced apoptosis in the presence of catalase. EGCG-C16 was found to inhibit the phosphorylation of the epidermal growth factor receptor (EGFR), which is related to various types of tumor growth. EGCG-C16 suppressed tumor growth in vivo in colorectal tumor bearing mice in comparison to an untreated control, vector control (DMSO) and EGCG.

  10. Nanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis

    Science.gov (United States)

    Liu, Rui; Yu, Xiwei; Su, Chang; Shi, Yijie; Zhao, Liang

    2017-06-01

    Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells, its anti-tumor effects were undesirable and limited. To obtain better anti-tumor effects, in this study, we took advantage of a new nanotechnology to design novel artesunate-loaded bovine serum albumin nanoparticles to achieve the mitochondrial accumulation of artesunate and induce mitochondrial-mediated apoptosis. The results showed that when compared with free artesunate's reliance on oncotic death, artesunate-loaded bovine serum albumin nanoparticles showed higher cytotoxicity and their significant apoptotic effects were induced through the distribution of artesunate in the mitochondria. This finding indicated that artesunate-loaded bovine serum albumin nanoparticles damaged the mitochondrial integrity and activated mitochondrial-mediated cell apoptosis by upregulating apoptosis-related proteins and facilitating the rapid release of cytochrome C.

  11. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Pastorino Fabio

    2010-06-01

    Full Text Available Abstract Background Sharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. Curcumin is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested in vitro various curcumin-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors. Results In this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to curcumin. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to curcumin, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome c release. In vivo anti-tumor activity of curcumin and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and curcumin treated ones (Melanoma: D6 vs control: P and D6 vs curcumin P Neuroblastoma: D6 vs both control and curcumin: P . Conclusions Our data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors.

  12. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy.

    Science.gov (United States)

    Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L

    2010-01-01

    The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.

  13. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  14. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  15. Enhancement of antitumor activity by using a fully human gene encoding a single-chain fragmented antibody specific for carcinoembryonic antigen

    Directory of Open Access Journals (Sweden)

    Shibaguchi H

    2017-08-01

    Full Text Available Hirotomo Shibaguchi,1,* Naixiang Luo,1,* Naoto Shirasu,1,* Motomu Kuroki,2 Masahide Kuroki1 1Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; 2School of Nursing, Faculty of Medicine, Fukuoka University, Fukuoka, Japan *These authors equally contributed to this work Abstract: Human leukocyte antigen and/or costimulatory molecules are frequently lacking in metastatic tumor cells, and thus tumor cells are able to escape from the immune system. Although lymphocytes with a chimeric antigen receptor (CAR is a promising approach for overcoming this challenge in cancer immunotherapy, administration of modified T cells alone often demonstrates little efficacy in patients. Therefore, in order to enhance the antitumor activity of immune cells in the cancer microenvironment, we used lymphocytes expressing CAR in combination with a fusion protein of IL-2 that contained the single-chain fragmented antibody (scFv specific for the carcinoembryonic antigen. Among a series of CAR constructs, with or without a spacer and the intracellular domain of CD28, the CAR construct containing CD8α, CD28, and CD3ζ most effectively activated and expressed INF-γ in CAR-bearing T cells. Furthermore, in comparison with free IL-2, the combination of peripheral blood mononuclear cells expressing CAR and the fusion protein containing IL-2 significantly enhanced the antitumor activity against MKN-45 cells, a human gastric cancer cell line. In conclusion, this novel combination therapy of CAR and a fusion protein consisting of a functional cytokine and a fully human scFv may be a promising approach for adoptive cancer immunotherapy. Keywords: chimeric antigen receptor, fusion protein, human scFv, CEA, combination therapy

  16. Antitumoral activity of marine organism

    International Nuclear Information System (INIS)

    Valdes Iglesias, O; Perez Gil, R; Colom, Y

    2010-01-01

    The study of the natural products from marine organism constitute a relatively recent scientific researcher field with high potentialities tanking in consideration that the oceans cover the three of the four parts of the earth. Poryphera and Bryozoans have been the Phylum more studied owning to the vulnerability, their soft body, their habitat on rocks, their slow movement and bright colors, for these reason these organisms are able to produce chemical substances as defense methods against depredators. Same mechanism is exhibit by the seaweeds with the production of secondary metabolites . In the present communication are exposed the main results obtained on the world a Cuba until the present in the looking for of substances with antitumor action from marine organism

  17. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin.

    Science.gov (United States)

    Hattori, Yoshiyuki; Shibuya, Kazuhiko; Kojima, Kaori; Miatmoko, Andang; Kawano, Kumi; Ozaki, Kei-Ichi; Yonemochi, Etsuo

    2015-07-01

    Previously, we found that the injection of zoledronic acid (ZOL) into mice bearing tumor induced changes of the vascular structure in the tumor. In this study, we examined whether ZOL treatment could decrease interstitial fluid pressure (IFP) via change of tumor vasculature, and enhance the antitumor efficacy of liposomal doxorubicin (Doxil®). When ZOL solution was injected at 40 µg/mouse per day for three consecutive days into mice bearing murine Lewis lung carcinoma LLC tumor, depletion of macrophages in tumor tissue and decreased density of tumor vasculature were observed. Furthermore, ZOL treatments induced inflammatory cytokines such as interleukin (IL)-10 and -12, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α in serum of LLC tumor-bearing mice, but not in normal mice, indicating that ZOL treatments might induce an inflammatory response in tumor tissue. Furthermore, ZOL treatments increased antitumor activity by Doxil in mice bearing a subcutaneous LLC tumor, although they did not significantly increase the tumor accumulation of doxorubicin (DXR). These results suggest that ZOL treatments might increase the therapeutic efficacy of Doxil via improvement of DXR distribution in a tumor by changing the tumor vasculature. ZOL treatment can be an alternative approach to increase the antitumor effect of liposomal drugs.

  18. Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer

    International Nuclear Information System (INIS)

    Paller, Channing J; Wissing, Michel D; Mendonca, Janet; Sharma, Anup; Kim, Eugene; Kim, Hea-Soo; Kortenhorst, Madeleine S Q; Gerber, Stephanie; Rosen, Marc; Shaikh, Faraz; Zahurak, Marianna L; Rudek, Michelle A; Hammers, Hans; Rudin, Charles M; Carducci, Michael A; Kachhap, Sushant K

    2014-01-01

    Histone deacetylase inhibitors (HDACIs) are being tested in clinical trials for the treatment of solid tumors. While most studies have focused on the reexpression of silenced tumor suppressor genes, a number of genes/pathways are downregulated by HDACIs. This provides opportunities for combination therapy: agents that further disable these pathways through inhibition of residual gene function are speculated to enhance cell death in combination with HDACIs. A previous study from our group indicated that mitotic checkpoint kinases such as PLK1 and Aurora A are downregulated by HDACIs. We used in vitro and in vivo xenograft models of prostate cancer (PCA) to test whether combination of HDACIs with the pan-aurora kinase inhibitor AMG 900 can synergistically or additively kill PCA cells. AMG 900 and HDACIs synergistically decreased cell proliferation activity and clonogenic survival in DU-145, LNCaP, and PC3 PCA cell lines compared to single-agent treatment. Cellular senescence, polyploidy, and apoptosis was significantly increased in all cell lines after combination treatment. In vivo xenograft studies indicated decreased tumor growth and decreased aurora B kinase activity in mice treated with low-dose AMG 900 and vorinostat compared to either agent alone. Pharmacodynamics was assessed by scoring for phosphorylated histone H3 through immunofluorescence. Our results indicate that combination treatment with low doses of AMG 900 and HDACIs could be a promising therapy for future clinical trials against PCA

  19. Antitumor and immunomodulatory activity of Inonotus obliquus

    Directory of Open Access Journals (Sweden)

    Staniszewska Justyna

    2017-06-01

    Full Text Available The article presents the antitumor and immunomodulatory activity of compounds and extracts from Inonotus obliquus. Polysaccharides isolated from sclerotium have a direct antitumor effect due to protein synthesis inhibition in tumor cells. Polysaccharides derived from the mycelium function by activating the immune system. Due to the limited toxicity of these substances, both extracts as well as isolated and purified chemicals may be a good alternative to current chemotherapy and play a role in cancer prevention. In vitro experiments have shown the inhibition of inflammation with the influence of action of I. obliquus extracts; however, in vivo experiments on animals implanted with tumor cells of different types have shown the activation of the host immune system. This led to decrease in tumor mass and prolonged survival. The immunomodulatory mechanism of action is complex and it seems that stimulation of macrophages and induction of apoptosis in cancer cells is of great importance.

  20. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Charalambous, Christiana; Pitta, Chara A; Constantinou, Andreas I

    2013-01-01

    Soy phytoestrogens, such as daidzein and its metabolite equol, have been proposed to be responsible for the low breast cancer rate in Asian women. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen, the basic objective of this study is to determine whether equol enhances tamoxifen’s anti-tumor effect, and to identify the molecular mechanisms involved. For this purpose, we examined the individual and combined effects of equol and tamoxifen on the estrogen-dependent MCF-7 breast cancer cells using viability assays, annexin-V/PI staining, cell cycle and western blot analysis. We found that equol (>50 μM) and 4-hydroxy-tamoxifen (4-OHT; >100 nM) significantly reduced the MCF-7 cell viability. Furthermore, the combination of equol (100 μM) and 4-OHT (10 μM) induced apoptosis more effectively than each compound alone. Subsequent treatment of MCF-7 cells with the pan-caspase inhibitor Z-VAD-FMK inhibited equol- and 4-OHT-mediated apoptosis, which was accompanied by PARP and α-fodrin cleavage, indicating that apoptosis is mainly caspase-mediated. These compounds also induced a marked reduction in the bcl-2:bax ratio, which was accompanied by caspase-9 and caspase-7 activation and cytochrome-c release to the cytosol. Taken together, these data support the notion that the combination of equol and tamoxifen activates the intrinsic apoptotic pathway more efficiently than each compound alone. Consequently, equol may be used therapeutically in combination treatments and clinical studies to enhance tamoxifen’s effect by providing additional protection against estrogen-responsive breast cancers

  1. Antitumor Activities of Kushen: Literature Review

    Directory of Open Access Journals (Sweden)

    Mingyu Sun

    2012-01-01

    Full Text Available To discover and develop novel natural compounds with therapeutic selectivity or that can preferentially kill cancer cells without significant toxicity to normal cells is an important area in cancer chemotherapy. Kushen, the dried roots of Sophora flavescens Aiton, has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As and kushen flavonoids (KS-Fs are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anticancer drugs. More potent antitumor activities were identified in KS-Fs than in KS-As in vitro and in vivo. KS-Fs may be developed as novel antitumor agents.

  2. GU81, a VEGFR2 antagonist peptoid, enhances the anti-tumor activity of doxorubicin in the murine MMTV-PyMT transgenic model of breast cancer

    International Nuclear Information System (INIS)

    Lynn, Kristi D; Udugamasooriya, D Gomika; Roland, Christina L; Castrillon, Diego H; Kodadek, Thomas J; Brekken, Rolf A

    2010-01-01

    Vascular endothelial growth factor (VEGF) is a primary stimulant of angiogenesis under physiological and pathological conditions. Anti-VEGF therapy is a clinically proven strategy for the treatment of a variety of cancers including colon, breast, lung, and renal cell carcinoma. Since VEGFR2 is the dominant angiogenic signaling receptor, it has become an important target in the development of novel anti-angiogenic therapies. We have reported previously the development of an antagonistic VEGFR2 peptoid (GU40C4) that has promising anti-angiogenic activity in vitro and in vivo. In the current study, we utilize a derivative of GU40C4, termed GU81 in therapy studies. GU81 was tested alone or in combination with doxorubicin for in vivo efficacy in the MMTV-PyMT transgenic model of breast cancer. The derivative GU81 has increased in vitro efficacy compared to GU40C4. Single agent therapy (doxorubicin or GU81 alone) had no effect on tumor weight, histology, tumor fat content, or tumor growth index. However, GU81 is able to significantly to reduce total vascular area as a single agent. GU81 used in combination with doxorubicin significantly reduced tumor weight and growth index compared to all other treatment groups. Furthermore, treatment with combination therapy significantly arrested tumor progression at the premalignant stage, resulting in increased tumor fat content. Interestingly, treatment with GU81 alone increased tumor-VEGF levels and macrophage infiltration, an effect that was abrogated when used in combination with doxorubicin. This study demonstrates the VEGFR2 antagonist peptoid, GU81, enhances the anti-tumor activity of doxorubicin in spontaneous murine MMTV-PyMT breast tumors

  3. Antitumor activity of Annona squamosa seed oil.

    Science.gov (United States)

    Chen, Yong; Chen, Yayun; Shi, Yeye; Ma, Chengyao; Wang, Xunan; Li, Yue; Miao, Yunjie; Chen, Jianwei; Li, Xiang

    2016-12-04

    Custard apple (Annona squamosa Linn.) is an edible tropical fruit, and its seeds have been used to treat "malignant sore" (cancer) and other usage as insecticide. A comparison of extraction processes, chemical composition analysis and antitumor activity of A. squamosa seed oil (ASO) were investigated. The optimal extraction parameters of ASO were established by comparing percolation, soxhlet, ultrasonic and SFE-CO 2 extraction methods. The chemical composition of fatty acid and content of total annonaceous acetogenins (ACGs) of ASO was investigated by GC-MS and colorimetric assay, and anti-tumor activity of ASO was tested using H 22 xenografts bearing mice. The optimal extraction parameters of ASO were obtained as follows: using soxhlet extraction method with extraction solvent of petroleum ether, temperature of 80°C, and extraction time of 90min. Under these conditions, the yield of ASO was 22.65%. GC-MS analysis results showed that the main chemical compositions of fatty acid of ASO were palmitic acid (9.92%), linoleic acid (20.49%), oleic acid (56.50%) and stearic acid (9.14%). The total ACGs content in ASO was 41.00mg/g. ASO inhibited the growth of H 22 tumor cells in mice with a maximum inhibitory rate of 53.54% by oral administration. Furthermore, it was found that ASO exerted an antitumor effect via decreasing interleukin-6 (IL-6), janus kinase (Jak) and phosphorylated signal transducers and activators of transcription (p-Stat3) expression. The results demonstrated that ASO suppressed the H 22 solid tumor development may due to its main chemical constituents unsaturated fatty acid and ACGs via IL-6/Jak/Stat3 pathway. ASO may be a potential candidate for the treatment of cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Codelivery of SH-aspirin and curcumin by mPEG-PLGA nanoparticles enhanced antitumor activity by inducing mitochondrial apoptosis

    Directory of Open Access Journals (Sweden)

    Zhou L

    2015-08-01

    Full Text Available Lin Zhou,1,2,* Xingmei Duan,1,2,* Shi Zeng,1 Ke Men,1 Xueyan Zhang,1 Li Yang,1 Xiang Li1 1State Key Laboratory of Biotherapy, Cancer Center and Department of Urology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China; 2Sichuan Food and Drug Safety Monitoring and Review of Certification, Adverse Reaction Monitoring Center, Drug Abuse Monitoring Center, Chengdu, People’s Republic of China *These authors contributed equally to this work Abstract: Natural product curcumin (Cur and H2S-releasing prodrug SH-aspirin (SH-ASA are potential anticancer agents with diverse mechanisms, but their clinical application prospects are restricted by hydrophobicity and limited efficiency. In this work, we coencapsulated SH-ASA and Cur into methoxy poly(ethylene glycol-poly (lactide-coglycolide (mPEG-PLGA nanoparticles through a modified oil-in-water single-emulsion solvent evaporation process. The prepared SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles had a mean particle size of 122.3±6.8 nm and were monodispersed (polydispersity index =0.179±0.016 in water, with high drug-loading capacity and stability. Intriguingly, by treating with SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles, obvious synergistic anticancer effects on ES-2 and SKOV3 human ovarian carcinoma cells were observed in vitro, and activation of the mitochondrial apoptosis pathway was indicated. Our results demonstrated that SH-ASA/Cur-coloaded mPEG-PLGA nanoparticles could have potential clinical advantages for the treatment of ovarian cancer. Keywords: drug delivery, cancer therapy, ovarian cancer, synergistic effect

  5. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    Science.gov (United States)

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  6. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines.

    Science.gov (United States)

    Salem, Mohamed Labib

    2005-06-01

    Recently, there has been a great interest in the effects of different types of n-6 polyunsaturated acids (n-6 PUFAs) upon the immune system and cancer development. However, the effects of n-6 PUFAs are still controversial and as yet undefined. The present study aimed to investigate the anti-tumor effects of n-6 PUFAs against EL4 thymoma and the associated immune mechanisms. To this, sesame oil, a vegetable oil enriched with n-6 PUFAs, or free linoleic acid (LA) were administered intraperitoneally into C57BL/6 mice before and after challenge with EL4 lymphoma cells. Treatment with either sesame oil or LA attenuated the growth and metastasis of EL4 lymphoma. The anti-tumor effect of LA was superior to that of sesame oil, and associated with an increase in the survival rate of the tumor-bearing mice. In addition, both sesame oil and LA showed dose-dependent anti-lymphoma growth in vitro. Treatment with LA generated significant increases in the anti-lymphoma cytolytic and cytostatic activities of T cells and macrophages, respectively, and enhanced production of IL-2 and IFN-gamma while decreased production of IL-4, IL-6 and IL-10. In summation, the results suggest that n-6 PUFAs, represented by LA, can attenuate EL4 lymphoma growth and metastasis through enhancing the specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. These findings might be of great importance for a proper design of systemic nourishment with PUFAs emulsions for cancer patients.

  7. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    Science.gov (United States)

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX. PMID:21845098

  8. Assessment of in vitro antitumoral and antimicrobial activities of ...

    African Journals Online (AJOL)

    Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean sea. ... African Journal of Biotechnology ... algal extracts obtained from the marine algae Scytosiphon lomentaria, Padina pavonica, Cystoseira mediterranea (Phaeophyceae), Hypnea musciformis and ...

  9. Ginsenoside Rh2 enhances the antitumor immunological response of a melanoma mice model.

    Science.gov (United States)

    Wang, Meng; Yan, Shi-Ju; Zhang, Hong-Tao; Li, Nan; Liu, Tao; Zhang, Ying-Long; Li, Xiao-Xiang; Ma, Qiong; Qiu, Xiu-Chun; Fan, Qing-Yu; Ma, Bao-An

    2017-02-01

    The treatment of malignant tumors following surgery is important in preventing relapse. Among all the post-surgery treatments, immunomodulators have demonstrated satisfactory effects on preventing recurrence according to recent studies. Ginsenoside is a compound isolated from panax ginseng, which is a famous traditional Chinese medicine. Ginsenoside aids in killing tumor cells through numerous processes, including the antitumor processes of ginsenoside Rh2 and Rg1, and also affects the inflammatory processes of the immune system. However, the role that ginsenoside serves in antitumor immunological activity remains to be elucidated. Therefore, the present study aimed to analyze the effect of ginsenoside Rh2 on the antitumor immunological response. With a melanoma mice model, ginsenoside Rh2 was demonstrated to inhibit tumor growth and improved the survival time of the mice. Ginsenoside Rh2 enhanced T-lymphocyte infiltration in the tumor and triggered cytotoxicity in spleen lymphocytes. In addition, the immunological response triggered by ginsenoside Rh2 could be transferred to other mice. In conclusion, the present study provides evidence that ginsenoside Rh2 treatment enhanced the antitumor immunological response, which may be a potential therapy for melanoma.

  10. Anti-tumor activity of polysaccharides extracted from Senecio ...

    African Journals Online (AJOL)

    *, Bao Zhang, Mingming Han, Xin Jin, Liyuan Sun and Tao Li. Department of ..... Yang J, Li X, Xue Y, Wang N, Liu W. Anti-hepatoma activity and mechanism of corn ... Peng W, Wu JG, Jiang YB, Liu YJ, Sun T, Wu N, Wu CJ. Antitumor activity of ...

  11. An Update on Antitumor Activity of Naturally Occurring Chalcones

    Directory of Open Access Journals (Sweden)

    En-Hui Zhang

    2013-01-01

    Full Text Available Chalcones, which have characteristic 1,3-diaryl-2-propen-1-one skeleton, are mainly produced in roots, rhizomes, heartwood, leaves, and seeds of genera Angelica, Sophora, Glycyrrhiza, Humulus, Scutellaria, Parartocarpus, Ficus, Dorstenia, Morus, Artocarpus, and so forth. They have become of interest in the research and development of natural antitumor agents over the past decades due to their broad range of mechanisms including anti-initiation, induction of apoptosis, antiproliferation, antimetastasis, antiangiogenesis, and so forth. This review summarizes the studies on the antitumor activity of naturally occurring chalcones and their underlying mechanisms in detail during the past decades.

  12. Experimental study of anti-tumor activity of direct current

    International Nuclear Information System (INIS)

    Ito, Hisao; Hashimoto, Shozo

    1989-01-01

    The anti-tumor activity of direct current combined with radiation was studied. The experiments were performed with fibrosarcomas (FSA, NFSA) syngenetic to C3H mice. Direct current (0.6mA, 120min) alone was effective to reduce the tumor sizes, but could not cure the tumors. When the direct current therapy (DC therapy) was combined with radiation the DC therapy following radiation was more effective than that before radiation. Using TCD 50 assay, the DC therapy enhanced the effect of a single dose of radiation with the dose-modifying factor of 1.2. However, tumor control rates by the combination therapy were more improved at the smaller doses of radiation than at the larger ones. When the single DC therapy (0.6mA, 120min) was applied immediately after the first radiation of fractionated one the combination therapy still showed the enhanced effect. However, both DC therapy and the radiation therapy were divided in three fractions, and the DC therapy (0.6mA, 40min) was applied after each radiation. Tumor growth retardation by the combination therapy was no different from that by radiation alone. This result suggests that there might be a minimum required dose of coulombs to show the effect of the combination therapy. (author)

  13. Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes

    Directory of Open Access Journals (Sweden)

    Li K

    2017-12-01

    Full Text Available Kai Li,1,* Yongxing Zhang,2,* Mengting Chen,1 Yangyang Hu,1 Weiliang Jiang,1 Li Zhou,1 Sisi Li,1 Min Xu,1 Qinghua Zhao,2 Rong Wan1 1Department of Gastroenterology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 2Department of Orthopaedics, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: To improve the antitumor efficacy of doxorubicin (DOX and provide novel clinical treatment of gastric cancer, halloysite nanotubes (HNTs loaded with DOX were encapsulated by soybean phospholipid (LIP and the formed HNTs/DOX/LIP was systematically characterized via different techniques. The in vitro anticancer activity of HNTs/DOX/LIP was examined using an MTT assay. The antitumor efficacy and biocompatibility were monitored by measuring the tumor volume and assessing the blood routine and serum biochemistry using an ectopic implantation cancer model. The results show that when the concentration of HNTs was 3 mg/mL and the concentration of DOX was 1 mg/mL the optimal DOX loading efficiency was as high as 22.01%±0.43%. In vitro drug release behavior study demonstrated that HNTs/DOX/LIP shows a pH-responsive release property with fast drug release under acidic conditions (pH =5.4. MTT assays and in vivo experimental results revealed that HNTs/DOX/LIP exhibits a significantly higher inhibitory efficacy on the growth of mouse gastric cancer cells than free DOX at the same drug concentration. In addition, the life span of tumor-bearing mice in the HNTs/DOX/LIP-treated group was obviously prolonged compared with the control groups. Moreover, HNTs/DOX/LIP possessed excellent hemocompatibility as shown in the blood and histology studies. These findings indicated that the formed HNTs/DOX/LIP possesses higher antitumor efficacy and may be used as a targeted

  14. Antitumor activity of doxorubicine-loaded nanoemulsion against ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights ... Keywords: Doxorubicine, Anti-tumor activity, Mean survival time, Heart histology, Nanoemulsion, Lipid profile .... the standard kit methods using fully Automated ..... effects of this new formulation in human patients.

  15. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  16. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Grant A Howe

    Full Text Available Blockade of epidermal growth factor receptor (EGFR activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC. As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs, there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975 were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271 both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be

  17. In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora trichocarpha

    Directory of Open Access Journals (Sweden)

    D.A. Saúde-Guimarães

    2014-06-01

    Full Text Available The sesquiterpene lactones lychnopholide and eremantholide C were isolated from Lychnophora trichocarpha Spreng. (Asteraceae, which is a plant species native to the Brazilian Savannah or Cerrado and popularly known as arnica. Sesquiterpene lactones are known to present a variety of biological activities including antitumor activity. The present paper reports on the evaluation of the in vitro antitumor activity of lychnopholide and eremantholide C, in the National Cancer Institute, USA (NCI, USA, against a panel of 52 human tumor cell lines of major human tumors derived from nine cancer types. Lychnopholide disclosed significant activity against 30 cell lines of seven cancer types with IC100 (total growth concentration inhibition values between 0.41 µM and 2.82 µM. Eremantholide C showed significant activity against 30 cell lines of eight cancer types with IC100 values between 21.40 µM and 53.70 µM. Lychnopholide showed values of lethal concentration 50% (LC50 for 30 human tumor cell lines between 0.72 and 10.00 µM, whereas eremantholide C presented values of LC50 for 21 human tumor cell lines between 52.50 and 91.20 µM. Lychnopholide showed an interesting profile of antitumor activity. The α-methylene-γ-lactone present in the structure of lychnopholide, besides two α,β- unsaturated carbonyl groups, might be responsible for the better activity and higher cytotoxicity of this compound in relation to eremantholide C.

  18. Antitumor Activity of Monoterpenes Found in Essential Oils

    Directory of Open Access Journals (Sweden)

    Marianna Vieira Sobral

    2014-01-01

    Full Text Available Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented.

  19. Snake venoms components with antitumor activity in murine melanoma cells

    International Nuclear Information System (INIS)

    Queiroz, Rodrigo Guimaraes

    2012-01-01

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  20. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  1. The vitamin E analog, alpha-tocopheryloxyacetic acid enhances the anti-tumor activity of trastuzumab against HER2/neu-expressing breast cancer

    Directory of Open Access Journals (Sweden)

    Penichet Manuel L

    2011-11-01

    Full Text Available Abstract Background HER2/neu is an oncogene that facilitates neoplastic transformation due to its ability to transduce growth signals in a ligand-independent manner, is over-expressed in 20-30% of human breast cancers correlating with aggressive disease and has been successfully targeted with trastuzumab (Herceptin®. Because trastuzumab alone achieves only a 15-30% response rate, it is now commonly combined with conventional chemotherapeutic drugs. While the combination of trastuzumab plus chemotherapy has greatly improved response rates and increased survival, these conventional chemotherapy drugs are frequently associated with gastrointestinal and cardiac toxicity, bone marrow and immune suppression. These drawbacks necessitate the development of new, less toxic drugs that can be combined with trastuzumab. Recently, we reported that orally administered alpha-tocopheryloxyacetic acid (α-TEA, a novel ether derivative of alpha-tocopherol, dramatically suppressed primary tumor growth and reduced the incidence of lung metastases both in a transplanted and a spontaneous mouse model of breast cancer without discernable toxicity. Methods In this study we examined the effect of α-TEA plus HER2/neu-specific antibody treatment on HER2/neu-expressing breast cancer cells in vitro and in a HER2/neu positive human xenograft tumor model in vivo. Results We show in vitro that α-TEA plus anti-HER2/neu antibody has an increased cytotoxic effect against murine mammary tumor cells and human breast cancer cells and that the anti-tumor effect of α-TEA is independent of HER2/neu status. More importantly, in a human breast cancer xenograft model, the combination of α-TEA plus trastuzumab resulted in faster tumor regression and more tumor-free animals than trastuzumab alone. Conclusion Due to the cancer cell selectivity of α-TEA, and because α-TEA kills both HER2/neu positive and HER2/neu negative breast cancer cells, it has the potential to be effective and

  2. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.

    Science.gov (United States)

    Alam, Badrul; Majumder, Rajib; Akter, Shahina; Lee, Sang-Han

    2015-02-01

    The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (PPiper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.

  3. The anti-tumor effect and biological activities of the extract JMM6 ...

    African Journals Online (AJOL)

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the ...

  4. Nitrosoureas: a review of experimental antitumor activity.

    Science.gov (United States)

    Schabel, F M

    1976-06-01

    The chemical class of drugs known as the nitrosoureas are a recently developed group of very active alkylating-agent anticancer drugs which are best represented by BCNU, CCNU, and methyl-CCNU (meCCNU). The nitrosoureas are among the most active, if not the most active, anticancer drugs both quantitatively (log kill of sensitive tumor cells in vivo) and qualitatively (spectrum of mouse, rat, and hamster tumors responding to treatment). Therapeutic anticancer activity of the nitrosoureas has been consistently observed with oral as well as parenteral administration. The nitrosoureas are clearly the most active group of anticancer drugs observed against experimental meningeal leukemias and intracerebrally implanted transplantable primary tumors of central nervous system origin (eg, gliomas, ependymoblastomas, and astrocytomas in mice and hamsters). The nitrosoureas have been observed to be less than additive in lethal toxicity for vital normal cells in the mouse in combination with representatives of the other major classes of anticancer agents, eg, purine antagonists, pyrimidine antagonists, inhibitors of DNA polymerase(s) or ribonucleotide reductase(s), mitotic inhibitors, drugs that bind to or intercalate with DNA, and other alkylating agents. Therapeutic synergism against one or more transplantable or spontaneous tumors of mice, rats, or hamsters with one of several nitrosoureas in two-drug combinations with representatives of most of the major classes of anticancer agents listed above has been reported. With a number of advanced-stages mouse tumors, generally considered to be refractory to treatment with most anticancer agents, long-term cures have been obtained with combination-drug or combined-modality (surgery plus chemotherapy) treatment. The demonstrated lack of cross-resistance of several leukemias and solid tumors of mice selected for resistance to BCNU, meCCNU, or other alkylating agents suggests that the widely held opinion that all alkylating agents are

  5. Degalactosylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity.

    Science.gov (United States)

    Kuchiike, Daisuke; Uto, Yoshihiro; Mukai, Hirotaka; Ishiyama, Noriko; Abe, Chiaki; Tanaka, Daichi; Kawai, Tomohito; Kubo, Kentaro; Mette, Martin; Inui, Toshio; Endo, Yoshio; Hori, Hitoshi

    2013-07-01

    The group-specific component protein-derived macrophage-activating factor (GcMAF) has various biological activities, such as macrophage activation and antitumor activity. Clinical trials of GcMAF have been carried out for metastatic breast cancer, prostate cancer, and metastatic colorectal cancer. In this study, despite the complicated purification process of GcMAF, we used enzymatically-treated human serum containing GcMAF with a considerable macrophage-stimulating activity and antitumor activity. We detected GcMAF in degalactosylated/desialylated human serum by western blotting using an anti-human Gc globulin antibody, and Helix pomatia agglutinin lectin. We also found that GcMAF-containing human serum significantly enhanced the phagocytic activity of mouse peritoneal macrophages and extended the survival time of mice bearing Ehrlich ascites tumors. We demonstrated that GcMAF-containing human serum can be used as a potential macrophage activator for cancer immunotherapy.

  6. Andrographolide enhanced 5-fluorouracil-induced antitumor effect in colorectal cancer via inhibition of c-MET pathway

    Directory of Open Access Journals (Sweden)

    Su M

    2017-11-01

    Full Text Available Meng Su,1 Baoli Qin,1 Fang Liu,2 Yuze Chen,2 Rui Zhang2 1Department of Internal Medicine, 2Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, China Abstract: Colorectal cancer (CRC is the third most common malignant neoplasm worldwide. 5-Fluorouracil (5-Fu is the most important chemotherapeutic drug used for the treatment of CRC. However, resistance to 5-Fu therapies is a growing concern in CRC clinical practice recently. Andrographolide (Andro is a main bioactive constituent of the herb Andrographis paniculata, which has various biological effects including anti-inflammation and antitumor activities. In the present study, we investigated the effects of combined Andro with 5-Fu against CRC HCT-116 cells. In vitro studies showed that Andro synergistically enhanced the anti-proliferation effect of 5-Fu on HCT-116 cells due to increased apoptotic cells. Meanwhile, results of the enzyme linked immunosorbent assay indicated that the level of phosphorylated cellular-mesenchymal to epithelial transition factor (p-MET was decreased by the combination treatment. Further study suggested that Andro promoted the antitumor effect of 5-Fu by downregulating the level of p-MET. In conclusion, these results confirmed the synergistic antitumor activity of Andro on CRC and provide evidence for possible clinical application of Andro for enhancing the antitumor effect of 5-Fu in CRC treatment. Keywords: Andro, 5-Fu, HCT-116 cells, apoptosis, p-MET

  7. Partial characterization, antioxidant and antitumor activities of polysaccharides from Philomycusbilineatus.

    Science.gov (United States)

    He, Rongjun; Ye, Jiaming; Zhao, Yuejun; Su, Weike

    2014-04-01

    Four polysaccharides (PBP60-A, PBP60-B, PBP60-C and PBP60-D) were purified from slug (Philomycusbilineatus) by ion-exchange chromatography. The antioxidant activities were studied by ABTS, DPPH, hydroxyl radical, superoxide radical and reducing power assay. In vitro antitumor activities were evaluated by MTT assay. Results demonstrated that PBP60-A was mainly composed of Man, Rha, Glc, Gal, Xyl and Fuc in a mole ratio of 6.13:3.08:8.97:5.22:2.46:1.13. PBP60-B was composed of Man, GlcN, Rha, GalN, GlcU, Glc, Gal, Xyl and Fuc in a mole ratio of 0.90:0.31:1.15:0.37:0.24:1.02:3.84:0.93:1.99. PBP60-C and PBP60-D were composed of Man, GlcN, Rha, GalN, GlcU, Glc, Gal, Xyl, Fuc and an unknown monosaccharide. Antioxidant tests indicated that four polysaccharides exhibited significant antioxidant activities in a dose-dependent manner. PBP60-D presented relative stronger antioxidant activity. PBP60-C showed higher antitumor activity against A549 and MCF-7 cells in vitro. At concentration of500 μg/mL, the antitumor activities of PBP60-C on theA549 and MCF-7 cells were 65.30% and 42.45%, respectively. These results indicated that polysaccharides from Philomycusbilineatus could be explored as potential natural antioxidants and cancer prevention agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2017-05-01

    Full Text Available ABSTRACT The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB. The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

  9. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig enhances immune responses and antitumor activity

    Directory of Open Access Journals (Sweden)

    Gligorov Joseph

    2010-07-01

    Full Text Available Abstract Background IMP321 is a recombinant soluble LAG-3Ig fusion protein that binds to MHC class II with high avidity and mediates APC and then antigen-experienced memory CD8+ T cell activation. We report clinical and biological results of a phase I/II in patients with metastatic breast carcinoma (MBC receiving first-line paclitaxel weekly, 3 weeks out of 4. Methods MBC patients were administered one dose of IMP321 s.c. every two weeks for a total of 24 weeks (12 injections. The repeated single doses were administered the day after chemotherapy at D2 and D16 of the 28-day cycles of paclitaxel (80 mg/m2 at D1, D8 and D15, for 6 cycles. Blood samples were taken 13 days after the sixth and the twelfth IMP321 injections to determine sustained APC, NK and memory CD8 T cell responses. Results Thirty MBC patients received IMP321 in three cohorts (doses: 0.25, 1.25 and 6.25 mg. IMP321 induced both a sustained increase in the number and activation of APC (monocytes and dendritic cells and an increase in the percentage of NK and long-lived cytotoxic effector-memory CD8 T cells. Clinical benefit was observed for 90% of patients with only 3 progressors at 6 months. Also, the objective tumor response rate of 50% compared favorably to the 25% rate reported in the historical control group. Conclusions The absence of toxicity and the demonstration of activity strongly support the future development of this agent for clinical use in combined first-line regimens. Trial registration ClinicalTrials.gov NCT00349934

  10. Effect of electron beam-irradiation to b-glucan on its immunomodulating and antitumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yeon Hwan; Lee, Jung Lim; Yoo, Yung Choon [Konyand Univ., Daejeon (Korea, Republic of); Kim, Jae Hoon; Lee, Ju Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    In this study, in order investigated the effect of electron beam irradiation to b-glucan on its biological activities, we compared immunomodulating and antitumor activity between non-irradiated and electron beam-irradiated b-glucan. EB-glucan was irradiated by electron beam with 10, 30 and 50 kGy. Treatment with EB-glucan resulted in a slight increase of the proliferation of ConA-stimulated splenocytes, and the strongest activity was seen in 50 kGy-treated EB-glucan. EB-glucan teated with 50 kGy also showed increased secretion of cytokines such as IL-2 IFN-{gamma} and IL-6 from ConA-stimulated splenocytes. The activity of EB-glucan to enhance the proliferation of splenocytes and cytokine secretion from ConA-stimulated splenocytes was higher than that of NI-glucan. Furthermore, EB-glucan treated with 50 kGy showed higher activity to activate RAW 264.7 macrophages, comparing with that of NI-glucan. In experiments of antitumor activity, EB-glucan treated with 50 kGy prior to tumor inoculation inhibited an experimental lung metastasis produced by B16-BL6 melanoma cells in mice. But NI-glucan did show no effect. In addition, EB-glucan treated with 50 kGy induced a decrease a decrease of tumor growth in tumor-bearing mice. Collectivelt, these results indicates that electron beam irradiation {beta}-glucan leads its biological functions to enhance immunomodulating and antitumor activity.

  11. Effect of electron beam-irradiation to b-glucan on its immunomodulating and antitumor activity

    International Nuclear Information System (INIS)

    Jung, Yeon Hwan; Lee, Jung Lim; Yoo, Yung Choon; Kim, Jae Hoon; Lee, Ju Woon

    2010-01-01

    In this study, in order investigated the effect of electron beam irradiation to b-glucan on its biological activities, we compared immunomodulating and antitumor activity between non-irradiated and electron beam-irradiated b-glucan. EB-glucan was irradiated by electron beam with 10, 30 and 50 kGy. Treatment with EB-glucan resulted in a slight increase of the proliferation of ConA-stimulated splenocytes, and the strongest activity was seen in 50 kGy-treated EB-glucan. EB-glucan teated with 50 kGy also showed increased secretion of cytokines such as IL-2 IFN-γ and IL-6 from ConA-stimulated splenocytes. The activity of EB-glucan to enhance the proliferation of splenocytes and cytokine secretion from ConA-stimulated splenocytes was higher than that of NI-glucan. Furthermore, EB-glucan treated with 50 kGy showed higher activity to activate RAW 264.7 macrophages, comparing with that of NI-glucan. In experiments of antitumor activity, EB-glucan treated with 50 kGy prior to tumor inoculation inhibited an experimental lung metastasis produced by B16-BL6 melanoma cells in mice. But NI-glucan did show no effect. In addition, EB-glucan treated with 50 kGy induced a decrease a decrease of tumor growth in tumor-bearing mice. Collectivelt, these results indicates that electron beam irradiation β-glucan leads its biological functions to enhance immunomodulating and antitumor activity

  12. Study on the Immunomodulation Effect of Isodon japonicus Extract via Splenocyte Function and NK Anti-Tumor Activity

    Directory of Open Access Journals (Sweden)

    Kyung-A Hwang

    2012-04-01

    Full Text Available Here we investigated the potential immune-enhancing activity of Isodon japonicus on murine splenocyte and natural-killer (NK cells in vitro. The ethanol extract of I. japonicus significantly enhanced the proliferation of splenocyte and induced the significant enhancement of NK cells’ activity against tumor cells (YAC-1. In addition, I. japonicus increased the production of interferon (IFN-γ and tumor necrosis factor (TNF-α, suggesting that the increase in NK cell cytotoxicity could be due to the enhancement of the NK cell production of both cytokines. Taken together, I. japonicus extract inhibited the growth of human leukemia cells (K562 by 74%. Our observation indicated that the anti-tumor effects of I. japonicus may be attributed to its ability to serve as a stimulant of NK anti-tumor activity. In addition, our results support the development of functional food studies on I. japonicus.

  13. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-03-17

    Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-gamma secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  14. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Kim Sung-Ho

    2009-03-01

    Full Text Available Abstract Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. Results In melanoma-bearing mice, cisplatin (4 mg/kg B.W. reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. Conclusion HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  15. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect.

    Science.gov (United States)

    Saisyo, Atsuyuki; Nakamura, Hideaki; Fang, Jun; Tsukigawa, Kenji; Greish, Khaled; Furukawa, Hiroyuki; Maeda, Hiroshi

    2016-02-01

    Cisplatin (CDDP) is widely used to treat various cancers. However, its distribution to normal tissues causes serious adverse effects. For this study, we synthesized a complex of styrene-maleic acid copolymer (SMA) and CDDP (SMA-CDDP), which formed polymeric micelles, to achieve tumor-selective drug delivery based on the enhanced permeability and retention (EPR) effect. SMA-CDDP is obtained by regulating the pH of the reaction solution of SMA and CDDP. The mean SMA-CDDP particle size was 102.5 nm in PBS according to electrophoretic light scattering, and the CDDP content was 20.1% (w/w). The release rate of free CDDP derivatives from the SMA-CDDP complex at physiological pH was quite slow (0.75%/day), whereas it was much faster at pH 5.5 (4.4%/day). SMA-CDDP thus had weaker in vitro toxicity at pH 7.4 but higher cytotoxicity at pH 5.5. In vivo pharmacokinetic studies showed a 5-fold higher tumor concentration of SMA-CDDP than of free CDDP. SMA-CDDP had more effective antitumor potential but lower toxicity than did free CDDP in mice after i.v. administration. Administration of parental free CDDP at 4 mg/kg×3 caused a weight loss of more than 5%; SMA-CDDP at 60 mg/kg (CDDP equivalent)×3 caused no significant weight change but markedly suppressed S-180 tumor growth. These findings together suggested using micelles of the SMA-CDDP complex as a cancer chemotherapeutic agent because of beneficial properties-tumor-selective accumulation and relatively rapid drug release at the acidic pH of the tumor-which resulted in superior antitumor effects and fewer side effects compared with free CDDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Anti-Tumor Activity of a Polysaccharide from Blueberry

    Directory of Open Access Journals (Sweden)

    Xiyun Sun

    2015-02-01

    Full Text Available Blueberries (Vaccinium spp. are rich in bioactive compounds. However, the biological activity of polysaccharides from blueberry has not been reported so far. This study evaluated the anti-tumor and immunological activities of a polysaccharide (BBP3-1 from blueberry in S180-bearing mice. The experimental results indicated that BBP3-1 (100 mg·kg−1·d−1 inhibited the tumor growth rate by 73.4%. Moreover, this group, compared with the model control, had shown an effect of increasing both the spleen and thymus indices (p < 0.05, increasing phagocytosis by macrophages (p < 0.05, boosting the proliferation and transformation of lymphocytes (p < 0.01, promoting the secretion of TNF-α, IFN-γ, and IL-2 (p < 0.05 and improving NK cell activity (p < 0.01. From this study, we could easily conclude that BBP3-1 has the ability to inhibit tumor progression and could act as a good immunomodulator.

  17. Transferrin-Modified Nanoparticles for Photodynamic Therapy Enhance the Antitumor Efficacy of Hypocrellin A

    Directory of Open Access Journals (Sweden)

    Xi Lin

    2017-11-01

    Full Text Available Photodynamic therapy (PDT has emerged as a potent novel therapeutic modality that induces cell death through light-induced activation of photosensitizer. But some photosensitizers have characteristics of poor water-solubility and non-specific tissue distribution. These characteristics become main obstacles of PDT. In this paper, we synthesized a targeting drug delivery system (TDDS to improve the water-solubility of photosensitizer and enhance the ability of targeted TFR positive tumor cells. TDDS is a transferrin-modified Poly(D,L-Lactide-co-glycolide (PLGA and carboxymethyl chitosan (CMC nanoparticle loaded with a photosensitizer hypocrellin A (HA, named TF-HA-CMC-PLGA NPs. Morphology, size distribution, Fourier transform infrared (FT-IR spectra, encapsulation efficiency, and loading capacity of TF-HA-CMC-PLGA NPs were characterized. In vitro TF-HA-CMC-PLGA NPs presented weak dark cytotoxicity and significant photo-cytotoxicity with strong reactive oxygen species (ROS generation and apoptotic cancer cell death. In vivo photodynamic antitumor efficacy of TF-HA-CMC-PLGA NPs was investigated with an A549 (TFR positive tumor-bearing model in male athymic nude mice. TF-HA-CMC-PLGA NPs caused tumor delay with a remarkable tumor inhibition rate of 63% for 15 days. Extensive cell apoptosis in tumor tissue and slight side effects in normal organs were observed. The results indicated that TDDS has great potential to enhance PDT therapeutic efficacy.

  18. Induction of mitophagy-mediated antitumor activity with folate-appended methyl-β-cyclodextrin.

    Science.gov (United States)

    Kameyama, Kazuhisa; Motoyama, Keiichi; Tanaka, Nao; Yamashita, Yuki; Higashi, Taishi; Arima, Hidetoshi

    2017-01-01

    Mitophagy is the specific autophagic elimination system of mitochondria, which regulates cellular survival via the removal of damaged mitochondria. Recently, we revealed that folate-appended methyl-β-cyclodextrin (FA-M-β-CyD) provides selective antitumor activity in folate receptor-α (FR-α)-expressing cells by the induction of autophagy. In this study, to gain insight into the detailed mechanism of this antitumor activity, we focused on the induction of mitophagy by the treatment of FR-α-expressing tumor cells with FA-M-β-CyD. In contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered KB cells, human epithelial cells from a fatal cervical carcinoma (FR-α (+)) through FR-α-mediated endocytosis. The transmembrane potential of isolated mitochondria after treatment with FA-M-β-CyD was significantly elevated. In addition, FA-M-β-CyD lowered adenosine triphosphate (ATP) production and promoted reactive oxygen species production in KB cells (FR-α (+)). Importantly, FA-M-β-CyD enhanced light chain 3 (LC3) conversion (LC3-I to LC3-II) in KB cells (FR-α (+)) and induced PTEN-induced putative kinase 1 (PINK1) protein expression, which is involved in the induction of mitophagy. Furthermore, FA-M-β-CyD had potent antitumor activity in BALB/c nu/nu mice xenografted with KB cells (FR-α (+)) without any significant side effects. Taken together, these findings demonstrate that the autophagic cell death elicited by FA-M-β-CyD could be associated with mitophagy induced by an impaired mitochondrial function.

  19. Antitumoral activity of marine organism; Actividad antitumoral de los organismos marinos

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Iglesias, O [Centro de Bioproductos Marinos, La Habana (Cuba); Perez Gil, R; Colom, Y [Instituno Nacional de Oncologia y Radiobiologia (INOR), La Habana (Cuba)

    2010-07-01

    The study of the natural products from marine organism constitute a relatively recent scientific researcher field with high potentialities tanking in consideration that the oceans cover the three of the four parts of the earth. Poryphera and Bryozoans have been the Phylum more studied owning to the vulnerability, their soft body, their habitat on rocks, their slow movement and bright colors, for these reason these organisms are able to produce chemical substances as defense methods against depredators. Same mechanism is exhibit by the seaweeds with the production of secondary metabolites . In the present communication are exposed the main results obtained on the world a Cuba until the present in the looking for of substances with antitumor action from marine organism.

  20. PEGylation of α-momorcharin retained its anti-tumor activity with ...

    African Journals Online (AJOL)

    user

    the anti-tumor activity of α-MMC-PEG decreased by about 30% in vitro. This sensitivity increase of 50 ... experiments and were acclimatized in the animal room. They were housed on aspen ..... PEGylation, successful approach to drug delivery.

  1. Tuftsin: a hormone-like tetrapeptide with antimicrobial and antitumor activities

    International Nuclear Information System (INIS)

    Nishioka, K.; Amoscato, A.A.; Babcock, G.F.

    1981-01-01

    A specific fraction of immunoglobulin G binds to polymorphonuclear neutrophils and stimulates their phagocytic activity. This phagocytosis-stimulating activity resides solely in a small peptide termed tuftsin, of the sequence Thr-Lys-Pro-Arg, which has been isolated from the leukophilic immunoglobulin G fraction. The physiological significance of tuftsin has been demonstrated in splenectomized patients and patients with a congenital tuftsin abnormality, in whom the low levels of tuftsin in sera (measurable by radioimmunoassay) coincides with a high incidence of infection. Tuftsin has also been shown to enhance bactericidal activity in addition to phagocytosis. Its biological activities appear to be mediated via specific tuftsin receptors which have been found on macrophages, monocytes and granulocytes. In addition, tuftsin possesses chemotactic, migration-enhancing and mitogenic properties for leukocytes and has recently been shown to enhance their anti-tumor activity in vitro as well as in vivo. Other known activities of tuftsin include effects on the activity of the hexose monophosphate shunt, on the concentrations of intracellular cyclic nucleotides and on the efflux of Ca 2+ in leukocytes. Tuftsin has been chemically synthesized in various laboratories using different procedures and also is available commercially. The above features of tuftsin plus the expected low toxicity of this peptide make tuftsin a very attractive agent for immunotherapy against infection and cancer. However, a great deal of caution needs to be exercised when using tuftsin due to inhibitory contaminants found in certain commercial preparations

  2. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Canhui Yi

    Full Text Available Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy.

  3. Melatonin Enhances the Anti-Tumor Effect of Fisetin by Inhibiting COX-2/iNOS and NF-κB/p300 Signaling Pathways

    Science.gov (United States)

    Yu, Zhenlong; Xiao, Yao; Wang, Jingshu; Qiu, Huijuan; Yu, Wendan; Tang, Ranran; Yuan, Yuhui; Guo, Wei; Deng, Wuguo

    2014-01-01

    Melatonin is a hormone identified in plants and pineal glands of mammals and possesses diverse physiological functions. Fisetin is a bio-flavonoid widely found in plants and exerts antitumor activity in several types of human cancers. However, the combinational effect of melatonin and fisetin on antitumor activity, especially in melanoma treatment, remains unclear. Here, we tested the hypothesis that melatonin could enhance the antitumor activity of fisetin in melanoma cells and identified the underlying molecular mechanisms. The combinational treatment of melanoma cells with fisetin and melatonin significantly enhanced the inhibitions of cell viability, cell migration and clone formation, and the induction of apoptosis when compared with the treatment of fisetin alone. Moreover, such enhancement of antitumor effect by melatonin was found to be mediated through the modulation of the multiply signaling pathways in melanoma cells. The combinational treatment of fisetin with melatonin increased the cleavage of PARP proteins, triggered more release of cytochrome-c from the mitochondrial inter-membrane, enhanced the inhibition of COX-2 and iNOS expression, repressed the nuclear localization of p300 and NF-κB proteins, and abrogated the binding of NF-κB on COX-2 promoter. Thus, these results demonstrated that melatonin potentiated the anti-tumor effect of fisetin in melanoma cells by activating cytochrome-c-dependent apoptotic pathway and inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways, and our study suggests the potential of such a combinational treatment of natural products in melanoma therapy. PMID:25000190

  4. Ibrutinib, a Bruton's tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma.

    Science.gov (United States)

    Wang, Jin; Liu, Xiaoyang; Hong, Yongzhi; Wang, Songtao; Chen, Pin; Gu, Aihua; Guo, Xiaoyuan; Zhao, Peng

    2017-07-17

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, is a novel anticancer drug used for treating several types of cancers. In this study, we aimed to determine the role of ibrutinib on GBM. Cell proliferation was determined by using cell viability, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and cell apoptosis were analyzed by flow cytometry. Cell migratory ability was evaluated by wound healing assays and trans-well migration assays. ATG7 expression was knocked-down by transfection with Atg7-specific small interfering RNA. Overexpression of active Akt protein was achieved by transfecting the cells with a plasmid expressing constitutively active Akt (CA-Akt). Transmission electron microscopy was performed to examine the formation of autophagosomes in cells. Immunofluorescence and western blot analyses were used to analyze protein expression. Tumor xenografts in nude mice and immunohistochemistry were performed to evaluate the effect of ibrutinib on tumor growth in vivo. Ibrutinib inhibited cellular proliferation and migration, and induced apoptosis and autophagy in LN229 and U87 cells. Overexpression of the active Akt protein decreased ibrutinib-induced autophagy, while inhibiting Akt by LY294002 treatment enhanced ibrutinib-induced autophagy. Specific inhibition of autophagy by 3-methyladenine (3MA) or Atg7 targeting with small interfering RNA (si-Atg7) enhanced the anti-GBM effect of ibrutinib in vitro and in vivo. Our results indicate that ibrutinib exerts a profound antitumor effect and induces autophagy through Akt/mTOR signaling pathway in GBM cells. Autophagy inhibition promotes the antitumor activity of ibrutinib in GBM. Our findings provide important insights into the action of an anticancer agent combining with autophagy inhibitor for malignant glioma.

  5. 3D printed constructs with antibacterial or antitumor activity for surgical treatment of bone defects in cancer patients

    Science.gov (United States)

    Sergeeva, N. S.; Sviridova, I. K.; Komlev, V. S.; Karalkin, P. A.; Kirsanova, V. A.; Akhmedova, S. A.; Shanskij, Ya. D.; Kuvshinova, E. A.; Fedotov, A. Yu.; Teterina, A. Yu.; Barinov, S. M.

    2017-09-01

    The concept of functionalization with bioactive molecules and drugs is one of the most advanced areas of modern bone tissue biomaterial science in terms of enhancement of their osteoconductive and therapeutic properties. The purpose of this study was to develop the approaches for 3D printing of sodium alginate /gelatin /octacalcium phosphate-based constructs with antibacterial and antitumor activity intended for bone defects replacement in the patients with malignant diseases. In this work, we evaluated the drug release kinetic and physicochemical characteristics of the constructs, as well as their specific activity, biocompatibility and osteoplastic properties in in vitro and in vivo tests. The experimental results proved the principal possibility of creating the biocompatible bone substitutes with antibacterial/antitumor activity and maintaining osteoconductive properties by means of 3D printing method.

  6. Anti-tumor activity of polysaccharides extracted from Senecio ...

    African Journals Online (AJOL)

    Purpose: To optimize the extraction conditions of polysaccharides from the root of Senecio scandens Buch,-Ham. (PRS) and evaluate its anti-tumor effect on hepatocellular carcinoma. Methods: Response surface methodology (RSM) applied with a Box-Behnken design (BBD, three levels and three factors) was employed to ...

  7. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity

    Directory of Open Access Journals (Sweden)

    Mari Hirvinen

    2016-01-01

    Full Text Available In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate—and eventually the long-lasting adaptive immunity against cancer.

  8. Doxil Synergizes with Cancer Immunotherapies to Enhance Antitumor Responses in Syngeneic Mouse Models

    Directory of Open Access Journals (Sweden)

    Jonathan Rios-Doria

    2015-08-01

    Full Text Available Based on the previously described roles of doxorubicin in immunogenic cell death, both doxorubicin and liposomal doxorubicin (Doxil were evaluated for their ability to boost the antitumor response of different cancer immunotherapies including checkpoint blockers (anti–PD-L1, PD-1, and CTLA-4 mAbs and TNF receptor agonists (OX40 and GITR ligand fusion proteins in syngeneic mouse models. In a preventative CT26 mouse tumor model, both doxorubicin and Doxil synergized with anti–PD-1 and CTLA-4 mAbs. Doxil was active when CT26 tumors were grown in immunocompetent mice but not immunocompromised mice, demonstrating that Doxil activity is increased in the presence of a functional immune system. Using established tumors and maximally efficacious doses of Doxil and cancer immunotherapies in either CT26 or MCA205 tumor models, combination groups produced strong synergistic antitumor effects, a larger percentage of complete responders, and increased survival. In vivo pharmacodynamic studies showed that Doxil treatment decreased the percentage of tumor-infiltrating regulatory T cells and, in combination with anti–PD-L1, increased the percentage of tumor-infiltrating CD8+ T cells. In the tumor, Doxil administration increased CD80 expression on mature dendritic cells. CD80 expression was also increased on both monocytic and granulocytic myeloid cells, suggesting that Doxil may induce these tumor-infiltrating cells to elicit a costimulatory phenotype capable of activating an antitumor T-cell response. These results uncover a novel role for Doxil in immunomodulation and support the use of Doxil in combination with checkpoint blockade or TNFR agonists to increase response rates and antitumor activity.

  9. Study of Antitumor Activity of Sodium Phenylbutyrate, Histon Deacetylase Inhibitor, on Ehrlich Carcinoma Model.

    Science.gov (United States)

    Fadeev, N P; Kharisov, R I; Kovan'ko, E G; Pustovalov, Yu I

    2015-09-01

    Antitumor activity of sodium phenylbutyrate was studied on 120 outbred female mice with transplanted Ehrlich ascites carcinoma. The animals received the drug in doses of 400, 800, and 1200 mg/kg with drinking water daily for 21 days. The antitumor effect was evaluated by tumor growth inhibition and lifespan prolongation. Phenylbutyrate in the dose of 800 mg/kg was most effective. The drug inhibited the tumor growth by 71%, prolonged the lifespan of animals by 28, and was low-toxic.

  10. Transcutaneous carbon dioxide enhances the antitumor effect of radiotherapy on oral squamous cell carcinoma.

    Science.gov (United States)

    Iwata, Eiji; Hasegawa, Takumi; Ueha, Takeshi; Takeda, Daisuke; Saito, Izumi; Kawamoto, Teruya; Akisue, Toshihiro; Sakai, Yoshitada; Sasaki, Ryohei; Kuroda, Ryosuke; Komori, Takahide

    2018-05-16

    Radiotherapy (RT) is one of the main treatment modalities for oral squamous cell carcinoma (OSCC), however, radioresistance is a major impediment to its clinical success and poses as a concern that needs to be addressed. Tumor hypoxia is known to be significantly associated with radioresistance in various malignancies, hence, resolving the hypoxic state of a tumor may improve the antitumor effect of RT on OSCC. We have previously revealed that transcutaneous CO2 induced mitochondrial apoptosis and suppressed tumor growth in OSCC by resolving hypoxia. Considering the previous study, we hypothesized that transcutaneous CO2 may enhance the antitumor effect of RT on OSCC by improving intratumoral hypoxia, thereby overcoming radioresistance. In the present study, the combination of transcutaneous CO2 and RT significantly inhibited tumor growth compared with other treatments. This combination therapy also led to decreased expression of HIF-1α in parallel with increased expression of the cleaved forms of caspase-3-8-9 and PARP, which play essential roles in mitochondrial apoptosis. Additionally, the combination therapy increased the expression of ROS modulator 1 and subsequent mitochondrial ROS production, compared to RT alone. These results indicated that transcutaneous CO2 could potentially improve the antitumor effect of RT by decreasing the intratumoral hypoxia and increasing the mitochondrial apoptosis. Our findings indicated that CO2 therapy may be a novel adjuvant therapy in combination with RT for OSCC.

  11. Gold namoprtices enhance anti-tumor effect of radiotherapy to hypoxic tumor

    International Nuclear Information System (INIS)

    Kim, Mi Sun; Lee, Eun Jung; Kim, Jae Won; Keum, Ki Chang; Koom, Woong Sub; Chung, Ui Seok; Koh, Won Gun

    2016-01-01

    Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors

  12. Gold namoprtices enhance anti-tumor effect of radiotherapy to hypoxic tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Sun; Lee, Eun Jung; Kim, Jae Won; Keum, Ki Chang; Koom, Woong Sub [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ui Seok; Koh, Won Gun [Dept. of Chemical and Biomolecular Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-09-15

    Hypoxia can impair the therapeutic efficacy of radiotherapy (RT). Therefore, a new strategy is necessary for enhancing the response to RT. In this study, we investigated whether the combination of nanoparticles and RT is effective in eliminating the radioresistance of hypoxic tumors. Gold nanoparticles (GNPs) consisting of a silica core with a gold shell were used. CT26 colon cancer mouse model was developed to study whether the combination of RT and GNPs reduced hypoxia-induced radioresistance. Hypoxia inducible factor-1α (HIF-1α) was used as a hypoxia marker. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were conducted to evaluate cell death. Hypoxic tumor cells had an impaired response to RT. GNPs combined with RT enhanced anti-tumor effect in hypoxic tumor compared with RT alone. The combination of GNPs and RT decreased tumor cell viability compare to RT alone in vitro. Under hypoxia, tumors treated with GNPs + RT showed a higher response than that shown by tumors treated with RT alone. When a reactive oxygen species (ROS) scavenger was added, the enhanced antitumor effect of GNPs + RT was diminished. In the present study, hypoxic tumors treated with GNPs + RT showed favorable responses, which might be attributable to the ROS production induced by GNPs + RT. Taken together, GNPs combined with RT seems to be potential modality for enhancing the response to RT in hypoxic tumors.

  13. Oligodeoxynucleotides Expressing Polyguanosine Motifs Promote Anti-Tumor Activity through the Up-Regulation of IL-2

    Science.gov (United States)

    Kobayashi, Nobuaki; Hong, Choongman; Klinman, Dennis M.; Shirota, Hidekazu

    2012-01-01

    The primary goal of cancer immunotherapy is to elicit an immune response capable of eliminating the tumor. One approach towards accomplishing that goal utilizes general (rather than tumor-specific) immunomodulatory agents to boost the number and activity of pre-existing cytotoxic T lymphocytes. We find that the intra-tumoral injection of poly-G ODN has such an effect, boosting anti-tumor immunity and promoting tumor regression. The anti-tumor activity of polyguanosine (poly-G) oligonucleotides (ODN) was mediated through CD8 T cells in a TLR9 independent manner. Mechanistically, poly-G ODN directly induced the phosphorylation of Lck (an essential element of the T cell signaling pathway), thereby enhancing the production of IL-2 and CD8 T cell proliferation. These findings establish poly-G ODN as a novel type of cancer immunotherapy. PMID:23296706

  14. GSK-3 inhibition in vitro and in vivo enhances antitumor effect of sorafenib in renal cell carcinoma (RCC)

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, Hisashi; Bilim, Vladimir N. [Laboratory of Molecular Oncology, Department of Urology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585 (Japan); Ugolkov, Andrey V., E-mail: ugolkov@northwestern.edu [Tumor Biology Core, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Silverman Hall B733, Northwestern University, Evanston, IL (United States); Yuuki, Kaori; Naito, Sei; Nagaoka, Akira; Kato, Tomoyuki [Laboratory of Molecular Oncology, Department of Urology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585 (Japan); Tomita, Yoshihiko, E-mail: ytomita@med.id.yamagata-u.ac.jp [Laboratory of Molecular Oncology, Department of Urology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585 (Japan)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Sorafenib treatment upregulated GSK-3{beta} levels in RCC cells. Black-Right-Pointing-Pointer Pharmacologic inhibition of GSK-3 suppressed xenograft RCC tumor growth. Black-Right-Pointing-Pointer Inhibition of GSK-3 enhanced antitumor effect of sorafenib in vitro and in vivo. -- Abstract: Sorafenib is a multikinase inhibitor approved for the systemic treatment of renal cell carcinoma (RCC). However, sorafenib treatment has a limited effect due to acquired chemoresistance of RCC. Previously, we identified glycogen synthase kinase-3 (GSK-3) as a new therapeutic target in RCC. Here, we observed that sorafenib inhibits proliferation and survival of RCC cells. Significantly, we revealed that sorafenib enhances GSK-3 activity in RCC cells, which could be a potential mechanism of acquired chemoresistance. We found that pharmacological inhibition of GSK-3 potentiates sorafenib antitumor effect in vitro and in vivo. Our results suggest that combining GSK-3 inhibitor and sorafenib might be a potential new therapeutic approach for RCC treatment.

  15. Regorafenib: Antitumor Activity upon Mono and Combination Therapy in Preclinical Pediatric Malignancy Models.

    Directory of Open Access Journals (Sweden)

    Estelle Daudigeos-Dubus

    Full Text Available The multikinase inhibitor regorafenib (BAY 73-4506 exerts both anti-angiogenic and anti-tumorigenic activity in adult solid malignancies mainly advanced colorectal cancer and gastrointestinal stromal tumors. We intended to explore preclinically the potential of regorafenib against solid pediatric malignancies alone and in combination with anticancer agents to guide the pediatric development plan. In vitro effects on cell proliferation were screened against 33 solid tumor cell lines of the Innovative Therapies for Children with Cancer (ITCC panel covering five pediatric solid malignancies. Regorafenib inhibited cell proliferation with a mean half maximal growth inhibition of 12.5 μmol/L (range 0.7 μmol/L to 28 μmol/L. In vivo, regorafenib was evaluated alone at 10 or 30 mg/kg/d or in combination with radiation, irinotecan or the mitogen-activated protein kinase kinase (MEK inhibitor refametinib against various tumor types, including patient-derived brain tumor models with an amplified platelet-derived growth factor receptor A (PDGFRA gene. Regorafenib alone significantly inhibited tumor growth in all xenografts derived from nervous system and connective tissue tumors. Enhanced effects were observed when regorafenib was combined with irradiation and irinotecan against PDGFRA amplified IGRG93 glioma and IGRM57 medulloblastoma respectively, resulting in 100% tumor regressions. Antitumor activity was associated with decreased tumor vascularization, inhibition of PDGFR signaling, and induction of apoptotic cell death. Our work demonstrates that regorafenib exhibits significant antitumor activity in a wide spectrum of preclinical pediatric models through inhibition of angiogenesis and induction of apoptosis. Furthermore, radio- and chemosensitizing effects were observed with DNA damaging agents in PDGFR amplified tumors.

  16. Regorafenib: Antitumor Activity upon Mono and Combination Therapy in Preclinical Pediatric Malignancy Models.

    Science.gov (United States)

    Daudigeos-Dubus, Estelle; Le Dret, Ludivine; Lanvers-Kaminsky, Claudia; Bawa, Olivia; Opolon, Paule; Vievard, Albane; Villa, Irène; Pagès, Mélanie; Bosq, Jacques; Vassal, Gilles; Zopf, Dieter; Geoerger, Birgit

    2015-01-01

    The multikinase inhibitor regorafenib (BAY 73-4506) exerts both anti-angiogenic and anti-tumorigenic activity in adult solid malignancies mainly advanced colorectal cancer and gastrointestinal stromal tumors. We intended to explore preclinically the potential of regorafenib against solid pediatric malignancies alone and in combination with anticancer agents to guide the pediatric development plan. In vitro effects on cell proliferation were screened against 33 solid tumor cell lines of the Innovative Therapies for Children with Cancer (ITCC) panel covering five pediatric solid malignancies. Regorafenib inhibited cell proliferation with a mean half maximal growth inhibition of 12.5 μmol/L (range 0.7 μmol/L to 28 μmol/L). In vivo, regorafenib was evaluated alone at 10 or 30 mg/kg/d or in combination with radiation, irinotecan or the mitogen-activated protein kinase kinase (MEK) inhibitor refametinib against various tumor types, including patient-derived brain tumor models with an amplified platelet-derived growth factor receptor A (PDGFRA) gene. Regorafenib alone significantly inhibited tumor growth in all xenografts derived from nervous system and connective tissue tumors. Enhanced effects were observed when regorafenib was combined with irradiation and irinotecan against PDGFRA amplified IGRG93 glioma and IGRM57 medulloblastoma respectively, resulting in 100% tumor regressions. Antitumor activity was associated with decreased tumor vascularization, inhibition of PDGFR signaling, and induction of apoptotic cell death. Our work demonstrates that regorafenib exhibits significant antitumor activity in a wide spectrum of preclinical pediatric models through inhibition of angiogenesis and induction of apoptosis. Furthermore, radio- and chemosensitizing effects were observed with DNA damaging agents in PDGFR amplified tumors.

  17. Structure and Antitumor and Immunomodulatory Activities of a Water-Soluble Polysaccharide from Dimocarpus longan Pulp

    Science.gov (United States)

    Meng, Fa-Yan; Ning, Yuan-Ling; Qi, Jia; He, Zhou; Jie, Jiang; Lin, Juan-Juan; Huang, Yan-Jun; Li, Fu-Sen; Li, Xue-Hua

    2014-01-01

    A new water-soluble polysaccharide (longan polysaccharide 1 (LP1)) was extracted and successfully purified from Dimocarpus longan pulp via diethylaminoethyl (DEAE)-cellulose anion-exchange and Sephacryl S-300 HR gel chromatography. The chemical structure was determined using Infrared (IR), gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. The results indicated that the molecular weight of the sample was 1.1 × 105 Da. Monosaccharide composition analysis revealed that LP1 was composed of Glc, GalA, Ara and Gal in a molar ratio of 5.39:1.04:0.74:0.21. Structural analysis indicated that LP1 consisted of a backbone of →4)-α-d-Glcp-(1→4)-α-d-GalpA-(1→4)-α-d-Glcp-(1→4)-β-d-Glcp-(1→ units with poly saccharide side chains composed of →2)-β-d-Fruf-(1→2)-l-sorbose-(1→ attached to the O-6 position of the α-d-Glcp residues. In vitro experiments indicated that LP1 had significantly high antitumor activity against SKOV3 and HO8910 tumor cells, with inhibition percentages of 40% and 50%, respectively. In addition, LP1 significantly stimulated the production of the cytokine interferon-γ (IFN-γ), increased the activity of murine macrophages and enhanced B- and T-lymphocyte proliferation. The results of this study demonstrate that LP1 has potential applications as a natural antitumor agent with immunomodulatory activity. PMID:24663085

  18. Induction of mitophagy-mediated antitumor activity with folate-appended methyl-β-cyclodextrin

    Directory of Open Access Journals (Sweden)

    Kameyama K

    2017-04-01

    Full Text Available Kazuhisa Kameyama,1,* Keiichi Motoyama,1,* Nao Tanaka,1 Yuki Yamashita,1 Taishi Higashi,1 Hidetoshi Arima1,2,* 1Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, 2Program for Leading Graduate Schools “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented Program,” Kumamoto University, Kumamoto, Japan *These authors contributed equally to this work Abstract: Mitophagy is the specific autophagic elimination system of mitochondria, which regulates cellular survival via the removal of damaged mitochondria. Recently, we revealed that folate-appended methyl-β-cyclodextrin (FA-M-β-CyD provides selective antitumor activity in folate receptor-α (FR-α-expressing cells by the induction of autophagy. In this study, to gain insight into the detailed mechanism of this antitumor activity, we focused on the induction of mitophagy by the treatment of FR-α-expressing tumor cells with FA-M-β-CyD. In contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered KB cells, human epithelial cells from a fatal cervical carcinoma (FR-α (+ through FR-α-mediated endocytosis. The transmembrane potential of isolated mitochondria after treatment with FA-M-β-CyD was significantly elevated. In addition, FA-M-β-CyD lowered adenosine triphosphate (ATP production and promoted reactive oxygen species production in KB cells (FR-α (+. Importantly, FA-M-β-CyD enhanced light chain 3 (LC3 conversion (LC3-I to LC3-II in KB cells (FR-α (+ and induced PTEN-induced putative kinase 1 (PINK1 protein expression, which is involved in the induction of mitophagy. Furthermore, FA-M-β-CyD had potent antitumor activity in BALB/c nu/nu mice xenografted with KB cells (FR-α (+ without any significant side effects. Taken together, these findings demonstrate that the autophagic cell death elicited by FA-M-β-CyD could be associated with mitophagy induced by an impaired mitochondrial function. Keywords: mitophagy, autophagy, folate receptor, methyl

  19. Synthesis and Antitumor Activity of Triazole-Containing Sorafenib Analogs

    Directory of Open Access Journals (Sweden)

    Wenjing Ye

    2017-10-01

    Full Text Available Using a highly effective binuclear Cu complex as the catalyst, the 1,3-dipolar cycloaddition reactions between 16 alkynes and two azides were successfully performed and resulted in the production of 25 new triazole-containing sorafenib analogs. Several compounds were evaluated as potent antitumor agents. Among them, 4-(4-(4-(3-fluorophenyl-1H-1,2,3-triazol-1-ylphenoxy-N-methylpicolinamide (8f potently suppressed the proliferation of HT-29 cancer cells by inducing apoptosis and almost completely inhibited colony formation at a low micromolar concentration.

  20. Hydrogels based on polysaccharide-calcium phosphate with antibacterial / antitumor activity for 3D printing

    Science.gov (United States)

    Teterina, A. Yu; Fedotov, A. Yu; Zobkov, Yu V.; Sergeeva, N. S.; Sviridova, I. K.; Kirsanova, V. A.; Karalkin, P. A.; Komlev, V. S.

    2018-04-01

    The purpose of this study was to develop hydrogels for 3D printing of sodium alginate/gelatin/octacalcium phosphate-based constructs with antibacterial and antitumor activity intended for bone defects replacement in patients with malignant diseases. In this work, we evaluated the drug release kinetic and physico-chemical characteristics of constructs, as well as their specific activity, biocompatibility and osteoplastic properties by means of in vitro and in vivo tests. The principal possibility of creating the biocompatible bone substitutes with antibacterial/antitumor activity and osteoconductive-retaining properties of 3D printing method was demonstrated.

  1. Toxic effect of nonylphenol on the marine macroalgae Gracilaria lemaneiformis (Gracilariales, Rhodophyta): antioxidant system and antitumor activity.

    Science.gov (United States)

    Zhong, Mingqin; Yin, Pinghe; Zhao, Ling

    2017-04-01

    The objective of the present work was to evaluate the toxic effect of nonylphenol (NP) on the antioxidant response and antitumor activity of Gracilaria lemaneiformis. An obvious oxidative damage was observed in this study. The thallus exposed to NP showed 1.2-2.0-fold increase in lipid peroxide and displayed a maximum level of 16.58 μmol g -1 Fw on 0.6 mg L -1 for 15-day exposure. The activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) enhanced significantly by 1.1-3.2-fold and subsequently diminished at the high concentrations and prolonged exposure. The results of DNA damage in comet assay also supported that NP was obviously toxic on G. lemaneiformis with increasing the percentage of tail DNA in a dose-dependent manner. Furthermore, the ethanol extract of G. lemaneiformis (EEGL) did exhibit antitumor potential against HepG-2 cells. While decreased in cell inhibition, ROS generation, apoptosis, and caspase-3 in HepG-2 cells treated with the EEGL were observed when G. lemaneiformis was exposed to NP for 15 days, and which were related to exposure concentration of NP. These suggested that NP has strongly toxic effect on the antitumor activity of G. lemaneiformis. The results revealed in this study imply that macroalgae can be useful biomarkers to evaluate marine pollutions.

  2. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    Science.gov (United States)

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.

  4. [Effective productions of plant secondary metabolites having antitumor activity by plant cell and tissue cultures].

    Science.gov (United States)

    Taniguchi, Shoko

    2005-06-01

    Methods for the effective production of plant secondary metabolites with antitumor activity using plant cell and tissue cultures were developed. The factors in tannin productivity were investigated using culture strains producing different types of hydrolyzable tannins, i.e., gallotannins (mixture of galloylglucoses), ellagi-, and dehydroellagitannins. Production of ellagi- and dehydroellagitannins was affected by the concentrations and ratio of nitrogen sources in the medium. The formation of oligomeric ellagitannins in shoots of Oenothera tetraptera was correlated with the differentiation of tissues. Cultured cells of Eriobotrya japonica producing ursane- and oleanane-type triterpenes with antitumor activities were also established.

  5. Antitumor and antimicrobial activities and inhibition of in-vitro lipid ...

    African Journals Online (AJOL)

    The antitumor activity was measured in DLA cell line induced mice. Inhibition of in vitro lipid peroxidation activity of the D. nobile in both liver homogenate and RBC ghosts was also carried out. The aqueous extracts of stem and flower of D. nobile showed better zone of bacterial inhibition than that of ethanol and chloroform

  6. Anti-tumor activity of tetrodotoxin extracted from the Masked Puffer ...

    African Journals Online (AJOL)

    Anti-tumor activity of tetrodotoxins extracted from the skin of the Masked Puffer fish (Arothron diadematus) from the Red Sea was evaluated using the Ehrlich ascite carcinoma tumor model in mice. Activity was assessed using a variety of cellular and liver biochemical parameters. Experimental mice were divided into 4 equal ...

  7. Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Lin YL

    2015-09-01

    Full Text Available Yu-Ling Lin,1,2,* Kai-Fu Chang,3,* Xiao-Fan Huang,3 Che-Lun Hung,4 Shyh-Chang Chen,5 Wan-Ru Chao,6,7 Kuang-Wen Liao,1,8 Nu-Man Tsai3,9 1College of Biological Science and Technology, 2Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 3School of Medical Laboratory and Biotechnology, Chung Shan Medical University, 4Department of Computer Science and Communication Engineering, Providence University, 5Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, 6Institute of Medicine, Chung Shan Medical University, 7Department of Pathology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, 8Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 9Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan *These authors contributed equally to this work Background: The natural compound n-butylidenephthalide (BP can pass through the blood–brain barrier to inhibit the growth of glioblastoma multiforme tumors. However, BP has an unstable structure that reduces its antitumor activity and half-life in vivo.Objective: The aim of this study is to design a drug delivery system to encapsulate BP to enhance its efficacy by improving its protection and delivery.Methods: To protect its structural stability against protein-rich and peroxide solutions, BP was encapsulated into a lipo-PEG-PEI complex (LPPC. Then, the cytotoxicity of BP/LPPC following preincubation in protein-rich, acid/alkaline, and peroxide solutions was analyzed by MTT. Cell uptake of BP/LPPC was also measured by confocal microscopy. The therapeutic effects of BP/LPPC were analyzed in xenograft mice following intratumoral and intravenous injections.Results: When BP was encapsulated in LPPC, its cytotoxicity was maintained following preincubation in protein-rich, acid/alkaline, and peroxide solutions. The cytotoxic activity of encapsulated BP was higher than

  8. Enhanced antitumor efficacy of folate-linked liposomal doxorubicin with TGF-β type I receptor inhibitor

    International Nuclear Information System (INIS)

    Taniguchi, Yukimi; Kawano, Kumi; Minowa, Takuya; Shimojo, Yuki; Maitani, Yoshie; Sugino, Takashi

    2010-01-01

    Tumor cell targeting of drug carriers is a promising strategy and uses the attachment of various ligands to enhance the therapeutic potential of chemotherapy agents. Folic acid is a high-affinity ligand for folate receptor, which is a functional tumor-specific receptor. The transforming growth factor (TGF)-β type I receptor (TβR-I) inhibitor A-83-01 was expected to enhance the accumulation of nanocarriers in tumors by changing the microvascular environment. To enhance the therapeutic effect of folate-linked liposomal doxorubicin (F-SL), we co-administrated F-SL with A-83-01. Intraperitoneally injected A-83-01-induced alterations in the cancer-associated neovasculature were examined by magnetic resonance imaging (MRI) and histological analysis. The targeting efficacy of single intravenous injections of F-SL combined with A-83-01 was evaluated by measurement of the biodistribution and the antitumor effect in mice bearing murine lung carcinoma M109. A-83-01 temporarily changed the tumor vasculature around 3 h post injection. A-83-01 induced 1.7-fold higher drug accumulation of F-SL in the tumor than liposome alone at 24 h post injection. Moreover F-SL co-administrated with A-83-01 showed significantly greater antitumor activity than F-SL alone. This study shows that co-administration of TβR-I inhibitor will open a new strategy for the use of folate receptor (FR)-targeting nanocarriers for cancer treatment. (author)

  9. Potentiation of ALA-PDT antitumor activity in mice using topical DMXAA

    Science.gov (United States)

    Marrero, Allison; Sunar, Ulas; Sands, Theresa; Oseroff, Allan; Bellnier, David

    2009-06-01

    Photodynamic treatment of subcutaneously implanted Colon 26 tumors in BALB/c mice using the aminolevulinic acid (ALA)-induced photosensitizer protoporphyrin IX (PpIX) was shown to be enhanced by the addition of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic-acid (DMXAA; Novartis ASA404). DMXAA increases vascular permeability and decreases blood flow in both murine and human tumors. Sufficiently high parenteral DMXAA doses can lead to tumor collapse and necrosis. We have previously reported marked enhancement of antitumor activity when PDT, using either Photofrin or HPPH, is combined with low-dose intraperitoneal DMXAA. We now describe the first attempt to combine topically-applied DMXAA with PDT. For this, DMXAA was applied two hours before PpIX-activating light delivery. PDT with ALA-PDT alone (ALA 20%; 80 J/cm2 delivered at 75 mW/cm2) caused a 39% decrease in tumor volume compared to unirradiated controls. Addition of topical DMXAA to ALA-PDT resulted in a 74% reduction in tumor volume. Diffuse correlation spectroscopy (DCS), a non-invasive blood flow imaging method, is being used to understand the mechanism of this effect and to aid in the proper design of the therapy. For instance, our most recent DCS data suggests that the 2-hour interval between the DMXAA and light applications may not be optimum. This preliminary study suggests a potential role for topical DMXAA in combination with PDT for dermatologic tumors.

  10. CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Frederick Allen

    2017-10-01

    Full Text Available Lymph node (LN plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2. Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5. In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs of a CCL3-secreting CT26 colon tumor (L3TU as compared to wild-type tumor (WTTU during the priming phase of an antitumor response (≤10 days. In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3 secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs, and CD49b+ natural killer (NK cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN.

  11. Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil.

    Science.gov (United States)

    Poma, Paola; Labbozzetta, Manuela; Notarbartolo, Monica; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Sajeva, Maurizio; Zito, Pietro

    2018-01-01

    The biological properties of essential oils have been demonstrated in the treatment of several diseases and to enhance the bioavailability of other drugs. In natural habitats the essential oils compounds may play important roles in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants or by repelling undesirable others. We analyzed by gas-chromatography mass spectrometry the chemical composition of the essential oil of aerial parts of Glandora rosmarinifolia (Ten.) D.C. Thomas obtained by hydrodistillation and verified some biological activities on a panel of hepatocellular carcinoma cell lines (HA22T/VGH, HepG2, Hep3B) and triple negative breast cancer cell lines (SUM 149, MDA-MB-231). In the essential oil we detected 35 compounds. The results of the biological assays indicate that essential oil of G. rosmarinifolia induces cell growth inhibition at concentration-dependent way in all cell line models. This oil does not seem to possess antioxidant activity, while the cytotoxicity of G. rosmarinifolia essential oil appeared to involve, at least in part, a pro-oxidant mechanism. Our results show for the first time the antitumoral and pro-oxidant activities of G. rosmarinifolia essential oil and suggest that it may represent a resource of pharmacologically active compounds.

  12. Antitumor efficacy of conventional anticancer drugs is enhanced by the vascular targeting agent ZD6126

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2002-01-01

    Purpose: The present report reviews the preclinical data on combined chemotherapy/vascular targeting agent treatments. Basic principles are illustrated in studies evaluating the antitumor efficacy of the vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) when combined with the anticancer drug cisplatin in experimental rodent (KHT sarcoma) and human renal (Caki-1) tumor models. Methods and Materials: C3H/HeJ and NCR/nu-nu mice bearing i.m. tumors were injected i.p. with ZD6126 (0-150 mg/kg) or cisplatin (0-20 mg/kg) either alone or in combination. Tumor response to treatment was assessed by clonogenic cell survival. Results: Treatment with ZD6126 was found to damage existing neovasculature, leading to a rapid vascular shutdown. Histologic evaluation showed dose-dependent morphologic damage of tumor cells within a few hours after drug exposure, followed by extensive central tumor necrosis and neoplastic cell death as a result of prolonged ischemia. ZD6126 doses that led to pathophysiologic effects also enhanced the tumor cell killing of cisplatin when administered either 24 h before or 1-24 h after chemotherapy. In both tumor models, the administration of a 150 mg/kg dose of ZD6126 1 h after a range of doses of cisplatin resulted in an increase in tumor cell kill 10-500-fold greater than that seen with chemotherapy alone. In contrast, the inclusion of the antivascular agent did not increase bone marrow stem cell toxicity associated with this anticancer drug. Conclusion: The results obtained in the KHT and Caki-1 tumor models indicate that ZD6126 effectively enhanced the antitumor effects of cisplatin therapy. These findings are representative of the marked enhancements generally observed when vascular targeting agents are combined with chemotherapy in solid tumor therapy

  13. Preparation, Characterization, and In Vitro and Vivo Antitumor Activity of Oridonin-Conjugated Multiwalled Carbon Nanotubes Functionalized with Carboxylic Group

    Directory of Open Access Journals (Sweden)

    Chuanjin Wang

    2016-01-01

    Full Text Available Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI is a poorly water-soluble diterpenoid compound (C20H28O6 used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH were used as ORI carrier. ORI was noncovalently encapsulated into (or onto the functionalized carbon nanotubes (MWCNTs-ORI. The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w. In vitro cytotoxicity assay on MWCNTs-ORI gave IC50 of 7.29±0.5 μg/mL and ORI-F gave IC50 of 14.5±1.4 μg/mL. The antitumor effect studies in vivo showed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1 was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1 which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.

  14. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system.

    Science.gov (United States)

    Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Feng, Yanling; Xie, Mingyong

    2014-02-19

    Ganoderma is a precious health-care edible medicinal fungus in China. A novel Ganoderma atrum polysaccharide (PSG-1) is the main bioactive component. We investigated the antitumor effect and molecular mechanisms of PSG-1. It exhibited no significant effect on cell proliferation directly. In contrast, administration of PSG-1 markedly suppressed tumor growth in CT26 tumor-bearing mice. It was observed that PSG-1 caused apoptosis in CT26 cells. Apoptosis was associated with loss of mitochondrial membrane potential, enhancement of mitochondrial cytochrome c release and intracellular ROS production, elevation of p53 and Bax expression, downregulation of Bcl-2, and the activation of caspase-9 and -3. Moreover, PSG-1 enhanced immune organ index and promoted lymphocyte proliferation as well as cytokine levels in serum. Taken together, our data indicate that PSG-1 has potential antitumor activity in vivo by inducing apoptosis via mitochondria-mediated apoptotic pathway and enhances host immune system function. Therefore, PSG-1 could be a safe and effective antitumor, bioactive agent or functional food.

  15. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression

    Directory of Open Access Journals (Sweden)

    Chong-Sheng Chen

    2014-01-01

    Full Text Available Metronomic chemotherapy using cyclophosphamide (CPA is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25% reduction in CPA dose. Moreover, an ~20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses.

  16. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide.

    Science.gov (United States)

    Duan, Xuhua; Li, Tengfei; Han, Xinwei; Ren, Jianzhuang; Chen, Pengfei; Li, Hao; Gong, Shaojun

    2017-10-31

    High concentrations of arsenic trioxide (As 2 O 3 ) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As 2 O 3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effects of As2O3 in HepG2 cells in vitro and in vivo . Furthermore, results from our microarray assays and experiments with mouse xenografts showed that EphB4 was downregulated by the combination of As 2 O 3 plus andrographolide. These findings suggest that the combination of andrographolide and As 2 O 3 could yield therapeutic benefits in the treatment of HCC.

  17. In vitro antioxidant, antibacterial and anti-tumor activities of total ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro antioxidant, antibacterial and anti-tumor activities of total flavonoids from Elsholtzia densa Benth of Sichuan Province, China. Methods: The total flavonoids of Elsholtzia densa Bent were extracted utilizing the ultrasonic extraction method, and purified by D101 macroporous adsorption resin ...

  18. Antitumor and Antimicrobial Activity of Some Cyclic Tetrapeptides and Tripeptides Derived from Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Subrata Chakraborty

    2015-05-01

    Full Text Available Marine derived cyclo(Gly-l-Ser-l-Pro-l-Glu was selected as a lead to evaluate antitumor-antibiotic activity. Histidine was chosen to replace the serine residue to form cyclo(Gly-l-His-l-Pro-l-Glu. Cyclic tetrapeptides (CtetPs were then synthesized using a solution phase method, and subjected to antitumor and antibiotic assays. The benzyl group protected CtetPs derivatives, showed better activity against antibiotic-resistant Staphylococcus aureus in the range of 60–120 μM. Benzyl group protected CtetPs 3 and 4, exhibited antitumor activity against several cell lines at a concentration of 80–108 μM. However, shortening the size of the ring to the cyclic tripeptide (CtriP scaffold, cyclo(Gly-l-Ser-l-Pro, cyclo(Ser-l-Pro-l-Glu and their analogues showed no antibiotic or antitumor activity. This phenomenon can be explained from their backbone structures.

  19. Study on in vitro anti-tumor activity of Bidens bipinnata L. extract ...

    African Journals Online (AJOL)

    We studied the in vitro anti-tumor activity of Bidens Bipinnata L. extract. MTT assay was used to investigate the inhibitory effect of different concentrations of the extracts on human hepatocellular carcinoma (HepG2) cell lines and human cervical carcinoma (Hela) cell lines, and the IC50 values were calculated. The Bidens ...

  20. Phase I trial with BMS-275183, a novel oral taxane with promising antitumor activity

    NARCIS (Netherlands)

    Broker, LE; de Vos, FYFL; van Groeningen, CJ; Kuenen, BC; Gall, HE; Woo, MH; Voi, M; Gietema, JA; deVries, EGE; Giaccone, G

    2006-01-01

    Purpose: BMS-275183 is an orally administered C-4 methyl carbonate analogue of paclitaxel. We did a dose-escalating phase I study to investigate its safety, tolerability, pharmacokinetics, and possible antitumor activity. Experimental Design: A cycle consisted of four weekly doses of BMS-275183. The

  1. Meroterpenoids with Antitumor Activities from Guava (Psidium guajava).

    Science.gov (United States)

    Qin, Xu-Jie; Yu, Qian; Yan, Huan; Khan, Afsar; Feng, Mi-Yan; Li, Pan-Pan; Hao, Xiao-Jiang; An, Lin-Kun; Liu, Hai-Yang

    2017-06-21

    Psidium guajava L., a species native to South America, has been widely cultivated in the tropical and subtropical areas of China for its popular fruits. The preliminary analysis by liquid chromatography-ultraviolet (LC-UV) indicated the presence of meroterpenoids in the fruits of P. guajava (guava). Subsequent fractionation of the petroleum ether extract resulted in the identification of two new meroterpenoids, psiguajavadials A (1) and B (2), together with 14 previously described meroterpenoids (3-16). Their structures were fully elucidated by comprehensive spectroscopic techniques and theoretical calculations. All of the meroterpenoids showed cytotoxicities against five human cancer cell lines, with guajadial B (12) being the most effective having an IC 50 value of 150 nM toward A549 cells. Furthermore, biochemical topoisomerase I (Top1) assay revealed that psiguajavadial A (1), psiguajavadial B (2), guajadial B (12), guajadial C (14), and guajadial F (16) acted as Top1 catalytic inhibitors and delayed Top1 poison-mediated DNA damage. The flow cytometric analysis indicated that the new meroterpenoids psiguajavadials A (1) and B (2) could induce apoptosis of HCT116 cells. These data suggest that meroterpenoids from guava fruit could be used for the development of antitumor agents.

  2. Activation of the Unfolded Protein Response Contributes toward the Antitumor Activity of Vorinostat

    Directory of Open Access Journals (Sweden)

    Soumen Kahali

    2010-01-01

    Full Text Available Histone deacetylase (HDAC inhibitors represent an emerging class of anticancer agents progressing through clinical trials. Although their primary target is thought to involve acetylation of core histones, several nonhistone substrates have been identified, including heat shock protein (HSP 90, which may contribute towards their antitumor activity. Glucose-regulated protein 78 (GRP78 is a member of the HSP family of molecular chaperones and plays a central role in regulating the unfolded protein response (UPR. Emerging data suggest that GRP78 is critical in cellular adaptation and survival associated with oncogenesis and may serve as a cancer-specific therapeutic target. On the basis of shared homology with HSP family proteins, we sought to determine whether GRP78 could serve as a molecular target of the HDAC inhibitor vorinostat. Vorinostat treatment led to GRP78 acetylation, dissociation, and subsequent activation of its client protein double-stranded RNA-activated protein-like endoplasmic reticulum kinase (PERK. Investigations in a panel of cancer cell lines identified that UPR activation after vorinostat exposure is specific to certain lines. Mass spectrometry performed on immunoprecipitated GRP78 identified lysine-585 as a specific vorinostat-induced acetylation site of GRP78. Downstream activation of the UPR was confirmed, including eukaryotic initiating factor 2α phosphorylation and increase in ATF4 and C/EBP homologous protein expression. To determine the biologic relevance of UPR activation after vorinostat, RNA interference of PERK was performed, demonstrating significantly decreased sensitivity to vorinostat-induced cytotoxicity. Collectively, these findings indicate that GRP78 is a biologic target of vorinostat, and activation of the UPR through PERK phosphorylation contributes toward its antitumor activity.

  3. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    Science.gov (United States)

    Osada, Takuya; Berglund, Peter; Morse, Michael A.; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2013-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)) and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12 and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing anti-tumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted. PMID:22488274

  4. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Macková, Hana [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine); Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich [R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 45 Vasylkivska St., 03022 Kiev (Ukraine); Kuzmenko, Oleksandr Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine)

    2015-04-15

    Maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe{sub 2}O{sub 3} nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe{sub 2}O{sub 3} nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe{sub 2}O{sub 4} particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed.

  5. Antitumor activity of Bulgarian herb Tribulus terrestris L. on human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Svetla Angelova

    2013-01-01

    Full Text Available Medicinal plants have been intensively studied as a source of antitumor compounds. Due to the beneficial climate conditions Bulgarian herbs have high pharmacological potential. Currently, the antitumor effect of the Bulgarian medicinal plant Tribulus terrestris L. on human cancer cell lines is not studied. The main active compounds of the plant are the steroid saponins.The present study aims to analyze the effect on cell viability and apoptotic activity of total extract and saponin fraction of Bulgarian Tribulus terrestris L. on human breast cancer (MCF7 and normal (MCF10A cell lines. Antitumor effect was established by МТТ cell viability assay and assessment of apoptotic potential was done through analysis of genomic integrity (DNA fragmentation assay and analysis of morphological cell changes (Fluorescence microscopy. The results showed that total extract of the herb has a marked dose-dependent inhibitory effect on viability of MCF7 cells (half maximal inhibitory concentration is 15 μg/ml. Cell viability of MCF10A was moderately decreased without visible dose-dependent effect. The saponin fraction has increased inhibitory effect on breast cancer cells compared to total extract. Morphological changes and DNA fragmentation were observed as markers for early and late apoptosis predominantly in tumor cells after treatment. Apoptotic processes were intensified with the increase of treatment duration.The obtained results are the first showing selective antitumor activity of Bulgarian Tribulus terrestris L. on human cancer cells in vitro. Apoptotic processes are involved in the antitumor mechanisms induced by the herb. This results give directions for future investigations concerning detailed assessment of its pharmacological potential.

  6. Predicting Antitumor Activity of Peptides by Consensus of Regression Models Trained on a Small Data Sample

    Directory of Open Access Journals (Sweden)

    Ivanka Jerić

    2011-11-01

    Full Text Available Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample.

  7. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    Science.gov (United States)

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  8. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Youssef W. Naguib

    2014-02-01

    Full Text Available Topical 5-fluorouracil (5-FU is approved for the treatment of superficial basal cell carcinoma and actinic keratosis. However, 5-FU suffers from poor skin permeation. Microneedles have been successfully applied to improve the skin permeability of small and large molecules, and even nanoparticles, by creating micron-sized pores in the stratum corneum layer of the skin. In this report, the feasibility of using microneedles to increase the skin permeability of 5-FU was tested. Using full thickness mouse skin mounted on Franz diffusion apparatus, it was shown that the flux of 5-FU through the skin was increased by up to 4.5-fold when the skin was pretreated with microneedles (500 μm in length, 50 μm in base diameter. In a mouse model with B16-F10 mouse melanoma cells implanted in the subcutaneous space, the antitumor activity of a commercially available 5-FU topical cream (5% was significantly enhanced when the cream was applied on a skin area that was pretreated with microneedles, as compared to when the cream was simply applied on a skin area, underneath which the tumor cells were implanted, and without pretreatment of the skin with microneedles. Fluorouracil is not approved for melanoma therapy, but the clinical efficacy of topical 5-FU against tumors such as basal cell carcinoma may be improved by integrating microneedle technology into the therapy.

  9. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity.

    Science.gov (United States)

    Ma, Xingzhe; Bi, Enguang; Huang, Chunjian; Lu, Yong; Xue, Gang; Guo, Xing; Wang, Aibo; Yang, Maojie; Qian, Jianfei; Dong, Chen; Yi, Qing

    2018-05-09

    CD8 + T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8 + or CD4 + T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function. © 2018 Ma et al.

  10. Hypoxia-targeted suicidal gene therapy system enhances antitumor effects of radiotherapy

    International Nuclear Information System (INIS)

    Liu Junye; Guo Yao; Guo Guozhen

    2006-01-01

    Objective: To explore the effects of hypoxia-targeted suicidal gene therapy system combined with radiotherapy on pancreatic cancer. Methods: The recombinant adenovirus Ad-5HRE/hCMVmp-BCD was constructed by DNA recombinant technique. Western blot was used to detect hypoxia-induced expression of bacterial cytosine deaminase (BCD). Cell growth inhibition assay was used to determine the sensitivity of human pancreatic cancer cells MIA-PACA2 to 5-fluorocytosine (5-FC). Tumor xenograft growth delay assays was used to evaluate the effects of Ad-5HRE/hCMVmp-BCD/5-FC combined with radiotherapy on pancreatic cancer. Results: Western blot analysis demonstrated that hypoxia-induced BCD protein expression was achieved in MIA-PACA2 cells infected with Ad-5HRE/hCMVmp-BCD. With hypoxia treatment, the sensitivity of MIA-PACA2 cells infected with Ad-5HRE/hCMVmp-BCD to 5-FC significantly increased. Administration of either Ad-5HRE/hCMVmp-BCD/5-FC or radiotherapy could inhibit the growth of MIA-PACA2 xenografts in nude mice. Moreover, combination of Ad-5HRE/hCMVmp-BCD/5-FC could significantly enhance suppressing effects of radiotherapy on MIA-PACA2 xenografts. Conclusion: Hypoxia-targeted suicidal gene therapy system Ad-5HRE/hCMVmp-BCD/5-FC could enhance antitumor effects of radiotherapy on pancreatic cancer and can be used as a powerful adjunct to conventional radiotherapy. (authors)

  11. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-04-01

    Full Text Available Ying Liu,1,* Man He,1,* Mengmeng Niu,1 Yiqing Zhao,1 Yuanzhang Zhu,1 Zhenhua Li,2 Nianping Feng1 1Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 2Cedars-Sinai Medical Center, Los Angeles, CA, USA *These authors contributed equally to this work Abstract: Rapid drug release at the specific site of action is still a challenge for antitumor therapy. Development of stimuli-responsive hybrid nanocarriers provides a promising strategy to enhance therapeutic effects by combining the unique features of each component. The present study explored the use of drug–gold nanoparticle conjugates incorporated into liposomes to enhance antitumor efficiency. A model drug, vincristine sulfate, was physically conjugated with gold nanoparticles and verified by UV-visible and fourier transform infrared spectroscopy, and differential scanning calorimetry. The conjugates were incorporated into liposomes by film dispersion to yield nanoparticles (113.4 nm with light-responsive release properties, as shown by in vitro release studies. Intracellular uptake and distribution was studied in HeLa cells using transmission electron microscopy and confocal laser scanning microscopy. This demonstrated liposome internalization and localization in endosomal–lysosomal vesicles. Fluorescence intensity increased in cells exposed to UV light, indicating that this stimulated intracellular drug release; this finding was confirmed by quantitative analyses using flow cytometry. Antitumor efficacy was evaluated in HeLa cells, both in culture and in implants in vivo in nude mice. HeLa cell viability assays showed that light exposure enhanced liposome cytotoxicity and induction of apoptosis. Furthermore, treatment with the prepared liposomes coupled with UV light exposure produced greater antitumor effects in nude mice and reduced side effects, as compared with free vincristine sulfate

  12. Recent advance on the antitumor and antioxidant activity of grape seed extracts

    Directory of Open Access Journals (Sweden)

    Zhu FM

    2015-05-01

    Full Text Available Fengmei Zhu, Bin Du, Jun Li College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province, People's Republic of China Abstract: The grape pomace (including seeds and stems poses potential disposal and pollution problems along with loss of valuable biomass and nutrients. The utilization of grape seeds processing as a source of functional ingredients is a promising field. Grape seed extract provides a concentrated source of polyphenols. Grape seed extract is known as an effective antioxidant that protects the body from premature aging and disease. A number of phytochemicals including resveratrol, proanthocyanidins, etc, have demonstrated significant benefits in cancer chemoprevention. In this review, we summarize the existing knowledge on the antitumor and antioxidant activity of grape seeds polyphenols. Keywords: grape seed, antitumor activity, antioxidant activity, polyphenol, proanthocyanidin

  13. Antitumor Active Protein-containing Glycans from the Body of Ganoderma tsugae

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; LI Yue-fei; ZHENG Ke-yan; FEI Xiao-fang

    2012-01-01

    To explore the effects of traditional herbal medicine Ganoderma tsugae(G.tsugae) on immunomodulatory and antitumor activities,the crude polysaccharides ofG.tsugae were purified by filtration,diethylaminoethyl(DEAE)sepharose-fast flow chromatography and sephadex G-100 size-exclusion chromatography.Two main fractions,protein-containing glycans CSSLP-I and CSSLP-2,were obtained via the gradient elution.The protein content,molecular weight,and monosaccharide composition of the two fractions were analyzed.Furthermore,the influence of the protein-containing glycans from G.tsugae on the activation of human acute monocytic leukemia cell line(THP-1 ) and their antitumor activities to the human hepatocellular liver carcinoma cell(HepG-2) in vitro were evaluated.The results indicate that CSSLP-I and CSSLP-2 could increase the pinocytic activity of THP-1 cells and induce THP-1 cells to produce the cytokines of TNFa and IL-2,significantly.CSSLP-1 and CSSLP-2 also played an inhibiting effect on the cancer cell(NepG-2).Moreover,the anti-proliferation activity of CSSLP-1 and CSSLP-2 increased with the participation of TNFa and 1L-2 or other antitumor factors induced from THP-1 cclls by G.tsugae protein-containing glycan fractions.

  14. Improved Antitumoral Activity of Extracts Derived from Cultured ...

    African Journals Online (AJOL)

    Antiproliferative activity was assayed in four cancer cell lines (Hep-2, HeLa, SiHa, and KB) while cytotoxic activity was evaluated on a normal cell line (MDCK). Results: The 10-day cultivation organic extract exhibited increased antiproliferative activity compared with the control on human carcinoma nasopharynx (KB) and ...

  15. Identification, characterization and potent antitumor activity of ECO-4601, a novel peripheral benzodiazepine receptor ligand.

    Science.gov (United States)

    Gourdeau, Henriette; McAlpine, James B; Ranger, Maxime; Simard, Bryan; Berger, Francois; Beaudry, Francis; Farnet, Chris M; Falardeau, Pierre

    2008-05-01

    ECO-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER technology, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity in the low micromolar range when tested in the NCI 60 cell line panel. In the work presented here, ECO-4601 was further evaluated against brain tumor cell lines. Preliminary mechanistic studies as well as in vivo antitumor evaluation were performed. Since ECO-4601 has a benzodiazepinone moiety, we first investigated if it binds the central and/or peripheral benzodiazepine receptors. ECO-4601 was tested in radioligand binding assays on benzodiazepine receptors obtained from rat hearts. The ability of ECO-4601 to inhibit the growth of CNS cancers was evaluated on a panel of mouse, rat and human glioma cell lines using a standard MTT assay. Antitumor efficacy studies were performed on gliomas (rat and human), human breast and human prostate mouse tumor xenografts. Antitumor activity and pharmacokinetic analysis of ECO-4601 was evaluated following intravenous (i.v.), subcutaneous (s.c.), and intraperitoneal (i.p.) bolus administrations. ECO-4601 was shown to bind the peripheral but not the central benzodiazepine receptor and inhibited the growth of CNS tumor cell lines. Bolus s.c. and i.p. administration gave rise to low but sustained drug exposure, and resulted in moderate to significant antitumor activity at doses that were well tolerated. In a rat glioma (C6) xenograft model, ECO-4601 produced up to 70% tumor growth inhibition (TGI) while in a human glioma (U-87MG) xenograft, TGI was 34%. Antitumor activity was highly significant in both human hormone-independent breast (MDA-MB-231) and prostate (PC-3) xenografts, resulting in TGI of 72 and 100%, respectively. On the other hand, i.v. dosing was followed by rapid elimination of the drug and was ineffective. Antitumor efficacy of ECO-4601 appears to be associated with the exposure parameter AUC and/or sustained

  16. Aminolevulinic acid-photodynamic therapy combined with topically applied vascular disrupting agent vadimezan leads to enhanced antitumor responses.

    Science.gov (United States)

    Marrero, Allison; Becker, Theresa; Sunar, Ulas; Morgan, Janet; Bellnier, David

    2011-01-01

    The tumor vascular-disrupting agent (VDA) vadimezan (5,6-dimethylxanthenone-4-acetic acid, DMXAA) has been shown to potentiate the antitumor activity of photodynamic therapy (PDT) using systemically administered photosensitizers. Here, we characterized the response of subcutaneous syngeneic Colon26 murine colon adenocarcinoma tumors to PDT using the locally applied photosensitizer precursor aminolevulinic acid (ALA) in combination with a topical formulation of vadimezan. Diffuse correlation spectroscopy (DCS), a noninvasive method for monitoring blood flow, was utilized to determine tumor vascular response to treatment. In addition, correlative CD31-immunohistochemistry to visualize endothelial damage, ELISA to measure induction of tumor necrosis factor-alpha (TNF-α) and tumor weight measurements were also examined in separate animals. In our previous work, DCS revealed a selective decrease in tumor blood flow over time following topical vadimezan. ALA-PDT treatment also induced a decrease in tumor blood flow. The onset of blood flow reduction was rapid in tumors treated with both ALA-PDT and vadimezan. CD31-immunostaining of tumor sections confirmed vascular damage following topical application of vadimezan. Tumor weight measurements revealed enhanced tumor growth inhibition with combination treatment compared with ALA-PDT or vadimezan treatment alone. In conclusion, vadimezan as a topical agent enhances treatment efficacy when combined with ALA-PDT. This combination could be useful in clinical applications. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  17. Anti-tumor Activity of Toll-Like Receptor 7 Agonists

    Directory of Open Access Journals (Sweden)

    Huju Chi

    2017-05-01

    Full Text Available Toll-like receptors (TLRs are a class of pattern recognition receptors that play a bridging role in innate immunity and adaptive immunity. The activated TLRs not only induce inflammatory responses, but also elicit the development of antigen specific immunity. TLR7, a member of TLR family, is an intracellular receptor expressed on the membrane of endosomes. TLR7 can be triggered not only by ssRNA during viral infections, but also by immune modifiers that share a similar structure to nucleosides. Its powerful immune stimulatory action can be potentially used in the anti-tumor therapy. This article reviewed the anti-tumor activity and mechanism of TLR7 agonists that are frequently applied in preclinical and clinical investigations, and mainly focused on small synthetic molecules, including imiquimod, resiquimod, gardiquimod, and 852A, etc.

  18. Snake venoms components with antitumor activity in murine melanoma cells; Componentes derivados de venenos de serpentes com acao antitumoral em celulas de melanoma murino

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Rodrigo Guimaraes

    2012-07-01

    Despite the constant advances in the treatment of cancer, this disease remains one of the main causes of mortality worldwide. So, the development of new treatment modalities is imperative. Snake venom causes a variety of biological effects because they constitute a complex mixture of substances as disintegrins, proteases (serine and metalo), phospholipases A2, L-amino acid oxidases and others. The goal of the present work is to evaluate a anti-tumor activity of some snake venoms fractions. There are several studies of components derived from snake venoms with this kind of activity. After fractionation of snake venoms of the families Viperidae and Elapidae, the fractions were assayed towards murine melanoma cell line B16-F10 and fibroblasts L929. The results showed that the fractions of venom of the snake Notechis ater niger had higher specificity and potential antitumor activity on B16-F10 cell line than the other studied venoms. Since the components of this venom are not explored yet coupled with the potential activity showed in this work, we decided to choose this venom to develop further studies. The cytotoxic fractions were evaluated to identify and characterize the components that showed antitumoral activity. Western blot assays and zymography suggests that these proteins do not belong to the class of metallo and serine proteinases. (author)

  19. Electron-topological investigation of the structure-antitumor activity relationship of thiosemicarbazone derivatives.

    Science.gov (United States)

    Dimoglo, A S; Chumakov, Y M; Dobrova, B N; Saracoglu, M

    1997-04-01

    In the frameworks of the electron-topological method (ETM) the structure-antitumor activity relationship was investigated for a series of thiosemicarbazone derivatives. The series included 70 compounds. Conformational analysis and quantum-chemical calculations were carried out for each compound. The revealed activity feature showed a satisfactory description of the class of active compounds according to two different parameters P and alpha estimating the probabilities of the feature realization in the class of active compounds (they are equal to 0.94 and 0.86, correspondingly). The results of testing demonstrated the high ability of ETM in predicting the activity investigated.

  20. Two new phenolic compounds and antitumor activities of asparinin A from Asparagus officinalis.

    Science.gov (United States)

    Li, Xue-Mei; Cai, Jin-Long; Wang, Le; Wang, Wen-Xiang; Ai, Hong-Lian; Mao, Zi-Chao

    2017-02-01

    Two new phenolic acid compounds, asparoffin C (1) and asparoffin D (2), together with four known compounds, asparenyol (3), gobicusin B (4), 1-methoxy-2-hydroxy-4-[5-(4-hydroxyphenoxy)-3-penten-1-ynyl] phenol (5), and asparinin A (6), have been isolated from the stems of Asparagus officinalis. The structures were established by extensive spectroscopic methods (MS and 1D and 2D NMR). Compound 6 has obvious antitumor activities both in vitro and in vivo.

  1. GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview

    Directory of Open Access Journals (Sweden)

    Ida Genta

    2017-12-01

    Full Text Available A lot of solid tumors are characterized by uncontrolled signal transduction triggered by receptors related to cellular growth. The targeting of these cell receptors with antitumor drugs is essential to improve chemotherapy efficacy. This can be achieved by conjugation of an active targeting agent to the polymer portion of a colloidal drug delivery system loaded with an antitumor drug. The goal of this minireview is to report and discuss some recent results in epidermal growth factor receptor targeting by the GE11 peptide combined with colloidal drug delivery systems as smart carriers for antitumor drugs. The minireview chapters will focus on explaining and discussing: (i Epidermal growth factor receptor (EGFR structures and functions; (ii GE11 structure and biologic activity; (iii examples of GE11 conjugation and GE11-conjugated drug delivery systems. The rationale is to contribute in gathering information on the topic of active targeting to tumors. A case study is introduced, involving research on tumor cell targeting by the GE11 peptide combined with polymer nanoparticles.

  2. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice.

    Science.gov (United States)

    Wang, Cheng-Li; Lu, Chiu-Ying; Hsueh, Ying-Chao; Liu, Wen-Hsiung; Chen, Chun-Jen

    2014-11-01

    Fungi of the genus Ganoderma are basidiomycetes that have been used as traditional medicine in Asia and have been shown to exhibit various pharmacological activities. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the maturation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response in vivo. In this study, we investigated whether the immune adjuvant function of PS-F2 can stimulate antitumor immune responses in tumor-bearing mice. Continuous intraperitoneal or oral administration of PS-F2 effectively suppressed the growth of colon 26 (C26) adenocarcinoma, B16 melanoma, and sarcoma 180 (S180) tumor cells in mice without adverse effects on the animals' health. PS-F2 did not cause direct cytotoxicity on tumor cells, and it lost the antitumor effect in mice with severe combined immunodeficiency (SCID). CD4(+) T cells, CD8(+) T cells, and serum from PS-F2-treated tumor-bearing mice all exhibited antitumor activities when adoptively transferred to naïve animals, indicating that PS-F2 treatment stimulates tumor-specific cellular and humoral immune responses. These data demonstrate that continuous administration of G. formosanum polysaccharide PS-F2 can activate host immune responses against ongoing tumor growth, suggesting that PS-F2 can potentially be developed into a preventive/therapeutic agent for cancer immunotherapy.

  3. Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo.

    Science.gov (United States)

    Chen, Songjie; Hu, Hui; Miao, Shushu; Zheng, Jiayong; Xie, Zhijian; Zhao, Hui

    2017-05-01

    Oral squamous cell carcinoma is one of the most common neoplasm in the world. Despite the improvements in diagnosis and treatment, the outcome is still poor now. Thus, the development of novel therapeuticapproaches is needed. The aim of this study is to assess the synergistic anti-tumor effect of andrographolide with cisplatin (DDP) in oral squamous cell carcinoma CAL-27 cells in vitro and in vivo. We performed Cell Counting Kit-8 proliferation assay, apoptosis assay, and western blotting on CAL-27 cells treated with andrographolide, DDP or the combination in vitro. In vivo, we also treated CAL-27 xenografts with andrographolide or the combination, and performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and immunohistochemical analysis of Ki-67. The results showed the combination of andrographolide and DDP synergistically inhibited CAL-27 cell proliferation in vitro and caused tumor regression in vivo in the CAL-27 xenografts. In addition, the synergistic anti-tumor effect of andrographolide with synergistic was due to an enhanced apoptosis. Moreover, the combination therapy upregulated the expression level of p-p53 in vitro and decreased Ki-67 expression in vivo. Our data indicate that the combination treatment of andrographolide and DDP results in synergistic anti-tumor growth activity against oral squamous cell carcinoma CAL-27 in vitro and in vivo. These results demonstrated that combination of andrographolide with DDP was likely to represent a potential therapeutic strategy for oral squamous cell carcinoma.

  4. Time-dependent Influence of Procaine Hydrochloride on Cisplatin Antitumor Activity in P388 Tumor Bearing Mice

    Czech Academy of Sciences Publication Activity Database

    Viale, M.; Vánnozzi, M. O.; Mandys, Václav; Esposito, M.

    2001-01-01

    Roč. 21, - (2001), s. 485-488 ISSN 0250-7005 Institutional research plan: CEZ:AV0Z5039906 Keywords : cisplatin * procaine * antitumor activity Subject RIV: EA - Cell Biology Impact factor: 1.416, year: 2001

  5. Vγ9Vδ2 T cells and zoledronate mediate antitumor activity in an orthotopic mouse model of human chondrosarcoma.

    Science.gov (United States)

    Sun, L; Li, Y; Jiang, Z; Zhang, J; Li, H; Li, B; Ye, Z

    2016-06-01

    Chondrosarcoma (CS) is a cartilaginous malignant neoplasm characterized by resistance to conventional adjuvant therapy. The prognosis of unresectable or metastatic CS is poor. Therefore, it is imperative to explore novel therapeutic approaches to improve the treatment efficacy for those CS patients. Emerging data has implicated the synergistic antitumor activity of zoledronate (ZOL) and Vγ9Vδ2 T cells. However, whether ZOL-stimulated Vγ9Vδ2 T cells could infiltrate bone sarcoma and inhibit tumor growth has not been thoroughly answered yet. In this study, Vγ9Vδ2 T cells from healthy donors and CS patients were expanded in the presence of ZOL (1 μM) and IL-2 (400 IU/ml). The antitumor activity of Vγ9Vδ2 T cells to ZOL-pretreated human CS was examined both in vitro and in vivo. ZOL pretreatment substantially enhanced the cytotoxicity of Vγ9Vδ2 T cells to SW1353 and primary CS cells. ZOL potentiated the migration and cytotoxicity of Vγ9Vδ2 T cells to SW1353 in dose- and time-dependent manner. Moreover, weekly intravenous ZOL followed by Vγ9Vδ2 T cells inhibited subcutaneous xenograft growth. Thus, Vγ9Vδ2 T cells were able to infiltrate bone tumor and significantly suppressed the development of orthotopic SW1353 xenografts. Altogether, the study raises the possibility of combining ZOL with Vγ9Vδ2 T cells for CS treatment.

  6. A tritherapy combination of inactivated allogeneic leukocytes infusion and cell vaccine with cyclophosphamide in a sequential regimen enhances antitumor immunity

    OpenAIRE

    Yishu Tang; Wenbo Ma; Chunxia Zhou; Dongmei Wang; Shuren Zhang

    2018-01-01

    Background: Tumor-induced immunosuppression can impede tumor-specific immune responses and limit the effects of cancer immunotherapy. The aim of this study was to investigate the possible effects of sequential chemoimmunotherapeutic strategies to enhance antitumor immune responses. Methods: Using the E7-expressing tumor TC-1 as the tumor model, the treatment groups were divided into the following groups: (1) inactivated allogeneic leukocyte infusion (ALI), (2) ALI + MMC-inactivated TC-1 cell ...

  7. Synthesis and Antitumor Activities of Phenanthrene-Based Alkaloids

    Directory of Open Access Journals (Sweden)

    Zhanyou Wang

    2009-12-01

    Full Text Available A series of phenanthrene-based tylophorine derivatives (PBTs were synthesized and their cytotoxic activities against the H460 human large-cell lung carcinoma cell line were evaluated. Among these compounds, N-(3-hydroxy-2,6,7-tri-methoxyphenanthr-9-ylmethyl-L-prolinol (5a, and N-(3-hydroxy-2,6,7-trimethoxy-phenanthr-9-ylmethyl-L-valinol (9 exhibited good activities, with IC50 values of 11.6 and 6.1 mM, respectively.

  8. In-vitro Antimicrobial and Antitumor Activities of Stevia Rebaudiana ...

    African Journals Online (AJOL)

    subtilis, Aeromonas hydrophila and Vibrio cholerae by using agar well diffusion method. Candida albicans, Cryptococcus neoformans, Trichophyton mentagrophytes and Epidermophyton species were used to test anti-yeast and antifungal activity. The cytotoxic effects of the extracts on Vero and HEp2 cells were assayed ...

  9. Ficus umbellata Vahl. (Moraceae Stem Bark Extracts Exert Antitumor Activities In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Kevine Kamga Silihe

    2017-05-01

    Full Text Available A Ficus umbellata is used to treat cancer. The present work was therefore designed to assess antitumor potentials of F. umbellata extracts in nine different cell lines. Cell cycle, apoptosis, cell migration/invasion, levels of reactive oxygen species (ROS, mitochondrial membrane potential (MMP, caspases activities as well as Bcl-2 and Bcl-xL protein content were assessed in MDA-MB-231 cells. The 7,12-dimethylbenz(aanthracene (DMBA-induced carcinogenesis in rats were also used to investigate antitumor potential of F. umbellata extracts. The F. umbellata methanol extract exhibited a CC50 of 180 μg/mL in MDA-MB-231 cells after 24 h. It induced apoptosis in MCF-7 and MDA-MB-231 cells, while it did not alter their cell cycle phases. Further, it induced a decrease in MMP, an increase in ROS levels and caspases activities as well as a downregulation in Bcl-2 and Bcl-xL protein contents in MDA-MB-231 cells. In vivo, F. umbellata aqueous (200 mg/kg and methanol (50 mg/kg extracts significantly (p < 0.001 reduced ovarian tumor incidence (10%, total tumor burden (58% and 46%, respectively, average tumor weight (57.8% and 45.6%, respectively as compared to DMBA control group. These results suggest antitumor potential of F. umbellata constituents possibly due to apoptosis induction mediated through ROS-dependent mitochondrial pathway.

  10. In vitro and in vivo antitumor activity of crude extracts obtained from Brazilian Chromobacterium sp isolates

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, C.B.A.; Silva, B.P. [Universidade Estadual de Campinas, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Campinas, SP (Brazil); Universidade de São Paulo, Interunidades em Biotecnologia, São Paulo, SP (Brazil); Sousa, I.M.O.; Ruiz, A.L.T.G.; Spindola, H.M. [Universidade Estadual de Campinas, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Campinas, SP (Brazil); Cabral, E.; Eberlin, M.N. [Instituto de Química, Universidade Estadual de Campinas, Laboratório Thomson Mass Spectrometry, Campinas, SP (Brazil); Tinti, S.V.; Carvalho, J.E. [Universidade Estadual de Campinas, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Campinas, SP (Brazil); Foglio, M.A.; Fantinatti-Garboggini, F. [Universidade Estadual de Campinas, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Campinas, SP (Brazil); Universidade de São Paulo, Interunidades em Biotecnologia, São Paulo, SP (Brazil)

    2012-10-23

    Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed.

  11. In vitro and in vivo antitumor activity of crude extracts obtained from Brazilian Chromobacterium sp isolates

    Directory of Open Access Journals (Sweden)

    C.B.A. Menezes

    2013-01-01

    Full Text Available Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed.

  12. In vitro and in vivo antitumor activity of crude extracts obtained from Brazilian Chromobacterium sp isolates

    International Nuclear Information System (INIS)

    Menezes, C.B.A.; Silva, B.P.; Sousa, I.M.O.; Ruiz, A.L.T.G.; Spindola, H.M.; Cabral, E.; Eberlin, M.N.; Tinti, S.V.; Carvalho, J.E.; Foglio, M.A.; Fantinatti-Garboggini, F.

    2012-01-01

    Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed

  13. Antitumor activity and carrier properties of novel hemocyanins coupled to a mimotope of GD2 ganglioside.

    Science.gov (United States)

    Palacios, Miriam; Tampe, Ricardo; Del Campo, Miguel; Zhong, Ta-Ying; López, Mercedes N; Salazar-Onfray, Flavio; Becker, María Inés

    2018-04-25

    Conjugation to carrier proteins is a way to improve the immunogenicity of peptides. Such is the case for peptides mimicking carbohydrate tumor-associated antigens in cancer vaccine development. The most used protein for this purpose is the keyhole limpet hemocyanin (KLH) from Megathura crenulata. Its limited bioavailability has prompted interest in finding new candidates; nevertheless, it is not known whether other hemocyanins might be equally efficient as carrier of carbohydrate peptide mimotopes to promotes anti-tumor responses. Here, we evaluated the carrier and antitumor activity of novel hemocyanins with documented immunogenicity obtained from Concholepas concholepas (CCH) and Fissurella latimarginata (FLH), coupled through sulfo-SMCC to P10, a mimetic peptide of GD2, the major ganglioside constituent of neuroectodermal tumors, and incorporating AddaVax as an adjuvant. The humoral immune responses of mice showed that CCH-P10 and FLH-P10 conjugates elicited specific IgM and IgG antibodies against P10 mimotope, similar to those obtained with KLH-P10, which was used as a positive control. The CCH-P10 and FLH-P10 antisera, exhibited cross-reactivity with murine and human melanoma cells, like anti-CCH and anti-FLH sera suggesting a cross-reaction of CCH and FLH glycosylations with carbohydrate epitopes on the tumor cell surfaces, similar to the KLH antisera. When mice were primed with each hemocyanin-P10 and challenged with melanoma cells, better antitumor effects were observed for FLH-P10 than for CCH-P10 and, as for KLH-P10, irrespective of conjugation. These data demonstrate that CCH and FLH are useful carriers of carbohydrate mimotopes; however, the best antitumor activity of FLH preparations, indicate that is a suitable candidate for further cancer vaccines research. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    International Nuclear Information System (INIS)

    Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.

    2014-01-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor

  15. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Diane E. [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA (United States); Hoover, Benjamin [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Cloud, Loretta Grey [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Liu, Shihui [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Molinolo, Alfredo A. [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Leppla, Stephen H. [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Bugge, Thomas H., E-mail: thomas.bugge@nih.go [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor

  16. Oral JS-38, a metabolite from Xenorhabdus sp., has both anti-tumor activity and the ability to elevate peripheral neutrophils.

    Science.gov (United States)

    Liu, Min-Yu; Xiao, Lin; Chen, Geng-Hui; Wang, Yong-Xiang; Xiong, Wei-Xia; Li, Fei; Liu, Ying; Huang, Xiao-Ling; Deng, Yi-Fang; Zhang, Zhen; Sun, Hai-Yan; Liu, Quan-Hai; Yin, Ming

    2014-10-01

    JS-38 (mitothiolore), a synthetic version of a metabolite isolated from Xenorhabdus sp., was evaluated for its anti-tumor and white blood cell (WBC) elevating activities. These anti-proliferative activities were assessed in vitro using a panel of ten cell lines. The anti-tumor activities were tested in vivo using B16 allograft mouse models and xenograft models of A549 human lung carcinoma and QGY human hepatoma in nude mice. The anti-tumor interactions of JS-38 and cyclophosphamide (CTX) or 5-fluorouracil (5-Fu) were studied in a S180 sarcoma model in ICR mice. Specific stimulatory effects were determined on peripheral neutrophils in normal and CTX- and 5-Fu-induced neutropenic mice. The IC50 values ranged from 0.1 to 2.0 μmol·L(-1). JS-38 (1 μmol·L(-1)) caused an increase in A549 tumor cell apoptosis. Multi-daily gavage of JS-38 (15, 30, and 60 mg·kg(-1)·d(-1)) inhibited in vivo tumor progression without a significant effect on body weight. JS-38 additively enhanced the in vivo anti-tumor effects of CTX or 5-Fu. JS-38 increased peripheral neutrophil counts and neutrophil rates in normal BALB/c mice almost as effectively as granulocyte colony-stimulating factor (G-CSF). In mice with neutropenia induced by CTX or 5-Fu, JS-38 rapidly restored neutrophil counts. These results suggest that JS-38 has anti-tumor activity, and also has the ability to increase peripheral blood neutrophils. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. Antitumor-promoting activity of scopadulcic acid B, isolated from the medicinal plant Scoparia dulcis L.

    Science.gov (United States)

    Nishino, H; Hayashi, T; Arisawa, M; Satomi, Y; Iwashima, A

    1993-01-01

    Scopadulcic acid B (SDB), a tetracyclic diterpenoid isolated from a medicinal plant, Scoparia dulcis L., inhibited the effects of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro and in vivo; SDB inhibited TPA-enhanced phospholipid synthesis in cultured cells, and also suppressed the promoting effect of TPA on skin tumor formation in mice initiated with 7,12-dimethylbenz[a]anthracene. The potency of SDB proved to be stronger than that of other natural antitumor-promoting terpenoids, such as glycyrrhetinic acid.

  18. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey.

    Science.gov (United States)

    Yildirim, Arzu Birinci; Karakas, Fatma Pehlivan; Turker, Arzu Ucar

    2013-08-01

    To investigate antibacterial and antitumor activities of 51 different extracts prepared with 3 types of solvents (water, ethanol and methanol) of 16 different plant species (Ajuga reptans (A. reptans) L., Phlomis pungens (P. pungens) Willd., Marrubium astracanicum (M. astracanicum) Jacq., Nepeta nuda (N. nuda) L., Stachys annua (S. annua) L., Genista lydia (G. lydia) Boiss., Nuphar lutea (N. lutea) L., Nymphaea alba (N. alba) L., Vinca minor (V. minor) L., Stellaria media (S. media) L., Capsella bursa-pastoris (C. bursa-pastoris) L., Galium spurium (G. spurium) L., Onosma heterophyllum (O. heterophyllum) Griseb., Reseda luteola (R. luteola) L., Viburnum lantana (V. lantana) L. and Mercurialis annua (M. annua) L.) grown in Turkey was conducted. Antibacterial activity was evaluated with 10 bacteria including Streptococcus pyogenes (S. pyogenes), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), Escheria coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella typhimurium (S. typhimurium), Serratia marcescens (S. marcescens), Proteus vulgaris (P. vulgaris), Enterobacter cloacae (E. cloacea), and Klebsiella pneumoniae (K. pneumoniae) by using disc diffusion method. Antitumor activity was evaluated with Agrobacterium tumefaciens (A. tumefaciens)-induced potato disc tumor assay. Best antibacterial activity was obtained with ethanolic extract of P. pungens against S. pyogenes. Ethanolic and methanolic extract of N. alba and ethanolic extract of G. lydia also showed strong antibacterial activities. Results indicated that alcoholic extracts especially ethanolic extracts exhibited strong antibacterial activity against both gram-positive and gram-negative bacteria. Best antitumor activity was obtained with methanolic extracts of N. alba and V. lantana (100% tumor inhibition). Ethanolic extract of N. alba, alcoholic extracts of N. lutea, A. reptans and V. minor flowers, methanolic extracts of G. lydia and O. heterophyllum and ethanolic

  19. Linalool Exhibits Cytotoxic Effects by Activating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2014-05-01

    Full Text Available According to recent studies, the Plantaginaceae, which are traditional Chinese herbal remedies, have potential for use in viral infection treatment and cancer therapy. Linalool and p-coumaric acid are two of the biologically active compounds that can be isolated from the Plantaginaceae. This study mainly focused on investigating the bioactivity of linalool as well as the bioactivity of p-coumaric acid in terms of their cytotoxic effects on cancer cells. Whether the mechanisms of such effects are generated through apoptosis and immunoregulatory activity were also investigated. By using WST-1 analysis, it was shown that linalool and p-coumaric acid have good inhibitory effects against breast, colorectal and liver cancer cells. The IC50 values of linalool for those cancer cell types were 224 μM, 222 μM, and 290 μM, respectively, and the IC50 values of p-coumaric acid were 693 μM, 215 μM and 87 μM, respectively. Cell cycle analysis also confirmed that linalool and p-coumaric acid can lead to apoptosis. By using flow cytometry, it was determined that treatment with linalool rather than p-coumaric acid significantly increased the sub-G1 phase and that there were more cells concentrated in the G1 phase. Furthermore, by using cytokine array analysis, we found that linalool can stimulate IFN-γ, IL-13, IL-2, IL-21, IL-21R, IL-4, IL-6sR and TNF-α secretion. This demonstrated that in addition to the bidirectional regulation capabilities found in linalool, it also induces Th1 cellular immune response in T-47D cells. These results showed that linalool holds great potential for use in cancer therapy, and we believe that it could provide an alternative way to take action against tumors.

  20. Effects of Different Temperatures on the Chemical Structure and Antitumor Activities of Polysaccharides from Cordyceps militaris

    Directory of Open Access Journals (Sweden)

    Eliyas Nurmamat

    2018-04-01

    Full Text Available The effects of different extraction temperatures (4 and 80 °C on the physicochemical properties and antitumor activity of water soluble polysaccharides (CMPs-4 and CMPs-80 from Cordyceps militaris (C. militaris were evaluated in this study. The results of gas chromatography (GC and high-performance gel permeation chromatography (HPGPC showed that a higher extraction temperature could degrade the polysaccharides with 188 kDa, mainly composed of glucose, and increase the dissolution rate of polysaccharides about 308 kDa, mainly consisting of rhamnose and galactose. In addition, the CMPs displayed the same sugar ring and category of glycosidic linkage based on Fourier-transform infrared spectroscopy (FTIR analysis, however, their invisible structural difference occurred in the specific rotation and conformational characteristics according to the results of specific optical rotation measurement and Congo red test. In vitro antitumor experiments indicated that CMPs-4 possessed stronger inhibitory effects on human esophagus cancer Eca-109 cells by inducing cell apoptosis more than CMPs-80 did. These findings demonstrated that the polysaccharides extracted with cold water (4 °C could be applied as a novel alternative chemotherapeutic agent or dietary supplement with its underlying antitumor property.

  1. Antitumor activity of extract and isolated compounds from Drechslera rostrata and Eurotium tonophilum

    Directory of Open Access Journals (Sweden)

    Fatmah A.S. Alasmary

    2018-02-01

    Full Text Available Total extracts of Drechslera rostrata and Eurotium tonophilum in addition of two isolated compounds from their cultures [di-2-ethylhexyl phthalate (H1 and 1,8-Dihydroxy-3-methoxy-6-methyl-anthraquinone (H2] were tested for their antitumor activity using four human carcinoma cell lines. Antitumor activity was assessed by performing MTT assay to check the % cell viability. The % viability of HCT-116 (colon carcinoma, HeLa (cervical carcinoma, HEp-2 (larynx carcinoma and HepG-2 (hepatocellular carcinoma cells decreased after treatment with Drechslera rostrata and Eurotium tonophilum extracts, these effects were ranged from 059.0 ±  0.1 to 217.0  ±  0.3 µg/ml on all types of cancer cells. The best activity was recorded for Eurotium tonpholium extract (054.5 ± 0.3, 059.0 ± 0.5 and 059.0 ± 0.1 for HEp-2, Hela, and HepG-2 respectively. The isolated compounds (H1&H2 were found to be responsible about the activities because they recorded the lowest IC50 on tested cell lines with range of 9.5–20.3 μg/ml. Vinblastine sulphate was used as a reference standard and showed in vitro anticancer activity. This study demonstrated that all extracts and isolated compounds have antitumor activity against HCT-116, HeLa, HEp-2 and HepG-2 cells.

  2. Influence of low dose ionizing radiation on amplification and antitumor activity of LAK/TIL cells

    International Nuclear Information System (INIS)

    Liu Wei; Hou Dianjun; Qiao Jianwei; Shang Ximei; Li Jieqing

    2000-01-01

    Objective: To study the influence of low dose ionization on amplification and antitumor activity of LAK/TIL cells. Methods: TIL cells isolated from Lewis lung cancer tissues and LAK cells from spleen of tumor-bearing mouse were irradiated with different low doses of X-rays and were cultured after irradiation. Results: Low dose ionizing radiation improved the amplification volume of LAK/TIL cells, decreased the cell death ratio in amplification process, and increased the toxicity of LAK/TIL cells, Conclusions: Low dose ionizing radiation can result in amplification of biologically activated lymphocytes, and decreases the death ratio of the cells in amplification process

  3. Triterpene-loaded microemulsion using Coix lacryma-jobi seed extract as oil phase for enhanced antitumor efficacy: preparation and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Qu D

    2013-12-01

    Full Text Available Ding Qu, Junjie He, Congyan Liu, Jing Zhou, Yan ChenKey Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, People’s Republic of ChinaAbstract: Ganoderma lucidum triterpene-loaded microemulsions (TMEs using Coix lacryma-jobi (adlay seed oil as oil phase were prepared, characterized, and evaluated for enhanced antitumor activity. Ternary phase diagrams for the TMEs were constructed and the optimal preparation was developed. Transmission electron microscopy and dynamic light scattering showed that this formulation had a well defined spherical shape, a homogeneous distribution, a small size, and a narrow polydispersity index. The drug-loading rate was determined to be 9.87% by ultraviolet spectrophotometry, and acceptable stability under various stimulations in vitro was confirmed. Importantly, the TME formulation showed a significantly greater antiproliferative effect towards human lung carcinoma (A549 cells and murine lung tumor (Lewis cells in comparison with suspension formulations containing triterpene and adlay seed oil as a positive control. The half-maximal inhibitory concentration of the TMEs was about 0.62 mg crude drug per mL, being 2.5-fold improved relative to that of the corresponding suspension formulation, but no significant cytotoxicity was observed for the bare microemulsion in A549 cells and Lewis cells. In vivo, the TME formulation showed markedly enhanced antitumor efficacy in a xenograft model of Lewis lung cancer after intragastric administration. Compared with cyclophosphamide, the TME formulation showed similar antitumor activity but less general toxicity. These results indicate the feasibility of using a microemulsion to increase the solubility of triterpene and adlay. TMEs hold promise as an efficient drug delivery system for the treatment of lung cancer.Keywords: microemulsion, Ganoderma lucidum, triterpene, adlay seed oil, lung cancer

  4. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody.

    Science.gov (United States)

    Fallon, Jonathan K; Vandeveer, Amanda J; Schlom, Jeffrey; Greiner, John W

    2017-03-28

    The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies.

  5. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

    Directory of Open Access Journals (Sweden)

    Hyo-Jeong Lee

    2012-01-01

    Full Text Available Although cryptotanshinone (CT was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent.

  6. Antioxidant Activity, Antitumor Effect, and Antiaging Property of Proanthocyanidins Extracted from Kunlun Chrysanthemum Flowers

    Directory of Open Access Journals (Sweden)

    Siqun Jing

    2015-01-01

    Full Text Available The objective of the present study was to evaluate the antioxidant activity, antitumor effect, and antiaging property of proanthocyanidins from Kunlun Chrysanthemum flowers (PKCF grown in Xinjiang. In vitro antioxidant experiments results showed that the total antioxidant activity and the scavenging capacity of hydroxyl radicals (•OH and 1,1-diphenyl-2-picrylhydrazyl (DPPH• radicals increased in a concentration-dependent manner and were stronger than those of vitamin C. To investigate the antioxidant activity of PKCF in vivo, we used serum, liver, and kidney from mouse for the measurement of superoxide dismutase (SOD, malondialdehyde (MDA, and total antioxidant capacity (T-AOC. Results indicated that PKCF had antioxidative effect in vivo which significantly improved the activity of SOD and T-AOC and decreased MDA content. To investigate the antitumor activity of PKCF, we used H22 cells, HeLa cells, and Eca-109 cells with Vero cells as control. Inhibition ratio and IC50 values were measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay; PKCF showed great inhibitory activity on H22 cells and HeLa cells. We also used fruit flies as a model for analyzing the anti-aging property of PKCF. Results showed that PKCF has antiaging effect on Drosophila. Results of the present study demonstrated that PKCF could be a promising agent that may find applications in health care, medicine, and cosmetics.

  7. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Maria P. Crespo-Ortiz

    2012-01-01

    Full Text Available Improvement of quality of life and survival of cancer patients will be greatly enhanced by the development of highly effective drugs to selectively kill malignant cells. Artemisinin and its analogs are naturally occurring antimalarials which have shown potent anticancer activity. In primary cancer cultures and cell lines, their antitumor actions were by inhibiting cancer proliferation, metastasis, and angiogenesis. In xenograft models, exposure to artemisinins substantially reduces tumor volume and progression. However, the rationale for the use of artemisinins in anticancer therapy must be addressed by a greater understanding of the underlying mechanisms involved in their cytotoxic effects. The primary targets for artemisinin and the chemical base for its preferential effects on heterologous tumor cells need yet to be elucidated. The aim of this paper is to provide an overview of the recent advances and new development of this class of drugs as potential anticancer agents.

  8. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity.

    Directory of Open Access Journals (Sweden)

    Akihiro Ohashi

    Full Text Available Centromere-associated protein E (CENP-E regulates both chromosome congression and the spindle assembly checkpoint (SAC during mitosis. The loss of CENP-E function causes chromosome misalignment, leading to SAC activation and apoptosis during prolonged mitotic arrest. Here, we describe the biological and antiproliferative activities of a novel small-molecule inhibitor of CENP-E, Compound-A (Cmpd-A. Cmpd-A inhibits the ATPase activity of the CENP-E motor domain, acting as a time-dependent inhibitor with an ATP-competitive-like behavior. Cmpd-A causes chromosome misalignment on the metaphase plate, leading to prolonged mitotic arrest. Treatment with Cmpd-A induces antiproliferation in multiple cancer cell lines. Furthermore, Cmpd-A exhibits antitumor activity in a nude mouse xenograft model, and this antitumor activity is accompanied by the elevation of phosphohistone H3 levels in tumors. These findings demonstrate the potency of the CENP-E inhibitor Cmpd-A and its potential as an anticancer therapeutic agent.

  9. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Directory of Open Access Journals (Sweden)

    Sergio Arancibia

    Full Text Available Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH. This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH and the Concholepas hemocyanin (CCH. FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer

  10. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  11. Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy

    Science.gov (United States)

    Taheri, Azade; Dinarvand, Rassoul; Nouri, Faranak Salman; Khorramizadeh, Mohammad Reza; Borougeni, Atefeh Taheri; Mansoori, Pooria; Atyabi, Fatemeh

    2011-01-01

    Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA) as a carrier. Methotrexate (MTX) molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs) were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8%) 21 days after treatment, whereas non-targeted MTX-HSA NPs treatment at the same dose caused a body weight loss of 27.05% ± 3.1%. PMID:21931482

  12. Antitumor Activity and Mechanism of a Reverse Transcriptase Inhibitor, Dapivirine, in Glioblastoma

    OpenAIRE

    Liu, Weiwen; Song, Xian-lu; Zhao, Shan-chao; He, Minyi; Wang, Hai; Chen, Ziyang; Xiang, Wei; Yi, Guozhong; Qi, Songtao; Liu, Yawei

    2018-01-01

    Ethnopharmacological relevance: Dapivirine is one of reverse transcriptase inhibitors (RTIs). It is the prototype of diarylpyrimidines (DAPY), formerly known as TMC120 or DAPY R147681 (IUPAC name: 4- [[4-(2, 4, 6-trimethylphenyl) amino]-2-pyrimidinyl] amino]-benzonitrile; CAS no.244767-67-7). Aim: The purpose of this study is to investigate the antitumor activity of dapivirine, one of the RTIs, on U87 glioblastoma (GBM) cells in vitro and in vivo. Materials and Methods: U87 GBM cells were cul...

  13. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Gong Haiyan

    2016-07-01

    Full Text Available In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC–MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%, estragole (29.5%, and p-Menthan-3-one (19.2%. 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8% and estragole (20.8%. At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml−1 and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.

  14. The Antitumor Activity of the Novel Compound Jesridonin on Human Esophageal Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Jesridonin, a small molecule obtained through the structural modification of Oridonin, has extensive antitumor activity. In this study, we evaluated both its in vitro activity in the cancer cell line EC109 and its in vivo effect on tumor xenografts in nude mice. Apoptosis induced by Jesridonin was determined using an MTT assay, Annexin-V FITC assay and Hoechest 33258 staining. Apoptosis via mitochondrial and death receptor pathways were confirmed by detecting the regulation of MDM2, p53, and Bcl-2 family members and by activation of caspase-3/-8/-9. In addition, vena caudalis injection of Jesridonin showed significant inhibition of tumor growth in the xenograft model, and Jesridonin-induced cell apoptosis in tumor tissues was determined using TUNEL. Biochemical serum analysis of alkaline phosphatase (ALP, alanine transaminase (ALT, aspartate transaminase (AST, gamma-glutamyl transferase (GGT, total protein (TP and albumin (ALB indicated no obvious effects on liver function. Histopathological examination of the liver, kidney, lung, heart and spleen revealed no signs of JD-induced toxicity. Taken together, these results demonstrated that Jesridonin exhibits antitumor activity in human esophageal carcinomas EC109 cells both in vitro and in vivo and demonstrated no adverse effects on major organs in nude mice. These studies provide support for new drug development.

  15. Antitumor activity of biflorin, an o-naphthoquinone isolated from Capraria biflora.

    Science.gov (United States)

    Vasconcellos, Marne Carvalho de; Bezerra, Daniel Pereira; Fonseca, Aluísio Marques; Pereira, Márcio Roberto Pinho; Lemos, Telma Leda Gomes; Pessoa, Otília Deusdênia Loiola; Pessoa, Cláudia; Moraes, Manoel Odorico de; Alves, Ana Paula Negreiros Nunes; Costa-Lotufo, Letícia Veras

    2007-08-01

    Pharmacological studies with an aqueous extract obtained from leaves of Capraria biflora showed potent cytotoxic, analgesic, antimicrobial and anti-inflammatory activities. It has been demonstrated that biflorin possesses an in vitro cytotoxic activity against tumor cells. The in vivo antitumor activity of biflorin was evaluated on two mouse models, sarcoma 180 and Ehrlich carcinoma. Biflorin was active against both tumors with a very similar profile. In addition, biflorin was also able to increase the response elicited by 5-FU in mice inoculated with both tumors. The results showed a decrease in Ki67 staining in tumor cells from treated-animals when compared with non-treated groups, which suggests an inhibition of tumor proliferation rate. Histopathological analysis from kidneys and liver showed that biflorin possessed weak and reversible toxic effects. It was also demonstrated that biflorin acts as an immunoadjuvant agent, rising the production of ovalbumin-specific antibodies and inducing a discreet increase of the white pulp and nest of megakaryocytic in spleen of treated mice, which can be related to its antitumor properties.

  16. Curcuma increasing antitumor effect of Rhizoma paridis saponins through absorptive enhancement of paridis saponins.

    Science.gov (United States)

    Man, Shuli; Li, Yuanyuan; Fan, Wei; Gao, Wenyuan; Liu, Zhen; Li, Nan; Zhang, Yao; Liu, Changxiao

    2013-09-15

    Rhizoma paridis saponins (RPS) played a good antitumor role in many clinical applications. However, low oral bioavailability limited its application. In this research, water extract of Curcuma (CW) significantly increased antitumor effect of Rhizoma paridis saponins (RPS). GC-MS was used to identify its polar composition. HPLC was applied for determination of the content of curcuminoids in CW. As a result, 47 analytes with 0.65% of curcuminoids were identified in CW. According to the in vivo anti-tumor data, the best proportion of curcuminoids in CW with RPS was 16:500 (w/w). Using this ratio, curcuminoids significantly increased absorption of RPS in the everted rat duodenum sac system. In addition, curcuminoids decreased the promotion of RPS on rhodamine 123 efflux. The effect of curcuminoids was similar to that of the P-gp inhibitor, cyclosporin A in combination with RPS. In conclusion, drug combination of water extract of Curcuma with RPS was a good method to increase the antitumor effect of RPS. This combination would be a potent anticancer agent used in the prospective application. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. Antitumor activity of anti-C-ERC/mesothelin monoclonal antibody in vivo.

    Science.gov (United States)

    Inami, Koichi; Abe, Masaaki; Takeda, Kazuyoshi; Hagiwara, Yoshiaki; Maeda, Masahiro; Segawa, Tatsuya; Suyama, Masafumi; Watanabe, Sumio; Hino, Okio

    2010-04-01

    Mesothelioma is an aggressive cancer often caused by chronic asbestos exposure, and its prognosis is very poor despite the therapies currently used. Due to the long latency period between asbestos exposure and tumor development, the worldwide incidence will increase substantially in the next decades. Thus, novel effective therapies are warranted to improve the prognosis. The ERC/mesothelin gene (MSLN) is expressed in wide variety of human cancers, including mesotheliomas, and encodes a precursor protein cleaved by proteases to generate C-ERC/mesothelin and N-ERC/mesothelin. In this study, we investigated the antitumor activity of C-ERC/mesothelin-specific mouse monoclonal antibody, 22A31, against tumors derived from a human mesothelioma cell line, ACC-MESO-4, in a xenograft experimental model using female BALB/c athymic nude mice. Treatment with 22A31 did not inhibit cell proliferation of ACC-MESO-4 in vitro; however, therapeutic treatment with 22A31 drastically inhibited tumor growth in vivo. 22A31 induced antibody-dependent cell-mediated cytotoxicity by natural killer (NK) cells, but not macrophages, in vitro. Consistently, the F(ab')(2) fragment of 22A31 did not inhibit tumor growth in vivo, nor did it induce antibody-dependent cell mediated cytotoxicity (ADCC) in vitro. Moreover, NK cell depletion diminished the antitumor effect of 22A31. Thus, 22A31 induced NK cell-mediated ADCC and exerted antitumor activity in vivo. 22A31 could have potential as a therapeutic tool to treat C-ERC/mesothelin-expressing cancers including mesothelioma.

  18. Enhanced antitumor activity of cabazitaxel targeting CD44+ receptor ...

    African Journals Online (AJOL)

    (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... due to poor survival rates, new drugs have been ... cycle arrest, leading to cell death [10,11]. ..... in therapy against triple negative breast cancer.

  19. Antitumor activity of a novel and orally available inhibitor of serine palmitoyltransferase

    International Nuclear Information System (INIS)

    Yaguchi, Masahiro; Shibata, Sachio; Satomi, Yoshinori; Hirayama, Megumi; Adachi, Ryutaro; Asano, Yasutomi; Kojima, Takuto; Hirata, Yasuhiro; Mizutani, Akio; Kiba, Atsushi; Sagiya, Yoji

    2017-01-01

    Metabolic reprogramming is an essential hallmark of neoplasia. Therefore, targeting cancer metabolism, including lipid synthesis, has attracted much interest in recent years. Serine palmitoyltransferase (SPT) plays a key role in the initial and rate-limiting step of de novo sphingolipid biosynthesis, and inhibiting SPT activity prevents the proliferation of certain cancer cells. Here, we identified a novel and orally available SPT inhibitor, compound-2. Compound-2 showed an anti-proliferative effect in several cancer cell models, reducing the levels of the sphingolipids ceramide and sphingomyelin. In the presence of compound-2, exogenously added S1P partially compensated the intracellular sphingolipid levels through the salvage pathway by partially rescuing compound-2-induced cytotoxicity. This suggested that the mechanism underlying the anti-proliferative effect of compound-2 involved the reduction of sphingolipid levels. Indeed, compound-2 promoted multinuclear formation with reduced endogenous sphingomyelin levels specifically in a compound-2-sensitive cell line, indicating that the effect was induced by sphingolipid reduction. Furthermore, compound-2 showed potent antitumor activity without causing significant body weight loss in the PL-21 acute myeloid leukemia mouse xenograft model. Therefore, SPT may be an attractive therapeutic anti-cancer drug target for which compound-2 may be a promising new drug. - Highlights: • We discovered compound-2, a novel and orally available SPT inhibitor. • Compound-2 was cytotoxic against PL-21 acute myeloid leukemia cells. • Compound-2 showed antitumor activity in the PL-21 mouse xenograft model.

  20. Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2.

    Science.gov (United States)

    van Zoggel, Hanneke; Carpentier, Gilles; Dos Santos, Célia; Hamma-Kourbali, Yamina; Courty, José; Amiche, Mohamed; Delbé, Jean

    2012-01-01

    Recently, we have found that the skin secretions of the Amazonian tree frog Phyllomedusa bicolor contains molecules with antitumor and angiostatic activities and identified one of them as the antimicrobial peptide dermaseptin (Drs) B2. In the present study we further explored the in vitro and in vivo antitumor activity of this molecule and investigated its mechanism of action. We showed that Drs B2 inhibits the proliferation and colony formation of various human tumor cell types, and the proliferation and capillary formation of endothelial cells in vitro. Furthermore, Drs B2 inhibited tumor growth of the human prostate adenocarcinoma cell line PC3 in a xenograft model in vivo. Research on the mechanism of action of Drs B2 on tumor PC3 cells demonstrated a rapid increasing amount of cytosolic lactate dehydrogenase, no activation of caspase-3, and no changes in mitochondrial membrane potential. Confocal microscopy analysis revealed that Drs B2 can interact with the tumor cell surface, aggregate and penetrate the cells. These data together indicate that Drs B2 does not act by apoptosis but possibly by necrosis. In conclusion, Drs B2 could be considered as an interesting and promising pharmacological and therapeutic leader molecule for the treatment of cancer.

  1. Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2.

    Directory of Open Access Journals (Sweden)

    Hanneke van Zoggel

    Full Text Available Recently, we have found that the skin secretions of the Amazonian tree frog Phyllomedusa bicolor contains molecules with antitumor and angiostatic activities and identified one of them as the antimicrobial peptide dermaseptin (Drs B2. In the present study we further explored the in vitro and in vivo antitumor activity of this molecule and investigated its mechanism of action. We showed that Drs B2 inhibits the proliferation and colony formation of various human tumor cell types, and the proliferation and capillary formation of endothelial cells in vitro. Furthermore, Drs B2 inhibited tumor growth of the human prostate adenocarcinoma cell line PC3 in a xenograft model in vivo. Research on the mechanism of action of Drs B2 on tumor PC3 cells demonstrated a rapid increasing amount of cytosolic lactate dehydrogenase, no activation of caspase-3, and no changes in mitochondrial membrane potential. Confocal microscopy analysis revealed that Drs B2 can interact with the tumor cell surface, aggregate and penetrate the cells. These data together indicate that Drs B2 does not act by apoptosis but possibly by necrosis. In conclusion, Drs B2 could be considered as an interesting and promising pharmacological and therapeutic leader molecule for the treatment of cancer.

  2. Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues.

    Science.gov (United States)

    Li, Feng; Mao, Yi-Dan; Wang, Yi-Fan; Raza, Aun; Qiu, Li-Peng; Xu, Xiu-Quan

    2017-03-06

    Stems are the important residues of Trapa quadrispinosa Roxb., which are abundant in phenolic compounds. Ultrasonic-assisted enzymatic extraction (UAEE) is confirmed as a novel extraction technology with main advantages of enhancing extraction yield and physiological activities of the extracts from various plants. In this study, UAEE was applied to obtain the highest yield of phenolic content, strongest antioxidant, and antitumor activities and to optimize the extraction conditions using response surface methodology (RSM). The extracts from the stems of T. quadrispinosa were characterized by determination of their antioxidant activities through 2,2-azinobis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS), 1,1-Diphenyl-2-picrylhydrazxyl (DPPH) radical scavenging, total antioxidant capacity (TAC), ferric reducing antioxidant capacity (FRAC) methods and of their antitumor activity by MTT method. The selected key independent variables were cellulase concentration ( X ₁: 1.5%-2.5%), extraction time ( X ₂: 20-30 min) and extraction temperature ( X ₃: 40-60 °C). The optimal extraction conditions for total phenolic content (TPC) value of the extracts were determined as 1.74% cellulase concentration, 25.5 min ultrasonic extraction time and 49.0 °C ultrasonic temperature. Under these conditions, the highest TPC value of 53.6 ± 2.2 mg Gallic acid equivalent (GAE)/g dry weight (DW) was obtained, which agreed well with the predicted value (52.596 mg GAE/g·DW. Furthermore, the extracts obtained from UAEE presented highest antioxidant activities through ABTS, DPPH, TAC and FRAC methods were of 1.54 ± 0.09 mmol Trolox equivalent (TE)/g·DW; 1.45 ± 0.07 mmol·TE/g·DW; 45.2 ± 2.2 mg·GAE/g·DW; 50.4 ± 2.6 μmol FeSO₄ equivalent/g·DW and lowest IC 50 values of 160.4 ± 11.6 μg/mL, 126.1 ± 10.8 μg/mL, and 178.3 ± 13.1 μg/mL against Hela, HepG-2 and U251 tumor cells, respectively. The results indicated that the UAEE was an efficient alternative to improve

  3. Immunotherapy with Dendritic Cells Modified with Tumor-Associated Antigen Gene Demonstrates Enhanced Antitumor Effect Against Lung Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-04-01

    Full Text Available BACKGROUND: Immunotherapy using dendritic cell (DC vaccine has the potential to overcome the bottleneck of cancer therapy. METHODS: We engineered Lewis lung cancer cells (LLCs and bone marrow–derived DCs to express tumor-associated antigen (TAA ovalbumin (OVA via lentiviral vector plasmid encoding OVA gene. We then tested the antitumor effect of modified DCs both in vitro and in vivo. RESULTS: The results demonstrated that in vitro modified DCs could dramatically enhance T-cell proliferation (P < .01 and killing of LLCs than control groups (P < .05. Moreover, modified DCs could reduce tumor size and prolong the survival of LLC tumor-bearing mice than control groups (P < .01 and P < .01, respectively. Mechanistically, modified DCs demonstrated enhanced homing to T-cell–rich compartments and triggered more naive T cells to become cytotoxic T lymphocytes, which exhibited significant infiltration into the tumors. Interestingly, modified DCs also markedly reduced tumor cells harboring stem cell markers in mice (P < .05, suggesting the potential role on cancer stem-like cells. CONCLUSION: These findings suggested that DCs bioengineered with TAA could enhance antitumor effect and therefore represent a novel anticancer strategy that is worth further exploration.

  4. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors.

    Science.gov (United States)

    Herbst, Roy S; Hong, David; Chap, Linnea; Kurzrock, Razelle; Jackson, Edward; Silverman, Jeffrey M; Rasmussen, Erik; Sun, Yu-Nien; Zhong, Don; Hwang, Yuying C; Evelhoch, Jeffrey L; Oliner, Jonathan D; Le, Ngocdiep; Rosen, Lee S

    2009-07-20

    PURPOSE AMG 386 is an investigational peptide-Fc fusion protein (ie, peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 and angiopoietin-2 with their receptor, Tie2. This first-in-human study evaluated the safety, pharmacokinetics (PK), pharmacodynamics, and antitumor activity of AMG 386 in adults with advanced solid tumors. PATIENTS AND METHODS Patients in sequential cohorts received weekly intravenous AMG 386 doses of 0.3, 1, 3, 10, or 30 mg/kg. Results Thirty-two patients were enrolled on the study and received AMG 386. One occurrence of dose-limiting toxicity was seen at 30 mg/kg: respiratory arrest, which likely was caused by tumor burden that was possibly related to AMG 386. The most common toxicities were fatigue and peripheral edema. Proteinuria (n = 11) was observed without clinical sequelae. Only four patients (12%) experienced treatment-related toxicities greater than grade 1. A maximum-tolerated dose was not reached. PK was dose-linear and the mean terminal-phase elimination half-life values ranged from 3.1 to 6.3 days. Serum AMG 386 levels appeared to reach steady-state after four weekly doses, and there was minimal accumulation. No anti-AMG 386 neutralizing antibodies were detected. Reductions in volume transfer constant (K(trans); measured by dynamic contrast-enhanced magnetic resonance imaging) were observed in 10 patients (13 lesions) 48 hours to 8 weeks after treatment. One patient with refractory ovarian cancer achieved a confirmed partial response (ie, 32.5% reduction by Response Evaluation Criteria in Solid Tumors) and withdrew from the study with a partial response after 156 weeks of treatment; four patients experienced stable disease for at least 16 weeks. CONCLUSION Weekly AMG 386 appeared well tolerated, and its safety profile appeared distinct from that of vascular endothelial growth factor-axis inhibitors. AMG 386 also appeared to impact tumor vascularity and showed antitumor activity in this patient

  5. Antibody complementarity-determining regions (CDRs can display differential antimicrobial, antiviral and antitumor activities.

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    Full Text Available BACKGROUND: Complementarity-determining regions (CDRs are immunoglobulin (Ig hypervariable domains that determine specific antibody (Ab binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here. METHODOLOGY/PRINCIPAL FINDINGS: CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a a protein epitope of Candida albicans cell wall stress mannoprotein; b a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains. CONCLUSIONS/SIGNIFICANCE: The high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small

  6. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells.

    Science.gov (United States)

    Kwak, Tae Won; Kim, Do Hyung; Jeong, Young-Il; Kang, Dae Hwan

    2015-09-26

    The aim of this study is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(DL-lactide-co-glycolide)/poly(ethylene glycol) copolymer. Vorinostat-NPs exhibited spherical shapes with sizes Vorinostat-NPs have anticancer activity similar to that of vorinostat in vitro. Vorinostat-NPs as well as vorinostat itself increased acetylation of histone-H3. Furthermore, vorinostat-NPs have similar effectiveness in the suppression or expression of histone deacetylase, mutant type p53, p21, and PARP/cleaved caspase-3. However, vorinostat-NPs showed improved antitumor activity against HuCC-T1 cancer cell-bearing mice compared to vorinostat, whereas empty nanoparticles had no effect on tumor growth. Furthermore, vorinostat-NPs increased the expression of acetylated histone H3 in tumor tissue and suppressed histone deacetylase (HDAC) expression in vivo. The improved antitumor activity of vorinostat-NPs can be explained by molecular imaging studies using near-infrared (NIR) dye-incorporated nanoparticles, i.e. NIR-dye-incorporated nanoparticles were intensively accumulated in the tumor region rather than normal one. Our results demonstrate that vorinostat and vorinostat-NPs exert anticancer activity against HuCC-T1 cholangiocarcinoma cells by specific inhibition of HDAC expression. Thus, we suggest that vorinostat-NPs are a promising candidate for anticancer chemotherapy in cholangiocarcinoma. Graphical abstract Local delivery strategy of vorinostat-NPs against cholangiocarcinomas.

  7. Supercritical-Carbon Dioxide Fluid Extract from Chrysanthemum indicum Enhances Anti-Tumor Effect and Reduces Toxicity of Bleomycin in Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Hong-Mei Yang

    2017-02-01

    Full Text Available Bleomycin (BLM, a family of anti-tumor drugs, was reported to exhibit severe side effects limiting its usage in clinical treatment. Therefore, finding adjuvants that enhance the anti-tumor effect and reduce the detrimental effect of BLM is a prerequisite. Chrysanthemum indicum, an edible flower, possesses abundant bioactivities; the supercritical-carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE have strong anti-inflammatory, anti-oxidant, and lung protective effects. However, the role of CISCFE combined with BLM treatment on tumor-bearing mice remains unclear. The present study aimed to investigate the potential synergistic effect and the underlying mechanism of CISCFE combined with BLM in the treatment of hepatoma 22 (H22 tumor-bearing mice. The results suggested that the oral administration of CISCFE combined with BLM could markedly prolong the life span, attenuate the BLM-induced pulmonary fibrosis, suppress the production of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor-α, activities of myeloperoxidase, and malondiadehyde. Moreover, CISCFE combined with BLM promoted the ascites cell apoptosis, the activities of caspases 3 and 8, and up-regulated the protein expression of p53 and down-regulated the transforming growth factor-β1 by activating the gene expression of miR-29b. Taken together, these results indicated that CISCFE could enhance the anti-cancer activity of BLM and reduce the BLM-induced pulmonary injury in H22 tumor-bearing mice, rendering it as a potential adjuvant drug with chemotherapy after further investigation in the future.

  8. Cetuximab improves AZD6244 antitumor activity in colorectal cancer HT29 cells in vitro and in nude mice by attenuating HER3/Akt pathway activation.

    Science.gov (United States)

    Zhang, Qin; Xiao, He; Jin, Feng; Li, Mengxia; Luo, Jia; Wang, Ge

    2018-07-01

    The present study investigated the molecular mechanism by which the epidermal growth factor receptor (EGFR) inhibitor cetuximab enhances the antitumor activity of the mitogen-activated protein kinase kinase (MEK) inhibitor AZD6244 in colorectal cancer HT29 cells. HT29 cells were treated with AZD6244 plus cetuximab and then subjected to the following assays: Cell Counting kit-8, BrdU-incorporation, flow cytometric cell cycle distribution and apoptosis analysis, western blot analysis, and nude mouse xenografts. The combination of AZD6244 and cetuximab significantly reduced HT29 cell viability and proliferation compared with AZD6244 alone. The combination treatment reduced the IC 50 value from 108.12±10.05 to 28.45±1.92 nM. AZD6244 and cetuximab also induced cell cycle arrest at G1 phase and reduced S phase (88.53% vs. 93.39%, P=0.080; 8.73% vs. 4.24%, P=0.082, respectively). Combination of AZD6244 with cetuximab significantly induced tumor cells apoptosis (14.61% vs. 8.99%, P=0.046). Inhibition of EGFR activity using cetuximab partially abrogated the feedback-activation of phosphorylated receptor tyrosine-protein kinase erB-3 (p-HER3) and p-AKT serine/threonine kinase (AKT), as well as prevented reactivation of p-extracellular regulated kinase (ERK) conferred by AZD6244 treatment. Combination of AZD6244 and cetuximab also inhibited HT29 cell xenograft growth in nude mice and suppressed HER3 and p-AKT levels in xenografts. The EGFR inhibitor cetuximab enhanced the antitumor activity of the MEK inhibitor AZD6244 in colorectal cells in vitro and in vivo . Co-inhibition of MEK and EGFR may be a promising treatment strategy in colorectal cancers.

  9. The in vitro antitumor activity of vitamins C and K3 against ovarian carcinoma.

    Science.gov (United States)

    von Gruenigen, Vivian E; Jamison, James M; Gilloteaux, Jacques; Lorimer, Heather E; Summers, Marcia; Pollard, Robert R; Gwin, Carley A; Summers, Jack L

    2003-01-01

    The objective was to evaluate the cytotoxic effect and mechanism of action of vitamins C (VC) and K3 (VK3) on ovarian carcinoma. Cytotoxicity assays were performed on ovarian cancer cell lines with VC, VK3 or a VC/VK3 combination. FIC index was employed to evaluate synergism. Flow cytometry was accomplished at 90% cytotoxic doses. Light, transmission electron microscopy and DNA isolation were performed. Antitumor activity was exhibited by both VC, VK3 and VC/VK3. VC/VK3 demonstrated synergistic activity. VC/VK3 may induce a G1 block in the cell cycle. Combined vitamin treatment resulted in cells that maintain apparently intact nuclei while extruding pieces of organelle-free cytoplasm. Degradation of chromosomal DNA was observed. Cell death (autoschizis) displayed characteristics of both apoptosis and necrosis. The cytotoxic effects observed may enable vitamins C and K3 to play an adjuvant role in the treatment of ovarian cancer.

  10. Production, Structural Elucidation, and In Vitro Antitumor Activity of Trehalose Lipid Biosurfactant from Nocardia farcinica Strain.

    Science.gov (United States)

    Christova, Nelly; Lang, Siegmund; Wray, Victor; Kaloyanov, Kaloyan; Konstantinov, Spiro; Stoineva, Ivanka

    2015-04-01

    The objective of this study was to isolate and identify the chemical structure of a biosurfactant produced by Nocardia farcinica strain BN26 isolated from soil, and evaluate its in vitro antitumor activity on a panel of human cancer cell lines. Strain BN26 was found to produce glycolipid biosurfactant on n-hexadecane as the sole carbon source. The biosurfactant was purified using medium-pressure liquid chromatography and characterized as trehalose lipid tetraester (THL) by nuclear magnetic resonance spectroscopy and mass spectrometry. Subsequently, the cytotoxic effects of THL on cancer cell lines BV-173, KE-37 (SKW-3), HL-60, HL-60/DOX, and JMSU-1 were evaluated by MTT assay. It was shown that THL exerted concentration-dependent antiproliferative activity against the human tumor cell lines and mediated cell death by the induction of partial oligonucleosomal DNA fragmentation. These findings suggest that THL could be of potential to apply in biomedicine as a therapeutic agent.

  11. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    Science.gov (United States)

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Dual actions of albumin packaging and tumor targeting enhance the antitumor efficacy and reduce the cardiotoxicity of doxorubicin in vivo

    Directory of Open Access Journals (Sweden)

    Zheng K

    2015-08-01

    Full Text Available Ke Zheng,1 Rui Li,2 Xiaolei Zhou,2 Ping Hu,2 Yaxin Zhang,2 Yunmei Huang,3 Zhuo Chen,2 Mingdong Huang2 1College of Chemistry, Fuzhou University, Fuzhou, People’s Republic of China; 2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People’s Republic of China; 3Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China Abstract: Doxorubicin (DOX is an effective chemotherapy drug used to treat different types of cancers. However, DOX has severe side effects, especially life-threatening cardiotoxicity. We herein report a new approach to reduce the toxicity of DOX by embedding DOX inside human serum albumin (HSA. HSA is further fused by a molecular biology technique with a tumor-targeting agent, amino-terminal fragment of urokinase (ATF. ATF binds with a high affinity to urokinase receptor, which is a cell-surface receptor overexpressed in many types of tumors. The as-prepared macromolecule complex (ATF–HSA:DOX was not as cytotoxic as free DOX to cells in vitro, and was mainly localized in cell cytosol in contrast to DOX that was localized in cell nuclei. However, in tumor-bearing mice, ATF–HSA:DOX was demonstrated to have an enhanced tumor-targeting and antitumor efficacy compared with free DOX. More importantly, histopathological examinations of the hearts from the mice treated with ATF–HSA:DOX showed a significantly reduced cardiotoxicity compared with hearts from mice treated with free DOX. These results demonstrate the feasibility of this approach in reducing the cardiotoxicity of DOX while strengthening its antitumor efficacy. Such a tumor-targeted albumin packaging strategy can also be applied to other antitumor drugs. Keywords: amino-terminal fragment of urokinase, urokinase receptor, drug carrier, human serum albumin, doxorubicin, cytotoxicity

  13. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    Science.gov (United States)

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  14. Adenosine can thwart antitumor immune responses elicited by radiotherapy. Therapeutic strategies alleviating protumor ADO activities

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, Peter [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Multhoff, Gabriele [Klinikum rechts der Isar, Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Munich (Germany); Helmholtz Zentrum Muenchen, Institute for innovative Radiotherapy (iRT), Experimental Immune Biology, Neuherberg (Germany)

    2016-05-15

    By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT. An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided. Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis. ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters. (orig.) [German] Untersuchungen des bioenergetischen Status ergaben, dass Tumorhypoxie neben vielen anderen bedeutsamen biologischen Effekten zu einem starken

  15. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways.

    Science.gov (United States)

    Jiang, Rulan; Lönnerdal, Bo

    2017-02-01

    Lactoferrin (Lf) is an iron-binding glycoprotein that is present at high concentrations in milk. Bovine lactoferricin (LfcinB) is a peptide fragment generated by pepsin proteolysis of bovine lactoferrin (bLf). LfcinB consists of amino acid residues 17-41 proximal to the N-terminus of bLf and a disulfide bond between residues 19 and 36, forming a loop. Both bLf and LfcinB have been demonstrated to have antitumor activities. Colorectal cancer is the second most common cause of cancer death in developed countries. We hypothesized that bLf and LfcinB exert antitumor activities on colon cancer cells (HT-29) by triggering various signaling pathways. bLf and LfcinB significantly induced apoptosis in HT-29 cells but not in normal human intestinal epithelial cells, as revealed by the ApoTox-Glo Triplex Assay. The LIVE/DEAD cell viability assay showed that both bLf and LfcinB reduced the viability of HT-29 cells. Transcriptome analysis indicated that bLf, cyclic LfcinB, and linear LfcinB exerted antitumor activities by differentially activating diverse signaling pathways, including p53, apoptosis, and angiopoietin signaling. Immunoblotting results confirmed that both bLf and LfcinBs increased expression of caspase-8, p53, and p21, critical proteins in tumor suppression. These results provide valuable information regarding bLf and LfcinB for potential clinical applications in colon cancer therapy.

  16. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  17. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    International Nuclear Information System (INIS)

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  18. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  19. Research on Characteristics, Antioxidant and Antitumor Activities of Dihydroquercetin and Its Complexes

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-12-01

    Full Text Available Dihydroquercetin is a kind of dihydroflavonol compounds with antioxidant, antitumor, antivirus and radioresistance activities. This study attempted to produce the dihydroquercetin complexes with lecithin and β-cyclodextrin, and research their characteristics and bioactivities via ultraviolet spectrum (UV, infrared spectroscopy (IR, scanning electron microscope (SEM, differential scanning calorimetry (DSC, X-ray diffraction spectrum (XRD, and MTT assay. Results showed that the complexes with lecithin and β-cyclodextrin could improve the solubility and dissolution rate, and remove the characteristic endothermic peak of dihydroquercetin. IR spectra proved their interaction, and results of SEM and XRD showed the amorphous characteristics of the dihydroquercetin compounds. These results indicated that dihydroquercetin was combined by lecithin or β-cyclodextrin with better physical and chemical properties, which would effectively improve the application value in the food and drug industries.

  20. Polaprezinc reduces paclitaxel-induced peripheral neuropathy in rats without affecting anti-tumor activity

    Directory of Open Access Journals (Sweden)

    Kuniaki Tsutsumi

    2016-06-01

    Full Text Available Paclitaxel, an anticancer drug, frequently causes painful peripheral neuropathy. In this study, we investigated the preventive effect of polaprezinc on paclitaxel-induced peripheral neuropathy in rats. Polaprezinc (3 mg/kg, p.o., once daily inhibited the development of mechanical allodynia induced by paclitaxel (4 mg/kg, i.p., on days 1, 3, 5 and 7 and suppressed the paclitaxel-induced increase in macrophage migration in dorsal root ganglion cells. In addition, polaprezinc did not affect the anti-tumor activity of paclitaxel in cultured cell lines or tumor-bearing mice. These results suggest a clinical indication for polaprezinc in the prevention of paclitaxel-induced neuropathy.

  1. Enavatuzumab, a Humanized Anti-TWEAK Receptor Monoclonal Antibody, Exerts Antitumor Activity through Attracting and Activating Innate Immune Effector Cells

    Directory of Open Access Journals (Sweden)

    Shiming Ye

    2017-01-01

    Full Text Available Enavatuzumab is a humanized IgG1 anti-TWEAK receptor monoclonal antibody that was evaluated in a phase I clinical study for the treatment of solid malignancies. The current study was to determine whether and how myeloid effector cells were involved in postulated mechanisms for its potent antitumor activity in xenograft models. The initial evidence for a role of effector cells was obtained in a subset of tumor xenograft mouse models whose response to enavatuzumab relied on the binding of Fc of the antibody to Fcγ receptor. The involvement of effector cells was further confirmed by immunohistochemistry, which revealed strong infiltration of CD45+ effector cells into tumor xenografts in responding models, but minimal infiltration in nonresponders. Consistent with the xenograft studies, human effector cells preferentially migrated toward in vivo-responsive tumor cells treated by enavatuzumab in vitro, with the majority of migratory cells being monocytes. Conditioned media from enavatuzumab-treated tumor cells contained elevated levels of chemokines, which might be responsible for enavatuzumab-triggered effector cell migration. These preclinical studies demonstrate that enavatuzumab can exert its potent antitumor activity by actively recruiting and activating myeloid effectors to kill tumor cells. Enavatuzumab-induced chemokines warrant further evaluation in clinical studies as potential biomarkers for such activity.

  2. Regorafenib (BAY 73-4506): antitumor and antimetastatic activities in preclinical models of colorectal cancer.

    Science.gov (United States)

    Schmieder, Roberta; Hoffmann, Jens; Becker, Michael; Bhargava, Ajay; Müller, Tina; Kahmann, Nicole; Ellinghaus, Peter; Adams, Robert; Rosenthal, André; Thierauch, Karl-Heinz; Scholz, Arne; Wilhelm, Scott M; Zopf, Dieter

    2014-09-15

    Regorafenib, a novel multikinase inhibitor, has recently demonstrated overall survival benefits in metastatic colorectal cancer (CRC) patients. Our study aimed to gain further insight into the molecular mechanisms of regorafenib and to assess its potential in combination therapy. Regorafenib was tested alone and in combination with irinotecan in patient-derived (PD) CRC models and a murine CRC liver metastasis model. Mechanism of action was investigated using in vitro functional assays, immunohistochemistry and correlation with CRC-related oncogenes. Regorafenib demonstrated significant inhibition of growth-factor-mediated vascular endothelial growth factor receptor (VEGFR) 2 and VEGFR3 autophosphorylation, and intracellular VEGFR3 signaling in human umbilical vascular endothelial cells (HuVECs) and lymphatic endothelial cells (LECs), and also blocked migration of LECs. Furthermore, regorafenib inhibited proliferation in 19 of 25 human CRC cell lines and markedly slowed tumor growth in five of seven PD xenograft models. Combination of regorafenib with irinotecan significantly delayed tumor growth after extended treatment in four xenograft models. Reduced CD31 staining indicates that the antiangiogenic effects of regorafenib contribute to its antitumor activity. Finally, regorafenib significantly delayed disease progression in a murine CRC liver metastasis model by inhibiting the growth of established liver metastases and preventing the formation of new metastases in other organs. In addition, our results suggest that regorafenib displays antimetastatic activity, which may contribute to its efficacy in patients with metastatic CRC. Combination of regorafenib and irinotecan demonstrated an increased antitumor effect and could provide a future treatment option for CRC patients. © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  3. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia.

    Science.gov (United States)

    Zhu, Zhen-Yuan; Dong, Fengying; Liu, Xiaocui; Lv, Qian; YingYang; Liu, Fei; Chen, Ling; Wang, Tiantian; Wang, Zheng; Zhang, Yongmin

    2016-04-20

    This study was to investigate the effects of different extraction methods on the yield, chemical structure and antitumor activity of polysaccharides from Cordyceps gunnii (C. gunnii) mycelia. Five extraction methods were used to extract crude polysaccharides (CPS), which include room-temperature water extraction (RWE), hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and cellulase-assisted extraction (CAE). Then Sephadex G-100 was used for purification of CPS. As a result, the antitumor activities of CPS and PPS on S180 cells were evaluated. Five CPS and purified polysaccharides (PPS) were obtained. The yield of CPS by microwave-assisted extraction (CPSMAE) was the highest and its anti-tumor activity was the best and its macromolecular polysaccharide (3000-1000kDa) ratio was the largest. The PPS had the same monosaccharide composition, but their obvious difference was in the antitumor activity and the physicochemical characteristics, such as intrinsic viscosity, specific rotation, scanning electron microscopy and circular dichroism spectra. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Foxo1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of TH9 cells programmed by IL-7

    Science.gov (United States)

    Bi, Enguang; Ma, Xingzhe; Lu, Yong; Yang, Maojie; Wang, Qiang; Xue, Gang; Qian, Jianfei; Wang, Siqing; Yi, Qing

    2018-01-01

    Tumor-specific CD4+ T helper 9 (TH9) cells, so-called because of their production of the cytokine interleukin-9 (IL-9), are a powerful effector T cell subset for cancer immunotherapy. We found that pretreatment of naïve CD4+ T cells with IL-7 further enhanced their differentiation into TH9 cells and augmented their antitumor activity. IL-7 markedly increased the abundance of the histone acetyltransferase p300 by activating the STAT5 and PI3K-AKT-mTOR signaling pathways and promoting the acetylation of histones at the Il9 promoter. As a result, the transcriptional regulator Foxo1 was dephosphorylated and translocated to the nucleus, bound to the Il9 promoter, and induced the production of IL-9 protein. In contrast, Foxp1, which bound to the Il9 promoter in naïve CD4+ T cells and inhibited Il9 expression, was outcompeted for binding to the Il9 promoter by Foxo1 and translocated to the cytoplasm. Furthermore, forced expression of Foxo1 or a deficiency in Foxp1 in CD4+ T cells markedly increased the production of IL-9, whereas a deficiency in Foxo1 inhibited the ability of IL-7 to enhance the differentiation and antitumor activity of TH9 cells. Thus, we identified the roles of Foxo1 as a positive regulator and Foxp1 as a negative regulator of TH9 cell differentiation and antitumor activity, which may provide potential targets for cancer immunotherapy. PMID:29018172

  5. TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding.

    Science.gov (United States)

    Petrova, Penka S; Viller, Natasja Nielsen; Wong, Mark; Pang, Xinli; Lin, Gloria H Y; Dodge, Karen; Chai, Vien; Chen, Hui; Lee, Vivian; House, Violetta; Vigo, Noel T; Jin, Debbie; Mutukura, Tapfuma; Charbonneau, Marilyse; Truong, Tran; Viau, Stephane; Johnson, Lisa D; Linderoth, Emma; Sievers, Eric L; Maleki Vareki, Saman; Figueredo, Rene; Pampillo, Macarena; Koropatnick, James; Trudel, Suzanne; Mbong, Nathan; Jin, Liqing; Wang, Jean C Y; Uger, Robert A

    2017-02-15

    Purpose: The ubiquitously expressed transmembrane glycoprotein CD47 delivers an anti-phagocytic (do not eat) signal by binding signal-regulatory protein α (SIRPα) on macrophages. CD47 is overexpressed in cancer cells and its expression is associated with poor clinical outcomes. TTI-621 (SIRPαFc) is a fully human recombinant fusion protein that blocks the CD47-SIRPα axis by binding to human CD47 and enhancing phagocytosis of malignant cells. Blockade of this inhibitory axis using TTI-621 has emerged as a promising therapeutic strategy to promote tumor cell eradication. Experimental Design: The ability of TTI-621 to promote macrophage-mediated phagocytosis of human tumor cells was assessed using both confocal microscopy and flow cytometry. In vivo antitumor efficacy was evaluated in xenograft and syngeneic models and the role of the Fc region in antitumor activity was evaluated using SIRPαFc constructs with different Fc tails. Results: TTI-621 enhanced macrophage-mediated phagocytosis of both hematologic and solid tumor cells, while sparing normal cells. In vivo , TTI-621 effectively controlled the growth of aggressive AML and B lymphoma xenografts and was efficacious in a syngeneic B lymphoma model. The IgG1 Fc tail of TTI-621 plays a critical role in its antitumor activity, presumably by engaging activating Fcγ receptors on macrophages. Finally, TTI-621 exhibits minimal binding to human erythrocytes, thereby differentiating it from CD47 blocking antibodies. Conclusions: These data indicate that TTI-621 is active across a broad range of human tumors. These results further establish CD47 as a critical regulator of innate immune surveillance and form the basis for clinical development of TTI-621 in multiple oncology indications. Clin Cancer Res; 23(4); 1068-79. ©2016 AACR . ©2016 American Association for Cancer Research.

  6. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities.

    Science.gov (United States)

    Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.

  7. A novel lipid-based nanomicelle of docetaxel: evaluation of antitumor activity and biodistribution

    Directory of Open Access Journals (Sweden)

    Ma M

    2012-07-01

    Full Text Available Mingshu Ma,1 Yanli Hao,1 Nan Liu,1 Zhe Yin,1 Lan Wang,1 Xingjie Liang,2 Xiaoning Zhang11Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China; 2National Center for Nanoscience and Technology, Beijing, ChinaPurpose: A lipid-based, nanomicelle-loaded docetaxel (M-DOC was designed and characterized. Optical imaging was employed to evaluate the pharmacokinetics and antitumor efficacy of docetaxel in vivo.Materials and methods: The M-DOC was prepared using the emulsion-diffusion method. Transmission electron microscopy and dynamic light scattering were used to assess the morphology and particle size of the M-DOC. Critical micelle concentrations, their stability under physiological conditions, and their encapsulation efficiency – as measured by high-performance liquid chromatography – were assessed. Pharmacological features were evaluated in two different animal models by comparing M-DOC treatments with docetaxel injections (I-DOC. Bioluminescence imaging was used to assess antitumor activity and docetaxel distribution in vivo, using nude mice injected with luciferase-expressing MDA-MB-231 human breast tumor cells. In addition, animals injected with B16 melanoma cells were used to measure survival time and docetaxel distribution.Results: The M-DOC was prepared as round, uniform spheres with an effective diameter of 20.8 nm. The critical micelle concentration of the original emulsion was 0.06%. Satisfactory encapsulation efficiency (87.6% ± 3.0% and 12-hour stability were achieved. Xenograft results demonstrated that the M-DOC was more effective in inhibiting tumor growth, without significantly changing body weight. Survival was prolonged by 12.6% in the M-DOC group. Tumor growth inhibitory rates in the M-DOC and I-DOC groups were 91.2% and 57.8% in volume and 71.8% and 44.9% in weight, respectively. Optical bioluminescence imaging of tumor growths yielded similar results. Area under the

  8. Structure Activity Relationships of N-linked and Diglycosylated Glucosamine-Based Antitumor Glycerolipids

    Directory of Open Access Journals (Sweden)

    Makanjuola Ogunsina

    2013-12-01

    Full Text Available 1-O-Hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-β-D-glucopyranosyl-sn-glycerol (1 was previously reported to show potent in vitro antitumor activity on a range of cancer cell lines derived from breast, pancreas and prostate cancer. This compound was not toxic to mice and was inactive against breast tumor xenografts in mice. This inactivity was attributed to hydrolysis of the glycosidic linkage by glycosidases. Here three N-linked (glycosylamide analogs 2–4, one triazole-linked analog 5 of 1 as well as two diglycosylated analogs 6 and 7 with different stereochemistry at the C2-position of the glycerol moiety were synthesized and their antitumor activity against breast (JIMT-1, BT-474, MDA-MB-231, pancreas (MiaPaCa2 and prostrate (DU145, PC3 cancer cell lines was determined. The diglycosylated analogs 1-O-hexadecyl-2(R-, 3-O-di-(2'-amino-2'-deoxy-β-D-glucopyranosyl-sn-glycerol (7 and the 1:1 diastereomeric mixture of 1-O-hexadecyl-2(R/S, 3-O-di-(2'-amino-2'-deoxy-β-D-glucopyranosyl-sn-glycerol (6 showed the most potent cytotoxic activity at CC50 values of 17.5 µM against PC3 cell lines. The replacement of the O-glycosidic linkage by a glycosylamide or a glycosyltriazole linkage showed little or no activity at highest concentration tested (30 µM, whereas the replacement of the glycerol moiety by triazole resulted in CC50 values in the range of 20 to 30 µM. In conclusion, the replacement of the O-glycosidic linkage by an N-glycosidic linkage or triazole-linkage resulted in about a two to three fold loss in activity, whereas the replacement of the methoxy group on the glycerol backbone by a second glucosamine moiety did not improve the activity. The stereochemistry at the C2-position of the glycero backbone has minimal effect on the anticancer activities of these diglycosylated analogs.

  9. Antitumor activity of pan-HER inhibitors in HER2-positive gastric cancer.

    Science.gov (United States)

    Yoshioka, Takahiro; Shien, Kazuhiko; Namba, Kei; Torigoe, Hidejiro; Sato, Hiroki; Tomida, Shuta; Yamamoto, Hiromasa; Asano, Hiroaki; Soh, Junichi; Tsukuda, Kazunori; Nagasaka, Takeshi; Fujiwara, Toshiyoshi; Toyooka, Shinichi

    2018-04-01

    Molecularly targeted therapy has enabled outstanding advances in cancer treatment. Whereas various anti-human epidermal growth factor receptor 2 (HER2) drugs have been developed, trastuzumab is still the only anti-HER2 drug presently available for gastric cancer. In this study, we propose novel treatment options for patients with HER2-positive gastric cancer. First, we determined the molecular profiles of 12 gastric cancer cell lines, and examined the antitumor effect of the pan-HER inhibitors afatinib and neratinib in those cell lines. Additionally, we analyzed HER2 alteration in 123 primary gastric cancers resected from Japanese patients to clarify possible candidates with the potential to respond to these drugs. In the drug sensitivity analysis, both afatinib and neratinib produced an antitumor effect in most of the HER2-amplified cell lines. However, some cells were not sensitive to the drugs. When the molecular profiles of the cells were compared based on the drug sensitivities, we found that cancer cells with lower mRNA expression levels of IGFBP7, a tumor suppressor gene that inhibits the activation of insulin-like growth factor-1 receptor (IGF-1R), were less sensitive to pan-HER inhibitors. A combination therapy consisting of pan-HER inhibitors and an IGF-1R inhibitor, picropodophyllin, showed a notable synergistic effect. Among 123 clinical samples, we found 19 cases of HER2 amplification and three cases of oncogenic mutations. In conclusion, afatinib and neratinib are promising therapeutic options for the treatment of HER2-amplified gastric cancer. In addition to HER2 amplification, IGFBP7 might be a biomarker of sensitivity to these drugs, and IGF-1R-targeting therapy can overcome drug insensitiveness in HER2-amplified gastric cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. [Synthesis of a supermolecular nanoparticle γ-hy-PC/Ada-Dox and its antitumor activity].

    Science.gov (United States)

    Li, Yong-bin; Wang, Kai; Hu, Tian-nan; Wang, Qi-wen; Hu, Qi-da; Zhou, Jun; Hu, Xiu-rong; Tang, Gu-ping

    2012-11-01

    To synthesize a (2-Hydroxypropyl)-γ-cyclodextrin-polyethylenimine/adamantane-conjugated doxorubicin (γ-hy-PC/Ada-Dox) based supramolecular nanoparticle with host-guest interaction and to identify its physicochemical characterizations and antitumor effect. A novel non-viral gene delivery vector γ-hy-PC/Ada-Dox was synthesized based on host-guest interaction. 1H-NMR, NOESY, UV-Vis, XRD and TGA were used to confirm the structure of the vector. The DNA condensing ability of complexes was investigated by particle size, zeta potential and gel retardation assay. Cytotoxicity of complexes was determined by MTT assay in BEL-7402 and SMMC-7721 cells. Cell wound healing assay was performed in HEK293 and BEL-7404 cells. The transfection efficiency was investigated in HEK293 cells. H/E staining and cell uptake assay was performed in BEL-7402 cells. The structure of γ-hy-PC/Ada-Dox was characterized by 1H-NMR, NOESY, UV-Vis, XRD, TGA. The drug loading was 0.5% and 5.5%. Gel retardation assay showed that γ-hy-PC was able to completely condense DNA at N/P ratio of 2; 0.5% and 5.5% γ-hy-PC/Ada-Dox was able to completely condense DNA at N/P ratio of 3 and 4,respectively. The cytotoxicity of polymers was lower than that of PEI25KDa. The transfection efficiency of γ-hy-PC was higher than that of γ-hy-PC/Ada-Dox at N/P ratio of 30 in HEK293 cells; and the transfection efficiency was decreasing when Ada-Dox loading was increasing. Cell uptake assay showed that γ-hy-PC/Ada-Dox was able to carry drug and FAM-siRNA into cells. The novel vector γ-hy-PC/Ada-Dox has been developed successfully, which has certain transfection efficiency and antitumor activity.

  11. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    International Nuclear Information System (INIS)

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-01-01

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  12. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  13. The Role of Bystander Effects in the Antitumor Activity of the Hypoxia-Activated Prodrug PR-104

    Science.gov (United States)

    Foehrenbacher, Annika; Patel, Kashyap; Abbattista, Maria R.; Guise, Chris P.; Secomb, Timothy W.; Wilson, William R.; Hicks, Kevin O.

    2013-01-01

    Activation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment. Such “bystander effects” may offset spatial heterogeneity in prodrug activation but the relative importance of this effect is not understood. Here, we quantify the contribution of bystander effects to antitumor activity for the first time, by developing a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model for PR-104, a phosphate ester pre-prodrug that is converted systemically to the hypoxia-activated prodrug PR-104A. Using Green’s function methods we calculated concentrations of oxygen, PR-104A and its active metabolites, and resultant cell killing, at each point of a mapped three-dimensional tumor microregion. Model parameters were determined in vitro, using single cell suspensions to determine relationships between PR-104A metabolism and clonogenic cell killing, and multicellular layer (MCL) cultures to measure tissue diffusion coefficients. LC-MS/MS detection of active metabolites in the extracellular medium following exposure of anoxic single cell suspensions and MCLs to PR-104A confirmed that metabolites can diffuse out of cells and through a tissue-like environment. The SR-PK/PD model estimated that bystander effects contribute 30 and 50% of PR-104 activity in SiHa and HCT116 tumors, respectively. Testing the model by modulating PR-104A-activating reductases and hypoxia in tumor xenografts showed overall clonogenic killing broadly consistent with model predictions. Overall, our data suggest that bystander effects are important in PR-104 antitumor activity, although their reach may be limited by macroregional heterogeneity in hypoxia and reductase expression in tumors. The reported computational and experimental techniques are broadly applicable to all targeted anticancer prodrugs and could be used to identify strategies for rational prodrug optimization. PMID

  14. The anti-tumor drug bleomycin preferentially cleaves at the transcription start sites of actively transcribed genes in human cells.

    Science.gov (United States)

    Murray, Vincent; Chen, Jon K; Galea, Anne M

    2014-04-01

    The genome-wide pattern of DNA cleavage at transcription start sites (TSSs) for the anti-tumor drug bleomycin was examined in human HeLa cells using next-generation DNA sequencing. It was found that actively transcribed genes were preferentially cleaved compared with non-transcribed genes. The 143,600 identified human TSSs were split into non-transcribed genes (82,596) and transcribed genes (61,004) for HeLa cells. These transcribed genes were further split into quintiles of 12,201 genes comprising the top 20, 20-40, 40-60, 60-80, and 80-100 % of expressed genes. The bleomycin cleavage pattern at highly transcribed gene TSSs was greatly enhanced compared with purified DNA and non-transcribed gene TSSs. The top 20 and 20-40 % quintiles had a very similar enhanced cleavage pattern, the 40-60 % quintile was intermediate, while the 60-80 and 80-100 % quintiles were close to the non-transcribed and purified DNA profiles. The pattern of bleomycin enhanced cleavage had peaks that were approximately 200 bp apart, and this indicated that bleomycin was identifying the presence of phased nucleosomes at TSSs. Hence bleomycin can be utilized to detect chromatin structures that are present at actively transcribed genes. In this study, for the first time, the pattern of DNA damage by a clinically utilized cancer chemotherapeutic agent was performed on a human genome-wide scale at the nucleotide level.

  15. Evaluation of antitumor activity and in vivo antioxidant status of Anthocephalus cadamba on Ehrlich ascites carcinoma treated mice.

    Science.gov (United States)

    Dolai, Narayan; Karmakar, Indrajit; Suresh Kumar, R B; Kar, Biswakanth; Bala, Asis; Haldar, Pallab Kanti

    2012-08-01

    Anthocephalus cadamba (Roxb.) Miq. (Family: Rubiaceae) is commonly known as "Kadamba" in Sanskrit and Hindi in India. Various parts of this plant have been used as a folk medicine for the treatment of tumor, wound healing, inflammation and as a hypoglycemic agent. The purpose of this investigation was to evaluate the antitumor activity and antioxidant status of defatted methanol extract of A. cadamba (MEAC) on Ehrlich ascites carcinoma (EAC) treated mice. In vitro cytotoxicity assay has been evaluated by using the trypan blue method. The determination of in vivo antitumor activity was performed by using different EAC cells (2 × 10(6) cells, i.p.) inoculated mice groups (n=12). The groups were treated for 9 consecutive days with MEAC at the doses of 200 and 400 mg/kg b.w. respectively. After 24h of last dose and 18 h of fasting, half of the mice were sacrificed and the rest were kept alive for assessment of increase in life span. The antitumor potential of MEAC was assessed by evaluating tumor volume, viable and nonviable tumor cell count, tumor weight, hematological parameters and biochemical estimations. Furthermore, antioxidant parameters were assayed by estimating liver and kidney tissue enzymes. MEAC showed direct cytotoxicity on EAC cell line in a dose dependant manner. MEAC exhibited significant (P<0.01) decrease in the tumor volume, viable cell count, tumor weight and elevated the life span of EAC tumor bearing mice. The hematological profile, biochemical estimations and tissue antioxidant assay were reverted to normal level in MEAC treated mice. Experimental results revealed that MEAC possesses potent antitumor and antioxidant properties. Further research is going on to find out the active principle(s) of MEAC for better understanding of mechanism of its antitumor and antioxidant activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Shoya Shiromizu

    2018-04-01

    Full Text Available Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Keywords: l-asparaginase, Asparagine, Solid tumor, Chrono-pharmacotherapy

  17. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice.

    Science.gov (United States)

    Shiromizu, Shoya; Kusunose, Naoki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2018-04-01

    Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Alkyl caffeates improve the antioxidant activity, antitumor property and oxidation stability of edible oil.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Caffeic acid (CA is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC₅₀ (14-23 µM compared to CA, dibutyl hydroxy toluene (BHT and Vitamin C (24-51 µM, and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2 with inhibition ratio of 71.4-78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53% at high temperatures. Overall, the alkyl caffeats with short chain length (n<5 assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates.

  19. Alkyl Caffeates Improve the Antioxidant Activity, Antitumor Property and Oxidation Stability of Edible Oil

    Science.gov (United States)

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC50 (14–23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24–51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4–78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  20. Chemical Characterization and Antitumor Activities of Polysaccharide Extracted from Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Zengenni Liang

    2014-05-01

    Full Text Available Ganoderma lucidum polysaccharide (GLP is a biologically active substance reported to possess anti-tumor ability. Nonetheless, the mechanisms of GLP-stimulated apoptosis are still unclear. This study aims to determine the inhibitory and apoptosis-inducing effects of GLP on HCT-116 cells. We found that GLP reduced cell viability on HCT-116 cells in a time- and dose-dependent manner, which in turn, induced cell apoptosis. The observed apoptosis was characterized by morphological changes, DNA fragmentation, mitochondrial membrane potential decrease, S phase population increase, and caspase-3 and -9 activation. Furthermore, inhibition of c-Jun N-terminal kinase (JNK by SP600125 led to a dramatic decrease of the GLP-induced apoptosis. Western blot analysis unveiled that GLP up-regulated the expression of Bax/Bcl-2, caspase-3 and poly (ADP-ribose polymerase (PARP. These results demonstrate that apoptosis stimulated by GLP in human colorectal cancer cells is associated with activation of mitochondrial and mitogen-activated protein kinase (MAPK pathways.

  1. Chemical Characterization and Antitumor Activities of Polysaccharide Extracted from Ganoderma lucidum

    Science.gov (United States)

    Liang, Zengenni; Yi, Youjin; Guo, Yutong; Wang, Rencai; Hu, Qiulong; Xiong, Xingyao

    2014-01-01

    Ganoderma lucidum polysaccharide (GLP) is a biologically active substance reported to possess anti-tumor ability. Nonetheless, the mechanisms of GLP-stimulated apoptosis are still unclear. This study aims to determine the inhibitory and apoptosis-inducing effects of GLP on HCT-116 cells. We found that GLP reduced cell viability on HCT-116 cells in a time- and dose-dependent manner, which in turn, induced cell apoptosis. The observed apoptosis was characterized by morphological changes, DNA fragmentation, mitochondrial membrane potential decrease, S phase population increase, and caspase-3 and -9 activation. Furthermore, inhibition of c-Jun N-terminal kinase (JNK) by SP600125 led to a dramatic decrease of the GLP-induced apoptosis. Western blot analysis unveiled that GLP up-regulated the expression of Bax/Bcl-2, caspase-3 and poly (ADP-ribose) polymerase (PARP). These results demonstrate that apoptosis stimulated by GLP in human colorectal cancer cells is associated with activation of mitochondrial and mitogen-activated protein kinase (MAPK) pathways. PMID:24857920

  2. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action.

    Science.gov (United States)

    Mohamed, Shimaa Ibrahim Abdelmonym; Jantan, Ibrahim; Haque, Md Areeful

    2017-09-01

    Natural products with immunomodulatory activity are widely used in treatment of many diseases including autoimmune diseases, inflammatory disorders in addition to cancer. They gained a great interest in the last decades as therapeutic agents since they provide inexpensive and less toxic products than the synthetic chemotherapeutic agents. Immunomodulators are the agents that have the ability to boost or suppress the host defense response that can be used as a prophylaxis as well as in combination with other therapeutic modalities. The anticancer activity of these immunomodulators is due to their anti-inflammatory, antioxidant, and induction of apoptosis, anti-angiogenesis, and anti-metastasis effect. These natural immunomodulators such as genistein, curcumin, and resveratrol can be used as prophylaxis against the initiation of cancer besides the inhibition of tumor growth and proliferation. Whereas, immunostimulants can elicit and activate humoral and cell-mediated immune responses against the tumor that facilitate the recognition and destruction of the already existing tumor. This review represents the recent studies on various natural immunomodulators with antitumor effects. We have focused on the relationship between their anticancer activity and immunomodulatory mechanisms. The mechanisms of action of various immunomodulators such as polyphenolic compounds, flavonoids, organosulfur compounds, capsaicin, vinca alkaloids, bromelain, betulinic acid and zerumbone, the affected cancerous cell lines in addition to the targeted molecules and transcriptional pathways have been review and critically analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Study on the chemical components, antimicrobial and antitumor activities of the essential oil from the leaves of Zanthoxylum avicennae].

    Science.gov (United States)

    Zhang, Da-Shuai; Zhong, Qiong-Xin; Song, Xin-Ming; Liu, Wen-Jie; Wang, Jing; Zhang, Qiong-Yu

    2012-08-01

    To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.

  4. Scoparone exerts anti-tumor activity against DU145 prostate cancer cells via inhibition of STAT3 activity.

    Directory of Open Access Journals (Sweden)

    Jeong-Kook Kim

    Full Text Available Scoparone, a natural compound isolated from Artemisia capillaris, has been used in Chinese herbal medicine to treat neonatal jaundice. Signal transducer and activator of transcription 3 (STAT3 contributes to the growth and survival of many human tumors. This study was undertaken to investigate the anti-tumor activity of scoparone against DU145 prostate cancer cells and to determine whether its effects are mediated by inhibition of STAT3 activity. Scoparone inhibited proliferation of DU145 cells via cell cycle arrest in G1 phase. Transient transfection assays showed that scoparone repressed both constitutive and IL-6-induced transcriptional activity of STAT3. Western blot and quantitative real-time PCR analyses demonstrated that scoparone suppressed the transcription of STAT3 target genes such as cyclin D1, c-Myc, survivin, Bcl-2, and Socs3. Consistent with this, scoparone decreased phosphorylation and nuclear accumulation of STAT3, but did not reduce phosphorylation of janus kinase 2 (JAK2 or Src, the major upstream kinases responsible for STAT3 activation. Moreover, transcriptional activity of a constitutively active mutant of STAT3 (STAT3C was inhibited by scoparone, but not by AG490, a JAK2 inhibitor. Furthermore, scoparone treatment suppressed anchorage-independent growth in soft agar and tumor growth of DU145 xenografts in nude mice, concomitant with a reduction in STAT3 phosphorylation. Computational modeling suggested that scoparone might bind the SH2 domain of STAT3. Our findings suggest that scoparone elicits an anti-tumor effect against DU145 prostate cancer cells in part through inhibition of STAT3 activity.

  5. T-regulatory cells depletion is the main cause for enhanced antitumor immunity during radio-sensitization of tumors by 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Farooque, Abdullah; Verma, Amit; Singh, Niharika; Chauhan, Sachin Kumar Singh; Jethani, Jyoti; Adhikari, J.S.; Dwarakanath, B.S.; Afrin, Farhat

    2014-01-01

    Regulatory T cells (Tregs) are known to have profound effects in blocking anti-tumor immunity. Therefore, Tregs are seen as a major hurdle that must be overcome in order to improve the efficacy of cancer therapy. The glycolytic inhibitor, 2-deoxy-d-glucose (2-DG) enhances radiation and chemotherapeutics induced death of many cancer cells in vitro and local tumor control in vivo, which was found to be associated with the enhanced anti-tumor immunity. Therefore, we investigated the role of Tregs in determining the tumor response to the combined treatment of 2-DG plus ionizing radiation. Ehrlich ascites tumor bearing mice were administered with a single dose of 2-DG (2 gm/Kg/b.wt) intravenously just before focal irradiation (10 Gy). Immuno-phenotyping of Tregs in secondary lymphoid organs was carried out using flow cytometry, while related cytokines were analyzed using bead array and ELISA. Further, mRNA and protein levels of transcription factors were assessed in sorted splenic CD4 + cells and CD4 + CD25 + using real time PCR and Western blot techniques. Results clearly showed depletion (TRAIL mediated apoptosis) of T regs (CD4 + CD25 + FoxP3 + CD39 + FR4 + GITR + CD127 - ), in blood, spleen, lymph node and tumor following the combined treatment. This led to the immune activation in the periphery, secondary lymphoid organs and massive infiltration of CD4 + , CD8 + and NK cells in the tumor, which correlated well with the complete response (cure; tumor free survival). Association of Treg depletion with the tumor response was further confirmed using low doses of cyclophosphamide (which depletes Tegs) and rapamycin (activator of Tregs),wherein the depletor of Tregs enhanced the efficacy of combined treatment, while Tregs enhancer compromised the efficacy. These studies unequivocally established the role of Tregs in determining the therapeutic response and can be used as a target for enhancing the efficacy of this combined treatment, besides establishing the potential of

  6. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations.

    Science.gov (United States)

    Osada, Takuya; Chen, Minyong; Yang, Xiao Yi; Spasojevic, Ivan; Vandeusen, Jeffrey B; Hsu, David; Clary, Bryan M; Clay, Timothy M; Chen, Wei; Morse, Michael A; Lyerly, H Kim

    2011-06-15

    Wnt/β-catenin pathway activation caused by adenomatous polyposis coli (APC) mutations occurs in approximately 80% of sporadic colorectal cancers (CRC). The antihelminth compound niclosamide downregulates components of the Wnt pathway, specifically Dishevelled-2 (Dvl2) expression, resulting in diminished downstream β-catenin signaling. In this study, we determined whether niclosamide could inhibit the Wnt/β-catenin pathway in human CRCs and whether its inhibition might elicit antitumor effects in the presence of APC mutations. We found that niclosamide inhibited Wnt/β-catenin pathway activation, downregulated Dvl2, decreased downstream β-catenin signaling, and exerted antiproliferative effects in human colon cancer cell lines and CRC cells isolated by surgical resection of metastatic disease, regardless of mutations in APC. In contrast, inhibition of NF-κB or mTOR did not exert similar antiproliferative effects in these CRC model systems. In mice implanted with human CRC xenografts, orally administered niclosamide was well tolerated, achieved plasma and tumor levels associated with biologic activity, and led to tumor control. Our findings support clinical explorations to reposition niclosamide for the treatment of CRC.

  7. Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo.

    Science.gov (United States)

    Zhao, Rui; Gao, Xu; Cai, Yaping; Shao, Xingyue; Jia, Guiyan; Huang, Yulan; Qin, Xuegong; Wang, Jingwei; Zheng, Xiaoliang

    2013-07-25

    Portulaca oleracea L. has been used as folk medicine in different countries to treat different ailments in humans. P. oleracea L. polysaccharide (POL-P), extracted from P. oleracea L., is found to have bioactivities such as hypoglycemic and hypolipidemic activities, antioxidant and antitumor activities. In our study, a water-soluble polysaccharide (POL-P3b) was successfully purified from Galium verum L. by DEAE cellulose and Sephadex G-200 column chromatography. To evaluate the anticancer efficacy and associated mechanisms of POL-P3b on cervical cancer in vitro and in vivo, we showed that treatment of HeLa cell with POL-P3b inhibited cell proliferation. In addition, POL-P3b significantly inhibited tumor growth in U14-bearing mice. Further analysis indicated that POL-P3b possesses the activity of inhibiting cervical cancer cell growth in vitro and in vivo at a concentration- and time-dependent manner, and the mechanisms were associated with Sub-G1 phase cell cycle arrest, triggering DNA damage and inducing apoptosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Antitumor Activity and Mechanism of a Reverse Transcriptase Inhibitor, Dapivirine, in Glioblastoma.

    Science.gov (United States)

    Liu, Weiwen; Song, Xian-Lu; Zhao, Shan-Chao; He, Minyi; Wang, Hai; Chen, Ziyang; Xiang, Wei; Yi, Guozhong; Qi, Songtao; Liu, Yawei

    2018-01-01

    Dapivirine is one of reverse transcriptase inhibitors (RTIs). It is the prototype of diarylpyrimidines (DAPY), formerly known as TMC120 or DAPY R147681 (IUPAC name: 4- [[4-(2, 4, 6-trimethylphenyl) amino]-2-pyrimidinyl] amino]-benzonitrile; CAS no.244767-67-7). The purpose of this study is to investigate the antitumor activity of dapivirine, one of the RTIs, on U87 glioblastoma (GBM) cells in vitro and in vivo . U87 GBM cells were cultured and treated with or without dapivirine. Cell viability was evaluated by CCK-8 (Cell Counting Kit 8, CCK-8) assay; apoptosis was analyzed by flow cytometry; cell migration was evaluated by Boyden Chamber assay; Western blotting was performed to detect proteins related to apoptosis, epithelial-to-mesenchymal transition and autophagy. PathScan intracellular signaling array kit was used to detect important and well-characterized signaling molecules. Tumor xenograft model in nude mice was used to evaluate the antitumorigenic effect in vivo . Dapivirine weakened proliferation of glioma cells and induced the apoptosis of U87 glioblastoma cells. Furthermore, dapivirine regulated autophagy and induced Akt, Bad and SAPK/JNK activations. Moreover, the inhibition of glioma cell growth by dapivirine was also observed in nude mice in vivo . In summary, in our study dapivirine exposure induces stress, resulting in JNK and PI3K/Akt pathway activation through diminished inhibition of the apoptosis and autophagy cascade in U87 GBM cells, which inhibits cell growth in vitro and in vivo .

  9. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity

    International Nuclear Information System (INIS)

    Liu, Lily; Yu, Haijia; Huang, Xin; Tan, Hongzhi; Li, Song; Luo, Yan; Zhang, Li; Jiang, Sumei; Jia, Huifeng; Xiong, Yao; Zhang, Ruliang; Huang, Yi; Chu, Charles C; Tian, Wenzhi

    2015-01-01

    Relatively poor penetration and retention in tumor tissue has been documented for large molecule drugs including therapeutic antibodies and recombinant immunoglobulin constant region (Fc)-fusion proteins due to their large size, positive charge, and strong target binding affinity. Therefore, when designing a large molecular drug candidate, smaller size, neutral charge, and optimal affinity should be considered. We engineered a recombinant protein by molecular engineering the second domain of VEGFR1 and a few flanking residues fused with the Fc fragment of human IgG1, which we named HB-002.1. This recombinant protein was extensively characterized both in vitro and in vivo for its target-binding and target-blocking activities, pharmacokinetic profile, angiogenesis inhibition activity, and anti-tumor therapeutic efficacy. HB-002.1 has a molecular weight of ~80 kDa, isoelectric point of ~6.7, and an optimal target binding affinity of <1 nM. The pharmacokinetic profile was excellent with a half-life of 5 days, maximal concentration of 20.27 μg/ml, and area under the curve of 81.46 μg · days/ml. When tested in a transgenic zebrafish embryonic angiogenesis model, dramatic inhibition in angiogenesis was exhibited by a markedly reduced number of subintestinal vessels. When tested for anti-tumor efficacy, HB-002.1 was confirmed in two xenograft tumor models (A549 and Colo-205) to have a robust tumor killing activity, showing a percentage of inhibition over 90% at the dose of 20 mg/kg. Most promisingly, HB-002.1 showed a superior therapeutic efficacy compared to bevacizumab in the A549 xenograft model (tumor inhibition: 84.7% for HB-002.1 versus 67.6% for bevacizumab, P < 0.0001). HB-002.1 is a strong angiogenesis inhibitor that has the potential to be a novel promising drug for angiogenesis-related diseases such as tumor neoplasms and age-related macular degeneration

  10. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation

    International Nuclear Information System (INIS)

    Jiménez-Medina, Eva; Garcia-Lora, Angel; Paco, Laura; Algarra, Ignacio; Collado, Antonia; Garrido, Federico

    2006-01-01

    Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude

  11. Intensive fibrosarcoma-binding capability of the reconstituted analog and its antitumor activity.

    Science.gov (United States)

    Xu, Jian; Du, Yue; Liu, Wen-Juan; Li, Liang; Li, Yi; Wang, Xiao-Fei; Yi, Hong-Fei; Shan, Chuan-Kun; Xia, Gui-Min; Liu, Xiu-Jun; Zhen, Yong-Su

    2018-11-01

    Fibrosarcomas are highly aggressive malignant tumors. It is urgently needed to explore targeted drugs and modalities for more effective therapy. Matrix metalloproteinases (MMPs) play important roles in tumor progression and metastasis, while several MMPs are highly expressed in fibrosarcomas. In addition, tissue inhibitor of metalloproteinase 2 (TIMP2) displays specific interaction with MMPs. Therefore, TIMP2 may play an active role in the development of fibrosarcoma-targeting agents. In the current study, a TIMP2-based recombinant protein LT and its enediyne-integrated analog LTE were prepared; furthermore, the fibrosarcoma-binding intensity and antitumor activity were investigated. As shown, intense and selective binding capability of the protein LT to human fibrosarcoma specimens was confirmed by tissue microarray. Moreover, LTE, the enediyne-integrated analog of LT, exerted highly potent cytotoxicity to fibrosarcoma HT1080 cells, induced apoptosis, and caused G2/M arrest. LTE at 0.1 nM markedly suppressed the migration and invasion of HT1080 cells. LTE at tolerated dose of 0.6 mg/kg inhibited the tumor growth of fibrosarcoma xenograft in athymic mice. The study provides evidence that the TIMP2-based reconstituted analog LTE may be useful as a targeted drug for fibrosarcome therapy.

  12. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta.

    Science.gov (United States)

    Li, Shuhong; Gao, Ang; Dong, Shuang; Chen, Ye; Sun, Shuang; Lei, Zhongfang; Zhang, Zhenya

    2017-03-01

    Crude polysaccharides (MPS) from soybean residue fermented with Morchella esculenta were extracted and purified by DEAE Sephadex A-50 chromatography and Sephadex G-100 size-exclusion chromatography in sequence. Three main fractions MP-1, MP-3 and MP-4 were obtained during the purification steps. The recovery rates based on MPS used were 26.2%, 29.1% and 18.7% for MP-1, MP-3 and MP-4 respectively. The monosaccharide composition, ultraviolet spectrum, infrared spectrum and NMR of the three fractions were analyzed. Furthermore, the influence of polysaccharides fractions upon activation of macrophage cells (RAW 264.7), antitumor activities of the human hepatocellular cell line (HepG-2) and human cervical carcinoma cells (Hela) in vitro were evaluated. The results indicated that the proliferation of MP-3 on RAW 264.7 was 313.57% at 25μg/mL, which is high while MP-1 had a higher growth inhibition effect on HepG-2 cells of 68.01% at concentration of 50μg/mL. The fractions of MP-1, MP-3 and MP-4 induced apoptosis in HepG-2 cells and Hela cells by arresting cell cycle progression at the G 0 /G 1 phase. These findings suggest that the purified polysaccharides fractions may be a potent candidate for human hepatocellular and cervical carcinoma treatment and prevention in functional foods and pharmacological fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Structural characteristics of pineapple pulp polysaccharides and their antitumor cell proliferation activities.

    Science.gov (United States)

    Wang, Ling; Tang, De-Qiang; Kuang, Yu; Lin, Feng-Jiao; Su, Yu

    2015-09-01

    Pineapple has a delicious taste and good health benefits. Bioactive polysaccharides are important components of pineapple that might contribute to its health benefits. Since little structural information on these polysaccharides is currently available, the aim of this study was to investigate their structural characteristics and bioactivities. The polysaccharides of pineapple pulp were fractionated into three fractions (PAPs 1-3) by anion exchange chromatography. Their structural characteristics were first identified, including molecular weights and glycosidic linkages. The monosaccharide compositions were revealed as PAP 1 (Ara, Xyl, Man, Glc and Gal), PAP 2 (Rha, Ara, Xyl, Man, Glc and Gal) and PAP 3 (Rha, Ara, Xyl, Man and Gal). Nuclear magnetic resonance (NMR) spectra suggested that PAP 2 had a backbone of → 4)-α-d-Manp-(1 → 2,4)-α-d-Manp-(1 → with branches attached to O-4 of Manp. The NMR data of α-l-Araf-(1→, →3)-α-l-Araf-(1→, →4)-β-d-Galp-(1 → and → 4)-α-d-GalpAMe-(1 → were assigned. PAPs 1 and 2 showed significant antitumor cell proliferation activities against breast carcinoma cell line and strong antioxidant activities. The above findings indicated that PAPs 1-3 contributed much to the health benefits of pineapple. They could be used as health-beneficial food additives in functional foods. © 2015 Society of Chemical Industry.

  14. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  15. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  16. Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots.

    Science.gov (United States)

    Sahreen, Sumaira; Khan, Muhammad Rashid; Khan, Rahmat Ali; Hadda, Taibi Ben

    2015-07-03

    Being a part of Chinese as well as ayurdic herbal system, roots of Rumex hastatus D. Don (RH) is highly medicinal, used to regulated blood pressure. It is also reported that the plant is diuretic, laxative, tonic, used against microbial skin diseases, bilious complaints and jaundice. The present study is conducted to evaluate phytochemical, antimicrobial, antitumor and cytotoxic activities of extract obtained from R. hastatus roots. RH roots were powdered and extracted with methanol to get crude extract. Crude extract was further fractioned on the basis of increasing polarity, with n-hexane (HRR), chloroform (CRR), ethyl acetate (ERR), n-butanol (BRR) and residual aqueous fraction (ARR). Methanol extract and its derived fractions were subjected to phytochemical screening and assayed for antibacterial activities via agar well diffusion method. Antifungal activities were checked through agar tube dilution method whereas potato disc assay was employed for the determination of antitumor activity. On the other hand cytotoxic activities were conducted using brine shrimps procedures. The results obtained from phytochemical analysis indicate the presence of alkaloids, anthraquinones, flavonoids and saponins in all the fractions. Most of the plant fractions showed substantial antimicrobial activities, which is in accordance with the spacious use of tested plant samples in primary healthcare center. Fractions of R. hastatus roots for cytotoxicity were tested as an effective cytotoxic was found as BRR > MRR > CRR > ARR > ERR > HRR. Ranking order of fractions of R. hastatus roots for effective antitumor screening was found as MRR > BRR > ARR > CRR > ERR > HRR. These results showed that R. hastatus appeared as an important source for the discovery of new antimicrobial drugs and antitumor agents; verify its traditional uses and its exploitation as therapeutic agent.

  17. Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft model.

    Science.gov (United States)

    Raben, David; Bianco, Cataldo; Damiano, Vincenzo; Bianco, Roberto; Melisi, Davide; Mignogna, Chiara; D'Armiento, Francesco Paolo; Cionini, Luca; Bianco, A Raffaele; Tortora, Giampaolo; Ciardiello, Fortunato; Bunn, Paul

    2004-08-01

    Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis

  18. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhao QQ

    2012-06-01

    was confirmed and the vector showed low cytotoxicity and strong targeting specificity to liver tumors in vitro. The in vivo study results showed that interleukin-12 delivered by the new gene vector CPT/DNA significantly enhanced the antitumor effect on ascites tumor-bearing imprinting control region mice as compared with polyethylenimine (25 kDa, CP, and other controls, which further demonstrate the targeting specificity of the new synthesized polymer.Conclusion: The synthesized CPT copolymer was proven to be an effective liver cancer-targeted vector for therapeutic gene delivery, which could be a potential candidate for targeted cancer gene therapy.Keywords: targeting, peptide, polyethylenimine, chitosan, antitumor

  19. Antitumor activity of the Korean mistletoe lectin is attributed to activation of macrophages and NK cells.

    Science.gov (United States)

    Yoon, Taek Joon; Yoo, Yung Choon; Kang, Tae Bong; Song, Seong Kyu; Lee, Kyung Bok; Her, Erk; Song, Kyung Sik; Kim, Jong Bae

    2003-10-01

    Inhibitory effect of the lectins (KML-C) isolated from Korean mistletoe (KM; Viscum album coloratum) on tumor metastases produced by murine tumor cells (B16-BL6 melanoma, colon 26-M3.1 carcinoma and L5178Y-ML25 lymphoma cells) was investigated in syngeneic mice. An intravenous (i.v.) administration of KML-C (20-50 ng/mouse) 2 days before tumor inoculation significantly inhibited lung metastases of both B16-BL6 and colon 26-M3.1 cells. The prophylactic effect of 50 ng/mouse of KML-C on lung metastasis was almost the same with that of 100 microg/mouse of KM. Treatment with KML-C 1 day after tumor inoculation induced a significant inhibition of not only the experimental lung metastasis induced by B16-BL6 and colon 26-M3.1 cells but also the liver and spleen metastasis of L5178Y-ML25 cells. Furthermore, multiple administration of KML-C given at 3 day-intervals after tumor inoculation led to a significant reduction of lung metastasis and suppression of the growth of B16-BL6 melanoma cells in a spontaneous metastasis model. In an assay for natural killer (NK) cell activity, i.v. administration of KML-C (50 ng/mouse) significantly augmented NK cytotoxicity against Yac-1 tumor cells 2 days after KML-C treatment. In addition, treatment with KML-C (50 ng/mouse) induced tumoricidal activity of peritoneal macrophages against B16-BL6 and 3LL cells. These results suggest that KML-C has an immunomodulating activity to enhance the host defense system against tumors, and that its prophylactic and therapeutic effect on tumor metastasis is associated with the activation of NK cells and macrophages.

  20. Dual PI3K/mTOR inhibitor BEZ235 exerts extensive antitumor activity in HER2-positive gastric cancer

    International Nuclear Information System (INIS)

    Zhu, Yan; Tian, Tiantian; Zou, Jianling; Wang, Qiwei; Li, Zhongwu; Li, Yanyan; Liu, Xijuan; Dong, Bin; Li, Na; Gao, Jing; Shen, Lin

    2015-01-01

    To investigate the in vitro and in vivo antitumor activity of dual PI3K/mTOR inhibitor BEZ235 (NVP-BEZ235) in HER2-positive gastric cancer. HER2-positive breast cancer cell line (BT474), HER2-positive (NCI-N87 and SNU216), and HER2-negative (MKN45) gastric cancer cell lines were used in this study. Cell viability, cell cycle, and HER2 downstream signaling pathways were analyzed using the MTS assay, flow cytometry, and western blotting, respectively. For the in vivo experiments, HER2-positive gastric cancer patient-derived xenografts were treated with BEZ235 to assess its antitumor activity. The sensitivity of trastuzumab in BT474 cells was higher than that for NCI-N87 and SNU216 cells, which may be partially attributed to continuously active HER2 downstream signaling pathway. BEZ235 inhibited the proliferation of NCI-N87 and SNU216 cells in vitro in a dose-dependent manner by inducing the cell cycle arrest at the G1 phase. BEZ235 demonstrated greater inhibitory effects than trastuzumab, a unique targeted drug, in both the in vitro and in vivo set of experiments. Additionally, our results indicate that BEZ235 displayed some synergism with trastuzumab. BEZ235 exhibited its antitumor activity in gastric cancer by inhibiting important HER2 downstream signaling pathways, as indicated by the inhibition of phosphorylated AKT and S6. The present study has demonstrated, for the first time, the antitumor activity of BEZ235 against HER2-positive gastric cancer in patient-derived xenografts, as well its synergistic interaction with trastuzumab. These important findings can be utilized to facilitate the design of future clinical trials. The online version of this article (doi:10.1186/s12885-015-1900-y) contains supplementary material, which is available to authorized users

  1. Theoretical Study of Phosphoethanolamine: A Synthetic Anticancer Agent with Broad Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Vitor Prates Lorenzo

    2016-01-01

    Full Text Available Cancer is a major public health problem with limited success of available treatments, pointing to the need for new strategies to be developed. Phosphoethanolamine exhibits broad antitumor activity in a variety of tumor cells and potent inhibitor effects on tumor progress in vivo. Once-used organophosphates inhibit acetylcholinesterase (AChE, resulting in toxic effects to the user. As this group is present in phosphoethanolamine, we perform prediction of the in silico metabolism of phosphoethanolamine and submit this series to a docking study on AChE. A total of 10 metabolites were indicated by the prediction, including ammonia and hydroxylamine, which were not included in the study. Using a group of 8 organophosphorus whose pIC50 values ranged from 5.92 to 9.47 as template, we observed that no compound present in the phosphoethanolamine series had a binding energy lower than that of organophosphorus, suggesting that the series has low inhibitory power on AChE. In light of this, we conclude that phosphoethanolamine and its predicted metabolites do not significantly inhibit AChE to cause a cholinergic crisis. This finding highlights the importance of investigating this compound as lead for potential anticancer agents.

  2. Characteristics and Antitumor Activity of Morchella esculenta Polysaccharide Extracted by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2016-06-01

    Full Text Available Polysaccharides from Morchella esculenta have been proven to be functional and helpful for humans. The purpose of this study was to investigate the chemical structure and anti-proliferating and antitumor activities of a Morchella esculenta polysaccharide (MEP extracted by pulsed electric field (PEF in submerged fermentation. The endo-polysaccharide was separated and purified by column chromatography and Gel permeation chromatography, and analyzed by gas chromatography. The MEP with an average molecular weight of 81,835 Da consisted of xylose, glucose, mannose, rhamnose and galactose at the ratio of 5.4:5.0:6.5:7.8:72.3. Structure of MEP was further analyzed by Fourier-transform infrared spectroscopy and 1H and 13C liquid-state nuclear magnetic resonance spectroscopy. Apoptosis tests proved that MEP could inhibit the proliferation and growth of human colon cancer HT-29 cells in a time- and dose-dependent manner within 48 h. This study provides more information on chemical structure of anti-proliferating polysaccharides isolated from Morchella esculenta.

  3. Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity.

    Directory of Open Access Journals (Sweden)

    Sophie Daburon

    Full Text Available Binding of ligand FasL to its receptor Fas triggers apoptosis via the caspase cascade. FasL itself is homotrimeric, and a productive apoptotic signal requires that FasL be oligomerized beyond the homotrimeric state. We generated a series of FasL chimeras by fusing FasL to domains of the Leukemia Inhibitory Factor receptor gp190 which confer homotypic oligomerization, and analyzed the capacity of these soluble chimeras to trigger cell death. We observed that the most efficient FasL chimera, called pFasL, was also the most polymeric, as it reached the size of a dodecamer. Using a cellular model, we investigated the structure-function relationships of the FasL/Fas interactions for our chimeras, and we demonstrated that the Fas-mediated apoptotic signal did not solely rely on ligand-mediated receptor aggregation, but also required a conformational adaptation of the Fas receptor. When injected into mice, pFasL did not trigger liver injury at a dose which displayed anti-tumor activity in a model of human tumor transplanted to immunodeficient animals, suggesting a potential therapeutic use. Therefore, the optimization of the FasL conformation has to be considered for the development of efficient FasL-derived anti-cancer drugs targeting Fas.

  4. Anti-tumor Effects of Plasma Activated Media and Correlation with Hydrogen Peroxide Concentration

    Science.gov (United States)

    Laroussi, Mounir; Mohades, Soheila; Barekzi, Nazir; Maruthamuthu, Venkat; Razavi, Hamid

    2016-09-01

    Plasma activated media (PAM) can induce death in cancer cells. In our research, PAM is produced by exposing liquid culture medium to a helium plasma pencil. Reactive oxygen and nitrogen species in the aqueous state are known factors in anti-tumor effects of PAM. The duration of plasma exposure determines the concentrations of reactive species produced in PAM. Stability of the plasma generated reactive species and their lifetime depend on parameters such as the chemical composition of the medium. Here, a complete cell culture medium was employed to make PAM. Later, PAM was used to treat SCaBER cancer cells either as an immediate PAM (right after exposure) or as an aged-PAM (after storage). SCaBER (ATCC®HTB-3™) is an epithelial cell line from a human bladder with the squamous carcinoma disease. A normal epithelial cell line from a kidney tissue of a dog - MDCK (ATCC®CCL-34™) - was used to analyze the selective effect of PAM. Correspondingly, we measured the concentration of hydrogen peroxide- as a stable species with biological impact on cell viability- in both immediate PAM and aged-PAM. In addition, we report on the effect of serum supplemented in PAM on the H2O2 concentration measured by Amplex red assay kit. Finally, we evaluate the effects of PAM on growth and morphological changes in MDCK cells using fluorescence microscopy.

  5. Anti-angiogenesis and anti-tumor activity of recombinant anginex

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Dings, Ruud P.M.; Linden, Edith van der; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2006-01-01

    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment

  6. A New 1D Chained Coordination Polymer: Synthesis, Crystal Structure, Antitumor Activity and Luminescent Property

    Directory of Open Access Journals (Sweden)

    Xi-Shi Tai

    2015-11-01

    Full Text Available A new 1D chained coordination polymer of Zn(II, {[Zn(L2(4,4′-bipy]·(H2O}n(1 (HL = N-acetyl-l-phenylalanine; 4,4′-bipy = 4,4′-bipyridine has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. Theresults show that each asymmetric unit of Zn(II complex belongs to monoclinic, space group P21 with a = 11.421(2 Å, b = 9.2213(17 Å, c = 15.188(3 Å,β = 106.112(3°, V = 1536.7(5 Å3, Z = 2, Dc = 1.444 g·cm−3, µ = 0.857 mm−1, F(000 = 696, and final R1 = 0.0439, ωR2 = 0.1013. The molecules form one-dimensional chained structure by its the bridging 4,4′-bipyridine ligands. The antitumor activities and luminescent properties of Zn(II coordination polymer have also been investigated.

  7. Antitumor activity in RAS-driven tumors by blocking AKT and MEK.

    Science.gov (United States)

    Tolcher, Anthony W; Khan, Khurum; Ong, Michael; Banerji, Udai; Papadimitrakopoulou, Vassiliki; Gandara, David R; Patnaik, Amita; Baird, Richard D; Olmos, David; Garrett, Christopher R; Skolnik, Jeffrey M; Rubin, Eric H; Smith, Paul D; Huang, Pearl; Learoyd, Maria; Shannon, Keith A; Morosky, Anne; Tetteh, Ernestina; Jou, Ying-Ming; Papadopoulos, Kyriakos P; Moreno, Victor; Kaiser, Brianne; Yap, Timothy A; Yan, Li; de Bono, Johann S

    2015-02-15

    KRAS is the most commonly mutated oncogene in human tumors. KRAS-mutant cells may exhibit resistance to the allosteric MEK1/2 inhibitor selumetinib (AZD6244; ARRY-142886) and allosteric AKT inhibitors (such as MK-2206), the combination of which may overcome resistance to both monotherapies. We conducted a dose/schedule-finding study evaluating MK-2206 and selumetinib in patients with advanced treatment-refractory solid tumors. Recommended dosing schedules were defined as MK-2206 at 135 mg weekly and selumetinib at 100 mg once daily. Grade 3 rash was the most common dose-limiting toxicity (DLT); other DLTs included grade 4 lipase increase, grade 3 stomatitis, diarrhea, and fatigue, and grade 3 and grade 2 retinal pigment epithelium detachment. There were no meaningful pharmacokinetic drug-drug interactions. Clinical antitumor activity included RECIST 1.0-confirmed partial responses in non-small cell lung cancer and low-grade ovarian carcinoma. Responses in KRAS-mutant cancers were generally durable. Clinical cotargeting of MEK and AKT signaling may be an important therapeutic strategy in KRAS-driven human malignancies (Trial NCT number NCT01021748). ©2014 American Association for Cancer Research.

  8. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Franco-Molina Moisés A

    2010-11-01

    Full Text Available Abstract Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL and LD100 (14 ng/mL (*P Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  9. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.

    Science.gov (United States)

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Sierra-Rivera, Crystel A; Gómez-Flores, Ricardo A; Zapata-Benavides, Pablo; Castillo-Tello, Paloma; Alcocer-González, Juan Manuel; Miranda-Hernández, Diana F; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2010-11-16

    Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P colloidal silver. The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  10. Antioxidant, antimicrobial, antitumor, and cytotoxic activities of an important medicinal plant (Euphorbia royleana from Pakistan

    Directory of Open Access Journals (Sweden)

    Aisha Ashraf

    2015-03-01

    Full Text Available The aim of present study was to evaluate antioxidant, antimicrobial, and antitumor activities of methanol, hexane, and aqueous extracts of fresh Euphorbia royleana. Total phenolic and flavonoid contents were estimated as gallic acid and querectin equivalents, respectively. Antioxidant activity was assessed by scavenging of free 2,2′- diphenyl-1-picrylhydrazyl radicals and reduction of ferric ions, and it was observed that inhibition values increase linearly with increase in concentration of extract. The results of ferric reducing antioxidant power assay showed that hexane extract has maximum ferric reducing power (12.70 ± 0.49 mg gallic acid equivalents/g of plant extract. Maximum phenolic (47.47 ± 0.71 μg gallic acid equivalents/mg of plant extract and flavonoid (63.68 ± 0.43 μg querectin equivalents/mg of plant extract contents were also found in the hexane extract. Furthermore, we examined antimicrobial activity of the three extracts (methanol, hexane, aqueous against a panel of microorganisms (Escherichia coli, Bacillus subtillis, Pasteurella multocida, Aspergillus niger, and Fusarium solani by disc-diffusion assay, and found the hexane extract to be the best antimicrobial agent. Hexane extract was also observed as to be most effective in a potato disc assay. As hexane extract showed potent activity in all the investigated assays, it was targeted for cytotoxic assessment. Maximum cytotoxicity (61.66% by hexane extract was found at 800 μg/mL. It is concluded that investigated extracts have potential for isolation of antioxidant and antimicrobial compounds for the pharmaceutical industry.

  11. Antitumor Activity of Kielmeyera Coriacea Leaf Constituents in Experimental Melanoma, Tested in Vitro and in Vivo in Syngeneic Mice

    Directory of Open Access Journals (Sweden)

    Carlos Rogério Figueiredo

    2014-10-01

    Full Text Available Purpose: The antitumor activity of Kielmeyera coriacea (Clusiaceae, a medicinal plant used in the treatment of parasitic, as well as fungal and bacterial infections by the Brazilian Cerrado population, was investigated. Methods: A chloroform extract (CE of K. coriacea was tested in the murine melanoma cell line (B16F10-Nex2 and a panel of human tumor cell lines. Tumor cell migration was determined by the wound-healing assay and the in vivo antitumor activity of CE was investigated in a melanoma cell metastatic model. 1H NMR and GC/MS were used to determine CE chemical composition. Results: We found that CE exhibited strong cytotoxic activity against murine melanoma cells and a panel of human tumor cell lines in vitro. CE also inhibited growth of B16F10-Nex2 cells at sub lethal concentrations, inducing cell cycle arrest at S phase, and inhibition of tumor cell migration. Most importantly, administration of CE significantly reduced the number of melanoma metastatic nodules in vivo. Chemical analysis of CE indicated the presence of the long chain fatty compounds, 1-eicosanol, 1-docosanol, and 2-nonadecanone as main constituents. Conclusion: These results indicate that K. coriacea is a promising medicinal plant in cancer therapy exhibiting antitumor activity both in vitro and in vivo against different tumor cell lines.

  12. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Kim, Dong Hoon; Lee, Jiyong; Kim, Kyung Noo; Kim, Hye Jin; Jeung, Hei Cheul; Chung, Hyun Cheol; Kwon, Ho Jeong

    2007-01-01

    Histone deacetylase (HDAC), a key enzyme in gene expression and carcinogenesis, is considered an attractive target molecule for cancer therapy. Here, we report a new synthetic small molecule, N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), as a HDAC inhibitor with anti-tumor activity both in vitro and in vivo. The compound inhibited HDAC enzyme activity as well as proliferation of human fibrosarcoma cells (HT1080) in vitro. Treatment of cells with HNHA elicited histone hyperacetylation leading to an up-regulation of p21 transcription, cell cycle arrest, and an inhibition of HT1080 cell invasion. Moreover, HNHA effectively inhibited the growth of tumor tissue in a mouse xenograph assay in vivo. Together, these data demonstrate that this novel HDAC inhibitor could be developed as a potential anti-tumor agent targeting HDAC

  13. Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells.

    Science.gov (United States)

    Bergadà, Laura; Sorolla, Annabel; Yeramian, Andree; Eritja, Nuria; Mirantes, Cristina; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-08-01

    Histone deacetylase inhibitors such as Vorinostat display anti-neoplastic activity against a variety of solid tumors. Here, we have investigated the anti-tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat-induced the activation of caspase-8 and -9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we investigated the role of the extrinsic pathway in apoptosis triggered by Vorinostat. We found that Vorinostat caused a dramatic decrease of FLIP mRNA and protein levels. However, overexpression of the long from of FLIP did not block Vorinostat-induced apoptosis. To further investigate the role of extrinsic apoptotic pathway in Vorinostat-induced apoptosis, we performed an shRNA-mediated knock-down of caspase-8. Surprisingly, downregulation of caspase-8 alone caused a marked decrease in clonogenic ability and reduced the growth of endometrial cancer xenografts in vivo, revealing that targeting caspase-8 may be an attractive target for anticancer therapy on endometrial tumors. Furthermore, combination of caspase-8 inhibition and Vorinostat treatment caused an enhancement of apoptotic cell death and a further decrease of clonogenic growth of endometrial cancer cells. More importantly, combination of Vorinostat and caspase-8 inhibition caused a nearly complete inhibition of tumor xenograft growth. Finally, we demonstrate that cell death triggered by Vorinostat alone or in combination with caspase-8 shRNAs was inhibited by the anti-apoptotic protein Bcl-XL. Our results suggest that combinatory therapies using Vorinostat treatment and caspase-8 inhibition can be an effective treatment for endometrial carcinomas. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. [Experimental study of the relationships between activation of erythropoiesis and hematotoxicity of some antitumoral agents (author's transl)].

    Science.gov (United States)

    Pannacciulli, I; Bogliolo, G; Massa, G; Ronco, D; Fresco, G; Saviane, A; Dolcino, G; Celle, G

    1975-01-01

    The changes in the blood toxicity of some antitumoral chemotherapeutic agents in the presence of erythropoiesis activation by bleeding are evaluated. The general toxicity seems to be unaffected but the damage to erythropoiesis proved, in absolute terms, to be more severe in the bled animals. The recovery of hematopoiesis was slower after some drug than others. These results are discussed in the light of present knowledge of hematopoietic kinetics and of the relationships between antiblastic drugs and staminal hematopoietic compartments.

  15. Bortezomib Enhances the Antitumor Effects of Interferon-β Gene Transfer on Melanoma Cells.

    Science.gov (United States)

    Rossi, Ursula A; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2017-01-01

    Malignant melanoma is a fast growing form of skin cancer with increasing global incidence. Clinically, canine malignant melanoma and human melanoma share comparable treatment-resistances, metastatic phenotypes and site selectivity. Both interferon-β (IFNβ) and bortezomib (BTZ) display inhibitory activities on melanoma cells. Here, we evaluated the cytotoxic effects of the combination of BTZ and IFNβ gene lipofection on cultured melanoma cell lines. Cell viability determined by the acid phosphatase method, cell migration mesasured by the wound healing assay, DNA fragmentation and cell cycle by flow cytometry after propidium iodide staining and reactive oxygen species (ROS) production by H2DCF-DA fluorescence. Four canine mucosal (Ak, Br, Bk and Ol) and two human dermal (A375 and SB2) melanoma cell lines were assayed. BTZ sub-pharmacological concentrations (5 nM) enhanced the cytotoxic effects of IFNβ transgene expression on melanoma cells monolayers and spheroids. The combination was also more effective than the single treatments when assayed for clonogenic survival and cell migration. The combined treatment produced a significant raise of apoptosis evidenced by DNA fragmentation as compared to either BTZ or IFNβ gene lipofection single treatments. Furthermore, BTZ significantly increased the intracellular ROS generation induced by IFNβ gene transfer in melanoma cells, an effect that was reversed by the addition of the ROS inhibitor N-acetyl-L-cystein. The present work encourages further studies about the potential of the combination of interferon gene transfer with proteasome inhibitors as a new combined therapy for malignant melanoma, both in veterinary and/or human clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. New benzimidazoles and their antitumor effects with Aurora A kinase and KSP inhibitory activities.

    Science.gov (United States)

    Abd El-All, Amira S; Magd-El-Din, Asmaa A; Ragab, Fatma A F; ElHefnawi, Mahmoud; Abdalla, Mohamed M; Galal, Shadia A; El-Rashedy, Ahmed A

    2015-07-01

    A newly synthesized series of anticancer compounds comprising thiazolo[3,2-a]pyrimidine derivatives 6a-q bearing a benzimidazole moiety was produced via a one-pot reaction of N-(4-(1H-benzo[d]imidazol-2-yl)phenyl)-2-cyanoacetamide 5 with 2-aminothiazole and an appropriate aromatic aldehyde. Compound 7 was obtained via the reaction of 4-(1H-benzo[d]imidazol-2yl)benzenamide 1 with carbon disulphide and methyl iodide in the presence of concentrated aqueous solution of NaOH, then treated with o-phenylenediamine to give N-(4-1H-benzo[d]imidazol-2-yl)phenyl)-1H-benzo[d]imidazol-2-amine 8. The structures of the newly synthesized compounds were confirmed by analytical and spectroscopic measurements (IR, MS, and (1) H NMR). The synthesized products were screened and studied for their in vitro antitumor activity against three human cancer cell lines (namely colorectal cancer cell line HCT116, human liver cancer cell line HepG2, and human ovarian cancer cell line A2780) and their Aurora A kinase and KSP inhibitory activities. All newly synthesized compounds revealed marked results comparable with the standard drug CK0106023. The compounds 6e and 6k of the thiazolopyrimidine derivatives were the most active compounds when tested against the three cell lines in comparison with the standard drug CK0106023, and showed potent dual KSP and Aurora A kinase inhibition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Bian X

    2016-05-01

    Full Text Available Xinyu Bian,* Puyuan Wu,* Huizi Sha, Hanqing Qian, Qing Wang, Lei Cheng, Yang Yang, Mi Yang, Baorui LiuComprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: In this study, we report a novel kind of targeting with paclitaxel (PTX-loaded silk fibroin nanoparticles conjugated with iRGD–EGFR nanobody recombinant protein (anti-EGFR-iRGD. The new nanoparticles (called A-PTX-SF-NPs were prepared using the carbodiimide-mediated coupling procedure and their characteristics were evaluated. The cellular cytotoxicity and cellular uptake of A-PTX-SF-NPs were also investigated. The results in vivo suggested that NPs conjugated with the recombinant protein exhibited more targeting and anti-neoplastic property in cells with high EGFR expression. In the in vivo antitumor efficacy assay, the A-PTX-SF-NPs group showed slower tumor growth and smaller tumor volumes than PTX-SF-NPs in a HeLa xenograft mouse model. A real-time near-infrared fluorescence imaging study showed that A-PTX-SF-NPs could target the tumor more effectively. These results suggest that the anticancer activity and tumor targeting of A-PTX-SF-NPs were superior to those of PTX-SF-NPs and may have the potential to be used for targeted delivery for tumor therapies. Keywords: EGFR, nanobody, iRGD, recombinant protein, targeting drug carriers, antitumor efficiency

  18. Antioxidant, antitumor activities and phyto chemical investigation of hedera nepalensis K. koch, an important medicinal plant from Pakistan

    International Nuclear Information System (INIS)

    Kanwal, S.; Ullah, N.; Ihsan-ul-Haq; Mirza, B.; Afzal, I.

    2011-01-01

    Hedera nepalensis is a ground-creeping evergreen woody plant growing mainly in the Himalayas and Kashmir. This plant is frequently used in folk medicines for the treatment of various ailments. The present research focused on the pharmacological evaluation and phyto chemical analysis of crude methanolic extract (CME) and three fractions, n-hexane (n-HF), ethyl acetate (EAF) and aqueous (AQF). The biological assays used for this study included DPPH free radical values scavenging assay, DNA protection assay and potato disc antitumor assay. Maximum antioxidant activities with IC/sub 50/ of 9.834 ppm and 14.22 ppm were shown by EAF and AQF, respectively. Crude methanolic extract (CME) and the fractions OH induced DNA damage assay, at all the concentrations tested. Both also exhibited significant DNA protection activity in EAF and AQF showed well-defined tumor inhibition in the potato disc antitumor assay, with the lowest IC/sub 50/ values shown by EAF and AQF (less than 1 ppm). Phyto chemical analysis showed the presence of flavonoids, steroids, tannins, terpenoids and cardiac glycosides in the crude extract and its fractions. The present study demonstrated that EAF and AQF of Hedera nepalensis have potent antioxidant and antitumor activity with the presence of effective phytochemicals. (author)

  19. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rutian Li

    Full Text Available AIMS: The matrix metalloproteinase (MMP 2/9, also known as collagenases IV and gelatinases A/B, play a key role in cancer invasion and metastasis. However, the clinical trials of the MMP inhibitors (MMPIs ended up with disappointing results. In this paper, we synthesized a gelatinase-responsive copolymer (mPEG-PCL by inserting a gelatinase cleavable peptide (PVGLIG between mPEG and PCL blocks of mPEG-PCL for anticancer drug delivery to make use of MMP2/9 as an intelligent target for drug delivery. MATERIALS AND METHODS: mPEG-pep-PCL copolymer was synthesized via ring-opening copolymerization and double-amidation. To evaluate whether Nanoparticles (NPs prepared from this copolymer are superior to NPs prepared from mPEG-PCL, NPs prepared from mPEG-PCL copolymer were used as positive control. Docetaxel-loading NPs using mPEG-pep-PCL and mPEG-PCL were prepared by nano-precipitation method, mentioned as Gel-NPs and Con-NPs, respectively. The morphologic changes of the NPs after treatment with gelatinases were observed macroscopically by spectrophotometer and microscopically by transmission electron microscopy (TEM and atomic force microscopy (AFM. The cellular uptake amount and cytotoxicity of Gel-NPs and Con-NPs, respectively, in cell lines with different levels of gelatinase expression were studied. Moreover, the cytotoxicity study on the primary cancer cells isolated from pericardial fluids from a patient with late-stage lung cancer was conducted. RESULTS: The Gel-NPs aggregated in response to gelatinases, which was confirmed macroscopically and microscopically. The cellular uptake amount of Gel-NPs was correlated with the level of gelatinases. The in vitro antitumor effect of Gel-NPs was also correlated with the level of gelatinases and was superior to Taxotere (commercially available docetaxel as well as the Con-NPs. The cytotoxicity study on the primary lung cancer cells also confirmed the effectiveness of Gel-NPs. CONCLUSION: The results in

  20. Selective anti-tumor activity of the novel fluoropyrimidine polymer F10 towards G48a orthotopic GBM tumors.

    Science.gov (United States)

    Gmeiner, William H; Lema-Tome, Carla; Gibo, Denise; Jennings-Gee, Jamie; Milligan, Carol; Debinski, Waldemar

    2014-02-01

    F10 is a novel anti-tumor agent with minimal systemic toxicity in vivo and which displays strong cytotoxicity towards glioblastoma (GBM) cells in vitro. Here we investigate the cytotoxicity of F10 towards GBM cells and evaluate the anti-tumor activity of locally-administered F10 towards an orthotopic xenograft model of GBM. The effects of F10 on thymidylate synthase (TS) inhibition and Topoisomerase 1 (Top1) cleavage complex formation were evaluated using TS activity assays and in vivo complex of enzyme bioassays. Cytotoxicity of F10 towards normal brain was evaluated using cortices from embryonic (day 18) mice. F10 displays minimal penetrance of the blood-brain barrier and was delivered by intra-cerebral (i.c.) administration and prospective anti-tumor response towards luciferase-expressing G48a human GBM tumors in nude mice was evaluated using IVIS imaging. Histological examination of tumor and normal brain tissue was used to assess the selectivity of anti-tumor activity. F10 is cytotoxic towards G48a, SNB-19, and U-251 MG GBM cells through dual targeting of TS and Top1. F10 is not toxic to murine primary neuronal cultures. F10 is well-tolerated upon i.c. administration and induces significant regression of G48a tumors that is dose-dependent. Histological analysis from F10-treated mice revealed tumors were essentially completely eradicated in F10-treated mice while vehicle-treated mice displayed substantial infiltration into normal tissue. F10 displays strong efficacy for GBM treatment with minimal toxicity upon i.c. administration establishing F10 as a promising drug-candidate for treating GBM in human patients.

  1. Role of a bacillus Calmette-Guérin fibronectin attachment protein in BCG-induced antitumor activity.

    Science.gov (United States)

    Zhao, W; Schorey, J S; Bong-Mastek, M; Ritchey, J; Brown, E J; Ratliff, T L

    2000-04-01

    Intravesical Mycobacterium bovis bacillus Calmette-Gu*erin (BCG) is the treatment of choice for superficial bladder cancer. Previous studies showed that attachment of BCG to fibronectin within the bladder was necessary for mediation of the antitumor response. Further studies identified a bacterial receptor, fibronectin attachment protein (FAP), as an important mediator of BCG attachment to fibronectin. In vitro studies showed that a stable BCG/fibronectin interaction was dependent on FAP binding to fibronectin; however, no role for FAP in the attachment of BCG in vivo has been characterized. We now report the cloning of the M. bovis BCG FAP (FAP-B) and demonstrate an important role for FAP in the in vivo attachment of BCG to the bladder wall and in the induction of BCG-mediated antitumor activity. The predicted amino acid sequence for FAP-B shows 61% and 71% homology, respectively, with Mycobacterium avium FAP (FAP-A) and Mycobacterium leprae FAP (FAP-L). Rabbit polyclonal antibodies against Mycobacterium vaccae FAP (FAP-V) reacted with all 3 recombinant FAP proteins on Western blots. Functional studies show FAP-B to bind fibronectin via the highly conserved attachment regions previously identified for FAP-A and FAP-L and also to competitively inhibit attachment of BCG to matrix fibronectin. In vivo studies show FAP to be a necessary protein for the stable attachment of BCG to the bladder wall. Moreover, stable binding of BCG via FAP was shown to be necessary for the expression of BCG-induced antitumor activity. Our results demonstrate a biological role for FAP in the mediation of BCG-induced antitumor activity.

  2. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes.

    Science.gov (United States)

    Meraz, Ismail M; Hearnden, Claire H; Liu, Xuewu; Yang, Marie; Williams, Laura; Savage, David J; Gu, Jianhua; Rhudy, Jessica R; Yokoi, Kenji; Lavelle, Ed C; Serda, Rita E

    2014-01-01

    Porous silicon (pSi) microparticles, in diverse sizes and shapes, can be functionalized to present pathogen-associated molecular patterns that activate dendritic cells. Intraperitoneal injection of MPL-adsorbed pSi microparticles, in contrast to free MPL, resulted in the induction of local inflammation, reflected in the recruitment of neutrophils, eosinophils and proinflammatory monocytes, and the depletion of resident macrophages and mast cells at the injection site. Injection of microparticle-bound MPL resulted in enhanced secretion of the T helper 1 associated cytokines IFN-γ and TNF-α by peritoneal exudate and lymph node cells in response to secondary stimuli while decreasing the anti-inflammatory cytokine IL-10. MPL-pSi microparticles independently exhibited anti-tumor effects and enhanced tumor suppression by low dose doxorubicin nanoliposomes. Intravascular injection of the MPL-bound microparticles increased serum IL-1β levels, which was blocked by the IL-1 receptor antagonist Anakinra. The microparticles also potentiated tumor infiltration by dendritic cells, cytotoxic T lymphocytes, and F4/80+ macrophages, however, a specific reduction was observed in CD204+ macrophages.

  3. Simultaneous, But Not Consecutive, Combination With Folinate Salts Potentiates 5-Fluorouracil Antitumor Activity In Vitro and In Vivo.

    Science.gov (United States)

    Di Paolo, Antonello; Orlandi, Paola; Di Desidero, Teresa; Danesi, Romano; Bocci, Guido

    2017-08-07

    The combination of folinate salts to 5-fluoruracil (5-FU)-based schedules is an established clinical routine in the landscape of colorectal cancer treatment. The aim of this study was to investigate the pharmacological differences between the sequential administration of folinate salts (1 h before, as in clinical routine) followed by 5-FU and the simultaneous administration of both drugs. Proliferation and apoptotic assays were performed on human colon cancer cells exposed to 5-FU, calcium (CaLV), or disodium (NaLV) levofolinate or their simultaneous and sequential combination for 24 and 72 h. TYMS and SLC19A1 gene expression was performed with real-time PCR. In vivo experiments were performed in xenografted nude mice, which were treated with 5-FU escalating doses and CaLV or NaLV alone or in simultaneous and sequential combination. The simultaneous combination of folinate salts and 5-FU was synergistic (NaLV) or additive (CaLV) in a 24-h treatment in both cell lines. In contrast, the sequential combination of both folinate salts and 5-FU was antagonistic at 24 and 72 h. The simultaneous combination of 5-FU and NaLV or CaLV inhibited TYMS gene expression at 24 h, whereas the sequential combination reduced SLC19A1 gene expression. In vivo experiments confirmed the enhanced antitumor activity of the 5-FU + NaLV simultaneous combination with a good toxicity profile, whereas the sequential combination with CaLV failed to potentiate 5-FU activity. In conclusion, only the simultaneous, but not the consecutive, in vitro and in vivo combination of 5-FU and both folinate salt formulations potentiated the antiproliferative effects of the drugs.

  4. The combination of sorafenib and everolimus shows antitumor activity in preclinical models of malignant pleural mesothelioma

    International Nuclear Information System (INIS)

    Pignochino, Ymera; Dell’Aglio, Carmine; Inghilleri, Simona; Zorzetto, Michele; Basiricò, Marco; Capozzi, Federica; Canta, Marta; Piloni, Davide; Cemmi, Francesca; Sangiolo, Dario; Gammaitoni, Loretta; Soster, Marco; Marchiò, Serena; Pozzi, Ernesto; Morbini, Patrizia; Luisetti, Maurizio; Aglietta, Massimo; Grignani, Giovanni; Stella, Giulia M

    2015-01-01

    Malignant Pleural Mesothelioma (MPM) is an aggressive tumor arising from mesothelial cells lining the pleural cavities characterized by resistance to standard therapies. Most of the molecular steps responsible for pleural transformation remain unclear; however, several growth factor signaling cascades are known to be altered during MPM onset and progression. Transducers of these pathways, such as PIK3CA-mTOR-AKT, MAPK, and ezrin/radixin/moesin (ERM) could therefore be exploited as possible targets for pharmacological intervention. This study aimed to identify ‘druggable’ pathways in MPM and to formulate a targeted approach based on the use of commercially available molecules, such as the multikinase inhibitor sorafenib and the mTOR inhibitor everolimus. We planned a triple approach based on: i) analysis of immunophenotypes and mutational profiles in a cohort of thoracoscopic MPM samples, ii) in vitro pharmacological assays, ii) in vivo therapeutic approaches on MPM xenografts. No mutations were found in ‘hot spot’ regions of the mTOR upstream genes (e.g. EGFR, KRAS and PIK3CA). Phosphorylated mTOR and ERM were specifically overexpressed in the analyzed MPM samples. Sorafenib and everolimus combination was effective in mTOR and ERM blockade; exerted synergistic effects on the inhibition of MPM cell proliferation; triggered ROS production and consequent AMPK-p38 mediated-apoptosis. The antitumor activity was displayed when orally administered to MPM-bearing NOD/SCID mice. ERM and mTOR pathways are activated in MPM and ‘druggable’ by a combination of sorafenib and everolimus. Combination therapy is a promising therapeutic strategy against MPM. The online version of this article (doi:10.1186/s12885-015-1363-1) contains supplementary material, which is available to authorized users

  5. Antitumor activity of the multikinase inhibitor regorafenib in patient-derived xenograft models of gastric cancer.

    Science.gov (United States)

    Huynh, Hung; Ong, Richard; Zopf, Dieter

    2015-10-29

    Unresectable gastric cancer is associated with poor outcomes, with few treatment options available after failure of cytotoxic chemotherapy. Clinical trials of targeted therapies have generally shown no survival benefit in gastric cancer, with the exceptions of the antibodies ramucirumab (anti-VEGFR2) and trastuzumab (anti-HER2/neu). Given the efficacy of the multikinase inhibitor regorafenib in other gastrointestinal tumors, we investigated its potential in gastric cancer. The antitumor activity of oral regorafenib was assessed in eight murine patient-derived gastric cancer xenograft models. Dose-response experiments assessed the efficacy and tolerability of oral regorafenib 5, 10, and 15 mg/kg/day in two models, with 10 mg/kg/day selected for further investigation in all eight models. Tumor weight and volume was monitored during treatment; tumor cell proliferation, angiogenesis, apoptosis, and intracellular signaling were assessed using immunohistochemistry and Western blotting of total tumor lysates at the end of treatment. Regorafenib showed dose-dependent inhibition of tumor growth and was well tolerated, with no significant decreases in bodyweight or evident toxicity. Regorafenib 10 mg/kg/day significantly inhibited tumor growth in all eight models (72 to 96 %; all p Regorafenib reduced tumor angiogenesis 3- to 11-fold versus controls in all models (all p Regorafenib was effective in patient-derived models of gastric cancer of different histological subtypes, with inhibition of tumor growth, angiogenesis, and tumor-cell proliferation observed in almost all models. These findings are consistent with the observed activity of regorafenib in preclinical models of other gastrointestinal tumors, and support further clinical investigation in gastric cancer.

  6. Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4.

    Science.gov (United States)

    Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming

    2013-02-01

    CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.

  7. Targeting myeloid-derived suppressor cells augments antitumor activity against lung cancer

    Directory of Open Access Journals (Sweden)

    Srivastava MK

    2012-10-01

    Full Text Available Minu K Srivastava,1,2 Li Zhu,1,2 Marni Harris-White,2 Min Huang,1–3 Maie St John,1,3 Jay M Lee,1,3 Ravi Salgia,4 Robert B Cameron,1,3,5 Robert Strieter,6 Steven Dubinett,1–3 Sherven Sharma1–31Department of Medicine, UCLA Lung Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 2Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 3Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 4Department of Medicine, University of Chicago, Chicago, IL, 5Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 6Department of Medicine, University of Virginia, Charlottesville, VA, USAAbstract: Lung cancer evades host immune surveillance by dysregulating inflammation. Tumors and their surrounding stromata produce growth factors, cytokines, and chemokines that recruit, expand, and/or activate myeloid-derived suppressor cells (MDSCs. MDSCs regulate immune responses and are frequently found in malignancy. In this review the authors discuss tumor-MDSC interactions that suppress host antitumor activities and the authors' recent findings regarding MDSC depletion that led to improved therapeutic vaccination responses against lung cancer. Despite the identification of a repertoire of tumor antigens, hurdles persist for immune-based anticancer therapies. It is likely that combined therapies that address the multiple immune deficits in cancer patients will be required for effective therapy. MDSCs play a major role in the suppression of T-cell activation and they sustain tumor growth, proliferation, and metastases. Regulation of MDSC recruitment, differentiation or expansion, and inhibition of the MDSC suppressive function with pharmacologic agents will be useful in the control of cancer growth and progression. Pharmacologic agents that regulate MDSCs may be more effective when combined with

  8. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    Science.gov (United States)

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  9. Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique.

    Science.gov (United States)

    Wu, Weiwei; Zu, Yuangang; Wang, Li; Wang, Lingling; Wang, Huimei; Li, Yuanyuan; Wu, Mingfang; Zhao, Xiuhua; Fu, Yujie

    2017-11-01

    The present work aimed to apply the liquid antisolvent precipitation (LAP) method for preparing the apigenin nanoparticles and thereby improving the solubility and bioavailability of apigenin. The different experimental parameters on particle size were optimized through central composite design (CCD) using the Design-Expert ® software. Under the optimum conditions, the particle size of the apigenin nanosuspension was about 159.2 nm. In order to get apigenin nanoparticles, the freeze-drying method was selected and the mannitol was used as a cryoprotectant. Then the solid state properties of the apigenin nanoparticles were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo gravimetric (TG), and X-ray diffraction (XRD). The results obtained displayed that the apigenin nanoparticles exhibited near-spherical shape and could be transformed into an amorphous form. In addition, the dissolving test, the bioavailability in rats, and the antitumor activity were also studied. The experimental results showed that the solubility of the apigenin nanoparticles were about 29.61 times and 64.81 times of raw apigenin in artificial gastric juice and in artificial intestinal juice, respectively, and the apigenin nanoparticles showed higher dissolution rates compared to raw apigenin, and was about 6.08 times and 6.14 times than that of raw apigenin in artificial gastric juice and in artificial intestinal juice. The oral bioavailability of apigenin nanoparticles was about 4.96 times higher than that of the raw apigenin, but the apigenin nanoparticles had no toxic effect on the organs of rats. In addition, the apigenin nanoparticles had a higher inhibition to HepG2 cells by lower IC50 than that of raw apigenin.

  10. Sunitinib indirectly enhanced anti-tumor cytotoxicity of cytokine-induced killer cells and CD3⁺CD56⁺ subset through the co-culturing dendritic cells.

    Directory of Open Access Journals (Sweden)

    Adisak Wongkajornsilp

    Full Text Available Cytokine-induced killer (CIK cells have reached clinical trials for leukemia and solid tumors. Their anti-tumor cytotoxicity had earlier been shown to be intensified after the co-culture with dendritic cells (DCs. We observed markedly enhanced anti-tumor cytotoxicity activity of CIK cells after the co-culture with sunitinib-pretreated DCs over that of untreated DCs. This cytotoxicity was reliant upon DC modulation by sunitinib because the direct exposure of CIK cells to sunitinib had no significant effect. Sunitinib promoted Th1-inducing and pro-inflammatory phenotypes (IL-12, IFN-γ and IL-6 in DCs at the expense of Th2 inducing phenotype (IL-13 and regulatory phenotype (PD-L1, IDO. Sunitinib-treated DCs subsequently induced the upregulation of Th1 phenotypic markers (IFN-γ and T-bet and the downregulation of the Th2 signature (GATA-3 and the Th17 marker (RORC on the CD3⁺CD56⁺ subset of CIK cells. It concluded that sunitinib-pretreated DCs drove the CD3⁺CD56⁺ subset toward Th1 phenotype with increased anti-tumor cytotoxicity.

  11. Synthesis, antitumor and antimicrobial activity of novel 1-substituted phenyl-3-[3-alkylamino(methyl)-2-thioxo-1,3,4-oxadiazole-5-yl] beta-carboline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Savariz, Franciele C.; Formagio, Anelise S. N.; Barbosa, Valeria A.; Sarragiotto, Maria Helena [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Quimica; Foglio, Mary Ann; Carvalho, Joao E. de; Duarte, Marta C.T. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas; Dias Filho, Benedito P. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Analises Clinicas

    2010-07-01

    With the purpose of activity enhancement of 1-substituted phenyl-3-(2-thioxo-1,3,4-oxadiazole-5-yl) beta-carbolines 1a-c, reported as potential antitumor agents in our previous study, herein we report the synthesis and antitumor activity evaluation of several novel Mannich bases 2-7(a-c), by the introduction of different alkylamino(methyl) groups in the 1,3,4-oxadiazole unity of 1a-c. The antimicrobial activities of 1a-c and of 2-7(a-c) were also evaluated. Additionally, an in silico study of the ADME properties of novel synthesized beta-carboline derivatives 2-7(a-c) was performed by evaluation of their Lipinski's parameters and topological polar surface area (TPSA) and percentage of absorption (% ABS) data. (author)

  12. Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2014-07-01

    Full Text Available The platinum(II oxalato complexes [Pt(ox(naza2] (1–3 were synthesized and characterized by elemental analysis (C, H, N, multinuclear NMR spectroscopy (1H, 13C, 15N, 195Pt and electrospray ionization mass spectrometry (ESI-MS; naza = 4-chloro-7-azaindole (4Claza; 1, 3-bromo-7-azaindole (3Braza; 2 or 4-bromo-7-azaindole (4Braza; 3. The prepared substances were screened for their in vitro antitumor activity on the osteosarcoma (HOS and breast adenocarcinoma (MCF7 human cancer cell lines, where 2 showed moderate antitumor effect (IC50 = 27.5 μM, and 18.3 μM, respectively. The complex 2 was further tested on a panel of six others human cancer cell lines, including the malignant melanoma (G361, cervix carcinoma (HeLa, ovarian carcinoma (A2780, cisplatin-resistant ovarian carcinoma (A2780R, lung carcinoma (A549 and prostate adenocarcinoma (LNCaP. This substance was found to be moderate antitumor effective against G361 (IC50 = 17.3 μM, HeLa (IC50 = 31.8 μM and A2780 (IC50 = 19.2 μM cell lines. The complex 2 was also studied by NMR for its solution stability and by ESI-MS experiments for its ability to interact with biomolecules, such as cysteine, glutathione or guanosine 5'-monophosphate.

  13. Antitumor activity and systemic effects of PVM/MA-shelled selol nanocapsules in lung adenocarcinoma-bearing mice

    International Nuclear Information System (INIS)

    De Souza, Ludmilla Regina; Muehlmann, Luis Alexandre; Matos, Lívia Carneiro; Lacava, Zulmira Guerreiro Marques; Báo, Sônia Nair; Azevedo, Ricardo Bentes; Simón-Vázquez, Rosana; González-Fernández, África; De-Paula, Alfredo Maurício Batista; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Morais, Paulo César

    2015-01-01

    Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility. (paper)

  14. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    OpenAIRE

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-01-01

    Abstract Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of ...

  15. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    International Nuclear Information System (INIS)

    Yan, Chen; Jie, Leng; Yongqi, Wang; Weiming, Xiao; Juqun, Xi; Yanbing, Ding; Li, Qian; Xingyuan, Pan; Mingchun, Ji; Weijuan, Gong

    2015-01-01

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8 + T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle

  16. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chen; Jie, Leng; Yongqi, Wang [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weiming, Xiao [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Juqun, Xi [Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Yanbing, Ding [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Li, Qian [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Xingyuan, Pan [Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Mingchun, Ji [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weijuan, Gong, E-mail: wjgong@yzu.edu.cn [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 (China)

    2015-07-31

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8{sup +} T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle.

  17. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    Science.gov (United States)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  18. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses.

    Directory of Open Access Journals (Sweden)

    Rafael Fenutría

    Full Text Available CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg, expressing a circulating soluble form of human CD5 (shCD5 as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE, as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma. This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+, and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.

  19. Antitumor activity of zoledronic acid in primary breast cancer cells determined by the ATP tumor chemosensitivity assay

    International Nuclear Information System (INIS)

    Fehm, Tanja; Zwirner, Manfred; Wallwiener, Diethelm; Seeger, Harald; Neubauer, Hans

    2012-01-01

    The NeoAzure study has demonstrated that the use of the bisphosphonate zoledronic acid (Zol) in the neoadjuvant setting increases the rate of complete response in primary breast cancer and therefore indicates direct antitumor activity. The purpose of this study was to compare the antitumor effect of Zol with standard chemotherapy in primary breast cancer cells using ATP-tumor chemosensitivity assay (ATP-TCA). Breast cancer specimens were obtained from patients with breast cancer who underwent primary breast cancer surgery at the Department of Obstetrics and Gynecology, Tübingen, Germany, between 2006 through 2009. Antitumor effects of Zol, TAC (Docetaxel, Adriamycin, Cyclophosphamide) and FEC (5-Fluorouracil, Epirubicin, Cyclophosphamide) were tested in 116 fresh human primary breast cancer specimens using ATP-TCA. ATP-TCA results were analyzed with different cut-off levels for the half maximal inhibitory concentration (IC50), for IC90 and for the sensitivity index (IndexSUM). Each single agent or combination was tested at six doubling dilutions from 6.25, 12.5, 25, 50, 100, and 200% of test drug concentrations (TDC) derived from the plasma peak concentrations determined by pharmacokinetic data. The assay was carried out in duplicate wells with positive and negative controls. The median IndexSUM value was lower for Zol than for the combined regimen FEC (36.8%) and TAC (12.9%), respectively, indicating increased antitumor activity of Zol in primary breast cancer cells. The difference regarding Zol and FEC was significant (p < 0.05). The median IC50 value for Zol (8.03% TDC) was significantly lower than the IC50 values for FEC (33.5% TDC) and TAC (19.3% TDC) treatment (p < 0.05). However, the median IC90 value for Zol (152.5% TDC) was significantly higher than the IC90 value obtained with TAC (49.5% TDC; p < 0.05), but similar to the IC90 value for FEC (180.9% TDC). In addition a significant positive correlation was observed for the IndexSum of Zol and the ER status

  20. T-Cell-Specific Loss of the PI-3-Kinase p110α Catalytic Subunit Results in Enhanced Cytokine Production and Antitumor Response

    Directory of Open Access Journals (Sweden)

    Laura Aragoneses-Fenoll

    2018-02-01

    Full Text Available Class IA phosphatidylinositol 3-kinase (PI3K catalytic subunits p110α and p110δ are targets in cancer therapy expressed at high levels in T lymphocytes. The role of p110δ PI3K in normal or pathological immune responses is well established, yet the importance of p110α subunits in T cell-dependent immune responses is not clear. To address this problem, mice with p110α conditionally deleted in CD4+ and CD8+ T lymphocytes (p110α−/−ΔT were used. p110α−/−ΔT mice show normal development of T cell subsets, but slightly reduced numbers of CD4+ T cells in the spleen. “In vitro,” TCR/CD3 plus CD28 activation of naive CD4+ and CD8+ p110α−/−ΔT T cells showed enhanced effector function, particularly IFN-γ secretion, T-bet induction, and Akt, Erk, or P38 activation. Tfh derived from p110α−/−ΔT cells also have enhanced responses when compared to normal mice, and IL-2 expanded p110α−/−ΔT CD8+ T cells had enhanced levels of LAMP-1 and Granzyme B. By contrast, the expansion of p110α−/−ΔT iTreg cells was diminished. Also, p110α−/−ΔT mice had enhanced anti-keyhole limpet hemocyanin (KLH IFN-γ, or IL-4 responses and IgG1 and IgG2b anti-KLH antibodies, using CFA or Alum as adjuvant, respectively. When compared to WT mice, p110α−/−ΔT mice inoculated with B16.F10 melanoma showed delayed tumor progression. The percentage of CD8+ T lymphocytes was higher and the percentage of Treg cells lower in the spleen of tumor-bearing p110α−/−ΔT mice. Also, IFN-γ production in tumor antigen-activated spleen cells was enhanced. Thus, PI3K p110α plays a significant role in antigen activation and differentiation of CD4+ and CD8+ T lymphocytes modulating antitumor immunity.

  1. EVALUATION OF THE ANTITUMOR AND ANTICACHEXIA ACTIVITY OF GRATIOLA OFFICINALIS L. EXTRACT IN RATS WITH TRANSPLANTED SARCOMA 45

    Directory of Open Access Journals (Sweden)

    N. A. Navolokin

    2016-01-01

    Full Text Available Cachexia is a severe complication of cancer and currently there are no drugs that would effectively deal with exhaustion and intoxication in various diseases.Materials and methods. In this paper a study and evaluation of the antitumor and anticachexia activities of the extract of Gratiola officinalis l. in rats with transplanted sarcoma 45 in experiment in vivo was conducted. Gratiola officinalis l. extract is received by patented method and is not toxic to animals. The study was conducted on 40 white male rats line Wistar weighing 150 ± 50 g. Animals were divided into 4 groups (10 rats per group: control group, comparison group with sarcoma without affecting, group with sarcoma with intramuscular and group with sarcoma with oral administration of the extract in a dosage of 110 mg/kg. The extract was administered intramuscularly or orally 72 hours after transplantation of sarcoma 45. The tumor volume and the weight of the animals were assessed daily.Results. The extract of leaves and flowers of Gratiola officinalis l. obtained by patented method has a strong antitumor activity, reducing the growth rate of the tumor and causing marked changes in the tumor, as well as providing stable anticachexia effect. Index of tumor weight inhibition was 70.6 % on average. Intramuscular administration was more effective in reducing of tumor growth, but less effectively increases the weight of animals than oral administration. In both administration methods Gratiola officinalis extract has no toxic effect on peripheral blood. We have previously found that the extract has antioxidant activity so that anticachexia effect is pathogenic, meaning it occurs by reducing toxicity.Conclusions. Gratiola officinalis extract has a broad spectrum of biological activity, in particular antitumor, anticachexia, it is not toxic, so it is advisable to investigate as a promising tool for the treatment of tumor diseases and cancer cachexia, and cachexia caused by other chronic

  2. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation

    Directory of Open Access Journals (Sweden)

    Collado Antonia

    2006-05-01

    Full Text Available Abstract Background Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE, a novel extract of the plant Calendula Officinalis (Asteraceae. Methods An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. Results The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. Conclusion These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation

  3. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes.

    Science.gov (United States)

    Yu, Zhang; Ming, Gu; Kaiping, Wang; Zhixiang, Chen; Liquan, Dai; Jingyu, Liu; Fang, Zeng

    2010-12-01

    A water-soluble polysaccharide LT1 was isolated from the basidiocarps of Lentinus edodes by hot water extraction and ethanol precipitations, further purified by gel chromatography. The Mw of LT1 was estimated to be 642 kDa by using HPGPC. Chemical and spectroscopic studies illustrated that LT1 has a backbone chain composed of 1 → 4-linked and 1 → 3-linked glucopyranosyl residues and has branches of single glucosyl stubs at C-6 of β-(1 → 4)-linked glucopyranosyl. AFM and Congo-red test revealed that LT1 existed as triple helix chain in 0.10 M NaOH solution or distilled water. Our studies showed that LT1 presented significant antitumor bioactivities on Sarcoma180 solid tumor cell implanted in BALB/c mice, which implies that LT1 could be potentially applied as a natural antitumor drug. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Preliminary evaluation of in vitro cytotoxicity and in vivo antitumor activity of Xanthium strumarium in transplantable tumors in mice.

    Science.gov (United States)

    Aranjani, Jesil Mathew; Manuel, Atulya; Mallikarjuna Rao, Chamallamudi; Udupa, Nayanabhirama; Rao, Josyula Venkata; Joy, Ann Mary; Gandhi, Prajay; Radhakrishnan, Ethiraj Kannat

    2013-01-01

    In the present study, active fractions of the methanolic extract of Xanthium strumarium (XS) showing potent cytotoxicity were determined using microculture tetrazolium (MTT) and sulforhodamine B (SRB) assays in selected cancer cell lines. The active fractions viz., chloroform soluble fraction of root (CEXSR), hexane soluble fraction of leaf (HEXSL), hexane soluble fraction of fruits (HEXSF) and chloroform soluble fraction of fruits (CEXSF) of XS were tested in transplantable animal tumor models for their antitumor potential. Dalton's ascitic lymphoma (DLA) cells were used to induce solid and liquid (ascites) tumor in mice. The tumor bearing animals were treated with active fractions at two dose levels (100 and 200 mg/kg). The antitumor activities of the active fractions in tumor bearing animals were monitored with parameters such as body weight and increase in life-span as well as biochemical and hematological modalities (in the case of liquid tumor). Tumor incidence and tumor volume were the parameters monitored in the case of the solid tumor model. The results were analyzed by one-way ANOVA followed by Tukey's post hoc test. The extracts were found to increase the life-span of tumor bearing animals and restore the altered hematological and biochemical parameters significantly.

  5. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field.

    Science.gov (United States)

    Xu, Xiaobo; Chen, Yiling; Zhang, Ruiqing; Miao, Xudong; Chen, Xinhua

    2018-03-28

    Locoregional therapy is playing an increasingly important role in the non-surgical management of hepatocellular carcinoma (HCC). The novel technique of non-thermal electric ablation by nanosecond pulsed electric field has been recognized as a potential locoregional methodology for indicated HCC. This manuscript explores the most recent studies to indicate its unique anti-tumor immune response. The possible immune mechanism, termed as nano-pulse stimulation, was also analyzed.

  6. Apigenin enhances the antitumor effects of cetuximab in nasopharyngeal carcinoma by inhibiting EGFR signaling.

    Science.gov (United States)

    Hu, Wen-Jian; Liu, Jing; Zhong, Lun-Kun; Wang, Jian

    2018-06-01

    Nasopharyngeal carcinoma (NPC) is a type of head and neck cancers with poor prognosis. Despite that platinum-based chemotherapy concurrent with radiotherapy have made great achievements for the treatment of NPC, the therapeutic reaction and toxicity varies dramatically among individuals. Apigenin (API), a naturally occurring plant flavone, is considered to have anti-cancer effect. Cetuximab (CET), a well known epidermal growth factor receptor (EGFR) inhibitor, is widely used in various cancers, especially head and neck cancers. The aim of our study was to measure the combination of API and CET for the treatment of NPC in vitro and in vivo. Results demonstrated that combining API and CET could better suppress the viability of the human nasopharyngeal carcinoma cell lines (HONE1 and CNE2) and inhibit the growth of NPC than API or CET used alone. Besides, the combination of API with CET produced greater pro-apoptosis effect. Moreover, the increased G2/M phase arrest caused by CET could be remarkably enhanced by adding API in HONE1 and CNE2 cells. Although, both API and CET could decrease the expressions of p-EGFR, p-Akt, p-STAT3 and Cyclin D1. Combining them produced greater inhibition effect. These results suggested that the combination of API and CET may be a promising therapeutic approach for the treatment of NPC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Synthesis and antitumor activity of some novel thiophene, pyrimidine, coumarin, pyrazole and pyridine derivatives

    Directory of Open Access Journals (Sweden)

    Albratty Mohammed

    2017-03-01

    Full Text Available 2-Cyano-N-(thiazol-2-yl acetamide (2a and 2-cyano-N-(oxazol- 2-yl acetamide (2b were obtained via the reaction of ethyl cyanoacetate with either 2-aminothiazole (1a or 2-aminooxazole (1b. The formed products were directed toward the reaction with cyclopentanone and elemental sulfur in the presence of triethylamine to give cyclopenta[b]thiophene derivatives (3a,b. The latter products were reacted with either ethyl cyanoacetate or malononitrile to form compounds 4a,b and 5a,b, respectively. Compounds 4a,b were aimed at synthesizing some heterocyclic compounds; thus internal cyclization reactions were introduced to form compounds 6a,b. Also, compounds 4a,b reacted with salicylaldehyde, hydrazine derivatives and either urea or thiourea to produce coumarin derivatives (7a,b, pyrazole derivatives (8a-d and pyrimidine derivatives (9a-d, respectively. Reaction of either benzaldehyde or benzene diazonium chloride (11 with compounds 4a,b afforded compounds 10a,b and 12a,b, respectively. On the other hand, compounds 5a,b underwent internal cyclization to form pyrimidine derivatives 13a,b. Also, when compounds 5a,b reacted with either ethyl cyanoacetate or malononitrile, they gave pyridine derivatives (15a-d through the formation of intermediates (14a-d. Finally, formation of fused pyrimidine derivatives (17a,b was achieved through the reaction of compounds 5a,b and salicylaldehyde applying two different pathways. The first pathway used a catalytic amount of piperidine to form compounds 16a,b; the latter products underwent cyclization to give compounds 17a,b. The second pathway, using a catalytic amount of sodium ethoxide solution directly in one step, afforded compounds 17a,b. Structures of the newly synthesized compounds were established using IR, 1H NMR, 13C NMR and mass spectrometry and their antitumor activity was investigated. Some of these compounds showed promising inhibitory effects on three different cell lines. However, fused pyrimidine

  8. [Imiquimod combined with dendritic cell vaccine decreases Treg proportion and enhances anti-tumor responses in mice bearing melanoma].

    Science.gov (United States)

    Ren, Shurong; Wang, Qiubo; Zhang, Yanli; Lu, Cuixiu; Li, Ping; Li, Yumei

    2017-02-01

    Objective To investigate the therapeutic effect of Toll-like receptor 7 (TLR7) agonist imiquimod combined with dendritic cell (DC)-based tumor vaccine on melanoma in mice and the potential mechanism. Methods Melanoma-bearing mouse models were established by subcutanous injection of B16-OVA cells into C57BL/6 mice. DCs were isolated from mouse bone marrow and propagated in culture medium with recombinant mouse granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant mouse interleukin-4 (rmIL-4). DC vaccine (OVA-DC) was prepared by overnight incubation of DCs added with chicken ovalbumin. C57BL/6 mice were separated into four groups which were treated with PBS, topical imiquimod application, OVA-DC intradermal injection and imiquimod plus OVA-DC, respectively. The tumor size was calculated by digital vernier caliper. Peripheral blood CD4 + FOXP3 + Tregs of the tumor-bearing mice was detected by flow cytometry. The cytotoxicity of splenic lymphocyte against B16-OVA was assessed in vitro by CCK-8 assay. Results Compared with the other three groups, B16-OVA-bearing mice treated with imiquimod plus DC vaccine had the smallest tumor volume. The percentage of CD4 + FOXP3 + Tregs decreased significantly in the combined treated mice. The combined treatment enhanced significantly cytotoxicity of splenic lymphocytes against B16-OVA cells. Conclusion Imiquimod combined with antigen-pulsed-DC vaccine could reduce CD4 + FOXP3 + Treg proportion and promote anti-tumor effect in mice with melanoma.

  9. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    Science.gov (United States)

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  10. Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platforms

    Energy Technology Data Exchange (ETDEWEB)

    Gaballah, Hanaa H., E-mail: hanaahibishy@hotmail.com [Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, 3111 (Egypt); Gaber, Rasha A. [Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, 3111 (Egypt); Mohamed, Darin A. [Histopathology Department, Faculty of Medicine, Tanta University, Tanta, 3111 (Egypt)

    2017-02-01

    Background: Although 5- Fluorouracil (5-FU) has exhibited effectiveness against cancer, novel therapeutic strategies are needed to enhance its antitumor efficiency and modulate its cytotoxity. Apigenin, a flavonoid present in fruits and vegetables, is a potent dietary phytochemical effective in cancer chemoprevention. Aim: This study was undertaken to investigate the potential synergistic antitumor activity of apigenin and 5-FU on Solid Ehrlich carcinoma (SEC). Methods: Eighty Swiss albino male mice were divided into four equal groups: vehicle treated control SEC, SEC + 5-FU, SEC + apigenin, SEC + 5-FU + apigenin. Beclin-1 and caspases 3, 9 and JNK activities were estimated by ELISA; mRNA expression levels of the antiapoptotic gene Mcl-1 were estimated using quantitative real-time RT-PCR, while tissue malondialdehyde (MDA), glutathione peroxidase and total antioxidant capacity were evaluated spectrophotometrically. A part of the tumor was examined for histopathological and Ki-67 immunohistochemistry analysis. Results: 5-FU and/or apigenin caused significant increase in tissue levels of Beclin-1, caspases 3, 9 and JNK activities, MDA with significant decrease in tumor volume, Mcl-1expression, tissue glutathione peroxidase and total antioxidant capacity and alleviated the histopathological changes with significant decrease of Ki-67 proliferation index compared to vehicle treated SEC control group. In conclusion: The combination of 5-FU and apigenin had a greater effect than each of 5-FU or apigenin alone against solid Ehrlich carcinoma in mice. - Highlights: • Apigenin potentiated 5-FU cytotoxicity in EAC solid tumor models in vivo. • It acted via autophagy stimulation, downregulating MCL-1 and Ki-67 expression. • It caused JNK activation and ROS accumulation; resulted in tumor growth inhibition. • Apigenin can be used as a co-adjuvant agent in cancer therapy.

  11. Structure, anti-Phytophthora and anti-tumor activities of a nortriterpenoid from the rhizome of Phlomis purpurea (Lamiaceae).

    Science.gov (United States)

    Mateus, Maria C; Neves, Dina; Dacunha, Bruno; Laczko, Endre; Maia, Cristiana; Teixeira, Rúben; Cravador, Alfredo

    2016-11-01

    To investigate bioactive compounds potentially involved in the biotic interactions exhibited by Phlomis purpurea (Lamiaceae) in rhizospheres infested with Phytophthora cinnamomi, the plant rhizome was chemically analysed. The nortriterpenoid (17S)-2α,3α,11α,23,24-pentahydroxy-19(18 → 17)-abeo-28-norolean-12-en-18-one, was isolated and its structure was elucidated by comprehensive spectroscopic analysis, chiefly using 2D NMR experiments, and X-ray analysis. It was shown to be exuded by roots and to exhibit anti-Phytophthora and antitumor activities. Copyright © 2016. Published by Elsevier Ltd.

  12. Antitumor Activity of Ethanolic Extract of Dendrobium formosum in T-Cell Lymphoma: An In Vitro and In Vivo Study

    Directory of Open Access Journals (Sweden)

    Ritika Prasad

    2014-01-01

    Full Text Available Dendrobium, a genus of orchid, was found to possess useful therapeutic activities like anticancer, hypoglycaemic, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and neuroprotective activities. The study was aimed to evaluate the anticancer property of the ethanolic extract of Dendrobium formosum on Dalton’s lymphoma. In vitro cytotoxicity was determined by MTT assay, apoptosis was determined by fluorescence microscopy, and cell cycle progression was analysed using flow cytometry; in vivo antitumor activity was performed in Dalton’s lymphoma bearing mice. The IC50 value of ethanolic extract was obtained at 350 μg/mL in Dalton’s lymphoma cells. Fluorescence microscopy analysis showed significant increase in apoptotic cell death in dose- and time-dependent manner which was further confirmed through the resulting DNA fragmentation. Further, flow cytometry analysis showed that the ethanolic extract arrests the cells in G2/M phase of the cell cycle. The in vivo anticancer activity study illustrates significant increase in the survival time of Dalton’s lymphoma bearing mice on treatment with ethanolic extract when compared to control. These results substantiate the antitumor properties of ethanolic extract of Dendrobium formosum and suggest an alternative in treatment of cancer. Further studies are required regarding the isolation and characterization of bioactive components along with the analysis of molecular mechanism involved.

  13. Antitumor Activity of Ethanolic Extract of Dendrobium formosum in T-Cell Lymphoma: An In Vitro and In Vivo Study

    Science.gov (United States)

    Prasad, Ritika; Koch, Biplob

    2014-01-01

    Dendrobium, a genus of orchid, was found to possess useful therapeutic activities like anticancer, hypoglycaemic, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and neuroprotective activities. The study was aimed to evaluate the anticancer property of the ethanolic extract of Dendrobium formosum on Dalton's lymphoma. In vitro cytotoxicity was determined by MTT assay, apoptosis was determined by fluorescence microscopy, and cell cycle progression was analysed using flow cytometry; in vivo antitumor activity was performed in Dalton's lymphoma bearing mice. The IC50 value of ethanolic extract was obtained at 350 μg/mL in Dalton's lymphoma cells. Fluorescence microscopy analysis showed significant increase in apoptotic cell death in dose- and time-dependent manner which was further confirmed through the resulting DNA fragmentation. Further, flow cytometry analysis showed that the ethanolic extract arrests the cells in G2/M phase of the cell cycle. The in vivo anticancer activity study illustrates significant increase in the survival time of Dalton's lymphoma bearing mice on treatment with ethanolic extract when compared to control. These results substantiate the antitumor properties of ethanolic extract of Dendrobium formosum and suggest an alternative in treatment of cancer. Further studies are required regarding the isolation and characterization of bioactive components along with the analysis of molecular mechanism involved. PMID:24959588

  14. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides

    Directory of Open Access Journals (Sweden)

    Yeung Hin

    2007-05-01

    Full Text Available Abstract In Chinese medicine, ginseng (Panax ginseng C.A. Meyer has long been used as a general tonic or an adaptogen to promote longevity and enhance bodily functions. It has also been claimed to be effective in combating stress, fatigue, oxidants, cancer and diabetes mellitus. Most of the pharmacological actions of ginseng are attributed to one type of its constituents, namely the ginsenosides. In this review, we focus on the recent advances in the study of ginsenosides on angiogenesis which is related to many pathological conditions including tumor progression and cardiovascular dysfunctions. Angiogenesis in the human body is regulated by two sets of counteracting factors, angiogenic stimulators and inhibitors. The 'Yin and Yang' action of ginseng on angiomodulation was paralleled by the experimental data showing angiogenesis was indeed related to the compositional ratio between ginsenosides Rg1 and Rb1. Rg1 was later found to stimulate angiogenesis through augmenting the production of nitric oxide (NO and vascular endothelial growth factor (VEGF. Mechanistic studies revealed that such responses were mediated through the PI3K→Akt pathway. By means of DNA microarray, a group of genes related to cell adhesion, migration and cytoskeleton were found to be up-regulated in endothelial cells. These gene products may interact in a hierarchical cascade pattern to modulate cell architectural dynamics which is concomitant to the observed phenomena in angiogenesis. By contrast, the anti-tumor and anti-angiogenic effects of ginsenosides (e.g. Rg3 and Rh2 have been demonstrated in various models of tumor and endothelial cells, indicating that ginsenosides with opposing activities are present in ginseng. Ginsenosides and Panax ginseng extracts have been shown to exert protective effects on vascular dysfunctions, such as hypertension, atherosclerotic disorders and ischemic injury. Recent work has demonstrates the target molecules of ginsenosides to be a

  15. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xi, Wei-Hong; Yang, Li-Yun; Cao, Zhong-Yi; Qian, Yong

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway

  16. Tivantinib (ARQ-197) exhibits anti-tumor activity with down-regulation of FAK in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wei-Hong [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Yang, Li-Yun [Department of Blood Transfusion, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Cao, Zhong-Yi, E-mail: m18070383032@163.com [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China); Qian, Yong, E-mail: yfykqkqy@163.com [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, Nanchang University, Nanchang 330006 (China)

    2015-02-20

    Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide and the 5 years survival rate of the patients is about 60% in the USA, due to acquired chemotherapeutic resistance and metastasis of the disease. In this study, we found that tivantinib, a selective MET inhibitor, suppresses OCSS cell proliferation and colony formation, however, anti-tumor activities induced by tivantinib are independent of the inhibition of MET signaling pathway. In addition, tivantinib cause G2/M cell cycle arrest and caspases-dependent apoptosis in OSCC cell lines. We also found that tivantinib dose-dependently suppressed the activation and expression of FAK. In all, these data suggested that tivantinib may be developed as a chemotherapeutic agent to effectively treat certain cancers including OSCC. - Highlights: • Tivantinib suppresses OSCC cell growth independent of the inhibition of HGF/MET signaling pathway. • Tivantinib blocks cell cycle and induces caspases-mediated apoptosis. • Tivantinib elicits its anti-tumor activity with the inhibition of FAK signaling pathway.

  17. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling.

    Science.gov (United States)

    Su, Rui; Dong, Lei; Li, Chenying; Nachtergaele, Sigrid; Wunderlich, Mark; Qing, Ying; Deng, Xiaolan; Wang, Yungui; Weng, Xiaocheng; Hu, Chao; Yu, Mengxia; Skibbe, Jennifer; Dai, Qing; Zou, Dongling; Wu, Tong; Yu, Kangkang; Weng, Hengyou; Huang, Huilin; Ferchen, Kyle; Qin, Xi; Zhang, Bin; Qi, Jun; Sasaki, Atsuo T; Plas, David R; Bradner, James E; Wei, Minjie; Marcucci, Guido; Jiang, Xi; Mulloy, James C; Jin, Jie; He, Chuan; Chen, Jianjun

    2018-01-11

    R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N 6 -methyladenosine (m 6 A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m 6 A/MYC/CEBPA signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2005-01-01

    Purpose: ZD6126 is a vascular-targeting agent that induces selective effects on the morphology of proliferating and immature endothelial cells by disrupting the tubulin cytoskeleton. The efficacy of ZD6126 was investigated in large vs. small tumors in a variety of animal models. Methods and Materials: Three rodent tumor models (KHT, SCCVII, RIF-1) and three human tumor xenografts (Caki-1, KSY-1, SKBR3) were used. Mice bearing leg tumors ranging in size from 0.1-2.0 g were injected intraperitoneally with a single 150 mg/kg dose of ZD6126. The response was assessed by morphologic and morphometric means as well as an in vivo to in vitro clonogenic cell survival assay. To examine the impact of tumor size on the extent of enhancement of radiation efficacy by ZD6126, KHT sarcomas of three different sizes were irradiated locally with a range of radiation doses, and cell survival was determined. Results: All rodent tumors and human tumor xenografts evaluated showed a strong correlation between increasing tumor size and treatment effect as determined by clonogenic cell survival. Detailed evaluation of KHT sarcomas treated with ZD6126 showed a reduction in patent tumor blood vessels that was ∼20% in small ( 90% in large (>1.0 g) tumors. Histologic assessment revealed that the extent of tumor necrosis after ZD6126 treatment, although minimal in small KHT sarcomas, became more extensive with increasing tumor size. Clonogenic cell survival after ZD6126 exposure showed a decrease in tumor surviving fraction from approximately 3 x 10 -1 to 1 x 10 -4 with increasing tumor size. When combined with radiotherapy, ZD6126 treatment resulted in little enhancement of the antitumor effect of radiation in small (<0.3 g) tumors but marked increases in cell kill in tumors larger than 1.0 g. Conclusions: Because bulky neoplastic disease is typically the most difficult to manage, the present findings provide further support for the continued development of vascular disrupting agents such as

  19. Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models.

    Science.gov (United States)

    Xu, Chunxiao; Zhang, Yanping; Rolfe, P Alexander; Hernández, Vivian M; Guzman, Wilson; Kradjian, Giorgio; Marelli, Bo; Qin, Guozhong; Qi, Jin; Wang, Hong; Yu, Huakui; Tighe, Robert; Lo, Kin-Ming; English, Jessie M; Radvanyi, Laszlo; Lan, Yan

    2017-10-01

    Purpose: To determine whether combination therapy with NHS-muIL12 and the anti-programmed death ligand 1 (PD-L1) antibody avelumab can enhance antitumor efficacy in preclinical models relative to monotherapies. Experimental Design: BALB/c mice bearing orthotopic EMT-6 mammary tumors and μMt - mice bearing subcutaneous MC38 tumors were treated with NHS-muIL12, avelumab, or combination therapy; tumor growth and survival were assessed. Tumor recurrence following remission and rechallenge was evaluated in EMT-6 tumor-bearing mice. Immune cell populations within spleen and tumors were evaluated by FACS and IHC. Immune gene expression in tumor tissue was profiled by NanoString® assay and plasma cytokine levels were determined by multiplex cytokine assay. The frequency of tumor antigen-reactive IFNγ-producing CD8 + T cells was evaluated by ELISpot assay. Results: NHS-muIL12 and avelumab combination therapy enhanced antitumor efficacy relative to either monotherapy in both tumor models. Most EMT-6 tumor-bearing mice treated with combination therapy had complete tumor regression. Combination therapy also induced the generation of tumor-specific immune memory, as demonstrated by protection against tumor rechallenge and induction of effector and memory T cells. Combination therapy enhanced cytotoxic NK and CD8 + T-cell proliferation and T-bet expression, whereas NHS-muIL12 monotherapy induced CD8 + T-cell infiltration into the tumor. Combination therapy also enhanced plasma cytokine levels and stimulated expression of a greater number of innate and adaptive immune genes compared with either monotherapy. Conclusions: These data indicate that combination therapy with NHS-muIL12 and avelumab increased antitumor efficacy in preclinical models, and suggest that combining NHS-IL12 and avelumab may be a promising approach to treating patients with solid tumors. Clin Cancer Res; 23(19); 5869-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. The HSP90 inhibitor 17-AAG exhibits potent antitumor activity for pheochromocytoma in a xenograft model.

    Science.gov (United States)

    Xu, Yunze; Zhu, Qi; Chen, Dongning; Shen, Zhoujun; Wang, Weiqing; Ning, Guang; Zhu, Yu

    2015-07-01

    This study aims to investigate the effect of heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in the malignant pheochromocytoma using a xenograft mouse model. Treatment with 17-AAG induced a marked reduction in the volume and weight of PC12 pheochromocytoma cell tumor xenografts in mice. Furthermore, 17-AAG also significantly inhibited the expression of HSP90 and its client proteins. Our results validated HSP90 as an important target in pheochromocytoma and provided rationale for the testing of HSP90 inhibitors as a promising therapeutic agent in the antitumor therapy of pheochromocytoma.

  1. A new polyacetylene from Vernonia scorpioides (Lam.) Pers. (Asteraceae) and its in vitro antitumoral activity

    Energy Technology Data Exchange (ETDEWEB)

    Buskuhl, Humberto; Freitas, Rilton A.; Biavatti, Maique W. [Universidade do Vale do Itajai, Itajai, SC (Brazil). Centro de Ciencias da Saude], e-mail: maique@ccs.ufsc.br; Monache, Franco Delle [Universita ' La Sapienza' , Rome (Italy). Dipt. di Chimica e Tecnologia delle Sostanze Biologicamente Attive; Barison, Andersson; Campos, Francinete R. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Dept. de Quimica; Corilo, Yuri E.; Eberlin, Marcos N. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    The dichloromethane fraction obtained from hydroalcoholic crude extract of leaves and flowers of Vernonia scorpioides (Asteraceae) was investigated, resulting in the isolation and structure elucidation of a new polyacetylene namely 5-octa-2,4,6-triynyl-furan-2(5H)-one. The structure of the isolated compound was determined based on IR, NMR (1D and 2D) and MS spectrometric data. The antitumor potential, including cytotoxicity to tumor cells and genotoxicity, was investigated. The results suggest that apoptotic cell death may have occurred, at least in part, via a caspase-dependent mechanism. (author)

  2. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México.

    Science.gov (United States)

    Reyna-Martinez, Raul; Gomez-Flores, Ricardo; López-Chuken, Ulrico; Quintanilla-Licea, Ramiro; Caballero-Hernandez, Diana; Rodríguez-Padilla, Cristina; Beltrán-Rocha, Julio Cesar; Tamez-Guerra, Patricia

    2018-01-01

    Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae) and Scenedesmus sp. (Chlorococcales: Scenedesmaceae). Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant ( p  < 0.05) 61.89% ± 3.26% and 74.77% ± 1.84% tumor cytotoxicity by C. sorokiniana and Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources.

  3. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México

    Science.gov (United States)

    Beltrán-Rocha, Julio Cesar

    2018-01-01

    Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae) and Scenedesmus sp. (Chlorococcales: Scenedesmaceae). Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant (p Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources. PMID:29441241

  4. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2014-01-01

    Full Text Available Chinese propolis has been reported to possess various biological activities such as antitumor. In present study, anticancer activity of ethanol extract of Chinese propolis (EECP at 25, 50, 100, and 200 μg/mL was explored by testing the cytotoxicity in MCF-7 (human breast cancer ER(+ and MDA-MB-231 (human breast cancer ER(− cells. EECP revealed a dose- and time-dependent cytotoxic effect. Furthermore, annexin A7 (ANXA7, p53, nuclear factor-κB p65 (NF-κB p65, reactive oxygen species (ROS levels, and mitochondrial membrane potential were investigated. Our data indicated that treatment of EECP for 24 and 48 h induced both cells apoptosis obviously. Exposure to EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically. The effects of EECP on p53 level were different in MCF-7 and MDA-MB-231 cells, which indicated that EECP exerted its antitumor effects in MCF-7 and MDA-MB-231 cells by inducing apoptosis, regulating the levels of ANXA7, p53, and NF-κB p65, upregulating intracellular ROS, and decreasing mitochondrial membrane potential. Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs. These results suggest that EECP is a potential alternative agent on breast cancer treatment.

  5. CRA-024781: a novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo.

    Science.gov (United States)

    Buggy, Joseph J; Cao, Z Alexander; Bass, Kathryn E; Verner, Erik; Balasubramanian, Sriram; Liu, Liang; Schultz, Brian E; Young, Peter R; Dalrymple, Stacie A

    2006-05-01

    CRA-024781 is a novel, broad spectrum hydroxamic acid-based inhibitor of histone deacetylase (HDAC) that shows antitumor activity in vitro and in vivo preclinically and is under evaluation in phase I clinical trials for cancer. CRA-024781 inhibited pure recombinant HDAC1 with a K(i) of 0.007 mumol/L, and also inhibited the other HDAC isozymes HDAC2, HDAC3/SMRT, HDAC6, HDAC8, and HDAC10 in the nanomolar range. Treatment of cultured tumor cell lines grown in vitro with CRA-024781 resulted in the accumulation of acetylated histone and acetylated tubulin, resulting in an inhibition of tumor cell growth and the induction of apoptosis. CRA-024781 parenterally administered to mice harboring HCT116 or DLD-1 colon tumor xenografts resulted in a statistically significant reduction in tumor growth at doses that were well tolerated as measured by body weight. Inhibition of tumor growth was accompanied by an increase in the acetylation of alpha-tubulin in peripheral blood mononuclear cells, and an alteration in the expression of many genes in the tumors, including several involved in apoptosis and cell growth. These results reveal CRA-024781 to be a novel HDAC inhibitor with potent antitumor activity.

  6. Antitumor activity of newly synthesized oxo and ethylidene derivatives of bile acids and their amides and oxazolines.

    Science.gov (United States)

    Bjedov, Srđan; Jakimov, Dimitar; Pilipović, Ana; Poša, Mihalj; Sakač, Marija

    2017-04-01

    Bile acid derivatives with modifications in side chain and modifications on steroid skeleton were synthetized and their antitumor activity against five human cancer cell lines was investigated. Modifications in side chain include amid group, formed in reaction with 2-amino-2-methylpropanol, and 4,4-dimethyloxazoline group, obtained after cyclization of amides. In the steroid skeleton oxo groups were introduced in position 7 (2, 2a, 2b) and 7,12 (3, 3a, 3b). Ethylidene groups were introduced regio- and stereoselectively on C-7, and/or without stereoselectivity on C-3 by Wittig reaction. By combination of these modifications, a series of 19 bile acid derivatives were synthesized. Compounds containing both C-7 ethylidene and C-12 carbonyl groups (6, 6a, 6b) shown very good antitumor activity with IC 50 amide or oxazoline group has positive effect on cytotoxicity. Different molecular descriptors were determined in silico and after principal component analysis was found that molecular descriptor BLTF96 can be used for fast assessment of experimental cytotoxicity of bile acid derivatives. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México

    Directory of Open Access Journals (Sweden)

    Raul Reyna-Martinez

    2018-02-01

    Full Text Available Cancer cases result in 13% of all deaths worldwide. Unwanted side effects in patients under conventional treatments have led to the search for beneficial alternative therapies. Microalgae synthesize compounds with known in vitro and in vivo biological activity against different tumor cell lines. Therefore, native microalgae from the State of Nuevo Leon, Mexico may become a potential source of antitumor agents. The aim of the present study was to evaluate the in vitro cytotoxic effect of Nuevo Leon regional Chlorella sorokiniana (Chlorellales: Chlorellaceae and Scenedesmus sp. (Chlorococcales: Scenedesmaceae. Native microalgae crude organic extracts cytotoxicity against murine L5178Y-R lymphoma cell line and normal lymphocyte proliferation were evaluated using the MTT reduction colorimetric assay. Cell death pathway was analyzed by acridine orange and ethidium bromide staining, DNA degradation in 2% agarose gel electrophoresis and caspases activity. Results indicated significant (p < 0.05 61.89% ± 3.26% and 74.77% ± 1.84% tumor cytotoxicity by C. sorokiniana and Scenedesmus sp. methanol extracts, respectively, at 500 µg/mL, by the mechanism of apoptosis. This study contributes to Mexican microalgae biodiversity knowledge and their potential as antitumor agent sources.

  8. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies.

    Science.gov (United States)

    Sioud, Mouldy; Westby, Phuong; Vasovic, Vlada; Fløisand, Yngvar; Peng, Qian

    2018-04-16

    mAbs have emerged as a promising strategy for the treatment of cancer. However, in several malignancies, no effective antitumor mAbs are yet available. Identifying therapeutic mAbs that recognize common tumor antigens could render the treatment widely applicable. Here, a human single-chain variable fragment (scFv) antibody library was sequentially affinity selected against a panel of human cancer cell lines and an antibody fragment (named MS5) that bound to solid and blood cancer cells was identified. The MS5 scFv was fused to the human IgG1 Fc domain to generate an antibody (MS5-Fc fusion) that induced antibody-dependent cellular cytotoxicity and phagocytosis of cancer cells by macrophages. In addition, the MS5-Fc antibody bound to primary leukemia cells and induced antibody-dependent cellular cytotoxicity. In the majority of analyzed cancer cells, the MS5-Fc antibody induced cell surface redistribution of the receptor complexes, but not internalization, thus maximizing the accessibility of the IgG1 Fc domain to immune effector cells. In vitro stability studies showed that the MS5-Fc antibody was stable after 6 d of incubation in human serum, retaining ∼60% of its initial intact form. After intravenous injections, the antibody localized into tumor tissues and inhibited the growth of 3 different human tumor xenografts (breast, lymphoma, and leukemia). These antitumor effects were associated with tumor infiltration by macrophages and NK cells. In the Ramos B-cell lymphoma xenograft model, the MS5-Fc antibody exhibited a comparable antitumor effect as rituximab, a chimeric anti-CD20 IgG1 mAb. These results indicate that human antibodies with pan-cancer abilities can be generated from phage display libraries, and that the engineered MS5-Fc antibody could be an attractive agent for further clinical investigation.-Sioud, M., Westby, P., Vasovic, V., Fløisand, Y., Peng, Q. Development of a new high-affinity human antibody with antitumor activity against solid and

  9. The preparation of three selenium-containing Cordyceps militaris polysaccharides: Characterization and anti-tumor activities.

    Science.gov (United States)

    Liu, Fei; Zhu, Zhen-Yuan; Sun, Xiaoli; Gao, Hui; Zhang, Yong-Min

    2017-06-01

    In the present work, three fractions of selenized Cordyceps militaris polysaccharides (SeCPS) named SeCPS- I, SeCPS- II and SeCPS- III were isolated and purified by ultra-filtration. Their selenium content were measured as 541.3, 863.7 and 623.3μg/g respectively by a graphite furnace atomic absorption spectroscopy. The monosaccharide comformation analysis showed that they were mainly consisted of D-Mannose, D-Glucose, and D-Galactose in mole ratios of 1:7.63:0.83, 1:1.34:0.31 and 1:3.77:0.41 respectively. Their structure characteristics were compared by IFR and NMR spectroscopy. Scanning electron microscopy (SEM) and Congo red (CR) spectrophotometric method were used to investigate their morphological characteristics and conformational transition. SeCPS-II showed the strongest anti-tumor effects judging from the result of in vitro anti-tumor assays against two tumor cell lines (hepatocellular carcinoma HepG-2 cells and lung adenocarcinom A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    Science.gov (United States)

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  11. Prostate Cancer Cell–Stromal Cell Cross-Talk via FGFR1 Mediates Antitumor Activity of Dovitinib in Bone Metastases

    Science.gov (United States)

    Wan, Xinhai; Corn, Paul G.; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W.; Efstathiou, Eleni; Li-Ning Tapia, Elsa M.; Zurita, Amado J.; Aparicio, Ana; Ravoori, Murali K.; Vazquez, Elba S.; Robinson, Dan R.; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K.; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M.; Logothetis, Christopher J.; Navone, Nora M.

    2015-01-01

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell–bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. PMID:25186177

  12. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Ran-yi; Zhou, Ling; Zhang, Yan-ling; Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min; Li, Li-xia; Fu, Xiang; Wu, Jiang-xue; Huang, Wenlin

    2013-01-01

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC

  13. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran-yi, E-mail: liuranyi@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhou, Ling [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Zhang, Yan-ling [School of Biotechnology, Southern Medical University, Guangzhou 510515 (China); Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Li, Li-xia [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Fu, Xiang; Wu, Jiang-xue [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Huang, Wenlin, E-mail: hwenl@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060 (China); Guangdong Provincial Key Laboratory of Tumor-Targeted Drug, Doublle Bioproducts Inc., Guangzhou 510663 (China)

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  14. Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro.

    Science.gov (United States)

    Xin, Nian; Hasan, Murtaza; Li, Wei; Li, Yan

    2014-04-01

    The present study examined the potential application of Juglans mandshurica Maxim extracts (HT) for cancer therapy by assessing their anti‑proliferative activity, reduction of telomerase activity, induction of apoptosis and cell cycle arrest in S phase in HeLa cells. From the perspective of using HT as a herbal medicine, photomicroscopy and florescent microscopy techniques were utilized to characterize the effect of the extracts on telomerase activity and cell morphology. Flow cytometry was employed to study apoptosis and cell cycle of HeLa cells, and DNA laddering was performed. The results showed that HT inhibited cell proliferation and telomerase activity, induced apoptosis and caused S phase arrest of HeLa cells in vitro. HT inhibited HeLa cell proliferation significantly, and the highest inhibition rate was 83.7%. A trap‑silver staining assay showed that HT was capable of markedly decreasing telomerase activity of HeLa cells and this inhibition was enhanced in a time‑ and dose‑dependent manner. Results of a Hoechst 33258 staining assay showed that HeLa cells treated by HT induced cell death. Through DNA agarose gel electrophoresis, DNA ladders of HeLa cells treated with HT were observed, indicating apoptosis. In conclusion, the present study demonstrated that HT exhibited anti‑tumor effects comprising the inhibition of growth and telomerase activity as well as apoptosis and cell cycle arrest in HeLa cells.

  15. In Vitro and In Vivo Antitumor Activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Muscella, Antonella; Vetrugno, Carla; Cossa, Luca Giulio; Antonaci, Giovanna; De Nuccio, Francesco; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Marsigliante, Santo

    2016-01-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy. There is an urgent need for effective therapy inasmuch as resistance, intrinsic and acquired, to conventional therapies is common. Among Pt(II) antitumor drugs, [Pt(O,O'-acac)(γ-acac)(DMS)] (Ptac2S) has recently attracted considerable attention due to its strong in vitro and in vivo antiproliferative activity and reduced toxicity. The purpose of this study was to examine the efficacy of Ptac2S treatment in MPM. We employed the ZL55 human mesothelioma cell line in vitro and in a murine xenograft model in vivo, to test the antitumor activity of Ptac2S. Cytotoxicity assays and Western blottings of different apoptosis and survival proteins were thus performed. Ptac2S increases MPM cell death in vitro and in vivo compared with cisplatin. Ptac2S was more efficacious than cisplatin also in inducing apoptosis characterized by: (a) mitochondria depolarization, (b) increase of bax expression and its cytosol-to-mitochondria translocation and decrease of Bcl-2 expression, (c) activation of caspase-7 and -9. Ptac2S activated full-length PKC-δ and generated a PKC-δ fragment. Full-length PKC-δ translocated to the nucleus and membrane, whilst PKC-δ fragment concentrated to mitochondria. Ptac2S was also responsible for the PKC-ε activation that provoked phosphorylation of p38. Both PKC-δ and PKC-ε inhibition (by PKC-siRNA) reduced the apoptotic death of ZL55 cells. Altogether, our results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, providing a solid starting point for its validation as a suitable candidate for further pharmacological testing.

  16. Production of interferon-gamma by in vivo tumor-sensitized T cells: Association with active antitumor immunity

    International Nuclear Information System (INIS)

    Bursuker, I.; Pearce, M.T.

    1990-01-01

    The state of active immunity to Meth A fibrosarcoma in mice immunized with an admixture of Meth A cells and Propionibacterium acnes is associated with possession by the host of spleen cells capable of producing interferon-gamma (IFN-gamma) upon in vitro restimulation with irradiated tumor cells. The ability of spleen cells from immunized mice to produce IFN-gamma in response to irradiated Meth A cells decays as active antitumor immunity is replaced by a state of immunological memory. The IFN-producing cells are L3T4+Ly2+, cyclophosphamide-sensitive and radiosensitive T cells, as determined by their sensitivity to corresponding monoclonal antibodies and complement. The induction of IFN-gamma production by in vivo tumor-sensitized T cells is tumor specific, in that spleen cells from mice immunized against Meth A fibrosarcoma can produce IFN in response to irradiated Meth A cells but not in response to another syngeneic tumor M109 lung carcinoma

  17. Design, Synthesis and Antitumor Activity of Novel 4-Methyl-(3'S,4'S-cis-khellactone Derivatives

    Directory of Open Access Journals (Sweden)

    Taigang Liang

    2013-04-01

    Full Text Available An asymmetric synthesis of a series of novel 4-methyl-(3'S,4'S-cis-khellactone derivatives 3a–o is reported for the first time. Their structures were confirmed by 1H-NMR, 13C-NMR and MS. Their cytotoxic activity was evaluated by the MTT assay against three selected human cancer cell lines: HEPG-2 (human liver carcinoma, SGC-7901 (human gastric carcinoma, LS174T (human colon carcinoma. Some compounds showed high inhibitory activity against these human cancer cell lines. Among them, compound 3a exhibited strong cytotoxicity, with IC50 values ranging from 8.51 to 29.65 μM. The results showed that 4-methyl-cis-khellactone derivatives with S,S configuration could be a potential antitumor agents.

  18. Antitumor Activity of Portulaca Oleracea L. Polysaccharide on HeLa Cells Through Inducing TLR4/NF-κB Signaling.

    Science.gov (United States)

    Zhao, Rui; Zhang, Tao; Ma, Baoling; Li, Xing

    2017-01-01

    Abstarct We have previously shown that Portulaca oleracea L. polysaccharide (POL-P3b) possesses the ability to inhibit cervical cancer cell growth in vitro and in vivo. In this study, we explored how toll-like receptor 4 (TLR4) signaling correlated with the antitumor mechanism of POL-P3b. Western blotting was utilized to detect the expression of TLR4 and the downstream signaling pathway. The level of inflammatory mediator was quantified using enzyme-linked immunosorbent assay (ELISA) kits. The effects of POL-P3b on the proliferation and apoptosis in HeLa cells were determined by WST-8 assay and Hoechst 33342/propidium iodide (PI) assay. Our results demonstrated that lipopolysaccharide (LPS) binding to TLR4 on tumor cells could enhance HeLa cell proliferation and increase the expression of TLR4 and the downstream molecules. Treating HeLa cells with POL-P3b could decrease the proliferation of HeLa cells, and upregulate Bax level and downregulate Bcl-2 level in a concentration-dependent manner. In addition, POL-P3b inhibited the protein expression levels of TLR4, MyD88, TRAF6, Activator Protein-1 (AP-1) and nuclear factor-κB (NF-κB) subunit P65 in HeLa cells. Furthermore, POL-P3b also reduced the production of cytokine/chemokine. Taken together, the present work suggested the antitumor mechanism of POL-P3b by downregulating TLR4 downstream signaling pathway and inducing cell apoptosis. Our results may provide direct evidence to suggest that POL-P3b should be considered as a potent nutrient supplement for oncotherapy.

  19. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma

    Directory of Open Access Journals (Sweden)

    Miguel A

    2017-01-01

    Full Text Available Antonio Miguel,1 Luis Sendra,1 Verónica Noé,2 Carles J Ciudad,2 Francisco Dasí,3,4 David Hervas,5 María José Herrero,1,6 Salvador F Aliño17 1Department of Pharmacology, Faculty of Medicine, University of Valencia, 2Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 3Research University Hospital of Valencia, INCLIVA Health Research Institute, 4Department of Physiology, Faculty of Medicine, University of Valencia Foundation, 5Biostatistics Unit, 6Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe, 7Clinical Pharmacology Unit, ACM Hospital Universitario y Politécnico La Fe, Valencia, Spain Abstract: The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg, which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the “in vitro” cell entrance and gene silencing efficacy of two tools, 2'-O-methyl phosphorotioate-modified oligonucleotides (2'-OMe-PS-ASOs and polypurine reverse Hoogsteen hairpins (PPRHs, were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF and were intraperitoneally treated with CTLA4 and Foxp3 2'-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following

  20. A Single Domain–Based Anti-Her2 Antibody Has Potent Antitumor Activities

    Directory of Open Access Journals (Sweden)

    Xiaoqiong Wu

    2018-04-01

    Full Text Available Human epidermal growth factor receptor 2 (HER2 is overexpressed in approximately 20% to 30% of breast cancers and various other types of cancers, which plays a vital role in the cancer progression. Monoclonal antibodies targeting Her2 are now used in the clinic to treat Her2 overexpression cancer patients. However, relapse or resistance is frequent with the current therapies. To generate a new treatment avenue against Her2, we immunized and selected a specific anti-Her2 single domain antibody C3 for further studies. The C3-Fc antibody drove antibody-dependent cell-mediated cytotoxicity against Her2-positive tumor cells in vitro and resulted in potent antitumor growth in vivo. These data suggest that the C3-Fc antibody may provide an alternative avenue for Her2-positive cancer therapy.

  1. Promotion of Tumor Invasion by Cooperation of Granulocytes and Macrophages Activated by Anti-tumor Antibodies

    Directory of Open Access Journals (Sweden)

    Emilio Barbera-Guillem

    1999-11-01

    Full Text Available We investigated the potential role of anti-tumor antibodies and tumor antigens in the formation of immune complexes which promote matrix degradation and angiogenesis. B-cell deficient or B-cell depleted mice showed a reduction in tumor invasion and metastasis. In vitro invasion assays and in vivo models of metastasis showed that anti-sTn antibodies and sTn tumor antigens form complexes which induce granulocytes and macrophages together to mediate tumor invasion and metastasis by processes including extracellular matrix degradation and angiogenesis. These results suggest the existence of a tumor promoting role of a B-cell immune response induced by shed tumor associated antigens of solid, nonlymphoid tumors.

  2. Anti-tumor activity of metformin: from metabolic and epigenetic perspectives

    Science.gov (United States)

    Zhai, Yansheng; Tong, Chong; Liu, Min; Ma, Lixin; Yu, Xiaolan; Li, Shanshan

    2017-01-01

    Metformin has been used to treat type 2 diabetes for over 50 years. Epidemiological, preclinical and clinical studies suggest that metformin treatment reduces cancer incidence in diabetes patients. Due to its potential as an anti-cancer agent and its low cost, metformin has gained intense research interest. Its traditional anti-cancer mechanisms involve both indirect and direct insulin-dependent pathways. Here, we discussed the anti-tumor mechanism of metformin from the aspects of cell metabolism and epigenetic modifications. The effects of metformin on anti-cancer immunity and apoptosis were also described. Understanding these mechanisms will shed lights on application of metformin in clinical trials and development of anti-cancer therapy. PMID:27902459

  3. Cytotoxic, antitumor and leukocyte migration activities of resveratrol and sitosterol present in the hidroalcoholic extract of Cissus sicyoides L., Vitaceae, leaves

    Directory of Open Access Journals (Sweden)

    Flávia R. S. Lucena

    2010-05-01

    Full Text Available Cissus sicyoides L. pertains to the Vitaceae family. It is popularly known as "insulina, cipo-pucá, bejuco caro, puci, anil trepador". A vasoconstrictor effect and an antibacterial activity have also been allocated to it. In Brazil, C. sicyoides was evaluated for its anticonvulsant and anti-diabetc properties. Phytochemistry studies identified and isolated sitosterol and resveratrol compounds from its aerial parts which are pointed out as having antitumor activities. The goal of this study was to investigate the cytotoxic and antitumor activities of Cissus sicyoides hydroalcoholic extract as well as its ability to repair leukocytes cells to injured tissue. Cissus sicyoides did not demonstrate cytotoxic activity but showed an inhibition of tumor growth in face of the tumors tested. The extract had a strong chemotactic effect on the twenty four hours period after treatment. The hidroalchoolic extract of Cissus sicyoides presented antitumor activity which was prompted by T lymphocytes recruitment to the local lesion and suggests a new pathway to antitumor activity by activation of lymphoid lineage.

  4. Combination of TRAIL and actinomycin D liposomes enhances antitumor effect in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Guo LG

    2012-03-01

    Full Text Available Liangran Guo1,2,4, Li Fan1,2, Jinfeng Ren1,2, Zhiqing Pang1,2, Yulong Ren1,2, Jingwei Li1,2, Ziyi Wen1,3, Yong Qian1,2, Lin Zhang1,2, Hang Ma4, Xinguo Jiang1,2 1School of Pharmacy, Fudan University, Zhangheng Road, Shanghai, 2Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Shanghai, 3School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China; 4College of Pharmacy, University of Rhode Island, RI, USAAbstract: The intractability of non-small cell lung cancer (NSCLC to multimodality treatments plays a large part in its extremely poor prognosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising cytokine for selective induction of apoptosis in cancer cells; however, many NSCLC cell lines are resistant to TRAIL-induced apoptosis. The therapeutic effect can be restored by treatments combining TRAIL with chemotherapeutic agents. Actinomycin D (ActD can sensitize NSCLC cells to TRAIL-induced apoptosis by upregulation of death receptor 4 (DR4 or 5 (DR5. However, the use of ActD has significant drawbacks due to the side effects that result from its nonspecific biodistribution in vivo. In addition, the short half-life of TRAIL in serum also limits the antitumor effect of treatments combining TRAIL and ActD. In this study, we designed a combination treatment of long-circulating TRAIL liposomes and ActD liposomes with the aim of resolving these problems. The combination of TRAIL liposomes and ActD liposomes had a synergistic cytotoxic effect against A-549 cells. The mechanism behind this combination treatment includes both increased expression of DR5 and caspase activation. Moreover, systemic administration of the combination of TRAIL liposomes and ActD liposomes suppressed both tumor formation and growth of established subcutaneous NSCLC xenografts in nude mice, inducing apoptosis without causing significant general toxicity. These results provide preclinical proof

  5. Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance.

    Science.gov (United States)

    Sherif, Iman O; Al-Gayyar, Mohammed M H

    2018-04-01

    Oleuropein is considered as a new chemotherapeutic agent in human hepatocellular carcinoma (HCC) while, its exact underlying molecular mechanism still not yet explored. In addition, cisplatin is a standard anticancer drug against solid tumors with toxic side effects. Therefore, we conducted this study to assess antitumor activity of oleuropein either alone or in combination with cisplatin against HepG2, human HCC cell lines, via targeting pro-NGF/NGF signaling pathway. HepG2 cells were treated with cisplatin (20, 50, 100 μM) and oleuropein (100, 200, 300 and 400 μM) as well as some of the cells were treated with 50 μM cisplatin and different concentrations of oleuropein. Gene expressions of nerve growth factor (NGF), matrix metalloproteinase-7 (MMP-7) and caspase-3 were evaluated by real time-PCR. In addition, protein levels of NGF and pro-form of NGF (pro-NGF) were measured by ELISA while, nitric oxide (NO) content was determined colorimetrically. Cisplatin treatment showed a significant elevation of NO content and pro-NGF protein level with a marked reduction of NGF protein level in addition to the upregulation of caspase-3 along with downregulation of MMP-7 gene expressions in a dose-dependent manner. However, the combination of 50 μM cisplatin and 200 μM oleuropein showed the most potent effect on the molecular level when compared with oleuropein or cisplatin alone. Our results showed for the first time that the anti-tumor activity of oleuropein against HCC could be attributed to influencing the pro-NGF/NGF balance via affecting MMP-7 activity without affecting the gene expression of NGF. Concurrent treatment with both oleuropein and cisplatin could lead to more effective chemotherapeutic combination against HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Antioxidant, Anti-Inflammatory, and Antitumor Activities of Cultured Mycelia and Fruiting Bodies of the Elm Oyster Mushroom, Hypsizygus ulmarius (Agaricomycetes).

    Science.gov (United States)

    Greeshma, Panavalappil; Ravikumar, Korattuvalappil S; Neethu, Mangalathmelathil N; Pandey, Meera; Zuhara, Karattuthodi Fathimathu; Janardhanan, Kainoor K

    2016-01-01

    Ethanoic extracts from the fruiting bodies and mycelia of the elm oyster mushroom, Hypsizygus ulmarius, were evaluated for their antioxidant, anti-inflammatory, and antitumor properties. Ethnolic extracts of fruiting body and mycelia showed 88%, 85%, 71%, and 85%, 65%, 70% 2,2-diphenyl-1-picrylhydrazyl, hydroxyl (DPPH) and 2,2'-azinobis (3-ethyl benzothiazolin-6-sulfonic acid) (ABTS) radical-scavenging activities, respectively, at a concentration of 1000 µg/mL. The anti-inflammatory activity was determined using carrageenan- and formalin- induced paw edema models. Diclofenac was used as the standard drug. In both models, the mycelia extract showed higher activity than the fruiting body extract. The antitumor effect of the extracts against Dalton's Lymphoma Ascites cell-line-induced tumors showed significant antitumor activity. Mycochemical analysis confirmed the presence of many pharmacologically active compounds such as phenol, alkaloids, proteins, tannins, and polysaccharides. Among these, polysaccharides and phenolic compounds were present at a higher concentration in both extracts. These compounds might be largely responsible for the mushroom's medicinal properties. The results of this study indicate that H. ulmarius possesses significant antioxidant, anti-inflammatory, and antitumor properties.

  7. Antitumor activity of ginseng sapogenins, 25-OH-PPD and 25-OCH3-PPD, on gastric cancer cells.

    Science.gov (United States)

    Zhao, Chen; Su, Guangyue; Wang, Xude; Zhang, Xiaoshu; Guo, Shuang; Zhao, Yuqing

    2016-01-01

    25-Hydroxyprotopanaxadiol (25-OH-PPD) and 25-methoxylprotopanaxadiol (25-OCH3-PPD), two ginseng sapogenins, have potent antitumor activity and their effects on gastric cancer (BGC-823, SGC-7901, MKN-28) cells and a gastric mucosa (GES-1) cell line are reported. Both compounds significantly inhibited the growth of gastric cancer cells, while having lesser inhibitory effects on GES-1 cells by MTT assay. A mechanistic study revealed that the two ginseng sapogenins could induce apoptosis in BGC-823 cells by morphological observation, DNA fragmentation, flow cytometry and western blot analysis. Besides, the apoptosis was inhibited by Ac-DEVD-CHO, a caspase 3 inhibitor, which was confirmed by cell viability analysis. These results indicate that 25-OH-PPD and 25-OCH3-PPD have potential to be promising agents for the treatment of gastric cancer.

  8. Anti-tumor activity of self-charged (Eu,Ca):WO3 and Eu:CaWO4 nanoparticles

    International Nuclear Information System (INIS)

    Lin, Cao; Cong, Wang; De'An, Pan; Jiexin, Cao; Ping, Che; Volinsky, Alex A.

    2012-01-01

    Non-stoichiometric (Eu,Ca):WO 3 and Eu:CaWO 4 nanoparticles with anti-tumor activity are synthesized in a sol-gel method by adding excessive Eu 3+ and Ca 2+ ions to tungsten oxide crystal structure. Colorimetric assay shows that 10 nm (Eu,Ca):WO 3 and Eu:CaWO 4 nanoparticles can effectively inhibit growth of mammary cancer cells without any harm to normal cells. Nanoparticles are characterized by X-ray diffraction, high resolution transmission electron microscopy and fluorescence optical spectrometry. Nanomaterials, insoluble in synthesized water, have complicated self-charging surfaces that trap mammary cancer cells. Surface self-charging effect is suggested as the inhibition mechanism. (author)

  9. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    Science.gov (United States)

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  10. The MET/AXL/FGFR Inhibitor S49076 Impairs Aurora B Activity and Improves the Antitumor Efficacy of Radiotherapy.

    Science.gov (United States)

    Clémenson, Céline; Chargari, Cyrus; Liu, Winchygn; Mondini, Michele; Ferté, Charles; Burbridge, Mike F; Cattan, Valérie; Jacquet-Bescond, Anne; Deutsch, Eric

    2017-10-01

    Several therapeutic agents targeting HGF/MET signaling are under clinical development as single agents or in combination, notably with anti-EGFR therapies in non-small cell lung cancer (NSCLC). However, despite increasing data supporting a link between MET, irradiation, and cancer progression, no data regarding the combination of MET-targeting agents and radiotherapy are available from the clinic. S49076 is an oral ATP-competitive inhibitor of MET, AXL, and FGFR1-3 receptors that is currently in phase I/II clinical trials in combination with gefitinib in NSCLC patients whose tumors show resistance to EGFR inhibitors. Here, we studied the impact of S49076 on MET signaling, cell proliferation, and clonogenic survival in MET-dependent (GTL16 and U87-MG) and MET-independent (H441, H460, and A549) cells. Our data show that S49076 exerts its cytotoxic activity at low doses on MET-dependent cells through MET inhibition, whereas it inhibits growth of MET-independent cells at higher but clinically relevant doses by targeting Aurora B. Furthermore, we found that S49076 improves the antitumor efficacy of radiotherapy in both MET-dependent and MET-independent cell lines in vitro and in subcutaneous and orthotopic tumor models in vivo In conclusion, our study demonstrates that S49076 has dual antitumor activity and can be used in combination with radiotherapy for the treatment of both MET-dependent and MET-independent tumors. These results support the evaluation of combined treatment of S49076 with radiation in clinical trials without patient selection based on the tumor MET dependency status. Mol Cancer Ther; 16(10); 2107-19. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo

    International Nuclear Information System (INIS)

    Mule, J.J.; Shu, S.; Rosenberg, S.A.

    1985-01-01

    The authors showed previously that adoptive immunotherapy with the combination of LAK cells and recombinant IL 2 (RIL 2) can markedly reduce pulmonary micrometastases from multiple sarcomas established 3 days after the i.v. injection of syngeneic tumor cells in C57BL/6 mice. In this report, they analyzed the factors required for successful therapy. Titration analysis in vivo revealed an inverse relationship between the number of pulmonary metastases remaining after treatment and both the number of LAK cells and the amount of RIL 2 administered. Fresh or unstimulated splenocytes had no anti-tumor effect; a 2- to 3-day incubation of splenocytes in RIL 2 was required. LAK cells generated from allogeneic DBA (H-2d) splenocytes were as effective in vivo as syngeneic, C57BL/6 (H-2b) LAK cells. The anti-metastatic capacity of LAK cells was significantly reduced or eliminated when irradiated with 3000 rad before adoptive transfer. The combined therapy of LAK cells plus RIL 2 was shown to be highly effective in mice immunosuppressed by 500 rad total body irradiation and in treating macrometastases established in the lung 10 days after the i.v. injection of sarcoma cells. Further, reduction of both micrometastases and macrometastases could also be achieved by RIL 2 alone when administered at higher levels than were required with LAK cells. The value of LAK cell transfer and of IL 2 administration for the treatment of tumors established at other sites is currently under investigation

  12. Optimal treatment scheduling of ionizing radiation and sunitinib improves the antitumor activity and allows dose reduction

    International Nuclear Information System (INIS)

    Kleibeuker, Esther A; Hooven, Matthijs A ten; Castricum, Kitty C; Honeywell, Richard; Griffioen, Arjan W; Verheul, Henk M; Slotman, Ben J; Thijssen, Victor L

    2015-01-01

    The combination of radiotherapy with sunitinib is clinically hampered by rare but severe side effects and varying results with respect to clinical benefit. We studied different scheduling regimes and dose reduction in sunitinib and radiotherapy in preclinical tumor models to improve potential outcome of this combination treatment strategy. The chicken chorioallantoic membrane (CAM) was used as an angiogenesis in vivo model and as a xenograft model with human tumor cells (HT29 colorectal adenocarcinoma, OE19 esophageal adenocarcinoma). Treatment consisted of ionizing radiation (IR) and sunitinib as single therapy or in combination, using different dose-scheduling regimes. Sunitinib potentiated the inhibitory effect of IR (4 Gy) on angiogenesis. In addition, IR (4 Gy) and sunitinib (4 days of 32.5 mg/kg per day) inhibited tumor growth. Ionizing radiation induced tumor cell apoptosis and reduced proliferation, whereas sunitinib decreased tumor angiogenesis and reduced tumor cell proliferation. When IR was applied before sunitinib, this almost completely inhibited tumor growth, whereas concurrent IR was less effective and IR after sunitinib had no additional effect on tumor growth. Moreover, optimal scheduling allowed a 50% dose reduction in sunitinib while maintaining comparable antitumor effects. This study shows that the therapeutic efficacy of combination therapy improves when proper dose-scheduling is applied. More importantly, optimal treatment regimes permit dose reductions in the angiogenesis inhibitor, which will likely reduce the side effects of combination therapy in the clinical setting. Our study provides important leads to optimize combination treatment in the clinical setting

  13. Herbal Medicine Goshajinkigan Prevents Paclitaxel-Induced Mechanical Allodynia without Impairing Antitumor Activity of Paclitaxel

    Directory of Open Access Journals (Sweden)

    Muh. Akbar Bahar

    2013-01-01

    Full Text Available Chemotherapy-induced peripheral neuropathy is a major dose-limiting side effect of commonly used chemotherapeutic agents. However, there are no effective strategies to treat the neuropathy. We examined whether Goshajinkigan, a herbal medicine, would prevent paclitaxel-induced allodynia without affecting the anticancer action in mice. Murine breast cancer 4T1 cells were inoculated into the mammary fat pad. Paclitaxel (10 and 20 mg/kg, intraperitoneal, alternate day from day 7 postinoculation inhibited the tumor growth, and Goshajinkigan (1 g/kg, oral, daily from day 2 postinoculation did not affect the antitumor action of paclitaxel. Mechanical allodynia developed in the inoculated region due to tumor growth and in the hind paw due to paclitaxel-induced neuropathy. Paclitaxel-induced allodynia was markedly prevented by Goshajinkigan, although tumor-associated allodynia was not inhibited by Goshajinkigan. These results suggest that Goshajinkigan prevents paclitaxel-induced peripheral neuropathy without interfering with the anti-cancer action of paclitaxel.

  14. Anti-tumor effects of novel 5-O-acyl plumbagins based on the inhibition of mammalian DNA replicative polymerase activity.

    Directory of Open Access Journals (Sweden)

    Moe Kawamura

    Full Text Available We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone inhibits the activity of human mitochondrial DNA polymerase γ (pol γ. In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins. These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin showed the strongest suppression of human colon carcinoma (HCT116 cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin.

  15. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    Science.gov (United States)

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  16. Synergistic antitumor activity of histamine plus melphalan in isolated limb perfusion: preclinical studies.

    Science.gov (United States)

    Brunstein, Flavia; Hoving, Saske; Seynhaeve, Ann L B; van Tiel, Sandra T; Guetens, Gunther; de Bruijn, Ernst A; Eggermont, Alexander M M; ten Hagen, Timo L M

    2004-11-03

    We have previously shown how tumor response of isolated limb perfusion (ILP) with melphalan was improved when tumor necrosis factor alpha (TNF-alpha) was added. Taking into account that other vasoactive drugs could also improve tumor response to ILP, we evaluated histamine (Hi) as an alternative to TNF-alpha. We used a rat ILP model to assess the combined effects of Hi and melphalan (n = 6) on tumor regression, melphalan uptake (n = 6), and tissue histology (n = 2) compared with Hi or melphalan alone. We also evaluated the growth of BN-175 tumor cells as well as apoptosis, necrosis, cell morphology, and paracellular permeability of human umbilical vein endothelial cells (HUVECs) after Hi treatment alone and in combination with melphalan. The antitumor effect of the combination of Hi and melphalan in vivo was synergistic, and Hi-dependent reduction in tumor volume was blocked by H1 and H2 receptor inhibitors. Tumor regression was observed in 66% of the animals treated with Hi and melphalan, compared with 17% after treatment with Hi or melphalan alone. Tumor melphalan uptake increased and vascular integrity in the surrounding tissue was reduced after ILP treatment with Hi and melphalan compared with melphalan alone. In vitro results paralleled in vivo results. BN-175 tumor cells were more sensitive to the cytotoxicity of combined treatment than HUVECs, and Hi treatment increased the permeability of HUVECs. Hi in combination with melphalan in ILP improved response to that of melphalan alone through direct and indirect mechanisms. These results warrant further evaluation in the clinical ILP setting and, importantly, in organ perfusion.

  17. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis.

    Science.gov (United States)

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK as well as MMP-9.

  18. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  19. Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats.

    Science.gov (United States)

    Medhat, Amina; Mansour, Somaya; El-Sonbaty, Sawsan; Kandil, Eman; Mahmoud, Mustafa

    2017-07-01

    This study aimed to evaluate the antitumor activity of platinum nanoparticles compared with cis-platin both in vitro and in vivo in the treatment of hepatocellular carcinoma induced in rats. The treatment efficacy of platinum nanoparticles was evaluated by measuring antioxidant activities against oxidative stress caused by diethylnitrosamine in liver tissue. The measurements included reduced glutathione content and superoxide dismutase activity, as well as malondialdehyde level. Liver function tests were also determined, in addition to the evaluation of serum alpha-fetoprotein, caspase-3, and cytochrome c in liver tissue. Total RNA extraction from liver tissue samples was also done for the relative quantification of B-cell lymphoma 2, matrix metallopeptidase 9, and tumor protein p53 genes. Histopathological examination was also performed for liver tissue. Results showed that platinum nanoparticles are more potent than cis-platin in treatment of hepatocellular carcinoma induced by diethylnitrosamine in rats as it ameliorated the investigated parameters toward normal control animals. These findings were well appreciated with histopathological studies of diethylnitrosamine group treated with platinum nanoparticles, suggesting that platinum nanoparticles can serve as a good therapeutic agent for the treatment of hepatocellular carcinoma which should attract further studies.

  20. Anti-helminth compound niclosamide downregulates Wnt Signaling and elicits antitumor responses in tumors with activating APC mutations

    Science.gov (United States)

    Osada, Takuya; Chen, Minyong; Yang, Xiao Yi; Spasojevic, Ivan; Vandeusen, Jeffrey B.; Hsu, David; Clary, Bryan M.; Clay, Timothy M.; Chen, Wei; Morse, Michael A.; Lyerly, H. Kim

    2011-01-01

    Wnt/β-catenin pathway activation caused by APC mutations occurs in approximately 80% of sporadic colorectal cancers. The anti-helminth compound niclosamide downregulates components of the Wnt pathway, specifically Dishevelled-2 (Dvl2) expression, resulting in diminished downstream β-catenin signaling. In this study, we determined if niclosamide could inhibit the Wnt/ β-catenin pathway in human colorectal cancers and whether its inhibition might elicit antitumor effects in the presence of APC mutations. We found that niclosamide inhibited Wnt/ β-catenin pathway activation, downregulated Dvl2, decreased downstream β-catenin signaling and exerted anti-proliferative effects in human colon cancer cell lines and colorectal cancer cells isolated by surgical resection of metastatic disease, regardless of mutations in APC. In contrast, inhibition of NF-κB or mTOR did not exert similar anti-proliferative effects in these colorectal cancer model systems. In mice implanted with human colorectal cancer xenografts, orally administered niclosamide was well tolerated, achieved plasma and tumor levels associated with biologic activity and led to tumor control. Our findings support clinical explorations to reposition niclosamide for treatment of colorectal cancer. PMID:21531761

  1. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases.

    Science.gov (United States)

    Wan, Xinhai; Corn, Paul G; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W; Efstathiou, Eleni; Li Ning Tapia, Elsa M; Tapia, Elsa M Li-Ning; Zurita, Amado J; Aparicio, Ana; Ravoori, Murali K; Vazquez, Elba S; Robinson, Dan R; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M; Logothetis, Christopher J; Navone, Nora M

    2014-09-03

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell-bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in serum prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. Copyright © 2014, American Association for the Advancement of Science.

  2. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (L-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells

    Energy Technology Data Exchange (ETDEWEB)

    Abolmaali, Samira Sadat, E-mail: s.abolmaali@gmail.com [Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Mohammadi, Samaneh, E-mail: samaneh.mohammadi1986@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Amoozgar, Zohreh, E-mail: zohreh_amoozgar@dfci.harvard.edu [Department of Cancer Immunology and Aids, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States); Dinarvand, Rasoul, E-mail: dinarvand@tums.ac.ir [Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174 (Iran, Islamic Republic of)

    2016-05-01

    Self-assembled nanogels were engineered by forming Zn{sup 2+}-coordinated micellar templates of PEGylated poly ethyleneimine (PEG-g-PEI), chemical crosslinking and subsequent removal of the metal ion. Creation of stable micellar templates is a crucial step for preparing the nanogels. To this aim, imidazole moieties were introduced to the polymer by Fmoc-L-histidine using carbodiimide chemistry. It was hypothesized the nanogels loaded with methotrexate (MTX), a chemotherapeutic agent, circumvent impaired carrier activity in HepG2 cells (MTX-resistant hepatocellular carcinoma). So, the nanogels were post-loaded with MTX and characterized by {sup 1}H-NMR, FTIR, dynamic light scattering-zeta potential, atomic force microscopy, and drug release experiments. Cellular uptake and the antitumor activity of MTX-loaded nanogels were investigated by flow cytometry and MTT assay. Discrete, spherical and uniform nanogels, with sizes about 77–83 nm and a relatively high drug loading (54 ± 4% w/w), showed a low polydispersity and neutral surface charges. The MTX-loaded nanogels, unlike empty nanogels, lowered viability of HepG2 cells; the nanogels demonstrated cell-cycle arrest and apoptosis comparably higher than MTX as free drug that was shown to be through i) cellular uptake of the nanogels by clathrin-mediated transport and ii) endosomolytic activity of the nanogels in HepG2 cells. These findings indicate the potential antitumor application of this preparation, which has to be investigated in-vivo. - Highlights: • Nanogel synthesis through chemical crosslinking of the transition metal ion coordinated polymer self-assembly • An enhanced cytocompatibility if compared to unmodified polymer • A noticeable endocytic cellular internalization and endosomolytic activity • A specific antitumor cytotoxicity, cell cycle arrest and apoptosis in resistant tumor cells.

  3. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine

    Science.gov (United States)

    Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.

    2012-01-01

    Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic anti-tumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589

  4. Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways.

    Directory of Open Access Journals (Sweden)

    Yi-Jin Chen

    Full Text Available Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer.Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model.AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33, which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo.AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by

  5. Origin of anti-tumor activity of the cysteine-containing GO peptides and further optimization of their cytotoxic properties

    Science.gov (United States)

    Tyuryaeva, Irina I.; Lyublinskaya, Olga G.; Podkorytov, Ivan S.; Skrynnikov, Nikolai R.

    2017-01-01

    Antitumor GO peptides have been designed as dimerization inhibitors of prominent oncoprotein mucin 1. In this study we demonstrate that activity of GO peptides is independent of the level of cellular expression of mucin 1. Furthermore, these peptides prove to be broadly cytotoxic, causing cell death also in normal cells such as dermal fibroblasts and endometrial mesenchymal stem cells. To explore molecular mechanism of their cytotoxicity, we have designed and tested a number of new peptide sequences containing the key CxC or CxxC motifs. Of note, these sequences bear no similarity to mucin 1 except that they also contain a pair of proximal cysteines. Several of the new peptides turned out to be significantly more potent than their GO prototypes. The results suggest that cytotoxicity of these peptides stems from their (moderate) activity as disulfide oxidoreductases. It is expected that such peptides, which we have termed DO peptides, are involved in disulfide-dithiol exchange reaction, resulting in formation of adventitious disulfide bridges in cell proteins. In turn, this leads to a partial loss of protein function and rapid onset of apoptosis. We anticipate that coupling DO sequences with tumor-homing transduction domains can create a potentially valuable new class of tumoricidal peptides.

  6. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway

    Energy Technology Data Exchange (ETDEWEB)

    An, Hyunsook; Kim, Ji Young; Lee, Nahyun; Cho, Youngkwan; Oh, Eunhye [Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Seo, Jae Hong, E-mail: cancer@korea.ac.kr [Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of); Brain Korea 21 Program for Biomedicine Science, Korea University College of Medicine, Korea University, Seoul 152-703 (Korea, Republic of)

    2015-10-30

    Cancer stem cells (CSCs) play important roles in the formation, growth and recurrence of tumors, particularly following therapeutic intervention. Salinomycin has received recent attention for its ability to target breast cancer stem cells (BCSCs), but the mechanisms of action involved are not fully understood. In the present study, we sought to investigate the mechanisms responsible for salinomycin's selective targeting of BCSCs and its anti-tumor activity. Salinomycin suppressed cell viability, concomitant with the downregulation of cyclin D1 and increased p27{sup kip1} nuclear accumulation. Mammosphere formation assays revealed that salinomycin suppresses self-renewal of ALDH1-positive BCSCs and downregulates the transcription factors Nanog, Oct4 and Sox2. TUNEL analysis of MDA-MB-231-derived xenografts revealed that salinomycin administration elicited a significant reduction in tumor growth with a marked downregulation of ALDH1 and CD44 levels, but seemingly without the induction of apoptosis. Our findings shed further light on the mechanisms responsible for salinomycin's effects on BCSCs. - Highlights: • Salinomycin suppresses mammosphere formation. • Salinomycin reduces ALDH1 activity and downregulates Nanog, Oct4 and Sox2. • Salinomycin targets BCSCs via an apoptosis-independent pathway.

  7. Enhancement of immunological activity after mild hyperthermia

    International Nuclear Information System (INIS)

    Noguchi, Kenichi; Hasegawa, Takeo; Takahashi, Tohru

    2002-01-01

    At present, hyperthermia is clinically very important as interdisciplinary therapeutic method, and studies are being performed on combined effects with surgical treatment, radiotherapy, chemotherapy and gene therapy for the treatment of malignant tumors. We evaluated the effects of hyperthermia under temperature of 42.5C and demonstrated that the activation of immunological response is increased and anti-tumor effect cabn be obtained in this studies. We used animals were C3H mice (male,7W) bearing SCC-VII tumor on femur skin. Then, the mice were divided to 10 mice in each group, and only femur region was immersed in warm water for thermal treatment. Also we measured the tumor growth, changes of blood cell fraction and NK cell activity. The results of the present study confirmed: (1) Anti-tumor effect can be given by thermal treatment at relatively mild temperature (mild temperature at 39C-42C); (2) The increase of neutrophils is dependent on the quantity of heat added; (3) Immunological response of monocytes and lymphocytes is associated with it; (4) Activity of the immunological potency as a whole such as activation of NK cells was also confirmed

  8. Screening for Genes Coding for Putative Antitumor Compounds, Antimicrobial and Enzymatic Activities from Haloalkalitolerant and Haloalkaliphilic Bacteria Strains of Algerian Sahara Soils

    Directory of Open Access Journals (Sweden)

    Okba Selama

    2014-01-01

    Full Text Available Extreme environments may often contain unusual bacterial groups whose physiology is distinct from those of normal environments. To satisfy the need for new bioactive pharmaceuticals compounds and enzymes, we report here the isolation of novel bacteria from an extreme environment. Thirteen selected haloalkalitolerant and haloalkaliphilic bacteria were isolated from Algerian Sahara Desert soils. These isolates were screened for the presence of genes coding for putative antitumor compounds using PCR based methods. Enzymatic, antibacterial, and antifungal activities were determined by using cultural dependant methods. Several of these isolates are typical of desert and alkaline saline soils, but, in addition, we report for the first time the presence of a potential new member of the genus Nocardia with particular activity against the yeast Saccharomyces cerevisiae. In addition to their haloalkali character, the presence of genes coding for putative antitumor compounds, combined with the antimicrobial activity against a broad range of indicator strains and their enzymatic potential, makes them suitable for biotechnology applications.

  9. Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity.

    Science.gov (United States)

    Eichner, Ruth; Heider, Michael; Fernández-Sáiz, Vanesa; van Bebber, Frauke; Garz, Anne-Kathrin; Lemeer, Simone; Rudelius, Martina; Targosz, Bianca-Sabrina; Jacobs, Laura; Knorn, Anna-Maria; Slawska, Jolanta; Platzbecker, Uwe; Germing, Ulrich; Langer, Christian; Knop, Stefan; Einsele, Herrmann; Peschel, Christian; Haass, Christian; Keller, Ulrich; Schmid, Bettina; Götze, Katharina S; Kuster, Bernhard; Bassermann, Florian

    2016-07-01

    Immunomodulatory drugs (IMiDs), such as thalidomide and its derivatives lenalidomide and pomalidomide, are key treatment modalities for hematologic malignancies, particularly multiple myeloma (MM) and del(5q) myelodysplastic syndrome (MDS). Cereblon (CRBN), a substrate receptor of the CRL4 ubiquitin ligase complex, is the primary target by which IMiDs mediate anticancer and teratogenic effects. Here we identify a ubiquitin-independent physiological chaperone-like function of CRBN that promotes maturation of the basigin (BSG; also known as CD147) and solute carrier family 16 member 1 (SLC16A1; also known as MCT1) proteins. This process allows for the formation and activation of the CD147-MCT1 transmembrane complex, which promotes various biological functions, including angiogenesis, proliferation, invasion and lactate export. We found that IMiDs outcompete CRBN for binding to CD147 and MCT1, leading to destabilization of the CD147-MCT1 complex. Accordingly, IMiD-sensitive MM cells lose CD147 and MCT1 expression after being exposed to IMiDs, whereas IMiD-resistant cells retain their expression. Furthermore, del(5q) MDS cells have elevated CD147 expression, which is attenuated after IMiD treatment. Finally, we show that BSG (CD147) knockdown phenocopies the teratogenic effects of thalidomide exposure in zebrafish. These findings provide a common mechanistic framework to explain both the teratogenic and pleiotropic antitumor effects of IMiDs.

  10. SYNTHESIS, CHARACTERIZATION AND ANTITUMOR ACTIVITY OF A Ca (II COORDINATION POLYMER BASED ON 3-AMINO-2-PYRAZINECARBOXYLIC ACID

    Directory of Open Access Journals (Sweden)

    XI-SHI TAI

    2015-10-01

    Full Text Available A new Ca(II coordination polymer has been obtained by reaction of Ca(ClO42·H2O with 3-amino-2-pyrazinecarboxylic acid in CH3CH2OH/H2O. It was characterized by IR, 1HNMR, thermal analysis and X-ray single crystal diffraction analysis. X-ray analysis reveals that each Ca(II center is seven-coordination with a N2O5 distorted pentagonal bipyramidal coordination environment. The Ca(II ions are linked through the O atoms of 3-amino-2-pyrazinecarboxylic acid ligands to form 1D chain structure. And then a 3D network structure is constructed by hydrogen bonds and π-π stacking. The antitumor activity of 3-amino-2-pyrazinecarboxylic acid ligand and its Ca(II coordination polymer against human intestinal adenocarcinoma HCT-8 cells, lung adenocarcinoma HCT-116 cells and human lung adenocarcinoma A549 cells line have been investigated.

  11. Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors

    Directory of Open Access Journals (Sweden)

    Chuan Jin

    2014-01-01

    Full Text Available Adoptive T-cell therapy of cancer is a treatment strategy where T cells are isolated, activated, in some cases engineered, and expanded ex vivo before being reinfused to the patient. The most commonly used T-cell expansion methods are either anti-CD3/CD28 antibody beads or the “rapid expansion protocol” (REP, which utilizes OKT-3, interleukin (IL-2, and irradiated allogeneic feeder cells. However, REP-expanded or bead-expanded T cells are sensitive to the harsh tumor microenvironment and often short-lived after reinfusion. Here, we demonstrate that when irradiated and preactivated allosensitized allogeneic lymphocytes (ASALs are used as helper cells to license OKT3-armed allogeneic mature dendritic cells (DCs, together they expand target T cells of high quality. The ASAL/DC combination yields an enriched Th1-polarizing cytokine environment (interferon (IFN-γ, IL-12, IL-2 and optimal costimulatory signals for T-cell stimulation. When genetically engineered antitumor T cells were expanded by this coculture system, they showed better survival and cytotoxic efficacy under oxidative stress and immunosuppressive environment, as well as superior proliferative response during tumor cell killing compared to the REP protocol. Our result suggests a robust ex vivo method to expand T cells with improved quality for adoptive cancer immunotherapy.

  12. Extraction, Preliminary Characterization and Evaluation of in Vitro Antitumor and Antioxidant Activities of Polysaccharides from Mentha piperita

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2014-09-01

    Full Text Available This study describes the extraction, preliminary characterization and evaluation of the in vitro antitumor and antioxidant activities of polysaccharides extracted from Mentha piperita (MPP. The optimal parameters for the extraction of MPP were obtained by Box-Behnken experimental design and response surface methodology (RSM at the ratio of water to raw material of 20, extraction time of 1.5 h and extraction temperature at 80 °C. Chemical composition analysis showed that MPP was mainly composed of glucuronic acid, galacturonic acid, glucose, galactose and arabinose, and the molecular weight of its two major fractions were estimated to be about 2.843 and 1.139 kDa, respectively. In vitro bioactivity experiments showed that MPP not only inhibited the growth of A549 cells but possessed potent inhibitory action against DNA topoisomerase I (topo I, and an appreciative antioxidant action as well. These results indicate that MPP may be useful for developing safe natural health products.

  13. Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity.

    Science.gov (United States)

    Li, Dan; Qian, Yan; Tian, Yu-Jia; Yuan, Shi-Meng; Wei, Wei; Wang, Gang

    2017-04-07

    As new green solvents, ionic liquids (ILs) have been generally applied in the extraction and separation of natural product. In this study, microwave assisted extraction based on IL (IL-MAE) was firstly employed to extract total biflavonoids from Selaginella doederleinii . Based on single-factor experiment, microwave power (300-700 W), extract time (30-50 min) and extract temperature (40-60 °C) on total bioflavonoids and antioxidant activities of the extracts were further investigated by a Box-Behnken design of response surface methodology (RSM) selecting total bioflavonoids yields and IC 50 of radical scavenging as index. Besides antioxidant activity of the extract was evaluated by a 2,2-diphenyl-1-picrylhydarzyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) radical scavenging assay, ferric reducing power assay and chelation of ferrous ions assay, and then anticaner activity was also researched against A549 cell line and 7721 cell line. The results illustrated that three factors and their interactions could be well suited for second-order polynomial models ( p yield of total bioflavonoids was 16.83 mg/g and IC 50 value was 56.24 μg/mL, respectively, indicating the extract has better anti-oxidation effect and antitumor activity. Furthermore, IL-MAE was the most efficient extracting method compared with MAE and Soxhlet extraction, which could improve extraction efficiency in a shorter time and at a lower temperature. In general, ILs-MAE was first adopted to establish a novel and green extraction process on the yields of total biflavonoids from S. doederleinii . In addition, the extract of containing biflavones showed potent antioxidant and anticancer capacity as a utilized valuable bioactive source for natural medicine.

  14. Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Dan Li

    2017-04-01

    Full Text Available As new green solvents, ionic liquids (ILs have been generally applied in the extraction and separation of natural product. In this study, microwave assisted extraction based on IL (IL-MAE was firstly employed to extract total biflavonoids from Selaginella doederleinii. Based on single-factor experiment, microwave power (300–700 W, extract time (30–50 min and extract temperature (40–60 °C on total bioflavonoids and antioxidant activities of the extracts were further investigated by a Box-Behnken design of response surface methodology (RSM selecting total bioflavonoids yields and IC50 of radical scavenging as index. Besides antioxidant activity of the extract was evaluated by a 2,2-diphenyl-1-picrylhydarzyl (DPPH and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS radical scavenging assay, ferric reducing power assay and chelation of ferrous ions assay, and then anticaner activity was also researched against A549 cell line and 7721 cell line. The results illustrated that three factors and their interactions could be well suited for second-order polynomial models (p < 0.05. Through process parameters, optimization of the extract (460 W, 40 min, and 45 °C and detection of bioactivity, the yield of total bioflavonoids was 16.83 mg/g and IC50 value was 56.24 μg/mL, respectively, indicating the extract has better anti-oxidation effect and antitumor activity. Furthermore, IL-MAE was the most efficient extracting method compared with MAE and Soxhlet extraction, which could improve extraction efficiency in a shorter time and at a lower temperature. In general, ILs-MAE was first adopted to establish a novel and green extraction process on the yields of total biflavonoids from S. doederleinii. In addition, the extract of containing biflavones showed potent antioxidant and anticancer capacity as a utilized valuable bioactive source for natural medicine.

  15. Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice.

    Science.gov (United States)

    Nasr, Magda; Nafee, Noha; Saad, Hoda; Kazem, Amani

    2014-09-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Epirubicin (EPI), an anthracycline derivative, is one of the main line treatments for HCC. However, serious side effects including cardiomyopathy and congestive heart failure limit its long term administration. Our main goal is to develop a delivery strategy that ensures improved efficacy of the chemotherapeutic agent together with reduced cardiotoxicity. In this context, EPI was loaded in chitosan-PLGA nanoparticles linked with asialofetuin (EPI-NPs) selectively targeting hepatocytes. In an attempt to reduce cardiotoxicity, targeted EPI-NPs were coadministered with tocotrienols. EPI-NPs significantly enhanced the antiproliferative effect compared to free EPI as studied on Hep G2 cell line. Nanoencapsulated EPI injected in HCC mouse model revealed higher p53-mediated apoptosis and reduced angiogenesis in the tumor. Combined therapy of EPI-NPs with tocotrienols further enhanced apoptosis and reduced VEGF level in a dose dependent manner. Assessment of cardiotoxicity indicated that EPI-NPs diminished the high level of proinflammatory cytokine tumor necrosis factor-α (TNF-α) as well as oxidative stress-induced cardiotoxicity as manifested by reduced level of lipid peroxidation products (TBARS) and nitric oxide (NO). EPI-NPs additionally restored the diminished level of superoxide dismutase (SOD) and reduced glutathione (GSH) in the heart. Interestingly, tocotrienols provided both antitumor activity and higher protection against oxidative stress and inflammation induced by EPI in the heart. This hepatocyte-targeted biodegradable nanoparticle/tocotrienol combined therapy represents intriguing therapeutic strategy for EPI providing not only superior efficacy but also higher safety levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. ATN-224 enhances antitumor efficacy of oncolytic herpes virus against both local and metastatic head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ji Young Yoo

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most frequent cancer worldwide, and the 5-year survival rates are among the worst of the major cancers. Oncolytic herpes simplex viruses (oHSV have the potential to make a significant impact in the targeted treatment of these patients. Here, we tested antitumor efficacy of RAMBO, an oHSV armed with the antiangiogenic Vstat120, alone and in conjunction with ATN-224, a copper chelator against HNSCC in vitro and in vivo animal models. We found that all tested HNSCC cells responded well to virus treatment and were sensitive to RAMBO-mediated oncolytic destruction. In vivo, RAMBO had a significant antiangiogenic and antitumorigenic effect. Physiologic levels of copper inhibited viral replication and HNSCC cell killing. Chelation of copper using ATN-224 treatment significantly improved serum stability of RAMBO and permitted systemic delivery in HNSCC tumor xenografts models. Furthermore, our results show that the combination of ATN-224 and RAMBO strongly inhibits lung metastases in a mouse model of HNSCC. These findings suggest that combining ATN-224 with RAMBO has potential for clinical trials in both early and advanced HNSCC patients.

  17. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy

    Science.gov (United States)

    You, Chaoqun; Wu, Hongshuai; Wang, Mingxin; Gao, Zhiguo; Zhang, Xiangyang; Sun, Baiwang

    2018-01-01

    Polymeric biomaterials that can be smartly disassembled through the cleavage of the covalent bonds in a controllable way upon an environmental stimulus such as pH change, redox, special enzymes, temperature, or ultrasound, as well as light irradiation, but are otherwise stable under normal physiological conditions have attracted great attention in recent decades. The 2-(4-aminophenyl) benzothiazole molecule (CJM-126), as one of the benzothiazole derivatives, has exhibited a synergistic effect with cisplatin (CDDP) and restrains the bioactivities of a series of human breast cancer cell lines. In our study, novel NIR-responsive targeted binary-drug-loaded nanoparticles encapsulating indocyanine green (ICG) dye were prepared as a new co-delivery and combined therapeutic vehicle. The prepared drug-loaded polymeric nanoparticles (TNPs/CDDP-ICG) are stable under normal physiological conditions, while burst drugs release upon NIR laser irradiation in a mild acidic environment. The results further confirmed that the designed co-delivery platform showed higher cytotoxicity than the single free CDDP due to the synergistic treatment of CJM-126 and CDDP in vitro. Taken together, the work might provide a promising approach for effective site-specific antitumor therapy.

  18. A novel combination of TRAIL and doxorubicin enhances antitumor effect based on passive tumor-targeting of liposomes

    International Nuclear Information System (INIS)

    Guo Liangran; Fan Li; Ren Jinfeng; Pang Zhiqing; Ren Yulong; Li Jingwei; Jiang Xinguo; Wen Ziyi

    2011-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a novel anticancer agent for non-small cell lung cancer (NSCLC). However, approximately half of NSCLC cell lines are highly resistant to TRAIL. Doxorubicin (DOX) can sensitize NSCLC cells to TRAIL-induced apoptosis, indicating the possibility of combination therapy. Unfortunately, the therapeutic effect of a DOX and TRAIL combination is limited by multiple factors including the short serum half-life of TRAIL, poor compliance and application difficulty in the clinic, chronic DOX-induced cardiac toxicity, and the multidrug resistance (MDR) property of NSCLC cells. To solve such problems, we developed the combination of TRAIL liposomes (TRAIL-LP) and DOX liposomes (DOX-LP). An in vitro cytotoxicity study indicated that DOX-LP sensitized the NSCLC cell line A-549 to TRAIL-LP-induced apoptosis. Furthermore, this combination therapy of TRAIL-LP and DOX-LP displayed a stronger antitumor effect on NSCLC in xenografted mice when compared with free drugs or liposomal drugs alone. Therefore, the TRAIL-LP and DOX-LP combination therapy has excellent potential to become a new therapeutic approach for patients with advanced NSCLC.

  19. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYL)ETHANONE N(4)-ALLYL-3-THIOSEMICARBAZONE

    OpenAIRE

    Vasilii GRAUR; Serghei SAVCIN; Victor TSAPKOV; Aurelian GULEA

    2015-01-01

    The paper presents the synthesis of the ligand 1-(2-hydroxyphenyl)ethanone N(4)-allyl-3-thiosemicarbazone (H2L) and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 ce...

  20. OSI-930: a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models.

    Science.gov (United States)

    Garton, Andrew J; Crew, Andrew P A; Franklin, Maryland; Cooke, Andrew R; Wynne, Graham M; Castaldo, Linda; Kahler, Jennifer; Winski, Shannon L; Franks, April; Brown, Eric N; Bittner, Mark A; Keily, John F; Briner, Paul; Hidden, Chris; Srebernak, Mary C; Pirrit, Carrie; O'Connor, Matthew; Chan, Anna; Vulevic, Bojana; Henninger, Dwight; Hart, Karen; Sennello, Regina; Li, An-Hu; Zhang, Tao; Richardson, Frank; Emerson, David L; Castelhano, Arlindo L; Arnold, Lee D; Gibson, Neil W

    2006-01-15

    OSI-930 is a novel inhibitor of the receptor tyrosine kinases Kit and kinase insert domain receptor (KDR), which is currently being evaluated in clinical studies. OSI-930 selectively inhibits Kit and KDR with similar potency in intact cells and also inhibits these targets in vivo following oral dosing. We have investigated the relationships between the potency observed in cell-based assays in vitro, the plasma exposure levels achieved following oral dosing, the time course of target inhibition in vivo, and antitumor activity of OSI-930 in tumor xenograft models. In the mutant Kit-expressing HMC-1 xenograft model, prolonged inhibition of Kit was achieved at oral doses between 10 and 50 mg/kg and this dose range was associated with antitumor activity. Similarly, prolonged inhibition of wild-type Kit in the NCI-H526 xenograft model was observed at oral doses of 100 to 200 mg/kg, which was the dose level associated with significant antitumor activity in this model as well as in the majority of other xenograft models tested. The data suggest that antitumor activity of OSI-930 in mouse xenograft models is observed at dose levels that maintain a significant level of inhibition of the molecular targets of OSI-930 for a prolonged period. Furthermore, pharmacokinetic evaluation of the plasma exposure levels of OSI-930 at these effective dose levels provides an estimate of the target plasma concentrations that may be required to achieve prolonged inhibition of Kit and KDR in humans and which would therefore be expected to yield a therapeutic benefit in future clinical evaluations of OSI-930.

  1. Enhancement in the antitumor immunity contributes to the radio-sensitization of tumors by 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Farooque, Abdullah; Dwarakanath, B.S.

    2014-01-01

    The glycolytic inhibitor, 2-deoxy-D-glucose sensitizes tumor cells while protects normal cells to radiation and chemotherapeutics in vitro and in vivo. Further, 2-DG has also been suggested as an adjuvant for low dose radiation therapy. Since immunomodulation plays an important role in tumor responses to anticancer therapies and glycolysis influences the activation of lymphocytes, we investigated the effects of 2-DG on immuno-regulatory networks during radiosensitization of Ehrlich ascites tumor (EAT) in mice. Mice were treated with 10 Gy of focal irradiation to tumor and single dose of 2-DG (2 gm/Kg/b.wt) intravenously. Immuno-phenotyping was done using flow cytometry, while cytokines and antibody classes were analyzed using bead array and ELISA. Further, mRNA and protein levels of transcription factors were assessed in sorted splenic CD4 + cells using real time PCR and Western blot techniques. Immune activation in the form of increase in the expression of NK cells, dendritic cells, macrophages and CD4 + cells, while a decrease was noted in myeloid derived suppressor cells (MDSCs), B cells, tumor tolerant CD4 + PD1 + and CD8 + PD1 + after the combined treatment (2-DG+ Radiation). Interestingly, decrease in the (CD4 + CD62L + ) naive cells with concomitant increase in effector memory cells (CD4 + CD44 + ) indicated the immune activation and memory response. This activation was found to be dependent on the restoration of TCR and CD28 mediated signaling leading to the shift from Th2 and Th17 to Th1 in the form of cytokine and antibody class switching and decrease in inflammation, which was correlated with the modulation of transcriptional factors in splenic CD4 + cells. Interestingly, depletion of T-regulatory cells appears to be partly responsible for the immune activation observed. These studies for the first time revealed the immuno-modulatory potential of 2-DG that should facilitate the optimization of protocols for enhancing the efficacy of radiotherapy, besides

  2. Enhanced antitumor efficacy of poly(D,L-lactide-co-glycolide-based methotrexate-loaded implants on sarcoma 180 tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Gao L

    2017-10-01

    Full Text Available Li Gao,1,2 Lunyang Xia,3 Ruhui Zhang,1 Dandan Duan,3 Xiuxiu Liu,2 Jianjian Xu,2 Lan Luo1 1State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 2School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 3Laboratory of Pharmaceutical Research, Anhui Zhongren Science and Technology Co., Ltd., Hefei, People’s Republic of China Purpose: Methotrexate is widely used in chemotherapy for a variety of malignancies. However, severe toxicity, poor pharmacokinetics, and narrow safety margin of methotrexate limit its clinical application. The aim of this study was to develop sustained-release methotrexate-loaded implants and evaluate antitumor activity of the implants after intratumoral implantation. Materials and methods: We prepared the implants containing methotrexate, poly(D,L-lactide-co-glycolide, and polyethylene glycol 4000 with the melt-molding technique. The implants were characterized with regards to drug content, morphology, in vitro, and in vivo release profiles. Differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR were carried out to investigate the physicochemical properties of the implants. Furthermore, the antitumor activity of the implants was tested in a sarcoma 180 mouse model. Results: The implants were prepared as solid rods. Scanning electron microscopy images showed a smooth surface of the implant, suggesting that methotrexate was homogeneously dispersed in the polymeric matrix. The results of DSC and FTIR indicated that no significant interaction between methotrexate and the polymer was observed in the implants. Both in vitro and in vivo release profiles of the implants were characterized by burst release followed by sustained release of methotrexate. Intratumoral implantation of methotrexate-loaded implants could efficiently delay tumor growth. Moreover, an increase in the dose of implants led to a higher tumor

  3. The antitumor activity of plant-derived non-psychoactive cannabinoids

    OpenAIRE

    McAllister, Sean D.; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-01-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ9-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown tha...

  4. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  5. Anticoagulant, Antioxidant and Antitumor Activities of Heterofucans from the Seaweed Dictyopteris delicatula

    Directory of Open Access Journals (Sweden)

    Hugo Alexandre Oliveira Rocha

    2011-05-01

    Full Text Available In the present study, six families of sulfated polysaccharides were obtained from seaweed Dictyopteris delicatula by proteolytic digestion, followed by acetone fractionation and molecular sieving on Sephadex G-100. Chemical analyses demonstrated that all polysaccharides contain heterofucans composed mainly of fucose, xylose, glucose, galactose, uronic acid, and sulfate. The fucans F0.5v and F0.7v at 1.0 mg/mL showed high ferric chelating activity (~45%, whereas fucans F1.3v (0.5 mg/mL showed considerable reducing power, about 53.2% of the activity of vitamin C. The fucan F1.5v presented the most prominent anticoagulant activity. The best antiproliferative activity was found with fucans F1.3v and F0.7v. However, F1.3v activity was much higher than F0.7v inhibiting almost 100% of HeLa cell proliferation. These fucans have been selected for further studies on structural characterization as well as in vivo experiments, which are already in progress.

  6. Potent antitumor bifunctional DNA alkylating agents, synthesis and biological activities of 3a-aza-cyclopenta[a]indenes.

    Science.gov (United States)

    Kakadiya, Rajesh; Dong, Huajin; Lee, Pei-Chih; Kapuriya, Naval; Zhang, Xiuguo; Chou, Ting-Chao; Lee, Te-Chang; Kapuriya, Kalpana; Shah, Anamik; Su, Tsann-Long

    2009-08-01

    A series of bifunctional DNA interstrand cross-linking agents, bis(hydroxymethyl)- and bis(carbamates)-8H-3a-azacyclopenta[a]indene-1-yl derivatives were synthesized for antitumor evaluation. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and antitumor therapeutic efficacy against human tumor xenografts in vivo. Furthermore, these derivatives have little or no cross-resistance to either Taxol or Vinblastine. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft by 13a,b and 14g,h and significant suppression against prostate adenocarcinoma PC3 xenograft by 13b were achieved at the maximum tolerable dose with relatively low toxicity. In addition, these agents induce DNA interstrand cross-linking and substantial G2/M phase arrest in human non-small lung carcinoma H1299 cells. The current studies suggested that these agents are promising candidates for preclinical studies.

  7. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8.

    Science.gov (United States)

    Shinnoh, Masahide; Horinaka, Mano; Yasuda, Takashi; Yoshikawa, Sae; Morita, Mie; Yamada, Takeshi; Miki, Tsuneharu; Sakai, Toshiyuki

    2013-03-01

    Bacillus Calmette-Guérin (BCG) intravesical therapy against superficial bladder cancer is one of the most successful immunotherapies in cancer, though the precise mechanism has not been clarified. Recent studies have demonstrated urinary tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) levels to be higher in BCG-responsive patients than non-responders and shown that polymorphonuclear neutrophils (PMNs) migrating to the bladder after BCG instillation release large amounts of TRAIL. To establish a safer and more effective intravesical therapy than BCG, we examined whether other bacteria induced similar effects. We stimulated PMNs or peripheral blood mononuclear cells (PBMCs) with BCG or other bacteria, and then aliquots of the culture supernatants or cell lysates were assayed for TRAIL. We examined the signaling pathway regulating the release of TRAIL from PMNs and evaluated the antitumor effects of BCG or other bacteria in vitro and in vivo. We have found that Clostridium butyricum MIYAIRI 588 (CBM588) induces the release of endogenous TRAIL from PMNs as well as BCG. In addition, we have shown that matrix metalloproteinase 8 (MMP-8) is one of the key factors responsible for the release. Interestingly, TLR2/4 signaling pathway has been suggested to be important for the release of TRAIL by MMP-8. CBM588 has been proven to be as effective as BCG against cancer cells by inducing apoptosis in vivo as well as in vitro. Taken together, these results strongly suggest that CBM588 is promising for a safer and more effective therapy against bladder cancer.

  8. Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model

    International Nuclear Information System (INIS)

    Eralp, Yesim; Wang, Xiaoyan; Wang, Jian-Ping; Maughan, Maureen F; Polo, John M; Lachman, Lawrence B

    2004-01-01

    The purpose of the present study was to determine whether cytotoxic chemotherapeutic agents administered prior to immunotherapy with gene vaccines could augment the efficacy of the vaccines. Mice were injected in the mammary fat pad with an aggressive breast tumor cell line that expresses HER2/neu. The mice were treated 3 days later with a noncurative dose of either doxorubicin or paclitaxel, and the following day with a gene vaccine to HER2/neu. Two more doses of vaccine were given 14 days apart. Two types of gene vaccines were tested: a plasmid vaccine encoding a self-replicating RNA (replicon) of Sindbis virus (SINCP), in which the viral structural proteins were replaced by the gene for neu; and a viral replicon particle derived from an attenuated strain of Venezuelan equine encephalitis virus, containing a replicon RNA in which the Venezuelan equine encephalitis virus structural proteins were replaced by the gene for neu. Neither vaccination alone nor chemotherapy alone significantly reduced the growth of the mammary carcinoma. In contrast, chemotherapy followed by vaccination reduced tumor growth by a small, but significant amount. Antigen-specific CD8 + T lymphocytes were induced by the combined treatment, indicating that the control of tumor growth was most probably due to an immunological mechanism. The results demonstrated that doxorubicin and paclitaxel, commonly used chemotherapeutic agents for the treatment of breast cancer, when used at immunomodulating doses augmented the antitumor efficacy of gene vaccines directed against HER2/neu. The combination of chemotherapeutic agents plus vaccine immunotherapy may induce a tumor-specific immune response that could be beneficial for the adjuvant treatment of patients with minimal residual disease. The regimen warrants further evaluation in a clinical setting

  9. Ghrelin levels in patients with juvenile idiopathic arthritis: relation to anti-tumor necrosis factor treatment and disease activity.

    Science.gov (United States)

    Karagiozoglou-Lampoudi, Thomais; Trachana, Maria; Agakidis, Charalampos; Pratsidou-Gertsi, Polyxeni; Taparkou, Anna; Lampoudi, Sotiria; Kanakoudi-Tsakalidou, Florentia

    2011-10-01

    Studies in adults with rheumatoid arthritis reported low serum ghrelin that increased following anti-tumor necrosis factor (TNF) infusion. Data on juvenile idiopathic arthritis (JIA) are lacking. The aim of this pilot study was to explore serum ghrelin levels in patients with JIA and the possible association with anti-TNF treatment, disease activity, and nutritional status. Fifty-two patients with JIA (14/52 on anti-TNF treatment) were studied. Juvenile idiopathic arthritis was inactive in 3 of 14 anti-TNF-treated patients and in 11 of 38 non-anti-TNF-treated patients. The nutritional status, energy intake/requirements, appetite, and fasting serum ghrelin levels were assessed. Ghrelin control values were obtained from 50 individuals with minor illness matched for age, sex, and body mass index. Ghrelin levels in patients with JIA were significantly lower than in controls (P ghrelin levels were comparable to control values only in 3 patients with anti-TNF-induced remission. Ghrelin in non-anti-TNF-treated patients in remission was low. Multiple regression analysis showed that disease activity (P = .002, CI = -84.16 to -20.01) and anti-TNF treatment (P = .003, CI = -82.51 to -18.33) were significant independent predictors of ghrelin after adjusting for other potential confounders. Ghrelin did not correlate with nutritional status, energy balance, and appetite. Serum ghrelin is low in patients with JIA and is restored to values similar to those in controls following anti-TNF-induced remission. Our study provides evidence that TNF blockade is independently associated with serum ghrelin, which possibly contributes to anti-TNF-induced remission. These preliminary results could form the basis for future research. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Oral Metronomic Topotecan Sensitizes Crizotinib Antitumor Activity in ALKF1174L Drug-Resistant Neuroblastoma Preclinical Models

    Directory of Open Access Journals (Sweden)

    Libo Zhang

    2017-08-01

    Full Text Available BACKGROUND: Anaplastic lymphoma kinase (ALK inhibitor crizotinib has proven to be effective in the treatment of ALK-mutated neuroblastoma, but crizotinib resistance was commonly observed in patients. We aimed to overcome crizotinib resistance by combining with the MEK inhibitor trametinib or low-dose metronomic (LDM topotecan in preclinical neuroblastoma models. METHODS: We selected a panel of neuroblastoma cell lines carrying various ALK genetic aberrations to assess the therapeutic efficacy on cell proliferation in vitro. Downstream signals of ALK activation, including phosphorylation of ERK1/2, Akt as well as HIF-1α expression were evaluated under normoxic and hypoxic conditions. Tumor growth inhibition was further assessed in NOD/SCID xenograft mouse models. RESULTS: All NBL cell lines responded to crizotinib treatment but at variable ED50 levels, ranging from 0.25 to 5.58 μM. ALK-mutated cell lines SH-SY5Y, KELLY, LAN-5, and CHLA-20 are more sensitive than ALK wild-type cell lines. In addition, we demonstrated that under hypoxic conditions, all NBL cell lines showed marked decrease of ED50s when compared to normoxia except for KELLY cells. Taking into consideration the hypoxia sensitivity to crizotinib, combined treatment with crizotinib and LDM topotecan demonstrated a synergistic effect in ALKF1174L-mutated SH-SY5Y cells. In vivo, single-agent crizotinib showed limited antitumor activity in ALKF1174L-mutated SH-SY5Y and KELLY xenograft models; however, when combined with topotecan, significantly delayed tumor development was achieved in both SH-SY5Y and KELLY tumor models. CONCLUSIONS: Oral metronomic topotecan reversed crizotinib drug resistance in the ALKF1174L-mutated neuroblastoma preclinical model.

  11. Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol

    OpenAIRE

    Cencic, Regina; Carrier, Marilyn; Galicia-V?zquez, Gabriela; Bordeleau, Marie-Eve; Sukarieh, Rami; Bourdeau, Annie; Brem, Brigitte; Teodoro, Jose G.; Greger, Harald; Tremblay, Michel L.; Porco, John A.; Pelletier, Jerry

    2009-01-01

    Background Flavaglines are a family of natural products from the genus Aglaia that exhibit anti-cancer activity in vitro and in vivo and inhibit translation initiation. They have been shown to modulate the activity of eIF4A, the DEAD-box RNA helicase subunit of the eukaryotic initiation factor (eIF) 4F complex, a complex that stimulates ribosome recruitment during translation initiation. One flavagline, silvestrol, is capable of modulating chemosensitivity in a mechanism-based mouse model. Me...

  12. Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1,4-naphthoquinone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alcides J.M. da; Netto, Chaquip D; Costa, Paulo R.R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Nucleo de Pesquisas de Produtos Naturais. Lab. de Quimica Bioorganica; Pacienza-Lima, Wallace; Rossi-Bergmann, Bartira; Maurel, Severine; Valentin, Alexis; Costa, Paulo R.R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho; Torres-Santos, Eduardo Caio [Instituto Oswaldo Cruz, Rio de Janeiro, RJ (Brazil). Lab. de Bioquimica de Tripanosomatideos; Maurel, Severine; Valentin, Alexis [Universite Paul Sabatier, Toulouse (France). Faculte de Pharmacie. Pharmacochimie des Substances Naturelles et Pharmacophores Redox

    2009-07-01

    Pterocarpanquinones 8a-c, previously synthesized in our laboratory, and an homologous series of derivatives, compounds 9a-c prepared in this work, were evaluated on breast cancer cells (MCF-7) and on the parasites Leishmania amazonensis and Plasmodium falciparum, in culture. Compounds 8a-c were more potent than 9a-c on tumor cells and Leishmania amazonensis. On the other hand, 9a-c showed to be more active on Plasmodium falciparum. All the compounds studied were bioselective, presenting negligible cytotoxicity against fresh murine lymphocytes and human lymphocytes activated by the mitogen phytohemagglutinin (PHA). (author)

  13. Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1,4-naphthoquinone derivatives

    International Nuclear Information System (INIS)

    Silva, Alcides J.M. da; Netto, Chaquip D.; Costa, Paulo R.R.; Pacienza-Lima, Wallace; Rossi-Bergmann, Bartira; Maurel, Severine; Valentin, Alexis; Costa, Paulo R.R.; Torres-Santos, Eduardo Caio; Maurel, Severine; Valentin, Alexis

    2009-01-01

    Pterocarpanquinones 8a-c, previously synthesized in our laboratory, and an homologous series of derivatives, compounds 9a-c prepared in this work, were evaluated on breast cancer cells (MCF-7) and on the parasites Leishmania amazonensis and Plasmodium falciparum, in culture. Compounds 8a-c were more potent than 9a-c on tumor cells and Leishmania amazonensis. On the other hand, 9a-c showed to be more active on Plasmodium falciparum. All the compounds studied were bioselective, presenting negligible cytotoxicity against fresh murine lymphocytes and human lymphocytes activated by the mitogen phytohemagglutinin (PHA). (author)

  14. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol.

    Directory of Open Access Journals (Sweden)

    Regina Cencic

    Full Text Available Flavaglines are a family of natural products from the genus Aglaia that exhibit anti-cancer activity in vitro and in vivo and inhibit translation initiation. They have been shown to modulate the activity of eIF4A, the DEAD-box RNA helicase subunit of the eukaryotic initiation factor (eIF 4F complex, a complex that stimulates ribosome recruitment during translation initiation. One flavagline, silvestrol, is capable of modulating chemosensitivity in a mechanism-based mouse model.Among a number of flavagline family members tested herein, we find that silvestrol is the more potent translation inhibitor among these. We find that silvestrol impairs the ribosome recruitment step of translation initiation by affecting the composition of the eukaryotic initiation factor (eIF 4F complex. We show that silvestrol exhibits significant anticancer activity in human breast and prostate cancer xenograft models, and that this is associated with increased apoptosis, decreased proliferation, and inhibition of angiogenesis. We demonstrate that targeting translation by silvestrol results in preferential inhibition of weakly initiating mRNAs.Our results indicate that silvestrol is a potent anti-cancer compound in vivo that exerts its activity by affecting survival pathways as well as angiogenesis. We propose that silvestrol mediates its effects by preferentially inhibiting translation of malignancy-related mRNAs. Silvestrol appears to be well tolerated in animals.

  15. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol.

    Science.gov (United States)

    Cencic, Regina; Carrier, Marilyn; Galicia-Vázquez, Gabriela; Bordeleau, Marie-Eve; Sukarieh, Rami; Bourdeau, Annie; Brem, Brigitte; Teodoro, Jose G; Greger, Harald; Tremblay, Michel L; Porco, John A; Pelletier, Jerry

    2009-01-01

    Flavaglines are a family of natural products from the genus Aglaia that exhibit anti-cancer activity in vitro and in vivo and inhibit translation initiation. They have been shown to modulate the activity of eIF4A, the DEAD-box RNA helicase subunit of the eukaryotic initiation factor (eIF) 4F complex, a complex that stimulates ribosome recruitment during translation initiation. One flavagline, silvestrol, is capable of modulating chemosensitivity in a mechanism-based mouse model. Among a number of flavagline family members tested herein, we find that silvestrol is the more potent translation inhibitor among these. We find that silvestrol impairs the ribosome recruitment step of translation initiation by affecting the composition of the eukaryotic initiation factor (eIF) 4F complex. We show that silvestrol exhibits significant anticancer activity in human breast and prostate cancer xenograft models, and that this is associated with increased apoptosis, decreased proliferation, and inhibition of angiogenesis. We demonstrate that targeting translation by silvestrol results in preferential inhibition of weakly initiating mRNAs. Our results indicate that silvestrol is a potent anti-cancer compound in vivo that exerts its activity by affecting survival pathways as well as angiogenesis. We propose that silvestrol mediates its effects by preferentially inhibiting translation of malignancy-related mRNAs. Silvestrol appears to be well tolerated in animals.

  16. In vitro antitumor activity of Gracilaria corticata (a red alga) against ...

    African Journals Online (AJOL)

    ) assay. The results showed that 9.336 and 9.726 μg/μl of algal extract were the most effective concentrations against Jurkat and molt-4 cells, respectively. The water crude extract of red alga G. corticata had significant anticancer activity and it ...

  17. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells

    OpenAIRE

    Kwak, Tae Won; Kim, Do Hyung; Jeong, Young-Il; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(dl-lactide-co-glycolide)/poly(ethylene glycol) copolymer. Results Vorinostat-NPs exhibited spherical shapes with sizes

  18. Introduction of a point mutation into an HLA class I single-chain trimer induces enhancement of CTL priming and antitumor immunity

    Directory of Open Access Journals (Sweden)

    Masanori Matsui

    2014-01-01

    Full Text Available We previously discovered one particular HLA-A*02:01 mutant that enhanced peptide-specific cytotoxic T lymphocyte (CTL recognition in vitro compared to wild-type HLA-A*02:01. This mutant contains a single amino acid substitution from histidine to leucine at position 74 (H74L that is located in the peptide-binding groove. To investigate the effect of the H74L mutation on the in vivo CTL priming, we took advantage of the technology of the HLA class I single-chain trimer (SCT in which three components involving a peptide, β2 microglobulin and the HLA class I heavy chain are joined together via flexible linkers. We generated recombinant adenovirus expressing SCT comprised influenza A matrix protein (FMP-derived peptide, β2 microglobulin and the H74L heavy chain. HLA-A*02:01 transgenic mice were immunized with the adenovirus, and the induction of peptide-specific CTLs and antitumor immunity was investigated. It was clearly shown that the H74L mutation enabled the HLA-A*02:01 SCT molecule to dramatically enhance both in vivo priming of FMP-specific CTLs and protection against a lethal challenge of tumor cells expressing FMP. These data present the first evidence that a simple point mutation in the HLA class I heavy chain of SCT is beneficial for improving CTL-based immunotherapy and prophylaxis to control tumors.

  19. Combination of Vaccine-Strain Measles and Mumps Viruses Enhances Oncolytic Activity against Human Solid Malignancies.

    Science.gov (United States)

    Son, Ho Anh; Zhang, LiFeng; Cuong, Bui Khac; Van Tong, Hoang; Cuong, Le Duy; Hang, Ngo Thu; Nhung, Hoang Thi My; Yamamoto, Naoki; Toan, Nguyen Linh

    2018-02-07

    Oncolytic measles and mumps viruses (MeV, MuV) have a potential for anti-cancer treatment. We examined the anti-tumor activity of MeV, MuV, and MeV-MuV combination (MM) against human solid malignancies (HSM). MeV, MuV, and MM targeted and significantly killed various cancer cell lines of HSM but not normal cells. MM demonstrated a greater anti-tumor effect and prolonged survival in a human prostate cancer xenograft tumor model compared to MeV and MuV. MeV, MuV, and MM significantly induced the expression of immunogenic cell death markers and enhanced spleen-infiltrating immune cells. In conclusion, MM combination significantly improves the treatment of human solid malignancies.

  20. Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Kocdor H

    2015-07-01

    Full Text Available Hilal Kocdor,1,2 Halil Ates,1 Suleyman Aydin,3 Ruksan Cehreli,1 Firat Soyarat,2 Pinar Kemanli,2 Duygu Harmanci,2 Hakan Cengiz,2 Mehmet Ali Kocdor4 1Institute of Oncology, Dokuz Eylul University, 2Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey; 3Department of Biochemistry, Firat University School of Medicine, Elazig, 4Department of Surgery, School of Medicine, Dokuz Eylul University, Izmir, Turkey Background: Exposure to exogenous zinc results in increased apoptosis, growth inhibition, and altered oxidative stress in cancer cells. Previous studies also suggested that zinc sensitizes some cancer cells to cytotoxic agents depending on the p53 status. Therefore, zinc supplementation may show anticancer efficacy solely and may increase docetaxel-induced cytotoxicity in non-small-cell lung cancer cells.Methods: Here, we report the effects of several concentrations of zinc combined with docetaxel on p53-wild-type (A549 and p53-null (H1299 cells. We evaluated cellular viability, apoptosis, and cell cycle progression as well as oxidative stress parameters, including superoxide dismutase, glutathione peroxidase, and malondialdehyde levels.Results: Zinc reduced the viability of A549 cells and increased the apoptotic response in both cell lines in a dose-dependent manner. Zinc also amplified the docetaxel effects and reduced its inhibitory concentration 50 (IC50 values. The superoxide dismutase levels increased in all treatment groups; however, glutathione peroxidase was slightly increased in the combination treatments. Zinc also caused malondialdehyde elevations at 50 µM and 100 µM.Conclusion: Zinc has anticancer efficacy against non-small-cell lung cancer cells in the presence of functionally active p53 and enhances docetaxel efficacy in both p53-wild-type and p53-deficient cancer cells. Keywords: lung cancer, zinc, docetaxel, A549, H1299

  1. Enhanced oral bioavailability of a sterol-loaded microemulsion formulation of Flammulina velutipes, a potential antitumor drug

    Science.gov (United States)

    Yi, Chengxue; Zhong, Hui; Tong, Shanshan; Cao, Xia; Firempong, Caleb K; Liu, Hongfei; Fu, Min; Yang, Yan; Feng, Yingshu; Zhang, Huiyun; Xu, Ximing; Yu, Jiangnan

    2012-01-01

    Purpose To investigate the growth inhibition activity of Flammulina velutipes sterol (FVS) against certain human cancer cell lines (gastric SGC and colon LoVo) and to evaluate the optimum microemulsion prescription, as well as the pharmacokinetics of encapsulated FVS. Methods Molecules present in the FVS isolate were identified by gas chromatography/mass spectrometry analysis. The cell viability of FVS was assessed with methyl thiazolyl tetrazolium (MTT) bioassay. Based on the solubility study, phase diagram and stability tests, the optimum prescription of F. velutipes sterol microemulsions (FVSMs) were determined, followed by FVSMs characterization, and its in vivo pharmacokinetic study in rats. Results The chemical composition of FVS was mainly ergosterol (54.8%) and 22,23-dihydroergosterol (27.9%). After 72 hours of treatment, both the FVS (half-maximal inhibitory concentration [IC50] = 11.99 μg · mL−1) and the standard anticancer drug, 5-fluorouracil (IC50 = 0.88 μg · mL−1) exhibited strong in vitro antiproliferative activity against SGC cells, with IC50 > 30.0 μg · mL−1; but the FVS performed poorly against LoVo cells (IC50 > 40.0 μg · mL−1). The optimal FVSMs prescription consisted of 3.0% medium chain triglycerides, 5.0% ethanol, 21.0% Cremophor EL and 71.0% water (w/w) with associated solubility of FVS being 0.680 mg · mL−1 as compared to free FVS (0.67 μg · mL−1). The relative oral bioavailability (area-under-the-curve values of ergosterol and 22,23-dihydroergosterol showed a 2.56-fold and 4.50-fold increase, respectively) of FVSMs (mean diameter ~ 22.9 nm) as against free FVS were greatly enhanced. Conclusion These results indicate that the FVS could be a potential candidate for the development of an anticancer drug and it is readily bioavailable via microemulsion formulations. PMID:23049254

  2. Structural analysis and antitumor activity of androstane D-seco-mesyloxy derivatives

    International Nuclear Information System (INIS)

    Okljesa, Aleksandar M.; Jovanovic-Santa, Suzana S.; Sakac, Marija N.; Djurendic, Evgenija A.; Gasi, Katarina M. Penov

    2013-01-01

    he study of the influence of steroidal compounds on tumor cell cultures, cell growth, induction of apoptosis and/or cell cycle changes, is a common way of discovering potential therapeutics for treating people suffering from hormone-dependent problems and diseases. Because of the very high mortality rate associated with this class of disease, therapeutics for treating different types of cancers are among the most important. This work presents the synthesis of two stereoisomeric 16,17-secoandrostane mesyloxy derivatives and their 17-hydroxy precursors. Compounds were structurally analyzed by X-ray crystallography, and their antiproliferative activity, influence on the cell cycle and potential to induce apoptosis were investigated. (author)

  3. Structural analysis and antitumor activity of androstane D-seco-mesyloxy derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Okljesa, Aleksandar M.; Jovanovic-Santa, Suzana S.; Sakac, Marija N.; Djurendic, Evgenija A.; Gasi, Katarina M. Penov, E-mail: suzana.jovanovic-santa@dh.uns.ac [University of Novi Sad (Serbia). Faculty of Sciences. Department of Chemistry, Biochemistry and Environmental Protection; Klisuric, Oliveira R. [University of Novi Sad (Serbia). Faculty of Sciences. Department of Physics; Jakimov, Dimitar S.; Aleksic, Lidija D. [Oncology Institute of Vojvodina, Sremska Kamenica (Serbia)

    2013-10-15

    he study of the influence of steroidal compounds on tumor cell cultures, cell growth, induction of apoptosis and/or cell cycle changes, is a common way of discovering potential therapeutics for treating people suffering from hormone-dependent problems and diseases. Because of the very high mortality rate associated with this class of disease, therapeutics for treating different types of cancers are among the most important. This work presents the synthesis of two stereoisomeric 16,17-secoandrostane mesyloxy derivatives and their 17-hydroxy precursors. Compounds were structurally analyzed by X-ray crystallography, and their antiproliferative activity, influence on the cell cycle and potential to induce apoptosis were investigated. (author)

  4. Targeted Delivery and Sustained Antitumor Activity of Triptolide through Glucose Conjugation.

    Science.gov (United States)

    He, Qing-Li; Minn, Il; Wang, Qiaoling; Xu, Peng; Head, Sarah A; Datan, Emmanuel; Yu, Biao; Pomper, Martin G; Liu, Jun O

    2016-09-19

    Triptolide, a key ingredient from the traditional Chinese medicinal plant thunder god vine, which has been used to treat inflammation and autoimmune diseases for centuries, has been shown to be an irreversible inhibitor of the XPB subunit of the transcription factor TFIIH and initiation of RNA polymerase II mediated transcription. The clinical development of triptolide over the past two decades has been limited by its toxicity and low water solubility. Herein, we report the development of a glucose conjugate of triptolide, named glutriptolide, which was intended to target tumor cells overexpressing glucose transporters selectively. Glutriptolide did not inhibit XPB activity in vitro but demonstrated significantly higher cytotoxicity against tumor cells over normal cells with greater water solubility than triptolide. Furthermore, it exhibited remarkable tumor control in vivo, which is likely due to sustained stepwise release of active triptolide within cancer cells. These findings indicate that glutriptolide may serve as a promising lead for developing a new mechanistic class of anticancer drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  6. Cellular and antitumor activity of a new diethylene glycol benzoporphyrin derivative (lemuteporfin).

    Science.gov (United States)

    Boch, Ron; Canaan, Alice J; Cho, Angela; Dolphin, David D; Hong, Lina; Jain, Ashok K; North, John R; Richter, Anna M; Smits, Claire; Sternberg, Ethan D

    2006-01-01

    A newly synthesized diethylene glycol functionalized chlorin-type photosensitizer, lemuteporfin, was characterized for use in photodynamic therapy (PDT) in a panel of in vitro and in vivo test systems. The photosensitizer was highly potent, killing cells at low nanomolar concentrations upon exposure to activating light. The cellular uptake of lemuteporfin was rapid, with maximum levels reached within 20 min. Mitogen-activated lymphoid cells accumulated more of the lemuteporfin than their quiescent equivalents, supporting selectivity. Photosensitizer fluorescence in the skin increased rapidly within the first few minutes following intravenous administration to mice, then decreased over the next 24 h. Skin photosensitivity reactions indicated rapid clearance of the photosensitizer. Intravenous doses as low as 1.4 micromol/kg combined with exposure to 50 J/cm2 red light suppressed tumor growth in a mouse model. In conclusion, this new benzoporphyrin was found to be an effective photosensitizer, showing rapid uptake and clearance both in vitro and in vivo. This rapid photosensitization of tumors could be useful in therapies requiring a potent, rapidly accumulating photosensitizer, while minimizing the potential for skin photosensitivity reactions to sunlight following treatment.

  7. Antitumor Activity of Total Flavonoids from Daphne genkwa in Colorectal Cancer.

    Science.gov (United States)

    Du, Wen-Juan; Yang, Xiao-Lin; Song, Zi-Jing; Wang, Jiao-Ying; Zhang, Wen-Jun; He, Xin; Zhang, Run-Qi; Zhang, Chun-Feng; Li, Fei; Yu, Chun-Hao; Wang, Chong-Zhi; Yuan, Chun-Su

    2016-02-01

    Daphne genkwa Sieb.et Zucc. is a well-known medicinal plant. This study was designed to investigate the anticancer effects of total flavonoids in D. genkwa (TFDG) in vitro and in vivo. HT-29 and SW-480 human colorectal cancer cells were cultured to investigate the anticancer activity of TFDG. In addition, the Apc(Min/+) mouse model was applied in the in vivo experiment. Results of the cell experiment revealed that TFDG possessed significant inhibitory effects on HT-29 and SW-480 human colorectal cancer cells (both p colon (both p cancer therapeutics, and TFDG's action is likely linked to its ability to regulate immune function and inhibit the production of inflammatory cytokines. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Gelatin crosslinked with dehydroascorbic acid as a novel scaffold for tissue regeneration with simultaneous antitumor activity

    International Nuclear Information System (INIS)

    Falconi, M; Salvatore, V; Teti, G; Focaroli, S; Durante, S; Nicolini, B; Mazzotti, A; Orienti, I

    2013-01-01

    A porous scaffold was developed to support normal tissue regeneration in the presence of residual tumor disease. It was prepared by gelatin crosslinked with dehydroascorbic acid (DHA). A physicochemical characterization of the scaffold was carried out. SEM and mercury porosimetry revealed a high porosity and interconnection of pores in the scaffold. Enzymatic degradation provided 56% weight loss in ten days. The scaffold was also evaluated in vitro for its ability to support the growth of normal cells while hindering tumor cell development. For this purpose, primary human fibroblasts and osteosarcoma tumor cells (MG-63) were seeded on the scaffold. Fibroblasts attached the scaffold and proliferated, while the tumor cells, after an initial attachment and growth, failed to proliferate and progressively underwent cell death. This was attributed to the progressive release of DHA during the scaffold degradation and its cytotoxic activity towards tumor cells. (paper)

  9. Enaminones as Building Blocks for the Synthesis of Substituted Pyrazoles with Antitumor and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sayed M. Riyadh

    2011-02-01

    Full Text Available Novel N-arylpyrazole-containing enaminones 2a,b were synthesized as key intermediates. Reactions of 2a,b with active methylene compounds in acetic acid in the presence of ammonium acetate afforded substituted pyridine derivatives 5a-d. Enaminones 2a,b also reacted with aliphatic amines such as hydrazine hydrate and hydroxylamine hydrochloride to give bipyrazoles 8a,b and pyrazolylisoxazoles 9a,b, respectively. On the other hand, treatment of 2a,b with a heterocyclic amine and its diazonium salt yielded the respective [1,2,4]triazolo[4,3-a]pyrimidines 12a,b and pyrazolylcarbonyl[1,2,4]triazolo-[3,4-c][1,2,4]triazines 14a,b. Moreover, 2-thioxo-2,3-dihydro-1H-pyrido[2,3-d]pyrimidin-4-one (17 was prepared via reaction of enaminone 2a with aminothiouracil (15. Cyclocondensation of 17 with the appropriate hydrazonoyl chlorides 18a-c gave the corresponding pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones 21a-c. The cytotoxic effects of compounds 2b, 14a and 17 against human breast cell line (MCF-7 and liver carcinoma cell line (HEPG2 were screened and in both lines they showed inhibition effects comparable to those of 5-fluorouracil, used as a standard. The antimicrobial activity of some products chosen as representative examples was also evaluated.

  10. Antitumor activity of sequence-specific alkylating agents: pyrolle-imidazole CBI conjugates with indole linker.

    Science.gov (United States)

    Shinohara, Ken-ichi; Bando, Toshikazu; Sasaki, Shunta; Sakakibara, Yogo; Minoshima, Masafumi; Sugiyama, Hiroshi

    2006-03-01

    DNA-targeting agents, including cisplatin, bleomycin and mitomycin C, are used routinely in cancer treatments. However, these drugs are extremely toxic, attacking normal cells and causing severe side effects. One important question to consider in designing anticancer agents is whether the introduction of sequence selectivity to DNA-targeting agents can improve their efficacy as anticancer agents. In the present study, the growth inhibition activities of an indole-seco 1,2,9,9a-tetrahydrocyclopropa[1,2-c]benz[1,2-e]indol-4-one (CBI) (1) and five conjugates with hairpin pyrrole-imidazole polyamides (2-6), which have different sequence specificities for DNA alkylation, were compared using 10 different cell lines. The average values of -log GI50 (50% growth inhibition concentration) for compounds 1-6 against the 10 cell lines were 8.33, 8.56, 8.29, 8.04, 8.23 and 8.83, showing that all of these compounds strongly inhibit cell growth. Interestingly, each alkylating agent caused significantly different growth inhibition patterns with each cell line. In particular, the correlation coefficients between the -log GI50 of compound 1 and its conjugates 2-6 showed extremely low values (Ralkylation lead to marked differences in biological activity. Comparison of the correlation coefficients between compounds 6 and 7, with the same sequence specificity as 6, and MS-247, with sequence specificity different from 6, when used against a panel of 37 human cancer cell lines further confirmed the above hypothesis.

  11. Antitumor activity of TY-011 against gastric cancer by inhibiting Aurora A, Aurora B and VEGFR2 kinases

    Directory of Open Access Journals (Sweden)

    Wang Liu

    2016-11-01

    Full Text Available Abstract Background Overexpression of Aurora A and B has been reported in a wide range of tumor types, including gastric cancer. Anti-angiogenesis has been considered as an important therapeutic modality in advanced gastric cancer. Here we identified a novel compound TY-011 with promising antitumor activity by targeting mitotic kinases (Aurora A and B and angiogenic receptor tyrosine kinase (VEGFR2. Methods HTRF® KinEASE™ assay was used to detect the effect of TY-011 against Aurora A, Aurora B and VEGFR2 activities. Docking simulation study was performed to predict the binding mode of TY-011 with Aurora A and B kinases. CCK-8 assay was used to test cell growth. Cell cycle and cell apoptosis was analyzed by flow cytometry. Gastric cancer cell xenograft mouse models were used for in vivo study. TUNEL kit was used to determine the apoptosis of tumor tissues. Immunohistochemistry analysis and HUVEC tube formation assay were performed to determine the anti-angiogenesis ability. Immunofluorescence and western blot were used to test protein expression. Results TY-011 was identified as a potential Aurora A and B inhibitor by HTRF® KinEASE™ assay. It effectively inhibited cellular Aurora A and B activities in a concentration-dependent manner. TY-011 occupied the ATP-binding site of both Aurora A and B kinases. TY-011 demonstrated prominent inhibitory effects on proliferation of gastric cancer cells. TY-011 treatment induced an obvious accumulation of cells at G2/M phase and a modest increase of cells with >4 N DNA content, which then underwent apoptosis. Meaningfully, orally administration of TY-011 demonstrated superior efficacy against the tumor growth in gastric cancer cell xenograft, with ~90% inhibition rate and 100% tumor regression at 9 mg/kg dose, and TY-011 did not affect the body weight of mice. Interestingly, we observed that TY-011 also antagonized tumor angiogenesis by targeting VEGFR2 kinase. Conclusions These results indicate that

  12. A Rationally Designed Histone Deacetylase Inhibitor with Distinct Antitumor Activity against Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Ya-Ting Yang

    2009-06-01

    Full Text Available Histone deacetylase inhibitors (HDACIs are a class of antineoplastic agents previously demonstrating preclinical chemosensitizing activity against drug-resistant cancer cells and mouse xenografts. However, whereas clinical studies have shown efficacy against human hematologic malignancies, solid tumor trials have proved disappointing. We previously developed a novel HDACI, “OSU-HDAC42,” and herein examine its activity against ovarian cancer cell lines and xenografts. OSU-HDAC42, (i unlike most HDACIs, elicited a more than five-fold increase in G2-phase cells, at 2.5 µM, with G2 arrest followed by apoptosis; (ii at 1.0 µM, completely repressed messenger RNA expression of the cell cycle progression gene cdc2; (iii at low doses (0.25–1.0 µM for 24 hours, induced tumor cell epithelial differentiation, as evidenced by morphology changes and a more than five-fold up-regulation of epithelium-specific cytokeratins; (iv potently abrogated the growth of numerous ovarian cancer cells, with IC50 values of 0.5 to 1.0 µM, whereas also remaining eight-fold less toxic (IC50 of 8.6 µM to normal ovarian surface epithelial cells; and (v chemosensitizated platinum-resistant mouse xenografts to cisplatin. Compared with the clinically approved HDACI suberoylanilide hydroxamic acid (vorinostat, 1.0 µM OSU-HDAC42 was more biochemically potent (i.e., enzyme-inhibitory, as suggested by greater gene up-regulation and acetylation of both histone and nonhistone proteins. In p53-dysfunctional cells, however, OSU-HDAC42 was two- to eight-fold less inductive of p53-regulated genes, whereas also having a two-fold higher IC50 than p53-functional cells, demonstrating some interaction with p53 tumor-suppressive cascades. These findings establish OSU-HDAC42 as a promising therapeutic agent for drug-resistant ovarian cancer and justify its further investigation.

  13. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy

    International Nuclear Information System (INIS)

    Yu, Yao; Cai, Wei; Pei, Chong-gang; Shao, Yi

    2015-01-01

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation of breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo

  14. Rhamnazin, a novel inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yao [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China); Department of Endocrinology and Metabolism, The Third Hospital of Nanchang, Nanchang Key Laboratory of Diabetes, No.1 Qianjing Road, Xihu District, Nanchang 330009, Jiangxi Province (China); Cai, Wei [Department of Medical Genetics, College of Basic Medical Science of Nanchang University, No.461 Bayi Road, Donghu District, Nanchang 330006, Jiangxi Province (China); Pei, Chong-gang, E-mail: profchonggangpei@163.com [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China); Shao, Yi, E-mail: profyishao@163.com [Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, No.17 Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi Province (China)

    2015-03-20

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer therapy. The identification of new drugs from natural products has a long and successful history. In this study, we described a novel VEGFR2 inhibitor, rhamnazin, which inhibits tumor angiogenesis and growth. Rhamnazin significantly inhibited proliferation, migration and tube formation of human umbilical vascular endothelial cells (HUVECs) in vitro as well as inhibited sprouts formation of rat aorta ring. In addition, it inhibited vascular endothelial growth factor (VEGF)-induced phosphorylation of VEGFR2 and its downstream signaling regulator in HUVECs. Moreover, rhamnazin could directly inhibit proliferation of breast cancer cells MDA-MB-231 in vitro and in vivo. Oral administration of rhamnazin at a dose of 200 mg/kg/day could markedly inhibited human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that rhamnazin inhibits angiogenesis and may be a promising anticancer drug candidate. - Highlights: • Rhamnazin inhibits the response of HUVECs to VEGF in vitro. • Rhamnazin inhibits VEGFR2 kinase activity and its downstream signaling. • Rhamnazin prevents the growth of MDA-MB-231 tumor and reduces micro-vessel density in vivo.

  15. Structurally related hydrazone-based metal complexes with different antitumor activities variably induce apoptotic cell death.

    Science.gov (United States)

    Megger, Dominik A; Rosowski, Kristin; Radunsky, Christian; Kösters, Jutta; Sitek, Barbara; Müller, Jens

    2017-04-05

    Three new complexes bearing the tridentate hydrazone-based ligand 2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)pyridine (L) were synthesized and structurally characterized. Biological tests indicate that the Zn(ii) complex [ZnCl 2 (L)] is of low cytotoxicity against the hepatocellular carcinoma cell line HepG2. In contrast, the Cu(ii) and Mn(ii) complexes [CuCl 2 (L)] and [MnCl 2 (L)] are highly cytotoxic with EC 50 values of 1.25 ± 0.01 μM and 20 ± 1 μM, respectively. A quantitative proteome analysis reveals that treatment of the cells with the Cu(ii) complex leads to a significantly altered abundance of 102 apoptosis-related proteins, whereas 38 proteins were up- or down-regulated by the Mn(ii) complex. A closer inspection of those proteins regulated only by the Cu(ii) complex suggests that the superior cytotoxic activity of this complex is likely to be related to an initiation of the caspase-independent cell death (CICD). In addition, an increased generation of reactive oxygen species (ROS) and a strong up-regulation of proteins responsive to oxidative stress suggest that alterations of the cellular redox metabolism likely contribute to the cytotoxicity of the Cu(ii) complex.

  16. FATS is a transcriptional target of p53 and associated with antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhang Xifeng

    2010-09-01

    Full Text Available Abstract Frequent mutations of p53 in human cancers exemplify its crucial role as a tumor suppressor transcription factor, and p21, a transcriptional target of p53, plays a central role in surveillance of cell-cycle checkpoints. Our previous study has shown that FATS stabilize p21 to preserve genome integrity. In this study we identified a novel transcript variant of FATS (GenBank: GQ499374 through screening a cDNA library from mouse testis, which uncovered the promoter region of mouse FATS. Mouse FATS was highly expressed in testis. The p53-responsive elements existed in proximal region of both mouse and human FATS promoters. Functional study indicated that the transcription of FATS gene was activated by p53, whereas such effect was abolished by site-directed mutagenesis in the p53-RE of FATS promoter. Furthermore, the expression of FATS increased upon DNA damage in a p53-dependent manner. FATS expression was silent or downregulated in human cancers, and overexpression of FATS suppressed tumorigenicity in vivo independently of p53. Our results reveal FATS as a p53-regulated gene to monitor genomic stability.

  17. Resistance to degradation and cellular distribution are important features for the antitumor activity of gomesin.

    Directory of Open Access Journals (Sweden)

    Marcus V Buri

    Full Text Available Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr(2,6,11,15]-Gm, and [Ser(2,6,11,15]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr(2,6,11,15]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr(2,6,11,15, Pro(9]-D-Gm, and [Thr(2,6,11,15, D-Pro(9]-Gm, which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity.

  18. Antibacterial, antibiofilm and antitumor activities of grape and mulberry leaves ethanolic extracts towards bacterial clinical strains

    Directory of Open Access Journals (Sweden)

    Elshahat M. Ramadan

    2017-12-01

    Full Text Available The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC were measured at concentrations of 0.01–2.56 mg/mL of grape and mulberry leaves ethanolic extracts. The MIC values were ranged from 0.08 to 0.16 mg/mL against Ps. aeruginosa Ps9, and 0.32 mg/mL against each of S. aureus St3, E. coli Ec3, and S. typhi Sa1. Whereas, the MBC values were ranged from 0.32 to 1.28 mg/mL of the tested extracts. The effects of the tested extracts were also studied representing the bactericidal effect of the grape extract with a ratio of 2 against all investigated isolates, except S. typhi Sa1. Whereas, the mulberry extract had a bactericidal effect towards S. aureus St3 and E. coli Ec3 with ratio of 2, and a bacteriostatic effect against Ps. aeruginosa Ps9 and S. typhi Sa1 with a ratio ≥4. The investigated bacteria found to have a strong ability to form biofilms with densities ranged from 0.67 to 0.80. Both tested extracts inhibited these biofilms with percentages ranged from 48 to 66% at sub-inhibitory concentrations (SICs ranged from 0.04 to 0.16 mg/mL. In addition, the tested extracts have an excellent cytotoxic activity towards colon cancer cell lines (HCT-16. Five phenolic compounds detected in the tested extracts of grape and mulberry using high performance liquid chromatography (HPLC after 9.53 min of the retention time. The phenolic compounds of both tested extracts were gallic, coumaric, ferulic, chlorogenic and caffeic with concentrations ranged from 1.28 to 6.56 µg/mL.

  19. Resistance to degradation and cellular distribution are important features for the antitumor activity of gomesin.

    Science.gov (United States)

    Buri, Marcus V; Domingues, Tatiana M; Paredes-Gamero, Edgar J; Casaes-Rodrigues, Rafael L; Rodrigues, Elaine Guadelupe; Miranda, Antonio

    2013-01-01

    Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm) exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr(2,6,11,15)]-Gm, and [Ser(2,6,11,15)]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr(2,6,11,15)]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr(2,6,11,15), Pro(9)]-D-Gm, and [Thr(2,6,11,15), D-Pro(9)]-Gm), which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity.

  20. Resistance to Degradation and Cellular Distribution are Important Features for the Antitumor Activity of Gomesin

    Science.gov (United States)

    Buri, Marcus V.; Domingues, Tatiana M.; Paredes-Gamero, Edgar J.; Casaes-Rodrigues, Rafael L.; Rodrigues, Elaine Guadelupe; Miranda, Antonio

    2013-01-01

    Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm) exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr2,6,11,15]-Gm, and [Ser2,6,11,15]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr2,6,11,15]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr2,6,11,15, Pro9]-D-Gm, and [Thr2,6,11,15, D-Pro9]-Gm), which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity. PMID:24312251

  1. Chemical Constituents and Antioxidant, Anti-Inflammatory and Anti-Tumor Activities of Melilotus officinalis (Linn. Pall

    Directory of Open Access Journals (Sweden)

    Yu-Ting Liu

    2018-01-01

    Full Text Available Two new p-hydroxybenzoic acid glycosides, namely p-hydroxybenzoic acid-4-O-α-d-manopyranosyl-(1 → 3-α-l-rhamnopyranoside (compound 1 and 4-O-α-l-rhamnopyran-osyl-(1 → 6-α-d-manopyranosyl-(1 → 3-α-l-rhamnopyranoside (compound 2, and seven known compounds, compound 3, 6, 7 (acid components, compound 8, 9 (flavonoids, compound 4 (a coumarin and compound 5 (an alkaloid, were isolated from the 70% ethanol aqueous extract of the aerial parts of Melilotus officinalis (Linn. Pall. The structures of all compounds were elucidated by use of extensive spectroscopic methods Infrared Spectroscopy (IR, High resolution electrospray ionization mass spectrometry (HR-ESI-MS, and 1H and 13C-NMR. Sugar residues obtained after acid hydrolysis were identified by high-performance liquid chromatography (HPLC. The antioxidant activity of all the compounds was evaluated by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+ and 1,1-diphenyl-2-picrylhydrazyl (DPPH. The anti-inflammatory effects of the compounds were also evaluated in lipopolysaccharide (LPS-stimulated RAW 264.7 macrophages. All compounds were shown to inhibit LPS-induced nitric oxide (NO and prostaglandin E 2 (PGE 2 production by suppressing the expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, respectively, in LPS-stimulated RAW 264.7 cells. The inhibitory effect of all the compounds on MCF-7 cells was determined by Cell Counting Kit-8 (CCK-8 method. The results showed that compounds 1, 2, 7, 8, 9 exhibited better antioxidant activity compared to the other compounds. compounds 1–9 had different inhibitory effects on the release of NO, TNF-α and IL-6 in LPS-stimulated RAW264.7 cells by LPS, of which compound 7 was the most effective against inflammatory factors. compounds 1 and 2 have better antitumor activity compared to other compounds. Further research to elucidate the chemical composition and pharmacological effects of Melilotus officinalis (Linn. Pall is

  2. Antitumor Effects of Palladium-α-Lipoic Acid Complex Formulation as an Adjunct in Radiotherapy.

    Science.gov (United States)

    Veena, Ravindran Kalathil; Ajith, Thekkuttuparambil Ananthanarayanan; Janardhanan, Kainoor Krishnankutty; Antonawich, Francis

    2016-01-01

    Several investigations have been initiated to enhance the antitumor effect of radiation and ameliorate its adverse effects such as reducing blood cell counts and causing DNA damage in normal cells. Compounds that enhance the antitumor activity of radiation without reducing blood cell counts or damaging DNA in normal cells can be of immense use as an adjunct in radiotherapy. We evaluated the antitumor effect of a specific set of minerals, vitamins, and amino acids (Poly-MVA) (2 mL/kg, per os), with and without radiation, against Dalton's lymphoma ascites (DLA) and Ehrlich's ascites carcinoma (EAC) cell lines that were transplanted in a solid-tumor model. Whole-body γ-radiation exposure (2 Gy) was performed using 60Co. Poly-MVA enhanced the antitumor effect of radiation when administered beforehand. Furthermore, Poly-MVA administered once daily for 2 wk, immediately after 4 Gy irradiation, protected DNA damage in peripheral blood. It also rendered protection against the radiation-induced reduction of platelet count. The unique electronic and redox properties of palladium-α-lipoic acid complex in Poly-MVA appear to be responsible for the exhibited effect. The results conclude that the antitumor-enhancing and normal cell-protective effect of Poly-MVA warrants additional studies for its potential clinical application.

  3. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  4. Long-Chain Acetylenic Ketones from the Micronesian Sponge Haliclona sp. Importance of the 1-yn-3-ol Group for Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Guang-Xiong Zhou

    2003-11-01

    Full Text Available Abstract: Two new long-chain C33 polyacetylenic compounds, halicynones A and B were isolated from the marine sponge Haliclona sp. along with known analogs. The known compound pellynol A possessing a 1-yn-3-ol terminus, exhibited strong antitumor activity against the human colon tumor cell line HCT-116 (IC50 0.026 μg/mL, however, the corresponding 1-yn-3-one, halicynone A, was inactive, which suggests an important role for the terminal 1-yn-3-ol functional group in mediating cytotoxic activity.

  5. EVALUATION OF ANTIBACTERIAL, ANTITUMOR, ANTIOXIDANT ACTIVITIES AND PHENOLIC CONSTITUENTS OF FIELD-GROWN AND IN VITRO-GROWN LYSIMACHIA VULGARIS L.

    Science.gov (United States)

    Yildirim, Arzu Birinci; Guner, Birgul; Karakas, Fatma Pehlivan; Turker, Arzu Ucar

    2017-01-01

    Lysimachia vulgaris L. (Yellow loosestrife) is a medicinal plant in the family Myrsinaceae. It has been used in the treatment of fever, ulcer, diarrhea and wounds in folk medicine. It has also analgesic, expectorant, astringent and anti-inflammatory activities. Two different sources of the plant (field-grown and in vitro -grown) were used to evaluate the biological activities (antibacterial, antitumor and antioxidant) of L. vulgaris. In vitro-grown plant materials were collected from L. vulgaris plants that were previously regenerated in our laboratory. Plant materials were extracted with water, ethanol and acetone. For antibacterial test, disc diffusion method and 10 different pathogenic bacteria were used. Antioxidant activity was indicated by using DPPH method. The total phenol amount by using Folin-Ciocaltaeu method and the total flavonoid amount by using aluminum chloride (AlCl 3 ) colorimetric method were determined. Generally, yellow loosestrife extracts demonstrated antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, S. epidermidis and Streptococcus pyogenes) . Strong antitumor activity of yellow loosestrife was observed via potato disc diffusion bioassay. Nine different phenolics were also determined and compared by using High-Performance Liquid Chromatography (HPLC). Future investigations should be focused on fractionation of the extracts to identify active components for biological activity.

  6. Anti-tumor activity of Aloe vera against DMBA/croton oil-induced skin papillomagenesis in Swiss albino mice.

    Science.gov (United States)

    Saini, M; Goyal, Pradeep Kumar; Chaudhary, Geeta

    2010-01-01

    Human populations are increasingly exposed to various carcinogens such as chemicals, radiation, and viruses in the environment. Chemopreventive drugs of plant origin are a promising strategy for cancer control because they are generally nontoxic or less toxic than synthetic che-mopreventive agents, and can be effective at different stages of carcinogenesis. The present investigation was undertaken to explore the antitumor activity of topical treatment with aloe vera (Aloe vera) gel, oral treatment with aloe vera extract, and topical and oral treatment with both gel and extract in stage-2 skin carcinogenesis in Swiss albino mice induced by 7,12-dim ethylbenz(a)anthracene (DMBA) and promoted croton (Croton tiglium) oil. The animals were randomly divided into 4 groups and treated as follows: Group I, DMBA + croton oil only (controls); Group II, DMBA + croton oil + topical aloe vera gel; Group III, DMBA + croton oil + oral aloe vera extract; Group I V, DMBA + croton oil + topical aloe vera gel + oral aloe vera extract. Results showed that body weight was significantly increased from 78.6% in the control group (Group I) to 92.5%, 87.5%, and 90.0% in Groups II, III, and I V, respectively. A 100% incidence of tumor development was noted in Group I, which was decreased to 50%, 60%, and 40% in Groups II, III, and I V, respectively. Also in Groups II, III, and IV, the cumulative number of papillomas was reduced significantly from 36 to 12, 15, and 11; tumor yield from 3.6 to 1.2, 1.5, and 1.1; and tumor burden from 3.6 to 2.4, 2.50, and 2.75, respectively, after treatment with aloe vera. Conversely, the average latent period increased significantly from 4.9 (Group I) to 5.23, 5.0, and 6.01 weeks in Groups II, III, and I V, respectively. We conclude that aloe vera protects mice against DMBA/croton oil-induced skin papillomagenesis, likely due to the chemopreventive activity of high concentrations of antioxidants such as vitamins A, C, and E; glutathione peroxidase; several

  7. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice

    Science.gov (United States)

    Yang, Rui; Tang, Qiusha; Miao, Fengqin; An, Yanli; Li, Mengfei; Han, Yong; Wang, Xihui; Wang, Juan; Liu, Peidang; Chen, Rong

    2015-01-01

    Purpose To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. Methods CD90+ LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90+ LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. Results CD90+ LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90+ LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90+ LCSCs to magnetic hyperthermia. Conclusion The inhibition of HSP90 could sensitize CD90+ LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo. PMID:26677324

  8. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells

    International Nuclear Information System (INIS)

    Rhee, Yun-Hee; Jeong, Soo-Jin; Lee, Hyo-Jeong; Lee, Hyo-Jung; Koh, Wonil; Jung, Ji Hoon; Kim, Sun-Hee; Sung-Hoon, Kim

    2012-01-01

    Ergosterol peroxide (EP) derived from edible mushroom has been shown to exert anti-tumor activity in several cancer cells. In the present study, anti-angiogenic activity of EP was investigated with the underlying molecular mechanisms in human multiple myeloma U266 cells. Despite weak cytotoxicity against U266 cells, EP suppressed phosphorylation, DNA binding activity and nuclear translocalization of signal transducer and activator of transcription 3 (STAT3) in U266 cells at nontoxic concentrations. Also, EP inhibited phosphorylation of the upstream kinases Janus kinase 2 (JAK2) and Src in a time-dependent manner. Furthermore, EP increased the expression of protein tyrosine phosphatase SHP-1 at protein and mRNA levels, and conversely silencing of the SHP-1 gene clearly blocked EP-mediated STAT3 inactivation. In addition, EP significantly decreased vascular endothelial growth factor (VEGF), one of STAT3 target genes at cellular and protein levels as well as disrupted in vitro tube formation assay. Moreover, EP significantly suppressed the growth of U266 cells inoculated in female BALB/c athymic nude mice and immunohistochemistry revealed that EP effectively reduced the expression of STAT3 and CD34 in tumor sections compared to untreated control. These findings suggest that EP can exert antitumor activity in multiple myeloma U266 cells partly with antiangiogenic activity targeting JAK2/STAT3 signaling pathway as a potent cancer preventive agent for treatment of multiple myeloma cells

  9. Transport by SLC5A8 with subsequent inhibition of histone deacetylase 1 (HDAC1) and HDAC3 underlies the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Thangaraju, Muthusamy; Karunakaran, Senthil K; Itagaki, Shiro; Gopal, Elangovan; Elangovan, Selvakumar; Prasad, Puttur D; Ganapathy, Vadivel

    2009-10-15

    3-bromopyruvate is an alkylating agent with antitumor activity. It is currently believed that blockade of adenosine triphosphate production from glycolysis and mitochondria is the primary mechanism responsible for this antitumor effect. The current studies uncovered a new and novel mechanism for the antitumor activity of 3-bromopyruvate. The transport of 3-bromopyruvate by sodium-coupled monocarboxylate transporter SMCT1 (SLC5A8), a tumor suppressor and a sodium (Na+)-coupled, electrogenic transporter for short-chain monocarboxylates, was studied using a mammalian cell expression and the Xenopus laevis oocyte expression systems. The effect of 3-bromopyruvate on histone deacetylases (HDACs) was monitored using the lysate of the human breast cancer cell line MCF7 and human recombinant HDAC isoforms as the enzyme sources. Cell viability was monitored by fluorescence-activated cell-sorting analysis and colony-formation assay. The acetylation status of histone H4 was evaluated by Western blot analysis. 3-Bromopyruvate is a transportable substrate for SLC5A8, and that transport process is Na+-coupled and electrogenic. MCF7 cells did not express SLC5A8 and were not affected by 3-bromopyruvate. However, when transfected with SLC5A8 or treated with inhibitors of DNA methylation, these cells underwent apoptosis in the presence of 3-bromopyruvate. This cell death was associated with the inhibition of HDAC1/HDAC3. Studies with different isoforms of human recombinant HDACs identified HDAC1 and HDAC3 as the targets for 3-bromopyruvate. 3-Bromopyruvate was transported into cells actively through the tumor suppressor SLC5A8, and the process was energized by an electrochemical Na+ gradient. Ectopic expression of the transporter in MCF7 cells led to apoptosis, and the mechanism involved the inhibition of HDAC1/HDAC3. Copyright (c) 2009 American Cancer Society.

  10. Transport via SLC5A8 with Subsequent Inhibition of Histone Deacetylases HDAC1 and HDAC3 Underlies the Antitumor Activity of 3-Bromopyruvate

    Science.gov (United States)

    Thangaraju, Muthusamy; Karunakaran, Senthil K.; Itagaki, Shiro; Gopal, Elangovan; Elangovan, Selvakumar; Prasad, Puttur D.; Ganapathy, Vadivel

    2009-01-01

    Background 3-Bromopyruvate is an alkylating agent with antitumor activity. It is currently believed that blockade of ATP production from glycolysis and mitochondria is the primary mechanism responsible for this antitumor effect. The present studies have uncovered a new and novel mechanism for the antitumor activity of 3-bromopyruvate. Methods Transport of 3-bromopyruvate via SLC5A8, a tumor suppressor and a Na+-coupled electrogenic transporter for short-chain monocarboxylates, was studied using a mammalian cell expression and the Xenopus laevis oocyte expression systems. The effect of 3-bromopyruvate on histone deacetylases (HDACs) was monitored using the lysate of the human breast cancer cell line MCF7 and human recombinant HDAC isoforms as the enzyme sources. Cell viability was monitored by FACS analysis and colony formation assay. Acetylation status of histone H4 was evaluated by Western blot. Results 3-Bromopyruvate is a transportable substrate for SLC5A8, with the transport process being Na+-coupled and electrogenic. MCF7 cells do not express SLC5A8 and are not affected by 3-bromopyruvate. However, when transfected with SLC5A8 or treated with inhibitors of DNA methylation, these cells undergo apoptosis in the presence of 3-bromopyruvate. This cell death is associated with inhibition of HDAC1/HDAC3. Studies with different isoforms of human recombinant HDACs identify HDAC1 and HDAC3 as the targets for 3-bromopyruvate. Conclusions 3-Bromopyruvate is transported into cells actively via the tumor suppressor SLC5A8 and the process is energized by an electrochemical Na+ gradient. Ectopic expression of the transporter in MCF7 cells leads to apoptosis, and the mechanism involves inhibition of HDAC1/HDAC3. PMID:19637353

  11. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn [Weifang University, College of Chemistry and Chemical Engineering (China); Wang, Xin [Qinghai Normal University, Department of Chemistry (China)

    2017-03-15

    A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  12. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8+ T cells.

    Science.gov (United States)

    Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan

    2017-08-01

    Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antitumor Activity of a 5-Hydroxy-1H-Pyrrol-2-(5H-One-Based Synthetic Small Molecule In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yunyun Geng

    Full Text Available Alternative chemo-reagents are in great demand because chemotherapy resistance is one of the major challenges in current cancer treatment. 5-hydoxy-1H-pyrrol-2-(5H-one is an important N-heterocyclic scaffold that is present in natural products and medicinal chemistry. However, its antitumor activity has not been systematically explored. In this study, we screened a panel of 5-hydoxy-1H-pyrrol-2-(5H-one derivatives and identified compound 1d as possessing strong anti-proliferative activity in multiple cancer cell lines. Cell cycle analysis revealed that 1d can induce S-phase cell cycle arrest and that HCT116 was sensitive to 1d-induced apoptosis. Further analysis indicated that 1d preferentially induced DNA damage and p53 activation in HCT116 cells and that 1d-induced apoptosis is partly dependent on p53. Furthermore, we showed that 1d significantly suppressed tumor growth in xenograft tumor models in vivo. Taken together, our results suggest that 5-hydoxy-1H-pyrrol-2-(5H-one derivatives bear potential antitumor activity and that 1d is an effective agent for cancer treatment.

  14. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I

    International Nuclear Information System (INIS)

    Ellinghaus, Peter; Heisler, Iring; Unterschemmann, Kerstin; Haerter, Michael; Beck, Hartmut; Greschat, Susanne; Ehrmann, Alexander; Summer, Holger; Flamme, Ingo; Oehme, Felix; Thierauch, Karlheinz; Michels, Martin; Hess-Stumpp, Holger; Ziegelbauer, Karl

    2013-01-01

    The activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression, and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high-throughput screening led to the identification of a class of aminoalkyl-substituted compounds that inhibited hypoxia-induced HIF-1 target gene expression in human lung cancer cell lines at low nanomolar concentrations. Lead structure BAY 87-2243 was found to inhibit HIF-1α and HIF-2α protein accumulation under hypoxic conditions in non-small cell lung cancer (NSCLC) cell line H460 but had no effect on HIF-1α protein levels induced by the hypoxia mimetics desferrioxamine or cobalt chloride. BAY 87-2243 had no effect on HIF target gene expression levels in RCC4 cells lacking Von Hippel–Lindau (VHL) activity nor did the compound affect the activity of HIF prolyl hydroxylase-2. Antitumor activity of BAY 87-2243, suppression of HIF-1α protein levels, and reduction of HIF-1 target gene expression in vivo were demonstrated in a H460 xenograft model. BAY 87-2243 did not inhibit cell proliferation under standard conditions. However under glucose depletion, a condition favoring mitochondrial ATP generation as energy source, BAY 87-2243 inhibited cell proliferation in the nanomolar range. Further experiments revealed that BAY 87-2243 inhibits mitochondrial complex I activity but has no effect on complex III activity. Interference with mitochondrial function to reduce hypoxia-induced HIF-1 activity in tumors might be an interesting therapeutic approach to overcome chemo- and radiotherapy-resistance of hypoxic tumors

  15. Ammonium tetrathiomolybdate enhances the antitumor effects of cetuximab via the suppression of osteoclastogenesis in head and neck squamous carcinoma.

    Science.gov (United States)

    Morisawa, Ayaka; Okui, Tatsuo; Shimo, Tsuyoshi; Ibaragi, Soichiro; Okusha, Yuka; Ono, Mitsuaki; Nguyen, Thi Thu Ha; Hassan, Nur Mohammad Monsur; Sasaki, Akira

    2018-03-01

    Head and neck squamous cell carcinoma (HNSCC) poses a significant challenge clinically where one of the mechanisms responsible for the invasion into facial bones occurs via the activation of osteoclasts. Copper has been demonstrated to play a key role in skeletal remodeling. However, the role of copper in cancer-associated bone destruction is thus far unknown. Lysyl oxidase (LOX) is a copper-dependent enzyme that promotes osteoclastogenesis. In the present study, we investigated the effects of copper on HNSCC with bone invasion by the copper chelator, ammonium tetrathiomolybdate (TM) in vitro and in vivo. We demonstrate that TM blocks the proliferation of HNSCC cells, inhibits LOX activation and decreases the expression of the receptor activator of nuclear factor-κB ligand (RANKL) in osteoblasts and osteocytes, subsequently suppressing bone destruction. These findings suggest that copper is a potential target for the treatment of HNSCCs associated with bone destruction.

  16. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYLETHANONE N(4-ALLYL-3-THIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Vasilii GRAUR

    2015-12-01

    Full Text Available The paper presents the synthesis of the ligand 1-(2-hydroxyphenylethanone N(4-allyl-3-thiosemicarbazone (H2L and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 cells and cervical cancer HeLa cells was determined. It was established that the substitution of hydrogen atom with methyl group in the azomethinic fragment leads to the growth of antitumor activity.SINTEZA ŞI ACTIVITATEA ANTITUMORALĂ A COMPUŞILOR COMPLECŞI AI CUPRULUI, NICHELULUI ŞI COBALTULUI CU N(4-ALIL-3-TIOSEMICARBAZONA 1-(2-HIDROXIFENILETANONEILucrarea conţine descrierea sintezei N(4-alil-3-tiosemicarbazonei 1-(2-hidroxifeniletanonei (H2L şi a şase compuşi coordinativi ai cuprului, nichelului şi cobaltului cu acest ligand. Structura tiosemicarbazonei H2L a fost stabilită în baza datelor spectroscopiei RMN 1H şi 13C. Compuşi coordinativi au fost studiaţi cu ajutorul analizei elementale, analizei gravimetrice a conţinutului de apă, conductivitaţii molare şi magnetochimiei. Pentru H2L a fost determinată activitatea antitumorală faţă de celulele leucemiei umane HL-60 şi ale cancerului cervical HeLa. S-a stabilit că înlocuirea atomului de hidrogen cu o grupare metil în fragmentul azomethinic conduce la creşterea activitaţii antitumorale.

  17. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models.

    Science.gov (United States)

    Higgins, Brian; Kolinsky, Kenneth; Smith, Melissa; Beck, Gordon; Rashed, Mohammad; Adames, Violeta; Linn, Michael; Wheeldon, Eric; Gand, Laurent; Birnboeck, Herbert; Hoffmann, Gerhard

    2004-06-01

    Our objective was the preclinical assessment of the pharmacokinetics, monotherapy and combined antitumor activity of the epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor erlotinib in athymic nude mice bearing non-small cell lung cancer (NSCLC) xenograft models. Immunohistochemistry determined the HER1/EGFR status of the NSCLC tumor models. Pharmacokinetic studies assessed plasma drug concentrations of erlotinib in tumor- and non-tumor-bearing athymic nude mice. These were followed by maximum tolerated dose (MTD) studies for erlotinib and each chemotherapy. Erlotinib was then assessed alone and in combination with these chemotherapies in the NSCLC xenograft models. Complete necropsies were performed on most of the animals in each study to further assess antitumor or toxic effects. Erlotinib monotherapy dose-dependently inhibited tumor growth in the H460a tumor model, correlating with circulating levels of drug. There was antitumor activity at the MTD with each agent tested in both the H460a and A549 tumor models (erlotinib 100 mg/kg: 71 and 93% tumor growth inhibition; gemcitabine 120 mg/kg: 93 and 75% tumor growth inhibition; cisplatin 6 mg/kg: 81 and 88% tumor growth inhibition). When each compound was given at a fraction of the MTD, tumor growth inhibition was suboptimal. Combinations of gemcitabine or cisplatin with erlotinib were assessed at 25% of the MTD to determine efficacy. In both NSCLC models, doses of gemcitabine (30 mg/kg) or cisplatin (1.5 mg/kg) with erlotinib (25 mg/kg) at 25% of the MTD were well tolerated. For the slow growing A549 tumor, there was significant tumor growth inhibition in the gemcitabine/erlotinib and cisplatin/erlotinib combinations (above 100 and 98%, respectively), with partial regressions. For the faster growing H460a tumor, there was significant but less remarkable tumor growth inhibition in these same combinations (86 and 53% respectively). These results show that in NSCLC xenograft tumors with similar

  18. Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice

    International Nuclear Information System (INIS)

    Hwang, Kyung-Sun; Cho, Won-Kyung; Yoo, Jinsang; Yun, Hwan-Jung; Kim, Samyong; Im, Dong-Soo

    2005-01-01

    Therapeutic gene transfer affords a clinically feasible and safe approach to cancer treatment but a more effective modality is needed to improve clinical outcomes. Combined transfer of therapeutic genes with different modes of actions may be a means to this end. Interleukin-12 (IL-12), a heterodimeric immunoregulatory cytokine composed of covalently linked p35 and p40 subunits, has antitumor activity in animal models. The enzyme/prodrug strategy using cytosine deaminase (CD) and 5-fluorocytosine (5-FC) has been used for cancer gene therapy. We have evaluated the antitumor effect of combining IL-12 with CD gene transfer in mice bearing renal cell carcinoma (Renca) tumors. Adenoviral vectors were constructed encoding one or both subunits of murine IL-12 (Ad.p35, Ad.p40 and Ad.IL-12) or cytosine deaminase (Ad.CD). The functionality of the IL-12 or CD gene products expressed from these vectors was validated by splenic interferon (IFN)-γ production or viability assays in cultured cells. Ad.p35 plus Ad.p40, or Ad.IL-12, with or without Ad.CD, were administered (single-dose) intratumorally to Renca tumor-bearing mice. The animals injected with Ad.CD also received 5-FC intraperitoneally. The antitumor effects were then evaluated by measuring tumor regression, mean animal survival time, splenic natural killer (NK) cell activity and IFN-γ production. The inhibition of tumor growth in mice treated with Ad.p35 plus Ad.p40 and Ad.CD, followed by injection of 5-FC, was significantly greater than that in mice treated with Ad.CD/5-FC, a mixture of Ad.p35 plus Ad.p40, or Ad.GFP (control). The combined gene transfer increased splenic NK cell activity and IFN-γ production by splenocytes. Ad.CD/5-FC treatment significantly increased the antitumor effect of Ad.IL-12 in terms of tumor growth inhibition and mean animal survival time. The results suggest that adenovirus-mediated IL-12 gene transfer combined with Ad.CD followed by 5-FC treatment may be useful for treating cancers

  19. Antitumor properties and modulation of antioxidant enzymes' activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction.

    Science.gov (United States)

    El-Shemy, H A; Aboul-Soud, M A M; Nassr-Allah, A A; Aboul-Enein, K M; Kabash, A; Yagi, A

    2010-01-01

    The aim of this study was to evaluate the potential anticancer properties and modulatory effect of selected Aloe vera (A. vera) active principles on antioxidant enzyme activities. Thus, three anthraquinones (Namely: aloesin, aloe-emodin and barbaloin) were extracted from A. vera leaves by supercritical fluid extraction and subsequently purified by high performance liquid chromatography. Additionally, the N-terminal octapeptide derived from verectin, a biologically active 14 kDa glycoprotein present in A. vera, was also tested. In vivo, active principles exhibited significant prolongation of the life span of tumor-transplanted animals in the following order: barbaloin> octapeptide> aloesin > aloe-emodin. A. vera active principles exhibited significant inhibition on Ehrlich ascite carcinoma cell (EACC) number, when compared to positive control group, in the following order: barbaloin> aloe-emodin > octapeptide > aloesin. Moreover, in trypan blue cell viability assay, active principles showed a significant concentration-dependent cytotoxicity against acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells. Furthermore, in MTT cell viability test, aloe-emodin was found to be active against two human colon cancer cell lines (i.e. DLD-1 and HT2), with IC(50) values of 8.94 and 10.78 microM, respectively. Treatments of human AML leukemic cells with active principles (100 microg ml(-1)) resulted in varying intensities of internucleosomal DNA fragmentation, hallmark of cells undergoing apoptosis, in the following order: aloe-emodin> aloesin> barbaloin> octapeptide. Intererstingly, treatment of EACC tumors with active principles resulted in a significant elevation activity of key antioxidant enzymes (SOD, GST, tGPx, and LDH). Our data suggest that the tested A. vera compounds may exert their chemo-preventive effect through modulating antioxidant and detoxification enzyme activity levels, as they are one of the indicators of tumorigenesis. These

  20. A new class of nitrosoureas. 4. Synthesis and antitumor activity of disaccharide derivatives of 3,3-disubstituted 1-(2-chloroethyl)-1-nitrosoureas.

    Science.gov (United States)

    Tsujihara, K; Ozeki, M; Morikawa, T; Kawamori, M; Akaike, Y; Arai, Y

    1982-04-01

    A series of 33 N-(2-chloroethyl)-N-nitrosocarbamoyl derivatives of N-substituted glycosylamines has been prepared and tested for antitumor activities. The compounds were obtained by reaction of glycosylamines with isocyanate, followed by nitrosation with N2O4. Structure-activity relationships of these trisubstituted nitrosoureas were investigated by varying the N-substituents and disaccharide groups and by comparing them with the corresponding disubstituted analogues. A large number of the nitrosoureas bearing a maltosyl group exhibited strong antitumor activities against leukemia L1210 and Ehrlich ascites carcinoma, and 60-day survivors against leukemia L1210 were found at the optimal dose for these derivatives. In contrast, the lactosyl and the melibiosyl derivatives were almost inactive. The most interesting compound in this series, the 3-isobutyl-3-maltosyl derivative (37), was tested against leukemia L1210 by single and multiple treatment. Its therapeutic ratio (96.3) obtained by multiple treatment is 3 times larger than that (31.5) obtained by single treatment, suggesting a possible clinical utility of 37 by multiple treatment. The favorable effect of a maltosyl moiety in this class of compounds is discussed.

  1. Telmisartan Exerts Anti-Tumor Effects by Activating Peroxisome Proliferator-Activated Receptor-γ in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Juan Li

    2014-03-01

    Full Text Available Telmisartan, a member of the angiotensin II type 1 receptor blockers, is usually used for cardiovascular diseases. Recent studies have showed that telmisartan has the property of PPARγ activation. Meanwhile, PPARγ is essential for tumor proliferation, invasion and metastasis. In this work we explore whether telmisartan could exert anti-tumor effects through PPARγ activation in A549 cells. MTT and trypan blue exclusion assays were included to determine the survival rates and cell viabilities. RT-PCR and western blotting were used to analyze the expression of ICAM-1, MMP-9 and PPARγ. DNA binding activity of PPARγ was evaluated by EMSA. Our data showed that the survival rates and cell viabilities of A549 cells were all reduced by telmisartan in a time- and concentration-dependent manner. Meanwhile, our results also demonstrated that telmisartan dose-dependently inhibited the expression of ICAM-1 and MMP-9. Moreover, the cytotoxic and anti-proliferative effects, ICAM-1 and MMP-9 inhibitive properties of telmisartan were totally blunted by the PPARγ antagonist GW9662. Our findings also showed that the expression of PPARγ was up-regulated by telmisartan in a dose dependent manner. And, the EMSA results also figured out that DNA binding activity of PPARγ was dose-dependently increased by telmisartan. Additionally, our data also revealed that telmisartan-induced PPARγ activation was abrogated by GW9662. Taken together, our results indicated that telmisartan inhibited the expression of ICAM-1 and MMP-9 in A549 cells, very likely through the up-regulation of PPARγ synthesis.

  2. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase - Structural and modeling insight into its functions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Guang [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Huang, Philip L. [American Biosciences, Boston, MA 02114 (United States); Zhang, Dawei; Sun, Yongtao [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Chen, Hao-Chia [Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892 (United States); Zhang, John [Department of Chemistry, New York University, New York, NY 10003 (United States); Huang, Paul L. [Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114 (United States); Kong, Xiang-Peng, E-mail: xiangpeng.kong@med.nyu.edu [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States); Lee-Huang, Sylvia, E-mail: sylvia.lee-huang@med.nyu.edu [Department of Biochemistry, New York University School of Medicine, New York, NY 10016 (United States)

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  3. The antitumor activity of a doxorubicin loaded, iRGD-modified sterically-stabilized liposome on B16-F10 melanoma cells: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Yu KF

    2013-07-01

    Full Text Available Ke-Fu Yu,1 Wei-Qiang Zhang,1 Li-Min Luo,1 Ping Song,1 Dan Li,1 Ruo Du,1 Wei Ren,1 Dan Huang,1 Wan-Liang Lu,1,2 Xuan Zhang,1 Qiang Zhang1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China; 2State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China Abstract: Considering the fact that iRGD (tumor-homing peptide demonstrates tumor-targeting and tumor-penetrating activity, and that B16-F10 (murine melanoma cells overexpress both αv integrin receptor and neuropilin-1 (NRP-1, the purpose of this study was to prepare a novel doxorubicin (DOX-loaded, iRGD-modified, sterically-stabilized liposome (SSL (iRGD-SSL-DOX in order to evaluate its antitumor activity on B16-F10 melanoma cells in vitro and in vivo. The iRGD-SSL-DOX was prepared using a thin-film hydration method. The characteristics of iRGD-SSL-DOX were evaluated. The in vitro leakage of DOX from iRGD-SSL-DOX was tested. The in vitro tumor-targeting and tumor-penetrating characteristics of iRGD-modified liposomes on B16-F10 cells were investigated. The in vivo tumor-targeting and tumor-penetrating activities of iRGD-modified liposomes were performed in B16-F10 tumor-bearing nude mice. The antitumor effect of iRGD-SSL-DOX was evaluated in B16-F10 tumor-bearing C57BL/6 mice in vivo. The average particle size of the iRGD-SSL-DOX was found to be 91 nm with a polydispersity index (PDI of 0.16. The entrapment efficiency of iRGD-SSL-DOX was 98.36%. The leakage of DOX from iRGD-SSL-DOX at the 24-hour time point was only 7.5%. The results obtained from the in vitro flow cytometry and confocal microscopy, as well as in vivo biodistribution and confocal immunofluorescence microscopy experiments, indicate that the tumor-targeting and tumor-penetrating activity of the iRGD-modified SSL was higher than that of unmodified SSL. In vivo antitumor activity

  4. Synthesis, structure, antitumor activity of novel pharmaceutical co-crystals based on bispyridyl-substituted α, β-unsaturated ketones with gallic acid

    Science.gov (United States)

    Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge

    2016-05-01

    Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.

  5. Artemisinic acid exhibits antitumor activity in MCF-7 breast cancer cells through the inhibition of angiogenesis, VEGF, m-TOR and AKT signalling pathways

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-09-01

    Full Text Available The aim of the present study was to evaluate the antitumor and anti-angiogenic effects of artemisinic acid in MCF-7 human breast cancer cells. Various cell signalling pathways (VEGF, m-TOR and AKT signalling pathways and MTT assay were used. The in vivo antitumor activity of artemisinic acid was evaluated by means of tumor xenograft mouse model. Transwell cell migration assay was used to examine the chemotactic motility of the human umbilical vascular endothelial cells (HUVECs, while as endothelial cell capillary-like tube formation assay was used to evaluate the effect of artemisinic acid on the tube formation in HUVECs. We found that artemisinic acid considerably reduced both the volume and weight of concrete tumors and reduced angiogenesis in a xenograft mouse tumor model in vivo. Further, artemisinic acid suppressed the VEGF-induced cell migration and capillary-like tube formation of HUVECs in a dose-dependent manner. Artemisinic acid was found to suppress the VEGF-induced phosphorylation of VEGFR2 and also the activity of AKT and m-TOR.

  6. Antitumor HPV E7-specific CTL activity elicited by in vivo engineered exosomes produced through DNA inoculation

    Directory of Open Access Journals (Sweden)

    Di Bonito P

    2017-06-01

    -injected mice was formally demonstrated by the E7-specific CD8+ T-cell immune response we detected in mice inoculated with exosomes isolated from plasma of mice inoculated with the Nefmut/E7 vector. Finally, we provide evidence that the injection of Nefmut/E7 DNA led to the generation of effective antigen-specific cytotoxic T lymphocytes whose activity was likely part of the potent, therapeutic antitumor effect we observed in mice implanted with TC-1 tumor cells. In summary, we established a novel method to generate immunogenic exosomes in vivo by the intramuscular inoculation of DNA vectors expressing the exosome-anchoring protein Nefmut and its derivatives. Keywords: nanovesicles, cytotoxic T lymphocytes, HIV-1 Nef, DNA vectors

  7. Antitumor activity of docetaxel-loaded polymeric nanoparticles fabricated by Shirasu porous glass membrane-emulsification technique

    Directory of Open Access Journals (Sweden)

    Yu YN

    2013-07-01

    residence time, respectively, compared with those of PLGA nanoparticles, and 2.23-, 13.2-, 8.51-fold higher than those of Taxotere, respectively. In vivo real-time distribution of nanoparticles was measured on tumor-bearing mice by near-infrared fluorescence imaging, which demonstrated that the PLA-TPGS nanoparticles achieved much higher concentration and longer retention in tumors than PLGA nanoparticles after intravenous injection. This is consistent with the pharmacokinetic behavior of the nanoparticles. The tumor-inhibitory effect of DTX-loaded nanoparticles was observed in vivo in an H22 tumor-bearing mice model via intravenous administration. This indicated that PLA-TPGS nanoparticles are a feasible drug-delivery formulation with a pilot fabrication technique and have superior pharmacokinetic and anticancer effects compared to the commercially available Taxotere. Keywords: SPG membrane emulsification, nanoparticles, docetaxel, pharmacokinetics, antitumor activity

  8. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Wan, Jingyuan; Luo, Fuling [Department of Pharmacology, Chongqing Medical University, Chongqing (China); Li, Hongyuan [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: rgs726@163.com [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2013-10-01

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.

  9. Enhanced antitumor efficacy and counterfeited cardiotoxicity of combinatorial oral therapy using Doxorubicin- and Coenzyme Q10-liquid crystalline nanoparticles in comparison with intravenous Adriamycin

    DEFF Research Database (Denmark)

    Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    and strong synergism for combination at 1:10 dose ratio owing to higher cellular uptake, nuclear colocalization, higher apoptotic index and 8-OHdG levels. The prophylactic antitumor efficacy of the CoQ10-LCNPs was also established using tumor induction and progression studies. Finally, therapeutic antitumor......, with Dox-induced-cardiotoxicity was completely counterfeited in combination. In nutshell, LCNPs pose great potential in improving the therapeutic efficacy of drugs by oral route of administration. FROM THE CLINICAL EDITOR: This study describes the use of liquid crystalline nanoparticles containing coenzyme...

  10. The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG.

    Science.gov (United States)

    Lv, Chao; Zeng, Hua-Wu; Wang, Jin-Xin; Yuan, Xing; Zhang, Chuang; Fang, Ting; Yang, Pei-Ming; Wu, Tong; Zhou, Yu-Dong; Nagle, Dale G; Zhang, Wei-Dong

    2018-02-07

    Tanshinone IIA (Tan IIA), the primary bioactive compound derived from the traditional Chinese medicine (TCM) Salvia miltiorrhiza Bunge, has been reported to possess antitumor activity. However, its antitumor mechanisms are not fully understood. To resolve the potential antitumor mechanism(s) of Tan IIA, its gene expression profiles from our database was analyzed by connectivity map (CMAP) and the CMAP-based mechanistic predictions were confirmed/validated in further studies. Specifically, Tan IIA inhibited total protein kinase C (PKC) activity and selectively suppressed the expression of cytosolic and plasma membrane PKC isoforms ζ and ε. The Ras/MAPK pathway that is closely regulated by the PKC signaling is also inhibited by Tan IIA. While Tan IIA did not inhibit heat shock protein 90 (Hsp90), it synergistically enhanced the antitumor efficacy of the Hsp90 inhibitors 17-AAG and ganetespib in human breast cancer MCF-7 cells. In addition, Tan IIA significantly inhibited PI3K/Akt/mTOR signaling, and induced both cell cycle arrest and autophagy. Collectively, these studies provide new insights into the molecular mechanisms responsible for antitumor activity of Tan IIA.

  11. Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Zong Sheng eGuo

    2014-04-01

    Full Text Available Oncolytic viruses (OVs are novel immunotherapeutic agents whose anticancer effects come from both oncolysis and elicited antitumor immunity. OVs induce mostly immunogenic cancer cell death (ICD, including immunogenic apoptosis, necrosis/necroptosis, pyroptosis and autophagic cell death, leading to exposure of calreticulin and heat-shock proteins to the cell surface, and/or released ATP, high mobility group box-1 [HMGB1], uric acid, and other DAMPs as well as PAMPs as danger signals, along with tumor-associated antigens, to activate dendritic cells (DCs and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive antitumor immunity. The mode of cancer cell death may be modulated by individual OVs and cancer cells as they often encode and express genes that inhibit/promote apoptosis, necroptosis or autophagic cell death. We can genetically engineer OVs with death-pathway-modulating genes and thus skew the infected cancer cells towards certain death pathways for the enhanced immunogenicity. Strategies combining with some standard therapeutic regimens may also change the immunological consequence of cancer cell death. In this review, we discuss recent advances in our understanding of danger signals, modes of cancer cell death induced by OVs, the induced danger signals and functions in eliciting subsequent antitumor immunity. We also discuss potential combination strategies to target cells into specific modes of ICD and enhance cancer immunogenicity, including blockade of immune checkpoints, in order to break immune tolerance, improve antitumor immunity and thus the overall therapeutic efficacy.

  12. miR-133b down-regulates ABCC1 and enhances the sensitivity of CRC to anti-tumor drugs.

    Science.gov (United States)

    Chen, Miao; Li, Daojiang; Gong, Ni; Wu, Hao; Su, Chen; Xie, Canbin; Xiang, Hong; Lin, Changwei; Li, Xiaorong

    2017-08-08

    Multidrug resistance (MDR) is the main cause of failed chemotherapy treatments. Therefore, preventing MDR is pivotal in treating colorectal cancer (CRC). In a previous study miR-133b was shown to be a tumor suppressor. Additionally, in CRC cells transfected with miR-133b, ATP-binding cassette (ABC) subfamily C member 1(ABCC1) was shown to be significantly down regulated. Whether miR-133b also enhances the chemosensitivity of drugs used to treat CRC by targeting ABCC1 is still unclear. Here, we utilized flow cytometry and high-performance liquid chromatography (HPLC) analysis to identify the ability of miR-133b to reserve MDR in CRC. We then used a dual-luciferase reporter assay to validate that miR-133b targets ABCC1. Further in vivo experiments were designed to validate the method in which miR-133b reversed MDR in CRC cells. The results demonstrated that the level of miR-133b was down-regulated and the expression of ABCC1 was up-regulated in drug-resistant CRC cells compared to non-drug-resistant CRC cells. The restoration of miR-133b expression in CRC drug-resistant cells in vitro resulted in reduced IC50s to chemotherapeutic drugs, significantly induced G1 accumulation, inhibited growth and promoted necrosis in combination with either 5-fluorouracil (5-FU) or vincristine (VCR), and decreased the expression of ABCC1. The dual-luciferase assay demonstrated that miR-133b directly targets ABCC1. The combination of agomiRNA-133b with chemotherapeutic drugs in vivo inhibited tumor growth induced by CRC drug-resistant cells. A xenograft from the in vivo model resulted in up-regulated levels of miR-133b and down-regulated levels of ABCC1. Therefore, miR-133b enhances the chemosensitivity of CRC cells to anti-tumor drugs by directly down-regulating ABCC1. This discovery provides a therapeutic strategy in which miR-133b is used as a potential sensitizer for drug-resistant CRC.

  13. Impact of metal binding on the antitumor activity and cellular imaging of a metal chelator cationic imidazopyridine derivative.

    Science.gov (United States)

    Roy, Mithun; Chakravarthi, Balabhadrapatruni V S K; Jayabaskaran, Chelliah; Karande, Anjali A; Chakravarty, Akhil R

    2011-05-14

    A new water soluble cationic imidazopyridine species, viz. (1E)-1-((pyridin-2-yl)methyleneamino)-3-(3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2(3H)-yl)propan-2-ol (1), as a metal chelator is prepared as its PF(6) salt and characterized. Compound 1 shows fluorescence at 438 nm on excitation at 342 nm in Tris-HCl buffer giving a fluorescence quantum yield (φ) of 0.105 and a life-time of 5.4 ns. Compound 1, as an avid DNA minor groove binder, shows pUC19 DNA cleavage activity in UV-A light of 365 nm forming singlet oxygen species in a type-II pathway. The photonuclease potential of 1 gets enhanced in the presence of Fe(2+), Cu(2+) or Zn(2+). Compound 1 itself displays anticancer activity in HeLa, HepG2 and Jurkat cells with an enhancement on addition of the metal ions. Photodynamic effect of 1 at 365 nm also gets enhanced in the presence of Fe(2+) and Zn(2+). Fluorescence-based cell cycle analysis shows a significant dead cell population in the sub-G1 phase of the cell cycle suggesting apoptosis via ROS generation. A significant change in the nuclear morphology is observed from Hoechst 33258 and an acridine orange/ethidium bromide (AO/EB) dual nuclear staining suggesting apoptosis in cells when treated with 1 alone or in the presence of the metal ions. Apoptosis is found to be caspase-dependent. Fluorescence imaging to monitor the distribution of 1 in cells shows that 1 in the presence of metal ions accumulates predominantly in the cytoplasm. Enhanced uptake of 1 into the cells within 12 h is observed in the presence of Fe(2+) and Zn(2+).

  14. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Science.gov (United States)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying

    2015-05-01

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  15. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying, E-mail: wyzhong@cpu.edu.cn [China Pharmaceutical University, Department of Analytical Chemistry (China)

    2015-05-15

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π–π interaction. DSPE–PEG–COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (−24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion (n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC{sub 50}: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  16. Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression.

    Science.gov (United States)

    Gacerez, Albert T; Hua, Casey K; Ackerman, Margaret E; Sentman, Charles L

    2018-05-01

    B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.

  17. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate.

    Science.gov (United States)

    Shi, Jia; Zhou, Songlei; Kang, Le; Ling, Hu; Chen, Jiepeng; Duan, Lili; Song, Yanzhi; Deng, Yihui

    2018-02-01

    Numerous studies have recently shown that vitamin K 2 (VK 2 ) has antitumor effects in a variety of tumor cells, but there are few reports demonstrating antitumor effects of VK 2 in vivo. The antitumor effects of VK 2 in nanoemulsions are currently not known. Therefore, we sought to characterize the antitumor potential of VK 2 nanoemulsions in S180 tumor cells in the present study. Furthermore, a ligand conjugate sialic acid-cholesterol, with enhanced affinity towards the membrane receptors overexpressed in tumors, was anchored on the surface of the nanoemulsions to increase VK 2 distribution to the tumor tissue. VK 2 was encapsulated in oil-in-water nanoemulsions, and the physical and chemical stability of the nanoemulsions were characterized during storage at 25 °C. At 25 °C, all nanoemulsions remained physically and chemically stable with little change in particle size. An in vivo study using syngeneic mice with subcutaneously established S180 tumors demonstrated that intravenous or intragastric administration of VK 2 nanoemulsions significantly suppressed the tumor growth. The VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate showed higher tumor growth suppression than the VK 2 nanoemulsions, while neither of them exhibited signs of drug toxicity. In summary, VK 2 exerted effective antitumor effects in vivo, and VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate enhanced the antitumor activity, suggesting that these VK 2 may be promising agents for the prevention or treatment of tumor in patients.

  18. Synthesis, Characterization, and In Vitro and In Vivo Evaluations of 4-(N-Docosahexaenoyl 2′, 2′-Difluorodeoxycytidine with Potent and Broad-Spectrum Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Youssef W. Naguib

    2016-01-01

    Full Text Available In this study, a new compound, 4-(N-docosahexaenoyl 2′, 2′-difluorodeoxycytidine (DHA-dFdC, was synthesized and characterized. Its antitumor activity was evaluated in cell culture and in mouse models of pancreatic cancer. DHA-dFdC is a poorly soluble, pale yellow waxy solid, with a molecular mass of 573.3 Da and a melting point of about 96°C. The activation energy for the degradation of DHA-dFdC in an aqueous Tween 80–based solution is 12.86 kcal/mol, whereas its stability is significantly higher in the presence of vitamin E. NCI-60 DTP Human Tumor Cell Line Screening revealed that DHA-dFdC has potent and broad-spectrum antitumor activity, especially in leukemia, renal, and central nervous system cancer cell lines. In human and murine pancreatic cancer cell lines, the IC50 value of DHA-dFdC was up to 105-fold lower than that of dFdC. The elimination of DHA-dFdC in mouse plasma appeared to follow a biexponential model, with a terminal phase t1/2 of about 58 minutes. DHA-dFdC significantly extended the survival of genetically engineered mice that spontaneously develop pancreatic ductal adenocarcinoma. In nude mice with subcutaneously implanted human Panc-1 pancreatic tumors, the antitumor activity of DHA-dFdC was significantly stronger than the molar equivalent of dFdC alone, DHA alone, or the physical mixture of them (1:1, molar ratio. DHA-dFdC also significantly inhibited the growth of Panc-1 tumors orthotopically implanted in the pancreas of nude mice, whereas the molar equivalent dose of dFdC alone did not show any significant activity. DHA-dFdC is a promising compound for the potential treatment of cancers in organs such as the pancreas.

  19. Effects of Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici on the nematode Caenorhabditis elegans include possible antitumor activity.

    Science.gov (United States)

    Fasseas, Michael K; Fasseas, Costas; Mountzouris, Konstantinos C; Syntichaki, Popi

    2013-03-01

    This study examined the effects of three lactic acid bacteria (LAB) strains on the nematode Caenorhabditis elegans. Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici were found to inhibit the development and growth of the worm. Compared to Escherichia coli used as the control, L. reuteri and P. acidilactici reduced the lifespan of wild-type and short-lived daf-16 worms. On the contrary, L. salivarius extended the lifespan of daf-16 worms when used live, but reduced it as UV-killed bacteria. The three LAB induced the expression of genes involved in pathogen response and inhibited the growth of tumor-like germ cells, without affecting DAF16 localization or increasing corpse cells. Our results suggest the possible use of C. elegans as a model for studying the antitumor attributes of LAB. The negative effects of these LAB strains on the nematode also indicate their potential use against parasitic nematodes.

  20. Anti-tumor activities of a novel chlorin derivative for photodynamic therapy in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Li-Jun Zhang

    2015-01-01

    Full Text Available In this study, a novel photosensitizer meso-tetra (3-pyrrolidinomethyl-4-methoxyphenyl chlorin (TPMC was reported. It displays a characteristic long wavelength absorption peak at 656 nm and it shows a singlet oxygen quantum yield of 0.48. After light irradiation with 650 nm laser, it can kill Eca-109 and SMMC-7721 cells in vitro (25 mW/cm2, 1.2 to 3.6 J/cm2 and destroy Eca-109 tumor in nude mice (50 mW/cm2, 90 J/cm2. It has the perspective to be developed as a new anti-tumor drug in photodynamic therapy (PDT photodiagnosis, and deserves further investigation.