WorldWideScience

Sample records for enhance oxygen transport

  1. Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses

    Science.gov (United States)

    Ataide, Filipe Andre Prata

    The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic

  2. Enhanced safety margins during wet transport of irradiated fuel by catalytic recombination of radiolysis hydrogen and oxygen

    International Nuclear Information System (INIS)

    Spencer, J.T.; Bankhead, M.; Hodge, N.A.

    2004-01-01

    BNFL has developed and tested a new method for use in wet transport of irradiated fuel. The method uses a catalyst to recombine the hydrogen and oxygen produced from radiolysis. The catalyst is installed in the nitrogen ullage gas region. It has twin benefits as it eliminates a gas mixture that could, in principle, exceed the safe target levels set to ensure safety during Transport, and it also reduces overall gas pressure. Pure water radiolysis predictions, from experiment and theory, indicate very low levels of hydrogen and oxygen generation. BNFL's historic experience is that in some transport packages it is possible to produce higher levels of hydrogen and oxygen. This drives the need to improve on our existing ullage gas remediation technology. Our studies of the radiolysis science and our flask data suggest it is the interaction of the liquors and material surfaces that is giving rise to the enhanced levels of hydrogen and/or oxygen. This technical paper demonstrates the performance of the recombiner catalyst under normal and extreme conditions of transport. The paper will present experimental data that shows the recombiner catalyst working to manage the hydrogen and oxygen levels

  3. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  4. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  5. Reclaimed wastewater quality enhancement by oxygen injection during transportation.

    Science.gov (United States)

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2011-01-01

    In-sewer treatments have been studied in sewer systems, but few have been carried out on reclaimed wastewater systems. A study of oxygen injection has been performed in a completely filled gravity pipe, 0.6 m in diameter and 62 km long, in cast iron with concrete inside coating, which is part of the reclaimed wastewater reuse scheme of Tenerife (Spain). A high pressure oxygen injection system was installed at 16.0 km from pipe inlet and a constant dosage of 30 mg/L O(2) has been injected during six months, under three different operational modes (low COD, 63 mg/L; high COD, 91 mg/L; and partially nitrified water). Oxygen has been consumed in nitrification and organic matter reduction. Generally, nitrification is clearly favored instead of the organic matter oxidation. Nitrification occurs, in general, with nitrite accumulation due to the presence of free ammonia above 1 mg/L. Denitrification is in all cases incomplete due to a limitation of easily biodegradable organic matter content, inhibiting the appearance of anaerobic conditions and sulfide generation. A notable reduction of organic matter parameters is achieved (TSS below 10 mg/L), which is significantly higher than that observed under the ordinary transport conditions without oxygen. This leads to a final cost reduction, and the oxygen injection system helps water reuse managers to maintain a final good water quality in the case of a treatment plant malfunction.

  6. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  7. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L. [Argonne National Lab., IL (United States). Energy Technology Div.; Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  8. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases

  9. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  10. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  11. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  12. Radial transport of high-energy oxygen ions into the deep inner magnetosphere observed by Van Allen Probes

    Science.gov (United States)

    Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.

    2017-12-01

    It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.

  13. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  14. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    International Nuclear Information System (INIS)

    Choi, Yong Ju; Kim, Young-Jin; Nam, Kyoungphile

    2009-01-01

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  15. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ju; Kim, Young-Jin [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of)

    2009-08-15

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  16. Relationship Between Cerebral Oxygenation and Hemodynamic and Oxygen Transport Parameters in Surgery for Acquired Heart Diseases

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin

    2012-01-01

    Full Text Available Objective: to evaluate the relationship between cerebral oxygenation and hemodynamic and oxygen transport parameters in surgical correction of concomitant acquired heart diseases. Subjects and methods. Informed consent was received from 40 patients who required surgery because of concomitant (two or more acquired heart defects. During procedure, perioperative monitoring of oxygen transport and cerebral oxygenation was performed with the aid of PiCCO2 monitor (Pulsion Medical Systems, Germany and a Fore-Sight cerebral oximeter (CASMED, USA. Anesthesia was maintained with propofol and fen-tanyl, by monitoring the depth of anesthesia. Early postoperative intensive therapy was based on the protocol for early targeted correction of hemodynamic disorders. Oxygen transport and cerebral oxygenation parameters were estimated intraopera-tively and within 24 postoperative hours. A statistical analysis including evaluation of Spearman correlations was performed with the aid of SPSS 15.0. Results. During perfusion, there was a relationship between cerebral oximetry values and hemat-ocrit levels, and oxygen partial pressure in the venous blood. Furthermore, a negative correlation between cerebral oximetry values and blood lactate levels was found 30 minutes after initiation of extracorporeal circulation (EC. During the study, there was a positive correlation between cerebral oxygenation and values of cardiac index, central venous saturation, and oxygen delivery index. There was a negative relationship between cerebral oxygenation and extravascular lung water at the beginning of surgery and a correlation between cerebral oximetry values and oxygenation index by the end of the first 24 postoperative hours. Conclusion. The cerebral oxygenation values correlate -with the main determinants of oxygen transport during EC and after cardiac surgical procedures. Cerebral oximetry may be used in early targeted therapy for the surgical correction of acquired combined

  17. Dynamic oxygen-enhanced MRI of cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Taha M Mehemed

    Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  19. Basics concepts and clinical applications of oxygen-enhanced MR imaging

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto

    2007-01-01

    Oxygen-enhanced MR imaging is a new technique, and its physiological significance has not yet been fully elucidated. This review article covers (1) the theory of oxygen enhancement and its relationship with respiratory physiology; (2) design for oxygen-enhanced MR imaging sequencing; (3) a basic study of oxygen-enhanced MR imaging in animal models and humans; (4) a clinical study of oxygen-enhanced MR imaging; and (5) a comparison of advantages and disadvantages of this technique with those of hyperpolarized noble gas MR ventilation imaging. Oxygen-enhanced MR imaging provides not only the ventilation-related, but also respiration-related information. Oxygen-enhanced MR imaging has the potential to replace nuclear medicine studies for the identification of regional pulmonary function, and many investigators are now attempting to adapt this technique for routine clinical studies. We believe that further basic studies as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR imaging for the future of pulmonary functional imaging and its usefulness for diagnostic radiology and pulmonary medicine

  20. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  1. Oxygen-enhanced magnetic resonance ventilation imaging of lung

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Chen Qun; Hatabu, Hiroto

    2001-01-01

    The oxygen-enhanced magnetic resonance (MR) ventilation imaging is a new technique, and the full extent of its physiological significance has not been elucidated. This review article includes background on (1) respiratory physiology; (2) mechanism and optimization of oxygen-enhanced MR imaging technique; (3) recent applications in animal and human models; and (4) merits and demerits of the technique in comparison with hyperpolarized noble gas MR ventilation imaging. Application of oxygen-enhanced MR ventilation imaging to patients with pulmonary diseases has been very limited. However, we believe that further basic studies, as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR ventilation imaging in the future of pulmonary functional imaging and its usefulness for diagnostic radiology

  2. Oxygen Transport: A Simple Model for Study and Examination.

    Science.gov (United States)

    Gaar, Kermit A., Jr.

    1985-01-01

    Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…

  3. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  4. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  5. The nursing perspective on monitoring hemodynamics and oxygen transport.

    Science.gov (United States)

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  6. Spin transport in oxygen adsorbed graphene nanoribbon

    Science.gov (United States)

    Kumar, Vipin

    2018-04-01

    The spin transport properties of pristine graphene nanoribbons (GNRs) have been most widely studied using theoretical and experimental tools. The possibilities of oxidation of fabricated graphene based nano electronic devices may change the device characteristics, which motivates to further explore the properties of graphene oxide nanoribbons (GONRs). Therefore, we present a systematic computational study on the spin polarized transport in surface oxidized GNR in antiferromagnetic (AFM) spin configuration using density functional theory combined with non-equilibrium Green's function (NEGF) method. It is found that the conductance in oxidized GNRs is significantly suppressed in the valance band and the conduction band. A further reduction in the conductance profile is seen in presence of two oxygen atoms on the ribbon plane. This change in the conductance may be attributed to change in the surface topology of the ribbon basal plane due to presence of the oxygen adatoms, where the charge transfer take place between the ribbon basal plane and the oxygen atoms.

  7. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  8. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  9. Effects of whole-body gamma irradiation on oxygen transport by rat erythrocytes

    International Nuclear Information System (INIS)

    Thiriot, Christian; Kergonou, J.F.; Rocquet, Guy; Allary, Michel; Saint-Blancard, Jacques

    1982-01-01

    In this work, we studied the influence of whole-body gamma irradiation (8 Gy) upon oxygen transport by erythrocytes, through the erythrocyte count and related parameters, and through the factors affecting the oxygen affinity of hemoglobin. The oxygen affinity of hemoglobin is increased from day D + 5 after irradiation, and a severe erythropenia develops from day D + 8. These modifications probably result in tissue hypoxia via diminished oxygen transport from lungs to tissues, and decreased oxygen release from oxyhemoglobin in tissues

  10. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  11. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    Science.gov (United States)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (panimals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  12. Carbogen inhalation increases oxygen transport to hypoperfused brain tissue in patients with occlusive carotid artery disease: increased oxygen transport to hypoperfused brain

    DEFF Research Database (Denmark)

    Ashkanian, Mahmoud; Gjedde, Albert; Mouridsen, Kim

    2009-01-01

    to inhaled oxygen (the mixture known as carbogen). In the present study, we measured CBF by positron emission tomography (PET) during inhalation of test gases (O(2), carbogen, and atmospheric air) in healthy volunteers (n = 10) and in patients with occlusive carotid artery disease (n = 6). Statistical...... and Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation...

  13. Correction of Oxygen Transport and Metabolic Disturbances in Acute Poisoning by Neurotropic Substances

    Directory of Open Access Journals (Sweden)

    G. A. Livanov

    2007-01-01

    Full Text Available Objective: to examine the capacities of pharmacological correction of impairments in oxygen-transporting systems and metabolic processes with perfluorane and cytoflavin in critically ill patients with acute intoxication with neurotropic poisons.Subjects and methods. Metabolic sequels of severe hypoxia, free radical processes, and endogenous intoxications were studied in 62 patients with the severest acute intoxication with neurotropic poisons.Results. The studies have established that hypoxia and metabolic changes lead to the development of endotoxicosis. Intensifying endotoxicosis in turn enhances hypoxic lesion. Thus, the major task of intensive care is to restore oxygen delivery and to diminish metabolic disturbances and endotoxicosis. Ways of correcting hypoxia and metabolic disturbances are considered in the severe forms of acute poisoning. 

  14. Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation

    Science.gov (United States)

    1996-01-01

    NASA's standard for oxygen system design, materials selection, operation, and transportation is presented. Minimum guidelines applicable to NASA Headquarters and all NASA Field Installations are contained.

  15. Oxygen vacancies induced enhancement of photoconductivity of La0.5Sr0.5CoO3 - δ thin film

    Science.gov (United States)

    Gao, R. L.; Fu, C. L.; Cai, W.; Chen, G.; Deng, X. L.; Yang, H. W.; Sun, J. R.; Zhao, Y. G.; Shen, B. G.

    2014-09-01

    Effects of light and electrical current on the electrical transport properties and photovoltaic properties of oxygen-stoichiometric La0.5Sr0.5CoO3 and oxygen-deficient La0.5Sr0.5CoO3 - δ films prepared by pulsed laser deposition have been investigated. Oxygen-deficient films annealed in a vacuum show an obvious increase of resistance and lattice parameter. Besides, a direct correlation between the magnitude of the photoconductivity and oxygen vacancies in La0.5Sr0.5CoO3 - δ films has been observed. The light illumination causes a resistance drop to show the photoconductivity effect. Moreover, the photoconductivity can be remarkably enhanced by increasing the electrical current, that is, it exhibits current-enhanced photoconductivity (CEPC) effect. Oxygen deficiency in the annealed film leads to the formation of a structural disorder in the Co-O-Co conduction channel due to the accumulated oxygen vacancies and hence is believed to be responsible for the increase in higher photoconductivity. These results may be important for practical applications in photoelectric devices.

  16. Effect of oxygenated perfluorocarbon on isolated islets during transportation.

    Science.gov (United States)

    Terai, Sachio; Tsujimura, Toshiaki; Li, Shiri; Hori, Yuichi; Toyama, Hirochika; Shinzeki, Makoto; Matsumoto, Ippei; Kuroda, Yoshikazu; Ku, Yonson

    2010-08-01

    Previous studies demonstrated the efficacy of the two-layer method (TLM) using oxygenated perfluorochemicals (PFC) for pancreas preservation. The current study investigated the effect of oxygenated PFC on isolated islets during transportation. Purified rat islets were stored in an airtight conical tube for 24h in RPMI culture medium at 22 degrees C or University of Wisconsin solution (UW) at 4 degrees C, either with or without oxygenated PFC. After storage, the islets were assessed for in vitro viability by static incubation (SI), FDA/PI staining, and energy status (ATP, energy charge, and ADP/ATP ratio) and for in vivo viability by a transplantation study. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality almost equally in both in vitro and in vivo assessments. The ATP levels and energy status in the groups with PFC were significantly lower than those without PFC. The groups with PFC showed a significantly higher ADP/ATP ratio than those without PFC. In the transplantation study, blood glucose levels and AUC in the UW+PFC group were significantly higher than those in UW group. UW at 4 degrees C and RPMI medium at 22 degrees C maintained islet quality equally under the conditions for islet transportation. The addition of oxygenated PFC, while advantageous for pancreas preservation, is not useful for islet transportation. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  18. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton; Dimitrakopoulos, Georgios; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions

  19. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  20. Oxygen transport as a structure probe for heterogeneous polymeric systems

    Science.gov (United States)

    Hu, Yushan

    Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation

  1. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    Science.gov (United States)

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P blood flow and oxygen delivery (P blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  2. The transport of oxygen isotopes in hydrothermal systems

    International Nuclear Information System (INIS)

    McKibbin, R.; Absar, A.; Blattner, P.

    1986-01-01

    As groundwater passes through porous rocks, exchange of oxygen between the fluid and the solid matrix causes a change in the oxygen isotope concentrations in both water and rock. If the rate at which the exchange takes place can be estimated (as a function of the isotope concentrations and temperature) then the time taken for a rock/water system to come to equilibrium with respect to isotope concentration might be calculated. In this paper, the equation for isotope transport is derived using conservation laws, and a simple equation to describe the rate of isotope exchange is proposed. These are combined with the equations for fluid flow in a porous medium, to produce a general set of equations describing isotope transport in a hydrothermal system. These equations are solved numerically, using typical parameters, for the one-dimensional case. Oxygen isotope data from the basement rocks underlying Kawerau geothermal field are modelled. The results indicate that the time taken for exchange of 18 O to present-day values is less than the postulated age of hydrothermal alteration in that field. This suggests that, although controlled by similar parameters, oxygen isotope exchange, in felsic rocks at least, is much faster than hydrothermal alteration. This conclusion is consistent with the petrographic observations from the Kawerau system as well as other geothermal fields

  3. Effect of hemodialysis on factors influencing oxygen transport.

    Science.gov (United States)

    Hirszel, P; Maher, J F; Tempel, G E; Mengel, C E

    1975-06-01

    Ten patients underwent 4 study hemodialyses, one with standard dialysis conditions, one with an isophosphate dialysate, one with simultaneous ammonium chloride loading, and other, after pretreatment, with sodium bicarbonate. Measurement of hemoglobin oxygen affinity (P-50), erythrocyte 2,3-DPG, blood-gasses, and serum chemistries revealed biochemically effective hemodialyses and slight changes in oxygen transport parameters. The P-50 (in vivo) values decreased slightly but significantly (p greater than 0.05) with dialysis. When corrected to pH 7.4, eliminating the Bohr effect, P-50 increased (p greater than 0.05). With unmodified dialysis elevated values of 2,3-DPG (in comparison to normal) decreased, a change that did not correlate with delta-p-50, delta-serum phosphate, or delta-serum creatinine. With standard and isophosphate dialyses Po-2 decreased significantly. The decrease correlated with delta-hydrogen ion concentration and did not occur with dialyses designed to maintain pH constant. Thus, hemodialysis influences many factors that affect oxygen transport in different and counterbalancing directions. These changes are not totally explained by alterations in 2,3-DPG, pH or serum phosphate. Maintenance of acidosis or hyperphosphatemia during dialysis is not recommended.

  4. Oxygen transport in La1-xSrxFe1-yMnyO3-δ perovskites

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Andersen, I.G.K.; Skou, E.M.

    2002-01-01

    The oxygen transport in La1-xSrxFe1-yMnyO3-delta (LSFM) with 0 less than or equal to x less than or equal to 0.5 and y = 0.2 and 03 has been examined with a thermogravimetric method. As long as x less than or equal to y, the oxygen transport was found to be very slow while the oxygen transport in...

  5. 23 CFR 710.511 - Transportation enhancements.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Transportation enhancements. 710.511 Section 710.511 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT RIGHT-OF-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.511 Transportation enhancements. (a...

  6. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  7. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  8. Optimisation of oxygen ion transport in materials for ceramic membrane devices.

    Science.gov (United States)

    Kilner, J A

    2007-01-01

    Oxygen transport in ceramic oxide materials has received much attention over the past few decades. Much of this interest has stemmed from the desire to construct high temperature electrochemical devices for energy conversion, an example being the solid oxide fuel cell. In order to achieve high performance for these devices, insights are needed in how to achieve optimum performance from the functional components such as the electrolytes and electrodes. This includes the optimisation of oxygen transport through the crystal lattice of electrode and electrolyte materials and across the homogeneous (grain boundary) and heterogeneous interfaces that exist in real devices. Strategies are discussed for the optimisation of these quantities and current problems in the characterisation of interfacial transport are explored.

  9. Enhancement in transport properties of seeded melt-textured YBCO by Cu-site doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yu X. [Department of Physics, Hong Kong Baptist University, Kowloon (China); Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Lo, W.; Salama, Kamel [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Tang, Tong B. [Department of Physics, Hong Kong Baptist University, Kowloon (China)

    2002-05-01

    A significant research effort has been made worldwide to introduce nanometre-scale weak superconducting regions into seeded melt-textured superconductors to enhance their critical current density, trapped magnetic field and levitation force. The enhancement in these properties is dependent on the pinning forces exerted on the magnetic flux lines. In this paper we present a substantial improvement in the transport properties of these materials by optimizing the fabrication conditions, controlling the oxygen deficiency, as well as adjusting the doping level of Zn in YBa{sub 2}(Cu{sub 1-x}Zn{sub x}){sub 3}O{sub 7-}{delta} large grains. The enhancement is found to be as much as 30% by doping between about x=0.001 25 and 0.002 53. The results strongly indicate that the introduction of local nanometre-scale weak superconducting regions by Zn substitution for Cu in the CuO{sub 2} plane enhances the transport properties. Due to the simplicity of the processing conditions, these doping techniques can have a significant potential for a variety of engineering applications. (author)

  10. Root Effect Haemoglobins in Fish May Greatly Enhance General Oxygen Delivery Relative to Other Vertebrates.

    Directory of Open Access Journals (Sweden)

    Jodie L Rummer

    Full Text Available The teleost fishes represent over half of all extant vertebrates; they occupy nearly every body of water and in doing so, occupy a diverse array of environmental conditions. We propose that their success is related to a unique oxygen (O2 transport system involving their extremely pH-sensitive haemoglobin (Hb. A reduction in pH reduces both Hb-O2 affinity (Bohr effect and carrying capacity (Root effect. This, combined with a large arterial-venous pH change (ΔpHa-v relative to other vertebrates, may greatly enhance tissue oxygen delivery in teleosts (e.g., rainbow trout during stress, beyond that in mammals (e.g., human. We generated oxygen equilibrium curves (OECs at five different CO2 tensions for rainbow trout and determined that, when Hb-O2 saturation is 50% or greater, the change in oxygen partial pressure (ΔPO2 associated with ΔpHa-v can exceed that of the mammalian Bohr effect by at least 3-fold, but as much as 21-fold. Using known ΔpHa-v and assuming a constant arterial-venous PO2 difference (Pa-vO2, Root effect Hbs can enhance O2 release to the tissues by 73.5% in trout; whereas, the Bohr effect alone is responsible for enhancing O2 release by only 1.3% in humans. Disequilibrium states are likely operational in teleosts in vivo, and therefore the ΔpHa-v, and thus enhancement of O2 delivery, could be even larger. Modeling with known Pa-vO2 in fish during exercise and hypoxia indicates that O2 release from the Hb and therefore potentially tissue O2 delivery may double during exercise and triple during some levels of hypoxia. These characteristics may be central to performance of athletic fish species such as salmonids, but may indicate that general tissue oxygen delivery may have been the incipient function of Root effect Hbs in fish, a trait strongly associated with the adaptive radiation of teleosts.

  11. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    Science.gov (United States)

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  12. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  13. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    Directory of Open Access Journals (Sweden)

    Dor Vadas

    2017-09-01

    Full Text Available Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking, the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities.Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking. Participants were randomized to perform the tasks in two environments: (a normobaric air (1 ATA 21% oxygen (b HBO (2 ATA 100% oxygen. Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance.Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both. Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part.Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  14. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  15. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport.

    Science.gov (United States)

    Goldman, D; Popel, A S

    2000-09-21

    The objective of this study was to investigate the effects of capillary network anastomoses and tortuosity on oxygen transport in skeletal muscle, as well as the importance of muscle fibers in determining the arrangement of parallel capillaries. Countercurrent flow and random capillary blockage (e.g. by white blood cells) were also studied. A general computational model was constructed to simulate oxygen transport from a network of blood vessels within a rectangular volume of tissue. A geometric model of the capillary network structure, based on hexagonally packed muscle fibers, was constructed to produce networks of straight unbranched capillaries, capillaries with anastomoses, and capillaries with tortuosity, in order to examine the effects of these geometric properties. Quantities examined included the tissue oxygen tension and the capillary oxyhemoglobin saturation. The computational model included a two-phase simulation of blood flow. Appropriate parameters were chosen for working hamster cheek-pouch retractor muscle. Our calculations showed that the muscle-fiber geometry was important in reducing oxygen transport heterogeneity, as was countercurrent flow. Tortuosity was found to increase tissue oxygenation, especially when combined with anastomoses. In the absence of tortuosity, anastomoses had little effect on oxygen transport under normal conditions, but significantly improved transport when vessel blockages were present. Copyright 2000 Academic Press.

  16. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  17. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.; Chen, Tianyou; Almahdali, Sarah; Bukhriakov, Konstantin; Rodionov, Valentin

    2016-01-01

    are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere

  18. Oxygen-enhanced MRI of the lungs. Intraindividual comparison between 1.5 and 3 Tesla

    International Nuclear Information System (INIS)

    Dietrich, Olaf; Thieme, S.F.; Maxien, D.; Nikolaou, K.; Reiser, M.; Schoenberg, S.O.; Fink, C.

    2011-01-01

    Purpose: To assess the feasibility of oxygen-enhanced MRI of the lung at 3 Tesla and to compare signal characteristics with 1.5 Tesla. Materials and Methods: 13 volunteers underwent oxygen-enhanced lung MRI at 1.5 and 3 T with a T 1-weighted single-slice non-selective inversion-recovery single-shot half-Fourier fast-spin-echo sequence with simultaneous respiratory and cardiac triggering in coronal orientation. 40 measurements were acquired during room air breathing and subsequently during oxygen breathing (15 L/min, close-fitting face-mask). The signal-to-noise ratio (SNR) of the lung tissue was determined with a difference image method. The image quality of all acquisitions was visually assessed. The mean values of the oxygen-induced relative signal enhancement and its regional coefficient of variation were calculated and the signal enhancement was displayed as color-coded parameter maps. Oxygen-enhancement maps were visually assessed with respect to the distribution and heterogeneity of the oxygen-related signal enhancement at both field strengths. Results: The mean relative signal enhancement due to oxygen breathing was 13 % (± 5.6 %) at 1.5 T and of 9.0 % (± 8.0 %) at 3 T. The regional coefficient of variation was significantly higher at 3 T. Visual and quantitative assessment of the enhancement maps showed considerably less homogeneous distribution of the signal enhancement at 3 T. The SNR was not significantly different but showed a trend to slightly higher values (increase of about 10 %) at 3 T. Conclusion: Oxygen-enhanced pulmonary MRI is feasible at 3 Tesla. However, signal enhancement is currently more heterogeneous and slightly lower at 3 T. (orig.)

  19. Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba

    DEFF Research Database (Denmark)

    Hoffmann, F.; Røy, Hans; Bayer, K.

    2008-01-01

    The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba...... specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive...... flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges...

  20. Oxygen transport properties estimation by DSMC-CT simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche - Via G. Amendola, 122 - 70125 Bari (Italy); Frezzotti, Aldo; Ghiroldi, Gian Pietro [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa, 34 - 20156 Milano (Italy)

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  1. Oxygen transport in waterlogged soils, Part I. Approaches to modelling soil and crop response to oxygen deficiency

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    This lecture outlines in a simple way the mathematics of various cases of diffusion which have been widely used in modelling soil aeration. Simplifications of the general equation of diffusion (Fick's law) giving two possible forms of the problem: planar or one-dimensional diffusion and radial diffusion are given. Furthermore, the solution of diffusion equation is obtained by the analogy to the problem of electrical flow (Ohm's law). Taking into consideration the soil respiration process, the continuity equation which accounts for the law of conservation of mass is solved. The purpose of this paper has been to review the interrelation soil structure-air movement in waterlogged clay soils, and its consequences on plant growth and crop production. Thus, the mathematics of diffusion is presented, and then its application to specific cases of soil aeration such as diffusion in the soil profile, soil aggregates and roots is given. The following assumptions are taken into consideration. Gas flow in soils is basically diffusion-dependent. Gas-phase diffusion is the major mechanism for vertical or longitudinal transport (long distance transport); this means, with depth Z in the soil profile (macro diffusion). For horizontal transport (short distance transport or micro diffusion) which is assumed to be in X direction; in this case, the geometry of aggregates and the liquid phase are the major components of resistance for diffusion. Soil aggregates and roots are considered to be spherical and cylindrical in shape respectively. Soil oxygen consumption, Sr, is taken to be independent of the oxygen concentration and considered to proceed at the same rate until oxygen supply drops to critical levels. Thus, aeration problems are assumed to begin when at any time, in the root zone, the oxygen diffusion rate, ODR, becomes less than 30x10 -8 g.cm -2 .sec -1 , or the value of redox potential Eh is less than +525 mv

  2. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  3. Analysis of oxygen-enhanced combustion of gas power cycle

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Cristiano Frandalozo; Carotenuto, Adriano; Schneider, Paulo Smith [Universidade Federal do Rio Grande do Sul (GESTE/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Termicos e Energeticos], E-mails: cristiano.maidana@ufrgs.br, pss@mecanica.ufrgs.br

    2010-07-01

    The majority of combustion processes use air as oxidant, roughly taken as 21% O{sub 2} and 79% N{sub 2}, by volume. In many cases, these processes can be enhanced by using an oxidant that contains higher proportion of O{sub 2} than in air. This is known as oxygen-enhanced combustion or OEC, and can bring important benefits like higher thermal efficiencies, lower exhaust gas volumes, higher heat transfer efficiency, reduction fuel consumption, reduced equipment costs and substantially pollutant emissions reduction. Within this scenario, this paper aims to investigate the influence of 21-30% oxygen concentration on the performance of a air-fired natural gas fueled power plant. This power plant operates under a Brayton cycle with models with the help of an air flow splitter after the compressor output in order to dose the oxygen rate of combustion and to keep the flue gas intake of the turbine at a prescribed temperature. Simulations shows that the enhancing of the oxidant stream reduced fuel consumption of about 10%, driven by higher adiabatic flame temperatures, which improves thermal and heat transfer efficiencies. A conclusion obtained is that the use of oxygen in higher proportions can be a challenge to retrofit existing air-fired natural gas power turbine cycles, because of the technological limitation of its materials with higher flame temperatures. (author)

  4. Transport properties of water and oxygen in yttria-stabilized zirconia; Transporteigenschaften von Wasser und Sauerstoff in Yttrium-stabilisiertem Zirkoniumdioxid

    Energy Technology Data Exchange (ETDEWEB)

    Pietrowski, Martha Joanna

    2012-12-21

    Oxide materials that adopt the fluorite structure, such as yttria-stabilized zirconia (YSZ), play a central role in electrochemical devices, such as fuel cells and sensors, because of their high ionic conductivity. By virtue of the technological importance of such devices there exists a broad interest in understanding and enhancing mass transport processes in YSZ. In such oxides, not only does transport through the bulk play a critical role; interfaces (internal and external) have an influence, too. The effect of interfaces on the transport properties, however, is not investigated in detail, and remains in many places unclear. In this work two open questions concerning the effect of interfaces on mass transport processes in YSZ are addressed: The first issue is the phenomenon of protonic conductivity observed at low temperatures for nanocrystalline YSZ in wet atmospheres. This protonic conductivity was attributed to the high density of interfaces (grain boundaries) caused by the nanostructure, in which protonic species can be mobile. Through isotope exchange experiments with subsequent Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) the presence of hydrogen in nano-YSZ was confirmed. Questions as to which hydrogen-containing species are present and which transport path is taken in nanocrystalline YSZ were examined by means of in-situ of near-infrared (NIR) spectroscopy. The results indicate that water is adsorbed on internal surfaces, such as pores and micro-cracks. Microscopic analysis of nanocrystalline YSZ showed first indications of nanopores. The second issue concerned transport across the solidgas interface, that is the surface. To this end, oxygen isotope exchange experiments were performed on single crystal samples of yttria-stabilised zirconia under wet and dry conditions as function of oxygen partial pressure pO{sub 2} and water partial pressure pH{sub 2}O with subsequent determination of the oxygen isotope profiles by ToF-SIMS. As expected, the

  5. Central Hemodynamics and Oxygen Transport in Various Activation of Patients Operated On Under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Ye. V. Dzybinskaya

    2009-01-01

    Full Text Available Objective: to study central hemodynamics, the determinants of myocardial oxygen balance, and the parameters of oxygen transport in various activation of patients after surgery under extracorporeal circulation. Subjects and methods. Thirty-four patients aged 57.8±2.5 years who had coronary heart disease were divided into 2 groups: 1 those with late activation (artificial ventilation time 157±9 min and 2 those with immediate activation (artificial ventilation time 33±6 min. Group 2 patients were, if required, given fentanyl, midazolam, or myorelaxants. Results. During activation, there were no intergroup differences in the mean levels of the major parameters of cardiac pump function, in the determinants of coronary blood flow (coronary perfusion gradients and myocardial oxygen demand (the product of heart rate by systolic blood pressure, and in the parameters of oxygen transport, including arterial lactatemia. After tracheal extubation, the left ventricular pump coefficient was increased considerably (up to 3.8±0.2 and 4.4±0.2 gm/mm Hg/m2 in Groups 1 and 2, respectively; p<0.05 with minimum inotropic support (dopamine and/or dobutamine being used at 2.7±0.3 and 2.4±0.3 mg/kg/min, respectively. In both groups, there were no close correlations between the indices of oxygen delivery and consumption at all stages of the study, which was indicative of no transport-dependent oxygen uptake. Conclusion. When the early activation protocol was followed up, the maximum acceleration of early activation, including that using specific antagonists of anesthetics, has no negative impact on central hemodynamics, the determinants of myocardial oxygen balance and transport in patients operated on under extracorporeal circulation. Key words: early activation, surgery under extracorporeal circulation, tracheal extubation in the operating-room, central hemodynamics, oxygen transport.

  6. Oxygen enhancement of groundwater using an oxygen releasing compound in a funnel-and-gate system

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D G

    1994-01-01

    ORC is a fine white MgO[sub 2] powder treated with a patented process so that a slow, relatively steady release of oxygen occurs when the powder is in contact with water. Recent work suggests ORC could potentially be used to increase the dissolved oxygen (DO) concentration of ground water, thereby enhancing the biodegradation of dissolved phase contaminants such as benzene and toluene from gasoline spills. Field and laboratory tests were performed to evaluate the oxygen release characteristics of ORC when mixed with filter sand and exposed to groundwater from an aquifer in Ontario. Quasi steady state oxygen release rates of 0.013-0.030 and 0.030 mg O[sub 2]/d per g of ORC were determined from the column and field tests respectively. The column tests indicated that steady state oxygen release conditions from the ORC required ca 90 d after initial contact with water, but field data indicated that oxygen release rate may continue to decrease. Falling head permeameter tests indicated that a maximum drop in hydraulic conductivity occurred within the first 48 h of exposure of ORC to water. Both laboratory and field studies indicated that ORC-contacted water increased in pH. Field studies further suggested an inverse correlation between pH increases and the ability of ORC to enhance DO concentration of ground water. The use of ORC in a funnel-and-gate scheme appears to be an effective means of increasing the DO concentration in ground water, thereby stimulating the in-situ bioremediation of many organic contaminants. 30 refs., 17 figs., 12 tabs.

  7. Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum cobaltite

    DEFF Research Database (Denmark)

    Søgaard, Martin; Hendriksen, Peter Vang; Mogensen, Mogens Bjerg

    2006-01-01

    Oxygen nonstoichiometry, structure and transport properties of the two compositions (La-0.6 Sr-0.4)(0.99)CoO3-delta (LSC40) and La0.85Sr0.15CoO3-delta (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described...... using the itinerant electron model. The electrical conductivity, sigma, of the materials is high (sigma > 500 S cm(-1)) in the measured temperature range (650 - 1000 degrees C) and oxygen partial pressure range (0.209-10(-4) atm). At 900 degrees C the electrical conductivity is 1365 and 1491 S cm(-1......) in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40...

  8. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  9. Cloned Hemoglobin Genes Enhance Growth Of Cells

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  10. Reduced oxygen enhancement ratio at low doses

    International Nuclear Information System (INIS)

    Palcic, B.; Skarsgard, L.D.

    1984-01-01

    The oxygen depletion rate in cell suspensions was measured using a Clark electrode. It was found that under experimental conditions used in this laboratory for hypoxic irradiations, the oxygen levels before the start of irradiation are always below 0.1μm, the levels which could give any significant enhancement to radiation inactivation by x-rays. The measured O/sub 2/ depletion rates were comparable to those reported in the literature. Chinese hamster cells (CHO) were made hypoxic by gas exchange, combined with metabolic consumption of oxygen by cells at 37 0 C. Full survival curves were determined in the dose range 0 to 3Gy using the low dose survival assay. The results confirmed the authors' earlier finding that the OER decreases at low doses. The authors therefore believe that the dose-dependent OER is a true radiobiological phenomenon and not an artifact of the experimental method used in the low dose survival assay

  11. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-01-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  12. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu, E-mail: yu.sun@xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yilun [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Xuefeng; Zhai, Zhi [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Fei [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yijun [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)

    2017-06-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  13. Dual phase oxygen transport membrane for efficient oxyfuel combustion

    International Nuclear Information System (INIS)

    Ramasamy, Madhumidha

    2016-01-01

    Oxygen transport membranes (OTMs) are attracting great interest for the separation of oxygen from air in an energy efficient way. A variety of solid oxide ceramic materials that possess mixed ionic and electronic conductivity (MIEC) are being investigated for efficient oxygen separation (Betz '10, Skinner '03). Unfortunately these materials do not exhibit high degradation stability under harsh ambient conditions such as flue gas containing CO_2, SO_x, H_2O and dust, pressure gradients and high temperatures that are typical in fossil fuel power plants. For this reason, dual phase composite membranes are developed to combine the best characteristics of different compounds to achieve high oxygen permeability and sufficient chemical and mechanical stability at elevated temperatures. In this thesis, the dual phase membrane Ce_0_._8Gd_0_._2O_2_-_δ - FeCo_2O_4 (CGO-FCO) was developed after systematic investigation of various combinations of ionic and electronic conductors. The phase distribution of the composite was investigated in detail using electron microscopes and this analysis revealed the phase interaction leading to grain boundary rock salt phase and formation of perovskite secondary phase. A systematic study explored the onset of phase interactions to form perovskite phase and the role of this unintended phase as pure electronic conductor was identified. Additionally optimization of conventional sintering process to eliminate spinel phase decomposition into rock salt was identified. An elaborate study on the absolute minimum electronic conductor requirement for efficient percolation network was carried out and its influence on oxygen flux value was measured. Oxygen permeation measurements in the temperature range of 600 C - 1000 C under partial pressure gradient provided by air and argon as feed and sweep gases are used to identify limiting transport processes. The dual phase membranes are much more prone to surface exchange limitations because of the limited

  14. Incorporating Oxygen-Enhanced MRI into Multi-Parametric Assessment of Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Heling Zhou

    2017-08-01

    Full Text Available Hypoxia is associated with prostate tumor aggressiveness, local recurrence, and biochemical failure. Magnetic resonance imaging (MRI offers insight into tumor pathophysiology and recent reports have related transverse relaxation rate (R2* and longitudinal relaxation rate (R1 measurements to tumor hypoxia. We have investigated the inclusion of oxygen-enhanced MRI for multi-parametric evaluation of tumor malignancy. Multi-parametric MRI sequences at 3 Tesla were evaluated in 10 patients to investigate hypoxia in prostate cancer prior to radical prostatectomy. Blood oxygen level dependent (BOLD, tissue oxygen level dependent (TOLD, dynamic contrast enhanced (DCE, and diffusion weighted imaging MRI were intercorrelated and compared with the Gleason score. The apparent diffusion coefficient (ADC was significantly lower in tumor than normal prostate. Baseline R2* (BOLD-contrast was significantly higher in tumor than normal prostate. Upon the oxygen breathing challenge, R2* decreased significantly in the tumor tissue, suggesting improved vascular oxygenation, however changes in R1 were minimal. R2* of contralateral normal prostate decreased in most cases upon oxygen challenge, although the differences were not significant. Moderate correlation was found between ADC and Gleason score. ADC and R2* were correlated and trends were found between Gleason score and R2*, as well as maximum-intensity-projection and area-under-the-curve calculated from DCE. Tumor ADC and R2* have been associated with tumor hypoxia, and thus the correlations are of particular interest. A multi-parametric approach including oxygen-enhanced MRI is feasible and promises further insights into the pathophysiological information of tumor microenvironment.

  15. Enhanced thermoelectric property of oxygen deficient nickel doped SnO2 for high temperature application

    Science.gov (United States)

    Paulson, Anju; Sabeer, N. A. Muhammad; Pradyumnan, P. P.

    2018-04-01

    Motivated by the detailed investigation on the thermoelectric performance of oxide materials our work concentrated on the influence of acceptor dopants and defect density in the lattice plane for the enhancement of thermoelectric power. The series of Sn1‑x Nix O2 (0.01 ≤ x ≤ 0.05) compositions were prepared by solid state reaction mechanism and found that 3 atomic percentage Ni doped SnO2 can be considered as a good candidate due to its promising electrical and transport properties. Defect lattices were introduced in the sample and the deviation from oxygen stochiometry was ensured using photoluminescence measurement. High power factor was obtained for the 3 atomic percentage nickel doped SnO2 due to the effective number of charge carrier concentration and the depletion of oxygen rich layers. Defect centered and acceptor doped SnO2 lattice opens a new door for energy harvesting at higher temperatures.

  16. Enhanced oxygen delivery induced by perfluorocarbon emulsions in capillary tube oxygenators.

    Science.gov (United States)

    Vaslef, S N; Goldstick, T K

    1994-01-01

    Previous studies showed that a new generation of perfluorocarbon (PFC) emulsions increased tissue PO2 in the cat retina to a degree that could not be explained by the small increase in arterial O2 content seen after the infusion of low doses of 1 g PFC/kg body weight. It seems that increased O2 delivery at the tissue level after PFC infusion is caused by a local effect in the microcirculation. The authors studies this effect in vitro at steady state in a closed loop circuit, consisting of one of two types of capillary tube oxygenators, deoxygenator(s), a reservoir bag filled with anticoagulated bovine blood or saline (control), and a roller pump, to see if the addition of PFC would have an effect on the PO2 difference (delta PO2) across the capillary tube membrane oxygenator at a blood flow rate of 3 l/min. Perfluorocarbon was added in three incremental doses, each giving about 0.7 vol% of PFC. The delta PO2 across the oxygenator was measured before and after each dose. The mean percent increases in delta PO2 in blood for two types of oxygenators were 19.2 +/- 8% (mean +/- SD, n = 6, P = 0.002) and 9.9 +/- 4% (n = 3, P = 0.05), respectively, whereas the mean percent change in delta PO2 in saline was -4.9 +/- 2% (n = 2, P = 0.2). Inlet PO2s to the oxygenator were only minimally increased. The authors conclude that O2 delivery was significantly enhanced after injection of PFC in blood in this capillary tube model. A near wall excess of PFC particles may account for the augmentation of O2 diffusion in this model.

  17. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron

    Science.gov (United States)

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    Diabetes increases the reabsorption of Na+ (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption QO2active along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising QO2active by 5–12% in the cortex and medulla. Diabetes increases overall TNa and QO2active by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers QO2active in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises QO2active in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase QO2active by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces QO2active by 33% in S3 segments, and raises QO2active by SGLT2 blockade in diabetes lowers cortical QO2active and raises medullary QO2active, particularly in S3 segments. PMID:26764207

  18. Thermophysical properties and oxygen transport in (Thx,Pu1-x)O2.

    Science.gov (United States)

    Galvin, C O T; Cooper, M W D; Rushton, M J D; Grimes, R W

    2016-10-31

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x ,Pu 1-x )O 2 (0 ≤ x ≤ 1) between 300-3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x ,Pu 1-x )O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x ,Pu 1-x )O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x ,Pu 1-x )O 2 than PuO 2 and ThO 2 , while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques

  20. Enhancement by platelets of oxygen radical responses of human neutrophils

    International Nuclear Information System (INIS)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-01-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O- 2 and H 2 O 2 . This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O- 2 generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O- 2 responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils

  1. Dual phase oxygen transport membrane for efficient oxyfuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Madhumidha

    2016-07-01

    Oxygen transport membranes (OTMs) are attracting great interest for the separation of oxygen from air in an energy efficient way. A variety of solid oxide ceramic materials that possess mixed ionic and electronic conductivity (MIEC) are being investigated for efficient oxygen separation (Betz '10, Skinner '03). Unfortunately these materials do not exhibit high degradation stability under harsh ambient conditions such as flue gas containing CO{sub 2}, SO{sub x}, H{sub 2}O and dust, pressure gradients and high temperatures that are typical in fossil fuel power plants. For this reason, dual phase composite membranes are developed to combine the best characteristics of different compounds to achieve high oxygen permeability and sufficient chemical and mechanical stability at elevated temperatures. In this thesis, the dual phase membrane Ce{sub 0.8}Gd{sub 0.2}O{sub 2-δ} - FeCo{sub 2}O{sub 4} (CGO-FCO) was developed after systematic investigation of various combinations of ionic and electronic conductors. The phase distribution of the composite was investigated in detail using electron microscopes and this analysis revealed the phase interaction leading to grain boundary rock salt phase and formation of perovskite secondary phase. A systematic study explored the onset of phase interactions to form perovskite phase and the role of this unintended phase as pure electronic conductor was identified. Additionally optimization of conventional sintering process to eliminate spinel phase decomposition into rock salt was identified. An elaborate study on the absolute minimum electronic conductor requirement for efficient percolation network was carried out and its influence on oxygen flux value was measured. Oxygen permeation measurements in the temperature range of 600 C - 1000 C under partial pressure gradient provided by air and argon as feed and sweep gases are used to identify limiting transport processes. The dual phase membranes are much more prone to surface

  2. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  3. 78 FR 53790 - Public Forum-Safety Culture: Enhancing Transportation Safety

    Science.gov (United States)

    2013-08-30

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Forum--Safety Culture: Enhancing Transportation Safety On Tuesday and Wednesday, September 10-11, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Safety Culture: Enhancing Transportation Safety.'' The forum will begin at 9:00...

  4. The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air

    Science.gov (United States)

    Solovieva, A. A.; Kulbakin, I. V.

    2018-04-01

    The bilayer oxygen-permeable membrane, consisting of a thin-film dense composite based on Co3O4 - 36 wt. % Bi2O3, and of a porous ceramic substrate of Co2SiO4, was synthesized and characterized. The way for obtaining of porous ceramic based on cobalt silicate was found, while the microstructure and the mechanical properties of porous ceramic were studied. Layered casting with post-pressing was used to cover the surface of porous support of Co2SiO4 by the Co3O4 - 36 wt. % Bi2O3 - based film. Transport properties of the asymmetric membrane have been studied, the kinetic features of oxygen transport have been established, and the characteristic thickness of the membrane has been estimated. The methods to prevent the high-temperature creep of ion transport membranes based on solid/molten oxides, which are the promising ones for obtaining of pure oxygen from air, are proposed and discussed.

  5. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  6. Effect of selective blockade of oxygen consumption, glucose transport, and Ca2+ influx on thyroxine action in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    The effect of selective blockade of cellular glucose transporters, Ca2+ influx, and mitochondrial oxygen consumption on thyroxine (T4)-stimulated oxygen consumption and glucose uptake was examined in human mononuclear blood cells. Blockade of glucose transporters by cytochalasin B (1 x 10(-5) mol....../L) and of Ca2+ influx by alprenolol (1 x 10(-5) mol/L) and verapamil (4 x 10(-4) mol/L) inhibited T4-activated glucose uptaken and reduced T4-stimulated oxygen consumption by 20%. Uncoupling of mitochondrial oxygen consumption by azide (1 x 10(-3) mol/L) inhibited T4-stimulated oxygen consumption, but had...... no effect on glucose uptake. We conclude that T4-stimulated glucose uptake in human mononuclear blood cells is dependent on intact glucose transporters and Ca2+ influx, but not on mitochondrial oxygen consumption. However, oxygen consumption is, in part, dependent on intact glucose uptake....

  7. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.

    2016-08-11

    A dispersion system for saturated fluorocarbon (SFC) liquids based on permeable hollow nanospheres with fluorous interiors is described. The nanospheres are well dispersible in water and are capable of immediate uptake of SFCs. The nanosphere shells are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere-stabilized SFC dispersions is demonstrated.

  8. Enhancement by platelets of oxygen radical responses of human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-03-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O-/sub 2/ and H/sub 2/O/sub 2/. This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O-/sub 2/ generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O-/sub 2/ responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils.

  9. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.

    2010-11-04

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  10. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Ahn, Sung-Jin; la O’ , Gerardo Jose; Leonard, Donovan N.; Borisevich, Albina; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  11. Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Domenico, E-mail: domenico.bruno@cnr.it [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche– Via G. Amendola 122, 70125 Bari (Italy); Frezzotti, Aldo, E-mail: aldo.frezzotti@polimi.it; Ghiroldi, Gian Pietro, E-mail: gpghiro@gmail.com [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano–Via La Masa 34, 20156 Milano (Italy)

    2015-05-15

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  12. A theoretical evaluation of the oxygen concentration in a corrosion-fatigue crack

    International Nuclear Information System (INIS)

    Turnbull, A.

    1981-01-01

    The oxygen concentration in a corrosion-fatigue crack has been evaluated theoretically by assuming that oxygen was consumed by cathodic reduction on the walls of the crack and mass transport occurred by diffusion and advection (forced convection), with the latter resulting from the sinusoidal variation of the displacement of the crack walls. By using parameters relevant to a compact tension specimen, the time-dependent distribution of the oxygen concentration in the crack was calculated as a function of ΔK (the range of the stress intensity factor), R-value (minimum load/maximum load), frequency, crack length, and electrode potential. The influence of advection was to significantly enhance the mass transport of oxygen in the crack compared with ''diffusion-only'' even at low frequencies and low ΔK. Regions in the crack were identified in which advection dominance or diffusion dominance of the mass transport of oxygen occurred

  13. One-dimensional model of oxygen transport impedance accounting for convection perpendicular to the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mainka, J. [Laboratorio Nacional de Computacao Cientifica (LNCC), CMC 6097, Av. Getulio Vargas 333, 25651-075 Petropolis, RJ, Caixa Postal 95113 (Brazil); Maranzana, G.; Thomas, A.; Dillet, J.; Didierjean, S.; Lottin, O. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee (LEMTA), Universite de Lorraine, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France); LEMTA, CNRS, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France)

    2012-10-15

    A one-dimensional (1D) model of oxygen transport in the diffusion media of proton exchange membrane fuel cells (PEMFC) is presented, which considers convection perpendicular to the electrode in addition to diffusion. The resulting analytical expression of the convecto-diffusive impedance is obtained using a convection-diffusion equation instead of a diffusion equation in the case of classical Warburg impedance. The main hypothesis of the model is that the convective flux is generated by the evacuation of water produced at the cathode which flows through the porous media in vapor phase. This allows the expression of the convective flux velocity as a function of the current density and of the water transport coefficient {alpha} (the fraction of water being evacuated at the cathode outlet). The resulting 1D oxygen transport impedance neglects processes occurring in the direction parallel to the electrode that could have a significant impact on the cell impedance, like gas consumption or concentration oscillations induced by the measuring signal. However, it enables us to estimate the impact of convection perpendicular to the electrode on PEMFC impedance spectra and to determine in which conditions the approximation of a purely diffusive oxygen transport is valid. Experimental observations confirm the numerical results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Thermophysical properties and oxygen transport in (Thx,Pu1−x)O2

    Science.gov (United States)

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; Grimes, R. W.

    2016-01-01

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1−x)O2 (0 ≤ x ≤ 1) between 300–3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1−x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1−x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1−x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder. PMID:27796314

  15. Two decades' experience with interfacility transport on extracorporeal membrane oxygenation.

    Science.gov (United States)

    Bryner, Benjamin; Cooley, Elaine; Copenhaver, William; Brierley, Kristin; Teman, Nicholas; Landis, Denise; Rycus, Peter; Hemmila, Mark; Napolitano, Lena M; Haft, Jonathan; Park, Pauline K; Bartlett, Robert H

    2014-10-01

    Interfacility transport of patients on extracorporeal membrane oxygenation (ECMO) has been performed in large numbers at only a few programs. Limited data are available on outcomes after ECMO transport to justify expanding or discontinuing these programs. This was a retrospective review of a 20-year, single-institution experience with interhospital ECMO transport as well as a systematic review of reports of transfers of patients on ECMO. Results of both were compared with historical data from the international registry of the Extracorporeal Life Support Organization (ELSO). Between 1990 and 2012, ECMO was used to facilitate transport of 221 patients to our institution, and 135 (62%) survived to discharge. Review of an additional 27 case series describing ECMO transport of 643 patients showed an overall survival of 61%. After stratifying by age and primary indication for ECMO, survival of transported patients was not significantly different compared with all ECMO patients in the ELSO registry, with the exception of pediatric patients treated for respiratory failure (transported patients in this category had higher survival than those in the ELSO registry). Interfacility transport on ECMO is feasible and can be accomplished safely in the critically ill. Survival of transported patients is comparable to age-matched and treatment-matched ECMO patients at large. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration

    Science.gov (United States)

    Edwards, Aurélie; Layton, Anita T.

    2015-01-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  17. The Pathway for Oxygen: Tutorial Modelling on Oxygen Transport from Air to Mitochondrion: The Pathway for Oxygen.

    Science.gov (United States)

    Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret

    2016-01-01

    The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.

  18. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-β toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E x B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs

  19. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  20. Investigation of oxygen impurity transport using the O4+ visible spectral line in the Aditya tokamak

    International Nuclear Information System (INIS)

    Chowdhuri, M.B.; Ghosh, J.; Banerjee, S.; Dey, Ritu; Manchanda, R.; Kumar, Vinay; Vasu, P.; Patel, K.M.; Atrey, P.K.; Shankara Joisa, Y.; Rao, C.V.S.; Tanna, R.L.; Raju, D.; Chattopadhyay, P.K.; Jha, R.; Gupta, C.N.; Bhatt, S.B.; Saxena, Y.C.

    2013-01-01

    Intense visible lines from Be-like oxygen impurity are routinely observed in the Aditya tokamak. The spatial profile of brightness of a Be-like oxygen spectral line (2p3p 3 D 3 –2p3d 3 F 4 ) at 650.024 nm is used to investigate oxygen impurity transport in typical discharges of the Aditya tokamak. A 1.0 m multi-track spectrometer (Czerny–Turner) capable of simultaneous measurements from eight lines of sight is used to obtain the radial profile of brightness of O 4+ spectral emission. The emissivity profile of O 4+ spectral emission is obtained from the spatial profile of brightness using an Abel-like matrix inversion. The oxygen transport coefficients are determined by reproducing the experimentally measured emissivity profiles of O 4+ , using a one-dimensional empirical impurity transport code, STRAHL. Much higher values of the diffusion coefficient compared with the neo-classical values are observed in both the high magnetic field edge region (D inboard max ∼30 m 2 s -1 ) and the low magnetic field edge region (D outboard max ∼45 m 2 s -1 ) of typical Aditya ohmic plasmas, which seems to be due to fluctuation-induced transport. The diffusion coefficient at the limiter radius in the low-field (outboard) region is typically ∼ twice as high as that at the limiter radius in the high-field (inboard) region. (paper)

  1. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater.

    Science.gov (United States)

    Haberer, Christina M; Rolle, Massimo; Liu, Sanheng; Cirpka, Olaf A; Grathwohl, Peter

    2011-03-25

    Oxygen transport across the capillary fringe is relevant for many biogeochemical processes. We present a non-invasive technique, based on optode technology, to measure high-resolution concentration profiles of oxygen across the unsaturated/saturated interface. By conducting a series of quasi two-dimensional flow-through laboratory experiments, we show that vertical hydrodynamic dispersion in the water-saturated part of the capillary fringe is the process limiting the mass transfer of oxygen. A number of experimental conditions were tested in order to investigate the influence of grain size and horizontal flow velocity on transverse vertical dispersion in the capillary fringe. In the same setup, analogous experiments were simultaneously carried out in the fully water-saturated zone, therefore allowing a direct comparison with oxygen transfer across the capillary fringe. The outcomes of the experiments under various conditions show that oxygen transport in the two zones of interest (i.e., the unsaturated/saturated interface and the saturated zone) is characterized by very similar transverse dispersion coefficients. An influence of the capillary fringe morphology on oxygen transport has not been observed. These results may be explained by the narrow grain size distribution used in the experiments, leading to a steep decline in water saturation at the unsaturated/saturated interface and to the absence of trapped gas in this transition zone. We also modeled flow (applying the van Genuchten and the Brooks-Corey relationships) and two-dimensional transport across the capillary fringe, obtaining simulated profiles of equivalent aqueous oxygen concentration that were in good agreement with the observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2006-09-01

    Full Text Available Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP, adenosine diphosphate (ADP, and phosphocreatine (CrP have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 mumol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 mumol min(-1 g(-1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded

  3. Pilot-scale incineration testing of an oxygen-enhanced combustion system

    International Nuclear Information System (INIS)

    Waterland, L.R.; Lee, J.W.; Staley, L.J.

    1989-01-01

    This paper discusses a series of demonstration tests of the American Combustion, Inc., Thermal Destruction System performed under the Superfund innovative technology evaluation (SITE) program. This oxygen-enhanced combustion system was retrofit to the pilot-scale rotary kiln incinerator at EPA's Combustion Research Facility. This system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a hazardous coal tar waste (decanter tank tar sludge form coking operations - K087). Comparative performance with conventional incinerator operation was tested. Test results show that compliance with the hazardous waste incinerator performance standards of 99.99 percent principal organic hazardous constituent (POHC) destruction and removal efficiency (DRE) and particulate emissions of less than 180 mg/dscm at 7 percent O 2 was achieved for all tests. The Pyretron oxygen-enhanced combustion system allowed in-compliance operation at double the mixed waste feedrate possible with conventional incineration, and with a 60 percent increase in charge weight than possible with conventional incineration

  4. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  5. Oxygen transport in waterlogged soils, Part II. Diffusion coefficients

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to

  6. Research and Development on Oxygen Transport Membranes at the Technical University of Denmark from Materials to Modules

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Pirou, Stéven; Ovtar, Simona

    2016-01-01

    Oxygen transport membranes (OTMs) are inorganic, high temperature devices that have the potential to efficiently supply oxygen to combustion processes, for example for oxy-fired (biomass) gasification or in the cement and steel industry. This work reviews aspects of material selection, design...

  7. Toward enhanced hydrogen generation from water using oxygen permeating LCF membranes

    KAUST Repository

    Wu, Xiao-Yu

    2015-01-01

    © the Owner Societies. Hydrogen production from water thermolysis can be enhanced by the use of perovskite-type mixed ionic and electronic conducting (MIEC) membranes, through which oxygen permeation is driven by a chemical potential gradient. In this work, water thermolysis experiments were performed using 0.9 mm thick La0.9Ca0.1FeO3-δ (LCF-91) perovskite membranes at 990 °C in a lab-scale button-cell reactor. We examined the effects of the operating conditions such as the gas species concentrations and flow rates on the feed and sweep sides on the water thermolysis rate and oxygen flux. A single step reaction mechanism is proposed for surface reactions, and three-resistance permeation models are derived. Results show that water thermolysis is facilitated by the LCF-91 membrane especially when a fuel is added to the sweep gas. Increasing the gas flow rate and water concentration on the feed side or the hydrogen concentration on the sweep side enhances the hydrogen production rate. In this work, hydrogen is used as the fuel by construction, so that a single-step surface reaction mechanism can be developed and water thermolysis rate parameters can be derived. Both surface reaction rate parameters for oxygen incorporation/dissociation and hydrogen-oxygen reactions are fitted at 990 °C. We compare the oxygen fluxes in water thermolysis and air separation experiments, and identify different limiting steps in the processes involving various oxygen sources and sweep gases for this 0.9 mm thick LCF-91 membrane. In the air feed-inert sweep case, the bulk diffusion and sweep side surface reaction are the two limiting steps. In the water feed-inert sweep case, surface reaction on the feed side dominates the oxygen permeation process. Yet in the water feed-fuel sweep case, surface reactions on both the feed and sweep sides are rate determining when hydrogen concentration in the sweep side is in the range of 1-5 vol%. Furthermore, long term studies show that the surface

  8. Understanding and removing surface states limiting charge transport in TiO2 nanowire arrays for enhanced optoelectronic device performance.

    Science.gov (United States)

    Sheng, Xia; Chen, Liping; Xu, Tao; Zhu, Kai; Feng, Xinjian

    2016-03-01

    Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO 2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO 2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO 2 NWs can be developed and well-utilized, which is significantly important for their practical applications.

  9. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions

    NARCIS (Netherlands)

    Henkel, S.G.; Ter Beek, A.S.; Steinsiek, S.; Stagge, S.; Bettenbrock, K.; Teixeira De Mattos, M.J.; Sauter, T.; Sawodny, O.; Ederer, M.

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear

  10. Linking Arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments

    DEFF Research Database (Denmark)

    Timmermann, Karen; Banta, Gary T.; Glud, Ronnie Nøhr

    2007-01-01

    In this study we examine how the irrigation behavior of the common lugworm Arenicola marina affects the distribution, transport and dynamics of oxygen in sediments using microelectrodes, planar optodes and diagenetic modeling. The irrigation pattern was characterized by a regular recurring period...... and only in rare situations with very high pumping rates (>200 ml h-1) and/or a narrow feeding funnel (water....... concentration in the burrow was high (80% air saturation) and oxygen was detected at distances up to 0.7 mm from the burrow wall. Volume specific oxygen consumption rates calculated from measured oxygen profiles were up to 4 times higher for sediments surrounding worm burrows as compared to surface sediments....... Model results indicated that oxygen consumption also was higher in the feeding pocket/funnel compared to the activity in surface sediments. An oxygen budget revealed that 49% of the oxygen pumped into the burrow during lugworm irrigation was consumed by the worm itself while 23% supported the diffusive...

  11. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Science.gov (United States)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  12. Characterization of transport properties in uranium dioxide: the case of the oxygen auto-diffusion

    International Nuclear Information System (INIS)

    Fraczkiewicz, M.; Baldinozzi, G.

    2008-01-01

    Point defects in uranium dioxide which control the transport phenomena are still badly known. The aim of this work is to show how in carrying out several experimental techniques, it is possible to demonstrate both the existence and to determine the nature (charge and localization) of predominant defects responsible of the transport phenomena in a fluorite-type structure oxide. The oxygen diffusion in the uranium dioxide illustrates this. In the first part of this work, the accent is put on the electric properties of uranium dioxide and more particularly on the variation laws of the electric conductivity in terms of temperature, of oxygen potential and of the impurities amounts present in the material. These evolutions are connected to point and charged complex defects models and the pertinence of these models is discussed. Besides, it is shown how the electric conductivity measurements can allow to define oxygen potential domains in which the concentrations in electronic carriers are controlled. This characterization being made, it is shown that the determination of the oxygen intrinsic diffusion coefficient and particularly its dependence to the oxygen potential and to the amount of impurity, allows to determine the main defect responsible to the atomic diffusion as well as its nature and its charge. In the second part, the experimental techniques to determine the oxygen diffusion coefficient are presented: there are the isotopic exchange technique for introducing the tracer in the material, and two techniques to characterize the diffusion profiles (SIMS and NRA). Examples of preliminary results are given for mono and polycrystalline samples. At last, from this methodology on uranium dioxide, studies considered to quantify the thermal and physicochemical effects are presented. Experiments considered with the aim to characterize the radiation diffusion in uranium dioxide are presented too. (O.M.)

  13. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath

    2017-05-31

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  14. pH-Sensitive Amphiphilic Block-Copolymers for Transport and Controlled Release of Oxygen

    KAUST Repository

    Patil, Yogesh Raghunath; Almahdali, Sarah; Vu, Khanh B.; Zapsas, Georgios; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2017-01-01

    Saturated fluorocarbons, their derivatives and emulsions are capable of dissolving anomalously high amounts of oxygen and other gases. The mechanistic aspects of this remarkable effect remain to be explored experimentally. Here, the synthesis of a library of amphiphilic fluorous block-copolymers incorporating different fluorinated monomers is described, and the capacity of these copolymers for oxygen transport in water is systematically investigated. The structure of the fluorous monomer employed was found to have a profound effect on both the oxygen-carrying capacity and the gas release kinetics of the polymer emulsions. Furthermore, the release of O2 from the polymer dispersions could be triggered by changing the pH of the solution. This is the first example of a polymer-based system for controlled release of a non-polar, non-covalently entrapped respiratory gas.

  15. Enhancing Thermoelectric Performance Using Nonlinear Transport Effects

    Science.gov (United States)

    Jiang, Jian-Hua; Imry, Yoseph

    2017-06-01

    We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.

  16. Significance of myoglobin as an oxygen store and oxygen transporter in the intermittently perfused human heart: a model study.

    Science.gov (United States)

    Endeward, Volker; Gros, Gerolf; Jürgens, Klaus D

    2010-07-01

    The mechanisms by which the left ventricular wall escapes anoxia during the systolic phase of low blood perfusion are investigated, especially the role of myoglobin (Mb), which can (i) store oxygen and (ii) facilitate intracellular oxygen transport. The quantitative role of these two Mb functions is studied in the maximally working human heart. Because discrimination between Mb functions has not been achieved experimentally, we use a Krogh cylinder model here. At a heart rate of 200 beats/min and a 1:1 ratio of diastole/systole, the systole lasts for 150 ms. The basic model assumption is that, with mobile Mb, the oxygen stored in the end-diastolic left ventricle wall exactly meets the demand during the 150 ms of systolic cessation of blood flow. The coronary blood flow necessary to achieve this agrees with literature data. By considering Mb immobile or setting its concentration to zero, respectively, we find that, depending on Mb concentration, Mb-facilitated O(2) transport maintains O(2) supply to the left ventricle wall during 22-34 of the 150 ms, while Mb storage function accounts for a further 12-17 ms. When Mb is completely absent, anoxia begins to develop after 116-99 ms. While Mb plays no significant role during diastole, it supplies O(2) to the left ventricular wall for < or = 50 ms of the 150 ms systole, whereas capillary haemoglobin is responsible for approximately 80 ms. Slight increases in haemoglobin concentration, blood flow, or capillary density can compensate the absence of Mb, a finding which agrees well with the observations using Mb knockout mice.

  17. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  18. Synthesis of surface oxygen-deficient BiPO{sub 4} nanocubes with enhanced visible light induced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Bingtao; Yin, Haoyong; Li, Tao; Gong, Jianying; Lv, Shumei; Nie, Qiulin, E-mail: yhy@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou (China)

    2017-05-15

    The visible light driven BiPO{sub 4} nanocubes with sufficient surface oxygen deficiency were fabricated by a hydrothermal process and subsequently ultrasonic assistant Fe reduction process. The products were characterized by XRD, DRS, XPS, SEM and TEM which showed that the BiPO{sub 4} had cuboid-like shape with a smooth surface and clear edges and the oxygen vacancies were successfully introduced on the surface of the BiPO{sub 4} nanocubes. The as prepared oxygen-deficient BiPO{sub 4} nanocubes showed greatly enhanced visible light induced photocatalytic activity in degradation of Rhodamine B. The enhanced photocatalytic performance and expanded visible light response of BiPO{sub 4} may be due to the introduction of surface oxygen vacancies which can generate the oxygen vacancies mid-gap states lower to the conduction band of BiPO{sub 4}. (author)

  19. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  20. Oxygen enhancement ratios in synchronous HeLa cells exposed to low-LET radiation

    International Nuclear Information System (INIS)

    Sapozink, M.D.

    1977-01-01

    HeLa cells were synchronized by the mitotic selection method and rendered hypoxic by coincubation with an excess of heavily irradiated, but metabolically active, feeder cells. An oxygen enhancement ratio (OER) of about 3 was obtained in interphase HeLa cells irradiated with x or gamma rays. A significantly lower OER was obtained with cells in, or close to, mitosis. The significance of this decrease in the oxygen effect in mitotic cells is discussed

  1. Diffusion Limitation and Hyperoxic Enhancement of Oxygen Consumption in Zooxanthellate Sea Anemones, Zoanthids, and Corals.

    Science.gov (United States)

    Shick, J M

    1990-08-01

    Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.

  2. Mixing enhancement and transport reduction in chaotic advection

    OpenAIRE

    Benzekri , Tounsia; Chandre , Cristel; Leoncini , Xavier; Lima , Ricardo; Vittot , Michel

    2005-01-01

    We present a method for reducing chaotic transport in a model of chaotic advection due to time-periodic forcing of an oscillating vortex chain. We show that by a suitable modification of this forcing, the modified model combines two effects: enhancement of mixing within the rolls and suppression of chaotic transport along the channel.

  3. Computational Modeling of Oxygen Transport in the Microcirculation: From an Experiment-Based Model to Theoretical Analyses

    OpenAIRE

    Lücker, Adrien

    2017-01-01

    Oxygen supply to cells by the cardiovascular system involves multiple physical and chemical processes that aim to satisfy fluctuating metabolic demand. Regulation mechanisms range from increased heart rate to minute adaptations in the microvasculature. The challenges and limitations of experimental studies in vivo make computational models an invaluable complement. In this thesis, oxygen transport from capillaries to tissue is investigated using a new numerical model that is tailored for vali...

  4. Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Andreas Pohlkötter

    2010-09-01

    Full Text Available Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy (QEPAS. With this system a detection limit of 13 ppm is reached with a compact and long term stable setup. Further improvement of the detection limit is possible by adding suitable gases to the sample gas that promote the radiationless de-excitation of the oxygen molecules.

  5. Influence of gemfibrozil on sulfate transport in human erythrocytes during the oxygenation-deoxygenation cycle

    Czech Academy of Sciences Publication Activity Database

    Tellone, E.; Ficarra, S.; Scatena, R.; Giardina, B.; Kotyk, Arnošt; Russo, A.; Colucci, D.; Bellocco, E.; Lagana, G.; Galtieri, A.

    2008-01-01

    Roč. 57, č. 4 (2008), s. 621-629 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) 1ET400110403 Institutional research plan: CEZ:AV0Z50110509 Keywords : gemfibrozil * sulfate transport * oxygenation-deoxygenation Subject RIV: CE - Biochemistry Impact factor: 1.653, year: 2008

  6. Improved stability of OLEDs with mild oxygen plasma treated PEDOT:PSS

    International Nuclear Information System (INIS)

    Zhou Yunfei; Yuan Yongbo; Cao Lingfang; Zhang Jie; Pang Hongqi; Lian Jiarong; Zhou Xiang

    2007-01-01

    We demonstrate improved stability of OLEDs with mild oxygen plasma-treated poly (3,4-ethylenedioxythiophene) doped with poly (styrenesulfonate) (PEDOT:PSS) as anode buffer layer. The devices with treated PEDOT:PSS layer exhibited dramatically enhanced lifetime by a factor of 9 compared to the control devices. We investigated the substantial changes in surface morphology of PEDOT:PSS layer after the mild oxygen plasma treatment by scanning electron microscopy and atomic force microscopy. We found that the appropriate treatment can form uniformly distributed nano scaled hillocks/islands on the surface of PEDOT:PSS layer, which possibly result in improved contact to hole transport layer and thus enhanced lifetime of the devices

  7. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J

    2014-01-01

    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation of ...... electron transport chain (Gupta et al., 2011). Thus, NO could influence oxygen consumption under normal aerobic conditions in roots, and it is this specific function that is assessed here.......Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...

  8. Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2009-04-01

    Full Text Available Abstract Background Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb, which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa and hypoxia (Po2: 3 kPa, respectively. Results The comparative proteome analysis showed an up-regulation of more than 50 protein spots under hypoxia. Identification of a major share of these spots revealed acclimatory changes for Hb, glycolytic enzymes (enolase, and enzymes involved in the degradation of storage and structural carbohydrates (e.g. cellubiohydrolase. Proteolytic enzymes remained constitutively expressed on a high level. Conclusion Acclimatory adjustments of the D. pulex proteome to hypoxia included a strong induction of Hb and carbohydrate-degrading enzymes. The scenario of adaptive protein expression under environmental hypoxia can be interpreted as a process to improve oxygen transport and carbohydrate provision for the maintenance of ATP production, even during short episodes of tissue hypoxia requiring support from anaerobic metabolism.

  9. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  10. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  11. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness

    DEFF Research Database (Denmark)

    Randsoe, T; Hyldegaard, O

    2009-01-01

    Decompression sickness (DCS) after air diving has been treated with success by means of combined normobaric oxygen breathing and intravascular perfluorocarbon (PFC) emulsions causing increased survival rate and faster bubble clearance from the intravascular compartment. The beneficial PFC effect...... has been explained by the increased transport capacity of oxygen and inert gases in blood. However, previous reports have shown that extravascular bubbles in lipid tissue of rats suffering from DCS will initially grow during oxygen breathing at normobaric conditions. We hypothesize that the combined...... effect of normobaric oxygen breathing and intravascular PFC infusion could lead to either enhanced extravascular bubble growth on decompression due to the increased oxygen supply, or that PFC infusion could lead to faster bubble elimination due to the increased solubility and transport capacity in blood...

  12. Generation mechanism of L-value dependence of oxygen flux enhancements during substorms

    Science.gov (United States)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.

    2015-12-01

    The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.

  13. Scaling laws for oxygen transport across the space-filling system of respiratory membranes in the human lung

    Science.gov (United States)

    Hou, Chen

    Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.

  14. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

    Science.gov (United States)

    McCord, Amy M; Jamal, Muhammad; Shankavaram, Uma T; Shankavarum, Uma T; Lang, Frederick F; Camphausen, Kevin; Tofilon, Philip J

    2009-04-01

    In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.

  15. Enhanced bulk conductivity and bipolar transport in mixtures of MoOx and organic hole transport materials

    International Nuclear Information System (INIS)

    Tian, Baolin; Ban, Dayan; Aziz, Hany

    2013-01-01

    We study the conductivity of thin films of molybdenum oxide (MoO x ) mixed with an organic hole transport material, such as N,N′-bis(naphthalen-1-yl)-N,N′-bis (phenyl)benzidine or 4′,4″-tri(N-carbazolyl)triphenylamine, in lateral test devices. Contrary to previous reports, the conductivity of the mixture is found to exceed that of neat MoO x , exhibiting ∼ 5 orders of magnitude higher conductivity in comparison to the neat films. Studies also show that the mixing enhances both hole and electron transport. The higher conductivity may be attributed to a higher concentration of “free” carriers in the mixture, as a result of the formation of a charge transfer complex between the MoO x and the hole transport material. The findings shed light on the potential of hybrid composites of inorganic and organic materials in realizing enhanced conductivity. - Highlights: • We investigate the conductivity of mixtures of MoO x and hole transport material (HTM). • Materials are studied in lateral devices instead of conventional vertical devices. • Mixing MoO x with HTM brings > 5 orders of magnitude increase in bulk conductivity. • The mixture of MoO x and HTM enhances both hole and electron transport

  16. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  17. A compartment model of alveolar-capillary oxygen diffusion with ventilation-perfusion gradient and dynamics of air transport through the respiratory tract.

    Science.gov (United States)

    Jaworski, Jacek; Redlarski, Grzegorz

    2014-08-01

    This paper presents a model of alveolar-capillary oxygen diffusion with dynamics of air transport through the respiratory tract. For this purpose electrical model representing the respiratory tract mechanics and differential equations representing oxygen membrane diffusion are combined. Relevant thermodynamic relations describing the mass of oxygen transported into the human body are proposed as the connection between these models, as well as the influence of ventilation-perfusion mismatch on the oxygen diffusion. The model is verified based on simulation results of varying exercise intensities and statistical calculations of the results obtained during various clinical trials. The benefit of the approach proposed is its application in simulation-based research aimed to generate quantitative data of normal and pathological conditions. Based on the model presented, taking into account many essential physiological processes and air transport dynamics, comprehensive and combined studies of the respiratory efficiency can be performed. The impact of physical exercise, precise changes in respiratory tract mechanics and alterations in breathing pattern can be analyzed together with the impact of various changes in alveolar-capillary oxygen diffusion. This may be useful in simulation of effects of many severe medical conditions and increased activity level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    International Nuclear Information System (INIS)

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  19. Oxygen vacancy doping of hematite analyzed by electrical conductivity and thermoelectric power measurements

    Science.gov (United States)

    Mock, Jan; Klingebiel, Benjamin; Köhler, Florian; Nuys, Maurice; Flohre, Jan; Muthmann, Stefan; Kirchartz, Thomas; Carius, Reinhard

    2017-11-01

    Hematite (α -F e2O3 ) is known for poor electronic transport properties, which are the main drawback of this material for optoelectronic applications. In this study, we investigate the concept of enhancing electrical conductivity by the introduction of oxygen vacancies during temperature treatment under low oxygen partial pressure. We demonstrate the possibility of tuning the conductivity continuously by more than five orders of magnitude during stepwise annealing in a moderate temperature range between 300 and 620 K. With thermoelectric power measurements, we are able to attribute the improvement of the electrical conductivity to an enhanced charge-carrier density by more than three orders of magnitude. We compare the oxygen vacancy doping of hematite thin films with hematite nanoparticle layers. Thereby we show that the dominant potential barrier that limits charge transport is either due to grain boundaries in hematite thin films or due to potential barriers that occur at the contact area between the nanoparticles, rather than the potential barrier within the small polaron hopping model, which is usually applied for hematite. Furthermore, we discuss the transition from oxygen-deficient hematite α -F e2O3 -x towards the magnetite F e3O4 phase of iron oxide at high density of vacancies.

  20. Analysis of the clinical backgrounds of patients who developed respiratory acidosis under high-flow oxygen therapy during emergency transport.

    Science.gov (United States)

    Ogino, Hirokazu; Nishimura, Naoki; Yamano, Yasuhiko; Ishikawa, Genta; Tomishima, Yutaka; Jinta, Torahiko; Takahashi, Osamu; Chohnabayashi, Naohiko

    2016-01-01

    High-flow oxygen is often administered to patients during emergency transport and can sometimes cause respiratory acidosis with disturbed consciousness, thereby necessitating mechanical ventilation. Although oxygen titration in chronic obstructive pulmonary disease patients during emergency transport reduces mortality rates, the clinical risk factors for respiratory acidosis in emergency settings are not fully understood. Therefore, we analyzed the clinical backgrounds of patients who developed respiratory acidosis during pre-hospital transport. This was a retrospective study of patients who arrived at our hospital by emergency transport in 2010 who received high-flow oxygen while in transit. Respiratory acidosis was defined by the following arterial blood gas readings: pH, ≤7.35; PaCO 2 , ≥45 mmHg; and HCO 3 - , ≥24 mmol/L. The risk factors were identified using multivariable logistic regression analysis. In 765 study patients, 66 patients showed respiratory acidosis. The following risk factors for respiratory acidosis were identified: age, ≥65 years (odds ratio [OR] 1.4; 95% confidence interval [CI], 0.7-2.8); transportation time, ≥10 min (OR 2.0; 95% CI, 1.1-3.7); three digits on the Japan Coma Scale (OR 3.1; 95% CI, 1.7-5.8); percutaneous oxygen saturation, ≤90% (OR 1.6; 95% CI, 0.8-3.0); tuberculosis (OR 4.5; 95% CI, 1.4-15.1); asthma (OR 1.8; 95% CI, 0.6-5.3); pneumonia (OR 1.5; 95% CI, 0.7-3.1); and lung cancer (OR 3.9; 95% CI, 1.5-10.1). These underlying diseases as risk factors included both comorbid diseases and past medical conditions. The factors identified may contribute to the development of respiratory acidosis. Further studies on preventing respiratory acidosis will improve the quality of emergency medical care.

  1. An On-Line Oxygen Forecasting System for Waterless Live Transportation of Flatfish Based on Feature Clustering

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2017-09-01

    Full Text Available Accurate prediction of forthcoming oxygen concentration during waterless live fish transportation plays a key role in reducing the abnormal occurrence, increasing the survival rate in delivery operations, and optimizing manufacturing costs. The most effective ambient monitoring techniques that are based on the analysis of historical process data when performing forecasting operations do not fully consider current ambient influence. This is likely lead to a greater deviation in on-line oxygen level forecasting in real situations. Therefore, it is not advisable for the system to perform early warning and on-line air adjustment in delivery. In this paper, we propose a hybrid method and its implementation system that combines a gray model (GM (1, 1 with least squares support vector machines (LSSVM that can be used effectively as a forecasting model to perform early warning effectively according to the dynamic changes of oxygen in a closed system. For accurately forecasting of the oxygen level, the fuzzy C-means clustering (FCM algorithm was utilized for classification according to the flatfish’s physical features—i.e., length and weight—for more pertinent training. The performance of the gray model-particle swarm optimization-least squares support vector machines (GM-PSO-LSSVM model was compared with the traditional modeling approaches of GM (1, 1 and LSSVM by applying it to predict on-line oxygen level, and the results showed that its predictions were more accurate than those of the LSSVM and grey model. Therefore, it is a suitable and effective method for abnormal condition forecasting and timely control in the waterless live transportation of flatfish.

  2. Oxygen enhancement ratio for negative pi mesons

    International Nuclear Information System (INIS)

    Hall, E.J.; Astor, M.

    1979-01-01

    Experiments were performed at the Los Alamos Meson Physics Facility (LAMPF) to determine the oxygen enhancement ratio (OER) for the clinically used beam of negative pi mesons. V79 Chinese hamster cells, cultured in vitro, were used as the biological test system; hypoxia was produced by metabolic depletion as a result of sealing 2 million cells in 1 ml glass ampules. The Bragg peak of the pion depth dose curve was spread out to cover 10 cm by using a dynamic range shifter. Cells were irradiated at the center of the spead out Bragg peak, where the dose/rate was 0.1 Gy/min over a 6 x 6 cm field. The OER obtained was 2.2, compared with 3.8 obtained for γ rays under the same conditions

  3. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    Science.gov (United States)

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  4. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding.

    Science.gov (United States)

    Shabala, Sergey; Shabala, Lana; Barcelo, Juan; Poschenrieder, Charlotte

    2014-10-01

    This review provides a comprehensive assessment of a previously unexplored topic: elucidating the role that plasma- and organelle-based membrane transporters play in plant-adaptive responses to flooding. We show that energy availability and metabolic shifts under hypoxia and anoxia are critical in regulating membrane-transport activity. We illustrate the high tissue and time dependence of this regulation, reveal the molecular identity of transporters involved and discuss the modes of their regulation. We show that both reduced oxygen availability and accumulation of transition metals in flooded roots result in a reduction in the cytosolic K(+) pool, ultimately determining the cell's fate and transition to programmed cell death (PCD). This process can be strongly affected by hypoxia-induced changes in the amino acid pool profile and, specifically, ϒ-amino butyric acid (GABA) accumulation. It is suggested that GABA plays an important regulatory role, allowing plants to proceed with H2 O2 signalling to activate a cascade of genes that mediate plant adaptation to flooding while at the same time, preventing the cell from entering a 'suicide program'. We conclude that progress in crop breeding for flooding tolerance can only be achieved by pyramiding the numerous physiological traits that confer efficient energy maintenance, cytosolic ion homeostasis, and reactive oxygen species (ROS) control and detoxification. © 2014 John Wiley & Sons Ltd.

  5. Enhancing disease surveillance reporting using public transport in ...

    African Journals Online (AJOL)

    Enhancing disease surveillance reporting using public transport in Dodoma District, Central Tanzania. ... LEG Mboera, SF Rumisha, EJ Mwanemile, E Mziwanda, PK Mmbuji ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  6. Effect of oxygen on the bias-enhanced nucleation of diamond on silicon

    DEFF Research Database (Denmark)

    Schreck, M.; Christensen, Carsten; Stritzker, B.

    1999-01-01

    The influence of traces of oxygen in the process gas on the bias-enhanced nucleation (BEN) of diamond on silicon has been studied in the present work. CO2 in concentrations ranging from 0 to 3000 ppm was added during the nucleation procedure at U-bias = -200 V in microwave plasma chemical vapour...

  7. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma—Initial experience

    International Nuclear Information System (INIS)

    Zhang, Wei-Juan; Niven, Robert M.; Young, Simon S.; Liu, Yu-Zhen; Parker, Geoffrey J.M.; Naish, Josephine H.

    2015-01-01

    Highlights: • Oxygen-enhanced MRI may have a role in the estimation of disease severity in asthma. • Heterogeneity of parameter maps reflects localized functional impairment in asthma. • OE-MRI provides non-ionising, spatial and temporal information on oxygen delivery. - Abstract: Objectives: To prospectively estimate the feasibility and reproducibility of dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) in the assessment of regional oxygen delivery, uptake and washout in asthmatic lungs. Materials and methods: The study was approved by the National Research Ethics Committee and written informed consent was obtained. Dynamic OE-MRI was performed twice at one month apart on four mild asthmatic patients (23 ± 5 years old, FEV 1 = 96 ± 3% of predicted value) and six severe asthmatic patients (41 ± 12 years old, FEV 1 = 60 ± 14% of predicted value) on a 1.5 T MR scanner using a two-dimensional T 1 -weighted inversion-recovery turbo spin echo sequence. The enhancing fraction (EF), the maximal change in the partial pressure of oxygen in lung tissue (ΔPO 2max l ) and arterial blood of the aorta (ΔPO 2max a ), and the oxygen wash-in (τ up l , τ up a ) and wash-out (τ down l , τ down a ) time constants were extracted and compared between groups using the independent-samples t-test (two-tailed). Correlations between imaging readouts and clinical measurements were assessed by Pearson's correlation analysis. Bland–Altman analysis was used to estimate the levels of agreement between the repeat scans and the intra-observer agreement in the MR imaging readouts. Results: The severe asthmatic group had significantly smaller EF (70 ± 16%) and median ΔPO 2max l (156 ± 52 mmHg) and significantly larger interquartile range of τ up l (0.84 ± 0.26 min) than the mild asthmatic group (95 ± 3%, P = 0.014; 281 ± 40 mmHg, P = 0.004; 0.20 ± 0.07 min, P = 0.001, respectively). EF, median ΔPO 2max l and τ down l and the interquartile range of τ up l

  8. Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2010-07-01

    The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.

  9. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels

    Directory of Open Access Journals (Sweden)

    Shaohui Sun

    2018-04-01

    Full Text Available An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C5–C20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  10. How many oxygen cylinders do you need to take on transport? A nomogram for cylinder size and duration.

    Science.gov (United States)

    Lutman, D; Petros, A J

    2006-09-01

    When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator.

  11. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Radmacher Michael D

    2006-10-01

    Full Text Available Abstract Background In Escherichia coli, pH regulates genes for amino-acid and sugar catabolism, electron transport, oxidative stress, periplasmic and envelope proteins. Many pH-dependent genes are co-regulated by anaerobiosis, but the overall intersection of pH stress and oxygen limitation has not been investigated. Results The pH dependence of gene expression was analyzed in oxygen-limited cultures of E. coli K-12 strain W3110. E. coli K-12 strain W3110 was cultured in closed tubes containing LBK broth buffered at pH 5.7, pH 7.0, and pH 8.5. Affymetrix array hybridization revealed pH-dependent expression of 1,384 genes and 610 intergenic regions. A core group of 251 genes showed pH responses similar to those in a previous study of cultures grown with aeration. The highly acid-induced gene yagU was shown to be required for extreme-acid resistance (survival at pH 2. Acid also up-regulated fimbriae (fimAC, periplasmic chaperones (hdeAB, cyclopropane fatty acid synthase (cfa, and the "constitutive" Na+/H+ antiporter (nhaB. Base up-regulated core genes for maltodextrin transport (lamB, mal, ATP synthase (atp, and DNA repair (recA, mutL. Other genes showed opposite pH responses with or without aeration, for example ETS components (cyo,nuo, sdh and hydrogenases (hya, hyb, hyc, hyf, hyp. A hypF strain lacking all hydrogenase activity showed loss of extreme-acid resistance. Under oxygen limitation only, acid down-regulated ribosome synthesis (rpl,rpm, rps. Acid up-regulated the catabolism of sugar derivatives whose fermentation minimized acid production (gnd, gnt, srl, and also a cluster of 13 genes in the gadA region. Acid up-regulated drug transporters (mdtEF, mdtL, but down-regulated penicillin-binding proteins (dacACD, mreBC. Intergenic regions containing regulatory sRNAs were up-regulated by acid (ryeA, csrB, gadY, rybC. Conclusion pH regulates a core set of genes independently of oxygen, including yagU, fimbriae, periplasmic chaperones, and nha

  12. Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes

    Science.gov (United States)

    Falkenstein-Smith, Ryan L.

    This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this

  13. Analysis of the clinical backgrounds of patients who developed respiratory acidosis under high‐flow oxygen therapy during emergency transport

    Science.gov (United States)

    Ogino, Hirokazu; Yamano, Yasuhiko; Ishikawa, Genta; Tomishima, Yutaka; Jinta, Torahiko; Takahashi, Osamu; Chohnabayashi, Naohiko

    2015-01-01

    Aim High‐flow oxygen is often administered to patients during emergency transport and can sometimes cause respiratory acidosis with disturbed consciousness, thereby necessitating mechanical ventilation. Although oxygen titration in chronic obstructive pulmonary disease patients during emergency transport reduces mortality rates, the clinical risk factors for respiratory acidosis in emergency settings are not fully understood. Therefore, we analyzed the clinical backgrounds of patients who developed respiratory acidosis during pre‐hospital transport. Methods This was a retrospective study of patients who arrived at our hospital by emergency transport in 2010 who received high‐flow oxygen while in transit. Respiratory acidosis was defined by the following arterial blood gas readings: pH, ≤7.35; PaCO 2, ≥45 mmHg; and HCO 3 −, ≥24 mmol/L. The risk factors were identified using multivariable logistic regression analysis. Results In 765 study patients, 66 patients showed respiratory acidosis. The following risk factors for respiratory acidosis were identified: age, ≥65 years (odds ratio [OR] 1.4; 95% confidence interval [CI], 0.7–2.8); transportation time, ≥10 min (OR 2.0; 95% CI, 1.1–3.7); three digits on the Japan Coma Scale (OR 3.1; 95% CI, 1.7–5.8); percutaneous oxygen saturation, ≤90% (OR 1.6; 95% CI, 0.8–3.0); tuberculosis (OR 4.5; 95% CI, 1.4–15.1); asthma (OR 1.8; 95% CI, 0.6–5.3); pneumonia (OR 1.5; 95% CI, 0.7–3.1); and lung cancer (OR 3.9; 95% CI, 1.5–10.1). These underlying diseases as risk factors included both comorbid diseases and past medical conditions. Conclusions The factors identified may contribute to the development of respiratory acidosis. Further studies on preventing respiratory acidosis will improve the quality of emergency medical care. PMID:29123744

  14. Orbital Kondo effect due to assisted hopping: Superconductivity, mass enhancement in Cooper oxides with apical oxygen

    International Nuclear Information System (INIS)

    Zawadowski, A.; Penc, K.; Zimanyi, G.

    1991-07-01

    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals with energy not very far from the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the conduction band orbital then orbital Kondo correlation occurs. The assisted hopping vertex is enhanced due to the Coulomb interaction between the heavy orbital and the conduction band. The enhanced hopping results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature is calculated. The models of this type can be applied to the high-T c superconductors where the non-bonding oxygen orbitals of the apical oxygens play the role of heavy orbitals. For an essential range of the parameters the T c obtained is about 100K. (author). 22 refs, 9 figs

  15. Effect of low oxygen partial pressure to the bumblebee respiration; Naruhanabachi ni okeru taikichu sanso bun'atsu henka no kokyu ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Komai, Y. [Japan Science and Technology Corp., Tokyo (Japan)

    1999-06-25

    Insects augment oxygen supply using convective transport during flight in two ways: with deforming tracheae by surrounding muscles movement (muscle pumping) and with contracting air sacs by exoskeleton movement (abdominal or thoracic pumping). However, because induced flow inside tracheae is difficult to measure, it is not known how the convective transport actually contributes. By comparison between direct measurement of oxygen partial pressure in a flight muscle based on electrochemical method and flight/ventilation activities in a bumblebee, Bumbus hypocrita hypocruta, a method was developed for estimating gas transport efficiency. Oxygen partial pressure, P{sub 02}, in the bee periodically fluctuated with discontinuous abdominal movement in normal air. While the P{sub 02} strongly varied among individuals in normal air, the P{sub 02} took a unique value in oxygen poor air ({<=}8%). By enhancing ventilation, the bee could respire in an oxygen poor atmosphere up to 2%. Furthermore, the bee could fly in an atmosphere of 6%, in which the P{sub 02} decreased to 0.7%. Estimated efficiency of the gas transport increases with atmospheric oxygen concentration decreases. (author)

  16. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    Science.gov (United States)

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  17. Irradiation-enhanced and-induced mass transport

    International Nuclear Information System (INIS)

    Rehn, L.E.

    1989-01-01

    Irradiation can be used to enhance diffusion, that is, to increase the rate at which equilibrium is attained, as well as to induce nonequilibrium changes. The main factors influencing whether irradiation will drive a material toward or away from equilibrium are the initial specimen microstructure and geometry, irradiation temperature, and primary recoil spectrum. This paper summarizes known effects of irradiation temperature and primary recoil spectrum on mass transport during irradiation. In comparison to either electron or heavy-ion irradiation, it is concluded that relatively low-energy, light-ion bombardment at intermediate temperatures offers the greatest potential to enhance the rate at which equilibrium is attained. The greatest departures from equilibrium can be expected from irradiation with similar particles at very low temperatures

  18. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, Camilo [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia); Pérez, Alejandro [Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C (Colombia); Molina, Rafael [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia); Moreno, Sonia, E-mail: smorenog@unal.edu.co [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia)

    2016-10-15

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O{sub 2} mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, {sup 18}O{sub 2} isotopic exchange and O{sub 2}-H{sub 2} titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  19. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    International Nuclear Information System (INIS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-01-01

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O 2 mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18 O 2 isotopic exchange and O 2 -H 2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  20. Properties and performance of BaxSr1-xCo0.8Fe0.2O3-d materials for oxygen transport membranes

    NARCIS (Netherlands)

    Vente, Jaap F.; McIntosh, S.; McIntosh, Steven; Haije, Wim G.; Bouwmeester, Henricus J.M.

    2006-01-01

    The present paper discusses the oxygen transport properties, oxygen stoichiometry, phase stability, and chemical and mechanical stability of the perovskites $${\\text{Ba}}_{{0.5}} {\\text{Sr}}_{{0.5}} {\\text{Co}}_{{0.8}} {\\text{Fe}}_{{0.2}} {\\text{O}}_{{3 - \\delta }} $$ (BSCF) and

  1. Dynamic oxygen-enhanced magnetic resonance imaging of the lung in asthma—Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-Juan, E-mail: weijuan.zhang@postgrad.manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Niven, Robert M., E-mail: robert.niven@uhsm.nhs.uk [North West Lung Research Centre, University Hospital of South Manchester, Southmoor Road, Manchester M23 9LT (United Kingdom); Young, Simon S., E-mail: Simon.Young1@astrazeneca.com [Personalised Healthcare and Biomarkers, AstraZeneca R and D, Alderley Park, Macclesfield SK10 4TF (United Kingdom); Liu, Yu-Zhen, E-mail: yu-zhen.liu@astrazeneca.com [Personalised Healthcare and Biomarkers, AstraZeneca R and D, Alderley Park, Macclesfield SK10 4TF (United Kingdom); Parker, Geoffrey J.M., E-mail: Geoff.parker@manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Bioxydyn Limited, Rutherford House, Pencroft Way, Manchester M15 6SZ (United Kingdom); Naish, Josephine H., E-mail: Josephine.naish@manchester.ac.uk [Centre for Imaging Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Biomedical Imaging Institute, The University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom)

    2015-02-15

    Highlights: • Oxygen-enhanced MRI may have a role in the estimation of disease severity in asthma. • Heterogeneity of parameter maps reflects localized functional impairment in asthma. • OE-MRI provides non-ionising, spatial and temporal information on oxygen delivery. - Abstract: Objectives: To prospectively estimate the feasibility and reproducibility of dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) in the assessment of regional oxygen delivery, uptake and washout in asthmatic lungs. Materials and methods: The study was approved by the National Research Ethics Committee and written informed consent was obtained. Dynamic OE-MRI was performed twice at one month apart on four mild asthmatic patients (23 ± 5 years old, FEV{sub 1} = 96 ± 3% of predicted value) and six severe asthmatic patients (41 ± 12 years old, FEV{sub 1} = 60 ± 14% of predicted value) on a 1.5 T MR scanner using a two-dimensional T{sub 1}-weighted inversion-recovery turbo spin echo sequence. The enhancing fraction (EF), the maximal change in the partial pressure of oxygen in lung tissue (ΔPO{sub 2max{sub l}}) and arterial blood of the aorta (ΔPO{sub 2max{sub a}}), and the oxygen wash-in (τ{sub up{sub l}}, τ{sub up{sub a}}) and wash-out (τ{sub down{sub l}}, τ{sub down{sub a}}) time constants were extracted and compared between groups using the independent-samples t-test (two-tailed). Correlations between imaging readouts and clinical measurements were assessed by Pearson's correlation analysis. Bland–Altman analysis was used to estimate the levels of agreement between the repeat scans and the intra-observer agreement in the MR imaging readouts. Results: The severe asthmatic group had significantly smaller EF (70 ± 16%) and median ΔPO{sub 2max{sub l}} (156 ± 52 mmHg) and significantly larger interquartile range of τ{sub up{sub l}} (0.84 ± 0.26 min) than the mild asthmatic group (95 ± 3%, P = 0.014; 281 ± 40 mmHg, P = 0.004; 0.20 ± 0.07 min, P = 0

  2. Oxygen transport and cardiovascular function at extreme altitude: lessons from Operation Everest II

    Science.gov (United States)

    Sutton, J. R.; Reeves, J. T.; Groves, B. M.; Wagner, P. D.; Alexander, J. K.; Hultgren, H. N.; Cymerman, A.; Houston, C. S.

    1992-01-01

    Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.

  3. An algorithm for sensing venous oxygenation using ultrasound-modulated light enhanced by microbubbles

    Science.gov (United States)

    Honeysett, Jack E.; Stride, Eleanor; Deng, Jing; Leung, Terence S.

    2012-02-01

    Near-infrared spectroscopy (NIRS) can provide an estimate of the mean oxygen saturation in tissue. This technique is limited by optical scattering, which reduces the spatial resolution of the measurement, and by absorption, which makes the measurement insensitive to oxygenation changes in larger deep blood vessels relative to that in the superficial tissue. Acousto-optic (AO) techniques which combine focused ultrasound (US) with diffuse light have been shown to improve the spatial resolution as a result of US-modulation of the light signal, however this technique still suffers from low signal-to-noise when detecting a signal from regions of high optical absorption. Combining an US contrast agent with this hybrid technique has been proposed to amplify an AO signal. Microbubbles are a clinical contrast agent used in diagnostic US for their ability to resonate in a sound field: in this work we also make use of their optical scattering properties (modelled using Mie theory). A perturbation Monte Carlo (pMC) model of light transport in a highly absorbing blood vessel containing microbubbles surrounded by tissue is used to calculate the AO signal detected on the top surface of the tissue. An algorithm based on the modified Beer-Lambert law is derived which expresses intravenous oxygen saturation in terms of an AO signal. This is used to determine the oxygen saturation in the blood vessel from a dual wavelength microbubble-contrast AO measurement. Applying this algorithm to the simulation data shows that the venous oxygen saturation is accurately recovered, and this measurement is robust to changes in the oxygenation of the superficial tissue layer.

  4. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  5. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    Science.gov (United States)

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  6. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-05-28

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  7. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    Science.gov (United States)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  8. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  9. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DEFF Research Database (Denmark)

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens

    2011-01-01

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation o...... enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells....... of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than......, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH...

  10. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose; Ahn, Sung-Jin; Crumlin, Ethan; Orikasa, Yuki; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  11. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  12. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  13. Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.

    Science.gov (United States)

    Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya

    2018-05-01

    TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.

  14. Investigation of radiation-enhanced oxygen diffusion in Li-Ti ferrites

    International Nuclear Information System (INIS)

    Surzhikov, A.P.; Pritulov, A.M.; Gyngazov, S.A.; Lysenko, E.N.

    1999-01-01

    The radiation-enhanced oxygen diffusion in polycrystalline Li-Ti ferrites was investigated. The electron accelerator ELV-6 (Institute of Nuclear Physics, Russian Academy of Sciences) was used to generate the radiothermal annealing. The radiation effects were established by comparison of diffusion profiles of the samples, which were radiothermally treated, and data obtained during the thermal annealing in the resistance furnace. It was discovered that there was an increase of numerical values of Ed (activation diffusion energy) and Do (preexponential factor) during the radiothermal annealing, if compared with the thermal one. The investigations were financed by the Russian Fundamental Research Fund

  15. Lifetime-Enhanced Transport in Silicon due to Spin and Valley Blockade

    NARCIS (Netherlands)

    Lansbergen, G.P.; Rahman, R.; Verduijn, J.; Tettamanzi, G.C.; Collaert, N.; Biesemans, S.; Klimeck, G.; Hollenberg, L.C.L.; Rogge, S.

    2011-01-01

    We report the observation of lifetime-enhanced transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition

  16. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Mathur, A.; Roy, S.S.; Hazra, K.S.; Wadhwa, S.; Ray, S.C.; Mitra, S.K.; Misra, D.S.; McLaughlin, J.A.

    2012-01-01

    Highlights: ► We showed Ar/O 2 plasma can be effective for the end opening of aligned CNTs. ► The field emission property was dramatically enhanced after plasma modification. ► Microstructures were clearly understood by Raman and SEM analysis. ► Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15–20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110° to 40°. It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from ∼0.80 V μm −1 (untreated) to ∼0.60 V μm −1 (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  17. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Roy, S.S., E-mail: sinharoy@ualberta.ca [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Hazra, K.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); Wadhwa, S. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Ray, S.C. [School of Physics, University of the Witwatersrand, WITS 2050, Johannesburg (South Africa); Mitra, S.K. [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Misra, D.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); McLaughlin, J.A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We showed Ar/O{sub 2} plasma can be effective for the end opening of aligned CNTs. Black-Right-Pointing-Pointer The field emission property was dramatically enhanced after plasma modification. Black-Right-Pointing-Pointer Microstructures were clearly understood by Raman and SEM analysis. Black-Right-Pointing-Pointer Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15-20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110 Degree-Sign to 40 Degree-Sign . It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from {approx}0.80 V {mu}m{sup -1} (untreated) to {approx}0.60 V {mu}m{sup -1} (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  18. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    Science.gov (United States)

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [TRANSPORT OF OXYGEN DURING GEOMETRICAL RECONSTRUCTION OF THE LEFT VENTRICLE IN CONJUNCTION WITH CORONARY ARTERY BYPASS GRAFTING AND USING OF HIGH THORACIC EPIDURAL ANESTHESIA AS A MAJOR COMPONENT OF GENERAL ANAESTHESIA].

    Science.gov (United States)

    Zatevahina, M V; Farzutdinov, A F; Rahimov, A A; Makrushin, I M; Kvachantiradze, G Y

    2015-01-01

    The purpose of the study is to examine the perioperative dynamics of strategic blood oxygen transport indicators: delivery (DO2), consumption (VO2), the coefficient of oxygen uptake (CUO2) and their composition, as well as the dynamics of blood lactate indicators in patients with ischaemic heart disease (IHD) who underwent surgery under cardiopulmonary bypass with high thoracic epidural anaesthesia (HTEA) as the main component of anesthesia. Research was conducted in 30 patients with a critical degree of operational risk, during the correction of post-infarction heart aneurysmn using the V. Dor method in combination with coronary artery bypass grafting. The strategic blood oxygen transport indicators (delivery, consumption and the oxygen uptake coefficient) showed a statistically significant decrease compared to the physiological norm and to the initial data at two points of the research: the intubation of the trachea and during cardiopulmonary bypass. The system components of oxygen were influenced at problematic stages by the dynamics of SvO2 (increase), AVD (decrease), hemodilution withe fall of the HIb- in the process of JR in the persence of superficial hypothermia. The maintenance of optimal CA in the context of HTEA, combined with a balanced volemic load and a minimized cardiotonic support ensured the stabilisation of strategic blood oxygen transport indicators aithe postperfusion stage and during the immediate postoperative period The article is dedicated to the study of strategic blood oxygen transport indicators and their components during the operation of geometric reconstruc-tion of the left ventricle combined with coronary artery-bypass using cardiopulmonary bypass and with high thoracic epidural anesthesia as the main component of general anaesthesia. The analysis has covered the stagewise delivery dynamics, consumption and the oxygen uptake coefficient at II stages of the operation and of the immediate postoperative period. The study has ident (fled

  20. Impurity transport in the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    1985-01-01

    Impurity radiation losses in net-current-free neutral-beam-heated plasmas in the Wendelstein W VII-A stellarator are the combined effect of particularly strong impurity sources and improved particle confinement as compared with ohmically heated tokamak-like plasma discharges. Experiments are described and conclusions are drawn about the impurity species, their origin and their transport behaviour. The impurity transport is modelled by a 1-D impurity transport and radiation code. The evolution of the total radiation in time and space deduced from soft-X-ray and bolometer measurements can be fairly well simulated by the code. Experimentally, oxygen was found to make the main contribution to the radiation losses. In the calculations, an influx of cold oxygen desorbed from the walls of the order of 10 13 -10 14 cm -2 .s -1 and a rate of fast injected oxygen corresponding to a 1% impurity content of the neutral beams in combination with neoclassical impurity transport leads to quantitative agreement between the simulation and the observed radiation. The transport of A1 trace impurities injected by the laser blow-off technique was experimentally studied by soft-X-ray measurements using a differential method allowing extraction of the time evolution of A1 XII, XIII radial profiles. These are compared with code predictions, together with additional spectroscopic measurements. The main features of the impurity transport are consistent with neoclassical predictions, which explain particularly the central impurity accumulation. Some details, however, seem to require additional 'anomalous' transport. Such an enhancement is correlated with distortions of the magnetic configuration around resonant magnetic surfaces. (author)

  1. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  2. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  3. Effects of whole body UV-irradiation on oxygen delivery from the erythrocyte

    International Nuclear Information System (INIS)

    Humpeler, E.; Mairbaeurl, H.; Hoenigsmann, H.

    1982-01-01

    In 16 healthy caucasian volunteers (mean age: 22.2 years) the influence of whole body UV-irradiation on the oxygen transport properties of erythrocytes was investigated. Four hours after irradiation with UV (using the minimal erythema dose, MED) no variation of haemoglobin concentration, hematocrit, mean corpuscular haemoglobin concentration, pH or standard bicarbonate could be found, whereas inorganic plasma phosphate (Psub(i)), calcium, the intraerythrocytic 2,3-diphosphoglycerate (2,3-DPG), the activity of erythrocytic phosphofructokinase (PFK) and pyruvatekinase (PK) increased significantly. The half saturation tension of oxygen (P 50 -value) tended to increase. The increase of Psub(i) causes - via a stimulation of the glycolytic pathway - an increase in 2,3-DPG concentration and thus results in a shift of the oxygen dissociation curve. It is therefore possible to enhance tissue oxygenation by whole body UV-irradiation. (orig.)

  4. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    Directory of Open Access Journals (Sweden)

    Saeed Yousefi

    2015-04-01

    Full Text Available Introduction Pyrite oxidation and acid mine drainage (AMD are the serious environmental problems associated with the mining activities in sulphide ores. The rate of pyrite oxidation is governed by the availability of oxygen (Borden, 2003. Therefore, the identifying oxygen supplying mechanism is one of the most important issues related to the environmental assessment of waste rock dumps (Cathles and Apps, 1975; Jaynes et al., 1984; Davis and Ritchie, 1986. Although comprehensive researches were performed on the mathematical description of oxygen transport processes using the numerical modeling (Morin et al., 1988; Blowes et al., 1991; Wunderly et al., 1986; Elberling et al., 1994; Jannesar Malakooti et al., 2014, so far, the interactions between these processes and geochemical and mineralogical characteristics has not been studied especially in waste rock dumps. Therefore the main objective of this study is to identify the evidences for knowing the oxygen transport mechanisms in the waste dumps and also, its role in intensity of pyrite oxidation. It is expected that such these structural studies could be useful for better understanding of dominant processes in numerical modeling and also providing environmental management strategies in the study area and other sites by similar characteristics. Materials and Methods In this study, thirty solid samples were collected from six excavated trenches in the waste rock dumps No. 19 and 31 of the Sarcheshmeh porphyry copper mine. Collected samples were studied using several methods such as XRD, ASTM-D2492, paste pH and grain size distribution. The results obtained from these methods were used with the field observations in order to characterize some detail information about oxygen supplying mechanisms for oxidation reactions in the waste rock dumps. Result The main minerals found by the XRD analysis were quartz and muscovite which were present in all samples. Pyrite, orthose, albite, and chlorite were also

  5. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2017-03-23

    Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂ - ), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂ - ) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂ - , ONO₂ - , and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂ - in the macula densa on tubuloglomerular feedback.

  6. Blood oxygen and carbon dioxide transport in man

    OpenAIRE

    McElderry, Linda A.

    1981-01-01

    The effect of long term domiciliary oxygen therapy on the position and shape of the oxygen dissociation curve, together with other haematologic variables such as 2,3- diphosphoglycerate (2,3-DPG), haemoglobin concentration, packed cell volume, mean corpuscular haemoglobin concentration, and arterial blood gas and pH values, has been studied in patients with chronic bronchitis. Twenty-six patients were randomly allocated to receive either no oxygen therapy or 15 hours p...

  7. Oxygen transport and myocardial function after the administration of albumin 5%, hydroxyethylstarch 6% and succinylated gelatine 4% to rabbits

    NARCIS (Netherlands)

    Himpe, D. G.; de Hert, S. G.; Vermeyen, K. M.; Adriaensen, H. F.

    2002-01-01

    BACKGROUND AND OBJECTIVE: The effects of administering albumin 5%, hydroxyethylstarch 6% and succinylated gelatine 4% on oxygen transport and left ventricular function were prospectively investigated in different experimental conditions: baseline, fluid load, after 10 min of myocardial ischaemia and

  8. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2016-07-01

    The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP + under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O 2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.

    Science.gov (United States)

    Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P

    2014-12-01

    This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers.

    Directory of Open Access Journals (Sweden)

    Simon Sven Ivan Kindvall

    Full Text Available Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO in patients with lung disease.In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds.In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003 and BMI (p = 0.0004, but not DL,CO (p = 0.33. Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term.In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.

  11. Nonlinearly-enhanced energy transport in many dimensional quantum chaos

    KAUST Repository

    Brambila, D. S.; Fratalocchi, Andrea

    2013-01-01

    By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.

  12. Nonlinearly-enhanced energy transport in many dimensional quantum chaos

    KAUST Repository

    Brambila, D. S.

    2013-08-05

    By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.

  13. Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries

    International Nuclear Information System (INIS)

    Lodge, Andrew W.; Lacey, Matthew J.; Fitt, Matthew; Garcia-Araez, Nuria; Owen, John R.

    2014-01-01

    This work reports a detailed characterization of the reduction of oxygen in pyrrolidinium-based ionic liquids for application to lithium-oxygen batteries. It is found that, in the absence of Li + , all electron transfer kinetics are fast, and therefore, the reactions are limited by the mass transport rate. Reversible reduction of O 2 to O 2 • − and O 2 • − to O 2 2− take place at E 0 = 2.1 V and 0.8 V vs. Li + /Li, respectively. In the presence of Li + , O 2 is reduced to LiO 2 first and then to Li 2 O 2 . The solubility product constant of Li 2 O 2 is found to be around 10 −51 , corroborating the hypothesis that electrode passivation by Li 2 O 2 deposition is an important issue that limits the capacity delivered by lithium-oxygen batteries. Enhancing the rate of Li 2 O 2 formation by using different electrode materials would probably lead to faster electrode passivation and hence smaller charge due to oxygen reduction (smaller capacity of the battery). On the contrary, soluble redox catalysts can not only increase the reaction rate of Li 2 O 2 formation but also avoid electrode passivation since the fast diffusion of the soluble redox catalyst would displace the formation of Li 2 O 2 at a sufficient distance from the electrode surface

  14. Effect of oxygen defects on transport properties and Tc of YBa2Cu3O6+x: Displacement energy for plane and chain oxygen and implications for irradiation-induced resistivity and Tc suppression

    International Nuclear Information System (INIS)

    Tolpygo, S.K.; Lin, J.; Gurvitch, M.; Hou, S.Y.; Phillips, J.M.

    1996-01-01

    The effect of electron irradiation with energy from 20 to 120 keV on the resistivity, Hall coefficient, and superconducting critical temperature T c of YBa 2 Cu 3 O 6+x thin films has been studied. The threshold energy of incident electrons for T c suppression has been found, and the displacement energy for oxygen in CuO 2 planes has been evaluated as 8.4 eV for irradiation along the c axis. The kinetics of production of the in-plane oxygen vacancies has been studied and found to be governed by athermal recombination of vacancy-interstitial pairs. The evaluated recombination volume constitutes about 21 unit cells. The increase in the T-linear resistivity slope and Hall coefficient at unchanged T c was observed in irradiations with subthreshold incident energies and was ascribed to the effect of chain oxygen displacements. The upper limit on the displacement energy for chain oxygen has been estimated as 2.8 eV. In x=0.9 samples the T c suppression by in-plane oxygen defects and increase in residual resistivity have been found to be, respectively, -280 K and 1.5 mΩcm per defect in the unit cell. It is shown that T c suppression by in-plane oxygen defects is a universal function of the transport impurity scattering rate and can be described qualitatively by pair-breaking theory for d-wave superconductors with nonmagnetic potential scatterers. Evaluation of scattering and pair-breaking rates as well as the scattering cross section and potential is given. A comparison of the influence of in-plane oxygen defects on transport properties with that of other in-plane defects, such as Zn and Ni substitutions for Cu, is also made. copyright 1996 The American Physical Society

  15. Carbon-Coated Perovskite BaMnO3 Porous Nanorods with Enhanced Electrocatalytic Perporites for Oxygen Reduction and Oxygen Evolution

    International Nuclear Information System (INIS)

    Xu, Yujiao; Tsou, Alvin; Fu, Yue; Wang, Jin; Tian, Jing-Hua; Yang, Ruizhi

    2015-01-01

    A thin carbon layer has been introduced to coat on the perovskite BaMnO 3 nanorods by a facile method, which exhibit significantly enhanced electrocatalytic activity for both the ORR and OER with excellent stability. - Highlights: • A non-rare-earth element based perovskite BaMnO 3 nanorods as an active electrocatalyst for the ORR and OER have been prepared and investigated for the first time. • A thin carbon-coating layer with thickness of approximately 10 nm has been successfully introduced to enhance the electrical conductivity and the electrocatalytic activities of the bare perovskite for both ORR and OER. • The stabilities of bare BaMnO 3 nanorods for both ORR and OER have also been improved dramatically with the help of carbon coating, especially for the OER process. - Abstract: Highly efficient, low-cost catalysts, especially with bifunctional electrocatalytic capabilities for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital for the wide commercialization of fuel cells and metal-air batteries. In this study, BaMnO 3 - a non-rare-earth element based perovskite nanorods have been prepared and investigated for the first time, and a thin carbon-coating with a thickness of approximately 10 nm has been successfully introduced to enhance the electrical conductivity of the bare perovskite. Electrochemical tests reveal that bare BaMnO 3 nanorods exhibit very good catalytic activity. More interestingly, a remarkably enhanced ORR activity for the perovskite BaMnO 3 nanorods was observed after coating with a thin layer of carbon, which dominated with a direct four-electron pathway. Meanwhile, the OER process has also been enhanced extraordinarily with the carbon-coating, reaching a maximum of 14.8 mA cm −2 at 1.0 V (vs. Ag/AgCl), which is far superior to both the bare BaMnO 3 nanorods and commercial Pt/C (20 wt%) catalysts. Furthermore, the stabilities of bare BaMnO 3 nanorods for both ORR and OER have also been improved

  16. UV Enhanced Oxygen Response Resistance Ratio of ZnO Prepared by Thermally Oxidized Zn on Sapphire Substrate

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2013-01-01

    Full Text Available ZnO thin film was fabricated by thermally oxidized Zn at 600°C for 1 h. A surface containing nanostructured dumbbell and lines was observed by scanning electron microscope (SEM. The ZnO resistor device was formed after the following Ti/Au metallization. The device resistance was characterized at different oxygen pressure environment in the dark and under ultraviolet (UV light illumination coming from the mercury lamp with a short pass filter. The resistance increases with the increase of oxygen pressure. The resistance decreases and response increases with the increase of light intensity. Models considering the barrier height variation caused by the adsorbed oxygen related species were used to explain these results. The UV light illumination technology shows an effective method to enhance the detection response for this ZnO resistor oxygen sensor.

  17. The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Singh, R.

    2003-01-01

    Ab initio density functional theory (DFT) calculations of the interactions between isolated infinitely-long semiconducting zig-zag (10, 0) or isolated infinitely-long metallic arm-chair (5, 5) single-walled carbon-nanotubes (SWCNTs) and single oxygen-molecules are carried out in order to determine the character of molecular-oxygen adsorption and its effect on electronic transport properties of these SWCNTs. A Green's function method combined with a nearest-neighbor tight-binding Hamiltonian in a non-orthogonal basis is used to compute the electrical conductance of SWCNTs and its dependence on the presence of topological defects in SWCNTs and of molecular-oxygen adsorbates. The computational results obtained show that in both semiconducting and metallic SWCNTs, oxygen-molecules are physisorbed to the defect-free nanotube walls, but when such walls contain topological defects, oxygen-molecules become strongly chemisorbed. In semiconducting (10, 0) SWCNTs, physisorbed O 2 -molecules are found to significantly increase electrical conductance while the effect of 7-5-5-7 defects is practically annulled by chemisorbed O 2 -molecules. In metallic (5, 5) SWCNTs, both O 2 adsorbates and 7-5-5-7 defects are found to have a relatively small effect on electrical conductance of these nanotubes

  18. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy

    Science.gov (United States)

    Zhang, Xin; Yan, Qi; Naer Mulatihan, Di; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-01

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  19. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Xiao, Teng; Cui, Weipan [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Joseph, E-mail: jshinar@iastate.edu [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth, E-mail: rshinar@iastate.edu [Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-05-17

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ{sub 0}/τ{sub 100} (PL decay time τ at 0% O{sub 2}/τ at 100% O{sub 2}) that is often used

  20. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells

    Science.gov (United States)

    Wang, Shunzhong; Li, Xiaohui; Wan, Zhaohui; Chen, Yanan; Tan, Jinting; Pan, Mu

    2018-03-01

    Oxygen transport resistance (OTR) is a critical factor influencing the performance of proton exchange membrane fuel cells (PEMFCs). In this paper, an effective method to reduce the OTR of catalyst layers (CLs) by introducing a hydrophobic additive into traditional CLs is proposed. A low-molecular-weight polytetrafluoroethylene (PTFE) is selected for its feasibility to prepare an emulsion, which is mixed with a traditional catalyst ink to successfully fabricate the CL with PTFE of 10 wt%. The PTFE film exists in the mesopores between the carbon particles. The limiting current of the hydrophobic CL was almost 4000 mA/cm2, which is 500 mA/cm2 higher than that of the traditional CL. PTFE reduces the OTR of the CL in the dry region by as much as 24 s/m compared to the traditional CL and expands the dry region from 2000 mA/cm2 in the traditional CL to 2500 mA/cm2. Furthermore, the CL with the hydrophobic agent can improve the oxygen transport in the wet region (>2000 mA/cm2) more effectively than that in the dry region. All these results indicate that the CL with the hydrophobic agent shows a superior performance in terms of optimizing water management and effectively reduces the OTR in PEMFCs.

  1. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    International Nuclear Information System (INIS)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-01-01

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ 0 /τ 100 (PL decay time τ at 0% O 2 /τ at 100% O 2 ) that is often used to express S

  2. Enhanced charge transport and photovoltaic performance of PBDTTT-C-T/PC70BM solar cells via UV-ozone treatment.

    Science.gov (United States)

    Adhikary, Prajwal; Venkatesan, Swaminathan; Adhikari, Nirmal; Maharjan, Purna P; Adebanjo, Olusegun; Chen, Jihua; Qiao, Qiquan

    2013-10-21

    In this work, the electron transport layer of PBDTTT-C-T/PC70BM polymer solar cells were subjected to UV-ozone treatment, leading to improved cell performances from 6.46% to 8.34%. The solar cell efficiency reached a maximum of 8.34% after an optimal 5 minute UV-ozone treatment, and then decreased if treated for a longer time. To the best of our knowledge, the mechanism behind the effects of UV-ozone treatment on the improvement of charge transport and cell performance is not fully understood. We have developed a fundamental understanding of the UV-ozone treatment mechanism, which explains both the enhancements in charge transport and photovoltaic performance at an optimal treatment time, and also the phenomenon whereby further treatment time leads to a drop in cell efficiency. Transient photocurrent measurements indicated that the cell charge transport times were 1370 ns, 770 ns, 832 ns, 867 ns, and 1150 ns for the 0 min, 5 min, 10 min, 15 min, and 20 min UV-ozone treatment times, respectively. Therefore the 5 min UV-ozone treatment time led to the shortest transport time and the most efficient charge transport in the cells. The 5 min UV-ozone treated sample exhibited the highest peak intensity (E2) in the Raman spectra of the treated films, at about 437 cm(-1), indicating that it possessed the best wurtzite phase crystallinity of the ZnO films. Further increasing the UV-ozone treatment time from 5 to 20 min induced the formation of p-type defects (e.g. interstitial oxygen atoms), pushing the ZnO Fermi-level further away from the vacuum level, and decreasing the wurtzite crystallinity.

  3. Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice

    Science.gov (United States)

    Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2013-01-01

    SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID

  4. Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations.

    Science.gov (United States)

    Dotson, Rachel J; Smith, Casey R; Bueche, Kristina; Angles, Gary; Pias, Sally C

    2017-06-06

    Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  6. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, N.; Bögels, M.; Grewal, S.; van der Meer, A.J.; Rojas, L.B.; Fluitsma, D.M.; van den Tol, M.P.; Hoeben, K.A.; van Marle, J.; de Vries, H.E.; Beelen, R.H.J.; van Egmond, M.

    2011-01-01

    Objective: Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS)

  7. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gul, N.; Bogels, M.; Grewal, S.; van der Meer, A.J.; Rojas, L.B.; Fluitsma, D.M.; van den Tol, M.P.; Hoeben, K.A.; van Marle, J.; de Vries, H.E.; Beelen, R.H.J.; van Egmond, M.

    2011-01-01

    Objective Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS)

  8. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    Science.gov (United States)

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxygen enhancement ratios for glutathione-deficient human fibroblasts determined from the frequency of radiation induced micronuclei

    International Nuclear Information System (INIS)

    Midander, J.

    1982-01-01

    The yield of micronuclei (MN) was determined to study the radiosensitizing effect of oxygen on three human fibroblast strains, characterized by genetically defined differences in their glutathione (GSH) level. Cells were irradiated in paired experiments with x-ray doses of 2.66 and 6.65 gy in their exponential growth phase in a monolayer under oxic and anoxic conditions. Results indicated a reduced oxygen effect for the GSH deficient cells, the reduction of o.e.r. being most pronounced in the case of GSHsup(-/-) cells, when it was close to unity. The o.e.r. value was intermediate for the GSHsup(+/-) in comparison with the two other cell strains. It is concluded that the data indicate a correlation between the cellular content of GSH and the oxygen enhancement of the formation of micronuclei after irradiation. (U.K.)

  10. Light-enhanced oxygen respiration in benthic phototrophic communities

    DEFF Research Database (Denmark)

    Epping, EHG; Jørgensen, BB

    1996-01-01

    Two microelectrode studies demonstrate the effect of Light intensity and photosynthesis on areal oxygen respiration in a hypersaline mat at Guerrero Negro, Mexico, and in an intertidal sediment at Texel, The Netherlands. The hypersaline mat was studied in the laboratory at light intensities of 0...... the day at prevailing light intensities. A 1-dimensional diffusion-reaction model was used to estimate gross photosynthesis and oxygen respiration per volume of sediment, as well as the euphotic depth and the sediment-water interface concentration of oxygen. Areal gross photosynthesis ranged from 9...

  11. Liquid-core nanocellulose-shell capsules with tunable oxygen permeability.

    Science.gov (United States)

    Svagan, A J; Bender Koch, C; Hedenqvist, M S; Nilsson, F; Glasser, G; Baluschev, S; Andersen, M L

    2016-01-20

    Encapsulation of oxygen sensitive components is important in several areas, including those in the food and pharmaceutical sectors, in order to improve shelf-life (oxidation resistance). Neat nanocellulose films demonstrate outstanding oxygen barrier properties, and thus nanocellulose-based capsules are interesting from the perspective of enhanced protection from oxygen. Herein, two types of nanocellulose-based capsules with liquid hexadecane cores were successfully prepared; a primary nanocellulose polyurea-urethane capsule (diameter: 1.66 μm) and a bigger aggregate capsule (diameter: 8.3 μm) containing several primary capsules in a nanocellulose matrix. To quantify oxygen permeation through the capsule walls, an oxygen-sensitive spin probe was dissolved within the liquid hexadecane core, allowing non-invasive measurements (spin-probe oximetry, electron spin resonance, ESR) of the oxygen concentration within the core. It was observed that the oxygen uptake rate was significantly reduced for both capsule types compared to a neat hexadecane solution containing the spin-probe, i.e. the slope of the non-steady state part of the ESR-curve was approximately one-third and one-ninth for the primary nanocellulose capsule and aggregated capsule, respectively, compared to that for the hexadecane sample. The transport of oxygen was modeled mathematically and by fitting to the experimental data, the oxygen diffusion coefficients of the capsule wall was determined. These values were, however, lower than expected and one plausible reason for this was that the ESR-technique underestimate the true oxygen uptake rate in the present systems at non-steady conditions, when the overall diffusion of oxygen was very slow. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Surgery-induced reactive oxygen species enhance colon carcinoma cell binding by disrupting the liver endothelial cell lining

    NARCIS (Netherlands)

    Gül, Nuray; Bögels, Marijn; Grewal, Simran; van der Meer, Anne Jan; Rojas, Lucy Baldeon; Fluitsma, Donna M.; van den Tol, M. Petrousjka; Hoeben, Kees A.; van Marle, Jan; de Vries, Helga E.; Beelen, Robert H. J.; van Egmond, Marjolein

    2011-01-01

    Resection of primary colorectal cancer is associated with enhanced risk of development of liver metastases. It was previously demonstrated that surgery initiated an early inflammatory response resulting in elevated tumour cell adhesion in the liver. Because reactive oxygen species (ROS) are shown to

  13. Impact of thermal conductivity models on the coupling of heat transport, oxygen diffusion, and deformation in (U, Pu)O nuclear fuel elements

    Science.gov (United States)

    Mihaila, Bogdan; Stan, Marius; Crapps, Justin; Yun, Di

    2013-02-01

    We study the coupled thermal transport, oxygen diffusion, and thermal expansion in a generic nuclear fuel rod consisting of a (U) fuel pellet separated by a helium gap from zircaloy cladding. Steady-state and time-dependent finite-element simulations with a variety of initial- and boundary-value conditions are used to study the effect of the Pu content, y, and deviation from stoichiometry, x, on the temperature and deformation profiles in this fuel element. We find that the equilibrium radial temperature and deformation profiles are most sensitive to x at small values of y. For larger values of y, the effects of oxygen and Pu content are equally important. Following a change in the heat-generation rate, the centerline temperature, the radial deformation of the fuel pellet, and the centerline deviation from stoichiometry track each other closely in (U,Pu)O, as the characteristic time scales of the heat transport and oxygen diffusion are similar. This result is different from the situation observed in the case of UO fuels.

  14. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  15. Electron mobility enhancement in (100) oxygen-inserted silicon channel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nuo; King Liu, Tsu-Jae [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Takeuchi, Hideki; Hytha, Marek; Cody, Nyles W.; Stephenson, Robert J.; Mears, Robert J. [Mears Technologies, Inc., Wellesley Hills, Massachusetts 02481 (United States); Kwak, Byungil; Cha, Seon Yong [SK Hynix, Icheon-si, Gyeonggi-do 467-701 (Korea, Republic of)

    2015-09-21

    High performance improvement (+88% in peak G{sub m} and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at N{sub inv} = 4.0 × 10{sup 12} cm{sup −2} and +25% at N{sub inv} = 8.0 × 10{sup 12} cm{sup −2}). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.

  16. Modulation of the tumor vasculature and oxygenation to improve therapy

    DEFF Research Database (Denmark)

    Siemann, Dietmar W; Horsman, Michael R

    2015-01-01

    The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient...... important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers...

  17. A computational model for simulating solute transport and oxygen consumption along the nephrons

    Science.gov (United States)

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2. Under baseline conditions, the model predicted a whole kidney TNa/QO2, which denotes the number of moles of Na+ reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na+], which raises paracellular TNa. Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions. PMID:27707705

  18. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  19. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  20. Effects of Nanofiber Architecture and Antimony Doping on the Performance of Lithium-Rich Layered Oxides: Enhancing Lithium Diffusivity and Lattice Oxygen Stability.

    Science.gov (United States)

    Yu, Ruizhi; Zhang, Zhijuan; Jamil, Sidra; Chen, Jiancheng; Zhang, Xiaohui; Wang, Xianyou; Yang, Zhenhua; Shu, Hongbo; Yang, Xiukang

    2018-05-07

    Li-rich layered oxides (LLOs) with high specific capacities are favorable cathode materials with high-energy density. Unfortunately, the drawbacks of LLOs such as oxygen release, low conductivity, and depressed kinetics for lithium ion transport during cycling can affect the safety and rate capability. Moreover, they suffer severe capacity and voltage fading, which are major challenges for the commercializing development. To cure these issues, herein, the synthesis of high-performance antimony-doped LLO nanofibers by an electrospinning process is put forward. On the basis of the combination of theoretical analyses and experimental approaches, it can be found that the one-dimensional porous micro-/nanomorphology is in favor of lithium-ion diffusion, and the antimony doping can expand the layered phase lattice and further improve the lithium ion diffusion coefficient. Moreover, the antimony doping can decrease the band gap and contribute extra electrons to O within the Li 2 MnO 3 phase, thereby enhancing electronic conductivity and stabilizing lattice oxygen. Benefitting from the unique architecture, reformative electronic structure, and enhanced kinetics, the antimony-doped LLO nanofibers possess a high reversible capacity (272.8 mA h g -1 ) and initial coulombic efficiency (87.8%) at 0.1 C. Moreover, the antimony-doped LLO nanofibers show excellent cycling performance, rate capability, and suppressed voltage fading. The capacity retention can reach 86.9% after 200 cycles at 1 C, and even cycling at a high rate of 10 C, a capacity of 172.3 mA h g -1 can still be obtained. The favorable results can assist in developing the LLO material with outstanding electrochemical properties.

  1. The modulation of oxygen vacancies by the combined current effect and temperature cycling in La0.7Sr0.3CoO3 film

    Science.gov (United States)

    Li, J.; Wang, J.; Kuang, H.; Zhao, Y. Y.; Qiao, K. M.; Liu, Y.; Hu, F. X.; Sun, J. R.; Shen, B. G.

    2018-05-01

    Modulating the oxygen defect concentration has been accepted as an effective method to obtain high catalytic activity in perovskite cobaltites. However, controllably modifying the oxygen vacancy is still a challenge in this type of materials, which strongly obstructs their application. Here, we report a successful oxygen vacancies modulation in the La0.7Sr0.3CoO3 (LSCO) film by using combined current effect and temperature cycling. The temperature dependent transport properties of the LSCO/LAO film were investigated. The results revealed that the resistance of the film keeps increasing under the repeated measurements. It was found that the accumulation of the oxygen vacancy by current effect transforms the Co4+ ion into Co3+ ion, which results in the enhancement of the resistance and thus the transport switching behavior. Moreover, the resistance in the cooling process was found to be much higher than that in previous cooling and heating processes, which indicates that the oxygen escapes more quickly in the high temperature region. On the other hand, our analysis indicates that the CoO6 distortion may contribute to the switching of transport behaviors in the low temperature region. Our work provides an effective and controllable way to modulate oxygen defect in the perovskite-type oxides.

  2. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate.

    Science.gov (United States)

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H Douglas; Munasinghe, Jeeva P; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P; Mitchell, James B; Krishna, Murali C

    2013-05-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO23-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs. Copyright © 2012 Wiley Periodicals, Inc.

  3. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga{sub 2}O{sub 3} solar-blind ultraviolet photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, D. Y.; Wu, Z. P.; An, Y. H.; Guo, X. C.; Chu, X. L.; Sun, C. L.; Tang, W. H., E-mail: whtang@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Li, L. H. [Physics Department, The State University of New York at Potsdam, Potsdam, New York 13676-2294 (United States); Li, P. G., E-mail: pgli@zstu.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang (China)

    2014-07-14

    β-Ga{sub 2}O{sub 3} epitaxial thin films were deposited using laser molecular beam epitaxy technique and oxygen atmosphere in situ annealed in order to reduce the oxygen vacancy. Metal/semiconductor/metal structured photodetectors were fabricated using as-grown film and annealed film separately. Au/Ti electrodes were Ohmic contact with the as-grown films and Schottky contact with the annealed films. In compare with the Ohmic-type photodetector, the Schottky-type photodetector takes on lower dark current, higher photoresponse, and shorter switching time, which benefit from Schottky barrier controlling electron transport and the quantity of photogenerated carriers trapped by oxygen vacancy significant decreasing.

  4. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  5. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    Science.gov (United States)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  6. 2D ultrathin core-shell Pd@Ptmonolayer nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance

    Science.gov (United States)

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-07-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst. Electronic supplementary information (ESI) available: Sample preparation, physical and electrochemical characterization, Fig. S1 to S11. See DOI: 10.1039/c5nr02748a

  7. Paracellular transport and energy utilization in the renal tubule.

    Science.gov (United States)

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  8. Natural organic matter to enhance electrokinetic transport of PAH

    Energy Technology Data Exchange (ETDEWEB)

    Suer, P.; Joensson, S.; Allard, B. [Man-Technology-Environment Research Centre, Oerebro Univ. (Sweden)

    2001-07-01

    The remediation of contaminated soil can be enhanced with natural organic matter (NOM) as a complexing agent for pollutants. NOM has both hydrophobic and acidic properties, so that it is charged and thus subject to electroremediation. At the same time many contaminants have a high affinity for organic matter. Organic matter was produced in situ in an electric field or added in solute form. The resulting dissolved organic matter was transported towards the cathode, probably by cationic colloids. Produced dissolved organic matter included high molecular weight molecules near the cathode, at the site of pH buffering. Pyrene and phenanthrene were likewise transported towards the cathode. Movement was small but distinctive in 2-day experiments. Clay influence the soil/water distribution of the PAH but no effect on the total transport could be discerned. The presence of solid organic matter in the soil removed all PAH from the water phase, even though the concentration of organic matter in the water phase was high as well. (orig.)

  9. Ketosis After Cardiopulmonary Bypass in Children Is Associated With an Inadequate Balance Between Oxygen Transport and Consumption.

    Science.gov (United States)

    Klee, Philippe; Arni, Delphine; Saudan, Sonja; Schwitzgebel, Valérie M; Sharma, Ruchika; Karam, Oliver; Rimensberger, Peter C

    2016-09-01

    Hyperglycemia after cardiac surgery and cardiopulmonary bypass in children has been associated with worse outcome; however, causality has never been proven. Furthermore, the benefit of tight glycemic control is inconsistent. The purpose of this study was to describe the metabolic constellation of children before, during, and after cardiopulmonary bypass, in order to identify a subset of patients that might benefit from insulin treatment. Prospective observational study, in which insulin treatment was initiated when postoperative blood glucose levels were more than 12 mmol/L (216 mg/dL). Tertiary PICU. Ninety-six patients 6 months to 16 years old undergoing cardiac surgery with cardiopulmonary bypass. None. Metabolic tests were performed before anesthesia, at the end of cardiopulmonary bypass, at PICU admission, and 4 and 12 hours after PICU admission, as well as 4 hours after initiation of insulin treatment. Ketosis was present in 17.9% patients at the end of cardiopulmonary bypass and in 31.2% at PICU admission. Young age was an independent risk factor for this condition. Ketosis at PICU admission was an independent risk factor for an increased difference between arterial and venous oxygen saturation. Four hours after admission (p = 0.05). Insulin corrected ketosis within 4 hours. In this study, we found a high prevalence of ketosis at PICU admission, especially in young children. This was independently associated with an imbalance between oxygen transport and consumption and was corrected by insulin. These results set the basis for future randomized controlled trials, to test whether this subgroup of patients might benefit from increased glucose intake and insulin during surgery to avoid ketosis, as improving oxygen transport and consumption might improve patient outcome.

  10. Enhanced quantum interference transport in gold films with random antidot arrays

    Directory of Open Access Journals (Sweden)

    Zhaoguo Li

    2016-09-01

    Full Text Available We report on the quantum interference transport of randomly distributed antidot arrays, which were prepared on gold films via the focused ion beam direct writing method. The temperature dependence of the gold films’ resistances with and without random antidot arrays were described via electron–phonon interaction theory. Compared with the pristine gold films, we observed an unexpected enhancement of the weak localization signature in the random antidot array films. The physical mechanism behind this enhancement may originate from the enhancement of electron–electron interactions or the suppression of electron–phonon interactions; further evidence is required to determine the exact mechanism.

  11. The effects of cellular glutathione elevation on the oxygen enhancement ratio

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Russo, A.

    1984-01-01

    It has recently been demonstrated for Chinese hamster and human A549 cells that depletion of cellular glutathione (GSH) by buthionine sulfoximine sensitizes both aerated and hypoxic cells to X-rays. While the extent of sensitization was minimal for both conditions, there was no overall reduction in the oxygen enhancement ratio (OER). The authors have investigated the effect of cellular GSH elevation on the OER by treating cells for 2 hours with 10 mM L-2-oxothiazolidine-4-carboxylate (OTZ) or face 24 hours with 0.06 mM cobalt chloride (CoCl/sub 2/) in complete medium. These treatments resulted in cellular concentrations of GSH to approximately 150-250% for OTZ and 150-300% for CoCl/sub 2/ when compared to controls. X-ray survival curves were determined following these treatments for aerated and hypoxic conditions. Hypoxia was induced by metabolic utilization of oxygen at high cell densities (10/sup 8//ml) in glass syringes. For both methods of GSH elevation, there was no protection observed for either aerated or hypoxic cells and consequently no change in the OER when compared to controls. These data are discussed in the context of the radical-scavenging hypothesis involving chemical repair following X-rays of compounds such as GSH

  12. Dependence of enhanced asymmetry-induced transport on collision frequency

    Science.gov (United States)

    Eggleston, D. L.

    2014-07-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ1(r) cos(kz) cos(ωt-lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ωR, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ vr/ωT, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  13. Dependence of enhanced asymmetry-induced transport on collision frequency

    International Nuclear Information System (INIS)

    Eggleston, D. L.

    2014-01-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ 1 (r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω R , is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v r /ω T , so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles

  14. Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed

    Science.gov (United States)

    Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng

    2018-02-01

    The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.

  15. Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Pećanac, G.

    2016-01-01

    The microstructure, mechanical properties and gas permeability of porous supports of Ce0.9Gd0.1O1.95−δ (CGO) were investigated as a function of sintering temperature and volume fraction of pore former for use in planar asymmetric oxygen transport membranes (OTMs). With increasing the pore former...... content from 11 vol% to 16 vol%, the gas permeabilities increased by a factor of 5 when support tapes were sintered to comparable densities. The improved permeabilities were due to a more favourable microstructure with larger interconnected pores at a porosity of 45% and a fracture strength of 47±2 MPa (m...

  16. Enhanced decomposition of dimethyl phthalate via molecular oxygen activated by Fe-Fe{sub 2}O{sub 3}/AC under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiling [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Zhang, Lizhi [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Microwave irradiation induces the electrons transferring from AC to Fe-Fe{sub 2}O{sub 3} and reacts with molecular oxygen. Black-Right-Pointing-Pointer Microwave heating accelerates the electron transferring from AC to Fe-Fe{sub 2}O{sub 3} to generate reactive oxygen species. Black-Right-Pointing-Pointer This environmental remediation method is feasible for aqueous organic pollutants treatment. - Abstract: In this study, we demonstrate that the decomposition of dimethyl phthalate under microwave irradiation could be greatly enhanced over Fe-Fe{sub 2}O{sub 3} nanowires supported on activated carbon (Fe-Fe{sub 2}O{sub 3}/AC). The great enhanced decomposition of dimethyl phthalate could be attributed to a unique microwave induced molecular oxygen activation process. Upon microwave irradiation, electrons could be transferred from activated carbon to zero-valent iron, and then react with molecular oxygen to form O{sub 2}{center_dot}{sup -} and {center_dot}OH radicals for the decomposition of dimethyl phthalate. The deactivation and the regeneration of Fe-Fe{sub 2}O{sub 3}/AC catalyst were systematically studied. We also found that microwave heating could accelerate the electron transferring from AC to Fe-Fe{sub 2}O{sub 3} to generate more reactive oxygen species for the decomposition of DMP than conventional oil bath heating. This novel molecular oxygen activation approach may find applications for wastewater treatment and drinking water purification.

  17. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Science.gov (United States)

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  18. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    International Nuclear Information System (INIS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-01-01

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field

  19. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions.

    Science.gov (United States)

    Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

  20. Blood oxygen transport in common map turtles during simulated hibernation.

    Science.gov (United States)

    Maginniss, Leigh A; Ekelund, Summer A; Ultsch, Gordon R

    2004-01-01

    We assessed the effects of cold and submergence on blood oxygen transport in common map turtles (Graptemys geographica). Winter animals were acclimated for 6-7 wk to one of three conditions at 3 degrees C: air breathing (AB-3 degrees C), normoxic submergence (NS-3 degrees C), and hypoxic (PO2=49 Torr) submergence (HS-3 degrees C). NS-3 degrees C turtles exhibited a respiratory alkalosis (pH 8.07; PCO2=7.9 Torr; [lactate]=2.2 mM) relative to AB-3 degrees C animals (pH 7.89; PCO2=13.4 Torr; [lactate]=1.1 mM). HS-3 degrees C animals experienced a profound metabolic acidosis (pH 7.30; PCO2=7.9 Torr; [lactate]=81 mM). NS-3 degrees C turtles exhibited an increased blood O2 capacity; however, isoelectric focusing revealed no seasonal changes in the isohemoglobin (isoHb) profile. Blood O2 affinity was significantly increased by cold acclimation; half-saturation pressures (P50's) for air-breathing turtles at 3 degrees and 22 degrees C were 6.5 and 18.8 Torr, respectively. P50's for winter animals submerged in normoxic and hypoxic water were 5.2 and 6.5 Torr, respectively. CO2 Bohr slopes (Delta logP50/Delta pH) were -0.15, -0.16, and -0.07 for AB-3 degrees C, NS-3 degrees C, and HS-3 degrees C turtles, respectively; the corresponding value for AB-22 degrees C was -0.37. The O2 equilibrium curve (O2EC) shape was similar for AB-3 degrees C and NS-3 degrees C turtles; Hill plot n coefficients ranged from 1.8 to 2.0. The O2EC shape for HS-3 degrees C turtles was anomalous, exhibiting high O2 affinity below P50 and a right-shifted segment above half-saturation. We suggest that increases in Hb-O2 affinity and O2 capacity enhance extrapulmonary O2 uptake by turtles overwintering in normoxic water. The anomalous O2EC shape and reduced CO2 Bohr effect of HS-3 degrees C turtles may also promote some aerobic metabolism in hypoxic water.

  1. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  2. Does oxygen enhance the radiation: induced inactivation of penicillinase. Progress report, December 1, 1979-November 30, 1980

    International Nuclear Information System (INIS)

    Samuni, A.; Kalkstein, A.; Czapski, G.

    1980-01-01

    The radiation-induced inactivation of penicillinase in dilute aqueous solutions buffered with phosphate was studied, by examining enzyme radiosensitivity in the presence of various gases (He, O 2 , H 2 , N 2 O, N 2 O + O 2 ). The introduction of either N 2 O or O 2 was found to reduce the radiodamage. On the other hand H 2 or N 2 O + O 2 gas-mixture enhanced the radiosensitivity. In the presence of formate and oxygen, no enzyme inactivation was detected. The results indicated that the specific damaging efficiency of H atoms is almost four-fold higher than that of OH radical; therefore in phosphate buffer, where more than half of the free radicals are H atoms, it is the H radicals that are responsible for the majority of the damage. The superoxide radicals appeared to be completely inactive and did not contribute toward enzyme inactivation. Oxygen was shown to affect the radiosensitivity in two ways. On one side, it protected by converting e - /sub aq/ and H radicals into harmless O 2 - radicals. On the other side it increased the inactivation by enhancing the damage brought about by OH radicals (OER = 2.8). In the present case the oxygen effect of protection exceeded that of sensitization, thus giving rise to a moderate overall protection effect

  3. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    International Nuclear Information System (INIS)

    Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2012-01-01

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  4. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Directory of Open Access Journals (Sweden)

    Folco eGiomi

    2013-05-01

    Full Text Available Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming is characterized by two phases. During initial warming, oxygen consumption and heart rate increase while stroke volume and haemolymph oxygen partial pressures decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance, this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph oxygen transport in eurythermal invertebrates.

  5. A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs.

    Science.gov (United States)

    Giomi, Folco; Pörtner, Hans-Otto

    2013-01-01

    Heat tolerance in aquatic ectotherms is constrained by a mismatch, occurring at high temperatures, between oxygen delivery and demand which compromises the maintenance of aerobic scope. The present study analyses how the wide thermal tolerance range of an eurythermal model species, the green crab Carcinus maenas is supported and limited by its ability to sustain efficient oxygen transport to tissues. Similar to other eurytherms, C. maenas sustains naturally occurring acute warming events through the integrated response of circulatory and respiratory systems. The response of C. maenas to warming can be characterized by two phases. During initial warming, oxygen consumption and heart rate increase, while stroke volume and haemolymph oxygen partial pressure decrease. During further warming, dissolved oxygen levels in the venous compartment decrease below the threshold of full haemocyanin oxygen saturation. The progressive release of haemocyanin bound oxygen with further warming follows an exponential pattern, thereby saving energy in oxygen transport and causing an associated leveling off of metabolic rate. According to the concept of oxygen and capacity limited thermal tolerance (OCLTT), this indicates that the thermal tolerance window is widened by the increasing contribution of haemocyanin oxygen transport and associated energy savings in cardiocirculation. Haemocyanin bound oxygen sustains cardiac performance to cover the temperature range experienced by C. maenas in the field. To our knowledge this is the first study providing evidence of a relationship between thermal tolerance and blood (haemolymph) oxygen transport in a eurythermal invertebrate.

  6. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  7. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  8. Mechanisms of oxygen permeation through plastic films and barrier coatings

    Science.gov (United States)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian

    2017-10-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.

  9. Hemodynamic and oxygen transport patterns for outcome prediction, therapeutic goals, and clinical algorithms to improve outcome. Feasibility of artificial intelligence to customize algorithms.

    Science.gov (United States)

    Shoemaker, W C; Patil, R; Appel, P L; Kram, H B

    1992-11-01

    A generalized decision tree or clinical algorithm for treatment of high-risk elective surgical patients was developed from a physiologic model based on empirical data. First, a large data bank was used to do the following: (1) describe temporal hemodynamic and oxygen transport patterns that interrelate cardiac, pulmonary, and tissue perfusion functions in survivors and nonsurvivors; (2) define optimal therapeutic goals based on the supranormal oxygen transport values of high-risk postoperative survivors; (3) compare the relative effectiveness of alternative therapies in a wide variety of clinical and physiologic conditions; and (4) to develop criteria for titration of therapy to the endpoints of the supranormal optimal goals using cardiac index (CI), oxygen delivery (DO2), and oxygen consumption (VO2) as proxy outcome measures. Second, a general purpose algorithm was generated from these data and tested in preoperatively randomized clinical trials of high-risk surgical patients. Improved outcome was demonstrated with this generalized algorithm. The concept that the supranormal values represent compensations that have survival value has been corroborated by several other groups. We now propose a unique approach to refine the generalized algorithm to develop customized algorithms and individualized decision analysis for each patient's unique problems. The present article describes a preliminary evaluation of the feasibility of artificial intelligence techniques to accomplish individualized algorithms that may further improve patient care and outcome.

  10. Mult-Pollutant Control Through Novel Approaches to Oxygen Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard Axelbaum; Pratim Biswas

    2009-02-28

    Growing concerns about global climate change have focused effortss on identifying approaches to stabilizing carbon dioxide levels in the atmosphere. One approach utilizes oxy-fuel combustion to produce a concentrated flue gas that will enable economical CO{sub 2} capture by direct methods. Oxy-fuel combustion rewuires an Air Separation Unit (ASU) to provide a high-purity stream of oxygen as well as a Compression and Purification Unit (CPU) to clean and compress the CO{sub 2} for long term storage. Overall plant efficiency will suffer from the parasitic load of both the ASU and CPU and researchers are investigating techniques to enhance other aspects of the combustion and gas cleanup proceses to improve the benefit-to-cost ratio. This work examines the influence of oxy-fuel combustion and non-carbon based sorbents on the formation and fate of multiple combustion pollutants both numerically and experimentally.

  11. Enhanced native acceptor-related blue emission of ZnO thin films annealed in an oxygen ambient

    International Nuclear Information System (INIS)

    Shim, Eunhee; Lee, Choeun; Jung, Eiwhan; Lee, Jinyong; Kim, Doosoo; Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon

    2012-01-01

    The thermodynamic behaviors of charged point defects in unintentionally-doped ZnO thin films were investigated. The as-grown sample displayed two different types of blue-emission bands: one at ∼2.95 eV from native-donor zinc interstitial (Zn i ) and the other at ∼3.17 eV from native acceptor zinc vacancies (V Zn ). In the samples annealed at oxygen ambience, V Zn -related emission was dramatically enhanced, and Zn i -related emission was drastically reduced. The behavior was observed to become more apparent when the annealing temperature was increased. The results can be explained by both the increased generation probability and the lowered formation enthalpy of V Zn in an oxygen-rich environment, particularly at higher temperatures.

  12. Enhanced native acceptor-related blue emission of ZnO thin films annealed in an oxygen ambient

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Eunhee; Lee, Choeun; Jung, Eiwhan; Lee, Jinyong; Kim, Doosoo; Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon [Dongguk University, Seoul (Korea, Republic of)

    2012-06-15

    The thermodynamic behaviors of charged point defects in unintentionally-doped ZnO thin films were investigated. The as-grown sample displayed two different types of blue-emission bands: one at ∼2.95 eV from native-donor zinc interstitial (Zn{sub i}) and the other at ∼3.17 eV from native acceptor zinc vacancies (V{sub Zn}). In the samples annealed at oxygen ambience, V{sub Zn}-related emission was dramatically enhanced, and Zn{sub i}-related emission was drastically reduced. The behavior was observed to become more apparent when the annealing temperature was increased. The results can be explained by both the increased generation probability and the lowered formation enthalpy of V{sub Zn} in an oxygen-rich environment, particularly at higher temperatures.

  13. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  14. Numerical study of the enhancement of combustion performance in a scramjet combustor due to injection of electric-discharge-activated oxygen molecules

    International Nuclear Information System (INIS)

    Starik, A M; Bezgin, L V; Kopchenov, V I; Loukhovitski, B I; Sharipov, A S; Titova, N S

    2013-01-01

    A comprehensive analysis of the efficiency of an approach based on the injection of a thin oxygen stream, subjected to a tailored electric discharge, into a supersonic H 2 –air flow to enhance the combustion performance in the mixing layer and in the scramjet combustor is conducted. It is shown that for such an approach there exist optimal values of reduced electric field E/N and transversal dimension d of the injected oxygen stream, which provide the minimal length of induction zone in the mixing layer. The optimal values of E/N and d depend on air flow parameters and the specific energy put into the oxygen. The injection of a thin oxygen stream (d = 1 mm) subjected to an electric discharge with E/N = 50–100 Td, which produces mostly singlet oxygen O 2 (a  1 Δ g ) and O 2 (b 1 Σ g + ) molecules and atomic oxygen, allows one to arrange stable combustion in a scramjet duct at an extremely low air temperature T air  = 900 K and pressure P air  = 0.3 bar even at a small specific energy put into the oxygen E s  = 0.2 J ncm −3 , and to provide rather high combustion completeness η = 0.73. The advance in the energy released during combustion is much higher (hundred times), in this case, than the energy supplied to the oxygen stream in the electric discharge. This approach also makes it possible to ensure the rather high combustion completeness in the scramjet combustor with reduced length. The main reason for the combustion enhancement of the H 2 –air mixture in the scramjet duct is the intensification of chain-branching reactions due to the injection of a small amount of cold non-equilibrium oxygen plasma comprising highly reactive species, O 2 (a  1 Δ g ) and O 2 (b 1 Σ g + ) molecules and O atoms, into the H 2 –air supersonic flow. (paper)

  15. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  16. The beneficial role of rubble mound coastal structures on seawater oxygenation

    Directory of Open Access Journals (Sweden)

    E. I. Daniil

    2000-10-01

    Full Text Available The beneficial role of rubble mound coastal structures on oxygenation under the effect of waves is discussed, based on analytical considerations and experimental data from laboratory experiments with permeable and impermeable structures. Significant oxygenation of the wave-protected area was observed as a result of horizontal transport through the permeable structure. A two-cell model describing the transport of dissolved oxygen (DO near a rubble mound breakwater structure was developed and used for the determination of the oxygen transfer coefficients from the experimental data. Oxygen transfer through the air–water interface is considered a source term in the transport equation and the oxygen flux through the structure is taken into account. The mass transport equations for both sides of the structure are solved analytically in terms of time evolution of DO concentration. The behaviour of the solution is illustrated for three different characteristic cases of initial conditions. The oxygen transfer through the air-water interface in the wave-influenced area increases the DO content in the area; the resulting oxygen flux through the structure is discussed. The analytical results depend on the initial conditions, the oxygen transfer coefficient and the exchange flow rate through the structure. Experiments with impermeable structures show that air water oxygen transfer in the harbour area is negligible in the absence of waves. In addition the ratio of the horizontal DO flux to the vertical flux into the seaward side tends towards a constant value, independent of the initial conditions.Key words: Oceanography: physical (air-sea interactions; surface waves and tides

  17. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hyung Chul; Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Manogaran, Dhivya [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho [Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-11-28

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd{sub 3}Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd{sub 3}Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  18. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    International Nuclear Information System (INIS)

    Ham, Hyung Chul; Hwang, Gyeong S.; Manogaran, Dhivya; Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Kwon, Kyungjung

    2013-01-01

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd 3 Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd 3 Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts

  19. Oxygen requirements of the earliest animals

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Ward, Lewis M.; Jones, CarriAyne

    2014-01-01

    likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content...

  20. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide.

    Science.gov (United States)

    Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J

    2001-12-13

    We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (PPEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential for enhancing the cellular uptake and transport of small peptide

  1. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.

    Science.gov (United States)

    De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2008-04-21

    The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673oxygen partial pressure of 900 mbar. No evidence is found for fast diffusion along grain boundaries. Rather, the analysis indicates that grain boundaries hinder oxygen transport.

  2. Oxygen transport and degradation properties of high-temperature membranes for CO{sub 2}-free power plants; Sauerstofftransport und Degradationsverhalten von Hochtemperaturmembranen fuer CO{sub 2}-freie Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Schlehuber, Dominic

    2010-07-01

    This thesis deals with membranes for oxygen separation from air for high temperature application in fossil power plants within the scope of the oxyfuel-process. Different perovskite membrane materials (ABO3-ae) were investigated concerning the oxygen transport and their chemical stability under operation condition. The association between oxygen transport properties and both the thermodynamic boundary conditions as well as the material properties (membrane thickness and surface properties) was studied. One possibility to achieve higher oxygen fluxes through the membrane is to reduce the thickness. In this case the influence of surface processes on the overall permeation becomes noteworthy. The effect of different membrane surface modifications on the permeation rate was investigated. For example it could be confirmed, that a porous layer on the membrane surface significantly increases the permeation flux due to the compensation of surface exchange limitations. Beyond that, degradation processes during the operation under power plant condition were investigated. Special attention was attached to the influence of degradation on the permeation flux during long term operation. Thereby kinetic demixing of the membrane material was observed. (orig.)

  3. OXYGEN TRANSPORT CERAMIC MEMBRANES

    International Nuclear Information System (INIS)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-01-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals

  4. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl....... This demonstrates the suitability of thermoplastic extrusion for fabrication of porous 3Y-TZP OTM supports, or for other technologies requiring porous ceramics....

  5. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    Science.gov (United States)

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  6. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    Science.gov (United States)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  7. Measurement of oxygen enhancement ratio for sub-lethal region using saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, Rajesha K.; Anjaria, K.B.; Bhat, Nagesh N.; Chaurasia, Rajesh K.; Balakrishnan, Sreedevi; Yerol, Narayana

    2013-01-01

    Oxygen is one of the best known modifiers of radiation sensitivity and the biological effects is greater in the presence of oxygen, and significant modifying effect will be observed only for low LET radiations. The reduced oxygen availability is sensed which trigger homeostatic responses, which impact on virtually all areas of biology and medicine. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells, therefore clarifying the mechanism of the oxygen effect is important. In the present study, a mutant type diploid yeast strain, Saccharomyces cerevisiae D7 was used to study Oxygen Enhancement Ratio (OER) using 60 Co gamma radiation. Cells were washed thrice by centrifugation (2000 g for 5 min) and re-suspended to a cell concentration of 1x108 cells mL-1 in a sterile polypropylene vial for irradiation (sub-lethal dose range, 0-100 Gy). Hypoxic conditions were achieved by incubating the cells in airtight vials at 30℃ for 30 min prior to irradiation. The gene conversion and back mutation analysis were carried out according to the standard protocol. Gene conversion is the radio-sensitive biological endpoint, that can be studied in Saccharomyces cerevisiae D7 yeast cells at trp locus in tryptophan (Trp- medium) deficient medium. The dose response relation at euoxic and hypoxic condition in sub-lethal doses are found to be linear and is represented by Y (Euoxic) = (6.54±0.102) D with R2=0.999 and for hypoxic condition Y(Hypoxic) = (3.346±0.033) D with R2=0.996. The OER can be calculated by dividing the euoxic slope with hypoxic slope, and is 1.95. Back mutation, which is a result of reversion of Isoleucine auxotrophs to prototrophs gives very good information at sub-lethal doses. The dose response relation between back mutated cells and radiation doses at Euoxic and hypoxic condition can be represented as Y(Euoxic) = (2.85±0.126) D with R2= 0.976 and for hypoxic condition Y

  8. Webcams, crowdsourcing, and enhanced crosswalks: Developing a novel method to analyze active transportation

    Directory of Open Access Journals (Sweden)

    J. Aaron eHipp

    2016-05-01

    Full Text Available Introduction: Active transportation opportunities and infrastructure are an important component of a community’s design, livability, and health. Features of the built environment influence active transportation, but objective study of the natural experiment effects of built environment improvements on active transportation is challenging. The purpose of this study was to develop and present a novel method of active transportation research using webcams and crowdsourcing, and to determine if crosswalk enhancement was associated with changes in active transportation rates, including across a variety of weather conditions. Methods: 20,529 publicly available webcam images from two street intersections in Washington, D.C., were used to examine the impact of an improved crosswalk on active transportation. A crowdsource, Amazon Mechanical Turk, annotated image data. Temperature data was collected from the National Oceanic and Atmospheric Administration, and precipitation data was annotated from images by trained research assistants. Results: Summary analyses demonstrated slight, bi-directional differences in the percent of images with pedestrians and bicyclists captured before and after the enhancement of the crosswalks. Chi-square analyses revealed these changes were not significant. In general, pedestrian presence increased in images captured during moderate temperatures compared to images captured during hot or cold temperatures. Chi-square analyses indicated the crosswalk improvement may have encouraged walking and biking in uncomfortable outdoor conditions (p<0.5. Conclusion: The methods employed provide an objective, cost-effective alternative to traditional means of examining the effects of built environment changes on active transportation. The use of webcams to collect active transportation data has applications for community policymakers, planners, and health professionals. Future research will work to validate this method in a variety of

  9. Webcams, Crowdsourcing, and Enhanced Crosswalks: Developing a Novel Method to Analyze Active Transportation.

    Science.gov (United States)

    Hipp, J Aaron; Manteiga, Alicia; Burgess, Amanda; Stylianou, Abby; Pless, Robert

    2016-01-01

    Active transportation opportunities and infrastructure are an important component of a community's design, livability, and health. Features of the built environment influence active transportation, but objective study of the natural experiment effects of built environment improvements on active transportation is challenging. The purpose of this study was to develop and present a novel method of active transportation research using webcams and crowdsourcing, and to determine if crosswalk enhancement was associated with changes in active transportation rates, including across a variety of weather conditions. The 20,529 publicly available webcam images from two street intersections in Washington, DC, USA were used to examine the impact of an improved crosswalk on active transportation. A crowdsource, Amazon Mechanical Turk, annotated image data. Temperature data were collected from the National Oceanic and Atmospheric Administration, and precipitation data were annotated from images by trained research assistants. Summary analyses demonstrated slight, bi-directional differences in the percent of images with pedestrians and bicyclists captured before and after the enhancement of the crosswalks. Chi-square analyses revealed these changes were not significant. In general, pedestrian presence increased in images captured during moderate temperatures compared to images captured during hot or cold temperatures. Chi-square analyses indicated the crosswalk improvement may have encouraged walking and biking in uncomfortable outdoor conditions (P < 0.5). The methods employed provide an objective, cost-effective alternative to traditional means of examining the effects of built environment changes on active transportation. The use of webcams to collect active transportation data has applications for community policymakers, planners, and health professionals. Future research will work to validate this method in a variety of settings as well as across different built

  10. Electronic and ionic transport in Ce0.8PrxTb0.2-xO2-δ and evaluation of performance as oxygen permeation membranes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2012-01-01

    is significantly enhanced relative to that of a Ce0.9Gd0.1O1.95-δ membrane at high oxygen activities of the permeate gas (aO2 an > 10-15) due to the enhanced electronic conductivity of the Ce0.8PrxTb0.2-xO2-δ compounds. Interference between the ionic and electronic flows has a significant positive effect......The electronic conductivity of Ce0.8PrxTb0.2-xO2-δ (x = 0, 0.05, 0.10, 0.15, 0.20) was determined in the oxygen activity range aO2 ≈ 103 to aO2 ≈ 10-17 at 700- 900 °C by means of Hebb-Wagner polarisation. The electronic conductivity of all the Ce0.8PrxTb0.2-xO2-δ compositions was significantly...... enhanced as compared to that of Ce0.9Gd0.1O1.95-δ, and its value was found to increase with increasing Pr/Tb ratio. The ionic mobility of Ce0.8PrxTb0.2-xO2-δ is similar to that of Ce1- 2δGd2δO2-δ at the same oxygen vacancy concentration. The calculated oxygen flux of a Ce0.8PrxTb0.2-xO2-δ membrane...

  11. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  12. Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase.

    Directory of Open Access Journals (Sweden)

    Christina Schueler

    Full Text Available Transport metabolons have been discussed between carbonic anhydrase II (CAII and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1, to determine their catalytic activity and their ability to enhance NBCe1 transport activity. pH measurements in intact oocytes indicated similar activity of CAI, CAII and CAIII, while in vitro CAIII had no measurable activity and CAI only 30% of the activity of CAII. All three CA isoforms increased transport activity of NBCe1, as measured by the transport current and the rate of intracellular sodium rise in oocytes. Two CAII mutants, altered in their intramolecular proton pathway, CAII-H64A and CAII-Y7F, showed significant catalytic activity and also enhanced NBCe1 transport activity. The effect of CAI, CAII, and CAII mutants on NBCe1 activity could be reversed by blocking CA activity with ethoxyzolamide (EZA, 10 µM, while the effect of the less EZA-sensitive CAIII was not reversed. Our results indicate that different CA isoforms and mutants, even if they show little enzymatic activity in vitro, may display significant catalytic activity in intact cells, and that the ability of CA to enhance NBCe1 transport appears to depend primarily on its catalytic activity.

  13. Fundamental understanding of oxygen reduction and reaction behavior and developing high performance and stable hetero-structured cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2016-11-14

    New unique hetero-structured cathode has been developed in this project. La2NiO4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove the enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO2 & La2-xNiO4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.

  14. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Science.gov (United States)

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  15. Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power

    Science.gov (United States)

    Burton, rodney; King, Darren

    2013-01-01

    The innovation consists of a thermodynamic system for extracting in situ oxygen vapor from lunar regolith using a solar photovoltaic power source in a reactor, a method for thermally insulating the reactor, a method for protecting the reactor internal components from oxidation by the extracted oxygen, a method for removing unwanted chemical species produced in the reactor from the oxygen vapor, a method for passively storing the oxygen, and a method for releasing high-purity oxygen from storage for lunar use. Lunar oxygen exists in various types of minerals, mostly silicates. The energy required to extract the oxygen from the minerals is 30 to 60 MJ/kg O. Using simple heating, the extraction rate depends on temperature. The minimum temperature is approximately 2,500 K, which is at the upper end of available oven temperatures. The oxygen is released from storage in a purified state, as needed, especially if for human consumption. This method extracts oxygen from regolith by treating the problem as a closed batch cycle system. The innovation works equally well in Earth or Lunar gravity fields, at low partial pressure of oxygen, and makes use of in situ regolith for system insulation. The innovation extracts oxygen from lunar regolith using a method similar to vacuum pyrolysis, but with hydrogen cover gas added stoichiometrically to react with the oxygen as it is produced by radiatively heating regolith to 2,500 K. The hydrogen flows over and through the heating element (HE), protecting it from released oxygen. The H2 O2 heat of reaction is regeneratively recovered to assist the heating process. Lunar regolith is loaded into a large-diameter, low-height pancake reactor powered by photovoltaic cells. The reactor lid contains a 2,500 K HE that radiates downward onto the regolith to heat it and extract oxygen, and is shielded above by a multi-layer tungsten radiation shield. Hydrogen cover gas percolates through the perforated tungsten shielding and HE, preventing

  16. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    International Nuclear Information System (INIS)

    T.C. Onstott

    2005-01-01

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions

  17. Transport analysis of pellet-enhanced ICRH plasma in JET

    International Nuclear Information System (INIS)

    Hammett, G.W.; Colestock, P.L.; Granetz, R.S.; McCune, D.C.; Phillips, C.K.; Schmidt, G.L.; Smithe, D.N.; Kupschus, P.

    1989-01-01

    Performance of JET ICRH heated discharges has been significantly enhanced by using pellet fueling to produce a peaked density target for ICRH. The central T i is observed to increase by up to 80%, central T e by up to 40%, and the neutron rate by up to 400%, over their no-pellet values (which are already in the enhanced 'monster-sawtooth' regime). In this paper we describe the transport analysis of these discharges using the TRANSP code. These results indicate that the thermal diffusivities χ i and χ e are reduced by a factor of ∼2 near the plasma center where the pellets have increased the density gradient. The paper focuses on JET discharge 16211 which is documented more fully in a companion paper. (author) 6 refs., 8 figs

  18. Enhanced dimethyl phthalate biodegradation by accelerating phthalic acid di-oxygenation.

    Science.gov (United States)

    Tang, Yingxia; Zhang, Yongming; Jiang, Ling; Yang, Chao; Rittmann, Bruce E

    2017-12-01

    The aerobic biodegradation of dimethyl phthalate (DMP) is initiated with two hydrolysis reactions that generate an intermediate, phthalic acid (PA), that is further biodegraded through a two-step di-oxygenation reaction. DMP biodegradation is inhibited when PA accumulates, but DMP's biodegradation can be enhanced by adding an exogenous electron donor. We evaluated the effect of adding succinate, acetate, or formate as an exogenous electron donor. PA removal rates were increased by 15 and 30% for initial PA concentrations of 0.3 and 0.6 mM when 0.15 and 0.30 mM succinate, respectively, were added as exogenous electron donor. The same electron-equivalent additions of acetate and formate had the same acceleration impacts on PA removal. Consequently, the DMP-removal rate, even PA coexisting with DMP simultaneously, was accelerated by 37% by simultaneous addition of 0.3 mM succinate. Thus, lowering the accumulation of PA by addition of an electron increased the rate of DMP biodegradation.

  19. Development of thin film oxygen transport membranes on metallic supports

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ye

    2012-04-25

    interlayer, though it comprised some cracks. The second interlayer had a crack-free and porous structure. The top membrane layer was deposited by physical vapor deposition (magnetron sputtering) with a thickness of 3.8 {mu}m improving the gastightness considerably but showing still reasonable air-leakage. Summarizing, the successful development of a metal-perovskite-composite could be shown, which acts as a basis for a further development of a gas-tight metal supported oxygen transport asymmetric membrane structure. (orig.)

  20. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  1. Amplified CPEs enhancement of chorioamnion membrane mass transport by encapsulation in nano-sized PLGA particles.

    Science.gov (United States)

    Azagury, Aharon; Amar-Lewis, Eliz; Appel, Reut; Hallak, Mordechai; Kost, Joseph

    2017-08-01

    Chemical penetration enhancers (CPEs) have long been used for mass transport enhancement across membranes. Many CPEs are used in a solution or gel and could be a solvent. The use of CPEs is mainly limited due to their toxicity/irritation levels. This study presents the evaluation of encapsulated CPEs in nano-sized polymeric particles on the chorioamnion (CA) membrane mass transport. CPEs' mass encapsulated in nanoparticles was decreased by 10,000-fold. Interestingly, this approach resulted in a 6-fold increase in mass transport across the CA. This approach may also be used with other CPEs' base applications necessitating lower CPE concentration. Applying Ultrasound (US) has shown to increase the release rate of and also the mass transport across the CA membrane. It is proposed that encapsulated CPEs penetrate into the CA membrane thus prolonging their exposure, possibly extending their penetration into the CA membrane, while insonation also deepens their penetration into the CA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    Science.gov (United States)

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M.; Deng, Wei

    2018-02-01

    We developed light-triggered liposomes incorporating gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized by adjusting the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of HSPC: PE-NH2: gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of these liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox loaded liposomes were applied to human colorectal cancer cells, HCT116, and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity, compared to the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may have improved therapeutic efficacy in photodynamic therapy and chemotherapy.

  3. High energy lithium-oxygen batteries - Transport barriers and thermodynamics

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    We show that it is possible to achieve higher energy density lithium-oxygen batteries by simultaneously lowering the discharge overpotential and increasing the discharge capacity via thermodynamic variables alone. By assessing the relative effects of temperature and pressure on the cell discharge profiles, we characterize and diagnose the critical roles played by multiple dynamic processes that have hindered implementation of the lithium-oxygen battery. © 2012 The Royal Society of Chemistry.

  4. Enhancement of oxygen diffusion process on a rotating disk electrode for the electro-Fenton degradation of tetracycline

    International Nuclear Information System (INIS)

    Zhang, Yan; Gao, Ming-Ming; Wang, Xin-Hua; Wang, Shu-Guang; Liu, Rui-Ting

    2015-01-01

    An electro-Fenton process was developed for wastewater treatment in which hydrogen peroxide was generated in situ with a rotating graphite disk electrode as cathode. The maximum H 2 O 2 generation rate for the RDE reached 0.90 mg/L/h/cm 2 under the rotation speed of 400 rpm at pH 3, and −0.8 V vs SCE. The performance of this electro-Fenton reactor was assessed by tetracycline degradation in an aqueous solution. Experimental results showed the rotation of disk cathode resulted in the efficient production of H 2 O 2 without oxygen aeration, and excellent ability for degrading organic pollutants compared to the electro-Fenton system with fixed cathode. Tetracycline of 50 mg/L was degraded completely within 2 h with the addition of ferrous ion (1.0 mM). The chronoamperometry analysis was employed to investigate the oxygen diffusion on the rotating cathode. The results demonstrated that the diffusion coefficients of dissolved oxygen is 19.45 × 10 −5 cm 2 /s, which is greater than that reported in the literature. Further calculation indicated that oxygen is able to diffuse through the film on the rotating cathode within the contact time in each circle. This study proves that enhancement of oxygen diffusion on RDE is benefit for H 2 O 2 generation, thus provides a promising method for organic pollutants degradation by the combination of RDE with electro-Fenton reactor and offers a new insight on the oxygen transform process in this new system.

  5. Production of an accelerated oxygen-14 beam

    CERN Document Server

    Powell, J; Cerny, J

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 sup 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has bee...

  6. Oxygen enhancement ratio (OER) to Neutron and Co-60 γ ray

    International Nuclear Information System (INIS)

    Kim, Mi Sook; Ji, Young Hoon; Lee, Yong Min; Kim Kyeoung Jung

    1997-01-01

    Experiments in vitro, using human cell lines was carried out in order to establish whether or not there was a difference between oxygen enhancement ratio (OER) of neutron and Co-60 γ-ray and to determine OER dependence on radiation dose. MG-63 cell line and H-460 cell line were defined as the most sensitive cell line to neutron among our laboratory holding cell lines through preliminary study. Anoxia as was produced in glove box. The box was flushed for one hour with a mixture of 5 % CO 2 in ultrapure N 2 (total oxygen concentration < 10 ppm) and irradiated with neutron and Co-60 γ-ray. Oxic condition was same as anoxic condition except being irradiated in general air condition. The lower OER was observed in neutron than in Co-60 γ-ray. The dose dependence of OER was observed in neutron and Co-60 γ-ray all. But the dose dependence of the OER is somewhat larger for Co-60 γ-ray than for neutron. In the range of 1 to 8 Gy, the OER for photon and neutron range from 1.54 to 1.94 and 1.23 to 1.26 in MG-63 cell line. In case of H-460 the OER for Co-60 γ-ray and neutron range from 1.24 to 1.60 and 1.06 to 1.07 respectively. (author). 19 refs., 5 tabs., 5 figs

  7. Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation

    Science.gov (United States)

    Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei

    2017-12-01

    CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG-HCuSNPs-DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.

  8. Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?

    Science.gov (United States)

    Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre

    2014-09-17

    The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.

  9. Mathematical modeling of oxygen transport in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ann Mari

    1997-12-31

    This thesis develops mathematical models to describe the electrochemical performance of a solid oxide fuel cell cathode based on electrochemical kinetics and mass transfer. The individual effects of various coupled processes are investigated. A one-dimensional model is developed based on porous electrode theory. Two different mechanisms are investigated for the charge transfer reaction. One of these assumes that intermediately adsorbed oxygen atoms are reduced at the electrode/electrolyte interface, similar to the models proposed for metal electrodes. Simulated polarization curves exhibit limited currents due to depletion of oxygen adsorbates at high cathodic overvoltages. An empirical correlation is confirmed to exist between the limiting current an the oxygen partial pressure, however, a similar correlation often assumed to exist between the measured polarization resistance and the oxygen partial pressure could not be justified. For the other model, oxygen vacancies are assumed to be exchanged directly at the electrode/electrolyte interface. The electrochemical behaviour is improved by reducing the oxygen partial pressure, due to increased vacancy concentration of the electrode material. Simulated polarization curves exhibit Tafel-like slopes in the cathodic direction, which are due to polarization concentration, and not activation polarization in the conventional sense. Anodic limiting currents are predicted due to lack of available free sites for vacancy exchange at the cathode side. The thesis also presents a theoretical treatment of current and potential distributions in simple two-dimensional cell geometries, and a two-dimensional model for a porous electrode-electrolyte system for investigation of the effect of interfacial diffusion of adsorbates along the electrode/electrolyte interface. 172 refs., 60 figs., 11 tabs.

  10. Pair Distribution Function Analysis of Structural Disorder by Nb5+ Inclusion in Ceria: Evidence for Enhanced Oxygen Storage Capacity from Under-Coordinated Oxide.

    Science.gov (United States)

    Hiley, Craig I; Playford, Helen Y; Fisher, Janet M; Felix, Noelia Cortes; Thompsett, David; Kashtiban, Reza J; Walton, Richard I

    2018-02-07

    Partial substitution of Ce 4+ by Nb 5+ is possible in CeO 2 by coinclusion of Na + to balance the charge, via hydrothermal synthesis in sodium hydroxide solution. Pair distribution function analysis using reverse Monte Carlo refinement reveals that the small pentavalent substituent resides in irregular coordination positions in an average fluorite lattice, displaced away from the ideal cubic coordination toward four oxygens. This results in under-coordinated oxygen, which explains significantly enhanced oxygen storage capacity of the materials of relevance to redox catalysis used in energy and environmental applications.

  11. Aerobic scope and cardiovascular oxygen transport is not compromised at high temperatures in the toad Rhinella marina.

    Science.gov (United States)

    Overgaard, Johannes; Andersen, Jonas L; Findsen, Anders; Pedersen, Pil B M; Hansen, Kasper; Ozolina, Karlina; Wang, Tobias

    2012-10-15

    Numerous recent studies convincingly correlate the upper thermal tolerance limit of aquatic ectothermic animals to reduced aerobic scope, and ascribe the decline in aerobic scope to failure of the cardiovascular system at high temperatures. In the present study we investigate whether this 'aerobic scope model' applies to an air-breathing and semi-terrestrial vertebrate Rhinella marina (formerly Bufo marinus). To quantify aerobic scope, we measured resting and maximal rate of oxygen consumption at temperatures ranging from 10 to 40°C. To include potential effects of acclimation, three groups of toads were acclimated chronically at 20, 25 and 30°C, respectively. The absolute difference between resting and maximal rate of oxygen consumption increased progressively with temperature and there was no significant decrease in aerobic scope, even at temperature immediately below the lethal limit (41-42°C). Haematological and cardiorespiratory variables were measured at rest and immediately after maximal activity at benign (30°C) and critically high (40°C) temperatures. Within this temperature interval, both resting and active heart rate increased, and there was no indication of respiratory failure, judged from high arterial oxygen saturation, P(O2) and [Hb(O2)]. With the exception of elevated resting metabolic rate for cold-acclimated toads, we found few differences in the thermal responses between acclimation groups with regard to the cardiometabolic parameters. In conclusion, we found no evidence for temperature-induced cardiorespiratory failure in R. marina, indicating that maintenance of aerobic scope and oxygen transport is unrelated to the upper thermal limit of this air-breathing semi-terrestrial vertebrate.

  12. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    Science.gov (United States)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  13. Mechanisms of oxygen permeation through plastic films and barrier coatings

    International Nuclear Information System (INIS)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Dahlmann, Rainer; Hopmann, Christian; Mitschker, Felix; Awakowicz, Peter

    2017-01-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µ m) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities. (paper)

  14. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  15. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-01-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  16. Indirect Liquefaction of Biomass to Transportation Fuels Via Mixed Oxygenated Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C.D.

    2016-11-14

    This paper presents a comparative techno-economic analysis of four emerging conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The processing steps include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation.

  17. Photosensitized Oxygenations of Hexamethylbenzene in Phase Contact Enhanced Microreactor

    International Nuclear Information System (INIS)

    Park, Chan Yi; Park, Jeong Hyeon; Lim Hyo Jin; Hwang, Geumsook; Park, Chan Pil

    2014-01-01

    Activated singlet oxygen ( 1 O 2 ) has successfully been utilized in production of various compounds including fragrances, pharmaceuticals, and fine chemicals. However, the traditional reaction required a prolonged reaction time due to the difficulty of introducing adequate light and oxygen into the solution. Low contact probability between four species of oxygen, photosensitizer, light, and reagent is an inherent drawback of the traditional photoreaction. Molecular diffusion distance is the most important factor in the heterogeneous reactions including gas-liquid, gassolid, liquid-solid, and immiscible liquid-liquid. Therefore, rates of reaction are closely depended on the distance. Microreactor has provided a distinct advantage in the short molecular diffusion distance due to the high surface-to-volume ratio driven by narrow fluidic channels

  18. Formation of oxygen-related defects enhanced by fluorine in BF{sub 2}{sup +}-implanted Si studied by a monoenergetic positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Nagai, Ryo; Umeda, Kazunori

    1995-12-01

    Defects in 25-keV BF{sub 2}{sup +}- or As{sup +}-implanted Si specimens were probed by a monoenergetic positron beam. For the As{sup +}-implanted specimen, the depth profile of defects was obtained from measurements of Doppler broadening profiles as a function of incident positron energy. The major species of the defects was identified as divacancies. For ion-implanted specimens after annealing treatment, oxygen-related defects were found to be formed. For the BF{sub 2}{sup +}-implanted specimen before annealing treatment, such defects were formed in the subsurface region, where oxygen atoms were implanted by recoil from oxide films. This was attributed to enhanced formation of oxygen-related defects by the presence of F atoms. (author)

  19. Inhibition of serotonin transporters disrupts the enhancement of fear memory extinction by 3,4-methylenedioxymethamphetamine (MDMA).

    Science.gov (United States)

    Young, Matthew B; Norrholm, Seth D; Khoury, Lara M; Jovanovic, Tanja; Rauch, Sheila A M; Reiff, Collin M; Dunlop, Boadie W; Rothbaum, Barbara O; Howell, Leonard L

    2017-10-01

    3,4-Methylenedioxymethamphetamine (MDMA) persistently improves symptoms of post-traumatic stress disorder (PTSD) when combined with psychotherapy. Studies in rodents suggest that these effects can be attributed to enhancement of fear memory extinction. Therefore, MDMA may improve the effects of exposure-based therapy for PTSD, particularly in treatment-resistant patients. However, given MDMA's broad pharmacological profile, further investigation is warranted before moving to a complex clinical population. We aimed to inform clinical research by providing a translational model of MDMA's effect, and elucidating monoaminergic mechanisms through which MDMA enhances fear extinction. We explored the importance of monoamine transporters targeted by MDMA to fear memory extinction, as measured by reductions in conditioned freezing and fear-potentiated startle (FPS) in mice. Mice were treated with selective inhibitors of individual monoamine transporters prior to combined MDMA treatment and fear extinction training. MDMA enhanced the lasting extinction of FPS. Acute and chronic treatment with a 5-HT transporter (5-HTT) inhibitor blocked MDMA's effect on fear memory extinction. Acute inhibition of dopamine (DA) and norepinephrine (NE) transporters had no effect. 5-HT release alone did not enhance extinction. Blockade of MDMA's effect by 5-HTT inhibition also downregulated 5-HT 2A -mediated behavior, and 5-HT 2A antagonism disrupted MDMA's effect on extinction. We validate enhancement of fear memory extinction by MDMA in a translational behavioral model, and reveal the importance of 5-HTT and 5-HT 2A receptors to this effect. These observations support future clinical research of MDMA as an adjunct to exposure therapy, and provide important pharmacological considerations for clinical use in a population frequently treated with 5-HTT inhibitors.

  20. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    KAUST Repository

    Zhao, Kui

    2016-07-13

    We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  1. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  2. Innovative oxide materials for electrochemical energy conversion and oxygen separation

    Science.gov (United States)

    Belousov, V. V.

    2017-10-01

    Ion-conducting solid metal oxides are widely used in high-temperature electrochemical devices for energy conversion and oxygen separation. However, liquid metal oxides possessing unique electrochemical properties still remain of limited use. The review demonstrates the potential for practical applications of molten oxides. The transport properties of molten oxide materials are discussed. The emphasis is placed on the chemical diffusion of oxygen in the molten oxide membrane materials for electrochemical energy conversion and oxygen separation. The thermodynamics of these materials is considered. The dynamic polymer chain model developed to describe the oxygen ion transport in molten oxides is discussed. Prospects for further research into molten oxide materials are outlined. The bibliography includes 145 references.

  3. Transportation Security : federal action needed to enhance security efforts : statement of Peter Guerrero, Director, Physical Infrastructure Issues

    Science.gov (United States)

    2003-09-09

    Mr. Guerrero's testimony examines (1) challenges in securing the nation's transportation system; (2) actions transportation operators, as well as state and local governments, have taken since September 11 to enhance security; (3) the federal role in ...

  4. Ripple enhanced transport of suprathermal alpha particles

    International Nuclear Information System (INIS)

    Tani, K.; Takizuka, T.; Azumi, M.

    1986-01-01

    The ripple enhanced transport of suprathermal alpha particles has been studied by the newly developed Monte-Carlo code in which the motion of banana orbit in a toroidal field ripple is described by a mapping method. The existence of ripple-resonance diffusion has been confirmed numerically. We have developed another new code in which the radial displacement of banana orbit is given by the diffusion coefficients from the mapping code or the orbit following Monte-Carlo code. The ripple loss of α particles during slowing down has been estimated by the mapping model code as well as the diffusion model code. From the comparison of the results with those from the orbit-following Monte-Carlo code, it has been found that all of them agree very well. (author)

  5. Enhanced magnetoresistance induced by oxygen deficiency in La0.4Ca0.6MnO3-δ oxides

    International Nuclear Information System (INIS)

    Triki, M.; Dhahri, E.; Hlil, E. K.; Garden, J. L.

    2014-01-01

    We report electrical features and magnetoresistance behavior of the oxygen deficient La 0.4 Ca 0.6 MnO 3-δ perovskites (δ = 0, 0.15, and 0.2). These samples will be referred to as S0, S15, and S20, respectively. The dependence of electrical transport on temperature and magnetic field is systematically investigated between 2 K and 400 K in magnetic field ranging up to 5 T. The parent compound shows a stable charge ordering/antiferromagnetic state with a semiconductor-like behavior in all considered temperature range. The variable range hopping and thermally activated hopping models are found to fit well with the electrical resistivity data at low and high temperatures, respectively. Oxygen deficiency tends to weaken the charge ordering and induce ferromagnetism and metallicity at low temperature. Metal insulator transition appears at higher fields for lower oxygen deficit (S15 sample) and without field for the S20 sample. The resistivity data for S15 sample are discussed in the framework of the variable-range hopping model. Abnormal transport properties were observed in the S20 sample, characterized by the double metal-insulator transitions and low minimum behavior. These results are discussed in terms of phenomenological percolation model, based on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions. While the parent compound shows no magnetoresistance, a large magnetoresistance is observed in the deficient samples at low temperature reaching 90% and 75% at 2 T for S15 and S20 samples, respectively. Noticeably, these values reached 98% and 91% at 5 T. The appearance of colossal magnetoresistance is attributed to the spin dependent hopping between spin clusters and/or ferromagnetic domains

  6. Modelling the effects of oxygen evolution in the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Al-Fetlawi, H.; Shah, A.A.; Walsh, F.C.

    2010-01-01

    The impact of oxygen evolution and bubble formation on the performance of an all-vanadium redox flow battery is investigated using a two-dimensional, non-isothermal model. The model is based on mass, charge, energy and momentum conservation, together with a kinetic model for the redox and gas-evolving reactions. The multi-phase mixture model is used to describe the transport of oxygen in the form of gas bubbles. Numerical simulations are compared to experimental data, demonstrating good agreement. Parametric studies are performed to investigate the effects of changes in the operating temperature, electrolyte flow rate and bubble diameter on the extent of oxygen evolution. Increasing the electrolyte flow rate is found to reduce the volume of the oxygen gas evolved in the positive electrode. A larger bubble diameter is demonstrated to increase the buoyancy force exerted on the bubbles, leading to a faster slip velocity and a lower gas volume fraction. Substantial changes are observed over the range of reported bubble diameters. Increasing the operating temperature was found to increase the gas volume as a result of the enhanced rate of O 2 evolution. The charge efficiency of the cell drops markedly as a consequence.

  7. Behavior of oxygen impurities in tokamak. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, R N; Beket, A H [Plasma and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Aurhority, Cairo (Egypt)

    1996-03-01

    Impurity transport in tokamak plasma is a subject of great importance in present day tokamak experiments. The transport of oxygen as an impurity element in small tokamak was studied theoretically. The viscosity coefficient of oxygen has been calculated in different approximation 13 and 21 moment approximation, taking into consideration {chi}>>1,{chi}{omega}{sub c} {tau}. It was found that in 21 moment approximation additional terms added to the perturbation from equilibrium leads to increase in viscosity coefficients than in 13 moments approximation. 9 figs.

  8. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    Science.gov (United States)

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  9. Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors.

    Science.gov (United States)

    Bagley, Elena E; Hacker, Jennifer; Chefer, Vladimir I; Mallet, Christophe; McNally, Gavan P; Chieng, Billy C H; Perroud, Julie; Shippenberg, Toni S; Christie, MacDonald J

    2011-10-30

    Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1-induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.

  10. Electronic and Ionic Transport in Ce0.8PrxTb0.2−xO2−δ and Evaluation of Performance as Oxygen Permeation Membranes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2012-01-01

    to that of Ce0.9Gd0.1O1.95−δ, and was found to increase with increasing Pr/Tb ratio. The oxide ion mobility in Ce0.8PrxTb0.2−xO2−δ is similar to that in Ce1−2δGd2δO2−δ at the same oxygen vacancy concentration. Based on the measured ionic and electronic conductivities, fluxes through thin film Ce0.8PrxTb0.2−xO2......The electronic conductivity of Ce0.8PrxTb0.2−xO2−δ (x = 0, 0.05, 0.10, 0.15, 0.20) was determined in the oxygen activity range aO2 ≈ 103 – 10−17 at 700–900°C by Hebb-Wagner polarization. The electronic conductivity of all the Ce0.8PrxTb0.2−xO2−δ compositions was significantly enhanced as compared......−δ membranes were calculated. Calculated fluxes exceed 10 Nml min−1 cm−2 under oxyfuel relevant conditions (T = 800°C, aO2,permeate side = 10−3). Hence, in terms of transport properties, these materials are promising for this application. Interference between the ionic and electronic flows has...

  11. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    Science.gov (United States)

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  12. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  13. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Oxygen as a factor in eukaryote evolution - Some effects of low levels of oxygen on Saccharomyces cerevisiae

    Science.gov (United States)

    Jahnke, L.; Klein, H. P.

    1979-01-01

    A comparative study of the effects of varying levels of oxygen on some of the metabolic functions of the primitive eukaryote, Saccharomyces cerevisiae, has shown that these cells are responsive to very low levels of oxygen: the level of palmitoyl-Co A desaturase was greatly enhanced by only 0.03 vol % oxygen. Similarly, an acetyl-CoA synthetase associated predominantly with anaerobic growth was stimulated by as little as 0.1% oxygen, while an isoenzyme correlated with aerobic growth was maximally active at much higher oxygen levels (greater than 1%). Closely following this latter pattern were three mitochondrial enzymes that attained maximal activity only under atmospheric levels of oxygen.

  15. Silicon Micropore-Based Parallel Plate Membrane Oxygenator.

    Science.gov (United States)

    Dharia, Ajay; Abada, Emily; Feinberg, Benjamin; Yeager, Torin; Moses, Willieford; Park, Jaehyun; Blaha, Charles; Wright, Nathan; Padilla, Benjamin; Roy, Shuvo

    2018-02-01

    Extracorporeal membrane oxygenation (ECMO) is a life support system that circulates the blood through an oxygenating system to temporarily (days to months) support heart or lung function during cardiopulmonary failure until organ recovery or replacement. Currently, the need for high levels of systemic anticoagulation and the risk for bleeding are main drawbacks of ECMO that can be addressed with a redesigned ECMO system. Our lab has developed an approach using microelectromechanical systems (MEMS) fabrication techniques to create novel gas exchange membranes consisting of a rigid silicon micropore membrane (SμM) support structure bonded to a thin film of gas-permeable polydimethylsiloxane (PDMS). This study details the fabrication process to create silicon membranes with highly uniform micropores that have a high level of pattern fidelity. The oxygen transport across these membranes was tested in a simple water-based bench-top set-up as well in a porcine in vivo model. It was determined that the mass transfer coefficient for the system using SµM-PDMS membranes was 3.03 ± 0.42 mL O 2 min -1 m -2 cm Hg -1 with pure water and 1.71 ± 1.03 mL O 2 min -1 m -2 cm Hg -1 with blood. An analytic model to predict gas transport was developed using data from the bench-top experiments and validated with in vivo testing. This was a proof of concept study showing adequate oxygen transport across a parallel plate SµM-PDMS membrane when used as a membrane oxygenator. This work establishes the tools and the equipoise to develop future generations of silicon micropore membrane oxygenators. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. The role of sacrificial fugitives in thermoplastic extrusion feedstocks onproperties of MgO supports for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Kwok, Kawai; Søgaard, Martin

    2015-01-01

    2014AbstractThree different compositions of MgO compounds were investigated for use in oxygen transport membranes. Porous MgO supports were extruded using different kind (size, morphology and chemistry) of pore formers: A flaky graphite, a spherical graphite and ideal spheres of PMMA. The influence...... of the pore former on microstructure, gas permeation and the mechanical properties for various sintering temperatures were investigated.The gas permeation behavior of the MgO supports was highly dependent on pore neck size and total open porosity. MgO substrate, with 20% spherical graphite as a pore former...

  17. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.

    Science.gov (United States)

    Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing

    2018-02-01

    Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.

  18. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  19. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico

    Science.gov (United States)

    Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco

    2016-07-01

    Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring

  20. A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation

    International Nuclear Information System (INIS)

    Kavanagh, Brian D.; Secomb, Timothy W.; Hsu, Richard; Lin, P.-S.; Venitz, Jurgen; Dewhirst, Mark W.

    2002-01-01

    Purpose: To develop a theoretical model for oxygen delivery to tumors, and to use the model to simulate the effects of changing the affinity of hemoglobin for oxygen on tumor oxygenation. Methods and Materials: Hemoglobin affinity is expressed in terms of P 50 , the partial pressure of oxygen (Po 2 ) at half saturation. Effects of changing P 50 on arterial Po 2 are predicted using an effective vessel approach to describe diffusive oxygen transport in the lungs, assuming fixed systemic oxygen demand and fixed blood flow rate. The decline in oxygen content of blood as it flows through normal tissue before entering the tumor region is assumed fixed. The hypoxic fraction of the tumor region is predicted using a three-dimensional simulation of diffusion from a network of vessels whose geometry is derived from observations of tumor microvasculature in the rat. Results: In air-breathing rats, predicted hypoxic fraction decreases with moderate increases in P 50 , but increases with further increases of P 50 , in agreement with previous experimental results. In rats breathing hyperoxic gases, and in humans breathing either normoxic or hyperoxic gases, increased P 50 is predicted to improve tumor oxygenation. Conclusions: The results support the administration of synthetic agents to increase P 50 during radiation treatment of tumors

  1. Oxygen dynamics around buried lesser sandeels Ammodytes tobianus (Linnaeus 1785): mode of ventilation and oxygen requirements

    DEFF Research Database (Denmark)

    Behrens, Jane W; Stahl, Henrik J; Steffensen, John F

    2007-01-01

    The oxygen environment around buried sandeels (Ammodytes tobianus) was monitored by planar optodes. The oxygen penetration depth at the sediment interface was only a few mm. Thus fish, typically buried at 1-4 cm depth, were generally in anoxic sediment. However, they induced an advective transport...... down along the body, referred to as ;plume ventilation'. Yet, within approximately 30 min the oxic plume was replenished by oxygen-depleted water from the gills. The potential for cutaneous respiration by the buried fish was thus of no quantitative importance. Calculations derived by three independent...... methods (each with N=3) revealed that the oxygen uptake of sandeel buried for 6-7 h was 40-50% of previous estimates on resting respirometry of non-buried fish, indicating lower O(2) requirements during burial on a diurnal timescale. Buried fish exposed to decreasing oxygen tensions gradually approached...

  2. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong; Jia, Henglei; Chang, Shuai; Ruan, Qifeng; Wang, Peng; Chen, Tao; Wang, Jianfang

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  3. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating costs, as well higher product selectivities than traditional technologies. The oxygen permeation rate through a given ITM is defined by the membrane temperature and oxygen chemical potential difference across it. Both of these parameters can be strongly influenced by thermochemical reactions occurring in the vicinity of the membrane, though in the literature they are often characterized in terms of the well mixed product stream at the reactor exit. This work presents the development of a novel ITM reactor for the fundamental investigation of the coupling between fuel conversion and oxygen permeation under well defined fluid dynamic and thermodynamic conditions, including provisions for spatially resolved, in-situ investigations. A planar, finite gap stagnation flow reactor with optical and probe access to the reaction zone is used to facilitate in-situ measurements and cross-validation with detailed numerical simulations. Using this novel reactor, baseline measurements are presented to elucidate the impact of the sweep gas fuel (CH4) fraction on the oxygen permeation and fuel conversion. In addition, the difference between well-mixed gas compositions measured at the reactor outlet and those measured in the vicinity of the membrane surface are discussed, demonstrating the unique utility of the reactor. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  4. Effect of lithium and sodium ion adsorption on the electronic transport properties of Ti3C2 MXene

    International Nuclear Information System (INIS)

    Berdiyorov, G.R.

    2015-01-01

    Highlights: • Effect of Li and Na ion adsorption on the electronic transport in Ti 3 C 2 MXene is studied. • Fluorinated, oxidized and hydroxylated surfaces are considered. • Enhanced charge transport is obtained for fluorinated and hydroxylated samples. • Electronic transmission is reduced in the oxidized sample. • The pristine and oxidized MXene samples are found to be sensitive to the ions adsorption. - Abstract: MXenes are found to be promising electrode materials for energy storage applications. Recent theoretical and experimental studies indicate the possibility of using these novel low dimensional materials for metal-ion batteries. Herein, we use density-functional theory in combination with the nonequilibrium Green's function formalism to study the effect of lithium and sodium ion adsorption on the electronic transport properties of the MXene, Ti 3 C 2 . Oxygen, hydroxyl and fluorine terminated species are considered and the obtained results are compared with the ones for the pristine MXene. We found that the ion adsorption results in reduced electronic transport in the pristine MXene: depending on the type of the ions and the bias voltage, the current in the system can be reduced by more than 30%. On the other hand, transport properties of the oxygen terminated sample can be improved by the ion adsorption: for both types of ions the current in the system can be increased by more than a factor of 4. However, the electronic transport is less affected by the ions in fluorinated and hydroxylated samples. These two samples show enhanced electronic transport as compared to the pristine MXene. The obtained results are explained in terms of electron localization in the system.

  5. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Co, C; Vickaryous, M K; Koch, T G

    2014-03-01

    Ongoing research is aimed at increasing cartilage tissue yield and quality from multipotent mesenchymal stromal cells (MSC) for the purpose of treating cartilage damage in horses. Low oxygen culture has been shown to enhance chondrogenesis, and novel membrane culture has been proposed to increase tissue yield and homogeneity. The objective of this study was to evaluate and compare the effect of reduced oxygen and membrane culture during in vitro chondrogenesis of equine cord blood (CB) MSC. CB-MSC (n = 5 foals) were expanded at 21% oxygen prior to 3-week differentiation in membrane or pellet culture at 5% and 21% oxygen. Assessment included histological examination (H&E, toluidine Blue, immunohistochemistry (IHC) for collagen type I and II), protein quantification by hydroxyproline assay and dimethylmethylene assay, and mRNA analysis for collagen IA1, collagen IIA1, collagen XA1, HIF1α and Sox9. Among treatment groups, 5% membrane culture produced neocartilage most closely resembling hyaline cartilage. Membrane culture resulted in increased wet mass, homogenous matrix morphology and an increase in total collagen content, while 5% oxygen culture resulted in higher GAG and type II collagen content. No significant differences were observed for mRNA analysis. Membrane culture at 5% oxygen produces a comparatively larger amount of higher quality neocartilage. Matrix homogeneity is attributed to a uniform diffusion gradient and reduced surface tension. Membrane culture holds promise for scale-up for therapeutic purposes, for cellular preconditioning prior to cytotherapeutic applications, and for modeling system for gas-dependent chondrogenic differentiation studies. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. Study of reactions between nuclear fuel and cladding (316 stainless steel) in reactors. Influence of oxygen

    International Nuclear Information System (INIS)

    Otter, Monique.

    1980-12-01

    We have studied oxidation of 316 steel in close contact with oxides (Usub(0,74)Pusub(0,26)O 2 or UO 2 ), the stoichiometry of oxygen ranging from 2.00 to 2.5. Experiments are carried out either in a closed isothermal system or in an opened isothermal system with a fixed oxygen potential of uranium oxide. We have realized a potentiostatic device using a solid state electrotyte galvanic cell. In a closed system, the sensitized austenitic steel shows intergranular and volume oxidation probably enhanced by migration of steel components towards the fuel. Evidence of the usefulness of passivation have been obtained. We conclude that in a fast reactor sensitized cladding steel is oxydized by the constant potential of oxygen of UPuO 2 . Deposits observed in fuel can be explain by evaporation and cyclic transport phenomena that can be differents from VAN-ARKEL mechanism taking place through fission products [fr

  7. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells

    KAUST Repository

    Mutoro, Eva; Crumlin, Ethan J.; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2011-01-01

    Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La 0.8Sr 0.2CoO 3-δ (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr)oxides/carbonates. "Sr"-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k q, by an order of magnitude while "La"- decoration and "Co"-decoration led to no change and reduction in k q, respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k q enhancement for "Sr"-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. © 2011 The Royal Society of Chemistry.

  8. Transport of oxygen ions in Er doped La2Mo2O9 oxide ion conductors: Correlation with microscopic length scales

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2018-01-01

    We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.

  9. Dopant controlled trap-filling and conductivity enhancement in an electron-transport polymer

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Andrew, E-mail: aehiggin@princeton.edu, E-mail: kahn@princeton.edu; Kahn, Antoine, E-mail: aehiggin@princeton.edu, E-mail: kahn@princeton.edu [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544-5263 (United States); Mohapatra, Swagat K.; Barlow, Stephen; Marder, Seth R. [Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)

    2015-04-20

    Charge transport in organic semiconductors is often inhibited by the presence of tail states that extend into the band gap of a material and act as traps for charge carriers. This work demonstrates the passivation of acceptor tail states by solution processing of ultra-low concentrations of a strongly reducing air-stable organometallic dimer, the pentamethylrhodocene dimer, [RhCp*Cp]{sub 2}, into the electron transport polymer poly([N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide) -2,6-diyl]-alt-5,5′-(2,2′-bithiophene)), P(NDI{sub 2}OD-T{sub 2}). Variable-temperature current-voltage measurements of n-doped P(NDI{sub 2}OD-T{sub 2}) are presented with doping concentration varied through two orders of magnitude. Systematic variation of the doping parameter is shown to lower the activation energy for hopping transport and enhance film conductivity and electron mobility.

  10. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod.

    Science.gov (United States)

    Zielinski, S; Sartoris, F J; Pörtner, H O

    2001-02-01

    The functional relevance of oxygen transport by hemocyanin of the Antarctic octopod Megaleledone senoi and of the eurythermal cuttlefish Sepia officinalis was analyzed by continuous and simultaneous recordings of changes in pH and hemocyanin oxygen saturation in whole blood at various temperatures. These data were compared to literature data on other temperate and cold-water cephalopods (octopods and giant squid). In S. officinalis, the oxygen affinity of hemocyanin changed at deltaP50/degrees C = 0.12 kPa (pH 7.4) with increasing temperatures; this is similar to observations in temperate octopods. In M. senoi, thermal sensitivity was much smaller (delta log P50/delta pH) increased with increasing temperature in both the cuttlefish and the Antarctic octopod. At low PO2 (1.0 kPa) and pH (7.2), the presence of a large venous oxygen reserve (43% saturation) insensitive to pH reflects reduced pH sensitivity and high oxygen affinity in M. senoi hemocyanin at 0 degrees C. In S. officinalis, this reserve was 19% at pH 7.4, 20 degrees C, and 1.7 kPa O2, a level still higher than in squid. These findings suggest that the lower metabolic rate of octopods and cuttlefish compared to squid is reflected in less pH-dependent oxygen transport. Results of the hemocyanin analysis for the Antarctic octopod were similar to those reported for Vampyroteuthis--an extremely high oxygen affinity supporting a very low metabolic rate. In contrast to findings in cold-adapted giant squid, the minimized thermal sensitivity of oxygen transport in Antarctic octopods will reduce metabolic scope and thereby contribute to their stenothermality.

  11. Oxygen reduction kinetics and transport properties of (Ba,Sr)(Co,Fe)O3-δ solid oxide fuel cell cathode materials

    International Nuclear Information System (INIS)

    Wang, Lei; Merkle, Rotraut; Baumann, Frank S.; Maier, Joachim; Fleig, Juergen

    2007-01-01

    Full text: The oxygen reduction at the surface of cathode materials is crucial for the performance of solid oxide fuel cells (SOFC), but a detailed understanding of the mechanism is not available yet. (Ba x Sr 1-x )(Co 1-y Fe y )O 3-δ shows strongly improved oxygen reduction rates compared to previously applied perovskite cathode materials. In this work, surface rate constants as well as bulk transport properties are studied. (Ba x Sr 1-x )(Co 1-y Fe y )O 3-δ with 0≤x≤0.5, 0.2≤y≤1 was synthesized by the Pechini method. Oxygen stoichoimetry was obtained from thermo-gravimetric analysis, confirming that Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ has an exceptionally low oxygen content which is generally smaller than 2.5. Dense thin films were grown by pulsed laser deposition (PLD) and patterned into circular microelectrodes by photolithography. The surface resistance R s , which dominate the overall electrode resistance, were measured by impedance spectroscopy on individual microelectrodes at different T, pO 2 and applied electrical bias. PLD technique greatly helps to study the oxygen reduction kinetics since only measurements on dense thin films allow to record absolute R s values without interference from morphology effects. These R s values were found to be much lower than those for (La,Sr)(Co,Fe)O 3-δ . The variation of the surface reaction rates with A-site and B-site composition was studied and correlations with bulk materials properties such as oxygen nonstoichiometry, ionic mobility or oxidation enthalpy were examined. Plausible reaction mechanisms as well as possible reasons for the high absolute surface reaction rates will be discussed

  12. Oxygen permeability of nanocomposite-based polyolefin films; Permeabilidade do oxigenio em filmes nanocompositos poliolefinicos

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama-Novak, Jane H.; Amaral, Rafael A.; Ruffino, Vivianne; Habert, A. Claudio; Borges, Cristiano P., E-mail: jane@peq.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Mano, Barbara [BRASKEM S.A., Duque de Caxias, RJ (Brazil)

    2015-07-01

    Polyethylene and polypropylene are vastly employed for packaging due to their high versatility and low cost. However, their films are permeable at different degree to small molecules like gases and the use of additives improves the barrier properties. Therefore, the aim of this work is to investigate the effect of organically modified montmorillonite on oxygen transport properties of PE and PP films. Nanocomposites were prepared by means of polymer dissolution in organic solvent and subsequent nanoparticle addition at 3, 5 and 10% (w/w). Scanning electron microscopy images of the films indicate the presence of microcavities and some agglomerated nanoclay. On the other hand, X-rays diffraction analysis shows clay in well-dispersed state independent of polyolefin type. Enhancement of oxygen barrier is achieved, but this property is dependent on the nanoclay content, polyolefin type and film morphology. (author)

  13. Controlling Oxygen Mobility in Ruddlesden–Popper Oxides

    Directory of Open Access Journals (Sweden)

    Dongkyu Lee

    2017-03-01

    Full Text Available Discovering new energy materials is a key step toward satisfying the needs for next-generation energy conversion and storage devices. Among the various types of oxides, Ruddlesden–Popper (RP oxides (A2BO4 are promising candidates for electrochemical energy devices, such as solid oxide fuel cells, owing to their attractive physicochemical properties, including the anisotropic nature of oxygen migration and controllable stoichiometry from oxygen excess to oxygen deficiency. Thus, understanding and controlling the kinetics of oxygen transport are essential for designing optimized materials to use in electrochemical energy devices. In this review, we first discuss the basic mechanisms of oxygen migration in RP oxides depending on oxygen nonstoichiometry. We then focus on the effect of changes in the defect concentration, crystallographic orientation, and strain on the oxygen migration in RP oxides. We also briefly review their thermal and chemical stability. Finally, we conclude with a perspective on potential research directions for future investigation to facilitate controlling oxygen ion migration in RP oxides.

  14. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  15. Effects of Hemopure on maximal oxygen uptake and endurance performance in healthy humans.

    Science.gov (United States)

    Ashenden, M J; Schumacher, Y O; Sharpe, K; Varlet-Marie, E; Audran, M

    2007-05-01

    Haemoglobin-based oxygen carriers (HBOCs) such as Hemopure are touted as a tenable substitute for red blood cells and therefore potential doping agents, although the mechanisms of oxygen transport of HBOCs are incompletely understood. We investigated whether infusion of Hemopure increased maximal oxygen uptake (V.O 2max) and endurance performance in healthy subjects. Twelve male subjects performed two 4-minute submaximal exercise bouts equivalent to 60 % and 75 % of V.O (2max) on a cycle ergometer, followed by a ramped incremental protocol to elicit V.O (2max). A crossover design tested the effect of infusing either 30 g (6 subjects) or 45 g (6 subjects) of Hemopure versus a placebo. Under our study conditions, Hemopure did not increase V.O (2max) nor endurance performance. However, the infusion of Hemopure caused a decrease in heart rate of approximately 10 bpm (p=0.009) and an average increase in mean ( approximately 7 mmHg) and diastolic blood pressure ( approximately 8 mmHg) (p=0.046) at submaximal and maximal exercise intensities. Infusion of Hemopure did not bestow the same physiological advantages generally associated with infusion of red blood cells. It is conceivable that under exercise conditions, the hypertensive effects of Hemopure counter the performance-enhancing effect of improved blood oxygen carrying capacity.

  16. Insights into highly improved solar-driven photocatalytic oxygen evolution over integrated Ag3PO4/MoS2 heterostructures

    Science.gov (United States)

    Cui, Xingkai; Yang, Xiaofei; Xian, Xiaozhai; Tian, Lin; Tang, Hua; Liu, Qinqin

    2018-04-01

    Oxygen evolution has been considered as the rate-determining step in photocatalytic water splitting due to its sluggish four-electron half-reaction rate, the development of oxygen-evolving photocatalysts with well-defined morphologies and superior interfacial contact is highly important for achieving high-performance solar water splitting. Herein, we report the fabrication of Ag3PO4/MoS2 nanocomposites and, for the first time, their use in photocatalytic water splitting into oxygen under LED light illumination. Ag3PO4 nanoparticles were found to be anchored evenly on the surface of MoS2 nanosheets, confirming an efficient hybridization of two semiconductor materials. A maximum oxygen-generating rate of 201.6 mol L-1 g-1 h-1 was determined when 200 mg MoS2 nanosheets were incorporated into Ag3PO4 nanoparticles, which is around 5 times higher than that of bulk Ag3PO4. Obvious enhancements in light-harvesting property, as well as electron-hole separation and charge transportation are revealed by the combination of different characterizations. ESR analysis verified that more active oxygen-containing radicals generate over illuminated Ag3PO4/MoS2 composite photocatalysts rather than irradiated Ag3PO4. The improvement in oxygen evolution performance of Ag3PO4/MoS2 composite photocatalysts is ascribed to wide spectra response in the visible-light region, more efficient charge separation and enhanced oxidation capacity in the valence band (VB). This study provides new insights into the design and development of novel composite photocatalytic materials for solar-to-fuel conversion.

  17. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    Science.gov (United States)

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  18. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.

    Directory of Open Access Journals (Sweden)

    Shahin S Ali

    Full Text Available Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km((glucose was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing.

  19. Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films

    International Nuclear Information System (INIS)

    Dashevsky, Z.; Shufer, E.; Kasiyan, V.; Flitsiyan, E.; Chernyak, L.

    2010-01-01

    In this work, the oxygen treatment of 1 μm thick n-type PbTe:In films was studied. Two main processes induced during the thermal treatment in oxygen atmosphere were identified. The inversion of the type of electrical conductivity in PbTe:In films from n- to p-type was observed after the thermal treatment in oxygen (T a =400 deg. C). This effect is related to indium segregation at the film surface. The photoconductivity demonstrated in PbTe:In films after oxygen treatment is due to oxygen diffusion along the grain boundaries and the creation of potential relief, which separates electron-hole pairs at the boundaries under light illumination.

  20. Metallic substrate materials for thin film oxygen transport membranes for application in a fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y.; Baumann, S.; Sebold, D.; Meulenberg, W.A.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF) - IEF-1 Materials Synthesis and Processing

    2010-07-01

    La{sub 0.58}Sr{sub 0.4}CO{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) and Ba{sub 0.5}Sr{sub 0.5}CO{sub 0.8}Fe{sub 3-{delta}} (BSCF5582) exhibit high oxygen permeability due to their high ionic and electronic conductivity. For this reason they are under discussion for application in oxygen transport membranes (OTMs) in zero-emission power plants using oxyfuel technology. A thin film membrane which can increase the oxygen flux is beneficial and a structural substrate is required. Two types of Ni-base alloys were studied as substrate material candidates with a number of advantages, such as high strength, high temperature stability, easy joining and similar thermal expansion coefficient to the selected perovskite materials. Chemical compositions and thermal expansion coefficients of Ni-base alloys were measured in this study. LSCF58428 and BSCF5582 layers were screen printed on Ni-based alloys and co-fired at high temperature in air. The microstructure and element analysis of samples were characterized by scanning electron microscopy (SEM and EDX). A Ni-base alloy, MCrAlY, with a high Al content was the most suitable substrate material, and showed better chemical compatibility with perovskite materials at high temperature than Hastelloy X, which is a chromia-forming Ni-base alloy. A reaction occurred between Sr in the perovskite and the alumina surface layers on MCr-AlY. However, the reaction zone did not increase in thickness during medium-term annealing at 800 C in air. Hence, it is expected that this reaction will not prevent the application of MCr-AlY as a substrate material. (orig.)

  1. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as non-invasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate

    Science.gov (United States)

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H. Douglas; Munasinghe, Jeeva P.; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P.; Mitchell, James B.; Krishna, Murali C.

    2012-01-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation, and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate (3-BP) blocks glycolysis pathway by inhibiting hypoxia inducible enzymes, and enhanced cytotoxicity of 3-BP under hypoxic conditions has been reported in vitro. However, the efficacy of 3-BP was substantially attenuated in hypoxic tumor regions (pO2 < 10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 (MCT1) is the major transporter for pyruvate and the analog 3-BP in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of MCT1 in vivo. Expression of MCT1 was enhanced in moderately hypoxic (8–15 mmHg) tumor regions, but down regulated in severely hypoxic (< 5 mmHg) tumor regions. These results emphasize the importance of non-invasive imaging biomarkers to confirm the action of hypoxia-activated drugs. PMID:22692861

  2. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    range of PO2 values, resulting in a higher resolution. Use of suitable polymer alloys as indicator matrices can even enhance oxygen sensitivity; therefore, the application of optodes for trace analysis of oxygen might be possible, especially with regard to the application of highly oxygen-sensitive phosphorescent indicators. Finally, owing to the reversibility of fluorescence quenching, monitoring of oxygen by fluorescence optical sensors allows a continuous and remote control of biomedical parameters as well as regulation of biotechnological processes.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Enhancing Physician Empathy: Optimizing Learner Potential for Narrative Transportation

    Directory of Open Access Journals (Sweden)

    Casey Hester

    2016-12-01

    Full Text Available This article argues for the pedagogical usefulness of engaging with literary texts in the formal training of physicians and healthcare workers. It suggests that particular “skills” in reading and engaging with narrative are as readily teachable to healthcare students as are skills in reading x-rays or in diagnosing symptoms. It focuses on three phenomena associated with literary (and other forms of narrative – namely, the recognition of characters, vicarious experience, and the experience of fellow feeling – and relates them to three categories in cognitive psychology: Theory of Mind, Narrative Transportation, and Empathy. It presents a survey of empirical studies in cognitive psychology that demonstrates the effectiveness of literary narrative in producing these psychological states, and ends by demonstrating how the teaching of a literary narrative – Bastard Out of Carolina – has enhanced these states in students planning on a career in medicine. Such enhancement, the article suggests, are produced by literary features such as imagery, defamiliarization, and patterned organization on the levels of phonology, semantics, and story structure.

  4. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?

    DEFF Research Database (Denmark)

    Lundby, C; Robach, P; Boushel, R

    2008-01-01

    This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during...... before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery....

  5. Simple method to enhance positive bias stress stability of In-Ga-Zn-O thin-film transistors using a vertically graded oxygen-vacancy active layer.

    Science.gov (United States)

    Park, Ji Hoon; Kim, Yeong-Gyu; Yoon, Seokhyun; Hong, Seonghwan; Kim, Hyun Jae

    2014-12-10

    We proposed a simple method to deposit a vertically graded oxygen-vacancy active layer (VGA) to enhance the positive bias stress (PBS) stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). We deposited a-IGZO films by sputtering (target composition; In2O3:Ga2O3:ZnO = 1:1:1 mol %), and the oxygen partial pressure was varied during deposition so that the front channel of the TFTs was fabricated with low oxygen partial pressure and the back channel with high oxygen partial pressure. Using this method, we were able to control the oxygen vacancy concentration of the active layer so that it varied with depth. As a result, the turn-on voltage shift following a 10 000 s PBS of optimized VGA TFT was drastically improved from 12.0 to 5.6 V compared with a conventional a-IGZO TFT, without a significant decrease in the field effect mobility. These results came from the self-passivation effect and decrease in oxygen-vacancy-related trap sites of the VGA TFTs.

  6. Control of BTEX migration using a biologically enhanced permeable barrier

    International Nuclear Information System (INIS)

    Borden, R.C.; Goin, R.T.; Kao, C.M.

    1997-01-01

    A permeable barrier system, consisting of a line of closely spaced wells, was installed perpendicular to ground water flow to control the migration of a dissolved hydrocarbon plume. The wells were charged with concrete briquets that release oxygen and nitrate at a controlled rate, enhancing aerobic biodegradation in the downgradient aquifer. Laboratory batch reactor experiments were conducted to identify concrete mixtures that slowly released oxygen over an extended time period. A full-scale permeable barrier system using ORC was constructed at a gasoline-spill site. During the first 242 days of operation, total BTEX decreased from 17 to 3.4 mg/L and dissolved oxygen increased from 0.4 to 1.8 mg/L during transport through the barrier. Over time, BTEX treatment efficiencies declined, indicating the barrier system had become less effective in releasing oxygen and nutrients to the highly contaminated portion of the aquifer. Point dilution tests and sediment analyses performed at the conclusion of the project indicated that the aquifer in the vicinity of the remediation wells had been clogged by precipitation with iron minerals

  7. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring.

    Science.gov (United States)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-05-17

    Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and

  8. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  9. IGF-I enhances cellular senescence via the reactive oxygen species–p53 pathway

    International Nuclear Information System (INIS)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-01-01

    Highlights: ► Cellular senescence plays an important role in tumorigenesis and aging process. ► We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. ► IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. ► These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  10. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).

    Science.gov (United States)

    Slay, Christopher E; Enok, Sanne; Hicks, James W; Wang, Tobias

    2014-05-15

    Physiological cardiac hypertrophy is characterized by reversible enlargement of cardiomyocytes and changes in chamber architecture, which increase stroke volume and via augmented convective oxygen transport. Cardiac hypertrophy is known to occur in response to repeated elevations of O2 demand and/or reduced O2 supply in several species of vertebrate ectotherms, including postprandial Burmese pythons (Python bivittatus). Recent data suggest postprandial cardiac hypertrophy in P. bivittatus is a facultative rather than obligatory response to digestion, though the triggers of this response are unknown. Here, we hypothesized that an O2 supply-demand mismatch stimulates postprandial cardiac enlargement in Burmese pythons. To test this hypothesis, we rendered animals anemic prior to feeding, essentially halving blood oxygen content during the postprandial period. Fed anemic animals had heart rates 126% higher than those of fasted controls, which, coupled with a 71% increase in mean arterial pressure, suggests fed anemic animals were experiencing significantly elevated cardiac work. We found significant cardiac hypertrophy in fed anemic animals, which exhibited ventricles 39% larger than those of fasted controls and 28% larger than in fed controls. These findings support our hypothesis that those animals with a greater magnitude of O2 supply-demand mismatch exhibit the largest hearts. The 'low O2 signal' stimulating postprandial cardiac hypertrophy is likely mediated by elevated ventricular wall stress associated with postprandial hemodynamics. © 2014. Published by The Company of Biologists Ltd.

  11. Determination of oxygen effective diffusivity in porous gas diffusion layer using a three-dimensional pore network model

    International Nuclear Information System (INIS)

    Wu Rui; Zhu Xun; Liao Qiang; Wang Hong; Ding Yudong; Li Jun; Ye Dingding

    2010-01-01

    In proton exchange membrane fuel cell (PEMFC) models, oxygen effective diffusivity is the most important parameter to characterize the oxygen transport in the gas diffusion layer (GDL). However, its determination is a challenge due to its complex dependency on GDL structure. In the present study, a three-dimensional network consisting of spherical pores and cylindrical throats is developed and used to investigate the effects of GDL structural parameters on oxygen effective diffusivity under the condition with/without water invasion process. Oxygen transport in the throat is described by Fick's law and water invasion process in the network is simulated using the invasion percolation with trapping algorithm. The simulation results reveal that oxygen effective diffusivity is slightly affected by network size but increases with decreasing the network heterogeneity and with increasing the pore connectivity. Impacts of network anisotropy on oxygen transport are also investigated in this paper. The anisotropic network is constructed by constricting the throats in the through-plane direction with a constriction factor. It is found that water invasion has a more severe negative influence on oxygen transport in an anisotropic network. Finally, two new correlations are introduced to determine the oxygen effective diffusivity for the Toray carbon paper GDLs.

  12. Surfactant-Enhanced Size-Excluded Transport of Bacteria Through Unsaturated Porous Media.

    Science.gov (United States)

    Zhu, J.

    2017-12-01

    US domestic waste water is rich in surfactants because of the intensive usage of surfactants-containing household product. It results in a surfactants presence environment when this untreated waste water released into subsurface. It was reported that surfactants enhance the colloidal transport in porous media, which have significant effect on issues such as subsurface pathogens contamination and biodegradation. In this study, soil column experiments were conducted. The soil column was remained unsaturated and with a steady flow passing through it. Escherichia coli K-12 transported in the soil column and its breakthrough data was collected in presence of surfactant anionic surfactant linear alkylbenzene sulfonate (LAS) concentration range over 0, 0.25, 0.5, 0.75, 1, and 2 times Critical Micelle Concentration (CMC). It was found that the increase in LAS concentration greatly increases breakthrough concentration C/C0 and decreases breakthrough time tb until LAS concentration reaches 1 xCMC. Numerical models were built simulating and investigating this phenomenon. The goodness of model fitting was greatly improved by adding exclusion factor into the model, which indicated that the presence of surfactant might enhance the exclusion effect. The relationships between LAS concentration and the two coefficients, deposition rate coefficient k and exclusion effect coefficient θim, were found can be fitted by a quasi-Langmuir equation. And the model validation with observed data showed that the model has an acceptable reliability.

  13. Enhanced metabolic versatility of planktonic sulfur-oxidizing γ-proteobacteria in an oxygen-deficient coastal ecosystem

    Directory of Open Access Journals (Sweden)

    Alejandro A. Murillo

    2014-07-01

    Full Text Available Sulfur-oxidizing Gamma-proteobacteria are abundant in marine oxygen-deficient waters, and appear to play a key role in a previously unrecognized cryptic sulfur cycle. Metagenomic analyses of members of the uncultured SUP05 lineage in the Canadian seasonally anoxic fjord Saanich Inlet (SI, hydrothermal plumes in the Guaymas Basin (GB and single cell genomics analysis of two ARCTIC96BD-19 representatives from the South Atlantic Sub-Tropical Gyre (SASG have shown them to be metabolically versatile. However, SI and GB SUP05 bacteria seem to be obligate chemolithoautotrophs, whereas ARCTIC96BD-19 has the genetic potential for aerobic respiration. Here, we present results of a metagenomic analysis of sulfur-oxidizing Gamma-proteobacteria (GSO, closely related to the SUP05/ARCTIC96BD-19 clade, from a coastal ecosystem in the eastern South Pacific (ESP. This ecosystem experiences seasonal anoxia and accumulation of nitrite and ammonium at depth, with a corresponding increase in the abundance of GSO representatives. The ESP-GSOs appear to have a significantly different gene complement than those from Saanich Inlet, Guaymas Basin and SASG. Genomic analyses of de novo assembled contigs indicate the presence of a complete aerobic respiratory complex based on the cytochrome bc1 oxidase. Furthermore, they appear to encode a complete TCA cycle and several transporters for dissolved organic carbon species, suggesting a mixotrophic lifestyle. Thus, the success of sulfur-oxidizing Gamma-proteobacteria in oxygen-deficient marine ecosystems appears due not only to their previously recognized anaerobic metabolic versatility, but also to their capacity to function under aerobic conditions using different carbon sources. Finally, members of ESP-GSO cluster also have the genetic potential for reducing nitrate to ammonium based on the nirBD genes, and may therefore facilitate a tighter coupling of the nitrogen and sulfur cycles in oxygen-deficient waters.

  14. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis.

    Science.gov (United States)

    Groen, Simon C; Humphrey, Parris T; Chevasco, Daniela; Ausubel, Frederick M; Pierce, Naomi E; Whiteman, Noah K

    2016-01-01

    Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Enhancing electron transport in Si:P delta-doped devices by rapid thermal anneal

    International Nuclear Information System (INIS)

    Goh, K. E. J.; Augarten, Y.; Oberbeck, L.; Simmons, M. Y.

    2008-01-01

    We address the use of rapid thermal anneal (RTA) to enhance electron mobility and phase coherent transport in Si:P δ-doped devices encapsulated by low temperature Si molecular beam epitaxy while minimizing dopant diffusion. RTA temperatures of 500-700 deg. C were applied to δ-doped layers encapsulated at 250 deg. C. From 4.2 K magnetotransport measurements, we find that the improved crystal quality after RTA increases the mobility/mean free path by ∼40% and the phase coherence length by ∼25%. Our results suggest that the initial capping layer has near optimal crystal quality and transport improvement achieved by a RTA is limited

  16. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.; Choi, YongMan; Hwang, Sun-Mi; Park, Gu-Gon; Yang, Tae-Hyun; Su, Dong; Sasaki, Kotaro; Liu, Ping; Adzic, Radoslav R.

    2015-01-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  17. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.

    2015-04-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  18. Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature

    Directory of Open Access Journals (Sweden)

    Fang XS

    2009-01-01

    Full Text Available Abstract The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm.

  19. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: Pulmonary functional loss assessment and clinical stage classification of asthmatics

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Koyama, Hisanobu; Matsumoto, Keiko; Onishi, Yumiko; Nogami, Munenobu; Takenaka, Daisuke; Matsumoto, Sumiaki; Sugimura, Kazuro

    2011-01-01

    Purpose: The purpose of this study was to prospectively compare the efficacy of oxygen-enhanced MR imaging (O 2 -enhanced MRI) and CT for pulmonary functional loss assessment and clinical stage classification of asthmatics. Materials and methods: O 2 -enhanced MRI, CT and %FEV 1 measurement were used 34 consecutive asthmatics classified into four stages ('Mild Intermittent [n = 7]', 'Mild Persistent [n = 8], 'Moderate Persistent [n = 14]' and 'Severe Persistent [n = 5]'). Relative enhancement ratio maps for every subject were generated, and determine mean relative enhancement ratios (MRERs). Mean lung density (MLD) and the airway wall area (WA) corrected by body surface area (WA/BSA) were also measured on CT. To compare the efficacy of the two methods for pulmonary functional loss assessment, all indexes were correlated with %FEV 1 . To determine the efficacy of the two methods for clinical stage classification, all parameters for the four clinical stages were statistically compared. Results: %FEV 1 showed fair or moderate correlation with all parameters (0.15 ≤ r 2 ≤ 0.30, p 2 -enhanced MRI is as effective as CT for pulmonary functional loss assessment and clinical stage classification of asthmatics.

  20. Thermotransport of nitrogen and oxygen in β-zirconium

    NARCIS (Netherlands)

    Vogel, D.L.; Rieck, G.D.

    1971-01-01

    An investigation of thermotransport of nitrogen in ß-zirconium is reported. Using a method previously described, the heat of transport turned out to be 25.1 kcal/mole with a standard deviation of 2.5 kcal/mole. The formerly published value of the heat of transport of oxygen in ß-zirconium, viz. 20

  1. Enhanced ionic transport in fine-grained scandia-stabilized zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Abdala, Paula M.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CONICET-CITEFA, J.B. de La Salle 4397 (B1603ALO) Villa Martelli, Pcia. de Buenos Aires (Argentina); Custo, Graciela S. [Gerencia de Area Seguridad Nuclear y Ambiente, Gerencia Quimica, Departamento Quimica Analitica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. Constituyentes 1499 (B1650KNA) San Martin, Pcia. de Buenos Aires (Argentina)

    2010-06-01

    In this work, the transport properties of fine-grained scandia-stabilized zirconia ceramics with low Si content have been investigated. These materials were prepared from ZrO{sub 2}-6 mol% Sc{sub 2}O{sub 3} nanopowders synthesized by a nitrate-lysine gel-combustion route. High relative densities and excellent electrical properties were obtained, even for sintering temperatures as low as 1350 C. Our electrochemical impedance spectroscopy study showed that both the volume fraction of grain boundaries and the specific grain-boundary conductivity are significantly enhanced with decreasing grain size, resulting in a higher total ionic conductivity. (author)

  2. Variation of oxygen enhancement ratio with radiation dose studies using 8 MeV electron beam

    International Nuclear Information System (INIS)

    Yerol, Narayana; Nairy, Rajesha K.; Sanjeev, Ganesh

    2014-01-01

    The radiobiological effects can be modified by physical, chemical and biological factors. Oxygen is one of the best known modifiers, and the biological effects are greater in the presence of oxygen. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells; therefore clarifying the mechanism of the oxygen effect is important. In the present study, an attempt was made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52 and 8 MeV electron beam from Microtron accelerator. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1%:2%:2%) medium for several generations in stationary phase to a density of approximately 3 x 10 8 cells mL -1 . Cells were washed thrice by centrifugation and re-suspended to a cell concentration of 1 x 10 8 cells mL -1 in a sterile polypropylene vial for irradiation. Hypoxic conditions were achieved by incubating the samples in air tight vials at 30℃ for 30 min prior to irradiation. For euoxic samples, a cell suspension of 1 x 10 6 cells mL -1 was prepared and was thoroughly aerated by mixing before irradiation. Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30℃ in dark and normal atmospheric conditions and the colonies were counted. The study confirmed that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. For repair proficient cells OER value has been found to increase with dose, while remain constant for repair deficient cell lines. A theoretical model has been formulated to estimate OER values. The OER value varies from 1.51 to 2.53 for D7, 2.02 to 2.98 for X2180, and 2.58 for rad 52. (author)

  3. Oxygen redistribution in (UCe)Osub(2-x)

    International Nuclear Information System (INIS)

    Guedeney, Philippe.

    1983-01-01

    Redistribution of oxygen has been investigated in (Usub(0,7)Cesub(0,3))Osub(2-x) mixed oxide subjected to a temperature gradient in laboratory experiments, in order to apply the results to the nuclear fuel (UPu)Osub(2-x). Cylindrical sintered oxide specimens were exposed to temperature up to 1300 0 C with a longitudinal thermal gradient of about 400 0 C/cm. The most interesting feature of the experimental set-up is a solid-state electrochemical gauge (ThO 2 - Y 2 O 3 ), placed in the cold part of the sample which allows a continuous measurement of the oxygen activity. The experiments showed a fast oxygen migration down the thermal gradient. The calculations performed with a model based on solid-state thermodiffusion are in good agreement with experimental results. The heat of transport Q measured for bare samples reaches (7.2+-0.5)-kcal/mole. When the sample is coated with a tight fitting metallic cladding, an extra term Qe has to be added to the heat of transport Qe. This was interpreted as an electrotransport phenomena. On the same basis, calculations applied to radial oxygen redistribution in (UPu)Osub(2-x) seem to be adequate at least during the first stage of irradiation, taking Q=(20+-5)kcal/mole [fr

  4. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  5. Engineering Mixed Ionic Electronic Conduction in La 0.8 Sr 0.2 MnO 3+ δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

    KAUST Repository

    Saranya, Aruppukottai M.

    2015-04-09

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nanoionics has become an increasingly promising field for the future development of advanced energy conversion and storage devices, such as batteries, fuel cells, and supercapacitors. Particularly, nanostructured materials offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. However, the enhancement of the mass transport properties at the nanoscale has often been found to be difficult to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with high density of vertically aligned GBs with high concentration of strain-induced defects. Since this type of GBs present a remarkable enhancement of their oxide-ion mass transport properties (of up to six orders of magnitude at 773 K), it is possible to tailor the electrical nature of the whole material by nanoengineering, especially at low temperatures. The presented results lead to fundamental insights into oxygen diffusion along GBs and to the application of these engineered nanomaterials in new advanced solid state ionics devices such are micro-solid oxide fuel cells or resistive switching memories. An electronic conductor such as La0.8Sr0.2MnO3+δ is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with excellent electronic and oxygen mass transport properties. Oxygen diffusion highways are created by promoting a high concentration of strain-induced defects in the grain boundary region. This novel strategy opens the way for synthesizing new families of artificial mixed ionic-electronic conductors by design.

  6. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water.

    Science.gov (United States)

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-02-09

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.

  7. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    Science.gov (United States)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  8. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  9. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    OpenAIRE

    K. C. CHONG; S. O. LAI; H. S. THIAM; H. C. TEOH; S. L. HENG

    2016-01-01

    The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA). Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology...

  10. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling

    Directory of Open Access Journals (Sweden)

    José Neira

    2015-08-01

    Full Text Available Oxygen is an important element for plant growth. Reducing its concentration in the soil affects plant physiological processes such as nutrient and water uptake as well as respiration, the redox potential of soil elements and the activity of microorganisms. The main mechanism of oxygen transport in the soil is by diffusion, a dynamic process greatly influenced by soil physical properties such as texture and structure, conditioning, pore size distribution, tortuosity and connectivity. Organic matter is a modifying agent of the soil's chemical and physical properties, affecting its structure and the porous matrix, which are determinants of oxygen transport. This study reviews the theory of soil gas diffusion and the effect of soil organic matter on the soil's physical properties and transport of gases. It also reviews gas diffusion models, particularly those including the effect of soil organic matter.

  11. Controlling factors of the oxygen balance in the Arabian Sea's OMZ

    Directory of Open Access Journals (Sweden)

    L. Resplandy

    2012-12-01

    Full Text Available The expansion of OMZs (oxygen minimum zones due to climate change and their possible evolution and impacts on the ecosystems and the atmosphere are still debated, mostly because of the unability of global climate models to adequatly reproduce the processes governing OMZs. In this study, we examine the factors controlling the oxygen budget, i.e. the equilibrium between oxygen sources and sinks in the northern Arabian Sea OMZ using an eddy-resolving biophysical model.

    Our model confirms that the biological consumption of oxygen is most intense below the region of highest productivity in the western Arabian Sea. The oxygen drawdown in this region is counterbalanced by the large supply of oxygenated waters originated from the south and advected horizontally by the western boundary current. Although the biological sink and the dynamical sources of oxygen compensate on annual average, we find that the seasonality of the dynamical transport of oxygen is 3 to 5 times larger than the seasonality of the biological sink. In agreement with previous findings, the resulting seasonality of oxygen concentration in the OMZ is relatively weak, with a variability of the order of 15% of the annual mean oxygen concentration in the oxycline and 5% elsewhere. This seasonality primarily arises from the vertical displacement of the OMZ forced by the monsoonal reversal of Ekman pumping across the basin. In coastal areas, the oxygen concentration is also modulated seasonally by lateral advection. Along the western coast of the Arabian Sea, the Somali Current transports oxygen-rich waters originated from the south during summer and oxygen-poor waters from the northeast during winter. Along the eastern coast of the Arabian Sea, we find that the main contributor to lateral advection in the OMZ is the Indian coastal undercurrent that advects southern oxygenated waters during summer and northern low-oxygen waters during winter. In this region, our model indicates that

  12. Enhanced transport currents in Cu-sheathed MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Eisterer, M; Weber, H W [Atomic Institute of the Austrian Universities, Vienna (Austria); Glowacki, B A [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Pacific Northwest National Laboratory, Richland, WA (United States); Greenwood, L R [Pacific Northwest National Laboratory, Richland, WA (United States); Majoros, M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Cambridge (United Kingdom)

    2002-07-01

    Copper-sheathed MgB{sub 2} wires, prepared by an in-situ process, were exposed to neutron radiation in order to introduce defects into the superconductor. The high level of disorder (4.6x10{sup -2} dpa) leads to a decrease of the transition temperature by more than 4 K, but to an increase of the slope of the irreversibility line, thus resulting in higher irreversibility fields at low temperatures. The transport currents are significantly enhanced at 4.2 K for fields above 2 T. (author)

  13. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    Science.gov (United States)

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  14. Helium transport and exhaust studies in enhanced confinement regimes in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Burrell, K.H.; Finkenthal, D.F.; Gohil, P.; Groebner, R.J.

    1995-02-01

    A better understanding of helium transport in the plasma core and edge in enhanced confinement regimes is now emerging from recent experimental studies on DIII-D. Overall, the results are encouraging. Significant helium exhaust (τ* He /τ E ∼ 11) has been obtained in a diverted, ELMing H-mode plasma simultaneous with a central source of helium. Detailed analysis of the helium profile evolution indicates that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium transport properties of the plasma. Perturbative helium transport studies using gas puffing have shown that D He /X eff ∼1 in all confinement regimes studied to date (including H-mode and VH-mode). Furthermore, there is no evidence of preferential accumulation of helium in any of these regimes. However, measurements in the core and pumping plenum show a significant dilution of helium as it flows from the plasma core to the pumping plenum. Such dilution could be the limiting factor in the overall removal rate of helium in a reactor system

  15. Carbon materials for enhancing charge transport in the advancements of perovskite solar cells

    Science.gov (United States)

    Hu, Ruiyuan; Chu, Liang; Zhang, Jian; Li, Xing'ao; Huang, Wei

    2017-09-01

    Organic-inorganic halide perovskite solar cells (PSCs) have become a new favorite in the photovoltaic field, due to the boosted efficiency up to 22.1%. Despite a flow of achievements, there are certain challenges to simultaneously meet high efficiency, large scale, low cost and high stability. Due to the low cost, extensive sources, high electrical conductivity and chemical stability, carbon materials have made undeniable contributions to play positive roles in developing PSCs. Carbon materials not only have the favorable conductivity but also bipolar advantage, which can transfer both electrons and holes. In this review, we will discuss how the carbon materials transfer charge or accelerate charge transport by incorporation in PSCs. Carbon materials can replace transparent conductive oxide layers, and enhance electron transport in electron transport layers. Moreover, carbon materials with continuous structure, especially carbon nanotubes and graphene, can provide direct charge transport channel that make them suitable additives or even substitutes in hole transport layers. Especially, the successful application of carbon materials as counter electrodes makes the devices full-printable, low temperature and high stability. Finally, a brief outlook is provided on the future development of carbon materials for PSCs, which are expected to devote more contributions in the future photovoltaic market.

  16. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  17. The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

    Science.gov (United States)

    Haworth, P; Hess, F D

    1988-03-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.

  18. Influence of oxygen partial pressure on defect concentrations and on oxygen diffusion in UO2+x

    International Nuclear Information System (INIS)

    Pizzi, Elisabetta

    2013-01-01

    The hyper-stoichiometric uranium dioxide (UO 2+x ) is stable over a wide range of temperature and compositions. Such variations of composition and the eventual presence of doping elements or impurities lead to a variation of anionic and electronic defect concentrations. Moreover, many properties of this material are affected by its composition modifications, in particular their atomic transport properties. Firstly we developed a point defect model to evaluate the dependence of the electronic and oxygen defect concentrations upon temperature, equilibrium oxygen partial pressure and impurity content. The physical constants of the model, in particular the equilibrium constants of the defect formation reactions were determined from deviation from stoichiometry and electrical conductivity measurements of literature. This work enabled us to interpret our measures of conductivity, oxygen chemical and self- diffusion coefficients. From a quantitative standpoint, the analysis of our experimental results allows to evaluate the oxygen interstitial diffusion coefficient but also its formation energy. Moreover, an estimate of oxygen di-interstitial formation energy is also provided. Presence of oxygen clusters leads oxygen self- and chemical diffusion to decrease. X-ray Absorption Spectroscopy characterization shows the presence of the same defect in the entire deviation from stoichiometry studied, confirming the approach used to develop the model. (author) [fr

  19. Comparison of the oxygen enhancement ratio for γ-ray-induced double-strand breaks in the DNA of bacteriophage T7 as determined by two different methods of analysis

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Drift, A.C.M. van der.

    1975-01-01

    Bacteriophage T7 was irradiated in a protecting medium under nitrogen and oxygen with 60 Co gamma rays. Double-strand breaks were measured by sucrose gradient sedimentation and by boundary sedimentation analysis. Both methods showed that the presence of oxygen during irradiation enhances the production of double-strand breaks. This is in contrast to a recent report which suggests that boundary sedimentation analysis does not show the effect of oxygen. The discrepancy must be ascribed to differences in the interpretation of the sedimentation data

  20. Consumption, supply and transport: self-organization without direct communication

    Science.gov (United States)

    Kessler, J. O.

    1996-01-01

    Swimming bacteria of the species Bacillus subtilis require and consume oxygen. In static liquid cultures the cells' swimming behaviour leads them to accumulate up oxygen concentration gradients generated by consumption and supply. Since the density of bacterial cells exceeds that of the fluid in which they live, fluid regions where cells have accumulated are denser than depleted regions. These density variations cause convection. The fluid motion is dynamically maintained by the swimming of the cells toward regions of attraction: the air-fluid interface and the fluctuating advecting attractors, gradients of oxygen concentration that are embedded in the convecting fluid. Because of the fluid dynamical conservation laws, these complex physical and biological factors generate patterns ordered over distances > 10000 bacterial cell diameters. The convection enhances long-range transport and mixing of oxygen, cells and extracellular products by orders of magnitude. Thus, through the interplay of physical and biological factors, a population of undifferentiated selfish cells creates functional dynamic patterns. Populations of bacteria that have organised themselves into regularly patterned regions of vigorous convection and varying cell concentration interact with their environment as if they were one purposeful, coherent multicellular individual. The mathematical and experimental ingredients of these remarkable phenomena are presented here.

  1. Transport and magnetoresistance effect in an oxygen-deficient SrTiO3/La0.67Sr0.33MnO3 heterojunction

    International Nuclear Information System (INIS)

    Wang Jing; Chen Chang-Le; Yang Shi-Hai; Luo Bing-Cheng; Duan Meng-Meng; Jin Ke-Xin

    2013-01-01

    An oxygen-deficient SrTiO 3 /La 0.67 Sr 0.33 MnO 3 heterojunction is fabricated on an SrTiO 3 (001) substrate by a pulsed laser deposition method. The electrical characteristics of the heterojunction are studied systematically in a temperature range from 80 K to 300 K. The transport mechanism follows I ∞ exp(eV/nkT) under small forward bias, while it becomes space charge limited and follows I ∞ V m(T) with 1.49 < m < 1.99 under high bias. Such a heterojunction also exhibits magnetoresistance (MR) effect. The absolute value of negative MR monotonically increases with temperature decreasing and reaches 26.7% at 80 K under H = 0.7 T. Various factors, such as strain and oxygen deficiency play dominant roles in the characteristics. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Oxygen-dependent radiosensitivity of Escherichia coli and mitigation in lethality by superoxide dismutase

    International Nuclear Information System (INIS)

    Niwa, Taeko; Yamaguchi, Hikoyuki; Yano, Keiji

    1978-01-01

    Oxygen-dependent radiosensitivity of Escherichia coli W3623 his - was confirmed. Regarding cellular superoxide dismutase (SOD), cells grown oxically gained higher activity than those anoxically, however, the reinforced enzyme level could not compensate the oxygen effect, i.e., the enhanced lethal effect of oxic γ-irradiation. Rather, the enhancement of oxygen effect was found in cells grown oxically compared with those anoxically. Oxygen enhanced lethality was mitigated to the extent by the amount of added SOD into the cell suspension to be irradiated. The results supported a proposal that superoxide anion, O 2 - , is involved in the oxygen effect, with the most likely site of the damage in the outer structure of cell but not in the cell matrix. Reverse oxygen effect could be found with lambda phage DNA in transfecting ability. Added SOD protected phage DNA somewhat in oxic irradiation. While considerable protections were found in anoxic one with the added SOD even autoclaved but their function was still unknown. (auth.)

  3. Origin and enhancement of spin polarized current in diluted magnetic oxides by oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Hsiung, E-mail: hchou@mail.nsysu.edu.tw; Yang, Kung-Shang; Tsao, Yao-Chung; Dwivedi, G. D.; Lin, Cheng-Pang [Department of Physics, National Sun Yat-Sen University, 70, Lienhai Road, Gushan District, Kaohsiung 804, Taiwan (China); Sun, Shih-Jye [Department of Applied Physics, National Kaohsiung University, 700, Gaoxiongdaxue Rd., Nanzi District, Kaohsiung 811, Taiwan (China); Lin, L. K.; Lee, S. F. [Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan (China)

    2016-04-04

    Spin polarized current (SPC) is a crucial characteristic of diluted magnetic oxides due to the potential application of oxides in spintronic devices. However, most research has been focused on ferromagnetic properties rather than polarization of electric current, because direct measurements are difficult and the origin of SPC has yet to be fully understood. The method to increase the SPC percentage is beyond practical consideration at present. To address this problem, we focus on the role of oxygen vacancies (V{sub O}) on SPC, which are controlled by growing the Co-doped ZnO thin-films at room temperature in a reducing atmosphere [Ar + (1%–30%)H{sub 2}]. We found that the conductivity increases with an increase of V{sub O} via two independent channels: the variable range hopping (VRH) within localized states and the itinerant transport in the conduction band. The point contact Andreev reflection measurements at 4.2 K, where the electric conduction is governed only by the VRH mechanism, prove that the current flowing in the VRH hopping channel is SPC. The percentage of SPC increases with the introduction of V{sub O} and increase in its concentration. The transport measurement shows that by manipulating V{sub O}, one can control the percentage of VRH hopping conduction such that it can even dominate room temperature conduction. The highest achieved SPC ratio at room temperature was 80%.

  4. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    Science.gov (United States)

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  5. Role of oxygen in enhancement in repair of radiation injuries in Tribolium

    International Nuclear Information System (INIS)

    Ng, M.C.

    1977-01-01

    The oxygen enhancement ratio (OER) was determined for various biological responses in Tribolium confusum McGill Black. The biological responses included acute lethality of the adults and larvae; sexual sterilization of the male and female adults; fecundity of the females and hatchability of their eggs as well as the competitiveness of the males. The OER for acute lethality for the male and female adults was found to be 2.25-2.38, regardless of the type of inert gas used to achieve anaerobiosis. Acute lethality for the larvae showed an OER of 2.79. The OER for male and female sexual sterilization was 2.35 and 3.37 respectively. With irradiation carried out in oxygen, the results suggested that at the tissue level of the adults and the male reproductive organ, there is a certain degree of hypoxia. Sexual sterilization of the males by radiation is attributed to the induction of dominant lethal mutation in the sperms, and that of the females involves a combination of dominant lethals and decreased egg production. The OER for egg hatchability at a hatchability level of 50% of the control for irradiated females was 4.0, a surprisingly higher value than that of any other biological responses studied. The OER for fecundity of irradiated females and for male competitiveness were roughly estimated to be 2.8 and 2.3-2.7 respectively. Since the OER for male sexual sterilization is basically the same as that for acute lethality for adults, it is expected that the competitiveness, which depends on the amount of somatic damage by radiation, will not be protected to a much greater extent by anaerobic irradiation than sterilization. It is clearly demonstrated that OER values are specific for the particular end point scored. Even within the same organism, different OER can be obtained with different biological responses

  6. Metabolic changers in oxygen transport in patients with diabetes mellitus type 2. Possibilities for correction

    Directory of Open Access Journals (Sweden)

    I Z Bondarenko

    2009-06-01

    Full Text Available Diabetes mellitus type 2 (DM2 - is an independent predictor of development of heart failure (HF. Spiroergometry - is a method for studying blood gas exchange parameters, commonly used for specification of HF. The purpose: 1. To study features of gas exchange at patients with DM2 without cardiovascular diseases in comparison with healthy control. 2. To estimate efficiency of metoprolol for correction of metabolic disturbances in patients with DM2. Materials and methods: 12 patients with DM2, aged 48,4±8, without history of cardiovascular diseases and 15 control subjects, aged 43,6±8 underwent cardio-pulmonary exercise test on treadmill, according to Bruce protocol. Exercise energy, VO2 peak, MET, VE max, VCO2 production were observed. Results: Patients with DM2 had a reduced exercise duration (p<0,001, lower peak oxygen consumption (p<0,001, VCO2 production and MET (p<0,005, than controls, representing the same state of hypoxia as in patients with ischemic heart disease (IHD of functional class 2. The introduction of metoprolol to patients with DM2 significantly increased exercise duration time and VCO2 production (p<0,005. Conclusions: 1. VO2 consumption in patients with DM2 is decreased to the same levels as in persons without DM2, who have IHD and HF. 2. Changes in oxygen-transport in persons with DM2 may serve as a marker of negative influence of the disease on cardiovascular system status. 3. Metoprolol improves parameters of cardio-respiratory system in patients with DM2.

  7. One year of Seaglider dissolved oxygen concentration profiles at the PAP site

    Science.gov (United States)

    Binetti, Umberto; Kaiser, Jan; Heywood, Karen; Damerell, Gillian; Rumyantseva, Anna

    2015-04-01

    Oxygen is one of the most important variables measured in oceanography, influenced both by physical and biological factors. During the OSMOSIS project, 7 Seagliders were used in 3 subsequent missions to measure a multidisciplinary suite of parameters at high frequency in the top 1000 m of the water column for one year, from September 2012 to September 2013. The gliders were deployed at the PAP time series station (nominally at 49° N 16.5° W) and surveyed the area following a butterfly-shaped path. Oxygen concentration was measured by Aanderaa optodes and calibrated using ship CTD O2 profiles during 5 deployment and recovery cruises, which were in turn calibrated by Winkler titration of discrete samples. The oxygen-rich mixed layer deepens in fall and winter and gets richer in oxygen when the temperature decreases. The spring bloom did not happen as expected, but instead the presence of a series of small blooms was measured throughout spring and early summer. During the summer the mixed layer become very shallow and oxygen concentrations decreased. A Deep Oxygen Maximum (DOM) developed along with a deep chlorophyll maximum during the summer and was located just below the mixed layer . At this depth, phytoplankton had favourable light and nutrient conditions to grow and produce oxygen, which was not subject to immediate outgassing. The oxygen concentration in the DOM was not constant, but decreased, then increased again until the end of the mission. Intrusions of oxygen rich water are also visible throughout the mission. These are probably due to mesoscale events through the horizontal transport of oxygen and/or nutrients that can enhance productivity, particularly at the edge of the fronts. We calculate net community production (NCP) by analysing the variation in oxygen with time. Two methods have been proposed. The classical oxygen budget method assumes that changes in oxygen are due to the sum of air-sea flux, isopycnal advection, diapycnal mixing and NCP. ERA

  8. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Generation of Singlet Oxygen (1O2) by the Nitrodiphenyl Ether Herbicide Oxyfluorfen Is Independent of Photosynthesis

    Science.gov (United States)

    Haworth, Phil; Hess, F. Dan

    1988-01-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968

  10. Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery

    International Nuclear Information System (INIS)

    Iribarren, Diego; Petrakopoulou, Fontina; Dufour, Javier

    2013-01-01

    This study evaluates the environmental and thermodynamic performance of six coal-fired power plants with CO 2 capture and storage. The technologies examined are post-combustion capture using monoethanolamine, membrane separation, cryogenic fractionation and pressure swing adsorption, pre-combustion capture through coal gasification, and capture performing conventional oxy-fuel combustion. The incorporation of CO 2 capture is evaluated both on its own and in combination with CO 2 transport and geological storage, with and without beneficial use. Overall, we find that pre-combustion CO 2 capture and post-combustion through membrane separation present relatively low life-cycle environmental impacts and high exergetic efficiencies. When accounting for transport and storage, the environmental impacts increase and the efficiencies decrease. However, a better environmental performance can be achieved for CO 2 capture, transport and storage when incorporating beneficial use through enhanced oil recovery. The performance with enhanced coal-bed methane recovery, on the other hand, depends on the impact categories evaluated. The incorporation of methane recovery results in a better thermodynamic performance, when compared to the incorporation of oil recovery. The cumulative energy demand shows that the integration of enhanced resource recovery strategies is necessary to attain favourable life-cycle energy balances. - Highlights: ► Evaluation of six different CO 2 capture technologies for coal-fired power plants. ► Calculation of life-cycle environmental impacts and exergetic efficiencies. ► Suitability of post-combustion capture with membrane separation. ► Suitability of pre-combustion capture through coal gasification. ► Improved performance when incorporating enhanced resource recovery

  11. Methodology for the assessment of oxygen as an energy carrier

    Science.gov (United States)

    Yang, Ming Wei

    Due to the energy intensity of the oxygen generating process, the electric power grid would benefit if the oxygen generating process was consumed electric power only during low demand periods. Thus, the question to be addressed in this study is whether oxygen production and/or usage can be modified to achieve energy storage and/or transmission objectives at lower cost. The specific benefit to grid would be a leveling, over time, of the demand profile and thus would require less installation capacity. In order to track the availability of electricity, a compressed air storage unit is installed between the cryogenic distillation section and the main air compressor of air separation unit. A profit maximizing scheme for sizing storage inventory and related equipments is developed. The optimum scheme is capable of market responsiveness. Profits of steel maker, oxy-combustion, and IGCC plants with storage facilities can be higher than those plants without storage facilities, especially, at high-price market. Price tracking feature of air storage integration will certainly increase profit margins of the plants. The integration may push oxy-combustion and integrated gasification combined cycle process into economic viability. Since oxygen is used in consumer sites, it may generate at remote locations and transport to the place needed. Energy losses and costs analysis of oxygen transportation is conducted for various applications. Energy consumptions of large capacity and long distance GOX and LOX pipelines are lower than small capacity pipelines. However, transportation losses and costs of GOX and LOX pipelines are still higher than electricity transmission.

  12. Enhanced oxygen dissociation in a propagating constricted discharge formed in a self-pulsing atmospheric pressure microplasma jet

    Science.gov (United States)

    Schröder, Daniel; Burhenn, Sebastian; Kirchheim, Dennis; Schulz-von der Gathen, Volker

    2013-11-01

    We report on the propagation of a constricted discharge feature in a repetitively self-pulsing microplasma jet operated in helium with a 0.075 vol% molecular oxygen admixture in ambient air environment. The constricted discharge is about 1 mm in width and repetitively ignites at the point of smallest electrode distance in a wedge-shaped electrode configuration, propagates through the discharge channel towards the nozzle, extinguishes, and re-ignites at the inlet at frequencies in the kHz range. It co-exists with a homogeneous, volume-dominated low temperature (T ⋍ 300 K) α-mode glow. Time-resolved measurements of nitrogen molecule C-state and nitrogen molecule ion B-state emission bands reveal an increase of the rotational temperature within the constricted discharge to about 600 K within 50 µs. Its propagation velocity was determined by phase-resolved diagnostics to be similar to the gas velocity, in the order of 40 m s-1. Two-photon absorption laser-induced fluorescence spectroscopy synchronized to the self-pulsing reveals spatial regions of increased oxygen atom densities co-propagating with the constricted discharge feature. The generated oxygen pulse density is about ten times higher than in the co-existing homogeneous α-mode. Densities reach about 1.5 × 1016 cm-3 at average temperatures of 450 K at the nozzle. This enhanced dissociation of about 80% is attributed to the continuous interaction of the constricted discharge to the co-propagating gas volume.

  13. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    International Nuclear Information System (INIS)

    Wenzl, Tatiana; Wilkens, Jan J

    2011-01-01

    The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes. Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations in vivo. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose. The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose in vivo for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36

  14. Stability of high-beta tokamak equilibria and transport in Belt-Pinch IIa

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G; Gruber, O; Krause, H; Mast, F; Wilhelm, R [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.)

    1978-01-01

    In Belt-Pinch IIa, highly elongated equilibria with poloidal beta values up to the aspect ratio have been achieved. In these tokamak-like configurations, no fast-growing MHD instabilities such as external kink and ballooning modes have been observed. Rigid displacement instabilities have been stabilized by an appropriate poloidal magnetic field configuration and by a conducting shell. By comparing simulation experiments using the Garching high-beta transport code with measurements, it has been found that in the collision-dominated plasma no anomalously enhanced transport occurs. Transport theory in the Pfirsch-Schlueter regime, which includes elongation and high-beta effects, has been confirmed by the experiment. In particular, it has been shown that the perpendicular electrical conductivity is also classical. Detailed investigations of oxygen and carbon impurity losses demonstrated that the impurity subprograms commonly used for tokamaks underestimate the radiation losses in the range Tsub(e)=10 to 30 eV.

  15. Continuum-based DFN-consistent simulations of oxygen ingress in fractured crystalline rocks

    Science.gov (United States)

    Trinchero, P.; Puigdomenech, I.; Molinero, J.; Ebrahimi, H.; Gylling, B.; Svensson, U.; Bosbach, D.; Deissmann, G.

    2016-12-01

    The potential transient infiltration of oxygenated glacial meltwater into initially anoxic and reducing fractured crystalline rocks during glaciation events is an issue of concern for some of the prospected deep geological repositories for spent nuclear fuel. Here, this problem is assessed using reactive transport calculations. First, a novel parameterisation procedure is presented, where flow, transport and geochemical parameters (i.e. hydraulic conductivity, effective/kinetic porosity, and mineral specific surface and abundance) are defined on a finite volume numerical grid based on the (spatially varying) properties of an underlying Discrete Fracture Network (DFN). Second, using this approach, a realistic reactive transport model of Forsmark, i.e. the selected site for the proposed Swedish spent nuclear fuel repository, is implemented. The model consists of more than 70 million geochemical transport degrees of freedom and simulates the ingress of oxygen-rich water from the recharge area of the domain and its depletion due to reactions with the Fe(II) mineral chlorite. Third, the calculations are solved in the supercomputer JUQUEEN of the Jülich Supercomputing Centre. The results of the simulations show that oxygen infiltrates relatively quickly along fractures and deformation zones until a steady state profile is reached, where geochemical reactions counterbalance advective transport processes. Interestingly, most of the iron-bearing minerals are consumed in the highly conductive zones, where larger mineral surfaces are available for reactions. An analysis based on mineral mass balance shows that the considered rock medium has enough capacity to buffer oxygen infiltration for a long period of time (i.e. some thousand years).

  16. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    Science.gov (United States)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to

  17. Feasibility assessment of using oxygen-enhanced magnetic resonance imaging for evaluating the effect of pharmacological treatment in COPD

    International Nuclear Information System (INIS)

    Morgan, Alexandra R.; Parker, Geoff J.M.; Roberts, Caleb; Buonaccorsi, Giovanni A.; Maguire, Niall C.; Hubbard Cristinacce, Penny L.; Singh, Dave; Vestbo, Jørgen; Bjermer, Leif; Jögi, Jonas; Taib, Ziad; Sarv, Janeli; Bruijnzeel, Piet L.B.; Olsson, Lars E.; Bondesson, Eva; Nihlén, Ulf; McGrath, Deirdre M.; Young, Simon S.

    2014-01-01

    Highlights: • We investigate physiologic response to standard COPD treatment regimes using OE-MRI. • We assess the potential role of OE-MRI in future drug development studies. • In COPD, OE-MRI parameters showed response to single-dose formoterol. • OE-MRI parameters showed response to 8-week formoterol/budesonide treatment. • OE-MRI measurements are feasible in a small-scale multi-center trial setting. - Abstract: Objectives: Oxygen-enhanced MRI (OE-MRI) biomarkers have potential value in assessment of COPD, but need further evaluation before treatment-induced changes can be interpreted. The objective was to evaluate how OE-MRI parameters of regional ventilation and oxygen uptake respond to standard pharmacological interventions in COPD, and how the response compares to that of gold standard pulmonary function tests. Materials and methods: COPD patients (n = 40), mean FEV 1 58% predicted normal, received single-dose inhaled formoterol 9 μg, or placebo, followed by 8 weeks treatment bid with a combination of budesonide and formoterol Turbuhaler ® 320/9 μg or formoterol Turbuhaler ® . OE-MRI biomarkers were obtained, as well as X-ray computed tomography (CT) biomarkers and pulmonary function tests, in a two-center study. An ANCOVA statistical model was used to assess effect size of intervention measurable in OE-MRI parameters of lung function. Results: OE-MRI data were successfully acquired at both study sites. 8-week treatment with budesonide/formoterol significantly decreased lung wash-out time by 31% (p < 0.01), decreased the change in lung oxygen level upon breathing pure oxygen by 13% (p < 0.05) and increased oxygen extraction from the lung by 58% (p < 0.01). Single-dose formoterol increased both lung wash-out time (+47%, p < 0.05) and lung oxygenation time (+47%, p < 0.05). FEV 1 was improved by single-dose formoterol (+12%, p < 0.001) and 8 weeks of budesonide/formoterol (+ 18%, p < 0.001), consistent with published studies. Conclusions: In COPD

  18. Feasibility assessment of using oxygen-enhanced magnetic resonance imaging for evaluating the effect of pharmacological treatment in COPD

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Alexandra R., E-mail: alex.morgan@bioxydyn.com [Bioxydyn Ltd, Manchester (United Kingdom); Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Parker, Geoff J.M.; Roberts, Caleb [Bioxydyn Ltd, Manchester (United Kingdom); Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Buonaccorsi, Giovanni A.; Maguire, Niall C. [Bioxydyn Ltd, Manchester (United Kingdom); Hubbard Cristinacce, Penny L. [Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Singh, Dave; Vestbo, Jørgen [University of Manchester, Medicines Evaluation Unit, Manchester Academic Health Sciences Centre, University Hospital of South Manchester, Manchester (United Kingdom); Bjermer, Leif [Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund (Sweden); Jögi, Jonas [Department of Clinical Physiology, Skåne University Hospital and Lund University, Lund (Sweden); Taib, Ziad; Sarv, Janeli; Bruijnzeel, Piet L.B.; Olsson, Lars E.; Bondesson, Eva [AstraZeneca R and D, Mölndal (Sweden); Nihlén, Ulf [Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund (Sweden); AstraZeneca R and D, Mölndal (Sweden); McGrath, Deirdre M. [Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Young, Simon S. [AstraZeneca R and D, Alderley Park (United Kingdom); and others

    2014-11-15

    Highlights: • We investigate physiologic response to standard COPD treatment regimes using OE-MRI. • We assess the potential role of OE-MRI in future drug development studies. • In COPD, OE-MRI parameters showed response to single-dose formoterol. • OE-MRI parameters showed response to 8-week formoterol/budesonide treatment. • OE-MRI measurements are feasible in a small-scale multi-center trial setting. - Abstract: Objectives: Oxygen-enhanced MRI (OE-MRI) biomarkers have potential value in assessment of COPD, but need further evaluation before treatment-induced changes can be interpreted. The objective was to evaluate how OE-MRI parameters of regional ventilation and oxygen uptake respond to standard pharmacological interventions in COPD, and how the response compares to that of gold standard pulmonary function tests. Materials and methods: COPD patients (n = 40), mean FEV{sub 1} 58% predicted normal, received single-dose inhaled formoterol 9 μg, or placebo, followed by 8 weeks treatment bid with a combination of budesonide and formoterol Turbuhaler{sup ®} 320/9 μg or formoterol Turbuhaler{sup ®}. OE-MRI biomarkers were obtained, as well as X-ray computed tomography (CT) biomarkers and pulmonary function tests, in a two-center study. An ANCOVA statistical model was used to assess effect size of intervention measurable in OE-MRI parameters of lung function. Results: OE-MRI data were successfully acquired at both study sites. 8-week treatment with budesonide/formoterol significantly decreased lung wash-out time by 31% (p < 0.01), decreased the change in lung oxygen level upon breathing pure oxygen by 13% (p < 0.05) and increased oxygen extraction from the lung by 58% (p < 0.01). Single-dose formoterol increased both lung wash-out time (+47%, p < 0.05) and lung oxygenation time (+47%, p < 0.05). FEV{sub 1} was improved by single-dose formoterol (+12%, p < 0.001) and 8 weeks of budesonide/formoterol (+ 18%, p < 0.001), consistent with published studies

  19. Oxygen Cylinders: “life” or “death”? | Gupta | African Health Sciences

    African Journals Online (AJOL)

    Oxygen is crucial to maintain and save human life. Other than medical purposes it is widely used for manufacture of mineral water, fabrication works and other industrial activities. If adequate precautionary measures are not adopted while handling, storage or transport of oxygen cylinder or container, accidental blast may ...

  20. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  1. Kazinol Q from Broussonetia kazinoki Enhances Cell Death Induced by Cu(ll through Increased Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Hsue-Yin Hsu

    2011-04-01

    Full Text Available The ability of the flavan kazinol Q (KQ to induce DNA breakage in the presence of Cu(II was examined by agarose gel electrophoresis using supercoiled plasmid DNA. In KQ-mediated DNA breakage reaction, the involvement of reactive oxygen species (ROS, H2O2 and O2 - was established by the inhibition of DNA breakage by catalase and revealed DNA breakage by superoxide dismutase (SOD. The cell viability of gastric carcinoma SCM-1 cells treated with various concentrations of KQ was significantly decreased by cotreatment with Cu(II. Treatment of SCM-1 cells with 300 μM Cu(II enhanced the necrosis induced by 100 μM KQ. Treatment of SCM-1 cells with 100 mM KQ in the presence of 300 mM Cu(II increased the generation of H2O2. Taken together, the above finding suggested that KQ cotreatment with Cu(II produced increased amounts of H2O2, thus enhancing subsequent cell death due to necrosis.

  2. Hyperbaric oxygen therapy. Promoting healing in difficult cases

    International Nuclear Information System (INIS)

    Cohn, G.H.

    1986-01-01

    Inhalation of pressurized 100% oxygen is a helpful adjunctive treatment for certain patients, because the increased oxygen carried by the blood to the tissue enhances new growth of microcirculation and, thus, healing. Patients with tissue breakdown after radiation therapy, refractory osteomyelitis, gas gangrene, soft-tissue infection with necrosis from mixed aerobic and anaerobic organisms, crush injuries resulting in acute ischemia, and compromised skin grafts or non-healing wounds are likely to benefit from hyperbaric oxygen therapy

  3. Nonlinear 2D convection and enhanced cross-field plasma transport near the MHD instability threshold

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Chudin, N.V.

    2003-01-01

    Results of theoretical study and computer simulations of nonlinear 2D convection induced by a convective MHD instability near its threshold in FRC-like non-paraxial magnetic confinement system are presented. An appropriate closed set of weakly nonideal reduced MHD equations is derived to describe the self-consistent plasma dynamics. It is shown that the convection forms nonlinear large scale stochastic vortices (convective cells), which tend to restore and to maintain the marginally stable pressure pro e and result in an essentially nonlocal enhanced heat transport. A large amount of data on the structure of the nascent convective flows is obtained and analyzed. The computer simulations of long time plasma evolutions demonstrate such features of the resulting anomalous transport as pro e consistency, L-H transition, external transport barrier, pinch of impurities, etc. (author)

  4. The role of oxygen in the uptake of deuterium in lithiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N.; Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37998 (United States); Joint Institute of Computational Sciences, University of Tennessee, Knoxville, Tennessee 37998 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-12-14

    We investigate the mechanism of deuterium retention by lithiated graphite and its relationship to the oxygen concentration through surface sensitive experiments and atomistic simulations. Deposition of lithium on graphite yielded 5%–8% oxygen surface concentration and when subsequently irradiated with D ions at energies between 500 and 1000 eV/amu and fluences over 10{sup 16} cm{sup −2} the oxygen concentration rose to between 25% and 40%. These enhanced oxygen levels were reached in a few seconds compared to about 300 h when the lithiated graphite was allowed to adsorb oxygen from the ambient environment under equilibrium conditions. Irradiating graphite without lithium deposition, however, resulted in complete removal of oxygen to levels below the detection limit of XPS (e.g., <1%). These findings confirm the predictions of atomistic simulations, which had concluded that oxygen was the primary component for the enhanced hydrogen retention chemistry on the lithiated graphite surface.

  5. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John

    2010-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  6. Exhaustive Exercise-induced Oxidative Stress Alteration of Erythrocyte Oxygen Release Capacity.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Wang, Yueming; Zhao, Yajin; Li, Yaojin; Ren, Yang; Wang, Ruofeng; Zhao, Mingzi; Hao, Yitong; Liu, Haibei; Wang, Xiang

    2018-05-24

    The aim of the present study is to explore the effect of exhaustive running exercise (ERE) in the oxygen release capacity of rat erythrocytes. Rats were divided into sedentary control (C), moderate running exercise (MRE) and exhaustive running exercise groups. The thermodynamics and kinetics properties of the erythrocyte oxygen release process of different groups were tested. We also determined the degree of band-3 oxidative and phosphorylation, anion transport activity and carbonic anhydrase isoform II(CAII) activity. Biochemical studies suggested that exhaustive running significantly increased oxidative injury parameters in TBARS and methaemoglobin levels. Furthermore, exhaustive running significantly decreased anion transport activity and carbonic anhydrase isoform II(CAII) activity. Thermodynamic analysis indicated that erythrocytes oxygen release ability also significantly increased due to elevated 2,3-DPG level after exhaustive running. Kinetic analysis indicated that exhaustive running resulted in significantly decreased T50 value. We presented evidence that exhaustive running remarkably impacted thermodynamics and kinetics properties of RBCs oxygen release. In addition, changes in 2,3-DPG levels and band-3 oxidation and phosphorylation could be the driving force for exhaustive running induced alterations in erythrocytes oxygen release thermodynamics and kinetics properties.

  7. The influence of ascorbic acid on the oxygen consumption and the heat production by the cells of wheat seedling roots with their mitochondrial electron transport chain inhibited at complexes I and III

    International Nuclear Information System (INIS)

    Gordon, L.K.; Rakhmatullina, D.F.; Ogorodnikova, T.I.; Alyabyev, A.J.; Minibayeva, F.V.; Loseva, N.L.; Mityashina, S.Y.

    2007-01-01

    The influence of exogenous ascorbic acid (AsA) on oxidative phosphorylation was studied using wheat seedling roots. Treatment of them with AsA stimulated the rates of oxygen consumption and the heat production and caused a decrease of the respiratory coefficient. The increase in respiration was prevented by inhibitors of ascorbate oxidase, diethyldithiocarbamate (DEDTC), and of cytochrome oxidase, cyanide (KCN). Exogenous AsA sharply stimulated the rate of oxygen consumption of roots when complexes I and III of the mitochondrial electron transport chain were inhibited by rotenone and antimycin A, respectively, while the rates of heat production did not change significantly. It is concluded that AsA is a potent energy substrate, which can be used in conditions of failing I and III complexes in the mitochondrial electron transport chain

  8. ITM oxygen for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.A.; Foster, E.P. [Air Products and Chemicals Inc., Toronto, ON (Canada); Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-11-01

    This paper described a newly developed air separation technology called Ionic Transport Membrane (ITM), which reduces the overall cost of the gasification process. The technology is well suited for advanced energy conversion processes such as integrated gasification combined cycle (IGCC) that require oxygen and use heavy carbonaceous feedstocks such as residual oils, bitumens, coke and coal. It is also well suited for traditional industrial applications for oxygen and distributed power. Air Products Canada Limited developed the ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates well with the gasification process and an IGCC option for producing electricity from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed the attractive economics of ITM. 6 refs., 2 tabs., 6 figs.

  9. Gas Transport and Exchange through Wetland Plant Aerenchyma

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans

    2013-01-01

    Aerenchyma, the large airspaces in aquatic plants, is a rapid gas transport pathway between atmosphere and soil in wetlands. Oxygen transport aerates belowground tissue and oxidizes rhizosphere soil, an important process in wetland biogeochemistry. Most plant O2 transport occurs by diffusion...

  10. Batch culture of Azotobacter vinelandii under oxygen limitation conditionS

    Energy Technology Data Exchange (ETDEWEB)

    Camacho Rubio, F.; Martinez Nieto, L.; Fernandez Serrano, M.; Jimenez Moleon, M.C. [Departamento de Ingenieria Quimica, Universidad de Granada, Granada (Spain)

    1996-12-01

    The batch culture of Azotobacter vinealandii on glucose under nitrogen-fixing conditions, seeking oxygen limitation conditions, has been studied in order to use it as a Biological Test System for the experimental study of oxygen transfer enhancement methods in aerobic fermenters. overall kinetic parameters for exponential growth and for linear growth (under oxygen limitation) have been determined. It was noted an appreciable influence of the oxygen transfer rate on glucose and oxygen uptake, which seems to be due to alginate production, excreted as a nitrogenase protection mechanisms. (Author) 12 refs.

  11. Hyperbaric oxygen therapy in periodontal diseases

    Directory of Open Access Journals (Sweden)

    Swapna A. Mahale

    2013-01-01

    Full Text Available Hyperbaric oxygen (HBO 2 has been successfully used in several medical fields. The therapeutic effect is related to elevated partial oxygen pressure in the tissues. The pressure itself enhances oxygen solubility in the tissue fluids. HBO 2 has shown to affect angiogenesis, bone metabolism and bone turnover. Studies have been conducted to analyze the effects of HBO 2 therapy on periodontal disease. HBO 2 increases local oxygen distribution, especially at the base of the periodontal pocket, which inhibits the growth of anaerobic bacteria and allows the ischemic tissues to receive an adequate intake of oxygen sufficient for a rapid recovery of cell metabolism. It is increasingly being accepted as a beneficial adjunct to diverse clinical conditions. Nonhealing ulcers, chronic wounds and refractory osteomyelitis are a few conditions for which HBO therapy (HBOT has been extensively tried out. The dental surgeons have found a good ally in HBOT in managing dental condition.

  12. Oxygen flooding and sample cooling during depth profiling of HfSiON thin films

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shiro [Materials Analysis Center, Materials Laboratories, Sony Corporation, 4-16-1 Okata, Atsugi 243-0021 (Japan)], E-mail: Shiro.Miwa@jp.sony.com

    2008-12-15

    A combination of oxygen flooding and. Cs primary ion bombardment can suppress the enhancement of the secondary ion signal at the surface and at the interface of a thin HfSiON layer on a Si substrate. The surface concentration of both Cs and O during Cs primary ion bombardment with oxygen flooding was higher than that without oxygen flooding, as confirmed by X-ray photoelectron spectroscopy. When the sample was cooled to about -150 deg. C, the enhancement of the secondary ion signal could be suppressed at a lower oxygen pressure.

  13. The enhanced cytotoxicity of misonidazole in the thiol depleted state - An oxygen dependent mechanism

    International Nuclear Information System (INIS)

    Tuttle, S.W.; Varnes, M.E.; Donahue, L.; Biaglow, J.E.

    1985-01-01

    Incubating A549 cells in the presence of L-buthionine-S, R-sulfoximine and misonidazole under aerobic conditions results in lowered rates of cell growth and greater cytotoxicity than is seen with either drug alone. The authors previously demonstrated the accumulation of hydrogen peroxide from cells treated with misonidazole following the inhibition of GSH-peroxidase with thiol depleting agents. They hypothesize that the enhancement of misonidazole toxicity by L-BSO results from the increased exposure to hydrogen peroxide, and the possible formation of the highly reactive hydroxyl radical in the presence of trace metals via Fenton chemistry. Support for this hypothesis comes from their observations that addition of radical scavengers (such as SOD and catalase) and nutritional antioxidants (vitamin E) to the culture medium will partially inhibit the cytotoxic effects. Further work is being done to measure the products of reaction of toxic oxygen species with cellular macromolecules, i.e. lipids

  14. On Atomistic Models for Molecular Oxygen

    DEFF Research Database (Denmark)

    Javanainen, Matti; Vattulainen, Ilpo; Monticelli, Luca

    2017-01-01

    Molecular oxygen (O2) is key to all life on earth, as it is constantly cycled via photosynthesis and cellular respiration. Substantial scientific effort has been devoted to understanding every part of this cycle. Classical molecular dynamics (MD) simulations have been used to study some of the key...... processes involved in cellular respiration: O2 permeation through alveolar monolayers and cellular membranes, its binding to hemoglobin during transport in the bloodstream, as well as its transport along optimal pathways toward its reduction sites in proteins. Moreover, MD simulations can help interpret...

  15. Effects of hyperbaric oxygen treatment on healing of maxillary distraction osteogenesis in beagle dogs

    International Nuclear Information System (INIS)

    Kudoh, Atsuo

    2008-01-01

    Distraction osteogenesis has been widely used even in the craniofacial region. A long fixation time during the consolidation period, however, is a major clinical disadvantage. Hyperbaric oxygen (HBO) has been used to improve healing in ischemic wounds. We have recently started applying hyperbaric oxygen to cleft palate patients after maxillary distraction, but there is little basic evidence. We hypothesized that hyperbaric oxygen would enhance the healing of distraction osteogenesis in the cleft palate model in dogs. A bony segment including a canine was transported proximally into an artificial bone defect in the left palate. Three dogs were treated with hyperbaric oxygen for 20 days just after the distraction and three other dogs underwent only the distraction process (control group). Blood flow of the canine pulp in the bone segment was monitored using a laser Doppler flowmeter throughout the experiment. All the dogs were sacrificed on day 100, and radiological analysis using peripheral quantitative CT and histomorphometric evaluations were performed. Blood flow in the HBO-treated group recovered to the original level about 30 days faster than in the control group (p<0.05). Cortical bone mineral density was significantly higher at the distraction site in the HBO-treated group than in the control group (p<0.05). The histomorphometric analysis revealed that the newly formed bone area was also larger in the HBO-treated group than in the control group (p<0.05). These results suggest that hyperbaric oxygen treatment could be useful for early removal of the distraction device in distraction osteogenesis. (author)

  16. [Effects of hyperbaric oxygen treatment on healing of maxillary distraction osteogenesis in beagle dogs].

    Science.gov (United States)

    Kudoh, Atsuo

    2008-03-01

    Distraction osteogenesis has been widely used even in the craniofacial region. A long fixation time during the consolidation period, however, is a major clinical disadvantage. Hyperbaric oxygen (HBO) has been used to improve healing in ischemic wounds. We have recently started applying hyperbaric oxygen to cleft palate patients after maxillary distraction, but there is little basic evidence. We hypothesized that hyperbaric oxygen would enhance the healing of distraction osteogenesis in the cleft palate model in dogs. A bony segment including a canine was transported proximally into an artificial bone defect in the left palate. Three dogs were treated with hyperbaric oxygen for 20 days just after the distraction and three other dogs underwent only the distraction process (control group). Blood flow of the canine pulp in the bone segment was monitored using a laser Doppler flowmeter throughout the experiment. All the dogs were sacrificed on day 100, and radiological analysis using peripheral quantitative CT and histomorphometric evaluations were performed. Blood flow in the HBO-treated group recovered to the original level about 30 days faster than in the control group (p<0.05). Cortical bone mineral density was significantly higher at the distraction site in the HBO-treated group than in the control group (p<0.05). The histomorphometric analysis revealed that the newly formed bone area was also larger in the HBO-treated group than in the control group (p<0.05). These results suggest that hyperbaric oxygen treatment could be useful for early removal of the distraction device in distraction osteogenesis.

  17. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Beaujon University Hospital Paris Nord, Department of Radiology, Clichy (France); Pastor, Catherine M. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Hopitaux Universitaires de Geneve, Departement d' Imagerie et des Sciences de l' Information Medicale, Geneva (Switzerland)

    2017-05-15

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  18. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    International Nuclear Information System (INIS)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina; Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E.; Pastor, Catherine M.

    2017-01-01

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  19. Glutamate transporter activity promotes enhanced Na+/K+-ATPase -mediated extracellular K+ management during neuronal activity

    DEFF Research Database (Denmark)

    Larsen, Brian R; Holm, Rikke; Vilsen, Bente

    2016-01-01

    , in addition, Na+ /K+ -ATPase-mediated K+ clearance could be governed by astrocytic [Na+ ]i . During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+ -coupled glutamate transporters, thereby elevating [Na+ ]i . It thus remains unresolved whether...... the different Na+ /K+ -ATPase isoforms are controlled by [K+ ]o or [Na+ ]i during neuronal activity. Hippocampal slice recordings of stimulus-induced [K+ ]o transients with ion-sensitive microelectrodes revealed reduced Na+ /K+ -ATPase-mediated K+ management upon parallel inhibition of the glutamate transporter......+ affinity to the α1 and α2 isoforms than the β2 isoform. In summary, enhanced astrocytic Na+ /K+ -ATPase-dependent K+ clearance was obtained with parallel glutamate transport activity. The astrocytic Na+ /K+ -ATPase isoform constellation α2β1 appeared to be specifically geared to respond to the [Na+ ]i...

  20. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    Science.gov (United States)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  1. Oxygen vacancy induced magnetization switching in Fe{sub 3}O{sub 4} epitaxial ultrathin films on GaAs(100)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhaocong, E-mail: zhaocong.huang@gmail.com [Department of Physics, Southeast University, Nanjing 211189 (China); Spintronics and Nanodevice Laboratory, Department of Electronics, University of York, York YO10 5DD (United Kingdom); School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Chen, Qian; Zhai, Ya, E-mail: yazhai@seu.edu.cn, E-mail: jlwang@seu.edu.cn; Wang, Jinlan, E-mail: yazhai@seu.edu.cn, E-mail: jlwang@seu.edu.cn [Department of Physics, Southeast University, Nanjing 211189 (China); Xu, Yongbing [Spintronics and Nanodevice Laboratory, Department of Electronics, University of York, York YO10 5DD (United Kingdom); Wang, Baoping [School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China)

    2015-05-04

    The magnetic and transport properties of half metallic Fe{sub 3}O{sub 4}, which are sensitive to the stoichiometry, are the key issue for applications in spintronics. An anomalous enlargement of the saturation magnetic moment is found in a relatively thick sample of epitaxial Fe{sub 3}O{sub 4} film by post-growth oxidation method. The investigation of the thickness dependence of magnetic moment suggests that the enhanced magnetism moment may come from the existence of oxygen vacancies. First-principles calculations reveal that with oxygen vacancies in Fe{sub 3}O{sub 4} crystal the spin of Fe ions in the tetrahedron site near the vacancy is much easier to switch parallel to the Fe ions in the octahedron site by temperature disturbance, supported by the temperature dependence of magnetic moment of Fe{sub 3}O{sub 4} films in experiment.

  2. Thin porphyrin composite membranes with enhanced organic solvent transport

    KAUST Repository

    Phuoc, Duong

    2018-05-01

    Extending the stability of polymeric membranes in organic solvents is important for applications in chemical and pharmaceutical industry. Thin-film composite membranes with enhanced solvent permeance are proposed, using porphyrin as a building block. Hybrid polyamide films are formed by interfacial polymerization of 5,10,15,20-(tetra-4-aminophenyl)porphyrin/m-phenylene diamine (MPD) mixtures with trimesoyl chloride. Porphyrin is a non-planar molecule, containing a heterocyclic tetrapyrrole unit. Its incorporation into a polyamide film leads to higher free volume than that of a standard polyamide film. Polyamide films derived from porphyrin and MPD amines with a fixed total amine concentration of 1wt% and various porphyrin/MPD ratios were fabricated and characterized. The porphyrin/MPD polyamide film was complexed with Cu(II), due to the binding capacity of porphyrin to metal ions. By coupling scanning transmission electron microscopy (STEM) with electron energy-loss spectroscopy (EELS), Cu mapping was obtained, revealing the distribution of porphyrin in the interfacial polymerized layer. By using porphyrin as amine-functionalized monomer a membrane with thin selective skin and enhanced solvent transport is obtained, with good dye selectivity in the nanofiltration range. For instance, an ultra-fast hexane permeance, 40-fold increased, was confirmed when using 0.5/0.5 porphyrin/MPD mixtures, instead of only MPD as amine monomer. A rejection of 94.2% Brilliant Blue R (826g/mol) in methanol was measured.

  3. Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, R.K.; Yerol Narayana; Bhat, N.N.; Anjaria, K.B.; Sreedevi, B.; Sapra, B.K.

    2014-01-01

    In the present study, an attempt has been made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52. The study confirms that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. A theoretical model has been formulated to estimate OER values. With the help of this model, OER value for any dose can be calculated in the exponential region of the survival curve without actually extending the experiment in that dose region. (author)

  4. Oxygenation and cracking in melt-textured YBCO bulk superconductors

    International Nuclear Information System (INIS)

    Kracunovska, S; Diko, P; Litzkendorf, D; Habisreuther, T; Bierlich, J; Gawalek, W

    2005-01-01

    Microstructural changes during the oxygenation of YBCO bulks were studied. It was shown that a lower temperature of oxygenation leads to the formation of a denser structure of a/b- and c-macrocracks and causes faster and more homogeneous oxygenation of the sample. The opening of created macrocracks is the way in which the macroscopic stresses induced by macroscopic 211 particle concentration inhomogeneity are released. This is very important, because it prevents the formation of fatal c-macrocracks, which divide the sample into more domains, during cooling from oxygenation temperature or during sample performance. Oxygenation with a multistage programme causes the oxygen concentration difference between the oxygenated layer and the tetragonal matrix to be smaller, and consequently fewer macrocracks are formed. This leads to the prolongation of oxygenation times for full oxygenation and to the insufficient release of macroscopic stresses. 211 low concentration regions and pores also enhance the oxygenation rate of YBCO bulks

  5. Transepithelial Transport of Curcumin in Caco-2 Cells Is significantly Enhanced by Micellar Solubilisation.

    Science.gov (United States)

    Frank, Jan; Schiborr, Christina; Kocher, Alexa; Meins, Jürgen; Behnam, Dariush; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2017-03-01

    Curcumin, the active constituent of Curcuma longa L. (family Zingiberaceae), has gained increasing interest because of its anti-cancer, anti-inflammatory, anti-diabetic, and anti-rheumatic properties associated with good tolerability and safety up to very high doses of 12 g. Nanoscaled micellar formulations on the base of Tween 80 represent a promising strategy to overcome its low oral bioavailability. We therefore aimed to investigate the uptake and transepithelial transport of native curcumin (CUR) vs. a nanoscaled micellar formulation (Sol-CUR) in a Caco-2 cell model. Sol-CUR afforded a higher flux than CUR (39.23 vs. 4.98 μg min -1  cm -2 , respectively). This resulted in a higher P app value of 2.11 × 10 -6  cm/s for Sol-CUR compared to a P app value of 0.56 × 10 -6  cm/s for CUR. Accordingly a nearly 9.5 fold higher amount of curcumin was detected on the basolateral side at the end of the transport experiments after 180 min with Sol-CUR compared to CUR. The determined 3.8-fold improvement in the permeability of curcumin is in agreement with an up to 185-fold increase in the AUC of curcumin observed in humans following the oral administration of the nanoscaled micellar formulation compared to native curcumin. The present study demonstrates that the enhanced oral bioavailability of micellar curcumin formulations is likely a result of enhanced absorption into and increased transport through small intestinal epithelial cells.

  6. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    Science.gov (United States)

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  7. All-inorganic quantum-dot light-emitting-diodes with vertical nickel oxide nanosheets as hole transport layer

    Directory of Open Access Journals (Sweden)

    Jiahui Li

    2016-10-01

    Full Text Available All-inorganic quantum dot light emitting diodes (QLEDs have gained great attention as a result of their high stability under oxygen-rich, humid and high current working conditions. In this work, we have fabricated an all-inorganic QLED device (FTO/NiO/QDs/AZO/Ag with sandwich-structure, wherein the inorganic metal oxides thin films of NiO and AZO were employed as hole and electron transport layers, respectively. The porous NiO layer with vertical lamellar nanosheets interconnected microstructure have been directly synthesized on the substrate of conductive FTO glass and increased the wettability of CdSe@ZnS QDs, which result in an enhancement of current transport performance of the QLED.

  8. Quantum-confined nanowires as vehicles for enhanced electrical transport

    International Nuclear Information System (INIS)

    Mohammad, S Noor

    2012-01-01

    Electrical transport in semiconductor nanowires taking quantum confinement and dielectric confinement into account has been studied. A distinctly new route has been employed for the study. The fundamental science underlying the model is based on a relationship between the quantum confinement and the structural disorder of the nanowire surface. The role of surface energy and thermodynamic imbalance in nanowire structural disorder has been described. A model for the diameter dependence of energy bandgap of nanowires has been developed. Ionized impurity scattering, dislocation scattering and acoustic phonon scattering have been taken into account to study carrier mobility. A series of calculations on silicon nanowires show that carrier mobility in nanowires can be greatly enhanced by quantum confinement and dielectric confinement. The electron mobility can, for example, be a factor of 2–10 higher at room temperature than the mobility in a free-standing silicon nanowire. The calculated results agree well with almost all experimental and theoretical results available in the literature. They successfully explain experimental observations not understood before. The model is general and applicable to nanowires from all possible semiconductors. It is perhaps the first physical model highlighting the impact of both quantum confinement and dielectric confinement on carrier transport. It underscores the basic causes of thin, lowly doped nanowires in the temperature range 200 K ≤ T ≤ 500 K yielding very high carrier mobility. It suggests that the scattering by dislocations (stacking faults) can be very detrimental for carrier mobility. (paper)

  9. Growth of anodic oxide films on oxygen-containing niobium

    Energy Technology Data Exchange (ETDEWEB)

    Habazaki, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: habazaki@eng.hokudai.ac.jp; Ogasawara, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Konno, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shimizu, K. [University Chemical Laboratory, Keio University, Yokohama 223-8522 (Japan); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Saito, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagata, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Skeldon, P. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)

    2005-09-20

    The present study is directed at understanding of the influence of oxygen in the metal on anodic film growth on niobium, using sputter-deposited niobium containing from about 0-52 at.% oxygen, with anodizing carried out at high efficiency in phosphoric acid electrolyte. The findings reveal amorphous anodic niobia films, with no significant effect of oxygen on the field strength, transport numbers, mobility of impurity species and capacitance. However, since niobium is partially oxidized due to presence of oxygen in the substrate, less charge is required to form the films, hence reducing the time to reach a particular film thickness and anodizing voltage. Further, the relative thickness of film material formed at the metal/film interface is increased by the incorporation of oxygen species into the films from the substrate, with an associated altered depth of incorporation of phosphorus species into the films.

  10. Effect of oxygen vacancies on magnetic and transport properties of Sr2IrO4

    Science.gov (United States)

    Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik

    2018-05-01

    Iridates have recently attracted growing interest because of their potential for realizing various interesting phases like interaction driven Mott-type insulator and magnetically driven Slater-type. In this paper, we present the magnetic and electrical transport properties of polycrystalline Sr2IrO4 synthesized by solid state reaction route. We find a ferromagnetic transition at 240 K. The Curie-Weiss law behavior hold good above the magnetic transition temperature TMag = 240 K with a small effective paramagnetic magnetic moment μeff = 0.25 µB/f.u. and a Curie-Weiss temperature, θCW = +100 K. Zero field cooled (ZFC) magnetization shows a gradual dcrease below 150 K, while same for field cooled (FC) below 50 K. Interestingly, below temperatures, ⁓ 10 K, a sharp increase in ZFC and FC magnetization can be seen. A temperature dependent resistivity reveals insulating behavior followed by power law mechanism. The sintering of sample in air leads to the very low value of resistivity is likely related to Sr or oxygen vacancies.

  11. Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase

    DEFF Research Database (Denmark)

    Malacrida, Paolo; Escribano, Maria Escudero; Verdaguer Casadevall, Arnau

    2014-01-01

    Three different Pt-lanthanide metal alloys (Pt5La, Pt5Ce and Pt3La) have been studied as oxygen reduction reaction (ORR) electrocatalysts. Sputter-cleaned polycrystalline Pt5La and Pt5Ce exhibit more than a 3-fold activity enhancement compared to polycrystalline Pt at 0.9 V, while Pt3La heavily c......, suggesting that these alloys hold promise as cathode catalysts in Proton Exchange Membrane Fuel Cells (PEMFCs)....

  12. Measurement of oxygen thermomigration in a hypostoichiometric mixed oxide

    International Nuclear Information System (INIS)

    Norris, D.I.R.; Coleman, S.C.; Kay, P.

    1978-08-01

    A method of determining oxygen to metal ratios in hypostoichiometric (U, Ce)Osub(2-x) by means of lattice parameter measurement and its application to thermomigration experiments is described. The technique is shown to compare favourably with other methods when a simple structure prevails. It is found that oxygen redistributes down an imposed temperature gradient, confirming theoretical predictions, and that the measured Arrhenius slope decreases as the cerium valency decreases. This effect is more marked than in (U, Pu)Osub(2-x). The results are attributable to solid state transport of oxygen vacancies and suggest that immobile complexes incorporating some oxygen deficiency are more easily formed in (U, Ce)Osub(2-x) than in (U, Pu)Osub(2-x). (author)

  13. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  14. Efficiency increase of complex production and transport systems management

    Directory of Open Access Journals (Sweden)

    Kornilov S.

    2017-01-01

    Full Text Available This article deals with the problem of the reduced efficiency of management in complex production - transport systems due to the lack of co-ordination in the operation of industrial enterprises and transport carrying out their maintenance. The existing transport service schedules for auxiliary departments do not take into account possible changes in operating conditions, the probability of malfunctions and the amount of reserves, which leads to an increase in general production costs. To solve this problem, we propose to use the interval regulation of production and transport processes in all departments of the complex production and transport systems. Also, such regulation involves the determination of traffic service priority. This will allow passing on from the regulated control of production and transport processes to the situational one, adapted to specific conditions, and reducing losses from untimely transport servicing, which will lead to a stores reduction and efficiency increase of the enterprise circulating facilities use. Testing the effectiveness of interval regulation was performed on the system and dynamics simulation model of liquid iron transportation in the oxygen converter shop of the metallurgical enterprise. It was established that the use of interval regulation processes in iron production and its transportation will allow decreasing non-productive downtime by 21% and the amount of the liquid iron in anticipation of recasting in the oxygen converter shop – by 33%. Economical effect of reducing the liquid iron downtime during transportation to the oxygen converter shop will be about 30 million rubles per year.

  15. Effect of oxygen content on the electrical transport and superconducting properties of Pb0.5Sr2.5Y0.6Ca0.4Cu2O7-y

    International Nuclear Information System (INIS)

    Ruan, K.Q.; China Univ. of Science and Technology, Hefei, AH; Jin, H.; China Univ. of Science and Technology, Hefei, AH; Feng, Y.; China Univ. of Science and Technology, Hefei, AH; Zhou, Y.Q.; China Univ. of Science and Technology, Hefei, AH; Chui, X.D.; China Univ. of Science and Technology, Hefei, AH; Wang, C.Y.; China Univ. of Science and Technology, Hefei, AH; Cao, L.Z.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Zhang, Y.H.

    1997-01-01

    Two kinds of methods have been used to synthesize Pb 0.5 Sr 2.5 Y 0.6 Ca 0.4 Cu 2 O 7-y samples. The synthesized sample using the first method shows superconductivity, while that using the second method exhibits a localized behavior at low temperatures Thermogravimetric analysis (TGA) and electrical transport measurements have been carried out on superconducting and nonsuperconducting samples grown under the two kinds of synthesis conditions and the effect of oxygen content on the transport and superconducting properties is discussed briefly. (orig.)

  16. A model study of warming-induced phosphorus-oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    Science.gov (United States)

    Niemeyer, Daniela; Kemena, Tronje P.; Meissner, Katrin J.; Oschlies, Andreas

    2017-05-01

    Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic) Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 %) from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  17. A model study of warming-induced phosphorus–oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    Directory of Open Access Journals (Sweden)

    D. Niemeyer

    2017-05-01

    Full Text Available Observations indicate an expansion of oxygen minimum zones (OMZs over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 % from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  18. Real-Time Transportation Mode Identification Using Artificial Neural Networks Enhanced with Mode Availability Layers: A Case Study in Dubai

    Directory of Open Access Journals (Sweden)

    Young-Ji Byon

    2017-09-01

    Full Text Available Traditionally, departments of transportation (DOTs have dispatched probe vehicles with dedicated vehicles and drivers for monitoring traffic conditions. Emerging assisted GPS (AGPS and accelerometer-equipped smartphones offer new sources of raw data that arise from voluntarily-traveling smartphone users provided that their modes of transportation can correctly be identified. By introducing additional raster map layers that indicate the availability of each mode, it is possible to enhance the accuracy of mode detection results. Even in its simplest form, an artificial neural network (ANN excels at pattern recognition with a relatively short processing timeframe once it is properly trained, which is suitable for real-time mode identification purposes. Dubai is one of the major cities in the Middle East and offers unique environments, such as a high density of extremely high-rise buildings that may introduce multi-path errors with GPS signals. This paper develops real-time mode identification ANNs enhanced with proposed mode availability geographic information system (GIS layers, firstly for a universal mode detection and, secondly for an auto mode detection for the particular intelligent transportation system (ITS application of traffic monitoring, and compares the results with existing approaches. It is found that ANN-based real-time mode identification, enhanced by mode availability GIS layers, significantly outperforms the existing methods.

  19. Effect of defects on the small polaron formation and transport properties of hematite from first-principles calculations.

    Science.gov (United States)

    Smart, Tyler J; Ping, Yuan

    2017-10-04

    Hematite (α-Fe 2 O 3 ) is a promising candidate as a photoanode material for solar-to-fuel conversion due to its favorable band gap for visible light absorption, its stability in an aqueous environment and its relatively low cost in comparison to other prospective materials. However, the small polaron transport nature in α-Fe 2 O 3 results in low carrier mobility and conductivity, significantly lowering its efficiency from the theoretical limit. Experimentally, it has been found that the incorporation of oxygen vacancies and other dopants, such as Sn, into the material appreciably enhances its photo-to-current efficiency. Yet no quantitative explanation has been provided to understand the role of oxygen vacancy or Sn-doping in hematite. We employed density functional theory to probe the small polaron formation in oxygen deficient hematite, N-doped as well as Sn-doped hematite. We computed the charged defect formation energies, the small polaron formation energy and hopping activation energies to understand the effect of defects on carrier concentration and mobility. This work provides us with a fundamental understanding regarding the role of defects on small polaron formation and transport properties in hematite, offering key insights into the design of new dopants to further improve the efficiency of transition metal oxides for solar-to-fuel conversion.

  20. Transportation librarian's toolkit

    Science.gov (United States)

    2007-12-01

    The Transportation Librarians Toolkit is a product of the Transportation Library Connectivity pooled fund study, TPF- 5(105), a collaborative, grass-roots effort by transportation libraries to enhance information accessibility and professional expert...

  1. Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether

    International Nuclear Information System (INIS)

    Zhang, Jinqiang; Sun, Bing; Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-01-01

    Free-standing gel polymer electrolytes with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix plasticized with tetraethylene glycol dimethyl ether (TEGDME) were prepared and investigated. The as-prepared gel polymer electrolytes exhibited large operating window and acceptable ionic conductivity. When applied in lithium oxygen batteries, the gel polymer electrolyte could support a high initial discharge capacity of 2988 mAh g −1 when a carbon black electrode without catalyst was used as cathode. Furthermore, the battery with gel polymer electrolyte can last at least 50 cycles in the fixed capacity cycling, displaying an excellent stability. Detailed study reveals that the gelling process is essential for the cycling stability enhancement. With excellent electrochemical properties, the free-standing gel polymer electrolyte presented in this investigation has great application potentials in long-life lithium oxygen batteries.

  2. Oxygen doping of the high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Tarascon, J.M.; McKinnon, W.R.; Greene, L.H.; Hull, G.W.; Bagley, B.G.; Vogel, E.M.; Le Page, Y.

    1987-01-01

    Oxygen defect perovskites are studied because of their ability to reversibly intercalate oxygen atoms. Our previous studies of the La/sub 2-y/Sr/sub y/CuO/sub 4-x/ system shows that T/sub c/ is dramatically affected by subtle changes in oxygen content. However since this study did not achieve large values of x, a systematic study was not undertaken. The authors have found by thermogravimetric analysis (TGA) that a wide range of oxygen non-stoichiometry in the 90K superconductor YBa/sub 2/Cu/sub 3/O/sub 7-x/ is obtainable. This study of the effect of oxygen doping on the transport properties of the 40K material, and a systematic analysis of this over a broader range in the 90K superconductor is presented

  3. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  4. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    Science.gov (United States)

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  5. Effects of rearing density and dietary fat content on burst-swim performance and oxygen transport capacity in juvenile Atlantic salmon Salmo salar.

    Science.gov (United States)

    Hammenstig, D; Sandblom, E; Axelsson, M; Johnsson, J I

    2014-10-01

    The effects of hatchery rearing density (conventional or one third of conventional density) and feeding regime (high or reduced dietary fat levels) on burst-swim performance and oxygen transport capacity were studied in hatchery-reared Atlantic salmon Salmo salar, using wild fish as a reference group. There was no effect of rearing density or food regime on swimming performance in parr and smolts. The maximum swimming speed of wild parr was significantly higher than that of hatchery-reared conspecifics, while no such difference remained at the smolt stage. In smolts, relative ventricle mass was higher in wild S. salar compared with hatchery-reared fish. Moreover, wild S. salar had lower maximum oxygen consumption following a burst-swim challenge than hatchery fish. There were no effects of hatchery treatment on maximum oxygen consumption or relative ventricle mass. Haemoglobin and haematocrit levels, however, were lower in low-density fish than in fish reared at conventional density. Furthermore, dorsal-fin damage, an indicator of aggression, was similar in low-density reared and wild fish and lower than in S. salar reared at conventional density. Together, these results suggest that reduced rearing density is more important than reduced dietary fat levels in producing an S. salar smolt suitable for supplementary release. © 2014 The Fisheries Society of the British Isles.

  6. Effects of irradiation distance on supply of reactive oxygen species to the bottom of a Petri dish filled with liquid by an atmospheric O{sub 2}/He plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Toshiyuki, E-mail: kawasaki@nbu.ac.jp; Kusumegi, Shota; Kudo, Akihiro; Sakanoshita, Tomohiro; Tsurumaru, Takuya; Sato, Akihiro [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Uchida, Giichiro [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Koga, Kazunori; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2016-05-07

    The impact of irradiation distances on plasma jet-induced specific effects on the supply of reactive oxygen species (ROS) to the bottom of a Petri dish filled with liquid was investigated using a KI-starch gel reagent that can be employed as a ROS indicator even in water. O{sub 3} exposure experiments without plasma irradiation were also performed to elucidate the specific effects of the plasma jet. Relative concentrations of ROS transported to the bottom were evaluated using absorbance measurements. The results indicated that ROS supply to the bottom is markedly enhanced by the plasma jet irradiation at shorter irradiation distances, whereas similar results could not be obtained for the O{sub 3} exposure. In these cases, the liquid mixing in the depth direction was also enhanced by the plasma jet irradiation only, and the supply of reactive atomic oxygen to the liquid surface was markedly increased as well.

  7. Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Chiang [School of Oral Hygiene, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Chang, Fang-Mo [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Yang, Tzu-Sen [Master Program in Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Ou, Keng-Liang [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Department of Dentistry, Taipei Medical University-Shuang-Ho Hospital, Taipei 235, Taiwan (China); Lin, Che-Tong [School of Dentistry, Taipei Medical University, Taipei 110, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China)

    2016-11-01

    Titanium dioxide (TiO{sub 2}) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO{sub 2} with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. - Highlights: • The Ti{sup 4+} chemical state was determined to be present on oxygen-PIII-treated surfaces. • The nanocrystalline TiO{sub 2} with a rutile structure was formed on titanium surfaces. • A nanoporous TiO{sub 2} layer in the rutile phase prepared using oxygen PIII treatment can be used to prolong blood clot formation.

  8. Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels

    Science.gov (United States)

    Xia, Ke-Qing; Zhang, Lu

    2017-11-01

    We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).

  9. Retrievable micro-inserts containing oxygen sensors for monitoring tissue oxygenation using EPR oximetry

    International Nuclear Information System (INIS)

    Dinguizli, M; Beghein, N; Gallez, B

    2008-01-01

    Tissue oxygenation is a crucial parameter in various physiopathological situations and can influence the therapeutic response of tumours. EPR oximetry is a reliable method for assessing and monitoring oxygen levels in vivo over long periods of time. Among the different paramagnetic oxygen sensors available for EPR oximetry, lithium phthalocyanine (LiPc) is a serious candidate for in vivo applications because of its narrow linewidth and its high signal-to-noise ratio. To enhance the biocompatibility of the sensors, fluoropolymer Teflon AF2400 was used to make cylindrical micro-inserts containing LiPc crystals. This new micro-pellet design has several advantages for in vivo studies, including the possibility of being able to choose the implant size, a high sensor content, the facility of in vivo insertion and complete protection with preservation of the oxygen sensor's characteristics. The response to oxygen and the kinetics of this response were tested using in vivo EPR: no differences were observed between micro-inserts and uncoated LiPc crystals. Pellets implanted in vivo in muscles conserved their responsiveness over a long period of time (∼two months), which is much longer than the few days of stability observed using LiPc crystals without protection by the implant. Finally, evaluation of the biocompatibility of the implants revealed no inflammatory reaction around the implantation area

  10. Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension

    International Nuclear Information System (INIS)

    Paik, Jin-Young; Jung, Kyung-Ho; Lee, Jin-Hee; Park, Jin-Won; Lee, Kyung-Han

    2017-01-01

    Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18 F–fluorodeoxyglucose ( 18 F–FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18 F–FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18 F–FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18 F–FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18 F–FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18 F–FDG transport.

  11. Single-cell measurement of red blood cell oxygen affinity

    OpenAIRE

    Caprio, Di; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system....

  12. DEVELOPMENT OF REACTION-DRIVEN IONIC TRANSPORT MEMBRANES (ITMs) TECHNOLOGY: PHASE IV/BUDGET PERIOD 6 “Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems”

    Energy Technology Data Exchange (ETDEWEB)

    David, Studer

    2012-03-01

    Air Products and Chemicals, along with development participants and in association with the U.S. Department of Energy, has made substantial progress in developing a novel air separation technology. Unlike conventional cryogenic processes, this method uses high-temperature ceramic membranes to produce high-purity oxygen. The membranes selectively transport oxygen ions with high flux and infinite theoretical selectivity. Reaction-driven ceramic membranes are fabricated from non-porous, multi-component metallic oxides, operate at temperatures typically over 700°C, and have exceptionally high oxygen flux and selectivity. Oxygen from low-pressure air permeates as oxygen ions through the ceramic membrane and is consumed through chemical reactions, thus creating a chemical driving force that pulls oxygen ions across the membrane at high rates. The oxygen reacts with a hydrocarbon fuel in a partial oxidation process to produce a hydrogen and carbon monoxide mixture – synthesis gas. This project expands the partial-oxidation scope of ITM technology beyond natural gas feed and investigates the potential for ITM reaction-driven technology to be used in conjunction with gasification and pyrolysis technologies to provide more economical routes for producing hydrogen and synthesis gas. This report presents an overview of the ITM reaction-driven development effort, including ceramic materials development, fabrication and testing of small-scale ceramic modules, ceramic modeling, and the investigation of gasifier integration schemes

  13. Hyperbaric oxygen and radiotherapy

    International Nuclear Information System (INIS)

    Mayer, R.; Hamilton-Farrell, M.R.; Kleij, A.J. van der

    2005-01-01

    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on www.oxynet.org. (orig.)

  14. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  15. Oxygen ingress : a practical look at typical ingress mechanisms and the consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lerbscher, J. [Baker Hughes Canada, Calgary, AB (Canada); Marlowe, D. [ChevronTexaco, Kenai, AK (United States); Thomas, J. [Baker Hughes, Edmonton, AB (Canada)

    2008-07-01

    This paper discussed methods of identifying and treating oxygen corrosion in hydrocarbon processing facilities. Oxygen corrosion is often misdiagnosed during the course of corrosion failure analyses. Measures to find the source of ingress are only typically initiated when test results demonstrate significant sources of oxygen within processing systems. The iron oxides produced as byproducts from oxygen reactions increase pitting and corrosion rates, and most of the chemical inhibitors used in oil and gas processing are not designed to work in the presence of oxygen. Oxygen reacts with hydrogen sulfide (H{sub 2}S) to form elemental sulfur. The high pressures used in processing facilities enhance the thermodynamic and kinetic tendencies of the chemical reactions with oxygen. Sulfur particles are known to enhance corrosion rates by an order of magnitude, and can also cause fouling and flow restrictions. Oxygen ingress can occur via vapor recovery unit, vacuum excursions, and liquid storage tanks. Symptoms that indicate oxygen ingress can include the presence of iron compounds in solid samples; the presence of sulfur; fouling of wet gas transmission lines; the presence of ionic polysulfides in the aqueous phase; higher corrosion rates than predicted; and the degradation of glycols in dehydration units. Portable gas chromatography, oxygen detection vials, and X-ray diffraction analysis techniques are used to detect oxygen ingress. Real time oxygen monitors are also connected to SCADA systems. It was concluded that oxygen testing should be conducted periodically in order to identify and eliminate its source of entry. A technical summary of corrosive species was included. 1 tab., 15 figs.

  16. Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    International Nuclear Information System (INIS)

    Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D

    2013-01-01

    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)

  17. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  18. Oxygen-independent direct deoxyribonucleic acid backbone breakage caused by rose bengal and visible light

    Energy Technology Data Exchange (ETDEWEB)

    Peak, M J; Peak, J G; Foote, C S; Krinsky, N I

    1984-01-01

    An oxygen enhancement ratio of 10 for the induction of backbone single-strand breaks (SSBs) in purified deoxyribonucleic acid (DNA) by monochromatic 365 nm UV radiation was obtained. Similarly, a dose reduction factor of 10 was observed when the DNA was irradiated in the presence of 0.1 M diazabicyclo(2.2.2)octane (DABCO). To determine whether this breakage of DNA was due to the action of a reactive oxygen species such as singlet oxygen, we used the photosensitizing dye Rose Bengal and visible light as a system for generating singlet oxygen. Treatment of the DNA with Rose Bengal and 545 nm monochromatic light enhanced the rate of induction of SSBs six times, compared with the rate we obtained when the light was used alone. Elimination of oxygen or addition of 0.1 M DABCO during the 545 nm irradiation in the presence of Rose Bengal did not alter the enhancement of SSBs in the DNA caused by Rose Bengal and 545 nm radiation. The induction of SSBs in the DNA caused by irradiation of the DNA by 545 nm light in the presence of Rose Bengal was not enhanced by the use of D/sub 2/O instead of H/sub 2/O as a solvent. The results indicate that Rose Bengal plus visible light can cause biological damage without the intermediacy of reactive oxygen species, i.e. Rose Bengal and visible light can react directly with biological material, in reactions that appear to be type I photosensitized processes, independent of singlet oxygen as an intermediate.

  19. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: Pulmonary functional loss assessment and clinical stage classification of asthmatics

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Matsumoto, Keiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Department of Radiology, University of Yamanashi, 1100, Shimogatou, Chuo, Yamanashi, 409-3898 (Japan); Onishi, Yumiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Nogami, Munenobu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan); Division of Image-Based Medicine, Institute of Biomedical Research and Innovation, 2-2 Minatojima Minamimachi Chuo-ku, Kobe, Hyogo, 650-0047 (Japan); Takenaka, Daisuke; Matsumoto, Sumiaki; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 (Japan)

    2011-01-15

    Purpose: The purpose of this study was to prospectively compare the efficacy of oxygen-enhanced MR imaging (O{sub 2}-enhanced MRI) and CT for pulmonary functional loss assessment and clinical stage classification of asthmatics. Materials and methods: O{sub 2}-enhanced MRI, CT and %FEV{sub 1} measurement were used 34 consecutive asthmatics classified into four stages ('Mild Intermittent [n = 7]', 'Mild Persistent [n = 8], 'Moderate Persistent [n = 14]' and 'Severe Persistent [n = 5]'). Relative enhancement ratio maps for every subject were generated, and determine mean relative enhancement ratios (MRERs). Mean lung density (MLD) and the airway wall area (WA) corrected by body surface area (WA/BSA) were also measured on CT. To compare the efficacy of the two methods for pulmonary functional loss assessment, all indexes were correlated with %FEV{sub 1}. To determine the efficacy of the two methods for clinical stage classification, all parameters for the four clinical stages were statistically compared. Results: %FEV{sub 1} showed fair or moderate correlation with all parameters (0.15 {<=} r{sup 2} {<=} 0.30, p < 0.05). WA, WA/BSA and MRER of the 'Severe Persistent' group were significantly larger than those of 'Mild Intermittent' and 'Mild Persistent' groups (p < 0.05), and MRER of the 'Moderate Persistent' group significantly lower than that of the 'Mild Intermittent' group (p < 0.05). Conclusion: O{sub 2}-enhanced MRI is as effective as CT for pulmonary functional loss assessment and clinical stage classification of asthmatics.

  20. Pancreas Oxygen Persufflation Increases ATP Levels as Shown by Nuclear Magnetic Resonance

    Science.gov (United States)

    Scott, W.E.; Weegman, B.P.; Ferrer-Fabrega, J.; Stein, S.A.; Anazawa, T.; Kirchner, V.A.; Rizzari, M.D.; Stone, J.; Matsumoto, S.; Hammer, B.E.; Balamurugan, A.N.; Kidder, L.S.; Suszynski, T.M.; Avgoustiniatos, E.S.; Stone, S.G.; Tempelman, L.A.; Sutherland, D.E.R.; Hering, B.J.; Papas, K.K.

    2010-01-01

    Background Islet transplantation is a promising treatment for type 1 diabetes. Due to a shortage of suitable human pancreata, high cost, and the large dose of islets presently required for long-term diabetes reversal; it is important to maximize viable islet yield. Traditional methods of pancreas preservation have been identified as suboptimal due to insufficient oxygenation. Enhanced oxygen delivery is a key area of improvement. In this paper, we explored improved oxygen delivery by persufflation (PSF), ie, vascular gas perfusion. Methods Human pancreata were obtained from brain-dead donors. Porcine pancreata were procured by en bloc viscerectomy from heparinized donation after cardiac death donors and were either preserved by either two-layer method (TLM) or PSF. Following procurement, organs were transported to a 1.5-T magnetic resonance (MR) system for 31P nuclear magnetic resonance spectroscopy to investigate their bioenergetic status by measuring the ratio of adenosine triphosphate to inorganic phosphate (ATP:Pi) and for assessing PSF homogeneity by MRI. Results Human and porcine pancreata can be effectively preserved by PSF. MRI showed that pancreatic tissue was homogeneously filled with gas. TLM can effectively raise ATP:Pi levels in rat pancreata but not in larger porcine pancreata. ATP:Pi levels were almost undetectable in porcine organs preserved with TLM. When human or porcine organs were preserved by PSF, ATP:Pi was elevated to levels similar to those observed in rat pancreata. Conclusion The methods developed for human and porcine pancreas PSF homogeneously deliver oxygen throughout the organ. This elevates ATP levels during preservation and may improve islet isolation outcomes while enabling the use of marginal donors, thus expanding the usable donor pool. PMID:20692395

  1. Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate

    OpenAIRE

    Polat, Baris E.; Figueroa, Pedro L.; Blankschtein, Daniel; Langer, Robert

    2010-01-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyz...

  2. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Science.gov (United States)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  3. Defect chemistry and oxygen transport of (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2), Sr: Part II: Oxygen transport

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Hendriksen, Peter Vang

    2009-01-01

    This paper is the second part of a two part series, where the effects of varying the A-site dopant on the defect chemistry and transport properties of the materials (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Sr, Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2) (LSMFC) have been investigated. In part I......, the findings on the defect chemistry were reported, while the oxygen transport properties are reported here in part II. In the investigated material series, the amount of divalent dopant has been kept constant, while Sr ions have been substituted with Ca ions (smaller ionic radius) or Ba ions (larger ionic...... electrolyte probe were used to extract the permeability and surface resistance, rs. The highest permeability was found for (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 − δ. The apparent activation energy of the permeability was 78 kJ/mol. The inverse surface resistance, rs− 1, also had an activated behavior...

  4. Survival curves of irradiated glutathione-deficient human fibroblasts: indication of a reduced enhancement of radiosensitivity by oxygen and misonidazole

    International Nuclear Information System (INIS)

    Midander, J.; Deschavanne, P.J.; Malaise, E.P.; Revesz, L.

    1982-01-01

    Fibroblasts derived from a patient with 5-oxoprolinuria are genetically deficient in glutathione synthetase. This deficiency causes a dramatic decrease in intracellular glutathione (GSH) level. The radiosensitivity of GSH deficient cells (GSH) was studied in vitro using colony forming ability as an endpoint. Cells with normal GSH level, obtained from the healthy brother of the patient, were used as controls. When irradiated in 95% air-5% CO 2 , GSH - cells are slightly but significantly more radiosensitive than GSH + controls (dose modifying factor (DMF) of 1.2). When irradiated in argon, the survival curve of GSH - cells indicates an oxygen enhancement ratio (OER) of 1.5 when compared to the curve obtained in oxic conditions. The OER of control cells in the same conditions is 2.9. In comparison to results obtained in air, 100% oxygen moderately increases the radiosensitivity of GSH + cells (DMF 1,23), while it has a very low effect on GSH - cells (DMF 1.06). These results suggest that intracellular GSH plays an essential protective role in hypoxia, its effect is reduced in air and practically disappears in 100% oxygen. When cells are incubated with 8 mM misonidazole 2 hours before irradiation, the drug has a much greater sensitizing effect on GSH + cells (DMF 2.33) than on GSH - cells (DMF 1.55). The results demonstrate that intracellular GSH level plays a major role in the response of hypoxic cells, irradiated either alone or in the presence of misonidazole

  5. Role of apical oxygen in 2-1-4 electron-doped superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.; Riou, G.; Jandl, S.; Poirier, M.; Fournier, P.; Nekvasil, V.; Divis, M

    2004-08-01

    We report a crystal-field infrared transmission and Raman study of oxygenated and reduced Nd{sub 2-x}Ce{sub x}CuO{sub 4} single crystals. Some Nd{sup 3+} crystal-field absorption bands corresponding to rare-earth ions in non-regular sites are attributed to Nd{sup 3+} ions in the vicinity of apical oxygens. This is correlated with a study of the A{sup *} ({approx}580 cm{sup -1}) Raman local mode and with the transport properties of undoped materials. We show that the apical oxygen is not removed by the reduction.

  6. Oxygen-Dependent Transcriptional Regulator Hap1p Limits Glucose Uptake by Repressing the Expression of the Major Glucose Transporter Gene RAG1 in Kluyveromyces lactis▿

    Science.gov (United States)

    Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique

    2008-01-01

    The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211

  7. Erythropoietin, 2,3 DPG, oxygen transport capacity, and altitude training in adolescent Alpine skiers.

    Science.gov (United States)

    Son, Hee Jeong; Kim, Hyo Jeong; Kim, Jin Hae; Ohno, Hideki; Kim, Chang Keun

    2012-01-01

    Rapid growth during adolescence caused by metabolic changes and their metabolic response to anaerobic and aerobic exercise differs considerably from that in adults and this is especially true in the responses to stresses, such as altitude exposure. However, there is little information on the suitability of exercise training at altitude for young athletes. Six male Korean adolescent alpine skiers (13-17 yr), with a skiing career of 3-5 yr, participated in the study. All subjects were exposed to an altitude of 2700 m (8858 ft) for 5 wk and altitude exposure consisted of 6 d/wk of training (4-5 h/d), with living quarters at 2100 m (-6890 ft) (Tignes, France). The 5 wk of ski training at altitude were maintained at the same level (the same number of slalom and giant slalom skiing trials) as at sea level. There was a significant increase in oxygen transport capacity, despite decreased erythropoietin (EPO) production (-31%) after altitude training. Red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), and 2,3 DPG concentrations increased significantly during altitude exposure and after return to sea level. Results indicate that applying altitude training in adolescent skiers may improve their endurance performance. However, EPO production during altitude training needs to be evaluated in larger future studies.

  8. Scavenging of oxygen vacancies at modulation-doped oxide interfaces: Evidence from oxygen isotope tracing

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Döbeli, M.; Pomjakushina, E.

    2017-01-01

    , the mechanisms underlying the extreme mobility enhancement remain elusive. Herein, we used 18O isotope exchanged SrTi18O3 as substrates to create 2DEG at room temperature with and without the LSMO buffer layer. By mapping the oxygen profile across the interface between STO18 and disordered LaAlO3 or yttria...

  9. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction

    DEFF Research Database (Denmark)

    Velazquez-Palenzuela, Amado Andres; Masini, Federico; Pedersen, Anders Filsøe

    2015-01-01

    Mass-selected platinum–gadolinium alloy nanoparticles (PtxGd NPs) are synthesized for the first time as oxygen reduction reaction (ORR) electrocatalysts using the gas aggregation technique, under ultrahigh vacuum (UHV) conditions. The morphology of the PtxGd catalysts is characterized, and their ......Mass-selected platinum–gadolinium alloy nanoparticles (PtxGd NPs) are synthesized for the first time as oxygen reduction reaction (ORR) electrocatalysts using the gas aggregation technique, under ultrahigh vacuum (UHV) conditions. The morphology of the PtxGd catalysts is characterized...

  10. HYPERBARIC OXYGENATION AND AEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Irvine D. Prather

    2004-03-01

    Full Text Available The continuing desire to improve performance, particularly at the national and international levels, has led to the use of ergogenic aids. Ergogenic aids are defined as 'a procedure or agent that provides the athlete with a competitive edge beyond that obtained via normal training methods'. Random drug testing has been implemented in an effort to minimize an athlete's ability to gain an unfair advantage. However, other means of improving performance have been tried. Blood doping has been used to enhance endurance performance by improving oxygen delivery to working muscles. As oxygen is carried in combination with the hemoglobin, it seems logical that increasing the number of red blood cells (RBC's in the body would increase the oxygen carrying capacity to the tissues and result in improved performance. The first experiments of removing and then reinfusing blood showed a significant improvement in performance time

  11. Effects of hyperbaric oxygen therapy in enhancing expressions of e-NOS, TNF-α and VEGF in wound healing

    Science.gov (United States)

    Susilo, Imam; Devi, Anita; Purwandhono, Azham; Hadi Warsito, Sunaryo

    2017-05-01

    Wound healing is a physiological process that occurs progressively through overlapping phases. Tissue oxygenation is an important part of the complex regulation for wound healing. Hyperbaric Oxygen (HBO) therapy is a method of increasing oxygen delivery to tissues. The therapy improves tissue oxygenation and stimulates the formation of H2O2 as a secondary messenger for Tumour Necrosis Factor alpha (TNF α), e-NOS, VEGF and Nuclear Factor Kappa Beta phosphorylation (NF-Kb) which play an important role in the rapid transcription of a wide variety of genes in response to extracellular stimuli. This study aims to determine the effects of Hyperbaric Oxygen therapy in enhancing the expressions of e-NOS, TNF-α, VEGF and wound healing. This study is an animal study with a ‘randomized control group of pre-test and post test design’ on 28 Wistar rats. Randomly, the rats were divided into 4 groups with 7 rats in each group. The HBO treatment group 1 received 5 sessions of HBO 2.4 ATA in 3 × 30 minutes; the HBO treatment group 2 received 10 sessions of HBO 2.4 ATA in 3 × 30 minutes; and each of the control groups were without HBO. Each of the 28 male rats were given a full thickness excisional wound of 1 × 1cm. Examinations of e-NOS, TNF-α, VEGF expressions and wound healing were performed on day-0 (pre-HBO) and day-5 HBO or on day-0 (pre-HBO) and day-10 HBO. The resultsshowthat the Hyperbaric Oxygen therapy can improve e-NOS (p=0.02), TNF-α (p= 0.02), VEGF expression (p=0.02) and wound healing (p=0.002) significantly in the provision of HBO 2.4 ATA for 3 × 30 minutes in 5 sessions over 5 consecutive days. While the 10 sessions of HBO 2.4 ATA for 3 × 30 minutes over 10 consecutive days only increase e-NOS (p=0.02), TNF-α (p=0.04), VEGF expression significantly (p=0.03) but do not improve wound healing significantly (p=0.3) compared with no HBO. The study concludes that HBO can improve the expressions of e-NOS, TNF-α, VEGF and wound healing in the provision of HBO

  12. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhang Jingqing

    2009-12-01

    Full Text Available Abstract Background Xylose is a second most abundant sugar component of lignocellulose besides glucose. Efficient fermentation of xylose is important for the economics of biomass-based biorefineries. However, sugar mixtures are sequentially consumed in xylose co-fermentation with glucose due to carbon catabolite repression (CCR in microorganisms. As xylose transmembrance transport is one of the steps repressed by CCR, it is therefore of interest to develop a transporter that is less sensitive to the glucose inhibition or CCR. Results The glucose facilitator protein Glf transporter from Zymomonas mobilis, also an efficient transporter for xylose, was chosen as the target transporter for engineering to eliminate glucose inhibition on xylose uptake. The evolution of Glf transporter was carried out with a mixture of glucose and xylose in E. coli. Error-prone PCR and random deletion were employed respectively in two rounds of evolution. Aided by a high-throughput screening assay using xylose analog p-nitrophenyl-β-D-xylopyranoside (pNPX in 96-well plates, a best mutant 2-RD5 was obtained that contains several mutations, and a deletion of 134 residues (about 28% of total residues, or three fewer transmembrane sections (TMSs. It showed a 10.8-fold improvement in terms of pNPX transport activity in the presence of glucose. The fermentation performance results showed that this mutant improved xylose consumption by 42% with M9 minimal medium containing 20 g L-1 xylose only, while with the mixture sugar of xylose and glucose, 28% more glucose was consumed, but no obvious co-utilization of xylose was observed. Further glucose fed-batch experiments suggested that the intracellular metabolism of xylose was repressed by glucose. Conclusions Through random mutagenesis and partial deletion coupled with high-throughput screening, a mutant of the Glf transporter (2-RD5 was obtained that relieved the inhibition of xylose transport by glucose. The fermentation

  13. Charge doping and large lattice expansion in oxygen-deficient heteroepitaxial WO3

    Science.gov (United States)

    Mattoni, Giordano; Filippetti, Alessio; Manca, Nicola; Zubko, Pavlo; Caviglia, Andrea D.

    2018-05-01

    Tungsten trioxide (WO3) is a versatile material with widespread applications ranging from electrochromics and optoelectronics to water splitting and catalysis of chemical reactions. For technological applications, thin films of WO3 are particularly appealing, taking advantage from a high surface-to-volume ratio and tunable physical properties. However, the growth of stoichiometric crystalline thin films is challenging because the deposition conditions are very sensitive to the formation of oxygen vacancies. In this paper, we show how background oxygen pressure during pulsed laser deposition can be used to tune the structural and electronic properties of WO3 thin films. By performing x-ray diffraction and low-temperature electrical transport measurements, we find changes in the WO3 lattice volume of up to 10% concomitantly with a resistivity drop of more than five orders of magnitude at room temperature as a function of increased oxygen deficiency. We use advanced ab initio calculations to describe in detail the properties of the oxygen vacancy defect states and their evolution in terms of excess charge concentration. Our results depict an intriguing scenario where structural, electronic, optical, and transport properties of WO3 single-crystal thin films can all be purposely tuned by controlling the oxygen vacancy formation during growth.

  14. Induction of apoptosis in human multiple myeloma cell lines by ebselen via enhancing the endogenous reactive oxygen species production.

    Science.gov (United States)

    Zhang, Liang; Zhou, Liwei; Du, Jia; Li, Mengxia; Qian, Chengyuan; Cheng, Yi; Peng, Yang; Xie, Jiayin; Wang, Dong

    2014-01-01

    Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.

  15. The Origin of Tc Enhancement in Heterostructure Cuprate Superconductors

    Directory of Open Access Journals (Sweden)

    Doron L. Bergman

    2011-10-01

    Full Text Available Recent experiments on heterostructures composed of two or more films of cuprate superconductors of different oxygen doping levels have shown a remarkable Tc enhancement (up to 50% relative to single compound films. We provide a simple explanation of the enhancement which arises naturally from a collection of experimental works. We show that the enhancement could be caused by a structural change in the lattice, namely an increase in the distance of the apical oxygen from the copper-oxygen plane. This increase modifies the effective off-site interaction in the plane which in turn enhances the d-wave superconductivity order parameter. To illustrate this point we study the extended Hubbard model using the fluctuation exchange approximation.

  16. Porous Fe21Cr7Al1Mo0.5Y metal supports for oxygen transport membranes: Thermo-mechanical properties, sintering and corrosion behaviour

    DEFF Research Database (Denmark)

    Glasscock, Julie; Mikkelsen, Lars; Persson, Åsa Helen

    2013-01-01

    and creep rates are sufficiently low. Ceramic interlayers with graded porosity and pore-size were applied and co-fired with the metal supports, producing substrates that were shown to be viable for a 3 μm dense Ce 0.8Gd0.2O1.9 - δ oxygen transport membrane deposited using sputtering. © 2013 Elsevier B.V....... are optimised simultaneously in-situ during sintering by controlling the growth rate of the oxide scale. Oxidation of metal supports with 20-40% porosity at 850 C and oxygen partial pressure of 10- 11 kPa showed sub-parabolic kinetics and stability over 3000 h. The FeCrAl steel shows vastly superior oxidation...... resistance compared with an FeCr steel of similar composition and porosity. Modelling of the alloy lifetime as a function of surface area and Al-content was performed, and lifetimes over 30 000 h are predicted for a metal support with 30% porosity operating at a temperature of 750 C, where the oxidation...

  17. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  18. Tracking Oxygen Vacancies in Thin Film SOFC Cathodes

    Science.gov (United States)

    Leonard, Donovan; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei; Shao-Horn, Yang; Crumlin, Ethan; Mutoro, Eva; Biegalski, Michael; Christen, Hans; Pennycook, Stephen; Borisevich, Albina

    2011-03-01

    Oxygen vacancies have been proposed to control the rate of the oxygen reduction reaction and ionic transport in complex oxides used as solid oxide fuel cell (SOFC) cathodes [1,2]. In this study oxygen vacancies were tracked, both dynamically and statically, with the combined use of scanned probe microscopy (SPM) and scanning transmission electron microscopy (STEM). Epitaxial films of La 0.8 Sr 0.2 Co O3 (L SC113) and L SC113 / LaSrCo O4 (L SC214) on a GDC/YSZ substrate were studied, where the latter showed increased electrocatalytic activity at moderate temperature. At atomic resolution, high angle annular dark field STEM micrographs revealed vacancy ordering in L SC113 as evidenced by lattice parameter modulation and EELS studies. The evolution of oxygen vacancy concentration and ordering with applied bias and the effects of bias cycling on the SOFC cathode performance will be discussed. Research is sponsored by the of Materials Sciences and Engineering Division, U.S. DOE.

  19. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  20. Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media

    Science.gov (United States)

    Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.

    2017-12-01

    Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.

  1. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  2. Photoluminescence of colloidal CdSe nano-tetrapods and quantum dots in oxygenic and oxygen-free environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lijuan [Donghua University, Applied Physics Department, Shanghai (China); Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Pang, Qi; Ge, Weikun; Wang, Jiannong [Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Yang, Shihe [Hong Kong University of Science and Technology, Chemistry Department and the Institute of Nano-Science and Technology, Hong Kong (China)

    2011-05-15

    The effects of oxygenic versus oxygen-free environments on colloidal CdSe nano-tetrapods and quantum dots (QDs) were studied using both continuous and time-resolved photoluminescence (PL) measurements. The decays of PL intensities for tetrapods and QDs in oxygen-free solution (chloroform) and in air (on silicon) can be well fitted by a bi-exponential function. Based on the emission-energy dependence of carrier lifetimes and the amplitude ratio of the fast-decay component to the slow-decay component, the fast and slow PL decays of CdSe nanocrystals are attributed to the recombination of delocalized carriers in the core states and localized carriers in the surface states, respectively. The PL intensities of CdSe nano-tetrapods and QDs were found to be five times and an order of magnitude higher in air than in vacuum, respectively, which is explained by the passivation of surface defects by the polar gas (oxygen) absorption. The lower enhancement in PL intensities of CdSe nano-tetrapods is explained by the special morphology of the tetrapods. (orig.)

  3. Investigation on the Enhanced Oxidation of Ferritic/Martensitic Steel P92 in Pure Steam

    Directory of Open Access Journals (Sweden)

    Juntao Yuan

    2014-04-01

    Full Text Available Oxidation of ferritic/martensitic steel P92 was investigated in pure oxygen and in pure steam at 600–800 °C by thermogravimetric analysis (TGA, optical microscopy (OM, scanning electron microscopy (SEM, and X-ray diffraction (XRD. The results showed that the oxidation of P92 was significantly enhanced and multilayer scale with an outer iron oxides layer formed in pure steam. At 700 °C, the gas switch markedly influenced the scaling kinetics and scale microstructure. It was supposed that the higher affinity of iron to steam would be attributed to the enhanced oxidation of P92 in pure steam, and the much easier transport of hydroxyl would account for the significant difference induced by gas switch.

  4. Radiosensitization of mammalian cells by misonidazole and oxygen: DNA damage exposed by Micrococcus luteus enzymes

    International Nuclear Information System (INIS)

    Skov, K.A.; Palcic, B.; Skarsgard, L.D.

    1979-01-01

    When misonidazole is present during irradiation of hypoxic mammalian cells, an enhancement of single-strand breaks (SSB) in DNA is observed. Oxygen also enhances SSB, presumably in a manner similar to that of misonidazole. The dose-modifying factor (DMF) for 15 mM misonidazole was found to be 3.4, compared to an oxygen enhancement ratio (OER) of 3.5. Another class of DNA damage, namely, sites exposed by an extract of Micrococcus luteus, was examined. Radiation-induced M. luteus extract-sensitive sites (MLS) were also found to be enhanced by the presence of misonidazole or molecular oxygen. The DMF for this damage by 15 mM misonidazole was 1.6 while the OER was 2.5. The ratio of MLS to SSB is approximately 1.25 under hypoxia, 0.9 in the presence of oxygen, and 0.6 in the presence of 15 mM misonidazole under hypoxic conditions. Incubation with misonidazole under conditions which are toxic to mammalian cells (37 0 C, hypoxia), and which result in many SSB, produces no detectable lesions sensitive to the M. luteus extract

  5. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Hemschemeier, Anja; Happe, Thomas

    2011-08-01

    Oxygenic photosynthesis uses light as energy source to generate an oxidant powerful enough to oxidize water into oxygen, electrons and protons. Upon linear electron transport, electrons extracted from water are used to reduce NADP(+) to NADPH. The oxygen molecule has been integrated into the cellular metabolism, both as the most efficient electron acceptor during respiratory electron transport and as oxidant and/or "substrate" in a number of biosynthetic pathways. Though photosynthesis of higher plants, algae and cyanobacteria produces oxygen, there are conditions under which this type of photosynthesis operates under hypoxic or anaerobic conditions. In the unicellular green alga Chlamydomonas reinhardtii, this condition is induced by sulfur deficiency, and it results in the production of molecular hydrogen. Research on this biotechnologically relevant phenomenon has contributed largely to new insights into additional pathways of photosynthetic electron transport, which extend the former concept of linear electron flow by far. This review summarizes the recent knowledge about various electron sources and sinks of oxygenic photosynthesis besides water and NADP(+) in the context of their contribution to hydrogen photoproduction by C. reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effects of Cyanate and 2,3-Diphosphoglycerate on Sickling RELATIONSHIP TO OXYGENATION

    Science.gov (United States)

    Jensen, Michael; Bunn, H. Franklin; Halikas, George; Kan, Yuet Wai; Nathan, David G.

    1973-01-01

    Cyanate and 2,3-diphosphoglycerate (2,3-DPG) both influence the oxygen affinity of hemoglobin. The studies presented here concern the effects of these compounds on the sickling phenomenon. The inhibitory effect of cyanate on sickling is largely due to the fact that it increases the percentage of oxyhemoglobin S at a given oxygen tension. In addition, cyanate inhibits sickling by a mechanism that is independent of oxygenation. In this paper, we have demonstrated that the viscosity of carbamylated sickle blood was lower than that of non-carbamylated controls at the same oxygen saturation. Furthermore, carbamylation resulted in an increase in the minimum concentration of deoxy-sickle hemoglobin required for gelation. Like cyanate, 2,3-DPG affected sickling of intact erythrocytes by two mechanisms. Since 2,3-DPG decreases the percentage of oxyhemoglobin S at a given oxygen tension, sickling is enhanced. In addition, 2,3-DPG had a direct effect. When the intracellular 2,3-DPG concentration was increased in vitro, a greater percentage of cells were sickled at a given oxygen saturation. Conversely, sickling was inhibited in cells in which 2,3-DPG was artificially lowered. These data indicate that the enhancement of sickling by 2,3-DPG is in part independent of its influence on oxygen affinity. PMID:4729047

  7. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    Science.gov (United States)

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy.

    Science.gov (United States)

    Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham

    2007-10-01

    Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.

  9. Performance comparison of 15 transport ventilators.

    Science.gov (United States)

    Chipman, Daniel W; Caramez, Maria P; Miyoshi, Eriko; Kratohvil, Joseph P; Kacmarek, Robert M

    2007-06-01

    Numerous mechanical ventilators are designed and marketed for use in patient transport. The complexity of these ventilators differs considerably, but very few data exist to compare their operational capabilities. Using bench and animal models, we studied 15 currently available transport ventilators with regard to their physical characteristics, gas consumption (duration of an E-size oxygen cylinder), battery life, ease of use, need for compressed gas, ability to deliver set ventilation parameters to a test lung under 3 test conditions, and ability to maintain ventilation and oxygenation in normal and lung-injured sheep. Most of the ventilators tested were relatively simple to operate and had clearly marked controls. Oxygen cylinder duration ranged from 30 min to 77 min. Battery life ranged from 70 min to 8 hours. All except 3 of the ventilators were capable of providing various F(IO2) values. Ten of the ventilators had high-pressure and patient-disconnect alarms. Only 6 of the ventilators were able to deliver all settings as specifically set on the ventilator during the bench evaluation. Only 4 of the ventilators were capable of maintaining ventilation, oxygenation, and hemodynamics in both the normal and the lung-injured sheep. Only 2 of the ventilators met all the trial targets in all the bench and animal tests. With many of the ventilators, certain of the set ventilation parameters were inaccurate (differed by > 10% from the values from a cardiopulmonary monitor). The physical characteristics and high gas consumption of some of these ventilators may render them less desirable for patient transport.

  10. Effects of the differentiating agents sodium butyrate and N-methylformamide on the oxygen enhancement ratio of human colon tumor cells

    International Nuclear Information System (INIS)

    Hallows, K.R.; Bliven, S.F.; Leith, J.T.

    1988-01-01

    We have previously shown that chronic adaptation of human tumor cells to the differentiation-inducing agents N-methylformamide (NMF) and sodium butyrate (NAB) increases the sensitivity of oxic cells to graded single doses of X rays. These studies were carried out to define the sensitivity of hypoxic cells after adaptation. Clone A colon tumor cells were grown for three passages in medium containing 170 mM NMF or 2 mM NAB and irradiated in suspension culture, after gassing with either oxygen (60 min) or ultrapure nitrogen (90 min), and complete survival curves were generated. Using the linear-quadratic equation to describe the data, it was found that NMF and NAB produced increased X-ray killing of hypoxic cells. At the 10% level of survival, the dose-modifying factors were about 1.20 and 1.25 for NMF- and NAB-adapted hypoxic cells, respectively, as compared to hypoxic control cells. However, since both oxic and hypoxic cells exhibited increased sensitivity after NMF and NAB adaptation, there was no major change in the oxygen enhancement ratio

  11. Enhanced Oxygen Diffusion Within the Internal Oxidation Zone of Alloy 617 in Controlled Impurity Helium Environments from 1023 K to 1123 K (750 °C to 850 °C)

    Science.gov (United States)

    Gulsoy, Gokce; Was, Gary S.

    2015-04-01

    Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.

  12. On the importance of Major Baltic Inflows for oxygenation of the central Baltic Sea

    Science.gov (United States)

    Neumann, Thomas; Radtke, Hagen; Seifert, Torsten

    2017-02-01

    In December 2014, the third strongest salt water inflow into the Baltic Sea occurred since 1880. It was assumed that the inflow would turn the entire bottom water of the Baltic Sea from anoxic into oxic conditions for an extended period. However, already in late 2015, the central Eastern Baltic Sea had turned back into anoxic conditions. This rapid oxygen decline was in fact surprising since a weaker inflow in 2003 ventilated the Baltic Sea for a longer period of time. With the aid of an ecosystem model of the Baltic Sea, the two inflows in 2003 and 2014 were analyzed in detail. Although the 2014 inflow event was twice as strong as the 2003 inflow event, oxygen transport continued after the latter one, supplying about the same amount of oxygen again. In addition to the major inflow event, a series of smaller inflows in 2003 supplied the extra oxygen transport. Therefore, the strength of a major inflow event alone cannot be used to predict the oxygenation impact. Instead, it is necessary to consider smaller events, in particular those occurring just before and after a major inflow event, as well. An element tagging method showed that the share of oxygen imported across the Danish Straits on the total oxygen arriving at the central Eastern Baltic Sea is between 10% and 20%. Therefore, the oxygen concentration of the inflowing water seems to be of less importance for the oxygenation effect on the central Baltic Sea due to the strong dilution effect.

  13. Carefully designed oxygen-containing functional groups and defects of porous carbon spheres with UV-O3 treatment and their enhanced catalytic performance

    Science.gov (United States)

    Han, Weiliang; Huang, Xiaosheng; Lu, Gongxuan; Tang, Zhicheng

    2018-04-01

    In this paper, the support surface properties (surface oxygen-containing functional groups and structure defects) of porous carbon spheres (PCSs) were carefully designed by as UV assisted O3 technology. CO catalytic oxidation reactions performed over the supported Pd-Ce catalysts on modified porous carbon spheres. Results illustrated that the Pd-Ce/PCSs catalysts exhibited high CO catalytic activity, which were increased at first, and then decreased with UV assistant-O3 treatment time. The Pd-Ce/PCSs-30 catalyst exhibited superior activity and T100 was only 15 °C. Moreover, the Pd-Ce/PCSs-30 catalyst obtained an excellent stability, and 100% CO conversion could be maintained as the time on stream evolutes up to 16h in the presence of H2O in the feed. Based on characterization results, there were two main factors: (a) the surface area and pore volume were decreased with UV-O3 treatment, leading to the enhancement of Pd-Ce particle size, and the decrease of Pd-Ce nanoparticle dispersion and mass transfer efficiency, as well as the decrease of catalytic activity of Pd-Ce/PCSs, (b) the surface oxygen content and defect sites of PCSs were raised by UV-O3 treatment, which could improve surface loading of Pd, Ce and enhance Pdsbnd Osbnd Ce bonding interactions, thereby increasing the activity of Pd-Ce/PCSs.

  14. Design of a mixed ionic/electronic conducting oxygen transport membrane pilot module

    Energy Technology Data Exchange (ETDEWEB)

    Pfaff, E.M.; Kaletsch, A.; Broeckmann, C. [RWTH Aachen University, IWM, Aachen (Germany)

    2012-03-15

    In the last years, a lot of ceramic materials were developed that, at higher temperatures, have a high electrical conductivity and a high conductivity of oxygen ions. Such mixed ionic/electronic conductors can be used to produce high-purity oxygen. This work focuses on the realization of a pilot membrane module, with BSCF (Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}) perovskite selected as the membrane material. An amount of 500 kg of powder was industrially fabricated, spray-granulized and pressed into tubes. The best operation conditions concerning energy consumption were calculated, and a module reactor was designed operating at 850 C, with an air pressure of 15-20 bar on the feed site and a low vacuum of about 0.8 bar on the permeate site. Special emphasis was placed on joining alternatives for ceramic tubes in metallic bottoms. A first laboratory module was tested with a membrane area of 1 m{sup 2} and then advanced to a pilot module with 570 tubes and a capability of more than 300 000 L of pure oxygen per day. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Alin [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Zhaojun [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Jie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xue Gaofeng; Fan Fenliang [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liang Yongchao, E-mail: ycliang@caas.ac.cn [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003 (China)

    2009-12-15

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L{sup -1} Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H{sub 2}O{sub 2} concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  16. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    International Nuclear Information System (INIS)

    Song Alin; Li Zhaojun; Zhang Jie; Xue Gaofeng; Fan Fenliang; Liang Yongchao

    2009-01-01

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L -1 Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H 2 O 2 concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  17. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    OpenAIRE

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2010-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p ...

  18. Radiosensitization of mouse skin by oxygen and depletion of glutathione

    International Nuclear Information System (INIS)

    Stevens, Graham; Joiner, Michael; Joiner, Barbara; Johns, Helen; Denekamp, Juliana

    1995-01-01

    Purpose: To determine the oxygen enhancement ratio (OER) and shape of the oxygen sensitization curve of mouse foot skin, the extent to which glutathione (GSH) depletion radiosensitized skin, and the dependence of such sensitization on the ambient oxygen tension. Methods and Materials: The feet of WHT mice were irradiated with single doses of 240 kVp x-rays while mice were exposed to carbogen or gases with oxygen/nitrogen mixtures containing 8-100% O 2 . The anoxic response was obtained by occluding the blood supply to the leg of anesthetized mice with a tourniquet, surrounding the foot with nitrogen, and allowing the mice to breathe 10% O 2 . Further experiments were performed to assess the efficacy of this method to obtain an anoxic response. Radiosensitivity of skin was assessed using the acute skin-reaction assay. Glutathione levels were modified using two schedules of dl-buthionine sulphoximine (BSO) and diethylmaleate (DEM), which were considered to produce extensive and intermediate levels of GSH depletion in the skin of the foot during irradiation. Results: Carbogen caused the greatest radiosensitization of skin, with a reproducible enhancement of 2.2 relative to the anoxic response. The OER of 2.2 is lower than other reports for mouse skin. This may indicate that the extremes of oxygenation were not produced, although there was no direct evidence for this. When skin radiosensitivity was plotted against the logarithm of the oxygen tension in the ambient gas, a sigmoid curve with a K value of 17-21% O 2 in the ambient gas was obtained. Depletion of GSH caused minimal radiosensitization when skin was irradiated under anoxic or well-oxygenated conditions. Radiosensitization by GSH depletion was maximal at intermediate oxygen tensions of 10-21% O 2 in the ambient gas. Increasing the extent of GSH depletion led to increasing radiosensitization, with sensitization enhancement ratios of 1.2 and 1.1, respectively, for extensive and intermediate levels of GSH

  19. Enhancing Transportation Education through On-line Simulation using an Agent-Based Demand and Assignment Model

    OpenAIRE

    Shanjiang Zhu; Feng Xie; David Levinson

    2005-01-01

    This research explores the effectiveness of using simulation as a tool for enhancing classroom learning in the Civil Engineering Department of the University of Minnesota at Twin Cities. The authors developed a modern transportation planning software package, Agent-based Demand and Assignment Model (ADAM), that is consistent with our present understanding of travel behavior, that is platform independent, and that is easy to learn and is thus usable by students. An in-class project incorporate...

  20. Charge carrier transport and collection enhancement of copper indium diselenide photoactive nanoparticle-ink by laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J., E-mail: gjcheng@purdue.edu [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Zhang, Martin Y. [School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Wang, Yuefeng [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Das, Suprem R.; Bhat, Venkataprasad S. [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); Huang, Fuqiang [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-09-15

    There has been increasing needs for cost-effective and high performance thin film deposition techniques for photovoltaics. Among all deposition techniques, roll-to-roll printing of nanomaterials has been a promising method. However, the printed thin film contains many internal imperfections, which reduce the charge-collection performance. Here, direct pulse laser crystallization (DPLC) of photoactive nanoparticles-inks is studied to meet this challenge. In this study, copper indium selenite (CIS) nanoparticle-inks is applied as an example. Enhanced crystallinity, densified structure in the thin film is resulted after DLPC under optimal conditions. It is found that the decreased film internal imperfections after DPLC results in reducing scattering and multi-trapping effects. Both of them contribute to better charge-collection performance of CIS absorber material by increasing extended state mobility and carrier lifetime, when carrier transport and kinetics are coupled. Charge carrier transport was characterized after DPLC, showing mobility increased by 2 orders of magnitude. Photocurrent under AM1.5 illumination was measured and shown 10 times enhancement of integrated power density after DPLC, which may lead to higher efficiency in photo-electric energy conversion.