WorldWideScience

Sample records for enhance mercury phytoremediation

  1. Genetic engineering to enhance mercury phytoremediation.

    Science.gov (United States)

    Ruiz, Oscar N; Daniell, Henry

    2009-04-01

    Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (approximately 400 microM PMA) or inorganic mercury (approximately 500 microM HgCl(2)), accumulating Hg in roots surpassing the concentration in soil (approximately 2000 microg/g). However, none of these plants were tested in the field to demonstrate real potential of this approach. Availability of metal transporters, translocators, chelators and the ability to express membrane proteins could further enhance mercury phytoremediation capabilities.

  2. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    OpenAIRE

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-01-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) ...

  3. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    Science.gov (United States)

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  4. GENETIC ENGINEERING TO ENHANCE MERCURY PHYTOREMEDIATION

    OpenAIRE

    Ruiz, Oscar N.; Daniell, Henry

    2009-01-01

    Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (~400 μM PMA) or ino...

  5. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  6. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  7. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  8. Application of organic matter to enhance phytoremediation of mercury contaminated soils using local plant species: a case study on small-scale gold mining locations in Banyuwangi of East Java

    Directory of Open Access Journals (Sweden)

    N. Muddarisna

    2014-10-01

    Full Text Available The discharge of small-scale gold mine tailing to agricultural lands at Pesanggaran village of Banyuwangi Regency caused soil degradation as indicated by reduced crop production. This soil degradation is mainly due to the toxicity of mercury contained in the tailing. The purpose of this study was to explore the potential of three local plant species, i.e. Lindernia crustacea, Digitaria radicosa, and Cyperus kyllingia for phytoremediation of agricultural land contaminated gold mine waste containing mercury, and its influence on the growth of maize. Six treatments (three plant species, and two levels of organic matter application were arranged in a randomized block design with three replicates. Maize was grown on soil after phytoremediation for 8 weeks. The results showed that among the three plant species tested, Cyperus kyllingia was the potential candidate plant species for phytoremediation of soil contaminated with gold mine tailing containing mercury because of its ability to accumulate mercury from 32.06 to 73.90 mg / kg of soil in 60 days. Phytoremediation of mercury contaminated soil using Cyperus kyllingia using increased maize yield by 126% compared to that the biomass yield of maize grown on soil without phytoremediation. Induce phytoremediation needs to be carried out to accelerate the process of remediation of mercury contaminated soils

  9. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1.

    Science.gov (United States)

    Zhang, Yuanyuan; Liu, Junhong; Zhou, Yuanming; Gong, Tingyun; Wang, Jing; Ge, Yinlin

    2013-09-15

    Soil contamination is a global environmental problem and many efforts have been made to find efficient remediation methods over the last decade. Moreover, remediation of mixed contaminated soils are more difficult. In the present study, transgenic alfalfa plants pKHCG co-expressing glutathione S-transferase (GST) and human P450 2E1 (CYP2E1) genes were used for phytoremediation of mixed mercury (Hg)-trichloroethylene (TCE) contaminants. Simultaneous expression of GST and CYP2E1 may produce a significant synergistic effect, and leads to improved resistance and accumulation to heavy metal-organic complex contaminants. Based on the tolerance and accumulation assays, pKHCG transgenic plants were more resistant to Hg/TCE complex pollutants and many folds higher in Hg/TCE-accumulation than the non-transgenic control plants in mixed contaminated soil. It is confirmed that GST and CYP2E1 co-expression may be a useful strategy to help achieve mixed heavy metal-organic pollutants phytoremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Application of Organic Matter to Enhance Phytoremediation of Mercury Contaminated Soils Using Local Plant Species: a Case Study on Small-scale Gold Mining Locations in Banyuwangi of East Java

    OpenAIRE

    Muddarisna, N; Siahaan, B C

    2014-01-01

    The discharge of small-scale gold mine tailing to agricultural lands at Pesanggaran village of Banyuwangi Regency caused soil degradation as indicated by reduced crop production. This soil degradation is mainly due to the toxicity of mercury contained in the tailing. The purpose of this study was to explore the potential of three local plant species, i.e. Lindernia crustacea, Digitaria radicosa, and Cyperus kyllingia for phytoremediation of agricultural land contaminated gold mine waste conta...

  11. Microbiological stimulation of phytoremediation process using Salvinia natans to mercury contamined water

    OpenAIRE

    Filyarovskaya Viktoriya; Sitarska Magdalena; Traczewska Teodora; Wolf Mirela

    2017-01-01

    An alternative to traditional cleaning methods of heavy metals in the water environment is phytoremediation. They efficiency depends on used technological process conditions as well as plant species. One of the most dangerous metallic elements mercury plays a particular role, which is a trace element and a physiologically foreign in living organisms. Mercury has a high degree of toxicity with strong affinity to thiol groups. This may cause an adverse effect on the enzymatic processes and cons...

  12. Phytoremediation Of Mercury And Methylmercury Contaminated Sediments By Water Hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Phytoremediation has potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated f...

  13. Bench-Scale Investigation Of Mercury Phytoremediation By Water Hyacinths (Eichhornia crassipes) In Heavily Contaminated Sediments

    Science.gov (United States)

    Phytoremediation has the potential to be implemented at mercury (Hg) and methylmercury (MeHg) contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associat...

  14. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.

    Science.gov (United States)

    Meagher, Richard B; Heaton, Andrew C P

    2005-12-01

    Plants have many natural properties that make them ideally suited to clean up polluted soil, water, and air, in a process called phytoremediation. We are in the early stages of testing genetic engineering-based phytoremediation strategies for elemental pollutants like mercury and arsenic using the model plant Arabidopsis. The long-term goal is to develop and test vigorous, field-adapted plant species that can prevent elemental pollutants from entering the food-chain by extracting them to aboveground tissues, where they can be managed. To achieve this goal for arsenic and mercury, and pave the way for the remediation of other challenging elemental pollutants like lead or radionucleides, research and development on native hyperaccumulators and engineered model plants needs to proceed in at least eight focus areas: (1) Plant tolerance to toxic elementals is essential if plant roots are to penetrate and extract pollutants efficiently from heterogeneous contaminated soils. Only the roots of mercury- and arsenic-tolerant plants efficiently contact substrates heavily contaminated with these elements. (2) Plants alter their rhizosphere by secreting various enzymes and small molecules, and by adjusting pH in order to enhance extraction of both essential nutrients and toxic elements. Acidification favors greater mobility and uptake of mercury and arsenic. (3) Short distance transport systems for nutrients in roots and root hairs requires numerous endogenous transporters. It is likely that root plasma membrane transporters for iron, copper, zinc, and phosphate take up ionic mercuric ions and arsenate. (4) The electrochemical state and chemical speciation of elemental pollutants can enhance their mobility from roots up to shoots. Initial data suggest that elemental and ionic mercury and the oxyanion arsenate will be the most mobile species of these two toxic elements. (5) The long-distance transport of nutrients requires efficient xylem loading in roots, movement through the

  15. Microbiological stimulation of phytoremediation process using Salvinia natans to mercury contamined water

    Science.gov (United States)

    Filyarovskaya, Viktoriya; Sitarska, Magdalena; Traczewska, Teodora; Wolf, Mirela

    2017-11-01

    An alternative to traditional cleaning methods of heavy metals in the water environment is phytoremediation. They efficiency depends on used technological process conditions as well as plant species. One of the most dangerous metallic elements mercury plays a particular role, which is a trace element and a physiologically foreign in living organisms. Mercury has a high degree of toxicity with strong affinity to thiol groups. This may cause an adverse effect on the enzymatic processes and consequently inhibiting the physiological functions. Because of high risk for human health, water environment treatment from mercury is essential proecological action. Mercury removal studies were conducted using Salvinia natans pleustofit, sampled from its natural water environment. In the first step, epiphytic bacteria, which was resistant to high concentrations of mercury (0,6 mgHg/l), was isolated from the plant and than selected by the tiles gradient mthod. In the next step, the identification using molecular biology methods was made. In the following step plant Salvinia natans was exposure to high levels of mercury in the presence of the three isolated Pseudomonas strains with exceptional resistance characteristics to environmental factors. Has been found a positive bacteria effect on the plant condition because the selected strains belong to Pseudomonas species producing materials supporting plant growth. The use of microbial stimulation to phytoremediation by hyperaccumulator Salvinia natans can multiply the effectiveness of the process.

  16. Microbiological stimulation of phytoremediation process using Salvinia natans to mercury contamined water

    Directory of Open Access Journals (Sweden)

    Filyarovskaya Viktoriya

    2017-01-01

    Full Text Available An alternative to traditional cleaning methods of heavy metals in the water environment is phytoremediation. They efficiency depends on used technological process conditions as well as plant species. One of the most dangerous metallic elements mercury plays a particular role, which is a trace element and a physiologically foreign in living organisms. Mercury has a high degree of toxicity with strong affinity to thiol groups. This may cause an adverse effect on the enzymatic processes and consequently inhibiting the physiological functions. Because of high risk for human health, water environment treatment from mercury is essential proecological action. Mercury removal studies were conducted using Salvinia natans pleustofit, sampled from its natural water environment. In the first step, epiphytic bacteria, which was resistant to high concentrations of mercury (0,6 mgHg/l, was isolated from the plant and than selected by the tiles gradient mthod. In the next step, the identification using molecular biology methods was made. In the following step plant Salvinia natans was exposure to high levels of mercury in the presence of the three isolated Pseudomonas strains with exceptional resistance characteristics to environmental factors. Has been found a positive bacteria effect on the plant condition because the selected strains belong to Pseudomonas species producing materials supporting plant growth. The use of microbial stimulation to phytoremediation by hyperaccumulator Salvinia natans can multiply the effectiveness of the process.

  17. Enhanced phytoremediation in the vadose zone: Modeling and column studies

    Science.gov (United States)

    Sung, K.; Chang, Y.; Corapcioglu, M.; Cho, C.

    2002-05-01

    Phytoremediation is a plant-based technique with potential for enhancing the remediation of vadoese zone soils contaminated by pollutants. The use of deep-rooted plants is an alternative to conventional methodologies. However, when the phytoremediation is applied to the vadose zone, it might have some restrictions since it uses solely naturally driven energy and mechanisms in addition to the complesxity of the vadose zone. As a more innovative technique than conventional phytoremediation methods, air injected phytoremediation technique is introduced to enhance the remediation efficiency or to apply at the former soil vapor extraction or bio venting sites. Effects of air injection, vegetation treatment, and air injection with vegetation treatments on the removal of hydrocarbon were investigated by column studies to simulate the field situation. Both the removal efficiency and the microbial activity were highest in air-injected and vegetated column soils. It was suggested that increased microorganisms activity stimulated by plant root exudates enhanced biodegradation of hydrocarbon compounds. Air injection provided sufficient opportunity for promoting the microbial activity at depths where the conditions are anaerobic. Air injection can enhance the physicochemical properties of the medium and contaminant and increase the bioavailability i.e., the plant and microbial accessibility to the contaminant. A mathematical model that can be applied to phytoremediation, especially to air injected phytoremediation, for simulating the fate and the transport of a diesel contaminant in the vadose zone is developed. The approach includes a two-phase model of water flow in vegetated and unplanted vadose zone soil. A time-specific root distribution model and a microbial growth model in the rhizosphere of vegetated soil were combined with an unsaturated soil water flow equation as well as with a contaminant transport equation. The proposed model showed a satisfactory representation of

  18. Phytoremediation.

    Science.gov (United States)

    Phytoremediation, the use of green plants to treat and control wastes in water, soil, and air, is an important part of the new field of ecological engineering. In situ and ex situ applications are governed by site soil and water characteristics, nutrient sustainability, meteorolo...

  19. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and

  20. Electrokinetic-enhanced phytoremediation of soils: status and opportunities.

    Science.gov (United States)

    Cameselle, Claudio; Chirakkara, Reshma A; Reddy, Krishna R

    2013-10-01

    Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation-electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    Science.gov (United States)

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.

    Science.gov (United States)

    Abhilash, P C; Jamil, Sarah; Singh, Nandita

    2009-01-01

    Phytoremediation--the use of plants to clean up polluted soil and water resources--has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives

  3. Phytoremediation of Mercury- and Methyl Mercury-Contaminated Sediments by Water Hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Phytoremediation has the potential for implementation at Hg- (Hg) and methylHg (MeHg)-contaminated sites. Water hyacinths (Eichhornia crassipes) were investigated for their ability to assimilate Hg and MeHg into plant biomass, in both aquatic and sediment-associated forms...

  4. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax].

    Science.gov (United States)

    Han, Zhiping; Hu, Xiaobin; Hu, Zhenghai

    2005-05-01

    With a pot culture of simulated mercury (Hg) and cadmium (Cd)-polluted wetland, this paper studied the capability of Arundo donax in accumulating these heavy metals, and their distribution in the plant. The results showed that after grown in a 101 mg.kg(-1) Hg-polluted wetland for 8 months, the Hg-concentrating capability of Arundo donax was in order of root > stem > leaf, and the Hg concentration in its aboveground parts was 200 +/- 20 mg.kg(-1) (DW); while in the case of 115 mg.kg(-1) Cd-pollution, the Cd-concentrating capability was in order of leaf > root > stem, and the Cd concentration in leaf was 160 +/- 26 mg.kg(-1) (DW). The heavy metals concentration in Arundo donax organs increased with its growth time, being 30%-50% higher for 8 months than for 4 months. The BCF (Bio-concentration factor) decreased with increasing heavy metals concentration. In polluted wetland, the BCFs of Hg by the leaf and stem were 1.9 and 2.1, and those of Cd were 1.5 and 0.3, respectively; while in unpolluted wetland, the concentration of Hg and Cd was 6.8 and 8.5 mg.kg(-1), the BCFs of Hg by the leaf and stem were 6.8 and 12.2, and those of Cd were 7.0 and 2.7, respectively. It was indicated that Arundo donax not only had the characters of large biomass, exuberant root, and good adaptability, but also exhibited high tolerance and concentrating capability to Cd and Hg.

  5. Phyto-toxicity and Phyto-remediation Potential of Mercury in Indian Mustard and Two Ferns with Mercury Contaminated Water and Oak Ridge Soil

    International Nuclear Information System (INIS)

    Su, Y.; Han, F.X.; Chen, J.; Shiyab, S.; Monts, D.L.; Monts, D.L.

    2009-01-01

    Phyto-remediation is an emerging technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. Certain fern and Indian mustard species have been suggested as candidates for phyto-remediation of heavy metal-contaminated soil and water because of their high efficiency of accumulating metals in shoots and their high biomass production. Currently, no known hyper-accumulator plants for mercury have been found. Here we report the Hg uptake and phyto-toxicity by two varieties of fern and Indian mustard. Their potential for Hg phyto-remediation application was also investigated. Anatomical, histochemical and biochemical approaches were used to study mercury phyto-toxicity as well as anti-oxidative responses in ferns [Chinese brake fern (P. vittata) and Boston fern (N. exaltata)] and Indian mustard (Florida broadleaf and longstanding) (Brassica juncea L.) grown in a hydroponic system. Phyto-remediation potentials of these plant species were estimated based on their Hg uptake performance with contaminated soils from Oak Ridge (TN, USA). Our results show that mercury exposure led to severe phyto-toxicity accompanied by lipid peroxidation and rapid accumulation of hydrogen peroxide (H 2 O 2 ) in P. vittata, but not in N. exaltata. The two cultivars of fern responded differently to mercury exposure in terms of anti-oxidative enzymes (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; glutathione reductase, GR). Mercury exposure resulted in the accumulation of ascorbic acid (ASA) and glutathione (GSH) in the shoots of both cultivars of fern. On the other hand, Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H 2 O 2 , resulting in lower H 2 O 2 in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. In both varieties of fern and Indian

  6. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke)

    OpenAIRE

    Shiqi Lv; Bin Yang; Yixuan Kou; Jun Zeng; Ruixiong Wang; Yumeng Xiao; Fencan Li; Ying Lu; Yuwen Mu; Changming Zhao

    2018-01-01

    This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress t...

  7. Enhanced phytoremediation of arsenic contaminated land.

    Science.gov (United States)

    Jankong, P; Visoottiviseth, P; Khokiattiwong, S

    2007-08-01

    In an attempt to clean up arsenic (As) contaminated soil, the effects of phosphorus (P) fertilizer and rhizosphere microbes on arsenic accumulation by the silverback fern, Pityrogramma calomelanos, were investigated in both greenhouse and field experiments. Field experiments were conducted in Ron Phibun District, an As-contaminated area in Thailand. Soil (136-269 microg As g(-1)) was collected there and used in the greenhouse experiment. Rhizosphere microbes (bacteria and fungi) were isolated from roots of P. calomelanos growing in Ron Phibun District. The results showed that P-fertilizer significantly increased plant biomass and As accumulation of the experimental P. calomelanos. Rhizobacteria increased significantly the biomass and As content of the test plants. Thus, P-fertilizer and rhizosphere bacteria enhanced As-phytoextraction. In contrast, rhizofungi reduced significantly As concentration in plants but increased plant biomass. Therefore, rhizosphere fungi exerted their effects on phytostabilization.

  8. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, C M [US Army Cold Regions Research and Engineering Lab., Hanover, NH (United States); Wolf, D C [Arkansas Univ., Fayetteville, AR (United States)

    1999-01-01

    The U.S. Department of Defense has considered phytoremediation to be a feasible technology to clean up contaminated sites in remote, cold regions. In cold regions, contaminated soil treatment rates are reduced by low temperatures and short treatment seasons. One technology that overcomes these limitations is rhizosphere-enhanced biotreatment which is a low-cost, simple technology that stimulates indigenous microorganisms. A study was conducted in which rhizosphere-enhanced treatment was compared to natural attenuation at a petroleum-contaminated site in Fairbanks, Alaska. The effects of vegetation and nutrient additions on remediation of soils contaminated with both diesel and crude oil were examined. Soil total petroleum hydrocarbon (TPH) concentrations in both treatments decreased relative to the initial TPH concentrations. After 640 days of treatment, the rhizosphere treatment had significantly lower TPH concentrations. It was concluded that an improved understanding of the time-dependent relationships between contaminant concentration changes and microbial community changes, along with improved techniques to characterize microbial communities, could provide a useful tool for monitoring the functioning of phytoremediation. 25 refs., 8 figs.

  9. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation

    International Nuclear Information System (INIS)

    Reynolds, C.M.; Wolf, D.C.

    1999-01-01

    The U.S. Department of Defense has considered phytoremediation to be a feasible technology to clean up contaminated sites in remote, cold regions. In cold regions, contaminated soil treatment rates are reduced by low temperatures and short treatment seasons. One technology that overcomes these limitations is rhizosphere-enhanced biotreatment which is a low-cost, simple technology that stimulates indigenous microorganisms. A study was conducted in which rhizosphere-enhanced treatment was compared to natural attenuation at a petroleum-contaminated site in Fairbanks, Alaska. The effects of vegetation and nutrient additions on remediation of soils contaminated with both diesel and crude oil were examined. Soil total petroleum hydrocarbon (TPH) concentrations in both treatments decreased relative to the initial TPH concentrations. After 640 days of treatment, the rhizosphere treatment had significantly lower TPH concentrations. It was concluded that an improved understanding of the time-dependent relationships between contaminant concentration changes and microbial community changes, along with improved techniques to characterize microbial communities, could provide a useful tool for monitoring the functioning of phytoremediation. 25 refs., 8 figs

  10. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.

    Science.gov (United States)

    Rodriguez, Luis; Rincón, Jesusa; Asencio, Isaac; Rodríguez-Castellanos, Laura

    2007-01-01

    High-biomass crops can be considered as an alternative to hyperaccumulator plants to phytoremediate soils contaminated by heavy metals. In order to assess their practical capability for the absorption and accumulation of Hg in shoots, barley, white lupine, lentil, and chickpea were tested in pot experiments using several growth substrates. In the first experimental series, plants were grown in a mixture of vermiculite and perlite spiked with 8.35 microg g(-1) d.w. of soluble Hg. The mercury concentration of the plants' aerial tissues ranged from 1.51 to 5.13 microg g(-1) d.w. with lentil and lupine showing the highest values. In a second experiment carried out using a Hg-polluted soil (32.16 microg g(-1) d.w.) collected from a historical mining area (Almadén, Spain), the crop plants tested only reached shoot Hg concentration up to 1.13 microg g(-1) d.w. In the third experimental series, the Almadén soil was spiked with 1 microg g(-1) d.w. of soluble Hg; as a result, mercury concentrations in the plant shoots increased approximately 6 times for lupine, 5 times for chickpea, and 3.5 times for barley and lentil, with respect to those obtained with the original soil without Hg added. This marked difference was attributed to the low availability of Hg in the original Almadin soil and its subsequent increase in the Hg-spiked soil. The low mercury accumulation yields obtained for all plants do not make a successful decontamination of the Almadén soils possible byphytoremediation using crop plants. However, since the crops tested can effectively decrease the plant-available Hg level in this soil, their use could, to some extent, reduce the environmental risk of Hg pollution in the area.

  11. GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Artur Piński

    2017-07-01

    Full Text Available Phytoremediation is an emerging technology that uses plants in order to cleanup pollutants including xenobiotics and heavy metals from soil, water and air. Inoculation of plants with plant growth promoting endophytic and rhizospheric bacteria can enhance efficiency of phytoremediation. Genomic analysis of four plant-associated strains belonging to the Stenotrophomonas maltophilia species revealed the presence of genes encoding proteins involved in plant growth promotion, biocontrol of phytopathogens, biodegradation of xenobiotics, heavy metals resistance and plant-bacteria-environment interaction. The results of this analysis suggest great potential of bacteria belonging to Stenotrophomonas maltophilia species in enhancing phytoremediation efficiency.

  12. Phytoremediation of heavy metals with several efficiency enhancer ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Key words: phytoremediation, heavy metal, plant growth promoting rhizobacteria, multi-functional method. ... population in the twentieth century, heavy metal ... This natural and environmental friendly technology is.

  13. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    Science.gov (United States)

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Effects of enhanced CO2 fertilization on phytoremediation of DEHP-polluted soil].

    Science.gov (United States)

    Diao, Xiao-Jun; Wang, Shu-Guang; Mu, Nan

    2013-03-01

    Low efficiency of remediation is one of the key issues to be solved in phytoremediation technology. Based on the necessity of reducing CO2 emission in China and the significance of CO2 in plant photosynthesis, this paper studied the effects of enhanced CO2 fertilization on the phytoremediation of polluted soil, selecting the C3 plant mung bean (Vigna radiate) and the C4 plant maize (Zea mays) as test plants for phytoremediation and the DEHP as the target pollutant. DEHP pollution had negative effects on the growth and rhizosphere micro-environment of the two plants. After enhanced CO2 fertilization, the aboveground dry mass of the two plants and the alkaline phosphatase activity in the rhizosphere soils of the two plants increased, the COD activity in the leaves of the two plants decreased, the microbial community in the rhizosphere soils shifted, and the numbers of the microbes with DEHP-tolerance in the rhizosphere soils increased. These changes indicated that enhanced CO2 fertilization could promote the plant growth and the plant tolerance to DEHP stress, and improve the rhizosphere micro-environment. Enhanced CO2 fertilization also increased the DEHP uptake by the two plants, especially their underground parts. All these effects induced the residual DEHP concentration in the rhizospheres of the two plants, especially that of mung bean, decreased obviously, and the phytoremediation efficiency increased. Overall, enhanced CO2 fertilization produced greater effects on C3 plant than on C4 plant. It was suggested that enhanced CO2 fertilization could be a useful measure to enhance the efficiency of phytoremediation.

  15. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke

    Directory of Open Access Journals (Sweden)

    Shiqi Lv

    2018-02-01

    Full Text Available This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+ contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction and LZJ119 (a long period of vegetative growth exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content. The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg-1 mercury. The MDA (malondialdehyde content increased whereas and the Pn (net photosynthetic rate, Fv∕Fm (the maximum quantum yield of PSII photochemistry and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg-1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate—low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.

  16. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke).

    Science.gov (United States)

    Lv, Shiqi; Yang, Bin; Kou, Yixuan; Zeng, Jun; Wang, Ruixiong; Xiao, Yumeng; Li, Fencan; Lu, Ying; Mu, Yuwen; Zhao, Changming

    2018-01-01

    This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg 2+ ) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg -1 mercury. The MDA (malondialdehyde) content increased whereas and the P n (net photosynthetic rate), F v ∕ F m (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg -1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate-low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.

  17. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    Science.gov (United States)

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Se enhanced phytoremediation of diesel in soil by Trifolium repens.

    Science.gov (United States)

    Xi, Ying; Song, Yizhi; Johnson, David M; Li, Meng; Liu, Huigang; Huang, Yingping

    2018-06-15

    A pot-culture experiment was conducted to assess the effects of selenium (Se) (0.5 mg kg -1 ) on Trifolium repens exposed to various levels of diesel (0, 15, 20, 25 g kg -1 ) for 30 days and 60 days. Exposure to diesel for 60 day led to concentration-dependent decreases in root morphogenesis, chlorophyll content and CAT activity, and to dose-dependent increases in MDA content and SOD activity. The residual diesel concentration in soil increased and the removal efficiency decreased with soil diesel concentration. The chlorophyll content and residual diesel concentration after were slightly higher at 30 days than at 60days. Application of Se to soil increased Trifolium repens tolerance to diesel and significantly increased the phytoremediation effect at 60 days, with a removal rate of 36 ± 8%, compared to 28 ± 7% in the control. These results contribute to the ongoing effort to develop an effective phytoremediation system for soils highly contaminated by diesel. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Successful full-scale deployments of advanced PGPR enhanced phytoremediation systems (PEPS) for decontamination of petroleum and salt impacted soils

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.; Huang, X.D.; Gerhardt, K.; Yu, X.M.; Liddycoat, S.; Lu, X.; Nykamp, J.; McCallum, B.; MacNeill, G.; Mosley, P.; Gurska, J.; Knezevich, N.; Zhong, H.; Gerwing, P. [Waterloo Univ., ON (Canada)

    2010-07-01

    This PowerPoint presentation described a phytoremediation system designed to remediate salt and petroleum contaminated sites. Phytoremediation techniques are cheaper than traditional methods of remediating soils. The phytoremediation process is comprised of volatilization, phytodegradation, and chelation processes. Plants uptake contaminants via a rhizodegradation process. The plants provide biomass for rapid remediation with a restoration time frame of between 2 to 3 years. PGPR enhanced phytoremediation systems (PEPS) have been studied over a 10 year period and successfully applied at polycyclic hydrocarbon (PHC) contaminated sites, gas stations, and salt-contaminated sites throughout Canada. Soils are tilled in order to expose contaminants to sunlight. hydrocarbon-degrading bacteria are then applied, followed by the application of a plant growth promoting rhizobacteria (PGPR) phytoremediation system that is typically applied to grass species prior to planting. Case studies of full-scale sites used to prove the concept for both salt and hydrocarbon contaminated soils were presented. tabs., figs.

  20. An investigation of the possibility of mercury phytoremediation from Bandar ImamChlor-alkali plants' wastewater using Phragmites australis

    International Nuclear Information System (INIS)

    Tayebi, L.; Hamidian, A.H.; Danehkar, A.; Poorbagher, H.

    2016-01-01

    The Petrochemical industry is the most important and most widely active industries in the country. Due to the variety and complexity of industrial products, it also produces a wild range of pollutants. Mercury waste disposal from Chlor-alkali units is one of the fundamental problems of this industry. Various studies have shown that Phytoremediation system for removal of mercury from aqueous solutions is very efficient and, in some cases up to 95% of mercury has been removed from the solution. The purpose of this study was to evaluate the ability of common reed (Phragmites australis) in the removal of mercury from the Chlor-alkali effluent in Bandar Imam Petrochemical. Plant samples Harvested from Shadegan wetland were cultured hydroponically in plastic aquariums. Effluent samples which were taken from Chlor-alkali plants were added to the culture medium. An aquarium containing wastewater, water and nutrients was considered as control. Mercury concentrations in water and plant at 1, 3, 5 and 7 days were measured by Varian Spectra 220 Atomic Absorption Spectroscopy. The results showed that Time has a direct effect on mercury up taking by common reed. The common Reed absorption average was 2657.25 ppm within 7 days, that shows a high capacity of mercury absorption from Chlor-alkali plant effluents. Also In the study period, 96.25% of mercury were removed from common reed aquarium effulgent water.

  1. Phytoremediation of Ionic and Methylmercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Richard Meagher

    2006-01-20

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species.

  2. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Teixeira, Catarina; Almeida, C. Marisa R.; Nunes da Silva, Marta; Bordalo, Adriano A.; Mucha, Ana P.

    2014-01-01

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed

  3. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Catarina [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Almeida, C. Marisa R.; Nunes da Silva, Marta [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Bordalo, Adriano A. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Mucha, Ana P., E-mail: amucha@ciimar.up.pt [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed.

  4. Phytoremediation of mercury in pristine and crude oil contaminated soils: Contributions of rhizobacteria and their host plants to mercury removal.

    Science.gov (United States)

    Sorkhoh, N A; Ali, N; Al-Awadhi, H; Dashti, N; Al-Mailem, D M; Eliyas, M; Radwan, S S

    2010-11-01

    The rhizospheric soils of three tested legume crops: broad beans (Vicia faba), beans (Phaseolus vulgaris) and pea (Pisum sativum), and two nonlegume crops: cucumber (Cucumis sativus) and tomato, (Lycopersicon esculentum) contained considerable numbers (the magnitude of 10(5)g(-1) soil) of bacteria with the combined potential for hydrocarbon-utilization and mercury-resistance. Sequencing of the 16S rRNA coding genes of rhizobacteria associated with broad beans revealed that they were affiliated to Citrobacter freundii, Enterobacter aerogenes, Exiquobacterium aurantiacum, Pseudomonas veronii, Micrococcus luteus, Brevibacillus brevis, Arthrobacter sp. and Flavobacterium psychrophilum. These rhizobacteria were also diazotrophic, i.e. capable of N(2) fixation, which makes them self-sufficient regarding their nitrogen nutrition and thus suitable remediation agents in nitrogen-poor soils, such as the oily desert soil. The crude oil attenuation potential of the individual rhizobacteria was inhibited by HgCl(2), but about 50% or more of this potential was still maintained in the presence of up to 40 mgl(-1) HgCl(2). Rhizobacteria-free plants removed amounts of mercury from the surrounding media almost equivalent to those removed by the rhizospheric bacterial consortia in the absence of the plants. It was concluded that both the collector plants and their rhizospheric bacterial consortia contributed equivalently to mercury removal from soil. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Enhancement of Phosphate Absorption by Garden Plants by Genetic Engineering: A New Tool for Phytoremediation

    Directory of Open Access Journals (Sweden)

    Keisuke Matsui

    2013-01-01

    Full Text Available Although phosphorus is an essential factor for proper plant growth in natural environments, an excess of phosphate in water sources causes serious pollution. In this paper we describe transgenic plants which hyperaccumulate inorganic phosphate (Pi and which may be used to reduce environmental water pollution by phytoremediation. AtPHR1, a transcription factor for a key regulator of the Pi starvation response in Arabidopsis thaliana, was overexpressed in the ornamental garden plants Torenia, Petunia, and Verbena. The transgenic plants showed hyperaccumulation of Pi in leaves and accelerated Pi absorption rates from hydroponic solutions. Large-scale hydroponic experiments indicated that the enhanced ability to absorb Pi in transgenic torenia (AtPHR1 was comparable to water hyacinth a plant that though is used for phytoremediation causes overgrowth problems.

  6. Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard

    International Nuclear Information System (INIS)

    LeDuc, Danika L.; AbdelSamie, Manal; Montes-Bayon, Maria; Wu, Carol P.; Reisinger, Sarah J.; Terry, Norman

    2006-01-01

    A major goal of our selenium (Se) phytoremediation research is to use genetic engineering to develop fast-growing plants with an increased ability to tolerate, accumulate, and volatilize Se. To this end we incorporated a gene (encoding selenocysteine methyltransferase, SMT) from the Se hyperaccumulator, Astragalus bisulcatus, into Indian mustard (LeDuc, D.L., Tarun, A.S., Montes-Bayon, M., Meija, J., Malit, M.F., Wu, C.P., AbdelSamie, M., Chiang, C.-Y., Tagmount, A., deSouza, M., Neuhierl, B., Boeck, A., Caruso, J., Terry, N., 2004. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation Plant Physiol. 135, 377-383.). The resulting transgenic plants successfully enhanced Se phytoremediation in that the plants tolerated and accumulated Se from selenite significantly better than wild type. However, the advantage conferred by the SMT enzyme was much less when Se was supplied as selenate. In order to enhance the phytoremediation of selenate, we developed double transgenic plants that overexpressed the gene encoding ATP sulfurylase (APS) in addition to SMT, i.e., APS x SMT. The results showed that there was a substantial improvement in Se accumulation from selenate (4 to 9 times increase) in transgenic plants overexpressing both APS and SMT. - Simultaneous overexpression of APS and SMT genes in Indian mustard greatly increases ability to accumulate selenate

  7. Mercury uptake and allocation in Juncus maritimus: implications for phytoremediation and restoration of a mercury contaminated salt marsh.

    Science.gov (United States)

    Figueira, Etelvina; Freitas, Rosa; Pereira, Eduarda; Duarte, Armando

    2012-08-01

    Juncus maritimus is the most abundant macrophyte in Laranjo bay, a Portuguese salt marsh heavily polluted by mercury (Hg). With the aim to elucidate the role of this species in the salt marsh Hg cycling and restoration, plants were harvested between March 2006 and January 2008 from four locations differing in Hg contamination. Metal uptake and distribution between plant organs were evaluated, biomass and Hg pools were also determined. Results showed that J. maritimus may influence the sediment pH and Eh, thus increasing the Hg available for uptake. Most (95-98%) of the absorbed Hg was retained belowground, phytostabilizing the metal and reducing the amount of Hg in the sediments. These results suggest that in salt marshes dominated by J. maritimus the approach could be phytostabilization, where these plants can be used to immobilize metals and store them belowground, reducing the pool of bioavailable Hg within contaminated marshes and acting as a sink rather than a source of contamination to the surrounding areas.

  8. Effect of bioaugmentation to enhance phytoremediation for removal of phenanthrene and pyrene from soil with Sorghum and Onobrychis sativa

    Science.gov (United States)

    2014-01-01

    The use of plants to remove Poly-aromatic-hydrocarbons (PAHs) from soil (phytoremediation) is emerging as a cost-effective method. Phytoremediation of contaminated soils can be promoted by the use of adding microorganisms with the potential of pollution biodegradation (bioaugmentation). In the present work, the effect of bacterial consortium was studied on the capability of Sorghum and Onobrychis sativa for the phytoremediation of soils contaminated with phenanthrene and pyrene. 1.5 kg of the contaminated soil in the ratio of 100 and 300 mg phenanthrene and/or pyrene per kg of dry soil was then transferred into each pot (nine modes). The removal efficiency of natural, phytoremediation and bioaugmentation, separately and combined, were evaluated. The samples were kept under field conditions, and the remaining concentrations of pyrene and phenanthrene were determined after 120 days. The rhizosphere as well as the microbial population of the soil was also determined. Results indicated that both plants were able to significantly remove pyrene and phenanthrene from the contaminated soil samples. Phytoremediation alone had the removal efficiency of about 63% and 74.5% for pyrene and phenanthrene respectively. In the combined mode, the removal efficiency dramatically increased, leading to pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis sativa and 73.84% and 85.2% for sorghum, respectively. According to the results from the present work, it can be concluded that Onobrychis sativa and sorghum are both efficient in removing pyrene and phenanthrene from contamination and bioaugmentation can significantly enhance the phytoremediation of soils contaminated with pyrene and phenanthrene by 22% and 16% respectively. PMID:24406158

  9. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation.

    Science.gov (United States)

    Agnello, A C; Huguenot, D; van Hullebusch, E D; Esposito, G

    2015-01-01

    Enhanced phytoremediation adding biodegradable amendments like low molecular weight organic acids and surfactants is an interesting area of current research to overcome the limitation that represents low bioavailability of pollutants in soils. However, prior to their use in assisted phytoremediation, it is necessary to test if amendments per se exert any toxic effect to plants and to optimize their application mode. In this context, the present study assessed the effects of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate) on the development of alfalfa (Medicago sativa) plants, as influenced by their concentration and frequency of application, in order to evaluate the feasibility for their future use in enhanced phytoremediation of multi-contaminated soils. The results showed that citric acid negatively affected plant germination, while it did not have any significant effect on biomass or chlorophyll content. In turn, Tween® 80 did not affect plant germination and showed a trend to increase biomass, as well as it did not have any significant effect on chlorophyll levels. M. sativa appeared to tolerate citric acid and Tween® 80 at the tested concentrations, applied weekly. Consequently, citric acid and Tween® 80 could potentially be utilized to assist phytoremediation of contaminated soils vegetated with M. sativa.

  10. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  11. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  12. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium.

    Science.gov (United States)

    Ren, Cheng-Gang; Kong, Cun-Cui; Bian, Bian; Liu, Wei; Li, Yan; Luo, Yong-Ming; Xie, Zhi-Hong

    2017-09-02

    Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85-87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81-85 and 72-75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.

  13. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response.

    Science.gov (United States)

    Hou, Jinyu; Liu, Wuxing; Wang, Beibei; Wang, Qingling; Luo, Yongming; Franks, Ashley E

    2015-11-01

    The aim of this study was to investigate petroleum phytoremediation enhancement by plant growth promoting bacteria (PGPR), specifically the correlation between petroleum hydrocarbon fractions and bacterial community structure affected by remediation and PGPR inocula. Aged petroleum contaminated soil was remediated by tall fescue (Testuca arundinacea L.) inoculated with two PGPR strains. Hydrocarbon degradation was measured by GC-MS (Gas-chromatography Mass-spectrometer) based on carbon fraction numbers (C8-C34). Changes in bacterial community structure were analyzed by high-throughput pyrosequencing of 16s rRNA. PGPR inoculation increased tall fescue biomass and petroleum hydrocarbons were removed in all the treatments. Maximum hydrocarbon removal, particular high molecular weight (C21-C34) aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs), was observed in tall fescue inoculated with PGPR. The relative abundance of phyla γ-proteobacteria and Bacteroidetes increased after different treatments compared with controls. Moreover, a bacterial guild mainly comprising the genera Lysobacter, Pseudoxanthomonas, Planctomyces, Nocardioides, Hydrogenophaga, Ohtaekwangia was found to be positively correlated with C21-C34 petroleum hydrocarbons fractions removal by RDA analysis, implying that petroleum degradation was unrelated to bacterial community diversity but positively correlated with specific petroleum degraders and biosurfactant producers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The interactive effects of chelator, fertilizer, and rhizobacteria for enhancing phytoremediation of heavy metal contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Cutright, T.J. [Dept. of Civil Engineering, Univ. of Akron, Akron, OH (United States)

    2002-07-01

    The role of chelator, fertilizer, and enriched rhizobacteria in facilitating Cd, Cr, and Ni accumulation by Helianthus annuus was studied. It was found that by adding a synthetic chelator, EDTA, the shoot concentrations of Cd and Ni were significantly increased from 34.2 mg kg{sup -1} and 14.5 mg kg{sup -1} to 115 mg kg{sup -1} and 117 mg kg{sup -1}, respectively. However, the total biomass of plants was drastically decreased by 50 to 60%. Compared with this treatment, inoculating enriched rhizobacteria to plants grown under similar conditions maintained the surged shoot concentrations of Cd and Ni while increasing the plants biomass by more than 1.6-fold. It was also found that introducing a commercial fertilizer, Hydro-Gro trademark, to plants significantly increased the Ni accumulation by 3-fold and the plant biomass by 1.43-fold. These results suggest that combing fertilizers, chelators and/or rhizobacteria might provide a more effective approach for enhancing phytoremediation. (orig.)

  15. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L

    International Nuclear Information System (INIS)

    Ji Puhui; Sun Tieheng; Song Yufang; Ackland, M. Leigh; Liu Yang

    2011-01-01

    Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg -1 Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil. - Research highlights: →S. nigrum L. is an effective phytoremediation plant for Cd-polluted soils. →Agronomy practices that increase harvested biomass improve bioremediation efficiency. →Double cropping of S. nigrum L. is an effective phytoremediation strategy. →Field experiments are necessary to effectively assess phytoremediation techniques. - Agronomic practice for the phytoremediation potential of Solanum nigrum L. for Cd uptake was demonstrated in field contaminated soils.

  16. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Ji Puhui [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Sun Tieheng [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Song Yufang, E-mail: jipuhui1983@163.com [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Ackland, M. Leigh [School of Life and Environmental Sciences, Deakin University, Burwood 3125, Melbourne (Australia); Liu Yang [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China)

    2011-03-15

    Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg{sup -1} Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil. - Research highlights: > S. nigrum L. is an effective phytoremediation plant for Cd-polluted soils. > Agronomy practices that increase harvested biomass improve bioremediation efficiency. > Double cropping of S. nigrum L. is an effective phytoremediation strategy. > Field experiments are necessary to effectively assess phytoremediation techniques. - Agronomic practice for the phytoremediation potential of Solanum nigrum L. for Cd uptake was demonstrated in field contaminated soils.

  17. Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities

    Science.gov (United States)

    Teng, Ying; Luo, Yang; Ma, Wenting; Zhu, Lingjia; Ren, Wenjie; Luo, Yongming; Christie, Peter; Li, Zhengao

    2015-01-01

    This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by the hyperaccumulator Sedum plumbizincicola and on soil fertility. The Cd tolerance of T. reesei FS10-C was characterized and then a pot experiment was conducted to investigate the growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents in the presence and absence of T. reesei FS10-C. The results indicated that FS10-C possessed high Cd resistance (up to 300 mg L-1). All inoculation agents investigated enhanced plant shoot biomass by 6–53% of fresh weight and 16–61% of dry weight and Cd uptake by the shoots by 10–53% compared with the control. All inoculation agents also played critical roles in increasing soil microbial biomass and microbial activities (such as biomass C, dehydrogenase activity and fluorescein diacetate hydrolysis activity). Two inoculation agents accompanied by FS10-C were also superior to the inoculation agents, indicating that T. reesei FS10-C was effective in enhancing both Cd phytoremediation by S. plumbizincicola and soil fertility. Furthermore, solid fermentation powder of FS10-C showed the greatest capacity to enhance plant growth, Cd uptake, nutrient release, microbial biomass and activities, as indicated by its superior ability to promote colonization by Trichoderma. The solid fermentation powder of FS10-C might serve as a suitable inoculation agent for T. reesei FS10-C to enhance both the phytoremediation efficiency of Cd-contaminated soil and soil fertility. PMID:26113858

  18. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.

    Science.gov (United States)

    Almeida, C Marisa R; Oliveira, Tânia; Reis, Izabela; Gomes, Carlos R; Mucha, Ana P

    2017-12-01

    Autochthonous bioaugmentation for metal phytoremediation is still little explored, particularly its application to estuarine salt marshes, but results obtained so far are promising. Nevertheless, understanding the behaviour of the microbial communities in the process of bioaugmentation and their role in improving metal phytoremediation is very important to fully validate the application of this biological technology. This study aimed to characterize the bacterial community dynamic associated with the application of autochthonous bioaugmentation in an experimentation which showed that Phragmites australis rhizosphere microorganisms could increase this salt marsh plant potential to phytoremediate Cu contaminated sediments. Bacterial communities present in the autochthonous microbial consortium resistant to Cu added to the medium and in the sediment at the beginning and at the end of the experiment were characterized by ARISA. Complementarily, the consortium and the sediment used for its production were characterized by next generation sequencing using the pyrosequencing platform 454. The microbial consortium resistant to Cu obtained from non-vegetated sediment was dominated by the genus Lactococcus (46%), Raoultella (25%), Bacillus (12%) and Acinetobacter (11%), whereas the one obtained form rhizosediment was dominated by the genus Gluconacetobacter (77%), Bacillus (17%) and Dyella (3%). Results clearly showed that, after two months of experiment, Cu caused a shift in the bacterial community structure of sediments, an effect that was observed either with or without addition of the metal resistant microbial consortium. Therefore, bioaugmentation application improved the process of phytoremediation (metal translocation by the plant was increased) without inducing long term changes in the bacterial community structure of the sediments. So, phytoremediation combined with autochthonous bioaugmentation can be a suitable technology for the recovery of estuarine areas

  19. Mercury

    Science.gov (United States)

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  20. Towards an Enhanced Understanding of Plant–Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism

    Science.gov (United States)

    Thijs, Sofie; Sillen, Wouter; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-01-01

    Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant–microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant–microbial functions, and facilitate translation to more effective, and predictable phytotechnologies. PMID:27014254

  1. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism

    Directory of Open Access Journals (Sweden)

    Sofie eThijs

    2016-03-01

    Full Text Available Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.

  2. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  3. Phytoremediation : an industry partner's perspective

    International Nuclear Information System (INIS)

    Jackson, L.A.

    1999-01-01

    As part of their corporate policy on environmental protection, Chevron, has taken an approach to work collaboratively with other industry members, universities and government agencies in phytoremediation research. The petroleum industry is interested in the integration of phytoremediation with the many biotechnology treatment technologies currently being used by the industry. Phytoremediation is a complex technology that does not just transfer wastes to another site, but offers in-situ final use and disposal treatment at sites anywhere in the world. Sites for potential remediation range from abandoned large refineries, chemical plants, or small urban gas stations. Research has focused on the cleanup of metals and hydrocarbons in diverse types of soil, water and groundwater conditions. This includes research into remediation of petroleum contaminants such as total petroleum hydrocarbon (TPH), polynuclear aromatic hydrocarbons as well as benzene in soil and the mechanism that occurs in the process. The ability of phytoremediation to inhibit groundwater flow and enhance degradation of TPH and volatile organic compounds in groundwater is also being studied. Chevron has developed a communication guide in order to enhance the important aspect transferring technical knowledge regarding phytoremediation into practical knowledge. Risk and cost are the two main business factors which drive the industry with regards to phytoremediation. For the risk to be small, the treatment must be both efficient and not cause problems to humans or the environment. 9 refs., 6 tabs., 1 fig

  4. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    Science.gov (United States)

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  5. Tolerance mechanisms in mercury-exposed Chromolaena odorata (l.f. R.M. King et H. Robinson, a potential phytoremediator

    Directory of Open Access Journals (Sweden)

    H J P Alcantara

    2013-10-01

    Full Text Available Chromolaena odorata (L.f. R.M. King et H. Robinson plants were grown in Hoagland’s solutions with 0.00 ppm and 1.00 ppm Hg(NO32. The calcium, magnesium, iron, and sulfur levels in the leaves were found to be not significantly affected by presence of the uptaken Hg2+. The chlorophyll a, chlorophyll b, and total chlorophyll contents of its leaves also remained within normal levels, which may indicate that the photosynthetic machinery of the Hg-exposed C. odorata was unaffected by the presence of Hg2+. The results of the ICP-AES analyses of the Hg2+ contents established the presence of Hg2+ in all the subcellular components obtained from the leaves of the Hg-treated C. odorata plants, and that the ultimate localization of Hg2+ is in the vacuoles. The findings revealed no significant differences in the degree of oxidative injury between the cells from the control and Hg-treated plants, as evidenced by the low lipid peroxidation levels obtained with the TBARS assay. The SH-containing biomolecules that were initially detected through DTNB assay manifested a predominant peak in the RP-HPLC chromatographs of both the control and Hg-treated plants, with their retention times falling within the ranges of GSH, MT, and cysteine standards. However, the concentrations of the GSH- and/or MT-like, Cys-containing biomolecules detected in the leaves of Hg-treated C. odorata plants were ten times higher than those of the control.The findings of this study suggest that the enhanced antioxidative capacity, the production of Hg-binding biomolecules, and the localization of Hg2+ ions ultimately in the vacuoles of the leaves are the mechanisms which bring about Hg2+ tolerance and homeostasis in C. odorata plant. These results indicate that C. odorata is a potentially effective phytoremediator for Hg2+.

  6. Tolerance mechanisms in mercury-exposed Chromolaena odorata (l.f. R.M. King et H. Robinson, a potential phytoremediator

    Directory of Open Access Journals (Sweden)

    H.J.P. Alcantara

    2013-10-01

    Full Text Available Chromolaena odorata (L.f. R.M. King et H. Robinson plants were grown in Hoagland’s solutions with 0.00 ppm and 1.00 ppm Hg(NO32. The calcium, magnesium, iron, and sulfur levels in the leaves were found to be not significantly affected by presence of the uptaken Hg2+. The chlorophyll a, chlorophyll b, and total chlorophyll contents of its leaves also remained within normal levels, which may indicate that the photosynthetic machinery of the Hg-exposed C. odorata was unaffected by the presence of Hg2+. The results of the ICP-AES analyses of the Hg2+ contents established the presence of Hg2+ in all the subcellular components obtained from the leaves of the Hg-treated C. odorata plants, and that the ultimate localization of Hg2+ is in the vacuoles. The findings revealed no significant differences in the degree of oxidative injury between the cells from the control and Hg-treated plants, as evidenced by the low lipid peroxidation levels obtained with the TBARS assay. The SH-containing biomolecules that were initially detected through DTNB assay manifested a predominant peak in the RP-HPLC chromatographs of both the control and Hg-treated plants, with their retention times falling within the ranges of GSH, MT, and cysteine standards. However, the concentrations of the GSH- and/or MT-like, Cys-containing biomolecules detected in the leaves of Hg-treated C. odorata plants were ten times higher than those of the control. The findings of this study suggest that the enhanced antioxidative capacity, the production of Hg-binding biomolecules, and the localization of Hg2+ ions ultimately in the vacuoles of the leaves are the mechanisms which bring about Hg2+ tolerance and homeostasis in C. odorata plant. These results indicate that C. odorata is a potentially effective phytoremediator for Hg2+.

  7. Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes

    International Nuclear Information System (INIS)

    Hargrove, O.W.; Carey, T.R.; Richardson, C.F.; Skarupa, R.C.; Meserole, F.B.; Rhudy, R.G.; Brown, Thomas D.

    1997-01-01

    The overall objective of this project was to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal-fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. The project was included by FETC as a Phase I project in its Mega-PRDA program. Phase I of this project focused on three research areas. These areas in order of priority were: (1) Catalytic oxidation of vapor-phase elemental mercury; (2) Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and (3) Enhanced mercury removal by addition of additives to FGD process liquor. Mercury can exist in two forms in utility flue gas--as elemental mercury and as oxidized mercury (predominant form believed to be HgCl 2 ). Previous test results have shown that wet scrubbers effectively remove the oxidized mercury from the gas but are ineffective in removing elemental mercury. Recent improvements in mercury speciation techniques confirm this finding. Catalytic oxidation of vapor-phase elemental mercury is of interest in cases where a wet scrubber exists or is planned for SO 2 control. If a loW--cost process could be developed to oxidize all of the elemental mercury in the flue gas, then the maximum achievable mercury removal across the existing or planned wet scrubber would increase. Other approaches for improving control of HAPs included a method for improving particulate removal across the FGD process and the use of additives to increase mercury solubility. This paper discusses results related only to catalytic oxidation of elemental mercury

  8. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L.

    Science.gov (United States)

    Ji, Puhui; Sun, Tieheng; Song, Yufang; Ackland, M Leigh; Liu, Yang

    2011-03-01

    Field trials contribute practical information towards the development of phytoremediation strategies that cannot be provided by laboratory tests. We conducted field experiments utilizing the Cd hyperaccumulator plant Solanum nigrum L., on farmland contaminated with 1.91 mg kg(-1) Cd in the soil. Our study showed that S. nigrum has a relatively high biomass. Planting density had a significant effect on the plant biomass and thus on overall Cd accumulation. For double harvesting, an optimal cutting position influenced the amount of Cd extracted from soils. Double cropping was found to significantly increase the amount of Cd extracted by S. nigrum. Fertilizing had no significant effect on plant biomass or on the Cd remediation of the soil over the short-term period. Our study indicates that S. nigrum can accumulate Cd from soils where the concentrations are relatively low, and thus has application for use in decontamination of slightly to moderately Cd-contaminated soil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qianxin; Mendelssohn, Irving A [Wetland Biogeochemistry Institute, Center for Coastal, Energy, and Environmental Resources, Louisiana State University, Baton Rouge, LA 70803 (United States)

    1998-06-30

    The combined effects of biostimulation and phytoremediation as a means of post-oil spill habitat restoration and enhancement of oil degradation in the soil were evaluated. Marsh sods of Spartina alterniflora and Spartina patens were dosed with 0, 4, 8, 16 and 24 l m{sup -2} of south Louisiana crude oil in the greenhouse. Plants were killed at oil dosages of 8 l m{sup -2} in the growing season following oil application. Two years after application of the oil, S. alterniflora and S. patens individuals were transplanted into the oiled and unoiled sods. Fertilizer was applied 1 and 7 months after transplantation. Application of the fertilizer significantly increased biomass of the transplants within 6 months and regrowth biomass of the transplants 1 year after transplantation for both plant species. The residual oil in the soil did not significantly affect the biomass of the S. patens transplants compared with that in the no oil treatment, except at the highest oil level. However, regrowth biomass of the S. alterniflora transplants treated with fertilizer was significantly higher at all oil levels up to 250 mg g{sup -1} than in the unoiled treatment, with or without fertilizer. The oil degradation rate in the soil was significantly enhanced by the application of fertilizer in conjunction with the presence of transplants. These results suggest that vegetative transplantation, when implemented with fertilization, can simultaneously restore oil contaminated wetlands and accelerate oil degradation in the soil

  10. Mercury

    Science.gov (United States)

    ... that mercuric chloride and methylmercury are possible human carcinogens. top How does mercury affect children? Very young ... billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum ...

  11. Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil.

    Science.gov (United States)

    Liphadzi, M S; Kirkham, M B; Paulsen, G M

    2006-06-01

    A technology to increase root growth would be advantageous for phytoremediation of trace metal polluted soil, because more roots would be available for metal uptake. The objective of this study was to determine if the auxin, indole-3-acetic acid (IAA), would increase root growth in soil with metals from sewage sludge, when the tetrasodium salt of the chelate EDTA (ethylenediamine-tetraacetic acid) was added to solubilize the metals. Sunflower (Helianthus annuus L.) plants grew in large pots containing either soil from a sludge farm or composted sludge. The EDTA salt was added at a rate of 1 g kg(-1) soil 37 days after planting. IAA at the rate of 3 or 6 mg l(-1) was sprayed on the leaves (500 ml) and added to the soil (500 ml) three times: 41, 50, and 74 days after planting. At harvest 98 days after planting, oven-dry weights were measured, and plant organs were analyzed for Cd, Cu, Fe, Mn, Ni, Pb, and Zn. Metal uptake was determined as the product of metal concentration in an organ and weight. IAA increased root growth of plants grown in the soil with sludge when no EDTA was present. With no EDTA, Mn and Ni in leaves of plants grown in the soil were higher at 3 and 6 mg l(-1) IAA compared to 0 mg l(-1) IAA. With and without EDTA, Cd and Pb in leaves of plants grown in the compost were higher with 3 and 6 mg l(-1) IAA compared to 0 mg l(-1) IAA.

  12. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.

    Science.gov (United States)

    Wang, Jianxu; Xia, Jicheng; Feng, Xinbin

    2017-01-15

    Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg -1 ) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg -1 . The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating

  13. Mercury

    CERN Document Server

    Mahoney, T J

    2014-01-01

    This gazetteer and atlas on Mercury lists, defines and illustrates every named (as opposed to merely catalogued) object and term as related to Mercury within a single reference work. It contains a glossary of terminology used, an index of all the headwords in the gazetteer, an atlas comprising maps and images with coordinate grids and labels identifying features listed in the gazetteer, and appendix material on the IAU nomenclature system and the transcription systems used for non-roman alphabets. This book is useful for the general reader, writers and editors dealing with astronomical themes, and those astronomers concerned with any aspect of astronomical nomenclature.

  14. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  15. Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-β-cyclodextrins

    International Nuclear Information System (INIS)

    Shen Chaofeng; Tang Xianjin; Cheema, Sardar Alam; Zhang Congkai; Khan, Muhammad Imran; Liang Fang; Chen Xincai; Zhu Youfeng; Lin Qi; Chen, Yingxu

    2009-01-01

    The crude recycling of electronic and electric waste (e-waste) is now creating soil pollution problems with organic compounds such as polychlorinated biphenyls (PCBs). The present study aimed to compare the phytoremediation potential of four plant species (rice, alfalfa, ryegrass and tall fescue) for PCBs contaminated soil from Taizhou city, one of the largest e-waste recycling centers in China. In addition, the enhanced effects of randomly methylated-β-cyclodextrins (RAMEB) on PCBs phytoremediation potential were evaluated. Higher PCBs removal percentages of 25.6-28.5% in rhizosphere soil were observed after 120 days, compared with those of the non-rhizosphere (10.4-16.9%) and unplanted controls (7.3%). The average PCBs removal percentages of four plant species increased from 26.9% to 37.1% in the rhizosphere soil with addition of RAMEB. Meanwhile, relatively high microbial counts and dehydrogenase activity were detected in planted soils and a stimulatory effect by RAMEB addition was found. The present study indicated that all the plant candidates were feasible for phytoremediation of PCBs contaminated soil from the e-waste recycling area, and tall fescue with RAMEB amendment seemed as a promising remediation strategy. High PCBs removal percentage was due to the increased PCBs bioavailability as well as biostimulation of microbial communities after plantation and RAMEB addition.

  16. Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-{beta}-cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chaofeng [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310029 (China); Tang Xianjin; Cheema, Sardar Alam; Zhang Congkai; Khan, Muhammad Imran; Liang Fang; Chen Xincai; Zhu Youfeng [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Lin Qi, E-mail: linqi@zju.edu.cn [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Chen, Yingxu [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China)

    2009-12-30

    The crude recycling of electronic and electric waste (e-waste) is now creating soil pollution problems with organic compounds such as polychlorinated biphenyls (PCBs). The present study aimed to compare the phytoremediation potential of four plant species (rice, alfalfa, ryegrass and tall fescue) for PCBs contaminated soil from Taizhou city, one of the largest e-waste recycling centers in China. In addition, the enhanced effects of randomly methylated-{beta}-cyclodextrins (RAMEB) on PCBs phytoremediation potential were evaluated. Higher PCBs removal percentages of 25.6-28.5% in rhizosphere soil were observed after 120 days, compared with those of the non-rhizosphere (10.4-16.9%) and unplanted controls (7.3%). The average PCBs removal percentages of four plant species increased from 26.9% to 37.1% in the rhizosphere soil with addition of RAMEB. Meanwhile, relatively high microbial counts and dehydrogenase activity were detected in planted soils and a stimulatory effect by RAMEB addition was found. The present study indicated that all the plant candidates were feasible for phytoremediation of PCBs contaminated soil from the e-waste recycling area, and tall fescue with RAMEB amendment seemed as a promising remediation strategy. High PCBs removal percentage was due to the increased PCBs bioavailability as well as biostimulation of microbial communities after plantation and RAMEB addition.

  17. Enhanced capture of elemental mercury by bamboo-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Su, Sheng, E-mail: susheng_sklcc@hotmail.com [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The KI-modified BC has excellent capacity for elemental mercury removal. Black-Right-Pointing-Pointer The chemisorption plays a dominant role for the modified BC materials. Black-Right-Pointing-Pointer The BC-I has strong anti-poisoning ability with the presence of NO or SO{sub 2}. - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO{sub 2} on gas-phase Hg{sup 0} adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 Degree-Sign C and 180 Degree-Sign C. The presence of NO or SO{sub 2} could inhibit Hg{sup 0} capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  18. Enhanced capture of elemental mercury by bamboo-based sorbents

    International Nuclear Information System (INIS)

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-01-01

    Highlights: ► The KI-modified BC has excellent capacity for elemental mercury removal. ► The chemisorption plays a dominant role for the modified BC materials. ► The BC-I has strong anti-poisoning ability with the presence of NO or SO 2 . - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO 2 on gas-phase Hg 0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents’ BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO 2 could inhibit Hg 0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  19. Biofortification and phytoremediation of selenium in China

    Directory of Open Access Journals (Sweden)

    Zhilin eWu

    2015-03-01

    Full Text Available Selenium (Se is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. While Se phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed.

  20. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  1. Exogenous Glutathione Enhances Mercury Tolerance by Inhibiting Mercury Entry into Plant Cells

    Science.gov (United States)

    Kim, Yeon-Ok; Bae, Hyeun-Jong; Cho, Eunjin; Kang, Hunseung

    2017-01-01

    Despite the increasing understanding of the crucial roles of glutathione (GSH) in cellular defense against heavy metal stress as well as oxidative stress, little is known about the functional role of exogenous GSH in mercury (Hg) tolerance in plants. Here, we provide compelling evidence that GSH contributes to Hg tolerance in diverse plants. Exogenous GSH did not mitigate the toxicity of cadmium (Cd), copper (Cu), or zinc (Zn), whereas application of exogenous GSH significantly promoted Hg tolerance during seed germination and seedling growth of Arabidopsis thaliana, tobacco, and pepper. By contrast, addition of buthionine sulfoximine, an inhibitor of GSH biosynthesis, severely retarded seed germination and seedling growth of the plants in the presence of Hg. The effect of exogenous GSH on Hg specific tolerance was also evident in the presence of other heavy metals, such as Cd, Cu, and Zn, together with Hg. GSH treatment significantly decreased H2O2 and O2- levels and lipid peroxidation, but increased chlorophyll content in the presence of Hg. Importantly, GSH treatment resulted in significantly less accumulation of Hg in Arabidopsis plants, and thin layer chromatography and nuclear magnetic resonance analysis revealed that GSH had much stronger binding affinity to Hg than to Cd, Cu, or Zn, suggesting that tight binding of GSH to Hg impedes Hg uptake, leading to low Hg accumulation in plant cells. Collectively, the present findings reveal that GSH is a potent molecule capable of conferring Hg tolerance by inhibiting Hg accumulation in plants. PMID:28507557

  2. Exogenous Glutathione Enhances Mercury Tolerance by Inhibiting Mercury Entry into Plant Cells

    Directory of Open Access Journals (Sweden)

    Yeon-Ok Kim

    2017-05-01

    Full Text Available Despite the increasing understanding of the crucial roles of glutathione (GSH in cellular defense against heavy metal stress as well as oxidative stress, little is known about the functional role of exogenous GSH in mercury (Hg tolerance in plants. Here, we provide compelling evidence that GSH contributes to Hg tolerance in diverse plants. Exogenous GSH did not mitigate the toxicity of cadmium (Cd, copper (Cu, or zinc (Zn, whereas application of exogenous GSH significantly promoted Hg tolerance during seed germination and seedling growth of Arabidopsis thaliana, tobacco, and pepper. By contrast, addition of buthionine sulfoximine, an inhibitor of GSH biosynthesis, severely retarded seed germination and seedling growth of the plants in the presence of Hg. The effect of exogenous GSH on Hg specific tolerance was also evident in the presence of other heavy metals, such as Cd, Cu, and Zn, together with Hg. GSH treatment significantly decreased H2O2 and O2- levels and lipid peroxidation, but increased chlorophyll content in the presence of Hg. Importantly, GSH treatment resulted in significantly less accumulation of Hg in Arabidopsis plants, and thin layer chromatography and nuclear magnetic resonance analysis revealed that GSH had much stronger binding affinity to Hg than to Cd, Cu, or Zn, suggesting that tight binding of GSH to Hg impedes Hg uptake, leading to low Hg accumulation in plant cells. Collectively, the present findings reveal that GSH is a potent molecule capable of conferring Hg tolerance by inhibiting Hg accumulation in plants.

  3. Phytoremediation of ionic and methylmercury pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B. [Univ. of Georgia, Athens, GA (United States). Dept. of Genetics

    2010-04-28

    Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and sequester the toxic elemental pollutants, like the heavy metal mercury. Our current working hypothesis is that transgenic plants controlling the transport, chemical speciation, electrochemical state. volatilization, and aboveground binding of mercury will: a) tolerate mercury and grow rapidly in mercury contaminated environments; b) prevent methylmercury from entering the food chain; c) remove mercury from polluted soil and water; and d) hyperaccumulate mercury in aboveground tissues for later harvest. Progress toward these specific aims is reported: to increase the transport of mercury into roots and to aboveground vegetative organs; to increase biochemical sinks and storage for mercury in leaves; to increase leaf cell vacuolar storage of mercury; and to demonstrate that several stacked transgenes, when functioning in concert, enhance mercury resistance and hyperaccumulation to high levels.

  4. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.

    Science.gov (United States)

    Das, Natasha; Bhattacharya, Surajit; Maiti, Mrinal K

    2016-08-01

    One of the most grievous heavy metal pollutants in the environment is cadmium (Cd), which is not only responsible for the crop yield loss owing to its phytotoxicity, but also for the human health hazards as the toxic elements usually accumulate in the consumable parts of crop plants. In the present study, we aimed to isolate and functionally characterize the OsMTP1 gene from indica rice (Oryza sativa L. cv. IR64) to study its potential application for efficient phytoremediation of Cd. The 1257 bp coding DNA sequence (CDS) of OsMTP1 encodes a ∼46 kDa protein belonging to the cation diffusion facilitator (CDF) or metal tolerance/transport protein (MTP) family. The OsMTP1 transcript in rice plant was found to respond during external Cd stress. Heterologous expression of OsMTP1 in tobacco resulted in the reduction of Cd stress-induced phytotoxic effects, including growth inhibition, lipid peroxidation, and cell death. Compared to untransformed control, the transgenic tobacco plants showed enhanced vacuolar thiol content, indicating vacuolar localization of the sequestered Cd. The transgenic tobacco plants exhibited significantly higher biomass growth (2.2-2.8-folds) and hyperaccumulation of Cd (1.96-2.22-folds) compared to untransformed control under Cd exposure. The transgenic plants also showed moderate tolerance and accumulation of arsenic (As) upon exogenous As stress, signifying broad substrate specificity of OsMTP1. Together, findings of our research suggest that the transgenic tobacco plants overexpressing OsMTP1 with its hyperaccumulating activity and increased growth rate could be useful for future phytoremediation applications to clean up the Cd-contaminated soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Bioaccumulation Pattern of Mercury in Bacopa monnieri (L. Pennell

    Directory of Open Access Journals (Sweden)

    Hussain K

    2012-05-01

    Full Text Available Bioaccumulation pattern of mercury was studied in Bacopa monnieri plants cultivated in Hoagland nutrient medium artificially contaminated with 5 and 10μM HgCl2. Mercury content of roots, stem and leaves were analysed using Atomic Absorption Spectrophotometry (AAS. During a period 12 days of growth, more accumulation was noticed in roots followed by stem and leaves. Repeated addition of HgCl2 and enhanced growth period up to 50 days showed only negligible increase in accumulation maintaining a threshold level of mercury in the root. When a comparison was done between the quantities of HgCl2 added to the growth medium and the sum of total accumulation of the plant and content present in the residual medium, a significant quantity of mercury is found to be lost presumably through the process of phytovolatilization from the plant. Studies on the effect of pH on bioaccumulation of mercury showed that acidic pH enhanced accumulation rate and hence for phytoremediation technology ‘chlorination’ is recommended whereas for medicinal purpose, Bacopa monnieri plants can be harvested after ‘liming’ to increase the pH and thereby reducing accumulation rate of mercury.

  6. Control, synchronization, and enhanced reliability of aperiodic oscillations in the Mercury Beating Heart system

    Science.gov (United States)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    Experiments involving the Mercury Beating Heart (MBH) oscillator, exhibiting irregular (aperiodic) dynamics, are performed. In the first set of experiments, control over irregular dynamics of the MBH oscillator was obtained via a superimposed periodic voltage signal. These irregular (aperiodic) dynamics were recovered once the control was switched off. Subsequently, two MBH oscillators were coupled to attain synchronization of their aperiodic oscillations. Finally, two uncoupled MBH oscillators were subjected, repeatedly, to a common stochastic forcing, resulting in an enhancement of their mutual phase correlation.

  7. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation.

    Science.gov (United States)

    Qian, Xiaoli; Wu, Yonggui; Zhou, Hongyun; Xu, Xiaohang; Xu, Zhidong; Shang, Lihai; Qiu, Guangle

    2018-08-01

    Total mercury (THg) and methylmercury (MMHg) were investigated in 259 wild plants belonging to 49 species in 29 families that grew in heavily Hg-contaminated wastelands composed of cinnabar ore mine tailings (calcines) in the Wanshan region, southwestern China, the world's third largest Hg mining district. The bioconcentration factors (BCFs) of THg and MMHg from soil to roots ([THg] root /[THg] soil , [MMHg] root /[MMHg] soil ) were evaluated. The results showed that THg and MMHg in both plants and soils varied widely, with ranges of 0.076-140 μg/g THg and 0.19-87 ng/g MMHg in roots, 0.19-106 μg/g THg and 0.06-31 ng/g MMHg in shoots, and 0.74-1440 μg/g THg and 0.41-820 ng/g MMHg in soil. Among all investigated species, Arthraxon hispidus, Eremochloa ciliaris, Clerodendrum bunge, and Ixeris sonchifolia had significantly elevated concentrations of THg in shoots and/or roots that reached 100 μg/g, whereas Chenopodium glaucum, Corydalisedulis maxim, and Rumex acetosa contained low values below 0.5 μg/g. In addition to the high THg concentrations, the fern E. ciliaris also showed high BCF values for both THg and MMHg exceeding 1.0, suggesting its capability to extract Hg from soils. Considering its dominance and the tolerance identified in the present study, E. ciliaris is suggested to be a practical candidate for phytoextraction, whereas A. hispidus is identified as a potential candidate for phytostabilization of Hg mining-contaminated soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. PEMANGKASAN AKAR DAN INOKULASI JMA SEBAGAI UPAYA PENINGKATAN FITOREMEDIASI TANAH TERCEMAR MERKURI AKIBAT PENAMBANGAN EMAS OLEH TANAMAN JATI DI KOKAP KULON PROGO YOGYAKARTA (Under ground root pruning and JMA inoculation to improve phytoremediation of soil contaminated with mercury due to gold mining by Tectona grandis in Kokap Kulonprogo Yogyakarta

    Directory of Open Access Journals (Sweden)

    Akhsin Zulkoni

    2017-01-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh pemangkasan akar (underground root pruning/URP terhadap fitoremediasi tanah yang tercemar merkuri di Kokap Kulon Progo Yogyakarta. Penelitian ini dilaksanakan menggunakan rancangan acak kelompok lengkap dengan tiga ulangan. Faktor pertama adalah URP, yaitu dengan dan tanpa URP. Faktor kedua ialah takaran Jamur Mikoriza Arbuskula (JMA, meliputi 0; 50; 100, dan 150 g/pot. Hasil penelitian telah membuktikan bahwa pemangkasan akar serta inokulasi JMA ke dalam tanah sisa olahan penambangan emas telah berhasil memacu proses fitoremediasi melalui perluasan rizosfer. Serapan merkuri oleh tanaman Jati yang menjalani pemangkasan akar serta inokulasi JMA sebanyak 100% paling tinggi dibanding perlakuan lain maupun kontrol. Pada perlakuan ini, efisiensi penurunan merkuri di dalam tanah oleh tanaman jati sebesar 88,61%, sedangkan kontrol hanya mencapai 64,11%.   ABSTRACT This study aims to determine the effect of underground root pruning (URP of the mercury-contaminated soil phytoremediation in Kokap Kulon Progo, Yogyakarta. This study was conducted using complete randomized block design with three replications. The first factor is the URP, that divided as with and without URP (root pruning. The second factor is the dose of JMA, are 0; 50; 100, and 150 g/pot. Results of studies have proven that the root pruning and inoculation of JMA into the residual gold mining soil has successfully accelerated the process of phytoremediation through the expansion of the rhizosphere. Mercury uptake by Tectona grandis, Linn F that is with root pruning and 100% JMA inoculation are highest other treatment and control. In this treatment, the removal efficiency of mercury in the soil by plants amounted to 88.61% identity, meanwhile control only reached 64.11%.

  9. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.

    Science.gov (United States)

    Guo, Junkang; Feng, Renwei; Ding, Yongzhen; Wang, Ruigang

    2014-08-01

    This study was conducted to investigate the use of elevated carbon dioxide (CO2), plant growth-promoting rhizobacterium Burkholderia sp. D54 (PGPR) and ethylenediaminetetraacetic acid (EDTA) to enhance the phytoextraction efficiency of ryegrass in response to multiple heavy metal (or metalloid)-polluted soil containing zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). All of the single or combined CO2, PGPR and EDTA treatments promoted ryegrass growth. The stimulation of ryegrass growth by CO2 and PGPR could primarily be attributed to the regulation of photosynthesis rather than decreased levels of Zn, As and Cd in the shoots. Most treatments seemed to reduce the Zn, As and Cd contents in the shoots, which might be associated with enhanced shoot biomass, thus causing a "dilution effect" regarding their levels. The combined treatments seemed to perform better than single treatments in removing Zn, As, Cd and Pb from soil, judging from the larger biomass and relatively higher total amounts (TAs) of Zn, As, Cd and Pb in both the shoots and roots. Therefore, we suggest that the CO2 plus PGPR treatment will be suitable for removing Zn, As, Cd and Pb from heavy metal (or metalloid)-polluted soils using ryegrass as a phytoremediation material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals

    Science.gov (United States)

    Wu, Chishan; Zhang, Xingfeng; Deng, Yang

    2017-07-01

    In view of current problems of phytoremediation technology, this paper summarizes research progress for phytoremediation technology of heavy metal contaminated soil. When the efficiency of phytoremediation may not meet the demand in practice of contaminated soil or water. Effective measures should be taken to improve the plant uptake and translocation. This paper focuses on strengthening technology mechanism, which can not only increase the biomass of plant and hyperaccumulators, but also enhance the tolerance and resistance to heavy metals, and application effect of phytoremediation, including agronomic methods, earthworm bioremediation and chemical induction technology. In the end of paper, deficiencies of each methods also be discussed, methods of strengthening technology for phytoremediation need further research.

  11. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: a new approach in phytoremediation.

    Science.gov (United States)

    Liao, Xiao-Yong; Chen, Tong-Bin; Xiao, Xi-Yuan; Xie, Hua; Yan, Xiu-Lan; Zhai, Li-Mei; Wu, Bin

    2007-01-01

    Certain plant species have been shown to vigorously accumulate some metals from soil, and thus represent promising and effective remediation alternatives. In order to select the optimum forms of nitrogen (N) fertilizers for the arsenic (As) hyperaccumulator, Pteris vittata L., to maximize As extraction, five forms of N were added individually to different treatments to study the effect of N forms on As uptake of the plants under soil culture in a greenhouse. Although shoot As concentration tended to decrease and As translocation from root to shoot was inhibited, overall As accumulation was greater due to higher biomass when N fertilizer was added. Arsenic accumulation in plants with N fertilization was 100-300% more than in the plants without N fertilization. There were obvious differences in plant biomass and As accumulation among the N forms, i.e., NH4HCO3, (NH4)2S04, Ca(NO3)2, KNO3, urea. The total As accumulation in the plants grown in As-supplied soil, under different forms of N fertilizer, decreased as NH4HCO3>(NH4)2S04 > urea > Ca(NO3)2 >KNO3>CK. The plants treated with N and As accumulated up to 5.3-7.97 mg As/pot and removed 3.7-5.5% As from the soils, compared to approximately 2.3% of As removal in the control. NH4+ -N was apparently more effective than other N fertilizers in stimulating As removal when soil was supplied with As at initiation. No significant differences in available As were found among different forms of N fertilizer after phytoremediation. It is concluded that NH4+ -N was the preferable fertilizer for P. vittata to maximize As removal.

  12. Phytoremediation of radionuclides: an emerging alternative

    International Nuclear Information System (INIS)

    Singh, Shraddha

    2013-01-01

    Proliferation of nuclear power industry, nuclear weapon testing, dismantling of existing nuclear weapons and occasional accidents have contributed to an enhancement in the level of radionuclides in the environment. The radionuclides due to their long half life and transfer through the food chain effect adversely to normal biological systems. Hence, it is essential to effectively remove the radionuclides from contaminated soils and solutions. Phytoremediation - the use of plants for remediation of toxic metals and radionuclides has been recognized as an aesthetically pleasing, low cost and environment friendly in situ method. Phytoremediation is an umbrella term which covers several plant based approaches. Plants have shown the potential of remediation of these radionuclides from spiked solutions, low level nuclear waste and soil. Various aspects of phytoremediation as well as potential of various plants for remediation of radionuclides will be discussed here. (author)

  13. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Khan

    2015-01-01

    Full Text Available Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, could tolerate Cr up to 3000 mg l-1. These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb and Zn, and high concentration (174 g l-1 of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene indicated a higher and wider range of population of Cr-resistant bacteria in the endosphere than rhizosphere and the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report detecting rhizo- and endophytic bacterial population associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L. improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.

  14. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils.

    Science.gov (United States)

    Khan, Muhammad U; Sessitsch, Angela; Harris, Muhammad; Fatima, Kaneez; Imran, Asma; Arslan, Muhammad; Shabir, Ghulam; Khan, Qaiser M; Afzal, Muhammad

    2014-01-01

    Prosopis juliflora is characterized by distinct and profuse growth even in nutritionally poor soil and environmentally stressed conditions and is believed to harbor some novel heavy metal-resistant bacteria in the rhizosphere and endosphere. This study was performed to isolate and characterize Cr-resistant bacteria from the rhizosphere and endosphere of P. juliflora growing on the tannery effluent contaminated soil. A total of 5 and 21 bacterial strains were isolated from the rhizosphere and endosphere, respectively, and were shown to tolerate Cr up to 3000 mg l(-1). These isolates also exhibited tolerance to other toxic heavy metals such as, Cd, Cu, Pb, and Zn, and high concentration (174 g l(-1)) of NaCl. Moreover, most of the isolated bacterial strains showed one or more plant growth-promoting activities. The phylogenetic analysis of the 16S rRNA gene showed that the predominant species included Bacillus, Staphylococcus and Aerococcus. As far as we know, this is the first report analyzing rhizo- and endophytic bacterial communities associated with P. juliflora growing on the tannery effluent contaminated soil. The inoculation of three isolates to ryegrass (Lolium multiflorum L.) improved plant growth and heavy metal removal from the tannery effluent contaminated soil suggesting that these bacteria could enhance the establishment of the plant in contaminated soil and also improve the efficiency of phytoremediation of heavy metal-degraded soils.

  15. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-01-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl 2 , and Hg(NO 3 ) 2 , were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots ( 2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl 2 , or Hg(NO 3 ) 2 . We have found that up to hundreds

  16. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  17. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    Science.gov (United States)

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  18. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  19. Study on phytoremediation in the uranium contaminated environment

    International Nuclear Information System (INIS)

    Huang Dejuan; Zhu Yean; Hua Rong; Yu Yue; Luo Mingbiao; Liu Qingcheng; Huang Dechao

    2012-01-01

    Mechanisms of phytoremediation in the uranium contaminated environment are described, and a worldwide overview of the content and progress of the related research topics is provided. Based on the analysis, it is pointed out that we should strengthen the research of plant-microbial coexistence system as well as the research of the related molecular biology and genetic engineering in order to enhance the phytoremediation's efficiency in the uranium contaminated environment. (authors)

  20. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar.

    Science.gov (United States)

    Sun, Liping; Ma, Yifeng; Wang, Huihong; Huang, Weipeng; Wang, Xiaozhu; Han, Li; Sun, Wanmei; Han, Erqin; Wang, Bangjun

    2018-03-18

    Mercury (Hg) is a highly biotoxic heavy metal that contaminates the environment. Phytoremediation is a green technology for environmental remediation and is used to clean up Hg contaminated soil in recent years. In this study, we isolated an ATP-binding cassette (ABC) transporter gene PtABCC1 from Populus trichocarpa and overexpressed it in Arabidopsis and poplar. The transgenic plants conferred higher Hg tolerance than wild type (WT) plants, and overexpression of PtABCC1 could lead to 26-72% or 7-160% increase of Hg accumulation in Arabidopsis or poplar plants, respectively. These results demonstrated that PtABCC1 plays a crucial role in enhancing tolerance and accumulation to Hg in plants, which provides a promising way for phytoremediation of Hg contamination. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. INTRODUCTION TO PHYTOREMEDIATION

    Science.gov (United States)

    Phytoremediation is the name of a set of technologies that use plants to degrade, extract, or contain contaminants from soil and water. This topic has been the subject of sporadic research for twenty five years, and a great deal of research over the last ten years. This...

  2. DOE's Phytoremediation Program

    International Nuclear Information System (INIS)

    Levine, R.S.

    1996-01-01

    This presentation contains an outline of the US DOE's phytoremediation program. A brief overview of the goals, infrastructure, and results of the program is presented. Environmental contaminants addressed include chlorinated hydrocarbons, metals, radionuclides, inorganic wastes, and mixed hazardous and radioactive wastes. Studies of soil remediation using phytoextraction and water remediation using rhizofiltration are briefly described

  3. Decision Tree Phytoremediation

    Science.gov (United States)

    1999-12-01

    Phytoremediation can be used to remediate various contaminants including metals, pesticides , solvents, explosives, petroleum hydrocarbons, polycyclic...and degrade or transform organic substances for use as nutrient substances. Certain microorganisms can degrade organic substances such as fuels or...such as heavy metals by living organisms. Biodegradation: The breakdown of organic substances by microorganisms . Bioremediation : The process by which

  4. Does fertilizer (N15P15K15) amendment enhance phytoremediation of petroleum-polluted aquatic ecosystem in the presence of water hyacinth (Eichhornia crassipes [Mart.] Solms)?

    Science.gov (United States)

    Ndimele, Prince Emeka; Jenyo-Oni, Adetola; Chukwuka, Kanayo S; Ndimele, Chinatu Charity; Ayodele, Ibukunoluwa Augustine

    2015-01-01

    This study investigated the effects of inorganic fertilizer (N15P15K15) amendments on crude oil uptake by water hyacinth. Experimental units (water hyacinth grown in fresh water) were spiked with 0, 20, 40 and 60 mg/L crude oil. After 24 h, they were randomly assigned fertilizer (N15P15K15) at three different concentrations; 0, 6 and 10 mg/L. Crude oil degradation and absorption were determined by measuring total petroleum hydrocarbon (TPH) in the water column and water hyacinth, respectively. The measurements were taken monthly for six months (February-August 2010). The results showed that TPH concentration in the water column in the treatment amended at 6 mg/L (0.30 ± 0.01 mg/L) was significantly lower (p phytoremediation) absorbed significantly higher (p phytoremediation of crude oil by water hyacinth and biostimulation with fertilizer (N15P15K15) is possible.

  5. Phytoremediation of MTBE

    International Nuclear Information System (INIS)

    Newman, L.

    2002-01-01

    'Full text:' Phytoremediation, or the use of plants to remediate contaminants, is one of the new technologies being considered for MTBE remediation. While the high solubility of MTBE results in rapid uptake in the plant, little is known about the metabolic fate of MTBE in the plant system. In part, this is because of the lack of analytical methods that will allow the identification and characterization of low levels of metabolites when examined against a plant cell background. This talk will present a review of the work from several laboratories that are looking into phytoremediation of MTBE as well as the work done at the University of Washington and the University of South Carolina looking at the fate of MTBE in the plant system. Results from several experiments, both in the laboratory and from field installations, will be presented. (author)

  6. Repeated Exposition to Mercury (II Chloride Enhances Susceptibility to S. schenckii sensu stricto Infection in Mice

    Directory of Open Access Journals (Sweden)

    Alexander Batista-Duharte

    2018-05-01

    Full Text Available Sporotrichosis is a subcutaneous mycosis that has re-emerged in several tropical and subtropical regions over the last decades. Growing findings suggest that the interplay of host, pathogen, and environment has a determinant effect on the diversity, local distribution, and virulence of Sporothrix schenckii sensu lato, the etiologic agent. Among the environmental factors, we have studied the potential role of repeated exposures to mercury (Hg, a known immunotoxic xenobiotic that is widely used in gold mining regions where sporotrichosis outbreaks are frequently reported. In this study, male Swiss mice received subcutaneous injections of either 300 or 1200 µg/kg of mercury (II chloride (HgCl2 for 14 days, three times a week. A control group was injected with the vehicle Phosphate Buffered Saline (PBS. Treatment with HgCl2 impaired several immunologic parameters that are involved in host response to Sporothrix infection, such as the production of TNFα, IL-1, and nitric oxide by macrophages, and Th1/Th2/Th17 populations and their respective cytokines. The consequences of these effects on the host resistance to S. schenckii infection were subsequently evaluated. Hg-exposed mice exhibited a higher fungal load in the fungal inoculation site associated to systemic dissemination to spleen and liver on 14 days post-infection and a higher production of specific IgG1 and mild reduction of IgG2a. These findings suggest that repeated exposition to Hg enhances susceptibility to S. schenckii infection in mice and can be a factor associated to sporotrichosis outbreaks in endemic and highly Hg-polluted areas.

  7. Phytoremediation of landfill leachate

    International Nuclear Information System (INIS)

    Jones, D.L.; Williamson, K.L.; Owen, A.G.

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m 3 ha -1 yr -1 . However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios

  8. Phytoremediation of landfill leachate.

    Science.gov (United States)

    Jones, D L; Williamson, K L; Owen, A G

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250m(3)ha(-1)yr(-1). However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  9. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and

  10. Phytoremediation of soils contaminated with radionuclides

    International Nuclear Information System (INIS)

    Yamaguchi, Isamu

    2004-01-01

    Aiming at efficient phytoremediation of soils contaminated with radionuclides, we examined the effect of soil microbes on the uptake ability of plants using the multitracer technique to find that tomato rhizofungi in Fusarium spp. can stimulate the uptake of 85 Sr and 137 Cs by the plants. The synergic effect of a nonpathogenic strain of F. oxysporum on the uptake of radionuclides by plants proved to be enhanced by introducing a phytochelatin synthase gene into the fungus. Since soil contamination by radionuclides is still an unsolved problem in many parts of the world. Studies on phytoremediation of polluted soil environment will be important for developing effective strategies and devising adequate techniques to reduce human risks caused by food contamination of radionuclides. (author)

  11. Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup

    Science.gov (United States)

    This primer explains the phytoremediation process, discusses the potential advantages and considerations in selecting phytoremediation to clean up brownfields sites, and provides information on additional resources about phytoremediation.

  12. A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury

    Directory of Open Access Journals (Sweden)

    Gordon W. Irvine

    2017-03-01

    Full Text Available Metallothioneins (MTs are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was incorporated into an electrochemical-based biosensor for the detection of As3+ and Hg2+. A simple design was chosen to maximize its potential in environmental monitoring and MT was physically adsorbed onto paper discs placed on screen-printed carbon electrodes (SPCEs. This system was tested with concentrations of arsenic and mercury typical of contaminated water sources ranging from 5 to 1000 ppb. The analytical performance of the MT-adsorbed paper discs on SPCEs demonstrated a greater than three-fold signal enhancement and a lower detection limit compared to blank SPCEs, 13 ppb for As3+ and 45 ppb for Hg2+. While not being as low as some of the recommended drinking water limits, the sensitivity of the simple MT-biosensor would be potentially useful in monitoring of areas of concern with a known contamination problem. This paper describes the ability of the metal binding protein metallothionein to enhance the effectiveness of a simple, low-cost electrochemical sensor.

  13. Does seasonal snowpacks enhance or decrease mercury contamination of high elevation ecosystems?

    Science.gov (United States)

    Pierce, A.; Fain, X.; Obrist, D.; Helmig, D.; Barth, C.; Jacques, H.; Chowanski, K.; Boyle, D.; William, M.

    2009-12-01

    Mercury (Hg) is an extremely toxic pollutant globally dispersed in the environment. Natural and anthropogenic sources emit Hg to the atmosphere, either as gaseous elemental mercury (GEM; Hg0) or as divalent mercury species. Due to the long lifetime of GEM mercury contamination is not limited to industrialized sites, but also a concern in remote areas such as high elevation mountain environments. During winter and spring 2009, we investigated the fate of atmospheric mercury deposited to mountain ecosystems in the Sierra Nevada (Sagehen station, California, USA) and the Rocky Mountains (Niwot Ridge station, Colorado, USA). At Sagehen, we monitored mercury in snow (surface snow sampling and snow pits), wet deposition, and stream water during the snow-dominated season. Comparison of Hg stream discharge to snow Hg wet deposition showed that only a small fraction of Hg wet deposition reached stream in the melt water. Furthermore, Hg concentration in soil transects (25 different locations) showed no correlations to wet deposition Hg loads due to pronounced altitudinal precipitation gradient suggesting that Hg deposited to the snowpack was not transferred to ecosystems. At Niwot Ridge, further characterization of the chemical transformation involving mercury species within snowpacks was achieved by 3-months of continuous monitoring of GEM and ozone concentrations in the snow air at eight depths from the soil-snow interface to the top of the up to 2 meter deep snowpack. Divalent mercury concentrations were monitored as well (surface snow sampling and snow pits). GEM levels in snow air exhibited strong diurnal pattern indicative of both oxidation and reduction processes. Low levels of divalent mercury concentrations in snow pack suggest that large fractions of Hg originally deposited as wet deposition was reemitted back to the atmosphere after reduction. Hence, these results suggest that the presence of a seasonal snowpack may decrease effective wet deposition of mercury and

  14. Laser-enhanced ionization of mercury atoms in an inert atmosphere with avalanche amplification of the signal.

    Science.gov (United States)

    Clevenger, W L; Matveev, O I; Cabredo, S; Omenetto, N; Smith, B W; Winefordner, J D

    1997-07-01

    A new method for laser-enhanced ionization detection of mercury atoms in an inert gas atmosphere is described. The method, which is based on the avalanche amplification of the signal resulting from the ionization from a selected Rydberg level reached by a three-step laser excitation of mercury vapor in a simple quartz cell, can be applied to the determination of this element in various matrices by the use of conventional cold atomization techniques. The overall (collisional + photo) ionization efficiency is investigated at different temperatures, and the avalanche amplification effect is reported for Ar and P-10 gases at atmospheric pressure. It is shown that the amplified signal is related to the number of charges produced in the laser-irradiated volume. Under amplifier noise-limited conditions, a detection limit of ∼15 Hg atoms/laser pulse in the interaction region is estimated.

  15. Phytoremediation of Soil Trace Elements

    Science.gov (United States)

    Phytoremediation includes several distinct approaches to using plants to achieve soil remediation goals. Phytoextraction uses rare hyperaccumulator plants to accumulate in their shoots enough metals per year to achieve decontamination goals. Phytomining uses hyperaccumulators and biomass burn to pro...

  16. Phytoremediation of heavy metals: Recent techniques | Jadia ...

    African Journals Online (AJOL)

    microorganisms/biomass or live plants to clean polluted areas. Phytoremediation is an emerging technology for cleaning up contaminated sites, which is ... A brief review on phytoremediation of heavy metals and its effect on plants have been ...

  17. Enhancements to the Combinatorial Geometry Particle Tracker in the Mercury Monte Carlo Transport Code: Embedded Meshes and Domain Decomposition

    International Nuclear Information System (INIS)

    Greenman, G.M.; O'Brien, M.J.; Procassini, R.J.; Joy, K.I.

    2009-01-01

    Two enhancements to the combinatorial geometry (CG) particle tracker in the Mercury Monte Carlo transport code are presented. The first enhancement is a hybrid particle tracker wherein a mesh region is embedded within a CG region. This method permits efficient calculations of problems with contain both large-scale heterogeneous and homogeneous regions. The second enhancement relates to the addition of parallelism within the CG tracker via spatial domain decomposition. This permits calculations of problems with a large degree of geometric complexity, which are not possible through particle parallelism alone. In this method, the cells are decomposed across processors and a particles is communicated to an adjacent processor when it tracks to an interprocessor boundary. Applications that demonstrate the efficacy of these new methods are presented

  18. Application of chemical tools to evaluate phytoremediation of weathered hydrocarbons

    International Nuclear Information System (INIS)

    Camp, H.; Kulakow, P.; Smart, D.R.; O'Reilly, K.

    2002-01-01

    The effectiveness of using phytoremediation methods to treat soils contaminated with hydrocarbons was tested in a three-year study at a site in northern California at a treatment pond for refinery process water. The treatment pond was drained several years ago and is targeted for cleanup. The petroleum hydrocarbons from the refinery waste were already highly degraded from natural weathering processes by the time the study began. The soil consists of about 23 per cent sand, 38 per cent silt, and 39 per cent clay. The study followed the Environmental Protection Agency's standardized field protocol and analytical approach. During the study, chemical data for several hydrocarbon parameters was gathered. Soil samples were Soxhlet-extracted in organic solvent and measured for oil and grease and total petroleum hydrocarbons using gravimetric techniques. One of the objectives was to develop an accurate quantitative way to identify sites and conditions where phytoremediation will be effective to supplement decision-tree-type approaches. The focus of the study is the application of chemical data in evaluating the effectiveness of the treatment process. Phytoremediation uses living plants for in situ remediation of polluted soils. The basic benefits of the techniques is that it is aesthetically pleasing, natural and passive. In addition, it is effective in cleaning up sites with low to moderate levels of pollution at shallow depths. A particular form of phytoremediation called rhizodegradation or enhanced rhizosphere biodegradation was the treatment used in this study. It is a treatment in which microorganisms digest organic substances and beak them down by biodegradation while being supported in the plant root structure. Test results indicate that the effects of phytoremediation treatments are subtle for highly weathered source material. It was noted that more statistical analysis will be performed with the data to determine compositional changes due to phytoremediation

  19. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    Science.gov (United States)

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.

  20. Phytoremediation of organochlorine pesticides: Concept, method, and recent developments.

    Science.gov (United States)

    Singh, Tanvi; Singh, Dileep K

    2017-09-02

    Rapid increase in industrialization of world economy in the past century has resulted in significantly high emission of anthropogenic chemicals in the ecosystem. The organochlorine pesticides (OCPs) are a great risk to the global environment and endanger the human health due to their affinity for dispersion, transportation over long distances, and bioaccumulation in the food chain. Phytoremediation is a promising technology that aims to make use of plants and associated bacteria for the treatment of groundwater and soil polluted by these contaminants. Processes known to be involved in phytoremediation of OCPs include phytoaccumulation, rhizoremediation, and phytotransformation. Vegetation has been accounted to considerably amplify OCP elimination from soil, in contrast to non-planted soil, attributable to both, uptake within plant tissues and high microbial degradation of OCP within the root zone. Developing transgenic plants is a promising approach to enhance phytoremediation capabilities. Recent advances in the application of phytoremediation technique for OCPs, including uptake by plants and plant-microbe association in the rhizosphere for the enhanced degradation and mineralization of these pollutants, is presented in this review. Additionally, some attempts to improve this technique using transgenesis and role of certain enzymes are also discussed.

  1. New Mechanisms of Mercury Binding to Peat

    Science.gov (United States)

    Nagy, K. L.; Manceau, A.; Gasper, J. D.; Ryan, J. N.; Aiken, G. R.

    2007-12-01

    Mercury can be immobilized in the aquatic environment by binding to peat, a solid form of natural organic matter. Binding mechanisms can vary in strength and reversibility, and therefore will control concentrations of bioreactive mercury, may explain rates of mercury methylation, and are important for designing approaches to improve water quality using natural wetlands or engineered phytoremediation schemes. In addition, strong binding between mercury and peat is likely to result in the fixation of mercury that ultimately resides in coal. The mechanisms by which aqueous mercury at low concentrations reacts with both dissolved and solid natural organic matter remain incompletely understood, despite recent efforts. We have identified three distinct binding mechanisms of divalent cationic mercury to solid peats from the Florida Everglades using EXAFS spectroscopic data (FAME beamline, European Synchrotron Radiation Facility (ESRF)) obtained on experimental samples as compared to relevant references including mercury-bearing solids and mercury bound to various organic molecules. The proportions of the three molecular configurations vary with Hg concentration, and two new configurations that involve sulfur ligands occur at Hg concentrations up to about 4000 ppm. The binding mechanism at the lowest experimental Hg concentration (60-80 ppm) elucidates published reports on the inhibition of metacinnabar formation in the presence of Hg-bearing solutions and dissolved natural organic matter, and also, the differences in extent of mercury methylation in distinct areas of the Florida Everglades.

  2. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    Science.gov (United States)

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expression. This review focuses on Arabidopsis studies concerning: 1) the remediation of elemental pollutants; 2) the remediation of organic pollutants; and 3) the phytoremediation genome. Elemental pollutants include heavy metals and metalloids (e.g., mercury, lead, cadmium, arsenic) that are immutable. The general goal of phytoremediation is to extract, detoxify, and hyperaccumulate elemental pollutants in above-ground plant tissues for later harvest. A few dozen Arabidopsis genes and proteins that play direct roles in the remediation of elemental pollutants are discussed. Organic pollutants include toxic chemicals such as benzene, benzo(a)pyrene, polychlorinated biphenyls, trichloroethylene, trinitrotoluene, and dichlorodiphenyltrichloroethane. Phytoremediation of organic pollutants is focused on their complete mineralization to harmless products, however, less is known about the potential of plants to act on complex organic chemicals. A preliminary survey of the Arabidopsis genome suggests that as many as 700 genes encode proteins that have the capacity to act directly on environmental pollutants or could be modified to do so. The potential of the phytoremediation proteome to be used to reduce human exposure to toxic pollutants appears to be enormous and untapped. PMID:22303204

  3. Aspekte der Phytoremediation organischer Schadstoffe

    DEFF Research Database (Denmark)

    Trapp, Stefan

    2000-01-01

    Phytoremediation is the quite novel technique of cleaning polluted sites through the use of plants. Phytoremediation methods are comparatively cheap, are accepted by the public and are ecologically advantageous, compared to common technological approaches. Until today, there have been only a few...... examples for successful applications. One reason is that the processes occurring are complex, and a full clean up may require many years. Plants have an influence on the water balance of a site, they change redox potential and pH, and stimulate microbial activity of the soil. These indirect influences may...... accelerate degradation in the root zone or reduce the leaching of compounds into the groundwater. Compounds taken up into plants may be metabolised, accumulate, or volatilise into air. Based on these processes, several phytoremediation methods have been developed: Phytoextraction, rhizofiltration...

  4. Proceedings of the phytoremediation technical seminar

    International Nuclear Information System (INIS)

    1999-01-01

    The research and development efforts regarding phytoremediation technologies were the main focus of this conference. Phytoremediation is the term for any applied process that uses green plants and their associated microorganisms for remediating contaminated soils and groundwater. The 12 papers presented at this conference provided guidance on recommended requirements for the successful implementation of specific phytoremediation technologies. The mechanisms of phytoremediation for petroleum hydrocarbons were also described. Phytoremediation technologies are divided into two major classes including contaminant removal and contaminant stabilization. Several studies have shown that phytoremediation is effective in degrading, containing and transferring petroleum hydrocarbons in soil and groundwater. Phytoremediation has shown to hold promise for the effective and inexpensive cleanup of various hazardous wastes. refs., tabs., figs

  5. Proceedings of the phytoremediation technical seminar

    Energy Technology Data Exchange (ETDEWEB)

    1999-01-01

    The research and development efforts regarding phytoremediation technologies were the main focus of this conference. Phytoremediation is the term for any applied process that uses green plants and their associated microorganisms for remediating contaminated soils and groundwater. The 12 papers presented at this conference provided guidance on recommended requirements for the successful implementation of specific phytoremediation technologies. The mechanisms of phytoremediation for petroleum hydrocarbons were also described. Phytoremediation technologies are divided into two major classes including contaminant removal and contaminant stabilization. Several studies have shown that phytoremediation is effective in degrading, containing and transferring petroleum hydrocarbons in soil and groundwater. Phytoremediation has shown to hold promise for the effective and inexpensive cleanup of various hazardous wastes. refs., tabs., figs.

  6. Phytoremediation of soils contaminated by cadmium

    Science.gov (United States)

    Watai, H.; Miyazaki, T.; Fujikawa, T.; Mizoguchi, M.

    2004-12-01

    Phytoremediation is a technique to clean up soils contaminated with heavy metals. Advantages of this method are that (1) This technique is suitable to cleanup soils slightly contaminated with heavy metals in relatively wide area. (2) The expense for clean up is lower than civil engineering techniques. (3) This method can remove heavy metals fundamentally from contaminated. (4) The heavy metals are able to recycle by ashing of plants. Many researches have been done on the phytoremediation up to now, but almost all these researches were devoted to clarify the phytoremediation from the view point of plants themselves. However, few efforts have been devoted to analyze the migrations of heavy metals in soils during the phytoremediation process. The objective of this study is to clarify the features of Cd migration when plant roots are absorbing Cd from the ambient soils. Especially, we focused on finding the Cd migration pattern by changing the soil condition such as plant growing periods, planting densities, and the initial Cd concentration in soils. We planted sunflowers in columns filled with Cd contaminated soils because sunflower is a well-known hyperaccumulator of Cd from soils. By cutting the shoots of plants at the soil surface, and by keeping the plant roots in the soils without disturbance, the Cd concentrations, moisture contents, pH distributions, EC distributions, and dry weight of residual roots in the soils were carefully analyzed. The experimental results showed that (1)The growth of the planted sunflowers were suffered by applying of Cd. (2)The decrease of suction was affected by water uptake by roots at the depth from 0 to 5 cm. Water contents with plants in soils decrease more than without plants. (3)Cd adsorption by roots was predominant within 5cm from soil surface. In addition, it was also shown that there was an optimal Cd concentration where Cd is most effectively adsorbed by the plant. In this experiment we found that 40 to 60 mg kg-1 was the

  7. Genetic modification of wetland grasses for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Czako, M.; Liang Dali; Marton, L. [Dept. of Biological Sciences, Univ. of South Carolina, Columbia, SC (United States); Feng Xianzhong; He Yuke [National Lab. of Plant Molecular Genetics, Shanghai Inst. of Plant Physiology, Chinese Academy of Sciences, Shanghai, SH (China)

    2005-04-01

    Wetland grasses and grass-like monocots are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Tissue culture is prerequisite for genetic manipulation, and methods are reported here for in vitro culture and micropropagation of a number of wetland plants of various ecological requirements such as salt marsh, brackish water, riverbanks, and various zones of lakes and ponds, and bogs. The monocots represent numerous genera in various families such as Poaceae, Cyperaceae, Juncaceae, and Typhaceae. The reported species are in various stages of micropropagation and Arundo donax is scaled for mass propagation for selecting elite lines for pytoremediation. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is also reported here. All but one transgenic lines contained both the organomercurial lyase (merB) and mercuric reductase (merA) sequences showing that co-introduction into Spartina of two genes from separate Agrobacterium strains is possible. (orig.)

  8. phytoremediation potential of the plant

    African Journals Online (AJOL)

    EJIRO

    caused significant reduction in the growth of the plant using plant height, ... The weed can be used for the restoration of crude oil contaminated ... Key words: Phytoremediation, Paspalum scrobiculatum, crude oil contamination, phytotoxicity, biomass. INTRODUCTION. Contamination of soil by crude oil spills is a wide spread.

  9. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  10. Method for the removal and recovery of mercury

    Science.gov (United States)

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  11. Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin

    2017-01-01

    The presence of heavy metals in the soil is a matter of growing concern due to their toxic and non-biodegradable nature. Lack of effectiveness of various conventional methods due to economic and technical constraints resulted in the search for an eco-friendly and cost-effective biological techniques for heavy metal removal from the environment. Until now, phytoremediation has emerged as an innovative technique to address the problem. However, the efficiency of phytoremediation process is hindered under the high metal concentration conditions. Hence, phosphate solubilizing microbes (PSM) assisted phytoremediation technique is gaining more insight as it can reduce the contamination load even under elevated metal stressed conditions. These microbes convert heavy metals into soluble and bioavailable forms, which consequently facilitate phytoremediation. Several studies have reported that the use of microbial consortium for remediation is considered more effective as compared to single strain pure culture. Therefore, this review paper focuses on the current trends in research related to PSM mediated uptake of heavy metal by plants. The efficiency of PSM consortia in enhancing the phytoremediation process has also been reviewed. Moreover, the role of phosphatase enzymes in the mineralization of organic forms of phosphate in soil is further discussed. Biosurfactant mediated bioremediation of metal polluted soils is a matter of extensive research nowadays. Hence, the recent advancement of using biosurfactants in enhanced phytoremediation of metal stressed soils is also described.

  12. Selection of Mercury Accumulator Plants for Gold Mine Tailing Contaminated Soils

    OpenAIRE

    Muddarisna, N; Krisnayanti, B D

    2015-01-01

    Phytoremediation, which is more efficient with less side effects than conventional physical and chemical methods, is increasing in popularity as a remediation system. This paper provides a brief overview of developments in research and application of phytoremediation of soil contaminated with gold mine tailings containing mercury. Lindernia crustacea L., Digitaria radicosa Presl. Miq., Zingiber purpurium L, Paspalum conjugatum Berg., Cyperus kyllingia Endl., and Caladium bicolor Vent., that w...

  13. Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).

    Science.gov (United States)

    Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Fank B; Gu, Mengmeng; Su, Yi; Masad, Motasim A

    2009-10-01

    Mercury, a potent neurotoxin, is released to the environment in significant amounts by both natural processes and anthropogenic activities. No natural hyperaccumulator plant has been reported for mercury phytoremediation. Few studies have been conducted on the physiological responses of Indian mustard, a higher biomass plant with faster growth rates, to mercury pollution. This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.) and mercury-induced oxidative stress in order to examine the potential application of Indian mustard to mercury phytoremediation. Two common cultivars (Florida Broadleaf and Longstanding) of Indian mustard were grown hydroponically in a mercury-spiked solution. Plant uptake, antioxidative enzymes, peroxides, and lipid peroxidation under mercury stress were investigated. Antioxidant enzymes (catalase, CAT; peroxidase, POD; and superoxide dismutase, SOD) were the most sensitive indices of mercury-induced oxidative response of Indian mustard plants. Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H(2)O(2), resulting in lower H(2)O(2) in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. A majority of Hg was accumulated in the roots and low translocations of Hg from roots to shoots were found in two cultivars of Indian mustard. Thus Indian mustard might be a potential candidate plant for phytofiltration/phytostabilization of mercury contaminated waters and wastewater.

  14. Use of selenium to detect mercury in water and cells: an enhancement of the sensitivity and specificity of a seleno fluorescent probe.

    Science.gov (United States)

    Tang, Bo; Ding, Baiyu; Xu, Kehua; Tong, Lili

    2009-01-01

    Seleno fluorescent probe: An organoselenium fluorescent probe (FSe-1) for mercury was designed based on the irreversible deselenation mechanism. FSe-1 exhibits an ultrahigh selectivity and sensitivity for Hg(2+) detection only for reactive selenium atom sites, due the strong affinity between Se and Hg. Furthermore, the new probe has been successfully used for imaging mercury ions in RAW 264.7 cells (a mouse macrophage cell line; see figure).Inspired by the antitoxic function of selenium towards heavy-metal ions, we designed an organoselenium fluorescent probe (FSe-1) for mercury. The reaction of FSe-1 and Hg(2+) is an irreversible deselenation mechanism based on the selenophilic character of mercury. FSe-1 exhibits an ultrahigh selectivity and sensitivity for Hg(2+) detection only for reactive selenium atom sites due to the strong affinity between Se and Hg. The experimental results proved that FSe-1 was selective for Hg(2+) ions over other relevant metal ions and bioanalytes, and also showed an enhancement in sensitivity of up to 1.0 nM, which is lower than the current Environmental Protection Agency standard for drinking water. Furthermore, the new probe has been successfully applied to the imaging of mercury ions in RAW 264.7 cells (a mouse macrophage cell line) with high sensitivity and selectivity.

  15. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.

    Science.gov (United States)

    Nagata, Takeshi; Morita, Hirofumi; Akizawa, Toshifumi; Pan-Hou, Hidemitsu

    2010-06-01

    To develop the potential of plant for phytoremediation of methylmercury pollution, a genetically engineered tobacco plant that coexpresses organomercurial lyase (MerB) with the ppk-specified polyphosphate (polyP) and merT-encoding mercury transporter was constructed by integrating a bacterial merB gene into ppk/merT-transgenic tobacco. A large number of independent transgenic tobaccos was obtained, in some of which the merB gene was stably integrated in the plant genome and substantially translated to the expected MerB enzyme in the transgenic tobacco. The ppk/merT/merB-transgenic tobacco callus showed more resistance to methylmercury (CH3Hg+) and accumulated more mercury from CH3Hg+-containing medium than the ppk/merT-transgenic and wild-type progenitors. These results suggest that the MerB enzyme encoded by merB degraded the incorporated CH3Hg+ to Hg2+, which then accumulated as a less toxic Hg-polyP complex in the tobacco cells. Phytoremediation of CH3Hg+ and Hg2+ in the environment with this engineered ppk/merT/merB-transgenic plant, which prevents the release mercury vapor (Hg0) into the atmosphere in addition to generating potentially recyclable mercury-rich plant residues, is believed to be more acceptable to the public than other competing technologies, including phytovolatilization.

  16. Phytoremediation of Pharmaceuticals - Preliminary Study

    OpenAIRE

    Kotyza, J. (Jan); Soudek, P. (Petr); Kafka, Z.; Vaněk, T. (Tomáš)

    2010-01-01

    Phytoremediation of selected pharmaceuticals (diclofenac, ibuprofen, and acetaminophen) using Armoracia rusticana and Linum usitatissimum cell cultures and by hydroponically cultivated Lupinus albus, Hordeum vulgaris, and Phragmites australis plants in laboratory conditions is described. During in vitro experiments, the best results for acetaminophen were achieved using Armoracia rusticana hairy root cultures, where 100% of the starting amount was removed from the media during eight days. To...

  17. SULFENTRAZONE PHYTOREMEDIATION UNDER FIELD CONDITIONS

    Directory of Open Access Journals (Sweden)

    ALESSANDRA FERREIRA BELO

    2016-01-01

    Full Text Available Phytoremediation is a technique that has been used with increasing frequency to decontaminate soils treated with herbicides that have long - term residual effects, such as sulfentrazone. The goal was to assess phytoremediation of the herbicide sulfentrazone under field conditions by the species Canavalia ensiformis and Crotalaria juncea . The treatments consisted of combinations of the plant species C. ensiformis and C. juncea plus a control treatment (with manual weeding and four doses of the herbicide sulfentrazone. The experimental design used herein was a split - plot randomized block design with four replicates per subplot. The treatments were kept in the field for 75 days. After this period, the experimental area was again furrowed and fertilized, considering the requirements for Pennisetum glaucum , a plant used as an indicator of the presence of sulfentrazone. Thirty - four days after sowing pearl millet, the fresh and dry shoot masses of the plants were assessed. At the end of the cycle, the plant height, stem diameter, internode length, number of leaves, number of panicles, and fresh and dry panicle masses were determined. Previous cultivation of phytoremediation species C. ensiformis and C. juncea promotes sulfentrazone remediation. C. ensiformis is the most efficient species for the decontamination of the herbicide sulfentrazone under field conditions.

  18. A Review on Heavy Metals (As, Pb, and Hg Uptake by Plants through Phytoremediation

    Directory of Open Access Journals (Sweden)

    Bieby Voijant Tangahu

    2011-01-01

    Full Text Available Heavy metals are among the most important sorts of contaminant in the environment. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmental friendly and potentially cost effective. This paper aims to compile some information about heavy metals of arsenic, lead, and mercury (As, Pb, and Hg sources, effects and their treatment. It also reviews deeply about phytoremediation technology, including the heavy metal uptake mechanisms and several research studies associated about the topics. Additionally, it describes several sources and the effects of As, Pb, and Hg on the environment, the advantages of this kind of technology for reducing them, and also heavy metal uptake mechanisms in phytoremediation technology as well as the factors affecting the uptake mechanisms. Some recommended plants which are commonly used in phytoremediation and their capability to reduce the contaminant are also reported.

  19. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    Science.gov (United States)

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  20. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation

    International Nuclear Information System (INIS)

    Cofield, Naressa; Banks, M. Katherine; Schwab, A. Paul

    2007-01-01

    The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months. The greatest reduction in soil hydrophobicity was observed in the unplanted, unfertilized treatments that had the lowest removal rate of PAHs. The presence of plants may contribute to hydrophobicity in contaminated soil. - The presence of recalcitrant hydrophobic organic pollutants may enhance soil hydrophobicity

  1. Responses of three grass species to creosote during phytoremediation

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    Phytoremediation of creosote-contaminated soil was monitored in the presence of Tall fescue, Kentucky blue grass, or Wild rye. For all three grass species, plant growth promoting rhizobacteria (PGPR) were evaluated for plant growth promotion and protection of plants from contaminant toxicity. A number of parameters were monitored including plant tissue water content, root growth, plant chlorophyll content and the chlorophyll a/b ratio. The observed physiological data indicate that some plants mitigated the toxic effects of contaminants. In addition, in agreement with our previous experiments reported in the accompanying paper (Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soil. Environ. Poll. doi: 10.1016/j.envpol.2003.09.031), PGPR were able to greatly enhance phytoremediation. PGPR accelerated plant growth, especially roots, in heavily contaminated soils, diminishing the toxic effects of contaminants to plants. Thus, the increased root biomass in PGPR-treated plants led to more effective remediation. - Plant growth promoting rhizobacteria enhanced growth and remediation of three grass species

  2. Phytoremediation of metals contaminated dredged sediments: Use of synthetic chelates in metals phytoextraction

    Science.gov (United States)

    Sahut, C.; Geniaut, G.; Lillo, M. P.

    2003-05-01

    (in Times 10 points) The waterways maintenance leads to a large volume of dredged polluted sediments, to be disposed of, every year. As the economic disposal of dredged sediment is a single line along the stream they can behave as a sink of pollutant and a migration in the environment is observed. Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from dredged sediment by plants. Lysimeters studies were conducted to study the phytoremediation of sediments with EDTA and lactic acid used as synthetic chelators. EDTA appeared to enhance metal solubility by plant uptake did not increase accordingly. Futhermore EDTA enhance metal leaching which could lead 10 groungwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation and of the use of EDTA seems necessary.

  3. Aquatic arsenic: Phytoremediation using floating macrophytes

    OpenAIRE

    Azizur Rahman, Mohammad; Hasegawa, Hiroshi

    2011-01-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated ...

  4. THE SCIENCE AND PRACTICE OF PHYTOREMEDIATION

    Science.gov (United States)

    This presentation will briefly review terminology, and define the types, benefits, and limitations of phytoremediation. A review of where phytoremediation fits in the scheme of hazardous waste management serves as a lead into an overview of the scientific advances on which the pr...

  5. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  6. Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons

    Science.gov (United States)

    2002-12-19

    lead, arsenic, nickel, mercury and cadmium) is also widespread at the same military facilities due to the use of these metals in ordnance...Eds.), Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle Second International Conference on Remediation of...Electron Donors, in Wickramanayake, G., Gavashkar, A., Alleman, B., Magar, V., eds. Bioremediation and Phytoremediation of Chlorinated and Recalcitrant

  7. Research on recovery of the soil pollution by mercury in gold mining by Sweet Sorghum in Wonogiri, Central Java, Indonesia

    OpenAIRE

    TAKAHI, Sachiko; PRIJAMBADA, Irfan Dwidya; UTAMI, Desi

    2013-01-01

    Small scale gold mining provides an important source of income for miners in rural communities where economic alternatives are extremely limited. However, it releases mercury which damages the environment and poses risks to those in the nearby community. Phytoremediation is considered as a simple and cost-effective method for the cleanup of heavy metal from contaminated soil. Phytoremediation is a technology that uses plants to degrade, extract, contain or immobilize contaminants from soil an...

  8. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.

    Science.gov (United States)

    Rajtor, Monika; Piotrowska-Seget, Zofia

    2016-11-01

    Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Using Phytoremediation to Clean Up Contamination at Military Installations

    International Nuclear Information System (INIS)

    Zellmer, S.D.; Hinchman, R.R.; Negri, M.C.; Schneider, J.F.; Gatliff, E.G.

    1997-07-01

    During and following World War II, wastes from the production of munitions and other military materials were disposed of using the best available practices acceptable at that time. However, these disposal methods often contaminated soil and groundwater with organic compounds and metals that require cleanup under current regulations. An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant's rhizosphere. A phytoremediation system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use. Argonne National Laboratory (ANL) has been conducting basic and applied research in phytoremediation since 1990. Initial greenhouse studies evaluated salt-tolerant wetland plants to clean UP and reduce the volume of salty 'produced water' from petroleum wells. Results of these studies were used to design a bioreactor for processing produced water that is being demonstrated at a natural gas well in Oklahoma; this system can reduce produced water volume by about 75% in less than eight days, representing substantial savings in waste disposal cost. During 1994, ANL conducted a TNT plant uptake and in situ remediation study in a ridge-and-furrow area used for the disposal of pink water at the Joliet Army Ammunition Plant

  10. Using Phytoremediation to Clean Up Contamination at Military Installations

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Hinchman, R.R.; Negri, M.C.; Schneider, J.F. [Argonne National Lab., IL (United States); Gatliff, E.G. [Applied Natural Sciences, Inc., Fairfield, OH (United States)

    1997-07-01

    During and following World War II, wastes from the production of munitions and other military materials were disposed of using the best available practices acceptable at that time. However, these disposal methods often contaminated soil and groundwater with organic compounds and metals that require cleanup under current regulations. An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant`s rhizosphere. A phytoremediation system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use. Argonne National Laboratory (ANL) has been conducting basic and applied research in phytoremediation since 1990. Initial greenhouse studies evaluated salt-tolerant wetland plants to clean UP and reduce the volume of salty `produced water` from petroleum wells. Results of these studies were used to design a bioreactor for processing produced water that is being demonstrated at a natural gas well in Oklahoma; this system can reduce produced water volume by about 75% in less than eight days, representing substantial savings in waste disposal cost. During 1994, ANL conducted a TNT plant uptake and in situ remediation study in a ridge-and-furrow area used for the disposal of pink water at the Joliet Army Ammunition Plant.

  11. Strategies for enhancing the co-removal of mercury in FGD-scrubbers of power plants. Operating parameters and additives

    Energy Technology Data Exchange (ETDEWEB)

    Schuetze, Jan; Koeser, Heinz [Magdeburg Univ. (Germany). Chair of Environmental Technology; Halle-Wittenberg Univ., Halle (Germany). Centre of Engineering Services

    2012-07-01

    Co-combustion of waste fuels, coals with variable mercury content and lower regulatory emission limits are drivers for the optimisation of the co-removal of mercury in flue gas desulphurisation (FGD) scrubbers. The paper explains some new features of the system performance of FGD scrubbers for the co-removal of mercury in coal-fired power plants. Results on their efficiency under standardised laboratory conditions are presented. The effect of these measures on the quality of the FGD by-product gypsum will be covered as well. (orig.)

  12. Planet Mercury

    Science.gov (United States)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  13. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17.

    Science.gov (United States)

    Wang, Q; Xiong, D; Zhao, P; Yu, X; Tu, B; Wang, G

    2011-11-01

    Bioremediation of highly arsenic (As)-contaminated soil is difficult because As is very toxic for plants and micro-organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth-promoting rhizobacterium (PGPR). A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05-17) grown on As-amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg(-1)) inhibited its growth. With the bacterial inoculation, in the 300 mg kg(-1) As-amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above-ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation. © 2011 The Authors. Journal of Applied Microbiology ©2011 The Society for Applied

  14. Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    Science.gov (United States)

    Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo

    2011-01-01

    at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil. PMID:21437257

  15. Mercurial poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, B

    1924-01-01

    Cats which had been kept in a thermometer factory to catch rats were afflicted with mercury poisoning. So were the rats they were supposed to eat. The symptoms of mercury poisoning were the same in both species. The source of mercury for these animals is a fine film of the metal which coats floors, a result of accidental spills during the manufacturing process.

  16. Phytoremediation of Toxic Elemental and Organic Pollutants

    International Nuclear Information System (INIS)

    Meagher, Richard B.

    2000-01-01

    Phytoremediation is the use of plants to extract, sequester, and/or detoxify pollutants. Phytoremediation is widely viewed as the ecologically responsible alternative to the environmentally destructive physical remediation methods currently practiced. Plants have many endogenous genetic, biochemical, and physiological properties that make them ideal agents for soil and water remediation. Significant progress has been made in recent years in developing native or genetically modified plants for the remediation of environmental contaminants. Because elements are immutable, phytoremediation strategies for radionuclide and heavy metal pollutants focus on hyperaccumulation above-ground. In contrast, organic pollutants can potentially be completely mineralized by plants

  17. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  18. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Frick, C M; Germida, J J; Farrell, R E [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    1999-01-01

    The effectiveness of phytoremediation as a tool for cleaning up hydrocarbon contaminated soil and groundwater was evaluated by reviewing relative literature. Phytoremediation is an emerging technology which consists of the use of plants for in situ treatment of contaminated soils. Grasses, herbs, shrubs and deciduous trees were the main types of plants considered in this study. A database is presently under construction to act as an inventory of plant species that tolerate or phytoremediate petroleum hydrocarbons. This paper focused on the main mechanisms and special considerations involved in the phytoremediation alkanes, aromatics, polycyclic aromatic hydrocarbons, and creosote. While phytoremediation does not require intensive engineering techniques, it does involve human intervention to establish appropriate plants and microorganisms to enhance natural degradation processes. Plants such as canola, oats barley have been shown to tolerate and accumulate metals such as selenium, copper, cadmium and zinc. Hybrid poplar trees reduce the concentration of nitrate in surficial groundwater and degrade the herbicide atrazine. Forage grasses inoculated with bacteria can degrade chlorinated benzoic acids. Various grasses and leguminous plants can increase the removal of petroleum hydrocarbons from contaminated soils. 66 refs., 3 tabs., 2 figs.

  19. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    International Nuclear Information System (INIS)

    Frick, C.M.; Germida, J.J.; Farrell, R.E.

    1999-01-01

    The effectiveness of phytoremediation as a tool for cleaning up hydrocarbon contaminated soil and groundwater was evaluated by reviewing relative literature. Phytoremediation is an emerging technology which consists of the use of plants for in situ treatment of contaminated soils. Grasses, herbs, shrubs and deciduous trees were the main types of plants considered in this study. A database is presently under construction to act as an inventory of plant species that tolerate or phytoremediate petroleum hydrocarbons. This paper focused on the main mechanisms and special considerations involved in the phytoremediation alkanes, aromatics, polycyclic aromatic hydrocarbons, and creosote. While phytoremediation does not require intensive engineering techniques, it does involve human intervention to establish appropriate plants and microorganisms to enhance natural degradation processes. Plants such as canola, oats barley have been shown to tolerate and accumulate metals such as selenium, copper, cadmium and zinc. Hybrid poplar trees reduce the concentration of nitrate in surficial groundwater and degrade the herbicide atrazine. Forage grasses inoculated with bacteria can degrade chlorinated benzoic acids. Various grasses and leguminous plants can increase the removal of petroleum hydrocarbons from contaminated soils. 66 refs., 3 tabs., 2 figs

  20. Implications of metal accumulation mechanisms to phytoremediation.

    Science.gov (United States)

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    example, glutathione (GSH), a precursor of phytochelatin synthesis, plays a key role not only in metal detoxification but also in protecting plant cells from other environmental stresses including intrinsic oxidative stress reactions. In the last decade, tremendous developments in molecular biology and success of genomics have highly encouraged studies in molecular genetics, mainly transcriptomics, to identify functional genes implied in metal tolerance in plants, largely belonging to the metal homeostasis network. Analyzing the genetics of metal accumulation in these accumulator plants has been greatly enhanced through the wealth of tools and the resources developed for the study of the model plant Arabidopsis thaliana such as transcript profiling platforms, protein and metabolite profiling, tools depending on RNA interference (RNAi), and collections of insertion line mutants. To understand the genetics of metal accumulation and adaptation, the vast arsenal of resources developed in A. thaliana could be extended to one of its closest relatives that display the highest level of adaptation to high metal environments such as A. halleri and T. caerulescens. This review paper deals with the mechanisms of heavy metal accumulation and tolerance in plants. Detailed information has been provided for metal transporters, metal chelation, and oxidative stress in metal-tolerant plants. Advances in phytoremediation technologies and the importance of metal accumulator plants and strategies for exploring these immense and valuable genetic and biological resources for phytoremediation are discussed. A number of species within the Brassicaceae family have been identified as metal accumulators. To understand fully the genetics of metal accumulation, the vast genetic resources developed in A. thaliana must be extended to other metal accumulator species that display traits absent in this model species. A. thaliana microarray chips could be used to identify differentially expressed genes in

  1. Phytoremediation and Phytomining: Status and Promise

    Science.gov (United States)

    Phytoremediation of inorganics is comprised of technologies to protect the environment from contaminated soils. This broad group of technologies includes phytoextraction (removal from soil), phytomining (accumulating economic metal value in plant biomass) and phytostabilization (limiting plant meta...

  2. Aspects of phytoremediation of organic pollutants

    DEFF Research Database (Denmark)

    Trapp, Stefan; Karlson, U.

    2001-01-01

    Phytoremediation is a quite novel technique to clean polluted soils using plants. In theory, phytoremediation methods are cheap, are accepted by the public and, compared to physical or chemical approaches, are ecologically advantageous. Until today, however, there are only a few examples...... in the root zone or reduce leaching of compounds to groundwater. Compounds taken up into plants may be metabolised, accumulated, or volatilised into air. Based on these processes, several phytoremediation methods have been developed: Phytoextraction, rhizofiltration, phytostabilisation, rhizo...... mass balances were rarely documented. Often, the success of the projects was not controlled, and only estimates can be made about the applicability and the potential of phytoremediation. This lack of experience about possibilities and limitations seems to be a hindrance for a broader use...

  3. Growth and reproductive attributes of radionuclide phytoremediators ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... radio-phytoremediation of soils contaminated with uranium and thorium. Key words: Uranium ... Although, contaminated soils drastically affect the growth of plants and soil-living ...... Toxicity of cadmium, cobalt, uranium and.

  4. Salix: A viable option for phytoremediation

    African Journals Online (AJOL)

    user

    Many animals depend on willows for food. (mostly leaf ... tolerant to deposition and resistant to moderate salinity .... mechanism may enable stabilization of toxic metals ... 'Phytoremediation of Lead, Nickel, and Copper by Salix acmophylla.

  5. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  6. Genetic engineering strategies for enhancing phytoremediation of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    Feb 18, 2009 ... manipulation and analysis of biochemical processes and ... characters molecular techniques such as the analysis of molecular .... tVramp-1/3/4 and LCT1 on the plasma membrane-cytosol interface; ZAT, ABC type, AtMRP,HMT1, CAX2 seen in vacuoles; and RAN1 seen in Golgi bodies. Manipulations.

  7. Highly sensitive determination of mercury using copper enhancer by diamond electrode coupled with sequential injection–anodic stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Chaiyo, Sudkate [Department of Chemistry, Faculty of Science, Srinakharinwirot University (Thailand); Chailapakul, Orawon [Department of Chemistry, Faculty of Science, Chulalongkorn University (Thailand); Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University (Thailand); Siangproh, Weena, E-mail: weena@swu.ac.th [Department of Chemistry, Faculty of Science, Srinakharinwirot University (Thailand)

    2014-12-10

    Highlights: • Highly sensitive determination of Hg(II) using SI–ASV-BDD was achieved. • Electrochemical detection of Hg(II) using Cu(II) enhancer was accomplished. • LOD and LOQ were found to be very low at 40.0 ppt and 135.0 ppt. • This method was successfully applied for determination of Hg(II) in real samples. - Abstract: A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s{sup −1}. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL{sup −1} and 5.0–60.0 ng mL{sup −1}). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL{sup −1}. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL{sup −1}, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg

  8. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  9. Lead tolerance in plants: strategies for phytoremediation.

    Science.gov (United States)

    Gupta, D K; Huang, H G; Corpas, F J

    2013-04-01

    Lead (Pb) is naturally occurring element whose distribution in the environment occurs because of its extensive use in paints, petrol, explosives, sludge, and industrial wastes. In plants, Pb uptake and translocation occurs, causing toxic effects resulting in decrease of biomass production. Commonly plants may prevent the toxic effect of heavy metals by induction of various celular mechanisms such as adsorption to the cell wall, compartmentation in vacuoles, enhancement of the active efflux, or induction of higher levels of metal chelates like a protein complex (metallothioneins and phytochelatins), organic (citrates), and inorganic (sulphides) complexes. Phyotochelains (PC) are synthesized from glutathione (GSH) and such synthesis is due to transpeptidation of γ-glutamyl cysteinyl dipeptides from GSH by the action of a constitutively present enzyme, PC synthase. Phytochelatin binds to Pb ions leading to sequestration of Pb ions in plants and thus serves as an important component of the detoxification mechanism in plants. At cellular level, Pb induces accumulation of reactive oxygen species (ROS), as a result of imbalanced ROS production and ROS scavenging processes by imposing oxidative stress. ROS include superoxide radical (O2(.-)), hydrogen peroxide (H2O2) and hydroxyl radical ((·)OH), which are necessary for the correct functioning of plants; however, in excess they caused damage to biomolecules, such as membrane lipids, proteins, and nucleic acids among others. To limit the detrimental impact of Pb, efficient strategies like phytoremediation are required. In this review, it will discuss recent advancement and potential application of plants for lead removal from the environment.

  10. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects.

    Science.gov (United States)

    Thijs, Sofie; Sillen, Wouter; Weyens, Nele; Vangronsveld, Jaco

    2017-01-02

    Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.

  11. Endophytic degrader bacteria for improving phytoremediation of organic xenobiotics

    DEFF Research Database (Denmark)

    Karlson, U.; Trapp, Stefan; Lelie, D, van der

    2003-01-01

    This project represented a completely new approach towards improving the technology of phytoremediation of soil and groundwater contaminated with water soluble and volatile compounds. It endeavoured to tackle the problem of inefficient degradation of these compounds during phytoremediation by imp...

  12. Microbial activity of soil with sulfentrazone associated with phytoremediator species and inoculation with a bacterial consortium

    Directory of Open Access Journals (Sweden)

    Christiane Augusta Diniz Melo

    Full Text Available ABSTRACT Phytostimulation plays a key role in the process of rhizodegradation of herbicides in soil. Additionally, bio-enhancement associated with phytoremediation may increase the efficiency of the decontamination process of soils with herbicides. Therefore, the objective of this study was to evaluate the biomass and microbial activity of soil contaminated with sulfentrazone and cultivated with phytoremediator species plus a bacterial consortium. The experiment was conducted in a greenhouse, carried out with a 2 × 4 × 4 completely randomized factorial design with 4 replications. The first factor consisted of the presence or absence of bio-enhancement with a bacterial consortium composed of Pseudomonas bacteria; the second factor consisted of a monoculture or mixed cultivation of 2 phytoremediator species Canavalia ensiformis and Helianthus annuus, besides the absence of cultivation; the third factor was made up by the bio-remediation time (25, 45, 65, and 85 days after thinning. Uncultivated soils displayed low values of microbial biomass carbon and microbial quotient as well as high values of metabolic quotient throughout the bio-remediation time, indicating the importance of cultivating phytoremediator species for the stimulation of soil microbiota. Bio-enhancement with the bacterial consortium, in general, promoted an increase in the microbial biomass and activity of soil contaminated with sulfentrazone. In the presence of the bacterial consortium, Canavalia ensiformis stimulated a greater activity of associated microbiota and supported a higher microbial biomass. Phytoremediation associated with microbial bio-enhancement are thus promising techniques for the bio-remediation for soils contaminated with sulfentrazone. This technique enhances the biomass and activity of soil microorganisms.

  13. The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review

    Directory of Open Access Journals (Sweden)

    Melissa PRELAC

    2016-09-01

    Full Text Available Phytoremediation is a method that use plants which can remove or stabilize pollutants in the environment. The aim of the polluted area remediation is to return ecosystems into original condition. Phytoremediation is a green technology used for a wide range of pollutants as well as on various lands, low costs and reduced environment impacts. Energy crops are relatively new in this field of researches and insufficiently explored. However, the results so far show their potential in heavy metal removal. The aim of this research was to examine the available literature and determine the phytoremediation potential of cadmium, chromium, copper, lead, mercury, nickel and zinc from the soil using Arundo donax, Miscanthus x giganteus, Panicum virgatum, Pennisetum purpureum, Sida hermaphrodita and Sorghum x drummondii. According to the researches conditions, studied energy crops are reccomended in heavy metals phytoextraction, rhizofiltration, stabilization and accumulation. Still, those plants accumulate higher concentrations of heavy metals in the rhizosphere which makes them heavy metals excluders since heavy metals are not translocated into the plants' shoot system and favorable in the implementation of rhizofiltration as well.

  14. Review on phytoremediation of uranium-contaminated environment

    International Nuclear Information System (INIS)

    Zhang Xueli; Wang Erqi

    2008-01-01

    Phytoremediation, a promising technology using plants to remove radioactive contaminants from the environment or to render them harmless, has become a hot topic in current research. Studies on phytoremediation of uranium-contaminated environment are reviewed with special focuses on several subsets including types of phytoremediation of uranium (such as phytoextraction, rhizofiltration and phytostabilization), influencing factors (such as plant species, soil properties, microorganism, soil amendments, fertilization and uranium speciation) of uranium accumulation by plants, cases studies and trend in phytoremediation of uranium. (authors)

  15. TREATMENT OF HEAVY METALS FROM WATER BY ELECTRO-PHYTOREMEDIATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Harikumar Puthenveedu Sadasivan Pillai

    2017-09-01

    Full Text Available The performance of electrically stimulated phytoremediation in the removal of lead, cadmium and copper was assessed in this study. A combination of phyto and electro remediation was attempted in this study for the remediation of the metals from water. Three tanks were setup with different operating conditions for this experiment: control A (only phytoremediation system, control B (only electro remediation and treatment (combination of phyto and electro remediation. The electrically enhanced phytoremediation system and electro remediation system were operated 2h/day at voltages of 4V for 25 days continuously. In this experiment, the Eichhornia crassipes, an able phyto-remediator exhibited efficient and fast removal of heavy metals from synthetic solution in electro assisted phytoremediation system. The electrically enhanced phytoremediation using aluminum sheet electrodes showed better and effective removal of Cd, Pb and Cu than aluminum rod electrodes. A more favorable and moderate increase of pH was noticed in electrically stimulated phytoremediation system. Eichhornia crassipes has tremendous potential to reduce maximum amount of cadmium (within 15 days, lead (within 15 days and copper (within 10 days under electrically stimulated condition. Under electrified condition, maximum amount of Cd and Cu was accumulated in the aerial parts of Eichhornia crassipes but maximum concentration of Pb was attained by roots. This indicates the high heavy metal accumulation capacity of Eichhornia crassipes under electrified conditions. The results showed that 4V voltage is probably suitable to stimulate the Eichhornia crassipes to synthesize more chlorophyll and voltage can improve growth and ability to resist adverse circumstances by promoting chlorophyll synthesis. Eichhornia crassipes stimulated by an electric field has grown better and assimilated more metal. Bioconcentration factor (BCF an index of hyperaccumulation, indicates that electrically

  16. Autometallographic tracing of mercury in frog liver

    International Nuclear Information System (INIS)

    Loumbourdis, N.S.; Danscher, G.

    2004-01-01

    The distribution of mercury in the liver of the frog Rana ridibunda with the autometallographic method was investigated. The mercury specific autometallographic (HgS/Se AMG ) technique is a sensitive histochemical approach for tracing mercury in tissues from mercury-exposed organisms. Mercury accumulates in vivo as mercury sulphur/mercury selenium nanocrystals that can be silver-enhanced. Thus, only a fraction of the Hg can be visualized. Six animals were exposed for one day and another group of six animals for 6 days in 1 ppm mercury (as HgCI 2 ) dissolved in fresh water. A third group of six animals, served as controls, were sacrificed the day of arrival at the laboratory. First, mercury appears in the blood plasma and erythrocytes. Next, mercury moves to hepatocytes and in the apical part of the cells, that facing bile canaliculi. In a next step, mercury appears in the endothelial and Kupffer cells. It seems likely that, the mercury of hepatocytes moves through bile canaliculi to the gut, most probably bound to glutathione and/or other similar ligands. Most probably, the endothelial and Kupffer cells comprise the first line of defense against metal toxicity. - Frogs can be good bioindicators of mercury

  17. Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain.

    Science.gov (United States)

    Beauvais-Flück, Rebecca; Chaumot, Arnaud; Gimbert, Frédéric; Quéau, Hervé; Geffard, Olivier; Slaveykova, Vera I; Cosio, Claudia

    2016-12-15

    Mercury (Hg) represents an important risk for human health through the food webs contamination. Macrophytes bioaccumulate Hg and play a role in Hg transfer to food webs in shallow aquatic ecosystems. Nevertheless, the compartmentalization of Hg within macrophytes, notably major accumulation in the cell wall and its impact on trophic transfer to primary consumers are overlooked. The present work focusses on the trophic transfer of inorganic Hg (IHg) and monomethyl-Hg (MMHg) from the intracellular and cell wall compartments of the macrophyte Elodea nuttallii - considered a good candidate for phytoremediation - to the crustacean Gammarus fossarum. The results demonstrated that Hg accumulated in both compartments was trophically bioavailable to gammarids. Besides IHg from both compartments were similarly transferred to G. fossarum, while for MMHg, uptake rates were ∼2.5-fold higher in G. fossarum fed with the cell wall vs the intracellular compartment. During the depuration phase, Hg concentrations in G. fossarum varied insignificantly suggesting that both IHg and MMHg were strongly bound to biological ligands in the crustacean. Our data imply that cell walls have to be considered as an important source of Hg to consumers in freshwater food webs when developing procedures for enhancing aquatic environment protection during phytoremediation programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises

    Science.gov (United States)

    Van Aken, Benoit; Correa, Paola A.; Schnoor, Jerald L.

    2011-01-01

    Transgenic plants and associated bacteria constitute a new generation of genetically modified organisms for efficient and environmental-friendly treatment of soil and water contaminated with polychlorinated biphenyls (PCBs). This review focuses on recent advances in phytoremediation for the treatment of PCBs, including the development of transgenic plants and associated bacteria. Phytoremediation, or the use of higher plants for rehabilitation of soil and groundwater, is a promising strategy for cost-effective treatment of sites contaminated by toxic compounds, including toxic PCBs. Plants can help mitigate environmental pollution by PCBs through a range of mechanisms: besides uptake from soil (phytoextraction), plants are capable of enzymatic transformation of PCBs (phytotransformation); by releasing a variety of secondary metabolites, plants also enhance the microbial activity in the root zone, improving biodegradation of PCBs (rhizoremediation). However, because of their hydrophobicity and chemical stability, PCBs are only slowly taken up and degraded by plants and associated bacteria, resulting in incomplete treatment and potential release of toxic metabolites into the environment. Moreover, naturally occurring plant-associated bacteria may not possess the enzymatic machinery necessary for PCB degradation. In order to overcome these limitations, bacterial genes involved in the metabolism of PCBs, such as biphenyl dioxygenases, have been introduced into higher plants, following a strategy similar to the development of transgenic crops. Similarly, bacteria have then been genetically modified that exhibit improved biodegradation capabilities and are able to maintain stable relationships with plants. Transgenic plants and associated bacteria bring hope for a broader and more efficient application of phytoremediation for the treatment of PCBs. PMID:20384372

  20. Phytoremediation of small organic contaminants using transgenic plants

    Science.gov (United States)

    James, C Andrew; Strand, Stuart E

    2010-01-01

    The efficacy of transgenic plants in the phytoremediation of small organic contaminants has been investigated. Two principal strategies have been pursued (1) the manipulation of phase I metabolic activity to enhance in planta degradation rates, or to impart novel metabolic activity, and (2) the enhanced secretion of reactive enzymes from roots leading to accelerated ex planta degradation of organic contaminants. A pair of dehalogenase genes from Xanthobacter autotrophicus was expressed in tobacco resulting in the dehalogenation of 1,2-dichloroethane, which was otherwise recalcitrant. A laccase gene from cotton was overexpressed in Arabidopsis thaliana resulting in increased secretory laccase activity and the enhanced resistance to trichlorophenol in soils. Although the results to date are promising, much of the work has been limited to laboratory settings; field demonstrations are needed. PMID:19342219

  1. Phytoremediation in education: textile dye teaching experiments.

    Science.gov (United States)

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students.

  2. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata).

    Science.gov (United States)

    Su, Yi; Han, Fengxiang X; Chen, Jian; Sridhar, B B Maruthi; Monts, David L

    2008-01-01

    The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake efficiency for mercury: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Four sets of experiments were conducted to evaluate the phytoremediation potential of these three plant species: a pot study with potting mix where mercury was provided daily as HgCl2 solution; experiments with freshly mercury-spiked soil; and a study with aged soils contaminated with different mercury sources (HgCl2, Hg(NO3)2, and HgS). Homemade sunlit chambers were also used to study foliar uptake of Hg from ambient air. Among the three plant species, Chinese brake fern showed the least stress symptoms resulting from mercury exposure and had the highest mercury accumulation. Our results indicate that Chinese brake fern may be a potential candidate for mercury phytoextraction. We found that mercury contamination is biologically available for plant uptake and accumulation, even if the original and predominating mercury form is HgS, and also after multiple phytoremediation cycles.

  3. PHYTOREMEDIATION: AN ALTERNATIVE TO ELIMINATE POLLUTION

    Directory of Open Access Journals (Sweden)

    Francisco Prieto Garcia

    2011-05-01

    Full Text Available Phytoremediation consists of a set of technologies that exploit the ability of some plants to absorb, accumulate, metabolize, volatilize or stabilize pollutants that are present in soil, air, water or sediments such as: heavy metals, radioactive metals, organic compounds, and compounds derived from petroleum. Phytoremediation offers numerous advantages in relation to the physicochemical methods that are used nowadays, for example, its wide applicability and low cost. This review provides an overview of the various phytocorrective techniques employed for remediation of polluted soil and water; as well as the potencial that offers the use of transgenic plants.

  4. PYROLYSIS OF ZINC CONTAMINATED BIOMASS FROM PHYTOREMEDIATION

    OpenAIRE

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide; Kulaç, Alev; Yalçın, Gülser; Taşpınar, Kadriye; Altay, Abdullah

    2015-01-01

    The objective of this study was to stabilize of zinc (Zn) from soil to pyrolysis solid product. For this aim, phytoremediation and pyrolysis were sequentially applied. In the first stage of the study, phytoremediation was first applied to zinc contaminated soil via  sunflower (Helianthus annuus), corn (Zea mays) and rape (Brassica napus), After harvesting, the plants were pyrolyzed at 500°C with the heating rate of 35 °C/min in a fixed bed stainless steel (380 S) 240 cm3 reactor. The phytorem...

  5. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.

    Science.gov (United States)

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2018-01-01

    Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. PHYTOREMEDIATION OF PERCHLORATE BY TOBACCO PLANTS

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in the plant tissues. The objective of this research was to determine the effectiveness of tobacco plants in phytoremediation, a technology that employs plants to degrade,...

  7. Phytoremediation and Potency of Hyperaccumulator Plants

    Directory of Open Access Journals (Sweden)

    NURIL HIDAYATI

    2005-03-01

    Full Text Available Phytoremediation is defined as cleaning up of pollutants mediated primarily by plants. It is an emerging technology for environmental remediation that offers a low-cost technique suitable for use against different types of contaminants in a variety of media. Phytoremediation is potentially applicable to a diversity of substances, involving hyperaccumulators heavy metals and radionuclides. It is also applicable to other inorganic contaminants such as arsenic, various salts and nutrients, and a variety of organic contaminants, including explosives, petroleum hydrocarbons and pesticides. At least there are one taxon of plant as hyperaccumulator for Cd, 28 taxa for Co, 37 taxa for Cu, 9 taxa for Mg, 317 taxa for Ni, and 11 taxa for Zn. Extensive progress were done in characterizing physiology of plants which hyperaccumulate or hypertolerate metals. Hypertolerance is fundamental to hyperaccumulator, and high rates of uptake and translocation are observed in hyperaccumulator plants. Hyperaccumulator plants and agronomic technology were undertaken to improve the annual rate of phytoextraction and to allow recycling of soil toxic metals accumulated in plant biomass. These techniques are very likely to support commercial environmental remediation. Most phytoremediation systems are still in development, or in the stage of plant breeding to improve the cultivars for field use. However, application for commercial purposes has already been initiated. Many opportunities have also been identified for research and development to improve the efficiency of phytoremediation

  8. Phytoremediation of landfill leachate using Populus

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall; Bart Sexton

    2006-01-01

    Proper genotype selection is required for successful phytoremediation. We selected eight Populus clones (NC13460, NC14018, DM115, NC14104, NC14106, DN5, NM2, NM6) of four genomic groups after three cycles of phyto-recurrent selection for a field trial that began June 2005 at the Oneida County Landfill in Rhinelander, WI, USA.

  9. Evaluation of phytoremediation potential of Peltophorum ...

    African Journals Online (AJOL)

    Enzyme expression, oil removal and organic carbon sequestration of the species and the species treated soils showed that in pre-polluted soil foliar enzyme expression in the order Cr>Ll>Pp was high but reduction in post-polluted and post-phytoremediation soils in the order Cr>Ll>Pp. Generally, among species ...

  10. Two new sources of reactive gaseous mercury in the free troposphere

    OpenAIRE

    H. Timonen; J. L. Ambrose; D. A. Jaffe

    2012-01-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical ...

  11. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    Science.gov (United States)

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii

    Science.gov (United States)

    Purpose Main challenge of phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of po...

  13. Phytoremediation of radioactive contaminated soil research and feasibility

    International Nuclear Information System (INIS)

    Li Jianguo; Han Baohua; Ma Binghui; Wang Huijuan; Liang Yong; Liu Jie

    2014-01-01

    Phytoremediation is an emerging environmental control technology with economic, environmental friendliness, etc., but also constrained by a variety of factors, such as difficulties of Hyperaccumulator screening, poor adaptability of plants, longer growing season and low biomass, which greatly limited the development and application of phytoremediation technology. This paper decribed the principles of phytoremediation for U, Sr and Cs contaminated soil, introduced research status involved, briefly nanlyzed the feasibility of phytoremediation techniques combined with the nuclear environmental remediation standards, and proposed suggestions for further researches. (authors)

  14. Accumulation of Cd in Indian mustard and sunflower for phytoremediation

    International Nuclear Information System (INIS)

    Okada, Satoshi; Fukutani, Satoshi; Takahashi, Tomoyuki; Fukui, Masami

    2004-01-01

    Phytoremediation is a new method that uses plants to remove contaminants from soil without affecting soil fertility. It can therefore be used for contaminated agricultural land. Indian mustard (Brassica juncea) and sunflower (Helianthus annuus L.) are used in phytoremediation to remove Cadmium (Cd), which they can accumulate in large quantities. It is important to know when plants have accumulated significant Cd, so that we can decide when the plants should be harvested and synthetic chelates applied. Brassica juncea seeds and Helianthus annuus L. seeds were planted in a field in Kyoto University Research Reactor Institute (KUR). Brassica juncea and Helianthus annuus L. were collected at time intervals ranging from 1 to 6 months and 2 to 7 weeks, respectively, after seedling emergence and the concentration of Cd in the plants was analyzed. These results indicated that Brassica juncea should be harvested before beginning flowering and Helianthus annuus L. should be harvested after it becomes old enough. The solubility of Cd in soil is enhanced when the soil is heated or dried, and black vinyl mulch was therefore used to absorb the heat from sunlight. The difference in the Cd uptake of Brassica juncea between mulching cultivation and non-mulching cultivation was investigated in a field, and this indicated that there is no probability that mulching enhances Cd uptake in plants. The solubility of Cd in soil decreases over time. Repeated pot experiments were done. We planted Brassica juncea in pots, and investigated the uptake of Cd and the solid phase fractions in which Cd was present in each pot experiment. These did not change considerably over time, indicating that age has a negligible effect on Cd uptake in plants. (author)

  15. Determination of mercury (II) ions based on silver-nanoparticles-assisted growth of gold nanostructures: UV-Vis and surface enhanced Raman scattering approaches

    Science.gov (United States)

    Chen, Jun-Liang; Yang, Pei-Chia; Wu, Tsunghsueh; Lin, Yang-Wei

    2018-06-01

    Innovative dual detection methods for mercury(II) ions (Hg(II)) have been developed based on the formation of gold nanostructures (AuNSs) following the addition of mercury-containing solution to a mixture containing an optimized amount of Au(III), H2O2, HCl, and silver nanoparticles (AgNPs). In the absence of Hg(II), the addition of Au(III), H2O2, and HCl to the AgNP solution changes the solution's color from yellow to red, and the absorption peak shifts from 400 to 526 nm, indicating the dissolution of AgNPs and the formation of gold nanoparticles (AuNPs). Because of the spontaneous redox reaction of Hg(II) toward AgNPs, the change in the amount of remaining AgNP seed facilitates the generation of irregular AuNSs, resulting in changes in absorption intensity and shifting the peak within the range from 526 to 562 nm depending on the concentration of Hg(II). Under optimal conditions, the limit of detection (LOD) for Hg(II) at a signal-to-noise ratio (S/N) of 3 was 0.3 μM. We further observed that AgNP-assisted catalytic formation of Au nanomaterials deposited on a surface enhanced Raman scattering active substrate significantly reduced the Raman signal of 4-mercaptobenzoic acid, dependent on the Hg(II) concentration. A linear relationship was observed in the range 0.1 nM-100 μM with a LOD of 0.05 nM (S/N 3.0). As a simple, accurate and precise method, this SERS-based assay has demonstrated its success in determining levels of Hg(II) in real water samples.

  16. Hydroponic phytoremediation of heavy metals and radionuclides

    International Nuclear Information System (INIS)

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-01-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated

  17. Phytoremediation of cadmium contaminated soils by tuberose

    International Nuclear Information System (INIS)

    Ramana, S.; Biswas, A.K.; Singh, A.B.; Ajay; Ahirwar, N.K.; Behera, S.K.; Subba Rao, A.; Naveen Kumar, P.

    2012-01-01

    The potential of three varieties of tuberose (Prajwal, Shringar and Mexican single) for phytoremediation of soil contaminated with cadmium was evaluated by subjecting the plants to five levels of Cd (0, 25, 50, 75 and 100 mg kg -1 soil). Applied Cd did not produce any toxic symptoms in all the three varieties of tuberose except marginal reduction in the photosynthesis rate and total dry weight beyond 50 mg Cd kg -1 soil. The study showed that tuberose possessed the typical ability of Cd hyper accumulator characterized by (1) accumulation of Cd in the shoots of the plant exceeding the critical judging standard i.e., 100 μg g -1 DW and (2) ratio of Cd in the shoots to bulbs >1. It was concluded that tuberose may be an effective accumulator plant for phytoremediation of cadmium polluted soils. (author)

  18. Hydroponic phytoremediation of heavy metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, J; Szpak, J; Hamric, T; Cutright, T

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  19. Phytoremediation potential of aquatic macrophyte, Azolla.

    Science.gov (United States)

    Sood, Anjuli; Uniyal, Perm L; Prasanna, Radha; Ahluwalia, Amrik S

    2012-03-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.

  20. Rehabilitation experiment by phytoremediation using lawn grass

    International Nuclear Information System (INIS)

    2012-08-01

    Measures against environmental contamination by radioactive materials originated from the Fukushima Nuclear Accident (May, 2011), are being conducted in Fukushima and surrounding prefectures. Regarding to the measures, a phytoremediation experiment with several types of lawn grasses in a field scale have been carried out. Lawn grasses are generally characterized by shallow rhizosphere, high density and root mat formation. Decontamination effectiveness of radioactive cesium by plant uptake and by sod removing was investigated. As a result, the range of decontamination factors by plant uptake was below than 1% because of low transfer rate form soil to plant. On the other hand, maximum decontamination factor by sod removing reached about 100%. Decontamination activities with various methods will be implemented according to the national decontamination policy and related plans in each municipality. The phytoremediation method with lawn grass would be applicable in limited circumstances. (author)

  1. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.

    Science.gov (United States)

    Marrugo-Negrete, José; Marrugo-Madrid, Siday; Pinedo-Hernández, José; Durango-Hernández, José; Díez, Sergi

    2016-01-15

    Artisanal and small-scale gold mining (ASGM) is the largest sector of demand for mercury (Hg), and therefore, one of the major sources of Hg pollution in the environment. This study was conducted in the Alacrán gold-mining site, one of the most important ASGM sites in Colombia, to identify native plant species growing in Hg-contaminated soils used for agricultural purposes, and to assess their potential as phytoremediation systems. Twenty-four native plant species were identified and analysed for total Hg (THg) in different tissues (roots, stems, and leaves) and in underlying soils. Accumulation factors (AF) in the shoots, translocation (TF) from roots to shoots, and bioconcentration (BCF) from soil-to-roots were determined. Different tissues from all plant species were classified in the order of decreasing accumulation of Hg as follows: roots > leaves > stems. THg concentrations in soil ranged from 230 to 6320 ng g(-1). TF values varied from 0.33 to 1.73, with high values in the lower Hg-contaminated soils. No correlation was found between soils with low concentrations of Hg and plant leaves, indicating that TF is not a very accurate indicator, since most of the Hg input to leaves at ASGM sites comes from the atmosphere. On the other hand, the BCF ranged from 0.28 to 0.99, with Jatropha curcas showing the highest value. Despite their low biomass production, several herbs and sub-shrubs are suitable for phytoremediation application in the field, due to their fast growth and high AF values in large and easily harvestable plant parts. Among these species, herbs such as Piper marginathum and Stecherus bifidus, and the sub-shrubs J. curcas and Capsicum annuum are promising native plants with the potential to be used in the phytoremediation of soils in tropical areas that are impacted by mining.

  2. Validation of a phytoremediation computer model

    Energy Technology Data Exchange (ETDEWEB)

    Corapcioglu, M Y; Sung, K; Rhykerd, R L; Munster, C; Drew, M [Texas A and M Univ., College Station, TX (United States)

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg[sub -1

  3. Phytoremediation of Excavation in Eastern Siberia

    Science.gov (United States)

    Timofeeva, S. S.; Zhmurova, T. M.

    2017-04-01

    The paper deals with prospects and applicability of phytoremediation technology in the conditions of Eastern Siberia as applied to gypsum stone extraction of Zalarinsky deposit in Irkutsk region. It analyses dust intensity for different technological processes of the deposit and evaluates the dust loading on the workers of the deposit. The selection of plantings that have potential to neutralize the dust loading produced by the plot “Severniy” is carried out.

  4. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  5. Mercury Report-Children's exposure to elemental mercury

    Science.gov (United States)

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  6. Selection of mercury accumulator plants for gold mine tailing contaminated soils

    Directory of Open Access Journals (Sweden)

    N Muddarisna

    2015-04-01

    Full Text Available Phytoremediation, which is more efficient with less side effects than conventional physical and chemical methods, is increasing in popularity as a remediation system. This paper provides a brief overview of developments in research and application of phytoremediation of soil contaminated with gold mine tailings containing mercury. Lindernia crustacea L., Digitaria radicosa Presl. Miq., Zingiber purpurium L, Paspalum conjugatum Berg., Cyperus kyllingia Endl., and Caladium bicolor Vent., that were selected for this study were planted in the planting media consisting of soil (70% and tailings (30% for 9 weeks. The results showed that after 9 weeks of planting, Paspalum conjugatum had growth rate, biomass production, Hg accumulation, and ratio of shoot Hg : root Hg higher than those of other plant species tested, both in the media consisted of amalgamation and cyanidation tailings. It can thus be concluded that Paspalum conjugatum is potential plant species for remediating mercury-contaminated soil.

  7. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives.

    Science.gov (United States)

    Passatore, Laura; Rossetti, Simona; Juwarkar, Asha A; Massacci, Angelo

    2014-08-15

    This review summarizes the bioremediation and phytoremediation technologies proposed so far to detoxify PCB-contaminated sites. A critical analysis about the potential and limits of the PCB pollution treatment strategies by means of plants, fungi and bacteria are elucidated, including the new insights emerged from recent studies on the rhizosphere potential and on the implementation of simultaneous aerobic and anaerobic biodegradation processes. The review describes the biodegradation and phytoremediation processes and elaborates on the environmental variables affecting contaminant degradation rates, summarizing the amendments recommended to enhance PCB degradation. Additionally, issues connected with PCB toxicology, actual field remediation strategies and economical evaluation are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins

    International Nuclear Information System (INIS)

    Li, Xue-Jiao; Wang, Yong-Sheng; Yang, Sheng-Yuan; Tang, Xian; Zhou, Bin; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin; He, Shun-Zhen; Liu, Lu

    2016-01-01

    We report on a photometric method for the determination of the metallothioneins (MTs). It is known that citrate capped gold nanoparticles (AuNPs) coated with traces of mercury possess peroxidase-like properties that can catalyze the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline- 6-sulfonate) (ABTS) to form a blue product in acetate buffer of pH 4.5. It is found that if the AuNPs are first aggregated by the cysteine-rich metallothioneins, the peroxidase-like properties of the resulting aggregates (AuNP-Hg-MTs) cause a largely accelerated oxidation of ABTS. The effect of adding MTs to such a solution is used to quantify the MTs by a kinetic assay. Changes in absorbance at 416 nm are linearly correlated to the concentration of MTs in the 4.3 to 49 nM range, and the detection limit is 1.3 nM. The method was successfully applied to the determination of MTs in (spiked) human urine. The strategy may pave the way for related detection platforms. (author)

  9. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Gupta, Avinash; Vidyarthi, S.R.; Sankararamakrishnan, Nalini

    2014-01-01

    Highlights: • Oxidized (CNT-OX), CNT-I, CNT-S were prepared. • Capacity of CNT-S (151.5 mg/g) was higher than other CNTs. • Applied to the removal of Hg(II) from spiked and natural coal wash waters. • Applied to the removal of Hg(0) from compact fluorescent lamps. - Abstract: Three different functionalized multiwalled carbon nanotubes were prepared, namely, oxidized CNTs (CNT-OX), iodide incorporated MWCNT (CNT-I) and sulfur incorporated MWCNT (CNT-S). The as prepared adsorbents were structurally characterized by various spectral techniques like scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Brunauer, Emmett, and Teller (BET) surface area analyzer, Fourier transform infra red (FTIR) and Raman spectroscopy. Loading of iodide and sulfur was evident from the EDAX graphs. The adsorption properties of Hg 2+ as a function of pH, contact time and initial metal concentration were characterized by Cold vapor AAS. The adsorption kinetics fitted the Pseudo second order kinetics and equilibrium was reached within 90 min. The experimental data were modeled with Langmuir, Freundlich, Dubinin-Redushkevich and Temkin isotherms and various isotherm parameters were evaluated. It was found that the mercury adsorption capacity for the prepared adsorbents were in the order of CNT-S > CNT-I > CNT-OX > CNT. Studies have been conducted to demonstrate the applicability of the sorbent toward the removal of Hg(0) from broken compact fluorescent light (CFL) bulbs and Hg(II) from contaminated water streams

  10. Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.

    Science.gov (United States)

    Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen

    2009-01-30

    A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals.

  11. Role of rhizosphere microorganisms in phytoremediation of biphenyl in a contaminated groundwater plume

    International Nuclear Information System (INIS)

    Sun, B.; Ramsay, J.

    2007-01-01

    This presentation discussed a pump and treat technology used in combination with a phytoremediation technology to remediate a biphenyl contaminated groundwater plume. Biphenyl is used in industrial applications as fungicide and heat transfer agent. It is highly toxic, has poor water solubility and sorbs strongly to soils. Costs for the project were estimated at $860,000 over a period of 20 years, while it was estimated that the addition of phytoremediation would cost only $125,000 over a period of 20 years. The phytoremediation containment area was added to the site which was comprised of a pump and treat system and landfill lagoons. In situ biodegradation of biphenyl was evaluated using microorganisms in poplar and willow rhizospheres. Basal salts were used as a culture medium. Methods to enhance biphenyl degradation were also investigated. Aerobic growth on biphenyl at temperatures of 8 degrees C were measured, and microbial populations were identified. The consortium with the highest biphenyl degradation was then analyzed. Major members were identified as Burkholderia xenovorans LB400 and a strain of Burkholderia xenovorans. Nitrate reduction, sulphate reduction, and methanogens were measured. Enrichment of anaerobic biphenyl degraders. Anaerobic biphenyl degradation was measured after 90 days. Details of anaerobic mineralization experiments were also provided. It was concluded that anaerobic biphenyl degradation was enhanced by TEA and fertilizer addition, as well as by poplar root exudate. tabs., figs

  12. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil.

    Science.gov (United States)

    Sas-Nowosielska, Aleksandra; Galimska-Stypa, Regina; Kucharski, Rafał; Zielonka, Urszula; Małkowski, Eugeniusz; Gray, Laymon

    2008-02-01

    Phytoremediation, an approach that uses plants to remediate contaminated soil through degradation, stabilization or accumulation, may provide an efficient solution to some mercury contamination problems. This paper presents growth chamber experiments that tested the ability of plant species to stabilize mercury in soil. Several indigenous herbaceous species and Salix viminalis were grown in soil collected from a mercury-contaminated site in southern Poland. The uptake and distribution of mercury by these plants were investigated, and the growth and vitality of the plants through a part of one vegetative cycle were assessed. The highest concentrations of mercury were found at the roots, but translocation to the aerial part also occurred. Most of the plant species tested displayed good growth on mercury contaminated soil and sustained a rich microbial population in the rhizosphere. The microbial populations of root-free soil and rhizosphere soil from all species were also examined. An inverse correlation between the number of sulfur amino acid decomposing bacteria and root mercury content was observed. These results indicate the potential for using some species of plants to treat mercury contaminated soil through stabilization rather than extraction. The present investigation proposes a practical cost-effective temporary solution for phytostabilization of soil with moderate mercury contamination as well as the basis for plant selection.

  13. Phytoremediation in polluted areas; Fitoenmienda de medios contaminados

    Energy Technology Data Exchange (ETDEWEB)

    Martin Gil, F J; Ramos Sanchez, M C; Martin Gil, J

    1998-07-01

    This paper refers to the methods that use plants trees to clean up metals and organic chemicals that contaminates soils and waters. It includes how Phytoremediation work, their use in place of mechanical cleanup methods, examples of sites testing Phytoremediation, limitations, and current investigation lines. (Author) 23 refs.

  14. Phytoremediation technology: dynamic peculiarities and perspectives of further development

    International Nuclear Information System (INIS)

    Kravets', O.P.; Pavlenko, Yu.O.

    2002-01-01

    Dynamic peculiarities of soil phytoremediation have been investigated by means of mathematic models of radionuclide migration into system 'soil - plant', 'soil- many years' crops'. Modern possibilities and efficiency of phytoremediation technology has been estimated. It is calculated that only the increase of annual radionuclide release to 2 - 3 % permit to avoid the pollutant delay into topsoil during the first 8 - 10 years after fallout

  15. PHYTOREMEDIATION: STATE OF THE SCIENCE CONFERENCE AND OTHER DEVELOPMENTS

    Science.gov (United States)

    It is a pleasure to present six papers in this issue, selected from presentations at the USEPA conference, Phytoremediation: State of the Science, 5/1-2/2000, Boston, MA. These papers highlight some of the many advances reported in representative areas of phytoremediation. In add...

  16. SUMMARY OF THE PHYTOREMEDIATION STATE OF THE SCIENCE CONFERENCE

    Science.gov (United States)

    The term phytoremediation was introduced in 1991 and is understood to mean that plants can be used to address a variety of contaminants, such as organic chemicals, inorganics and heavy metals. Phytoremediation technologies are sun-driven and are relatively inexpensive. There is w...

  17. Opinion: Taking phytoremediation from proven technology to accepted practice.

    Science.gov (United States)

    Gerhardt, Karen E; Gerwing, Perry D; Greenberg, Bruce M

    2017-03-01

    Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  19. Mercury Toolset for Spatiotemporal Metadata

    Science.gov (United States)

    Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris

    2010-06-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  20. Mercury Toolset for Spatiotemporal Metadata

    Science.gov (United States)

    Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James

    2010-01-01

    Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.

  1. South Bay Salt Pond Mercury Studies Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  2. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    Science.gov (United States)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  3. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    International Nuclear Information System (INIS)

    Merini, Luciano J.; Bobillo, Cecilia; Cuadrado, Virginia; Corach, Daniel; Giulietti, Ana M.

    2009-01-01

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg -1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P 450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P 450 . Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  4. Effectiveness of phytoremediation technologies to clean up of metalloids using three plant species in Iran.

    Science.gov (United States)

    Nejatzadeh-Barandozi, Fatemeh; Gholami-Borujeni, Fathollah

    2014-01-01

    Phytoremediation is a potential, innovative, and cost-effective technology for non-destructive remediation of heavy-metal contaminated soils. A field trial was conducted to evaluate the phytoremediation efficiencies of three plants and the effects of ethylenediaminetetraacetic acid (EDTA) or ammonium addition [(NH4)2SO4 and NH4NO3] for assisting removal of heavy metals (Pb, Hg, and Cd) from contaminated soil. The tested plants include Amaranthus retroflexus, Sorghum bicolor, and Lolium perrene. Results showed that maximum concentration of Pb, Hg, and Cd were detected in shoots of A. retroflexus, S. bicolor, and L. perrene at high concentrations in pH=6.2. The application of EDTA as a chelating agent to soil was the most efficient to enhance the phytoavailability of Pb, Hg and Cd. The concentrations of Pb, Hg, and Cd in the shoots of A. retroflexus treated with EDTA were 57 mg/kg, 14.1 mg/kg, and 30 mg/kg, respectively. Results indicated that among the three plants, A. retroflexus had great potential in phytoremediation of contaminated soils.

  5. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Merini, Luciano J. [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Bobillo, Cecilia [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Cuadrado, Virginia [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Corach, Daniel [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Giulietti, Ana M., E-mail: agiule@ffyb.uba.a [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina)

    2009-11-15

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg{sup -1} of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P{sub 450} or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P{sub 450}. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  6. Phytoremediation of Soils Contaminated by Chlorinnated Hydrocarbons

    Science.gov (United States)

    Cho, C.; Sung, K.; Corapcioglu, M.

    2001-12-01

    In recent years, the possible use of deep rooted plants for phytoremediation of soil contaminants has been offered as a potential alternative for waste management, particularly for in situ remediation of large volumes of contaminated soils. Major objectives of this study are to evaluate the effectiveness of a warm season grass (Eastern Gamagrass) and a cool season prairie grass (Annual Ryegrass) in the phytoremediation of the soil contaminated with volatile organic compounds e.g., trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-trichloroethane (TCA) and to determine the main mechanisms of target contaminant dissipation. The preliminary tests and laboratory scale tests were conducted to identify the main mechanisms for phytoremediation of the target contaminants, and to apply the technique in green house application under field conditions. The results of microcosm and bioreactor experiments showed that volatilization can be the dominant pathway of the target contaminant mass losses in soils. Toxicity tests, conducted in nutrient solution in the growth room, and in the greenhouse, showed that both Eastern gamagrass and Annual ryegrass could grow without harmful effects at up to 400 ppm each of all three contaminants together. Preliminary greenhouse experimentw were conducted with the 1.5 m long and 0.3 m diameter PVC columns. Soil gas concentrations monitored and microbial biomass in bulk and rhizosphere soil, root properties, and contaminant concentration in soil after 100 days were analyzed. The results showed that the soil gas concentration of contaminants has rapidly decreased especially in the upper soil and the contaminant concentraitons in soil were also significantly decreased to 0.024, 0.228, and 0.002 of C/Co for TCE, PCE and TCA, respectively. Significant plant effects were not found however showed contaminant loss through volatilization and plant contamination by air.

  7. Absorption of Mercury from Polluted Soil by Rice Plant(Case Study: Farms of Amol Industrial Suburban Area

    Directory of Open Access Journals (Sweden)

    Fatemeh Ahmadipour

    2013-03-01

    Full Text Available Mercury has recognized as one of the most toxic heavy metals, which many industries generate and dispose to the environment. Few studies are done about mercury accumulation in soil and bioconcentration and transfer factor of mercury in rice plant cultivated in industrial areas. In this study samples were taken randomly from 10 farms in vicinity of Amol industrial suburban area with three replications. Samples were measured by the LECO AMA 254 Advanced Mercury Analyzer according to ASTM D-6733method. Also the parameters related to the quality of the soil were measured. The mean of mercury concentration in soil, root, stem and grain were found 0.031 ±0.012 mg/kg, 0.074 ±0.0163 mg/kg, 0.058 ±0.008 mg/kg and 0.051 ±0.0083 mg/kg respectively. The calculated transfer factor of mercury to various organs and bioconcentration factor were < 1 and 2.46 respectively. Pearson correlation test showed a positive correlation between mercury concentration in soil with mercury concentration in grain and also a negative correlation between pH with mercury concentration in root and soil. It is concluded that rice plant have high potential for phytoremediation of mercury from soil.

  8. Phytoremediation of Nitrogen as Green Chemistry for Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Lennevey Kinidi

    2017-01-01

    Full Text Available It is noteworthy that ammoniacal nitrogen contamination in wastewater has reportedly posed a great threat to the environment. Although there are several conventional technologies being employed to remediate ammoniacal nitrogen contamination in wastewater, they are not sustainable and cost-effective. Along this line, the present study aims to highlight the significance of green chemistry characteristics of phytoremediation in nitrogen for wastewater treatment. Notably, ammoniacal nitrogen can be found in many types of sources and it brings harmful effects to the environment. Hence, the present study also reviews the phytoremediation of nitrogen and describes its green chemistry characteristics. Additionally, the different types of wastewater contaminants and their effects on phytoremediation and the phytoremediation consideration in wastewater treatment application and sustainable waste management of harvested aquatic macrophytes were reviewed. Finally, the present study explicates the future perspectives of phytoremediation. Based on the reviews, it can be concluded that green chemistry characteristics of phytoremediation in nitrogen have proved that it is sustainable and cost-effective in relation to other existing ammoniacal nitrogen remediation technologies. Therefore, it can be deduced that a cheaper and more environmental friendly ammoniacal nitrogen technology can be achieved with the utilization of phytoremediation in wastewater treatment.

  9. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.

    Science.gov (United States)

    Luo, Jie; Qi, Shihua; Gu, X W Sophie; Wang, Jinji; Xie, Xianming

    2016-05-01

    Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas.

  10. Successful field and laboratory tests of advanced phytoremediation systems for decontamination of petroleum and salt impacted soils

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.; Huang, X.D.; Gerhardt, K.; Gurska, J.; Yu, X.M.; MacNeill, G.; Lu, X.; Nykamp, J.; Glick, B.; Wang, W.; Wang, H.; Wu, S.; Knezevich, N.; Gerwing, P. [Waterloo Univ., ON (Canada)]|[Earthmaster Environmental Strategies Inc., Calgary, AB (Canada)]|[Waterloo Environmental Biotechnology Inc., Waterloo, ON (Canada)

    2008-07-01

    This presentation discussed the advantages of phytoremediation and provided an overview of a phytoremediation tests results for petroleum and salt remediation. Several examples of remediation methods were discussed, including the dig and dump method; soil incineration; chemical extraction; electrokinetic separation and land farming/natural attenuation. The advantages of phytoremediation include improved natural structure and texture of soil; suitability to most regions and climates because it is driven by solar energy; cost effectiveness and technically feasible; reasonable time frame for restoration; promotion of high rhizosphere activity by plants; and effective use at remote sites. The development and proof of plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation systems (PEPS) was then addressed. A description of the PEPS was provided. This presentation also reviewed the interaction of a PGPR containing ACC deaminase with a plant seed or root; research and development of the PEPS for PHC remediation; the use of petroleum remediation on an Imperial Oil Sarnia land farm; proof of concept of the application of the PEPS for PHC remediation in Hinton, Alberta; and development of the PEPS for salt impacted sites. Field work and the characteristics of soils were also examined. It was concluded that the PEPS has great potential for efficient remediation of organic, salt and metal contaminated sites and that PGPR alleviates stress and promotes growth resulting in low ethylene and high auxin content. tabs., figs.

  11. Mercury contamination extraction

    Science.gov (United States)

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  12. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  13. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  14. Are indigenous sedges useful for phytoremediation and wetland rehabilitation?

    CSIR Research Space (South Africa)

    Schachtschneider, K

    2010-08-01

    Full Text Available , M.H. 2009. Phytoremediation of heavy metals: recent techniques. African Journal of Biotechnology 8(6): 921-928. 6. Komosa, A., chibowski, S., Kitowski, I., Krawczyk, r., orzel, J. And reszka, M. 2006. transfer of selected heavy metals... and phytoremediation of contaminated soils and water: three case studies. Environmental research, Engineering and Management 4 (30): 49-54. 9. Paquin, d.G., campbell, S. and Li, Q.X. 2004. Phytoremediation in subtropical Hawaii – A review of over 100 plant species...

  15. High activity carbon sorbents for mercury capture

    Directory of Open Access Journals (Sweden)

    Stavropoulos George G.

    2006-01-01

    Full Text Available High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N2 adsorption at 77 K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior.

  16. Health risk and significance of mercury in the environment.

    Science.gov (United States)

    Li, W C; Tse, H F

    2015-01-01

    Mercury (Hg) has long been recognised as a global pollutant, because it can remain in the atmosphere for more than 1 year. The mercury that enters the environment is generally acknowledged to have two sources: natural and anthropogenic. Hg takes three major forms in the environment, namely methyl-Hg (MeHg), Hg(0) and Hg(2+). All three forms of Hg adversely affect the natural environment and pose a risk to human health. In particular, they may damage the human central nervous system, leading to cardiovascular, respiratory and other diseases. MeHg is bioavailable and can be bioaccumulated within food webs. Therefore, several methods of eliminating Hg from the soil and the aquatic system have been proposed. The focus of this article is on phytoremediation, as this technique provides a low-cost and environmentally friendly alternative to traditional methods.

  17. A real-scale soil phytoremediation.

    Science.gov (United States)

    Macci, Cristina; Doni, Serena; Peruzzi, Eleonora; Bardella, Simone; Filippis, Giorgio; Ceccanti, Brunello; Masciandaro, Grazia

    2013-07-01

    In the present investigation, a phytoremediation process with a combination of different plant species (Populus nigra (var.italica), Paulownia tomentosa and Cytisus scoparius), and natural growing vegetation has been proposed at real-scale (10.000 m(2)) to bioremediate and functionally recover a soil historically contaminated by heavy metals and hydrocarbons. In the attempts to assess both effectiveness and evolution of the remediation system towards a natural soil ecosystem, besides the pollution parameters, also parameters describing the efficiency of the microbiological components (enzyme activities), were investigated. In 3 years, the total content of hydrocarbons and heavy metals in soil decreased with time (40 % and 20-40 %, respectively), reaching concentrations under the limit of National legislation and making the site suitable for environmental reusing. The reduction in pollutants was probably the reason of the increase in dehydrogenase (indicator of overall microbial activity), β-glucosidase and phosphatase activities, enzymes related to C and P cycles, respectively. However, this trend was obviously due also to the increase of chemical nutrients, acting as substrate of these enzymes. Moreover, a phytotest carried out with Raphanus sativus, showed, after 3 years, a significant increase in percentage of plant growth, confirming a reduction in soil toxicity and an improvement in soil nutritional state. Therefore, this phytoremediation system seems very promising to perform both decontamination and functional recovery of a polluted soil at real-scale level.

  18. Interaction of ethanol and mercury body burden in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.D.

    1978-01-01

    The interaction of ethanol with mercury in the body resulting in increased exhalation of the metal was studied in the mouse. A persistent elimination of the metal in the breath was demonstrated after single, sublethal (<1 mgHg/Kg body weight) exposures to mercury vapor (Hg/sup 0/) or mercury II chloride (HgCl/sub 2/). The amount of mercury exhaled per unit time was enhanced by oral or parenteral administration of ethanol solutions. These modifications were investigated in dose-response studies in which the drug was administered in doses ranging from 0.2g to 5.5g/Kg to mice pretreated with mercury. The EC/sub 50/ for blood ethanol with respect to mercury exhalation was determined to be approximately 200 mg/dl corresponding to an output rate of approximately 0.1% of the simultaneous body burden in 30 min several days after mercury. A hypothesis that mercury expired by these animals was proportional to the body burden after mercury administration was addressed in experiments whereby mice given one of several doses of mercuric chloride (0.16 to 500 ..mu..g/Kg) were monitored for pulmonary mercury elimination for a fifteen day period. The high correlation obtained between the amount of mercury exhaled in a standard time period and the body burden by group indicated that breath sampling could be applied as an indicator of the mercury body burden which may not be limited to the mouse.

  19. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    International Nuclear Information System (INIS)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    2014-01-01

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm −1 electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake

  20. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    Energy Technology Data Exchange (ETDEWEB)

    Jamari, Suhailly [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia); Embong, Zaidi [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) and Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management - ORRIC, Universiti Tun Hussein (Malaysia); Bakar, Ismail [Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management (ORRIC), Universiti Tun Hussein Onn Malaysia -UTHM, 86400 Batu Pahat, Johor (Malaysia)

    2014-02-12

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.

  1. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  2. Hyperaccumulators of mercury in the industrial area of a PVC factory in Vlora (Albania

    Directory of Open Access Journals (Sweden)

    Shehu Julian

    2014-01-01

    Full Text Available Contamination by heavy metals is one of the major threats to soil and water as well as human health. Much attention is being paid to metal-accumulating plants that may be used for the phytoremediation of contaminated soils. Some plants can accumulate remarkable levels of metals, 100-1000-fold the levels normally accumulated in most species. This study evaluated the potential of mercury accumulation of 17 plant species growing on contaminated sites in the ex-industrial area of the PVC Factory, Vlora, Albania. Plant roots, shoots and soil samples were collected and analyzed for the selected metal concentration values. The biological accumulation coefficient (BAC was calculated to evaluate the potential use of plant species for phytoremediation purposes. The concentration of Hg in soils inside the contaminated area varied from 45-301 mg/kg-1. The concentration of Hg in plant shoots and roots varied from 0.1 to 12.9 mg/kg-1 and 0.1 to 4.2 mg/kg-1, respectively. Species Medicago sativa L. and Dittrichia viscosa (L. W. Greuter were found to be the most suitable plants for phytoremediation of the site contaminated with mercury (BAC values varied from 30-10 percent, respectively. Considering the BAC values, none of the plant species was found to be a hyperaccumulator; however, plants with high BCF (metal concentration ratio of plant root to soil and low BTC (metal concentration ratio of plant shoots to roots have the potential for phytostabilization and phytoextraction. The results of this study can be used for the management and decontamination of soils with mercury using plant species having phytoremediation potential/characteristics.

  3. Feasibility of phytoremediation for common soil and groundwater pollutants

    DEFF Research Database (Denmark)

    Clausen, Lauge Peter Westergaard

    During the past two to three decades numerous studies reporting highly efficient remediation of contaminated soil and groundwater by plants have been published. The promises of phytoremediation has been great but till now the technology has not been widely applied and recognized, commercially...... and in a regulatory context, on par with other conventional soil and groundwater remediation technologies. This thesis elucidates the field of phytoremediation and addresses the lack of recognition of the technology. It aims to assesses the overall feasibility of phytoremediation and identify obstacles within...... the field. Further, it provides examples and suggestions of how to overcome these obstacles. The first part of the thesis scrutinizes the literature for data and experiences regarding application of phytoremediation and uncovers potential barriers and where the existing knowledge is insufficient. Further...

  4. PHYTOREMEDIATION: AN ECOLOGICAL SOLUTION TO ORGANIC CHEMICAL CONTAMINATION

    Science.gov (United States)

    Phytoremediation is a promising new technology that uses plants to degrade, assimilate, metabolize, or detoxify metals, hydrocarbons, pesticides, and chlorinated solvents. In this review, in situ, in vivo and in vitro methods of application are described for remediation of these ...

  5. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jay Thatcher; Matthern, Gretchen Elise; Glenn, Anne Williams; Kauffman, J.; Rock, S.; Kuperberg, M.; Ainsworkth, C.; Waugh, J.

    2000-02-01

    The Metals and Radionuclides Product Line of the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies. More specifically, the objectives of the workshop were to: · Determine the status of the existing baseline, including technological maturation, · Identify areas for future potential research, · Identify the key issues and recommendations for issue resolution, · Recommend a strategy for maturing key aspects of phytoremediation, · Improve communication and collaboration among organizations currently involved in phytoremediation research, and · Identify technical barriers to making phytoremediation commercially

  6. Phytoremediation: realistic estimation of modern efficiency and future possibility

    International Nuclear Information System (INIS)

    Kravets, A.; Pavlenko, Y.; Kusmenko, L.; Ermak, M.

    1996-01-01

    Kinetic peculiarities of the radionuclides migration in the system 'soil-plant' of the Chernobyl region have been investigated by means of numerical modelling. Quantitative estimation of half-time of natural cleaning of soil has been realised. Potential possibility and efficiency of the modem phytoremediation technology has been estimated. Outlines of the general demands and future possibility of biotechnology of the phytoremediation creation have been formulated. (author)

  7. Phytoremediation: realistic estimation of modern efficiency and future possibility

    Energy Technology Data Exchange (ETDEWEB)

    Kravets, A; Pavlenko, Y [Institute of Cell Biology and Genetic Engineering NAS, Kiev (Ukraine); Kusmenko, L; Ermak, M [Institute of Plant Physiology and Genetic NAS, Vasilkovsky, Kiev (Ukraine)

    1996-11-01

    Kinetic peculiarities of the radionuclides migration in the system 'soil-plant' of the Chernobyl region have been investigated by means of numerical modelling. Quantitative estimation of half-time of natural cleaning of soil has been realised. Potential possibility and efficiency of the modem phytoremediation technologyhas been estimated. Outlines of the general demands and future possibility of biotechnology of the phytoremediation creation have been formulated. (author)

  8. Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress.

    Science.gov (United States)

    Regier, Nicole; Beauvais-Flück, Rebecca; Slaveykova, Vera I; Cosio, Claudia

    2016-11-01

    The hypothesis that increased UV radiation result in co-tolerance to Hg toxicity in aquatic plants was studied at the physiological and transcriptomic level in Elodea nuttallii. At the transcriptomic level, combined exposure to UV+Hg enhanced the stress response in comparison with single treatments, affecting the expression level of transcripts involved in energy metabolism, lipid metabolism, nutrition, and redox homeostasis. Single and combined UV and Hg treatments dysregulated different genes but with similar functions, suggesting a fine regulation of the plant to stresses triggered by Hg, UV and their combination but lack of co-tolerance. At the physiological level, UV+Hg treatment reduced chlorophyll content and depleted antioxidative compounds such as anthocyanin and GSH/GSSG in E. nuttallii. Nonetheless, combined exposure to UV+Hg resulted in about 30% reduction of Hg accumulation into shoots vs exposure to Hg alone, which was congruent with the level of expression of several transporter genes, as well as the UV effect on Hg bioavailability in water. The findings of the present work underlined the importance of performing experimentation under environmentally realistic conditions and to consider the interplay between contaminants and environmental variables such as light that might have confounding effects to better understand and anticipate the effects of multiple stressors in aquatic environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica

    OpenAIRE

    Mesa, Victoria; Navazas, Alejandro; Gonzalez-Gil, Ricardo; Gonzalez, Aida; Weyens, Nele; Lauga, Beatrice; Gallego, Jose Luis R.; Sanchez, Jesus; Isabel Pelaez, Ana

    2017-01-01

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica. The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica's microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonad...

  10. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.

    Science.gov (United States)

    Park, Jiyoung; Song, Won-Yong; Ko, Donghwi; Eom, Yujin; Hansen, Thomas H; Schiller, Michaela; Lee, Tai Gyu; Martinoia, Enrico; Lee, Youngsook

    2012-01-01

    Heavy metals such as cadmium (Cd) and mercury (Hg) are toxic pollutants that are detrimental to living organisms. Plants employ a two-step mechanism to detoxify toxic ions. First, phytochelatins bind to the toxic ion, and then the metal-phytochelatin complex is sequestered in the vacuole. Two ABCC-type transporters, AtABCC1 and AtABCC2, that play a key role in arsenic detoxification, have recently been identified in Arabidopsis thaliana. However, it is unclear whether these transporters are also implicated in phytochelatin-dependent detoxification of other heavy metals such as Cd(II) and Hg(II). Here, we show that atabcc1 single or atabcc1 atabcc2 double knockout mutants exhibit a hypersensitive phenotype in the presence of Cd(II) and Hg(II). Microscopic analysis using a Cd-sensitive probe revealed that Cd is mostly located in the cytosol of protoplasts of the double mutant, whereas it occurs mainly in the vacuole of wild-type cells. This suggests that the two ABCC transporters are important for vacuolar sequestration of Cd. Heterologous expression of the transporters in Saccharomyces cerevisiae confirmed their role in heavy metal tolerance. Over-expression of AtABCC1 in Arabidopsis resulted in enhanced Cd(II) tolerance and accumulation. Together, these results demonstrate that AtABCC1 and AtABCC2 are important vacuolar transporters that confer tolerance to cadmium and mercury, in addition to their role in arsenic detoxification. These transporters provide useful tools for genetic engineering of plants with enhanced metal tolerance and accumulation, which are desirable characteristics for phytoremediation. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  11. Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress

    International Nuclear Information System (INIS)

    Regier, Nicole; Beauvais-Flück, Rebecca; Slaveykova, Vera I.; Cosio, Claudia

    2016-01-01

    Highlights: • Exposure to UV radiation does not result in co-tolerance to Hg in Elodea nuttallii. • UV radiation increased the stress response to Hg at the transcriptome level. • UV + Hg dysregulated genes of energy and lipid metabolism, nutrition and redox homeostasis. • UV + Hg treatment decreases Hg accumulation in E. nuttallii shoots. • Hg accumulation depends on UV effects on plant metabolism and Hg bioavailability. - Abstract: The hypothesis that increased UV radiation result in co-tolerance to Hg toxicity in aquatic plants was studied at the physiological and transcriptomic level in Elodea nuttallii. At the transcriptomic level, combined exposure to UV + Hg enhanced the stress response in comparison with single treatments, affecting the expression level of transcripts involved in energy metabolism, lipid metabolism, nutrition, and redox homeostasis. Single and combined UV and Hg treatments dysregulated different genes but with similar functions, suggesting a fine regulation of the plant to stresses triggered by Hg, UV and their combination but lack of co-tolerance. At the physiological level, UV + Hg treatment reduced chlorophyll content and depleted antioxidative compounds such as anthocyanin and GSH/GSSG in E. nuttallii. Nonetheless, combined exposure to UV + Hg resulted in about 30% reduction of Hg accumulation into shoots vs exposure to Hg alone, which was congruent with the level of expression of several transporter genes, as well as the UV effect on Hg bioavailability in water. The findings of the present work underlined the importance of performing experimentation under environmentally realistic conditions and to consider the interplay between contaminants and environmental variables such as light that might have confounding effects to better understand and anticipate the effects of multiple stressors in aquatic environment.

  12. Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Regier, Nicole; Beauvais-Flück, Rebecca; Slaveykova, Vera I.; Cosio, Claudia, E-mail: Claudia.Cosio@unige.ch

    2016-11-15

    Highlights: • Exposure to UV radiation does not result in co-tolerance to Hg in Elodea nuttallii. • UV radiation increased the stress response to Hg at the transcriptome level. • UV + Hg dysregulated genes of energy and lipid metabolism, nutrition and redox homeostasis. • UV + Hg treatment decreases Hg accumulation in E. nuttallii shoots. • Hg accumulation depends on UV effects on plant metabolism and Hg bioavailability. - Abstract: The hypothesis that increased UV radiation result in co-tolerance to Hg toxicity in aquatic plants was studied at the physiological and transcriptomic level in Elodea nuttallii. At the transcriptomic level, combined exposure to UV + Hg enhanced the stress response in comparison with single treatments, affecting the expression level of transcripts involved in energy metabolism, lipid metabolism, nutrition, and redox homeostasis. Single and combined UV and Hg treatments dysregulated different genes but with similar functions, suggesting a fine regulation of the plant to stresses triggered by Hg, UV and their combination but lack of co-tolerance. At the physiological level, UV + Hg treatment reduced chlorophyll content and depleted antioxidative compounds such as anthocyanin and GSH/GSSG in E. nuttallii. Nonetheless, combined exposure to UV + Hg resulted in about 30% reduction of Hg accumulation into shoots vs exposure to Hg alone, which was congruent with the level of expression of several transporter genes, as well as the UV effect on Hg bioavailability in water. The findings of the present work underlined the importance of performing experimentation under environmentally realistic conditions and to consider the interplay between contaminants and environmental variables such as light that might have confounding effects to better understand and anticipate the effects of multiple stressors in aquatic environment.

  13. Overcoming phytoremediation limitations. A case study of Hg contaminated soil

    Science.gov (United States)

    Barbafieri, Meri

    2013-04-01

    Phytoremediation is a broad term that comprises several technologies to clean up water and soil. Despite the numerous articles appearing in scientific journals, very few field applications of phytoextraction have been successfully realized. The research here reported on Phytoextraction, the use the plant to "extract" metals from contaminated soil, is focused on implementations to overcome two main drawbacks: the survival of plants in unfavorable environmental conditions (contaminant toxicity, low fertility, etc.) and the often lengthy time it takes to reduce contaminants to the requested level. Moreover, to overcome the imbalance between the technology's potential and its drawbacks, there is growing interest in the use of plants to reduce only the fraction that is the most hazardous to the environment and human health, that is to target the bioavailable fractions of metals in soil. Bioavailable Contaminant Stripping (BCS) would be a remediation approach focused to remove the bioavailable metal fractions. BCS have been used in a mercury contaminated soil from Italian industrial site. Bioavailable fractions were determined by sequential extraction with H2O and NH4Cl.Combined treatments of plant hormone and thioligand to strength Hg uptake by crop plants (Brassica juncea and Helianthus annuus) were tested. Plant biomass, evapotranspiration, Hg uptake and distribution following treatments were compared. Results indicate the plant hormone, cytokinine (CK) foliar treatment, increased evapotranspiration rate in both tested plants. The Hg uptake and translocation in both tested plants increased with simultaneous addition of CK and TS treatments. B. juncea was the most effective in Hg uptake. Application of CK to plants grown in TS-treated soil lead to an increase in Hg concentration of 232% in shoots and 39% in roots with respect to control. While H. annuus gave a better response in plant biomass production, the application of CK to plants grown in TS-treated soil lead to

  14. Phytoremediation of Industrial and Pharmaceutical Pollutants

    Directory of Open Access Journals (Sweden)

    Swarna Shikha

    2016-10-01

    Full Text Available Pollution in water bodies and soil is a major and ever-increasing environmental issue nowadays, and most conventional remediation approaches do not provide appropriate solutions. The contamination of soil is a major concern for the environment and needs to be remediated. These pollutants include complex organic compounds, heavy metals released from industries and plants and natural products such as oils from accidental release. Further the nature of pollution will be governed by the source and type of the contaminant, and other inorganic compounds are released into the environment from a number of sources like mining, smelting, electroplating, and farming. Plants can clean up many types of contaminants like metals, pesticides, oils, and explosives. Phytoremediation is emerging as a bio-based and low-cost alternative in the cleanup of heavy metal-contaminated soils.

  15. Validation of a phytoremediation computer model

    International Nuclear Information System (INIS)

    Corapcioglu, M.Y.; Sung, K.; Rhykerd, R.L.; Munster, C.; Drew, M.

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg -1 ] TNT, PBB and chrysene. Vegetated and unvegetated treatments were conducted in triplicate to obtain data regarding contaminant concentrations in the soil, plant roots, root distribution, microbial activity, plant water use and soil moisture. When given the parameters of time and depth, the model successfully predicted contaminant concentrations under actual field conditions. Other model parameters are currently being evaluated. 15 refs., 2 figs

  16. Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites.

    Science.gov (United States)

    Bert, Valérie; Seuntjens, Piet; Dejonghe, Winnie; Lacherez, Sophie; Thuy, Hoang Thi Thanh; Vandecasteele, Bart

    2009-11-01

    affected by polluted sediments, and the processes affecting pollutant bioavailability in the sediments. Studies that combine contaminated sediment and phytoremediation are relatively recent and are increasing in number since few years. Several papers suggest including phytoremediation in a management scheme for contaminated dredged sediments and state that phytoremediation can contribute to the revaluation of land-disposed contaminated sediments. The status of sediments, i.e. reduced or oxidised, highly influences contaminant mobility, its (eco)toxicity and the success of phytoremediation. Studies are performed either on near-fresh sediment or on sediment-derived soil. Field studies show temporal negative effects on plant growth due to oxidation and subsequent ageing of contaminated sediments disposed on land. The review shows that a large variety of plants and trees are able to colonise or develop on contaminated dredged sediment in particular conditions or events (e.g. high level of organic matter, clay and moisture content, flooding, seasonal hydrological variations). Depending on the studies, trees, high-biomass crop species and graminaceous species could be used to degrade organic pollutants, to extract or to stabilise inorganic pollutants. Water content of sediment is a limiting factor for mycorrhizal development. In sediment, specific bacteria may enhance the mobilisation of inorganic contaminants whereas others may participate in their immobilisation. Bacteria are also able to degrade organic pollutants. Their actions may be increased in the presence of plants. Choice of plants is particularly crucial for phytoremediation success on contaminated sediments. Extremely few studies are long-term field-based studies. Short-term effects and resilience of ecosystems is observed in long-term studies, i.e. due to degradation and stabilisation of pollutants. Terrestrial ecosystems affected by polluted sediments range from riverine tidal marshes with several interacting

  17. Global Trends in Mercury Management

    Science.gov (United States)

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  18. Phytoremediative urban design: Transforming a derelict and polluted harbour area into a green and productive neighbourhood

    NARCIS (Netherlands)

    Wilschut, M.; Theuws, P.; Duchhart, I.

    2013-01-01

    Many urban areas are polluted by industrial activities and waste disposal in landfills. Since conventional soil remediation techniques are costly and unsustainable, phytoremediation might offer an alternative. In this article, we explore how phytoremediation can be integrated into the transformation

  19. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Patrick [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON, K1N 6N5 (Canada)]. E-mail: paude086@uottawa.ca; Charest, Christiane [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON, K1N 6N5 (Canada)]. E-mail: ccharest@science.uottawa.ca

    2007-06-15

    To estimate dynamics of arbuscular mycorrhizal (AM) symbiosis in heavy metal (HM) phytoremediation, we conducted a literature survey and correlated HM uptake and relative plant growth parameters from published data. After estimating AM feedback responses for these parameters at low and high soil-HM concentration intervals, we determined that the roles of AM symbiosis are characterized by (1) an increased HM phytoextraction via mycorrhizospheric 'Enhanced Uptake' at low soil-HM concentrations, and (2) a reduced HM bioavailability via AM fungal 'Metal-Binding' processes at high soil-HM levels, hence resulting in increased plant biomass and enhanced plant tolerance through HM stress-avoidance. We present two conceptual models which illustrate the important compromise between plant growth, plant HM uptake and HM tolerance, and further emphasize the importance of AM symbiosis in buffering the soil environment for plants under such stress conditions. - This meta-analysis has revealed a transition role of the AM symbiosis in phytoremediation shifting from 'Enhanced Uptake' to 'Metal-Binding' beyond critical soil-HM levels.

  20. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives

    International Nuclear Information System (INIS)

    Audet, Patrick; Charest, Christiane

    2007-01-01

    To estimate dynamics of arbuscular mycorrhizal (AM) symbiosis in heavy metal (HM) phytoremediation, we conducted a literature survey and correlated HM uptake and relative plant growth parameters from published data. After estimating AM feedback responses for these parameters at low and high soil-HM concentration intervals, we determined that the roles of AM symbiosis are characterized by (1) an increased HM phytoextraction via mycorrhizospheric 'Enhanced Uptake' at low soil-HM concentrations, and (2) a reduced HM bioavailability via AM fungal 'Metal-Binding' processes at high soil-HM levels, hence resulting in increased plant biomass and enhanced plant tolerance through HM stress-avoidance. We present two conceptual models which illustrate the important compromise between plant growth, plant HM uptake and HM tolerance, and further emphasize the importance of AM symbiosis in buffering the soil environment for plants under such stress conditions. - This meta-analysis has revealed a transition role of the AM symbiosis in phytoremediation shifting from 'Enhanced Uptake' to 'Metal-Binding' beyond critical soil-HM levels

  1. Basic Information about Mercury

    Science.gov (United States)

    ... or metallic mercury is a shiny, silver-white metal and is liquid at room temperature. It is ... releases can happen naturally. Both volcanoes and forest fires send mercury into the atmosphere. Human activities, however, ...

  2. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  3. Smart app-based on-field colorimetric quantification of mercury via analyte-induced enhancement of the photocatalytic activity of TiO2-Au nanospheres.

    Science.gov (United States)

    Ravindranath, Rini; Periasamy, Arun Prakash; Roy, Prathik; Chen, Yu-Wen; Chang, Huan-Tsung

    2018-06-04

    We have devised a unique strategy for highly sensitive, selective, and colorimetric detection of mercury based on analyte-induced enhancement of the photocatalytic activity of TiO 2 -Au nanospheres (TiO 2 -Au NSs) toward degradation of methylene blue (MB). Through electrostatic interactions, Au nanoparticles are attached to poly-(sodium 4-styreneulfonate)/poly(diallyldimethylammonium chloride) modified TiO 2 nanoparticles, which then form an Au shell on each TiO 2 core through reduction of Au 3+ with ascorbic acid. Notably, the deposition of Hg species (Hg 2+ /CH 3 Hg + ) onto TiO 2 -Au NSs through strong Au-Hg aurophilic interactions speeds up catalytic degradation of MB. The first-order degradation rates of MB by TiO 2 -Au NSs and TiO 2 -Au-Hg NSs are 1.4 × 10 -2  min -1 and 2.1 × 10 -2  min -1 , respectively. Using a commercial absorption spectrometer, the TiO 2 -Au NSs/MB approach provides linearity (R 2  = 0.98) for Hg 2+ over a concentration range of 10.0 to 100.0 nM, with a limit of detection (LOD) of 1.5 nM. On the other hand, using a low-cost smartphone app that records the color changes (ΔRGB) of MB solution based on the red-blue-green (RGB) component values, the TiO 2 -Au NSs/MB approach provides an LOD of 2.0 nM for Hg 2+ and 5.0 nM for CH 3 Hg + , respectively. Furthermore, the smartphone app sensing system has been validated for the analyses of various samples, including tap water, lake water, soil, and Dorm II, showing its great potential for on-line analysis of environmental and biological samples. Graphical Abstract ᅟ.

  4. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination.

    Science.gov (United States)

    Pietro-Souza, William; Mello, Ivani Souza; Vendruscullo, Suzana Junges; Silva, Gilvan Ferreira da; Cunha, Cátia Nunes da; White, James Francis; Soares, Marcos Antônio

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.

  5. Mercury in Your Environment

    Science.gov (United States)

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  6. Intoxication with metallic mercury

    International Nuclear Information System (INIS)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-01-01

    Intoxications by metallic mercury are extremely rare. Report of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism. (orig.) [de

  7. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Ritzau, F.; Assmann, H.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  8. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  9. Substance Flow Analysis of Mercury in China

    Science.gov (United States)

    Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.

    2015-12-01

    products. Besides, 729t Hg is released to the environment, among which, 534 t is emitted to air, 129 t flows into water and 66 t is discharged to soil. To decrease the released mercury, the used mercury should be reduced firstly. On the one hand, large users like VCM production (the largest intentionally mercury user) should lower used mercury, on the other hand, mercury recycling should be enhanced.

  10. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  11. Improving Phytoremediation of Oil Spills through Organic Absorbents

    Science.gov (United States)

    Xie, W.

    2017-12-01

    Every year, oil spills around the world contaminate the environment and cost billions of dollars to clean up. Phytoremediation is a current technology for recovering environments contaminated by harmful substances, such as oil, that utilizes plants' capabilities to concentrate and metabolize the contaminants. Ranunculus, or the buttercup, has raised interest in the field of phytoremediation, being reported to grow in waste environments including municipal waste disposals. My project confirmed Ranunculus to be a suitable plant for phytoremediation. However, the Ranunculus plants throughout experiments showed a limited tolerance for oil concentration, causing the plant to wilt, thus ending the phytoremediation process. To overcome this problem, my project explored the combination of organic oil absorbents and phytoremediation. Oil absorbents can quickly fix the spilled oil in place and prevent it from further migration. In addition, and most importantly, the initial free oil concentration in contact with the roots is thus effectively decreased, which is essential for the plants to survive. Typha(cattail) inflorescence, saw dust, cotton and a commercial polymer were tested for oil absorption and Typha was deemed superior, being highly oil absorbent, inexpensive, organic and hydrophobic. Further experiments were undertaken in a small outdoor space and in the UBC Horticulture greenhouse during the winter season over the course of one year. The experiments were set up to both determine the most suitable plant for phytoremediation and test the impact of using Typha inflorescence as an absorbent. For each plant, there were three pots with Typha inflorescence and oil, with oil but no Typha inflorescence and without either. In order to measure the benefit quantitatively, naturally occurring electrical currents of the metabolic process common in phytoremediation was used as an indicator for phytoremediative activity. The main findings of the experiments were: 1. Adding Typha

  12. Remediation of a former fuel loading site using phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kotecha, P [Jacques Whitford Environment Ltd., Mont-Royal, PQ (Canada)

    2001-07-01

    The degradation and/or removal of pollutants from a contaminated medium is caused, mediated, and/or assisted by vegetation is defined as phytoremediation. It is a method widely used for the degradation, removal, and/or stabilisation of soils, sludges, sediments, or wastewaters. Some of the substances that can be cleaned up using phytoremediation are heavy metals, radionucleotides, petroleum hydrocarbons, energetics, chlorinated hydrocarbons, biocides, metalloids, nutrients, salts, and volatile organic contaminants. A former fuel loading site currently owned by Ultramar was remediated by Jacques Whitford Environment Limited using phytoremediation. A gasoline loading facility, a fuel loading facility, and a berm along an adjacent creek were all located at the site. All buildings and petroleum equipment had been removed in the mid-1980s, and the site is now vacant. The first phase involved the revegetation of the site with a phytoremediation grass cover and hybrid poplars, then the tree roots were allowed to infiltrate the ground to act as intake paths for contaminated water, the tree roots acted as a barrier to the contaminants headed to the river. Some of the advantages of phytoremediation are: low cost technique that can be applied using solar-powered ecotechnology in situ, wide applicability, involves minimum site disruption, has wide public acceptance, produces were few by-products requiring disposal, if any, and the harvested material can be easily disposed of in cases involving plant harvesting. The outcome of the project was also presented.

  13. Phytoremediation of 1,4-dioxane-containing recovered groundwater.

    Science.gov (United States)

    Ferro, Ari M; Kennedy, Jean; LaRue, James C

    2013-01-01

    The results of a pilot-scale phytoremediation study are reported in this paper. Small plots of trees established on a closed municipal waste landfill site were irrigated with recovered groundwater containing 1,4-dioxane (dioxane) and other volatile organic compounds (VOCs). The plots were managed to minimize the leaching of irrigation water, and leaching was quantified by the use of bromide tracer. Results indicated that the dioxane (2.5 microg/L) was effectively removed, probably via phytovolatilization, and that a full-scale phytoremediation system could be used. A system is now in place at the site in which the recovered groundwater can be treated using two different approaches. A physical treatment system (PTS) will be used during the winter months, and a 12 ha phytoremediation system (stands of coniferous trees) will be used during the growing season. The PTS removes VOCs using an air-stripper, and destroys dioxane using a photo-catalytic oxidation process. Treated water will be routed to the local sewer system. The phytoremediation system, located on the landfill, will be irrigated with effluent from the PTS air-stripper containing dioxane. Seasonal use of the phytoremediation system will reduce reliance on the photo-catalytic oxidation process that is extremely energy consumptive and expensive to operate.

  14. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Brown; G. Matthern; A. Glenn (INEEL); J. Kauffman (EnviroIssues); S. Rock (USEPA); M. Kuperberg (Florida State U); C. Ainsworth (PNNL); J. Waugh (Roy F. Weston Assoc.)

    2000-02-01

    The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies.

  15. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    International Nuclear Information System (INIS)

    Brown, J.T.; Matthern, G.; Glenn, A.; Kauffman, J.; Rock, S.; Kuperberg, M.; Ainsworth, C.; Waugh, J.

    2000-01-01

    The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted and is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies

  16. Profiling of plants at petroleum contaminated site for phytoremediation.

    Science.gov (United States)

    Anyasi, Raymond Oriebe; Atagana, Harrison Ifeanyichukwu

    2018-03-21

    The paucity of information in the literature on the characteristics of plants that could be used for phytoremediation of petroleum hydrocarbons (PHC)-contaminated sites was the principal reason for this study. The aim of the study was to identify indigenous plants growing in PHC-impacted soil in Umuahia in eastern-Nigeria that have the ability to phytoremediate soils contaminated with hydrocarbons under tropical monsoon climate conditions. A total of 28 native plant species from different families growing in and around hydrocarbon-impacted soil in the vicinity of vandalized pipelines carrying petroleum products were collected and studied for their ability to grow in a hydrocarbon-impacted soil and remove the PHC from the impacted soil. Some of the plants demonstrated the ability to grow in soil with high levels of the total petroleum hydrocarbons (TPH), which shows that they may be tolerant to hydrocarbons in soil and could potentially phytoremediate a hydrocarbon-contaminated soil. Chromolaena odorata, Aspilia africana, Chloris barbata, Pasparlum vaginatum, Bryophyllum pinnatum, Paspalum scrobiculatum, Cosmos bipinnatus, Eragrostis atrovirens, Cyperus rotundus, and Uvaria chamae showed tendencies to phytoremediate contaminated soil. By using bioaccumulation coefficient (BAC) as a measure of phytoremediation, results showed that C. odorata, A. africana, and U. chamae demonstrated the highest potentials to phytodegrade hydrocarbons in soil.

  17. Mercury exposure on potential plant Ludwigia octovalvis L. - Preliminary toxicological testing

    Science.gov (United States)

    Alrawiq, Huda S. M.; Mushrifah, I.

    2013-11-01

    The preliminary test in phytoremediation is necessaryto determine the ability of plant to survive in media with different concentrations of contaminant. It was conducted to determine the maximum concentration of the contaminant that isharmful to the plant and suppress the plant growth. This study showed the ability of Ludwigia octovalvisto resist mercury (Hg) contaminant in sand containing different concentrations of Hg (0, 0.5, 1, 2, 4, 6 and 8 mg/L). The experimental work wasperformed under greenhouse conditions for an observation period of 4 weeks. Throughout the 4 weeks duration, the resultsshowed that 66.66% of the plants withered for on exposure to Hg concentration of 4 mg/L and 100% withered at higher concentrations of 6 and 8 mg/L. The results of this study may serve as a basis for research that aims to study uptake and accumulation of Hg using potential phytoremediation plants.

  18. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity.

    Science.gov (United States)

    Spiller, Henry A

    2018-05-01

    There is increasing evidence that the pathophysiological target of mercury is in fact selenium, rather than the covalent binding of mercury to sulfur in the body's ubiquitous sulfhydryl groups. The role of selenium in mercury poisoning is multifaceted, bidirectional, and central to understanding the target organ toxicity of mercury. An initial search was performed using Medline/PubMed, Toxline, Google Scholar, and Google for published work on mercury and selenium. These searches yielded 2018 citations. Publications that did not evaluate selenium status or evaluated environmental status (e.g., lake or ocean sediment) were excluded, leaving approximately 500 citations. This initial selection was scrutinized carefully and 117 of the most relevant and representative references were selected for use in this review. Binding of mercury to thiol/sulfhydryl groups: Mercury has a lower affinity for thiol groups and higher affinity for selenium containing groups by several orders of magnitude, allowing for binding in a multifaceted way. The established binding of mercury to thiol moieties appears to primarily involve the transport across membranes, tissue distribution, and enhanced excretion, but does not explain the oxidative stress, calcium dyshomeostasis, or specific organ injury seen with mercury. Effects of mercury on selenium and the role this plays in the pathophysiology of mercury toxicity: Mercury impairs control of intracellular redox homeostasis with subsequent increased intracellular oxidative stress. Recent work has provided convincing evidence that the primary cellular targets are the selenoproteins of the thioredoxin system (thioredoxin reductase 1 and thioredoxin reductase 2) and the glutathione-glutaredoxin system (glutathione peroxidase). Mercury binds to the selenium site on these proteins and permanently inhibits their function, disrupting the intracellular redox environment. A number of other important possible target selenoproteins have been identified

  19. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Joner, Erik J. [Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les Sols (LIMOS), Universite H. Poincare Nancy 1, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy (France)]. E-mail: erik.joner@jordforsk.no; Leyval, Corinne [Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les Sols (LIMOS), Universite H. Poincare Nancy 1, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy (France); Colpaert, Jan V. [Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)

    2006-07-15

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg{sup -1} of {sigma}12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. - The ectomycorrhizal fungus S. bovinus impeded degradation of PAHs in soil, probably due to its negative effect on the availability of mineral nutrients of more potent PAH degraders.

  20. A novel phytoremediation technology shown to remediate petroleum hydrocarbons from soils in situ

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.D.; Yu, X.M.; Gerhardt, K.; Glick, B.; Greenberg, B [Waterloo Environmental Biotechnology Inc., Hamilton, ON (Canada); Waterloo Univ., ON (Canada). Dept. of Biology

    2009-04-01

    This article described a newly developed, advanced microbe-enhanced phytoremediation system that can be used to remediate lands polluted by hydrocarbons, salts and metals. The technology uses 3 complementary processes to achieve effective remediation of strongly bound persistent organic pollutants (POPs) from soil. The remediation process involves physical soil treatment, photochemical photooxidation, microbial remediation and growth of plants treated with plant growth promoting rhizobacteria (PGPR). The PGPR-enhanced phytoremediation system (PEPS) alleviates plant stress and increases biodegradation activities, thereby accelerating plant growth in the presence of POPs or poor soils. The PEPS has been used successfully to remove petroleum hydrocarbons (PHCs) from impacted soils in situ at several sites across Canada. Studies have shown that the PHCs are degraded in the rhizosphere. This article also presented a summary of the work conducted at 3 sites in Alberta. It took only 2 years to remediate the 3 sites to levels required for site closure under Alberta Tier 1 guidelines. It was concluded that PEPS is equally effective for total PHC and Fraction 3 CCME hydrocarbons. 1 tab., 3 figs.

  1. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere

    International Nuclear Information System (INIS)

    Joner, Erik J.; Leyval, Corinne; Colpaert, Jan V.

    2006-01-01

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg -1 of Σ12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. - The ectomycorrhizal fungus S. bovinus impeded degradation of PAHs in soil, probably due to its negative effect on the availability of mineral nutrients of more potent PAH degraders

  2. Phytoremediation of radionuclides - heavy metals in mycorrhizosphere soil and enzymatic mechanism

    International Nuclear Information System (INIS)

    Fulekar, M.H.; Bhawana, P.; Anamika, S.A.

    2012-01-01

    Nuclear industry plays a vital role in the economic growth and development of manufacturing sector of a developing country. The nuclear industry is a fastest growing industry in India which contributes 2% production of renewable energy. The nuclear industry involves the handling and uses of radioactive materials. Nuclear wastes generated through chemical processing and/or nuclear weapons program have also enhanced the level of hazardous environmental contaminants. In low level nuclear wastes, concentration involved are low and volumes are large. Hence, physical and chemical methods may not be effective practice to decontaminate the low level nuclear waste. The organic as well as inorganic chemicals present in the nuclear wastes find their way in soil and water causing environmental pollution. In present research study, the mycorrhiza soil has been developed using pot culture technique in green house. The mycorrhiza soil characterization was done for physico-chemical and microbial parameters. The heavy metals such as Cu, Pb and Zn toxicity in mycorrhiza soil at a concentration viz. 0, 5, 10, 20, 50, 75 and 100 ppm was assessed using the green plants such as Medicago sativa, Brassica juncea and Alfalfa. These green plants have been used for phytoremediation of heavy metals at a varying concentration of 0, 5, 10, 20 and 50 ppm using the pot culture technique. The chlorophyll content and caretenoid as an indicator of plant growth and the enzymatic activities have been assessed as a defence mechanism during phytoremediation of heavy metals by these green plants. The mycorrhiza soil has been found as an effective and efficient natural fertilizer to remediate heavy metals by green plants. Phytoremediation of heavy metals in mycorrhizosphere has proved that it is an effective, efficient, ecofriendly, low cost, sustainable green technology for restoration of ecosystem in radionuclides - heavy metal polluted environment. (author)

  3. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phytoremediation of pharmaceuticals--preliminary study.

    Science.gov (United States)

    Kotyza, Jan; Soudek, Petr; Kafka, Zdenĕk; Vanĕk, Toás

    2010-03-01

    Phytoremediation of selected pharmaceuticals (diclofenac, ibuprofen, and acetaminophen) using Armoracia rusticana and Linum usitatissimum cell cultures and by hydroponically cultivated Lupinus albus, Hordeum vulgaris, and Phragmites australis plants in laboratory conditions is described. During in vitro experiments, the best results for acetaminophen were achieved using Armoracia rusticana hairy root cultures, where 100% of the starting amount was removed from the media during eight days. Total removal of ibuprofen and diclofenac was achieved using a Linum usitatissimum suspension culture after one and six days, respectively. In the hydroponic arrangement, the best results were achieved for Lupinus, where acetaminophen was totally removed from media during two or four days in concentrations of 0.1 or 0.2 mM, respectively. The best effectiveness of ibuprofen removal (50% of starting amount) was found in case of Phragmites. Effectiveness of all tested plants for diclofenac removal was low. The best removal was achieved using Phragmites in the case of 0.2 mM concentration-67% of the starting amount and Hordeum for 0.1 mM starting concentration, 56%.

  5. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  6. Phytoremediation: Potential flora for synthetic dyestuff metabolism

    Directory of Open Access Journals (Sweden)

    Uruj Tahir

    2016-04-01

    Full Text Available Dumping of dye-laden effluents into different environmental compartments adversely affects equilibrium and integrity of ecological systems. Being genotoxic, mutagenic and carcinogenic these dyes are quite damaging to health of biota (either aquatic or terrestrial. Many of these dyes are resistant to degradation and remediation under natural conditions and through conventional treatment methods. This situation has necessitated the development of effective and efficient wastewater treatment strategies without further stressing the environment and endangering other life forms. To date many biological systems including microorganisms and plants have been assessed for metabolism of dyestuffs. Phytoremediation catalyzed by natural solar driven pumps (green plants and their associated metabolic processes has emerged as a comparatively new approach and has proven to be one of the most effective environmental friendly strategies for removal, detoxification and decolorization of dyes. Hence, this review quotes the literature of applied aspects of various plant species and their inherent metabolic as well as extractive potentials which enable them to effectively deal with various coloring agents.

  7. Feasibility of phytoremediation of common soil and groundwater pollutants

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rein, Arno; Clause, Lauge

    2014-01-01

    This report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose was appl......This report is the D eliverable D 4.3 and was done within the Timbre project WP4. It introduces into the various clean - up techniques that apply plants, evaluates the feasibility of phytoremediation of common soil and groundwater pollutants, and the knowle dge collected for this purpose...... was applied to the two Timbre sites : Hunedoara (Romania) and Szprotawa (Poland). Phytoremediation is the technique to clean up (remediate) contaminated sites using plants, typically trees. The principles of the data were deta iled, with focus on obstacles (phytotoxicity) and factors stimulating success...

  8. Phytoremediation potential of aquatic herbs from steel foundry effluent

    Directory of Open Access Journals (Sweden)

    N. Aurangzeb

    2014-12-01

    Full Text Available Discharge of industrial effluents in aquatic environments is a serious threat to life due to toxic heavy metals. Plants can be used as cheap phytoremedients in comparison to conventional technologies. The present study was conducted to check the phytoremediation capability of two free-floating plants, i.e., Pistia stratiotes and Eichhornia crassipes, for the removal of heavy metals from steel effluent by using Atomic Absorption Spectrophotometry. P. stratiotes was able to remove some of the heavy metals, showing the highest affinity for Pb and Cu with 70.7% and 66.5% efficiency, respectively, while E. crassipes proved to be the best phytoremediant for polluted water as its efficiency was greatest progressively for Cd, Cu, As, Al and Pb, i.e., 82.8%, 78.6%, 74%, 73% and 73%, respectively. In conclusion, aquatic plants can be a better candidate for phytoextraction from industrial effluents due to cost effectiveness.

  9. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  10. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain.

    Science.gov (United States)

    Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2017-07-03

    The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.

  11. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  12. Phytoremediation of heavy metals and hydrocarbon contaminated soils; Phytoremediation des sols contamines aux metaux lourds et aux hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Chateauneuf, G.; Sura, C. [Inspec-Sol Inc., Montreal, PQ (Canada); Labrecque, M.; Galipeau, C. [Jardin botanique de Montreal, Montreal, PQ (Canada). Institut de Recherche en Biologie Vegetale; Greer, C.; Delisle, S.; Roy, S.; Labelle, S. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Research in Biotechnology

    2003-07-01

    Phytoremediation is a technology that uses plants to decontaminate soils and underground water. Inspec-Sol, a company located in Montreal, Quebec, conducted a two-year study to evaluate the decontamination capabilities of this technology. Trials in greenhouses and field studies at the Pitt Park along the Lachine Canal were conducted. The soils chosen for the studies were soils with concentrations of polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead, copper, zinc) higher than those prescribed for the safe utilization of soils. The trials identified the three plant species (Salix viminalis, Brassica juncea, and Festuca arundinacea) which had the best characteristics for phytoremediation. Controlled experiments were performed to optimize the technology to achieve the maximum extraction of contaminant. It was concluded that phytoremediation has potential for the remediation of urban soils contaminated with organic and inorganic pollutants.

  13. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  14. Mercury (Environmental Health Student Portal)

    Science.gov (United States)

    ... in contact with) to mercury is by eating fish or shellfish that have high levels of mercury. You can also get sick from: Touching it Breathing it in Drinking contaminated water How can mercury ...

  15. Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation.

    Science.gov (United States)

    Velez, Pilar A; Talano, Melina A; Paisio, Cintia E; Agostini, Elizabeth; González, Paola S

    2017-09-01

    The presence of chromium in soils not only affects the physiological processes of plants but also the microbial rhizosphere composition and metabolic activities of microorganisms. Hence, the inoculation of plants with Cr(VI)-tolerant rhizospheric microorganisms as an alternative to reduce Cr phytotoxicity was studied. In this work, chickpea germination was reduced by Cr(VI) concentrations of 150 and 250 mg/L (6 and 33%, respectively); however lower Cr(VI) concentrations negatively affected the biomass. On the other hand, its symbiont, Mesorhizobium ciceri, was able to grow and remove different Cr(VI) concentrations (5-20 mg/L). The inoculation of chickpea plants with this strain exposed to Cr(VI) showed a significantly enhanced plant growth. In addition, inoculated plants accumulated higher Cr concentration in roots than those noninoculated. It is important to note that Cr was not translocated to shoots independently of inoculation. These results suggest that Mesorhizobium's capability to remove Cr(VI) could be exploited for bioremediation. Moreover, chickpea plants would represent a natural system for phytoremediation or phytostabilization of Cr in situ that could be improved with M. ciceri inoculation. This strategy would be considered as a phytoremediation tool with great economic and ecological relevance.

  16. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination

    International Nuclear Information System (INIS)

    Weyens, Nele; Croes, Sarah; Dupae, Joke; Newman, Lee; Lelie, Daniel van der; Carleer, Robert; Vangronsveld, Jaco

    2010-01-01

    The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increased root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. - Engineered endophytes can improve phytoremediation of mixed contaminations via enhanced degradation of organic contaminants and improved metal uptake and translocation.

  17. Investigation of the potential of Cyperus alternifolius in the phytoremediation of palm oil mill effluent

    Science.gov (United States)

    Sa'at, Siti Kamariah Md; Zaman, Nastaein Qamaruz; Yusoff, Suffian Mohd; Ismail, Hirun Azaman

    2017-10-01

    Phytoremediation is an emerging technology nowadays due to demand in environmental sustainability which requires cost-effective solutions in terms of capital and operational cost. The treatment gain attention due to their potential in wastewater treatment especially in organics, nutrients, and heavy metal removal of domestics, agricultural, and industrial wastewater treatment. Plant functions in phytoremediation make the plant selection as an essential element. The plant should have the ability to tolerate with the toxic effluent and able to uptake the contaminant. Cyperus alternifolius (umbrella grass) was chosen as aquatic plant due to the ability to tolerance in municipal and industrial effluent sources with strong and dense root systems. Thus, the objectives of this study are to determine the potential and effectiveness of Cyperus alternifolius in the palm oil mill effluent treatment especially in the removal of organics (COD), nutrients (NH3-N and TP) and suspended solid. The batch experiment was run using Cyperus alternifolius to determine their potential of aerobic pond effluent for 21 days of treatment. Cyperus alternifolius treatment shows the great removal of COD and TSS with 96% and 91%, respectively at the end of 21 days of treatment. Nutrients removal achieved the maximum removal of 92% NH3-N and 99% TP shows after 11 days of treatment and percentage slowly decrease until the end of 21 days of treatment. Cyperus alternifolius had shown potential in the palm oil mill effluent treatment and can be combined with ponding treatment to enhance to water quality prior discharge.

  18. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  19. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system: phytoremediation potential.

    Science.gov (United States)

    Zhou, Lingyun; Zhao, Ye; Wang, Shuifeng

    2015-11-01

    Phytoremediation has been proven to be an environmentally sound alternative for the recovery of contaminated soils, and the economic profit that comes along with the process might stimulate its field use. This study investigated cadmium (Cd) transfer and detoxification mechanisms in a soil-mulberry-silkworm system to estimate the suitability of the mulberry and silkworm as an alternative method for the remediation of Cd-polluted soil; it also explored the underlying mechanisms regulating the trophic transfer of Cd. The results show that both the mulberry and silkworm have high Cd tolerance. The transfer factor suggests that the mulberry has high potential for Cd extraction from polluted soil. The subcellular distribution and chemical forms of Cd in mulberry leaves show that cell wall deposition and vacuolar compartmentalization play important role in Cd tolerance. In the presence of increasing Cd concentrations in silkworm food, detoxification mechanisms (excretion and homeostasis) were activated so that excess Cd was excreted in fecal balls, and metallothionein levels in the mid-gut, the posterior of the silk gland, and the fat body of silkworms were enhanced. And, the Cd concentrations in silk are at a low level, ranging from 0.02 to 0.21 mg kg(-1). Therefore, these mechanisms of detoxification can regulate Cd trophic transfer, and mulberry planting and silkworm breeding has high phytoremediation potential for Cd-contaminated soil.

  20. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species

    Directory of Open Access Journals (Sweden)

    Saadia R. Tariq

    2016-11-01

    Full Text Available The phytoremediation potential of Helianthus annuus, Zea maize, Brassica campestris and Pisum sativum was studied for the soil of firing range contaminated with selected metals i.e. Cd, Cu, Co, Ni, Cr and Pb. The seedlings of the selected plants germinated in a mixture of sand and alluvial soil were transferred to the pots containing the soil of firing ranges and allowed to grow to the stage of reproductive growth. Subsequently they were harvested and then analyzed for selected metals by using AAS. Among the studied plants, P. sativum exhibited highest removal efficiency (i.e. 96.23% and bioconcentration factor for Pb thereby evidencing it to be Pb hyperaccumulator from the soil of firing ranges. Z. maize appreciably reduced the levels of all the selected metals in the soil but the highest phytoextraction capacity was shown for Pb i.e. 66.36%, which was enhanced to approximately 74% on EDTA application. H. annuus represented the highest removal potential for Cd i.e. 56.03% which was further increased on EDTA application. Thus it proved to be an accumulator of Cd after EDTA application. It was therefore concluded that different plants possess different phytoremediation potentials under given set of conditions.

  1. Phytoremediation in the tropics - influence of heavy crude oil on root morphological characteristics of graminoids

    International Nuclear Information System (INIS)

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-01-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies. - Describing the effect of crude oil on root morphology of tropical graminoids the work assists in the selection of plant species for phytoremediation of oil-contaminated soils

  2. Phytoremediation in the tropics - influence of heavy crude oil on root morphological characteristics of graminoids

    Energy Technology Data Exchange (ETDEWEB)

    Merkl, Nicole [Institute of Plant Production and Agroecology in the Tropics and Subtropics, Department of Biodiversity and Land Rehabilitation, University of Hohenheim, D-70593 Stuttgart (Germany) and PDVSA - Intevep, Centro de Investigacion y Apoyo Tecnologico de Petroleos de Venezuela S.A., Departamento de Ecologia y Ambiente, P.O. Box 76343, Caracas 1070-A (Venezuela)]. E-mail: nmerkl@uni-hohenheim.de; Schultze-Kraft, Rainer [Institute of Plant Production and Agroecology in the Tropics and Subtropics, Department of Biodiversity and Land Rehabilitation, University of Hohenheim, D-70593 Stuttgart (Germany)]. E-mail: rsk@uni-hohenheim.de; Infante, Carmen [PDVSA - Intevep, Centro de Investigacion y Apoyo Tecnologico de Petroleos de Venezuela S.A., Departamento de Ecologia y Ambiente, P.O. Box 76343, Caracas 1070-A (Venezuela) and Universidad Simon Bolivar (USB), FUNINDES, Unidad de Gestion Ambiental, Caracas (Venezuela)]. E-mail: luchoben@cantv.net

    2005-11-15

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies. - Describing the effect of crude oil on root morphology of tropical graminoids the work assists in the selection of plant species for phytoremediation of oil-contaminated soils.

  3. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2008-01-01

    The level of heavy metal pollution in Singrauli, an industrial region in India, was assessed and the phytoremediation capacity of a small water fern, Azolla pinnata R.BR (Azollaceae), was observed to purify waters polluted by two heavy metals, i.e., mercury (Hg) and cadmium (Cd) under a microcosm condition. Azolla pinnata is endemic to India and is an abundant and easy-growing free-floating water fern usually found in the rice fields, polluted ponds, and reservoirs of India. The fern was grown in 24 40-L aquariums containing Hg2+ and Cd2+ ions each in concentrations of 0.5, 1.0, and 3.0 mgL(-1) during the course of this study. The study revealed an inhibition of Azolla pinnata growth by 27.0-33.9% with the highest in the presence of Hg (II) ions at 0.5 mgL(-1) in comparison to the control After 13 days of the experiment, metal contents in the solution were decreased up to 70-94%. In the tissues of Azolla pinnata, the concentration of selected heavy metals during investigation was recorded between 310 and 740 mgKg(-1) dry mass, with the highest levelfoundfor Cd (II) treatment at 3.0 mgL(-1) containing a metal solution.

  4. Mercury is Moon's brother

    International Nuclear Information System (INIS)

    Ksanfomalifi, L.V.

    1976-01-01

    The latest information on Mercury planet is presented obtained by studying the planet with the aid of radar and space vehicles. Rotation of Mercury about its axis has been discovered; within 2/3 of its year it executes a complete revolution about its axis. In images obtained by the ''Mariner-10'' Mercurys surface differs little from that of the Moon. The ''Mariner-10'' has also discovered the Mercurys atmosphere, which consists of extremely rarefied helium. The helium is continuously supplied to the planet by the solar wind. The Mercury's magnetic field has been discovered, whose strength is 35 x 10 -4 at the Equator and 70 x 10 -4 E at the poles. The inclination of the dipole axis to the Mercury's rotation axis is 7 deg

  5. Enhanced biosorption of mercury(II) and cadmium(II) by cold-induced hydrophobic exobiopolymer secreted from the psychrotroph Pseudomonas fluorescens BM07

    Energy Technology Data Exchange (ETDEWEB)

    Zamil, Sheikh Shawkat; Choi, Mun Hwan; Song, Jung Hyun; Park, Hyunju; Xu, Ju; Yoon, Sung Chul [Gyeongsang National Univ., Jinju (Korea). Nano-Biomaterials Science Lab.; Chi, Ki-Whan [Ulsan Univ. (Korea). Dept. of Chemistry

    2008-09-15

    The cells of psychrotrophic Pseudomonas fluorescens BM07 were found to secrete large amounts of exobiopolymer (EBP) composed of mainly hydrophobic (water insoluble) polypeptide(s) (as contain {proportional_to}50 mol% hydrophobic amino acids, lacking cysteine residue) when grown on fructose containing limited M1 medium at the temperatures as low as 0-10 C but trace amount at high (30 C, optimum growth) temperature. Two types of nonliving BM07 cells (i.e., cells grown at 30 C and 10 C) as well as the freeze-dried EBP were compared for biosorption of mercury (Hg(II)) and cadmium (Cd(II)). The optimum adsorption pH was found 7 for Hg(II) but 6 for Cd(II), irrespective of the type of biomass. Equilibrium adsorption data well fitted the Langmuir adsorption model. The maximum adsorption (Q{sub max}) was 72.3, 97.4, and 286.2 mg Hg(II)/g dry biomass and 18.9, 27.0, and 61.5 mg Cd(II)/g dry biomass for cells grown at 30 C and 10 C and EBP, respectively, indicating major contribution of heavy metal adsorption by cold-induced EBP. Mercury(II) binding induced a significant shift of infrared (IR) amide I and II absorption of EBP whereas cadmium(II) binding showed only a very little shift. These IR shifts demonstrate that mercury(II) and cadmium(II) might have different binding sites in EBP, which was supported by X-ray diffraction and differential scanning calorimetric analysis and sorption results of chemically modified biomasses. This study implies that the psychrotrophs like BM07 strain may play an important role in the bioremediation of heavy metals in the temperate regions especially in the inactive cold season. (orig.)

  6. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    NARCIS (Netherlands)

    Kubiak, J.J.; Khankhane, P.J.; Kleingeld, P.J.; Lima, A.T.

    2012-01-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As

  7. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    KAUST Repository

    Kubiak, Jan J.; Khankhane, Premraj J.; Kleingeld, Pieter J.; Lima, Ana T.

    2012-01-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately

  8. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    KAUST Repository

    Kubiak, Jan J.

    2012-04-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As remediation and collected from a ditch in Utrecht, The Netherlands. The tanks were filled with surface water without any pre-cleaning, therefore containing various elements including metals as Mn (2.9mgL -1), Cu (0.05mgL -1), Fe (1.39mgL -1), and Ba (0.13mgL -1). This water was then spiked with As and allocated to a feed container, guaranteeing a continuous flow of 0.12mLs -1 to each tank. Two experiments were performed: Exp. 1 with 3 consecutive stages with rising applied voltage and Exp. 2, with a constant voltage over a period of 6d. Measurements of pH and temperature were taken every working day, as well as water samples from outlets of all tanks including feed container for control. From the present study, there was no evidence that As had been taken up by the plants, but a strong depletion of As was observed in the tanks where current was applied. Preliminary results clearly showed that applying voltage to the electrodes caused 90% removal of As from the spiked surface water. © 2012 .

  9. Phyto-remediation of contaminated soils; La phytoremediation des sols contamines

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.L. [Ecole Nationale Superieure Agronomie et des Industries Alimentaires, 54 - Vandoeuvre les Nancy (France)

    2002-09-01

    Plants provide new ways for soil remediation. The activity of living roots (absorption, exudation of organic compounds, action on physical soil properties) contribute to decrease the negative effects of pollutants, as they are stabilised or eliminated (extraction or degradation). In the presence of plants, hydrocarbons, a rather ubiquitous group of soil pollutants, are degraded faster than in bare soil. Hydrocarbon degrading bacteria are stimulated by root exudates, which also create favourable conditions for co-metabolism. Also, the fragmentation of aggregates as well as the release of surfactants increase the exposure of organic pollutants to microorganism degradation. The phyto-remediation technology is efficient to reduce the dissemination of pollutants. On historically contaminated soils, effects are generally discrete within a short period of time and may be more effective in the long run. (author)

  10. A review on in situ phytoremediation of mine tailings.

    Science.gov (United States)

    Wang, Li; Ji, Bin; Hu, Yuehua; Liu, Runqing; Sun, Wei

    2017-10-01

    Mine tailings are detrimental to natural plant growth due to their physicochemical characteristics, such as high pH, high salinity, low water retention capacity, high heavy metal concentrations, and deficiencies in soil organic matter and fertility. Thus, the remediation of mine tailings has become a key issue in environmental science and engineering. Phytoremediation, an in situ cost-effective technology, is emerging as the most promising remediation method for mine tailings by introducing tolerant plant species. It is particularly effective in dealing with large-area mine tailings with shallow contamination of organic, nutrient and metal pollutants. In this review, the background, concepts and applications of phytoremediation are comprehensively discussed. Furthermore, proper amendments used to improve the physical, chemical and biological properties of mine tailings are systematically reviewed and compared. Emphasis is placed on the types and characteristics of tolerant plants and their role in phytoremediation. Moreover, the role of microorganisms and their mechanism in phytoremediation are also discussed in-depth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy ...

    African Journals Online (AJOL)

    The increase of metals pollution in soil is a worldwide problem that affects the health of humans and environment. The use of green technology such as phytoremediation is one of the environmental friendly techniques, in which plants and other microbes are used to reduce the level of metals contaminants in soil and lower ...

  12. Nitrogen phytoremediation by water hyacinth (Eichhornia crassipes (Mart.) Solms)

    NARCIS (Netherlands)

    Fox, L.J.; Struik, P.C.; Appleton, B.L.; Rule, J.H.

    2008-01-01

    The phytoremediation potential of water hyacinth, Eichhornia crassipes (Mart.) Solms, was examined in two independent studies under nitrogen (N) rates of 0, 40, 80, 100, 150, 200, and 300 ppm. A modified Hoagland solution was added to ponds containing water hyacinths which were rated and measured

  13. AGRONOMIC OPTIMIZATION FOR PHYTOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS

    Science.gov (United States)

    Phytoremediation is a low-cost method of using plants to degrade, volatilize or sequester organic and metal pollutants that has been used in efforts to remediate sites contaminated with polycyclic aromatic hydrocarbon (PAH) refinery wastes. Non-native plant species aggressivel...

  14. Screening of plants for phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  15. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  16. PHYTOREMEDIATION POTENTIAL OF A CHLORINATED SOLVENTS PLUME IN CENTRAL FLORIDA

    Science.gov (United States)

    The potential for phytoremediation of a shallow chlorinated solvent plume was assessed by application of ground water flow and evapotranspiration (ET) models for a site in Orlando, Florida. The focus of the work was on the hydrologic and hydraulic factors that influence phytoreme...

  17. Endophytic Phytoaugmentation: Treating Wastewater and Runoff Through Augmented Phytoremediation

    Science.gov (United States)

    Redfern, Lauren K.

    2016-01-01

    Abstract Limited options exist for efficiently and effectively treating water runoff from agricultural fields and landfills. Traditional treatments include excavation, transport to landfills, incineration, stabilization, and vitrification. In general, treatment options relying on biological methods such as bioremediation have the ability to be applied in situ and offer a sustainable remedial option with a lower environmental impact and reduced long-term operating expenses. These methods are generally considered ecologically friendly, particularly when compared to traditional physicochemical cleanup options. Phytoremediation, which relies on plants to take up and/or transform the contaminant of interest, is another alternative treatment method which has been developed. However, phytoremediation is not widely used, largely due to its low treatment efficiency. Endophytic phytoaugmentation is a variation on phytoremediation that relies on augmenting the phytoremediating plants with exogenous strains to stimulate associated plant-microbe interactions to facilitate and improve remediation efficiency. In this review, we offer a summary of the current knowledge as well as developments in endophytic phytoaugmentation and present some potential future applications for this technology. There has been a limited number of published endophytic phytoaugmentation case studies and much remains to be done to transition lab-scale results to field applications. Future research needs include large-scale endophytic phytoaugmentation experiments as well as the development of more exhaustive tools for monitoring plant-microbe-pollutant interactions. PMID:27158249

  18. Summary report of a workshop on phytoremediation research needs

    International Nuclear Information System (INIS)

    1994-12-01

    Soil contamination is a national and global problem. A major challenge is the remediation of large sites contaminated with radionuclides and toxic metals, often present in relatively small amounts but above regulatory action levels. Despite the function of phytoremediation processes in nature for millenia, the technology of phytoremediation is, for the most part, still a concept. There are many different pollutants, plant uptake mechanisms, soil matrices, and plant species that need to be investigated, without overlooking the microbial participation in this technology. Developing actual practical applications will require a significant and coordinated research and development effort, due to the complexity of both biological systems and the soil contamination problems. Research and development in this area must involve scientists and engineers in Federal and state agencies, foreign organizations and industry. The representation at the workshop of researchers from many disciplines, organizations and countries, augurs well for a cooperative and interdisciplinary research effort and the rapid application of this technology. The urgent needs for effective, low-cost technologies to clean-up contaminated soils, both in the US and around the world, suggests phytoremediation as a high national and international research priority. The availability of scientists trained in the interdisciplinary topics relating to phytoremediation will be a major factor in expediting development of this technology

  19. Growth performance and phytoremediation ability of Azolla pinnata ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Growth performance and phytoremediation ability of Azolla pinnata in produced water ... Toxicity symptoms of produced water on the plant include chlorosis, frond ... easily to various conditions and can tolerate a wide ... The aquatic macrophyte used for this experiment was .... the Kathloni oilfield in northeast India.

  20. The phytoremediation of crude oil-polluted aquatic environment by ...

    African Journals Online (AJOL)

    A phytoremediation experiment was carried out in the Department of Wildlife and Fisheries Management, University of Ibadan, Nigeria to examine the ability of water hyacinth (Eichhornia crassipes) to detoxify crude oil-polluted aquatic environments. There were fifteen (15) experimental units; twelve (12) had water hyacinth ...

  1. Preliminary study of phytoremediation of brownfield soil contaminated by PAHs

    Czech Academy of Sciences Publication Activity Database

    Petrová, Šárka; Rezek, Jan; Soudek, Petr; Vaněk, Tomáš

    599-600, DEC 1 (2017), s. 572-580 ISSN 0048-9697 Institutional support: RVO:61389030 Keywords : Brownfield * Energy plants * Phytoremediation * Polyaromatic hydrocarbon s Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Bioremediation, diagnostic biotechnologies (DNA chips and biosensing devices) in environmental management Impact factor: 4.900, year: 2016

  2. Phytoremediation: an overview of metallic ion decontamination from soil

    Energy Technology Data Exchange (ETDEWEB)

    Singh, O.V.; Labana, S.; Pandey, G.; Budhiraja, R.; Jain, R.K. [Inst. of Microbial Technology, Chandigarh (India)

    2003-07-01

    In recent years, phytoremediation has emerged as a promising ecoremediation technology, particularly for soil and water cleanup of large volumes of contaminated sites. The exploitation of plants to remediate soils contaminated with trace elements could provide a cheap and sustainable technology for bioremediation. Many modern tools and analytical devices have provided insight into the selection and optimization of the remediation process by plant species. This review describes certain factors for the phytoremediation of metal ion decontamination and various aspects of plant metabolism during metallic decontamination. Metal-hyperaccumulating plants, desirable for heavily polluted environments, can be developed by the introduction of novel traits into high biomass plants in a transgenic approach, which is a promising strategy for the development of effective phytoremediation technology. The genetic manipulation of a phytoremediator plant needs a number of optimization processes, including mobilization of trace elements/metal ions, their uptake into the root, stem and other viable parts of the plant and their detoxification and allocation within the plant. This upcoming science is expanding as technology continues to offer new, low-cost remediation options. (orig.)

  3. Phytoremediation removal rates of benzene, toluene, and chlorobenzene.

    Science.gov (United States)

    Limmer, Matt A; Wilson, Jordan; Westenberg, David; Lee, Amy; Siegman, Mark; Burken, Joel G

    2018-06-07

    Phytoremediation is a sustainable remedial approach, although performance efficacy is rarely reported. In this study, we assessed a phytoremediation plot treating benzene, toluene, and chlorobenzene. A comparison of the calculated phytoremediation removal rate with estimates of onsite contaminant mass was used to forecast cleanup periods. The investigation demonstrated that substantial microbial degradation was occurring in the subsurface. Estimates of transpiration indicated that the trees planted were removing approximately 240,000 L of water per year. This large quantity of water removal implies substantial removal of contaminant due to large amounts of contaminants in the groundwater; however, these contaminants extensively sorb to the soil, resulting in large quantities of contaminant mass in the subsurface. The total estimate of subsurface contaminant mass was also complicated by the presence of non-aqueous phase liquids (NAPL), additional contaminant masses that were difficult to quantify. These uncertainties of initial contaminant mass at the site result in large uncertainty in the cleanup period, although mean estimates are on the order of decades. Collectively, the model indicates contaminant removal rates on the order of 10 -2 -10 0 kg/tree/year. The benefit of the phytoremediation system is relatively sustainable cleanup over the long periods necessary due to the presence of NAPL.

  4. Effectiveness Monitoring Report, MWMF Tritium Phytoremediation Interim Measures.

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, Dan; Blake, John, I.

    2003-02-10

    This report describes and presents the results of monitoring activities during irrigation operations for the calendar year 2001 of the MWMF Interim Measures Tritium Phytoremediation Project. The purpose of this effectiveness monitoring report is to provide the information on instrument performance, analysis of CY2001 measurements, and critical relationships needed to manage irrigation operations, estimate efficiency and validate the water and tritium balance model.

  5. Assessment of the phytoremediation potential of Panicum maximum ...

    African Journals Online (AJOL)

    Obvious signs of phyto-toxicity however appeared in plants exposed to 120 ppm Pb2+ and Cd2+ at day twenty-three, suggesting that P. maximum may be a moderate metal accumulator. Keywords: phytoremediation, heavy metals, uptake, tissues, accumulator. African Journal of Biotechnology, Vol 13(19), 1979-1984 ...

  6. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower.

    Science.gov (United States)

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2016-02-01

    The potential of vermicompost, elemental sulphur, Thiobacillus thiooxidans and Pseudomonas putida for phytoremediation is well known individually but their integrated approach has not been discovered so far. The present work highlights the consideration of so far overlooked aspects of their integrated treatment by growing the ornamental plant, Gladiolus grandiflorus L in uncontaminated and sewage-contaminated soils (sulphur-deficient alluvial Entisols, pH 7.6-7.8) for phytoremediation of cadmium and lead under pot experiment. Between vermicompost and elemental sulphur, the response of vermicompost was higher towards improvement in the biometric parameters of plants, whereas the response of elemental sulphur was higher towards enhanced bioaccumulation of heavy metals under soils. The integrated treatment (T7: vermicompost 6g and elemental sulphur 0.5gkg(-1) soil and co-inoculation of the plant with T. thiooxidans and P. putida) was found superior in promoting root length, plant height and dry biomass of the plant. The treatment T7 caused enhanced accumulation of Cd up to 6.96 and 6.45mgkg(-1) and Pb up to 22.6 and 19.9mgkg(-1) in corm and shoot, respectively at the contaminated soil. T7 showed maximum remediation efficiency of 0.46% and 0.19% and bioaccumulation factor of 2.92 and 1.21 and uptake of 6.75 and 21.4mgkg(-1) dry biomass for Cd and Pb respectively in the contaminated soil. The integrated treatment T7 was found significant over the individual treatments to promote plant growth and enhance phytoremediation. Hence, authors conclude to integrate vermicompost, elemental sulphur and microbial co-inoculation for the enhanced clean-up of Cd and Pb-contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Mercury uptake and effects on growth in Jatropha curcas.

    Science.gov (United States)

    Marrugo-Negrete, José; Durango-Hernández, José; Pinedo-Hernández, José; Enamorado-Montes, Germán; Díez, Sergi

    2016-10-01

    The use of metal-accumulating plants for the phytoremediation of contaminated soils is gaining more attention. Mercury (Hg)-contaminated soils from historical gold mines represent a potential risk to human health and the environment. Therefore, Jatropha curcas plant, that has shown its tolerance to these environments, is a species of particular interest to implement phytoremediation techniques in gold mining sites. In this work, the behavior of J. curcas was assessed in different hydroponic cultures fortified with Hg at concentrations of 5, 10, 20, 40, and 80μgHg/mL (T5, T10, T20, T40 and T80, respectively). After exposure, plant growth, net photosynthesis, leaf area, and Hg accumulation were determined and variables such as net Hg uptake, effective Hg accumulation, translocation and bioaccumulation factors were calculated. Accumulation of Hg in root and leaf tissues increased with respect to the Hg concentrations in the hydroponic culture, with statistically significant differences (p50% with treatment T5). Moreover, percentage of inhibition was even higher (>60%) with same treatment for net photosynthesis. Finally, it should be highlighted that for T40 and T80 treatments, plant growth and photosynthesis were almost completely depleted (88%-95%). Copyright © 2016. Published by Elsevier B.V.

  8. Linking phytoremediated pollutant removal to biomass economic opportunities

    International Nuclear Information System (INIS)

    Licht, Louis A.; Isebrands, J.G.

    2005-01-01

    Phytoremediation (phyto) strategies employ trees, shrubs, and/or grasses for treating contaminated air, soil, or water. These strategies include buffers, vegetation filters, in situ phytoremediation plantings, and percolation controlling vegetative caps. The design parameter that separates phytoremediation from landscaping is purposefully placing and growing a root-zone reactor volume with predictable pollutant removal performance. This phyto reactor integrates with other engineered systems to cover landfills, treat petrochemical spills in soils, intercept a soluble subsurface plume, and capture non-point surface sediment entrained in urban or field runoff. There are many potential economic opportunities for biomass associated with phytoremediation, including bioenergy and traditional industrial products such as solid wood products and reconstituted products (i.e., paper, chip board, laminated beams, extruded trim). More intangibly, phyto creates environmental benefits such as soil erosion control, carbon sequestration, and wildlife habitat. Phyto also creates socio-economic benefits by diversify regional manufacturing into new products that employs local labor, thus building value-added industry. Alternative crops develop a greater diversity of products from the farmland, making the regional economy less exposed to global commodity crop price fluctuations. Thus, a strategic phyto treatment of non-point agricultural runoff would help diversify land use from annually tilled crops (corn, soybeans, wheat) into perennial, untilled tree crops. A landscape rebuilt using phyto would create diversity represented in business potential, healthier air and water, wildlife habitat, and aesthetics. Moreover, phyto provides local and current pollutant treatment. Such timely treatment of pollutants that would otherwise move to our downstream or downwind neighbors is key to the environmental justice concept. We present four case study summaries to illustrate installed commercial

  9. Linking phytoremediated pollutant removal to biomass economic opportunities

    International Nuclear Information System (INIS)

    Licht, Louis A.; Isebrands, J.G.

    2005-01-01

    Phytoremediation (phyto) strategies employ trees, shrubs, and/or grasses for treating contaminated air, soil, or water. These strategies include buffers, vegetation filters, in situ phytoremediation plantings, and percolation controlling vegetative caps. The design parameter that separates phytoremediation from landscaping is purposefully placing and growing a root-zone reactor volume with predictable pollutant removal performance. This phyto reactor integrates with other engineered systems to cover landfills, treat petrochemical spills in soils, intercept a soluble subsurface plume, and capture non-point surface sediment entrained in urban or field runoff. There are many potential economic opportunities for biomass associated with phytoremediation, including bioenergy and traditional industrial products such as solid wood products and reconstituted products (i.e., paper, chip board, laminated beams, extruded trim). More intangibly, phyto creates environmental benefits such as soil erosion control, carbon sequestration, and wildlife habitat. Phyto also creates socio-economic benefits by diversify regional manufacturing into new products that employs local labor, thus building value-added industry. Alternative crops develop a greater diversity of products from the farmland, making the regional economy less exposed to global commodity crop price fluctuations. Thus, a strategic phyto treatment of non-point agricultural runoff would help diversify land use from annually tilled crops (corn, soybeans, wheat) into perennial, untilled tree crops. A landscape rebuilt using phyto would create diversity represented in business potential, healthier air and water, wildlife habitat, and aesthetics. Moreover, phyto provides local and current pollutant treatment. Such timely treatment of pollutants that would otherwise move to our downstream or downwind neighbors is key to the environmental justice concept. We present four case study summaries to illustrate installed commercial

  10. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  11. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    Science.gov (United States)

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.

  12. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    Directory of Open Access Journals (Sweden)

    Dony Chacko Mathew

    Full Text Available Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis. While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1, 24 h and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury.

  13. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    Science.gov (United States)

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1) mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1), 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury.

  14. A Rhizosphere-Associated Symbiont, Photobacterium spp. Strain MELD1, and Its Targeted Synergistic Activity for Phytoprotection against Mercury

    Science.gov (United States)

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg . kg-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg . kg-1, 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury. PMID:25816328

  15. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.

    Science.gov (United States)

    Wang, Quanzhen; Gu, Muyu; Ma, Xiaomin; Zhang, Hongjuan; Wang, Yafang; Cui, Jian; Gao, Wei; Gui, Jing

    2015-11-01

    Soil pollution with heavy metals is an increasingly serious threat to the environment, food security, and human health. Therefore, it is urgent to develop economic and highly efficient soil restoration technology for environmental improvement; phytoremediation is an option that is safe, has low cost, and is environmentally friendly. However, in selecting hyperaccumulators or tolerant plants, theories and operation technologies for optimal restoration should be satisfied. In this study, the switchgrass growth response and performance of phytoextraction under the coupling effect of Cd and pH were investigated by evaluating seed germination, seedling growth, and the Cd content in the plant to evaluate the potential use of switchgrass as a phytoremediation plant in cadmium contaminated soil. This study conducted three sets of independent experiments with five levels of Cd concentrations, including two orthogonal matrix designs of combining Cd with pH values. The results showed that switchgrass was germinated well under all treatments (Cd concentration of 0-500 μM), but the seedling growth was significantly affected by Cd and pH, as shown by multivariate regression analyses. Hormesis was found during the growth of switchgrass plants exposed to low Cd concentrations under hydroponic conditions, and switchgrass plants were capable of developing with a Cd concentration of 100-175 μM and pH of 4.1-5.9. Mild acidic conditions can enhance the ability of Cd to accumulate in switchgrass. Switchgrass was moderately tolerant to Cd and may be used as a phytoremediation plant for Cd-contaminated soils in the future. Our results also suggest that hormetic effects should be taken into consideration in the phytoremediation of Cd-contaminated soils. We discuss the physiological and biochemical mechanisms contributing to the effective application of the plant for the phytoremediation of Cd-contaminated soils.

  16. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.

    Science.gov (United States)

    Harvey, Patricia J; Campanella, Bruno F; Castro, Paula M L; Harms, Hans; Lichtfouse, Eric; Schäffner, Anton R; Smrcek, Stanislav; Werck-Reichhart, Daniele

    2002-01-01

    Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an

  17. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    In this case report, intravenous complications, treatment strategies and possible ... Mercury toxicity is commonly associated with vapour inhalation or oral ingestion, for which there exist definite treatment options. Intravenous mercury ... personality, anxiousness, irritability, insomnia, depression and drowsi- ness.[1] However ...

  18. Mercury's shifting, rolling past

    OpenAIRE

    Trulove, Susan

    2008-01-01

    Patterns of scalloped-edged cliffs or lobate scarps on Mercury's surface are thrust faults that are consistent with the planet shrinking and cooling with time. However, compression occurred in the planet's early history and Mariner 10 images revealed decades ago that lobate scarps are among the youngest features on Mercury. Why don't we find more evidence of older compressive features?

  19. Global Mercury Assessment 2013

    International Development Research Centre (IDRC) Digital Library (Canada)

    mercury pollution. This summary report and the accompanying. Technical Background Report for the Global. Mercury Assessment 2013 are developed in response to Decision 25/5, paragraph ... The use of different pollution control technologies in different ...... vegetation, snow, freshwater, and seawater. One of the largest ...

  20. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  1. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.

    Science.gov (United States)

    Kong, Zhaoyu; Glick, Bernard R

    2017-01-01

    Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria. © 2017 Elsevier Ltd All rights reserved.

  2. Mercury in Nordic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, John; Waengberg, Ingvar (IVL Swedish Environmental Research Inst., Stockholm (SE)); Rognerud, Sigurd; Fjeld, Eirik (Norwegian Inst. for Water Research (NIVA), Oslo (Norway)); Verta, Matti; Porvari, Petri (Finnish Environment Inst. (SYKE), Helsinki (Finland)); Meili, Markus (Inst. of Applied Environmental Research (ITM), Stockholm (Sweden))

    2007-12-15

    This report provides a first comprehensive compilation and assessment of available data on mercury in air, precipitation, sediments and fish in the Nordic countries. The main conclusion is that mercury levels in Nordic ecosystems continue to be affected by long-range atmospheric transport. The geographical patterns of mercury concentrations in both sediments and fish are also strongly affected by ecosystem characteristics and in some regions possibly by historical pollution. An evaluation of geographical variations in mercury concentrations in precipitation indicates that the influence from anthropogenic sources from Central European areas is still significant. The annual variability of deposition is large and dependant of precipitation amounts. An evaluation of data from stations around the North Sea has indicated a significant decrease in mercury concentrations in precipitation indicating a continuous decrease of emissions in Europe (Waengberg et al., 2007). For mercury in air (TGM), the geographical pattern is less pronounced indicating the influence of mercury emissions and distribution over a larger geographical area (i.e. hemispherical transport). Comparison of recent (surficial) and historical lake sediments show significantly elevated concentrations of mercury most likely caused by anthropogenic atmospheric deposition over the past century. The highest pollution impact was observed in the coastal areas of southern Norway, in south western Finland and in Sweden from the coastal areas in the southwest across the central parts to the north-east. The general increase in recent versus old sediments was 2-5 fold. Data on mercury in Nordic freshwater fish was assembled and evaluated with respect to geographical variations. The fish data were further compared with temporal and spatial trends in mercury deposition and mercury contamination of lake sediments in order to investigate the coupling between atmospheric transport and deposition of mercury and local mercury

  3. Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production

    International Nuclear Information System (INIS)

    Witters, N.; Mendelsohn, R.; Van Passel, S.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Vanheusden, B.; Vangronsveld, J.

    2012-01-01

    Phytoremediation could be a sustainable remediation alternative for conventional remediation technologies. However, its implementation on a commercial scale remains disappointing. To emphasize its sustainability, this paper examines whether and how the potential economic benefit of CO 2 abatement for different crops used for phytoremediation or sustainable land management purposes could promote phytotechnologies. Our analysis is based on a case study in the Campine region, where agricultural soils are contaminated with mainly cadmium. We use Life Cycle Analysis to show for the most relevant crops (willow (Salix spp), energy maize (Zea mays), and rapeseed (Brassica napus)), that phytoremediation, used for renewable energy production, could abate CO 2 . Converting this in economic numbers through the Marginal Abatement Cost of CO 2 (€ 20 ton −1 ) we can integrate this in the economic analysis to compare phytoremediation crops among each other, and phytoremediation with conventional technologies. The external benefit of CO 2 abatement when using phytoremediation crops for land management ranges between € 55 and € 501 per hectare. The purpose of these calculations is not to calculate a subsidy for phytoremediation. There is no reason why one would prefer phytoremediation crops for renewable energy production over “normal” biomass. Moreover, subsidies for renewable energy already exist. Therefore, we should not integrate these numbers in the economic analysis again. However, these numbers could contribute to making explicit the competitive advantage of phytoremediation compared to conventional remediation technologies, but also add to a more sustainably funded decision on which crop should be grown on contaminated land. -- Highlights: ► We add CO 2 abatement for each remediation crop to the private economic analysis. ► This values the advantage of phytoremediation compared to conventional remediation. ► This leads to a crop choice that considers an

  4. Getting Mercury out of Schools.

    Science.gov (United States)

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  5. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    OpenAIRE

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expr...

  6. Phytoremediation as a sustainable technology for the rehabilitation and greening of former gasworks

    OpenAIRE

    Clemmens, M.; Dubin, D.; Weyens, Nele; Witters, Nele; Vangronsveld, Jaco

    2015-01-01

    Gasworks are often contaminated with various contaminants such as organics, metals and cyanides. For the removal and/or control of these pollutants phytoremediation can offer a sustainable solution. Phytoremediation is the use of plants and their associated bacteria and fungi for the degradation, extraction or immobilization of soil and / or groundwater contamination. In case of natural phytoremediation, the degradation capacity remains uncontrolled. The degradation efficiency is affected by ...

  7. Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands.

    Science.gov (United States)

    Marrugo-Negrete, José; Enamorado-Montes, Germán; Durango-Hernández, José; Pinedo-Hernández, José; Díez, Sergi

    2017-01-01

    Phytoremediation has received increased attention over the recent decades, as an emerging and eco-friendly approach that utilizes the natural properties of plants to remediate contaminated water, soils or sediments. The current study provides information about a pilot-scale experiment designed to evaluate the potential of the anchored aquatic plant Limnocharis flava for phytoremediation of water contaminated with mercury (Hg), in a constructed wetland (CW) with horizontal subsurface flow (HSSF). Mine effluent used in this experiment was collected from a gold mining area located at the Alacran mine in Colombia (Hg: 0.11 ± 0.03 μg mL -1 ) and spiked with HgNO 3 (1.50 ± 0.09 μg mL -1 ). Over a 30 day test period, the efficiency of the reduction in the heavy metal concentration in the wetlands, and the relative metal sorption by the L. flava, varied according to the exposure time. The continued rate of removal of Hg from the constructed wetland was 9 times higher than the control, demonstrating a better performance and nearly 90% reduction in Hg concentrations in the contaminated water in the presence of L. flava. The results in this present study show the great potential of the aquatic macrophyte L. flava for phytoremediation of Hg from gold mining effluents in constructed wetlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids.

    Science.gov (United States)

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-11-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies.

  9. Mercury's Dynamic Magnetic Tail

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  10. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site.

    Science.gov (United States)

    Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen

    2017-12-15

    Multiple techniques for soil decontamination were combined to enhance the phytoremediation efficiency of Eucalyptus globulese and alleviate the corresponding environmental risks. The approach constituted of chelating agent using, electrokinetic remediation, plant hormone foliar application and phytoremediation was designed to remediate multi-metal contaminated soils from a notorious e-waste recycling town. The decontamination ability of E. globulese increased from 1.35, 58.47 and 119.18 mg per plant for Cd, Pb and Cu in planting controls to 7.57, 198.68 and 174.34 mg per plant in individual EDTA treatments, respectively, but simultaneously, 0.9-11.5 times more metals leached from chelator treatments relative to controls. Low (2 V) and moderate (4 V) voltage electric fields provoked the growth of the species while high voltage (10 V) had an opposite effect and metal concentrations of the plants elevated with the increment of voltage. Volumes of the leachate decreased from 1224 to 134 mL with voltage increasing from 0 to 10 V due to electroosmosis and electrolysis. Comparing with individual phytoremediation, foliar cytokinin treatments produced 56% more biomass and intercepted 2.5 times more leachate attributed to the enhanced transpiration rate. The synergistic combination of the individuals resulted in the most biomass production and metal accumulation of the species under the stress condition relative to other methods. Time required for the multi-technique approach to decontaminate Cd, Pb and Cu from soil was 2.1-10.4 times less than individual chelator addition, electric field application or plant hormone utilization. It's especially important that nearly no leachate (60 mL in total) was collected from the multi-technique system. This approach is a suitable method to remediate metal polluted site considering its decontamination efficiency and associated environmental negligible risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A preliminary study on the phytoremediation of antibiotic contaminated sediment.

    Science.gov (United States)

    Hoang, Thuy Thi Thanh; Tu, Loan Thi Cam; Le Nga, Phi; Dao, Quoc Phu

    2013-01-01

    In Vietnam's coastal wetlands, fluoroquinolones, a widely used class of antibiotics in shrimp farming, are frequently detected in sediments of former shrimp farms. This phenomenon could lead to negative impacts on the aquatic ecosystem, since the antibiotic residues could induce changes in the microorganism communities of the water body. The potential of native wetland plants (Acrostichum aureum L. and Rhizophora apiculata Blume Fl. Javae) for phytoremediation of fluoroquinolones (ciprofloxacin and norfloxacin) was investigated. The half-life for each antibiotic was estimated at approximately 10 days in the planted sediment. With respect to the accumulation of ciprofloxacin and norfloxacin in plants, these antibiotics were found mainly in roots. Antibiotic translocation from root to stem and leaves occurred at a low rate. The results showed that A. aureum and R. apiculata can be valuable for the phytoremediation of antibiotic-contaminated sediments. Additionally, the initialfindings of the presence of resistant bacteria indicated that bacteria could play a role in facilitating the phytodegradation.

  12. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution.

    Science.gov (United States)

    Gatheru Waigi, Michael; Sun, Kai; Gao, Yanzheng

    2017-09-01

    Soil pollution has become a major concern in various terrestrial ecosystems worldwide. One in situ soil bioremediation strategy that has gained popularity recently is microbe-assisted phytoremediation, which is promising for remediating pollutants. Sphingomonads, a versatile bacteria group comprising four well-known genera, are ubiquitous in vegetation grown in contaminated soils. These Gram-negative microbes have been investigated for their ability to induce innate plant growth-promoting (PGP) traits, including the formation of phytohormones, siderophores, and chelators, in addition to their evolutionary adaptations enabling biodegradation and microbe-assisted removal of contaminants. However, their capacity for bacterial-assisted phytoremediation has to date been undervalued. Here, we highlight the specific features, roles, advantages, and challenges associated with using sphingomonads in plant-microbe interactions, from the perspective of future phytotechnologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  14. Mercury and Cyanide Contaminations in Gold Mine Environment and Possible Solution of Cleaning Up by Using Phytoextraction

    Directory of Open Access Journals (Sweden)

    NURIL HIDAYATI

    2009-09-01

    Full Text Available Water contamination with heavy metals, mainly mercury and cyanide (CN due to small scale of public mines and large scale of industrial mines have been in concern to residents around the area. Surveys of heavy metal contamination in aquatic environments, such as rivers and paddy fields over two gold mine areas in West Jawa were conducted and possible solution of using indigenous plants for phytoremediation was studied. The results showed that most of the rivers and other aquatic environments were affected by gold mine activities. Rivers, ponds, and paddy fields around illegal public mines were mostly contaminated by mercury in considerably high levels, such as paddy fields in two locations (Nunggul and Leuwijamang, Pongkor were contaminated up to 22.68 and 7.73 ppm of Hg, respectively. Whereas rivers located around large scale industrial mines were contaminated by CN. Possible solution of cleaning up by using green technology of phytoremediation was examined. Some plant species grew in the contaminated sites showed high tolerance and potentially effective in accumulating cyanide or mercury in their roots and above ground portions. Lindernia crustacea (L. F.M., Digitaria radicosa (Presl Miq, Paspalum conjugatum, Cyperus kyllingia accumulated 89.13, 50.93, 1.78, and 0.77 ppm of Hg, respectively. Whereas, Paspalum conjugatum, Cyperus kyllingia accumulated 16.52 and 33. 16 ppm of CN respectively.

  15. Monosilicic acid potential in phytoremediation of the contaminated areas.

    Science.gov (United States)

    Ji, Xionghui; Liu, Saihua; Huang, Juan; Bocharnikova, Elena; Matichenkov, Vladimir

    2016-08-01

    The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phytoremediation of soils contaminated with toxic elements and radionuclides

    International Nuclear Information System (INIS)

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.; Benemann, J.R.

    1995-01-01

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE's Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass. Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE

  17. Phytoremediation Potential of Duckweed (Lemna minor L.) On Steel Wastewater.

    Science.gov (United States)

    Saha, Priyanka; Banerjee, Angela; Sarkar, Supriya

    2015-01-01

    An eco-friendly and cost effective technique- phytoremediation was used to remediate contaminants from waste water. This study demonstrated that phytoremediation ability of duckweed (Lemna minor L.) to remove chloride, sulphate from Biological Oxygen Treatment (BOT) waste water of coke oven plant. The BOT water quality was assessed by analyzing physico-biochemical characters--pH, Biological oxygen demand (BOD), Chemical oxygen demand (COD), total dissolved solids (TDS) and elemental concentration. It was observed that an increase in pH value indicated an improvement of water quality. The experimental results showed that, duckweed effectively removed 30% chloride, 16% sulphate and 14% TDS from BOT waste water, which suggested its ability in phytoremediation for removal of chloride and sulphate from BOT waste water. A maximum increase of 30% relative growth rate of duckweed was achieved after 21 days of experiment. Thus, it was concluded that duckweed, an aquatic plant, can be considered for treatment of the effluent discharged from the coke oven plant.

  18. Total Mercury content of skin toning creams

    African Journals Online (AJOL)

    Administrator

    2008-04-01

    Apr 1, 2008 ... used it for cosmetics (Silberberg, 1995). Mercury- ... Cosmetic preparations containing mercury com- pounds are .... mercury determination by a modified version of an open .... level mercury exposure, which could lead to a.

  19. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  20. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  1. Metallic mercury recycling. Final report

    International Nuclear Information System (INIS)

    Beck, M.A.

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made

  2. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  3. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    Elemental mercury is the well-known silver liquid and usually causes pulmonary, neurological and ... suicidal ideation or features of major depression. Clinically the patient was .... medically at this stage and consider surgical intervention later.

  4. Mercury's Dynamic Magnetosphere

    Science.gov (United States)

    Imber, S. M.

    2018-05-01

    The global dynamics of Mercury's magnetosphere will be discussed, focussing on observed asymmetries in the magnetotail and on the precipitation of particles of magnetospheric origin onto the nightside planetary surface.

  5. Mercury analysis in hair

    DEFF Research Database (Denmark)

    Esteban, Marta; Schindler, Birgit K; Jiménez-Guerrero, José A

    2015-01-01

    Human biomonitoring (HBM) is an effective tool for assessing actual exposure to chemicals that takes into account all routes of intake. Although hair analysis is considered to be an optimal biomarker for assessing mercury exposure, the lack of harmonization as regards sampling and analytical...... assurance program (QAP) for assessing mercury levels in hair samples from more than 1800 mother-child pairs recruited in 17 European countries. To ensure the comparability of the results, standard operating procedures (SOPs) for sampling and for mercury analysis were drafted and distributed to participating...... laboratories. Training sessions were organized for field workers and four external quality-assessment exercises (ICI/EQUAS), followed by the corresponding web conferences, were organized between March 2011 and February 2012. ICI/EQUAS used native hair samples at two mercury concentration ranges (0...

  6. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  7. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  8. Cutaneous mercury granuloma

    OpenAIRE

    Kalpana A Bothale; Sadhana D Mahore; Sushil Pande; Trupti Dongre

    2013-01-01

    Cutaneous mercury granuloma is rarely encountered. Clinically it may pose difficulty in diagnosis. Here, we report a 23-year-old male presented with erythematous, nodular lesions over the forearm and anterior aspect of chest wall. Metallic mercury in tissue sections appear as dark black, opaque, spherical globules of varying size and number. They are surrounded by granulomatous foreign-body reaction. It is composed of foreign body giant cells and mixed inflammatory infiltrate composed of hist...

  9. Mercury in human hair

    International Nuclear Information System (INIS)

    Kapauan, P.A.; Cruz, C.C.; Verceluz, F.P.

    1980-10-01

    The analysis of mercury (Hg) in scalp hair obtained from individuals residing in five different localities in the Philippines - Metro Manila, Naga City in Bicol, Bataan, Oriental Mindoro, and Palawan is presented. An overall mean of 1.46 ug/g of hair was obtained for all samples excluding those from Palawan and represents a baseline value.'' In terms of the mercury levels found in hair, the Honda Bay area in Palawan is, relatively, a ''contaminated area.'' (author)

  10. Fiscal 2000 study on technology and marketability concerning phytoremediation; 2000 nendo phytoremediation ni kansuru gijutsu oyobi shijosei no chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigative study was conducted on phytoremediation with the purpose of correcting soil contamination caused by heavy metals and the like. In Japan, in connection with the cadmium pollution along the Jintsugawa River region in Toyama Prefecture, a growth of botanical colony such as Athyrium ykoscense was confirmed having a high capacity in absorbing/accumulating heavy metals, with a possibility suggested that they may be utilized for phytoremediation. In a technological research for restoring the environment sustainingly in a wide area, feasibility has been proven to remove polluting agricultural chemicals in farmlands and toxic substance in old industrial sites by making forest trees like poplars, lawns and herbage function. In a project for the cleanup of oil contaminated soil after Gulf War, a demonstrative test of bioremediation for one hectare was performed and, after 15 month experiment, 80 to 90% of aliphatic compounds and 50 to 60% aromatic compounds were degraded. In EU Framework Program in Europe, phytoremediation projects have been implemented across the member countries. (NEDO)

  11. Method and apparatus for monitoring mercury emissions

    Science.gov (United States)

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  12. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    Directory of Open Access Journals (Sweden)

    Gonzalez-Ruiz Gloriene

    2011-08-01

    Full Text Available Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1 and polyphosphate kinase (ppk genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and

  13. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaoming; Lei, Mei, E-mail: leim@igsnrr.ac.cn; Chen, Tongbin

    2016-09-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm{sup 2} or US$37.7/m{sup 3}, with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. - Highlights: • A two-year phytoremediation project was introduced. • Costs and benefits of a phytoremediation project were calculated. • Costs of phytoremediation project can be offset by benefits in 7 years.

  14. Phytoremediative urban design: Transforming a derelict and polluted harbour area into a green and productive neighbourhood

    International Nuclear Information System (INIS)

    Wilschut, M.; Theuws, P.A.W.; Duchhart, I.

    2013-01-01

    Many urban areas are polluted by industrial activities and waste disposal in landfills. Since conventional soil remediation techniques are costly and unsustainable, phytoremediation might offer an alternative. In this article, we explore how phytoremediation can be integrated into the transformation of urban post-industrial areas, while improving public space. Buiksloterham, a polluted and deprived industrial area in Amsterdam, serves as case study. Buiksloterham is polluted with heavy metals, with Zinc (Zn) concentrations being the highest. A regression-model for Alpine Pennycress (Thlaspi caerulescens) is used to estimate the time needed to remediate the site. This reveals a conflict in time between remediation and urban development. A research by design experiment shows how to overcome this conflict by dealing with polluted soil innovatively while emphasizing spatial and aesthetic qualities of the phytoremediation plant species. The resulting landscape framework integrates phytoremediation with biomass production and gives new ecological, economic and social value to Buiksloterham. -- Highlights: ► Design can provide a link between the field of science and the field of practice. ► Design translates scientific knowledge into a specific aesthetic spatial composition. ► A landscape framework makes phytoremediation feasible in an urban context. ► Estimated time for phytoremediation conflicts with urban developments. ► Phytoremediation combined with biomass production is a feasible temporal land-use. -- A research by design method can translate scientific knowledge on phytoremediation into an aesthetic spatial composition for a specific site, thereby linking science and practice

  15. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil

    International Nuclear Information System (INIS)

    Wan, Xiaoming; Lei, Mei; Chen, Tongbin

    2016-01-01

    Heavy-metal pollution of soil is a serious issue worldwide, particularly in China. Soil remediation is one of the most difficult management issues for municipal and state agencies because of its high cost. A two-year phytoremediation project for soil contaminated with arsenic, cadmium, and lead was implemented to determine the essential parameters for soil remediation. Results showed highly efficient heavy metal removal. Costs and benefits of this project were calculated. The total cost of phytoremediation was US$75,375.2/hm"2 or US$37.7/m"3, with initial capital and operational costs accounting for 46.02% and 53.98%, respectively. The costs of infrastructures (i.e., roads, bridges, and culverts) and fertilizer were the highest, mainly because of slow economic development and serious contamination. The cost of phytoremediation was lower than the reported values of other remediation technologies. Improving the mechanization level of phytoremediation and accurately predicting or preventing unforeseen situations were suggested for further cost reduction. Considering the loss caused by environmental pollution, the benefits of phytoremediation will offset the project costs in less than seven years. - Highlights: • A two-year phytoremediation project was introduced. • Costs and benefits of a phytoremediation project were calculated. • Costs of phytoremediation project can be offset by benefits in 7 years.

  16. Potential of sunflower (helianthus annuus L.) for phytoremediation of nickle (Ni) and lead (Pb) contaminated water

    International Nuclear Information System (INIS)

    Mukhtar, S.M.; HAQ Bhatti, H.N.; Khalid, M.; Haq, M.A; Shahzad, S.M.

    2010-01-01

    Heavy metals are contaminants of much environmental apprehension, as they are hazardous to human being and other biota. Buildup of heavy metals in crop plants is of great concern due to the probability of food contamination through the soil-root interface. For this purpose, a hydroponic study was conducted to evaluate the efficacy of sunflower plant to phytoremediate Pb and Ni contaminated water in the absence and presence of synthetic chelator. Results showed that application of Ni and Pb reduced the dry weights of shoot and root (up to 55.1 and 38.3%; 50.5 and 33.6%), shoot and root length (up to 64.5 and 58.1%; 64.1 and 55.8%), chlorophyll content (up to 63.8 and 54.4%), and photosynthetic activity (up to 66.1 and 62.7%), respectively with EDTA as compared to control. While, maximum concentration of Ni and Pb in shoot and root (up to 18.43 and 20.73 mg kg/sup -1/; 12.82 and 18.67 mg kg/sup -1/), total accumulation (up to 55.82 and 72.28 mg kg/sup -1/), and proline content (up to 128.2 and 98.3%) were recorded in the presence of EDTA respectively as compared to control. Generally, it was observed that concentration and total accumulation of Pb was more than Ni in sunflower plant. The study concludes that the use of synthetic chelator increased the uptake and translocation of heavy metals in plant biomass that could enhance the phytoremediation of Ni and Pb from contaminated water. (author)

  17. Role of Streptomyces pactum in phytoremediation of trace elements by Brassica juncea in mine polluted soils.

    Science.gov (United States)

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Wang, Zhen; Muhammad, Dost; Li, Ronghua; Wang, Ping; Shen, Feng; Xue, Quanhong; Zhang, Zengqiang

    2017-10-01

    The industrial expansion, smelting, mining and agricultural practices have increased the release of toxic trace elements (TEs) in the environment and threaten living organisms. The microbe-assisted phytoremediation is environmentally safe and provide an effective approach to remediate TEs contaminated soils. A pot experiment was conducted to test the potential of an Actinomycete, subspecies Streptomyces pactum (Act12) along with medical stone compost (MSC) by growing Brassica juncea in smelter and mines polluted soils of Feng County (FC) and Tongguan (TG, China), respectively. Results showed that Zn (7, 28%), Pb (54, 21%), Cd (16, 17%) and Cu (8, 10%) uptake in shoot and root of Brassica juncea was pronounced in FC soil. Meanwhile, the Zn (40, 14%) and Pb (82, 15%) uptake in the shoot and root were also increased in TG soil. Shoot Cd uptake remained below detection, while Cu decreased by 52% in TG soil. The Cd and Cu root uptake were increased by 17% and 33%, respectively. Results showed that TEs uptake in shoot increased with increasing Act12 dose. Shoot/root dry biomass, chlorophyll and carotenoid content in Brassica juncea were significantly influenced by the application of Act12 in FC and TG soil. The antioxidant enzymatic activities (POD, PAL, PPO and CAT) in Brassica juncea implicated enhancement in the plant defense mechanism against the TEs induced stress in contaminated soils. The extraction potential of Brasssica was further evaluated by TF (translocation factor) and MEA (metal extraction amount). Based on our findings, further investigation of Act12 assisted phytoremediation of TEs in the smelter and mines polluted soil and hyperaccumulator species are suggested for future studies. Copyright © 2017. Published by Elsevier Inc.

  18. Selenium's importance in regulatory issues regarding mercury

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Laura J.; Ralston, Nicholas V.C. [University of North Dakota Energy and Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018 (United States)

    2009-11-15

    Current seafood safety and health risk assessment criteria use mercury concentrations as their sole basis. This unfortunate limitation omits consideration of selenium, an essential trace element that appears to be the primary molecular target of mercury toxicity. Although selenium has been recognized for decades as a means of counteracting mercury toxicity, its effects have often been overlooked or misunderstood. Experimental animal studies have demonstrated that increasing concentrations of selenium throughout the normal dietary range increasingly counteracts methylmercury toxicity. Dietary concentrations of selenium that are slightly less than the average amount present in ocean fish have been shown to completely prevent the onset of toxic symptoms of mercury toxicity, while animals fed lesser amounts of selenium rapidly sickened and died. Dietary selenium from a variety of sources including ocean fish such as tuna, swordfish, menhaden, and rockfish has been shown to counteract mercury toxicity. Since ocean fish are among the richest sources of dietary selenium, it is important to include selenium concentration measurements in future mercury risk assessments and seafood safety criteria. Mercury:selenium molar ratios in blood provide far more consistent and physiologically meaningful risk assessments. Comprehensive seafood safety criteria such as the Selenium Health Benefit Value enable clear differentiation between seafoods that are safe and those that are hazardous for human consumption. Use of parameters that integrate mercury-selenium relationships also make it easy to understand the differences between the findings of maternal mercury exposure studies that have been performed in New Zealand, the Faroes, the Seychelles, and the United Kingdom. Development of criteria for evaluating mercury-selenium interactions will enhance environmental protection and improve public safety. (author)

  19. Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species.

    Science.gov (United States)

    Wang, Beibei; Wang, Qingling; Liu, Wuxing; Liu, Xiaoyan; Hou, Jinyu; Teng, Ying; Luo, Yongming; Christie, Peter

    2017-09-01

    Phytoremediation together with microorganisms may confer the advantages of both phytoremediation and microbial remediation of soils containing organic contaminants. In this system biosurfactants produced by Pseudomonas sp. SB may effectively help to increase the bioavailability of organic pollutants and thereby enhance their microbial degradation in soil. Plants may enhance the rhizosphere environment for microorganisms and thus promote the bioremediation of contaminants. In the present pot experiment study, dichlorodiphenyltrichloroethane (DDT) residues underwent an apparent decline after soil bioremediation compared with the original soil. The removal efficiency of fertilizer + tall fescue, fertilizer + tall fescue + Pseudomonas, fertilizer + perennial ryegrass, and fertilizer + perennial ryegrass + Pseudomonas treatments were 59.4, 65.6, 69.0, and 65.9%, respectively, and were generally higher than that in the fertilizer control (40.3%). Principal coordinates analysis (PCoA) verifies that plant species greatly affected the soil bacterial community irrespective of inoculation with Pseudomonas sp. SB. Furthermore, community composition analysis shows that Proteobacteria, Acidobacteria and Actinobacteria were the three dominant phyla in all groups. In particular, the relative abundance of Pseudomonas for fertilizer + tall fescue + Pseudomonas (0.25%) was significantly greater than fertilizer + tall fescue and this was related to the DDT removal efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil.

    Science.gov (United States)

    Sun, Tian-Ran; Cang, Long; Wang, Quan-Ying; Zhou, Dong-Mei; Cheng, Jie-Min; Xu, Hui

    2010-04-15

    Phytoremediation is an emerging technology for the remediation of polycyclic aromatic hydrocarbons (PAHs). In this study, pot experiments were conducted to evaluate the efficacy of phytoremediation of phenanthrene and pyrene in a typical low organic matter soil (3.75 g kg(-1)), and the contribution proportions of abiotic losses, microbes, plant roots, and root exudates were ascertained during the PAHs dissipation. The results indicated that contribution of abiotic losses from this soil was high both for phenanthrene (83.4%) and pyrene (57.2%). The contributions of root-exudates-enhanced biodegradation of phenanthrene (15.5%) and pyrene (21.3%) were higher than those of indigenous microbial degradation. The role of root exudates on dissipation of phenanthrene and pyrene was evident in this experiment. By the way, with the increasing of ring numbers in PAHs structures, the root-exudates-enhanced degradation became more and more important. BIOLOG-ECO plate analysis indicated that microbial community structure of the soil receiving root exudates had changed. The removal efficiency and substrate utilization rate in the treatment with plant roots were lower than the treatment only with root exudates, which suggested that possible competition between roots and microbes for nutrients had occurred in a low organic matter soil. 2009. Published by Elsevier B.V.

  1. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water

    Science.gov (United States)

    Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A.; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2014-06-01

    Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms.Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels

  2. Co-exposure to radiation and methyl mercury during a critical phase of neonatal brain development in mice enhances developmental neuro-behavioral effects

    International Nuclear Information System (INIS)

    Sundell-Bergman, Synnoeve; Eriksson, Per; Fredriksson, Anders; Fischer, Celia; Stenerloew, Bo

    2008-01-01

    Full text: Organisms, including man, are continuously exposed to low doses of ionizing radiation as well as persistent and non persistent chemicals in the environment. Hence, in the process of developing numerical limits for environmental protection, there is a strong need to consider interactive effects between radiation and other environmental stressors. It is known that ionizing radiation, as well as methyl mercury, can give rise to neuro-toxicological and neuro behavioural effects in mammals and that developmental neurotoxic effects can be seen after exposure during gestation. However, there is a lack of knowledge concerning effects and consequences from low-dose exposure during critical phases of perinatal and/or neonatal brain development and the combination of ionizing radiation and environmental chemicals. Epidemiological studies of patients with haemangioma have indicated that radiation exposures to the brain during infancy might deteriorate cognitive ability in adulthood. Ten-day old neonatal NMRI male mice were exposed to a single oral dose of MeHg (0.40 or 4.0 mg/kg bw). Four hours after the MeHg exposure the mice were irradiated with 60 Co gamma radiation at doses of 0,2 and 0,5 Gy. The animals were subjected to a spontaneous behaviour test at the ages of 2- and 4-months, and the water maze test at the age of 5 months. Neither the single dose of MeHg (0.4 mg/kg bw) nor the radiation dose of 0.2 Gy affected the spontaneous behavior, but the co-exposure to radiation and MeHg caused developmental neurotoxic effects. These effects were manifested as disrupted spontaneous behavior, lack of habituation, and impaired learning and memory functions. Studies are continuing to verify the effects ant to elucidate possible underlying mechanisms. (author)

  3. Local Community Perceptions of Mine Site Restoration Using Phytoremediation in Abitibi-Temiscamingue (Quebec).

    Science.gov (United States)

    Vodouhe, Fifanou G; Khasa, Damase P

    2015-01-01

    This work explores factors supporting people perception about mine site restoration and phytoremediation. Phytoremediation is one of the most eco-friendly restoration strategy emerged since the last two decades but studies on local people perception on this restoration strategy are scarce. To fill in this gap, data were collected from mining stakeholders using a structured questionnaire administered through snowball sampling method. We used Multiple Correspondence Analysis as implemented in the software XLSTAT to visualize relationship between participants' characteristics, their view on mine site restoration and phytoremediation. Results clearly show out that people perception on mine site restoration is influenced by mining activities effects on health and region attractiveness. Phytoremediation (65.21%) was rated positively with regard to its environment potential, aesthetic and consideration for future generation followed by fillings and excavating. Restoration strategy costs have no effect on people choice and participants prefer use of shrubs as vegetation component of phytoremediation to reach their restoration objective.

  4. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach.

    Science.gov (United States)

    Chen, Yanshan; Xu, Wenzhong; Shen, Hongling; Yan, Huili; Xu, Wenxiu; He, Zhenyan; Ma, Mi

    2013-08-20

    Arsenic (As) pollution is a global problem, and the plant-based cleanup of contaminated soils, called phytoremediation, is therefore of great interest. Recently, transgenic approaches have been designed to develop As phytoremediation technologies. Here, we used a one-gene transgenic approach for As tolerance and accumulation in Arabidopsis thaliana . PvACR3, a key arsenite [As(III)] antiporter in the As hyperaccumulator fern Pteris vittata , was expressed in Arabidopsis , driven by the CaMV 35S promoter. In response to As treatment, PvACR3 transgenic plants showed greatly enhanced tolerance. PvACR3 transgenic seeds could even germinate and grow in the presence of 80 μM As(III) or 1200 μM arsenate [As(V)] treatments that were lethal to wild-type seeds. PvACR3 localizes to the plasma membrane in Arabidopsis and increases arsenite efflux into external medium in short-term experiments. Arsenic determination showed that PvACR3 substantially reduced As concentrations in roots and simultaneously increased shoot As under 150 μM As(V). When cultivated in As(V)-containing soil (10 ppm As), transgenic plants accumulated approximately 7.5-fold more As in above-ground tissues than wild-type plants. This study provides important insights into the behavior of PvACR3 and the physiology of As metabolism in plants. Our work also provides a simple and practical PvACR3 transgenic approach for engineering As-tolerant and -hyperaccumulating plants for phytoremediation.

  5. Jatropha curcas: A potential crop for phytoremediation of coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, S.; Abhilash, P.C.; Singh, N.; Sharma, P.N. [National Botany Research Institute, Lucknow (India)

    2009-12-15

    A greenhouse pot experiment was conducted to test the heavy metal phytoremediation capacity of Jatropha curcas from fly ash. Both natural accumulation by J. curcas and chemically enhanced phytoextraction was investigated. Plants were grown on FA and FA amended with fertile garden soil, in presence and absence of chemical chelating agent EDTA at 0.1 g kg{sup -1} and 0.3 g kg{sup -1} of soil. EDTA enhanced the uptake of all five elements (Fe, Al, Cr, Cu and Mn) tested. Fe and Mn were retained more in roots while Cu, Al and Cr were translocated more to the shoot. Metal accumulation index indicates that the effect of EDTA at 0.3 g kg{sup -1} was more pronounced than EDTA at 0.1 g kg{sup -1} in terms of metal accumulation. Biomass was enhanced up to 37% when FA was amended with GS. Heavy metal uptake was enhanced by 117% in root, 62% in stem, 86% in leaves when EDTA was applied at 0.3 g kg{sup -1} to FA amended with GS. Study suggest that J. curcas has potential of establishing itself on FA when provided with basic plant nutrients and can also accumulate heavy metals many folds from FA without attenuating plant growth.

  6. Mercury pollution in Malaysia.

    Science.gov (United States)

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  7. Cytochemical demonstration of mercury deposits in trout liver and kidney following methyl mercury intoxication: differentiation of two mercury pools by selenium

    DEFF Research Database (Denmark)

    Baatrup, E; Danscher, G

    1988-01-01

    and the selected organs were determined by measuring the uptake of 203Hg-labeled MeHg. Spleen, liver, and kidney had the highest concentrations after both experimental periods, while the largest relative increases were found in brain, muscle, and kidney. The subcellular distribution of mercury accumulations...... was demonstrated cytochemically in liver and kidney using the silver enhancement method by which accumulations of mercury-sulfides and/or mercury-selenides are made visible for light and electron microscopy. When sections prepared from the liver and kidney from fish, injected with selenium 2 hr prior to being...... pronounced in the kidney. The HgSe pool, supposed to represent methyl mercury, was shown by the presence of silver deposits at new locations as well as by an increase in the amount of deposits within lysosomes. The new locations included (1) secretory-like vesicles and the bile canaliculi of the liver...

  8. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    International Nuclear Information System (INIS)

    Frick, C. M.; Farrell, R. E.; Germida, J. J.

    1999-01-01

    Literature on examples of phytoremediation techniques used in the in-situ remediation of soils contaminated by petroleum hydrocarbons is reviewed. The review includes discussion of the key mechanisms involved in each case, benefits, limitations and costs compared to alternative approaches, including natural attenuation, engineering and bioremediation. Review of the literature led to the conclusion that phytoremediation is an effective method for degrading and containing petroleum hydrocarbons in soil, and confirmed the ability of plants to transfer volatile petroleum hydrocarbons, such as napthalene, from the soil to the atmosphere via transpiration. The primary loss mechanism for the degradation of petroleum hydrocarbons appears to be microorganisms in the rhizosphere of plants. The available information also suggests that plants may degrade petroleum hydrocarbons directly, although the indirect role played by plants is far more common. These roles include supplying root exudates for microbial use, releasing root-associated enzymes that degrade contaminants in the soil, and altering soil to promote phytoremediation. BTEX compounds are most easily amenable to phytoremediation; large and lipophilic compounds such as four or five-ring polyaromatic hydrocarbons are more difficult to remediate. The limited information available suggests that phytoremediation is slightly less expensive than bioremediation, and several order of magnitude less than engineering techniques. In general, phytoremediation is faster than natural attenuation, but typically slower than engineering and bioremediation. On the other hand, it is less disruptive to the site than ex-situ engineering and bioremediation that involve excavation efforts. Phytoremediation is most effective with shallow contamination. Preliminary screenings indicate that there are several plant species, native and introduced, that may be used with some success for phytoremediation in the Prairie and Boreal Plains ecozones

  9. Mercury Quick Facts: Health Effects of Mercury Exposure

    Science.gov (United States)

    ... 2012 What are the Health Effects of Mercury Exposure? The health effects that can be caused by breathing mercury depend ... they breathe faster and have smaller lungs. Health effects caused by long-term exposure to mercury vapors • • Anxiety • • Excessive shyness • • Anorexia • • Sleeping ...

  10. Marine biogeochemistry of mercury

    International Nuclear Information System (INIS)

    Gill, G.A.

    1986-01-01

    Noncontaminating sample collection and handling procedures and accurate and sensitive analysis methods were developed to measure sub-picomolar Hg concentrations in seawater. Reliable and diagnostic oceanographic Hg distributions were obtained, permitting major processes governing the marine biogeochemistry of Hg to be identified. Mercury concentrations in the northwest Atlantic, central Pacific, southeast Pacific, and Tasman Sea ranged from 0.5 to 12 pM. Vertical Hg distributions often exhibited a maximum within or near the main thermocline. At similar depths, Hg concentrations in the northwest Atlantic Ocean were elevated compared to the N. Pacific Ocean. This pattern appears to result from a combination of enhanced supply of Hg to the northwest Atlantic by rainfall and scavenging removal along deep water circulation pathways. These observations are supported by geochemical steady-state box modelling which predicts a relatively short mean residence time for Hg in the oceans; demonstrating the reactive nature of Hg in seawater and precluding significant involvement in nutrient-type recyclic. Evidence for the rapid removal of Hg from seawater was obtained at two locations. Surface seawater Hg measurements along 160 0 W (20 0 N to 20 0 S) showed a depression in the equatorial upwelling area which correlated well with the transect region exhibiting low 234 Th/ 238 U activity ratios. This relationship implies that Hg will be scavenged and removed from surface seawater in biologically productive oceanic zones. Further, a broad minimum in the vertical distribution of Hg was observed to coincide with the intense oxygen minimum zone in the water column in coastal waters off Peru

  11. Mercury pOIsonIng

    African Journals Online (AJOL)

    A case of mercury poisoning is reported and clinical observations of 6 .... fish ingested and occupational exposure. .... exposed to mercury as a result of inadequate industrial safety standards, and ... WHO Tech Rep Ser 1980; No. 674: 102-115.

  12. Mercury Study Report to Congress

    Science.gov (United States)

    EPA's Report to Congress on Mercury provides an assessment of the magnitude of U.S. mercury emissions by source, the health and environmental implications of those emissions, and the availability and cost of control technologies.

  13. True Polar Wander of Mercury

    Science.gov (United States)

    Keane, J. T.; Matsuyama, I.

    2018-05-01

    We use new MESSENGER gravity data to investigate how impact basins and volcanic provinces alter Mercury's moments of inertia. We find that Mercury has reoriented tens of degrees over its history, affecting tectonics, volatiles, and more.

  14. Mercury Emissions: The Global Context

    Science.gov (United States)

    Mercury emissions are a global problem that knows no national or continental boundaries. Mercury that is emitted to the air can travel thousands of miles in the atmosphere before it is eventually deposited back to the earth.

  15. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  16. Impacts of acid gases on mercury oxidation across SCR catalyst

    International Nuclear Information System (INIS)

    Zhuang, Ye; Laumb, Jason; Liggett, Richard; Holmes, Mike; Pavlish, John

    2007-01-01

    A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO 2 , and SO 3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O 2 , CO 2 , H 2 O, NO, NO 2 , and NH 3 , and N 2 . HCl, SO 2 , and SO 3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5-50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO 2 and SO 3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO 2 and SO 3 , by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO 2 (2000 ppm), and SO 3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst. (author)

  17. MERCURY IN MARINE LIFE DATABASE

    Science.gov (United States)

    The purpose of the Mercury in Marine Life Project is to organize information on estuarine and marine species so that EPA can better understand both the extent of monitoring for mercury and level of mercury contamination in the biota of coastal environments. This report follows a ...

  18. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  19. Influence of Plant Growth Regulators and Humic Substance on the Phytoremediation of Nickel in a Ni-Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mahshid Shafigh

    2017-06-01

    Full Text Available Introduction: Plants can uptake, bioaccumulate and immobilize different metals in their tissues. Phytoremediation technique has been used to remove hazardous substances including heavy metals from the environment. Assisted phytoremediation is usually the process of applying a chemical additive to heavy metal contaminated soils to enhance the metal uptake by plants. The main objective of present study was to investigate the effectiveness of plant growth regulators (PGRs and a humic substance (HS on Ni phytoremediation by maize in a Ni-pollutrd calcareous soil. Materials and Methods: The experiment designed as a 5×3 factorial trial arranged in a completely randomized design with three replicates. Three kilograms of soil was placed in plastic pots and pots were watered with distilled water to field capacity and maintained at this moisture level throughout the experiment by watering the pots to a constant weight. The soils were polluted with 250 mg Ni Kg-1 as Ni-nitrate Ni (NO32. Six maize (Zea mays L. seeds were planted 2 cm deep in soil and thinned to three uniform stands 1 week after emergence. Treatments consisted of three levels of soil application of commercially humic substance, HS, (0, 3, and 6 mg kg as Humax 95-WSG containing about 80% humic acid, and about 15% fulvic acid and five levels of PGRs (0 or 10 µM GA3, IAA, BAP and SA. The HS was applied as split doses in three times at 15 day intervals along with irrigation water. The seedlings were exposed to aqueous solutions of HS 16 days after sowing for the first time. Prepared solutions of PGRs were sprayed three times at 15 day intervals from emergence. Seven weeks after planting, shoots were harvested and roots were separated from soil carefully, both parts were rinsed with distilled water and dried at 65°C for 72 h, weighed, ground, and dry meshed at 550°C. Root and shoot dry matter and Ni concentration and uptake and phytoremediation criteria were considered as plant responses

  20. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site.

    Science.gov (United States)

    Jeong, Seulki; Moon, Hee Sun; Nam, Kyoungphile

    2015-03-01

    Ecological risk due to the hyperaccumulation of As in Pteris cretica during phytoremediation was evaluated at an abandoned As-contaminated site. Five receptor groups representing terrestrial invertebrates, avian insectivores, small mammals, herbivores, and omnivores were selected as potentially affected ecological receptors. Soil and food ingestion were considered as major exposure pathways. Phytoremediation was performed with P.cretica only and with both P.cretica and siderophores to enhance plant uptake of As. Ecological hazard index (EHI) values for the small mammal greatly exceeded 1.0 even after three weeks of growth regardless of siderophore application, probably due to its limited home range. For the mammalian herbivore, which mainly consumes plant foliage, the EHI values were greater than 5.73 after seven weeks without siderophore application, but the value increased sharply to 29.3 at seven weeks when siderophores were applied. This increased risk could be attributed to the facilitated translocation of As from roots to stems and leaves in P.cretica. Our results suggest that, when a phytoremediation strategy is considered for metals remediation, its ecological consequences should be taken into account to prevent the spread of hyperaccumulated heavy metals throughout the food chain of ecological receptors. Uncertainties involved in the ecological risk assessment process were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Phytoremediation Opportunities with Alimurgic Species in Metal-Contaminated Environments

    Directory of Open Access Journals (Sweden)

    Marianna Bandiera

    2016-04-01

    Full Text Available Alimurgic species are edible wild plants growing spontaneously as invasive weeds in natural grassland and farmed fields. Growing interest in biodiversity conservation projects suggests deeper study of the multifunctional roles they can play in metal uptake for phytoremediation and their food safety when cultivated in polluted land. In this study, the responses of the tap-rooted perennial species Cichorium intybus L., Sonchus oleracerus L., Taraxacum officinale Web., Tragopogon porrifolius L. and Rumex acetosa L. were studied in artificially-highly Cd-Co-Cu-Pb-Zn-contaminated soil in a pot-scale trial, and those of T. officinale and R. acetosa in critical open environments (i.e., landfill, ditch sediments, and sides of highly-trafficked roads. Germination was not inhibited, and all species showed appreciable growth, despite considerable increases in tissue metal rates. Substantial growth impairments were observed in C. intybus, T. officinale and T. porrifolius; R. acetosa and S. oleracerus were only marginally affected. Zn was generally well translocated and reached a high leaf concentration, especially in T. officinale (~600 mg·kg−1·dry weight, DW, a result which can be exploited for phytoremediation purposes. The elevated Cd translocation also suggested applications to phytoextraction, particularly with C. intybus, in which leaf Cd reached ~16 mg·kg−1·DW. The generally high root retention of Pb and Cu may allow their phytostabilisation in the medium-term in no-tillage systems, together with significant reductions in metal leaching compared with bare soil. In open systems, critical soil Pb and Zn were associated with heavily trafficked roadsides, although this was only seldom reflected in shoot metal accumulation. It is concluded that a community of alimurgic species can serve to establish an efficient, long-lasting vegetation cover applied for phytoremediation and reduction of soil metal movements in degraded environments. However

  2. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  3. Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant

    OpenAIRE

    Nasser Sewalem; Soad Elfeky; Fatma El- Shintinawy

    2014-01-01

    Phytremediation has emerged as a practical approach to clean up metal-polluted soils. In this study the role of sunflower ( Helianthus annuus L.) plants as a potential phytoremediator to soils contaminated with cadmium (Cd) and lead (Pb) was investigated. Our results showed that the effect of Cd was stronger on the growth of the roots, while the effect of Pb was stronger on the shoots of sunflower seedlings. At the physiological level, Cd treatment was found to induce low levels of lipid pero...

  4. Water displacement mercury pump

    Science.gov (United States)

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  5. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II)

    Science.gov (United States)

    Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu

    2018-01-01

    The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.

  6. Subcutaneous mercury injection by a child: A histopathology case report

    Directory of Open Access Journals (Sweden)

    Deepti Sukheeja

    2014-01-01

    Full Text Available Intentional subcutaneous injection of mercury by mentally healthy children is rare. Usually, it is seen as a part of suicidal attempt in severely depressed patients or by athletes to enhance their performance. We report a case of a 15-year-old child, inspired by a movie, who deliberately self-injected mercury subcutaneously into his forearm that led to the formation of a non-healing ulcer. Histopathology of the biopsy confirmed the diagnosis. A surgical procedure was thereby performed to treat the ulcer and reduce the blood and urinary levels of mercury. However, the patient did not develop clinical signs of chronic poisoning, proving that subcutaneous mercury injection has a low risk of systemic toxicity, and that histopathology plays an important role in diagnosis.

  7. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.

    Science.gov (United States)

    Chigbo, Chibuike

    2015-06-01

    This study compared the phytoremediation potential of Zea mays in soil either aged or freshly amended with chromium (Cr) and benzo[a]pyrene (B[a]P). Z. mays showed increased shoot biomass in aged soils than in freshly spiked soils. The shoot biomass in contaminated soils increased by over 50% in aged soil when compared to freshly amended soils, and over 29% more Cr was accumulated in the shoot of Z. mays in aged soil than in freshly amended soil. Planting Z. mays in aged soil helped in the dissipation of more than 31% B[a]P than in freshly spiked soil, but in the absence of plants, there seemed to be no difference between the dissipation rates of B[a]P in freshly and aged co-contaminated soil. Z. mays seemed to enhance the simultaneous removal of Cr and B[a]P in aged soil than in freshly spiked soil and hence can be a good plant choice for phytoremediation of co-contaminated soils.

  8. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Rentz, Jeremy A [Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States); Alvarez, Pedro J.J. [Civil and Environmental Engineering, Rice University, Houston, TX 77251 (United States); Schnoor, Jerald L [Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States)

    2005-08-15

    Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of {sup 14}C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% {sup 14}CO{sub 2} when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02. - Bacterial benzo[a]pyrene cometabolism, a plant-microbe interaction affecting polycyclic aromatic hydrocarbon phytoremediation was demonstrated with Sphingomonas yanoikuyae JAR02 that utilized plant root extracts and exudates as primary substrates.

  9. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation

    International Nuclear Information System (INIS)

    Rentz, Jeremy A.; Alvarez, Pedro J.J.; Schnoor, Jerald L.

    2005-01-01

    Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of 14 C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% 14 CO 2 when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02. - Bacterial benzo[a]pyrene cometabolism, a plant-microbe interaction affecting polycyclic aromatic hydrocarbon phytoremediation was demonstrated with Sphingomonas yanoikuyae JAR02 that utilized plant root extracts and exudates as primary substrates

  10. Mercury exposure in Ireland

    DEFF Research Database (Denmark)

    Cullen, Elizabeth; Evans, David S; Davidson, Fred

    2014-01-01

    of a study to Coordinate and Perform Human Biomonitoring on a European Scale (DEMOCOPHES) pilot biomonitoring study. METHODS: Hair mercury concentrations were determined from a convenience sample of 120 mother/child pairs. Mothers also completed a questionnaire. Rigorous quality assurance within DEMOCOPHES...... guaranteed the accuracy and international comparability of results. RESULTS: Mercury was detected in 79.2% of the samples from mothers, and 62.5% of children's samples. Arithmetic mean levels in mothers (0.262 µg/g hair) and children (0.149 µg /g hair) did not exceed the US EPA guidance value. Levels were...

  11. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  12. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  13. Comparison of the Mercury and earth magnetospheres - electron measurements and substorm time scales

    International Nuclear Information System (INIS)

    Christon, S.P.

    1987-01-01

    The present search for similarities between earth and Mercury plasma electron distribution and large-scale dynamics notes that both spectral shapes are similar to a kappa-distribution. A model distribution of this type which incorporates convective flow is used to simulate the observed plasma electron spectral variations near the Mariner 10-Mercury 1 A event; convection appears to be stronger before, rather than during, the A event, in contradiction to the Baker (1986) convective injection model for Mercury's two relativistic electron flux enhancements. Mercury's postmidnight energetic electron B and B-prime events seem to be multiple onsets in the course of a substorm. 65 references

  14. Method and apparatus for sampling atmospheric mercury

    Science.gov (United States)

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  15. Hg L3 XANES Study of Mercury Methylation in Shredded Eichhornia Crassipes

    International Nuclear Information System (INIS)

    Rajan, M.; Darrow, J.; Hua, M.; Barnett, B.; Mendoza, M.; Greenfield, B.K.; Andrews, J.C.

    2008-01-01

    Eichhornia crassipes (water hyacinth) is a non-native plant found in abundance in the Sacramento-San Joaquin River Delta (hereafter called Delta). This species has become a problem, clogging waterways and wetlands. Water hyacinth are also known to accumulate mercury. Recent attempts to curb its proliferation have included shredding with specialized boats. The purpose of this research is to better understand the ability of water hyacinth to phytoremediate mercury and to determine the effect of shredding and anoxic conditions on mercury speciation in plant tissue. In the field assessment, total mercury levels in sediment from the Dow Wetlands in the Delta were found to be 0.273 ± 0.070 ppm Hg, and levels in hyacinth roots and shoots from this site were 1.17 ± 0.08 ppm and 1.03 ± 0.52 ppm, respectively, indicating bioaccumulation of mercury. Plant samples collected at this site were also grown in nutrient solution with 1 ppm HgCl 2 under (1) aerobic conditions, (2) anaerobic conditions, and (3) with shredded plant material only. The greatest accumulation was found in the roots of whole plants. Plants grown in these conditions were also analyzed at Stanford Synchrotron Radiation Laboratory using Hg L 3 X-ray Absorption Near Edge Spectroscopy (XANES), a method to examine speciation that is element-specific and noninvasive. Least-squares fitting of the XANES data to methylated and inorganic mercury(II) model compounds revealed that in plants grown live and aerobically, 5 ± 3% of the mercury was in the form of methylmercury, in a form similar to methylmercury cysteine. This percentage increased to 16 ± 4% in live plants grown anaerobically and to 22 ± 6% in shredded anaerobic plants. We conclude that shredding of the hyacinth plants and, in fact, subjection of plants to anaerobic conditions (e.g., as in normal decay, or in crowded growth conditions) increases mercury methylation. Mechanical removal of the entire plant is significantly more expensive than shredding

  16. Phyto-remediation of contaminated soils

    International Nuclear Information System (INIS)

    Chagvardieff, P.

    2014-01-01

    Some plants can be selected for their capacity to extract radionuclides from the soil, on the contrary other plants can be chosen for being able to produce food grade products in a contaminated environment. Modern genetic methods can be used to enhance these abilities and turn some plants into an efficient means in the managing of contaminated areas. The DEMETERRES project that gathers different research organisations like CEA, IRSN and INRA and industrial partners like AREVA and VEOLIA aims at developing innovative bio-technologies like phyto-extraction and environment friendly physico-chemical technologies for the remediation of contaminated soils. This project was launched in 2013 on a 5-year scheme and is expected to lead to industrial applications. (A.C.)

  17. Phytoremediation mechanisms for polycyclic aromatic hydrocarbons removing from contaminated soils

    Directory of Open Access Journals (Sweden)

    Alagić Slađana Č.

    2015-01-01

    Full Text Available Phytoremediation of polycyclic aromatic hydrocarbons (PAHs from soil aims to degrade them into less toxic/non toxic compounds and limit their further movement by sequestration and accumulation into the vacuoles. Lipophilic organic compounds such as PAHs are bound strongly to the epidermis of the root tissue and are rarely translocated within plant. There are no reports in the literature data of PAHs being completely mineralized by plants. There is little evidence to suggest that PAHs accumulate to significant degree in plants, but there still is a lot of evidences on the ability of various plant species (most often grasses and legumes, to degrade and dissipate these dangerous contaminants. The primary mechanism controlling the dissipation of PAHs is rhizosphere microbial degradation where microbes use PAHs molecules as carbon substrates for growth, which in final, leads to the breakdown or total mineralization of the contaminants. The process is usually augmented by the excretion of root exudates (e.g., sugars, alcohols, acids, enzymes, and the build-up of organic carbon in the soil, so the proper selection of particular plant species represents a critical management decision for PAHs phytoremediation. These facts favor the rhyzoremediation as the best solution for sites contaminated with PAHs.

  18. Phytoremediation of cadmium and nickel by Spirodela polyrhiza

    International Nuclear Information System (INIS)

    Chaudhuri, Devaleena; Goswami, Chandrima; Chatterjee, Sumon; Majumder, Arunabha; Mishra, A.K.; Bandyopadhyay, Kaushik

    2011-01-01

    Heavy metal pollution in surface and groundwater has considerably increased in the last few years. It is essential to have an effective removal mechanism of these toxic metals. Current research includes the need to develop environment friendly and cost effective technologies for removing heavy metals from water. In several studies cadmium and nickel have been considerably removed using phytoremediation. The removal efficiency of cadmium and nickel by Spirodela polyrhiza, common duckweed has been examined in the present study for 3 different concentrations of cadmium (1, 2 and 3 mg/L) and nickel (4, 5 and 6 mg/L). Two sets of experiments for cadmium and nickel were conducted separately. Effect of metal toxicity on Spirodela polyrhiza was evaluated in terms of relative growth factor and cadmium was found to be more toxic than nickel. Under experimental condition BCF value for cadmium removal was more than >1000 in all the 3 concentrations of cadmium. But the BCF value was found to be more than > 1000 only when input nickel concentration was 4 mg/L during phytoremediation process. Experimental results suggest that Spirodela polyrhiza has the potential of accumulating cadmium and nickel from aqueous solution at lower metal concentration. (author)

  19. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  20. Phytoremediation of radiocesium in different soils using cultivated plants

    International Nuclear Information System (INIS)

    Suzuki, Yasukazu; Saito, Takashi; Tsukada, Hirofumi

    2012-01-01

    A huge amount of radionuclides were released into the environment after the Fukushima Daiichi nuclear power plant accident. Radiocesium, which is one of the more prevalent radionuclides, was deposited in the soil. It is well known that radiocesium is adsorbed into the soil and binds strongly to clay. As a result, it is difficult to reduce the contamination level in the soil. We examine the possibility of decontamination by means of phytoremediation. Four species of plants (sunflower, sorghum, amaranth, and buckwheat) were sown in light-colored Andosol and gray lowland soil. When the plants matured, they were harvested and separated into their different parts, i.e., flower, leaf, stem, and root. The removal percentage of 137 Cs for the aboveground parts, which is defined as the ratio of the total content of 137 Cs in the aboveground biomass of plants to that in the cultivated soil of 0-15 cm depth, was 0.013-0.93% for the light-colored Andosol and 0.0072-0.038% for the gray lowland soil. The plants exhibiting the highest value cultivated in the light-colored Andosol and gray lowland soil were amaranth (0.093%) and sunflower (0.038%), respectively. This indicates that it is difficult to remove radiocesium from contaminated soil by means of phytoremediation. (author)

  1. Phytoremediation of radiocesium in different soils using cultivated plants

    International Nuclear Information System (INIS)

    Suzuki, Yasukazu; Saito, Takashi; Tsukada, Hirofumi

    2013-01-01

    A huge amount of radionuclides were released into the environment after the Fukushima Daiichi nuclear power plant accident. Radiocesium, which is one of the more prevalent radionuclides, was deposited in the soil. It is well known that radiocesium is adsorbed into the soil and binds strongly to clay. As a result, it is difficult to reduce the contamination level in the soil. We examine the possibility of decontamination by means of phytoremediation. Four species of plants (sunflower, sorghum, amaranth, and buckwheat) were sown in light-colored Andosol and gray lowland soil. When the plants matured, they were harvested and separated into their different parts, i.e., flower, leaf, stem, and root. The removal percentage of "1"3"7Cs for the aboveground parts, which is defined as the ratio of the total content of "1"3"7Cs in the aboveground biomass of plants to that in the cultivated soil of 0-15 cm depth, was 0.013- 0.93% for the light-colored Andosol and 0.0072-0.038% for the gray lowland soil. The plants exhibiting the highest value cultivated in the light-colored Andosol and gray lowland soil were amaranth (0.093%) and sunflower (0.038%), respectively. This indicates that it is difficult to remove radiocesium from contaminated soil by means of phytoremediation. (author)

  2. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens)

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Li, Song; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Peng, Danli; Yan, Wenbo; Liu, Dan

    2015-09-01

    Moso bamboo is recognized as phytoremediation plant due to production of huge biomass and high tolerance in stressed environment. Hydroponics and pot experiments were conducted to investigate mechanism of copper tolerance and to evaluate copper accumulation capacity of Moso bamboo. In hydroponics experiment there was non significant variation in MDA contents of leaves compared with control. SOD and POD initially indicated enhancing trend with application of 5 μM Cu and then decreased consistently with application of 25 and 100 μM Cu. Application of each additional increment of copper have constantly enhanced proline contents while maximum increase of proline was observed with application of 100 μM copper. In pot experiment chlorophyll and biomass initially showed increasing tendency and decreased gradually with application of each additional increment of Cu. Normal growth of Moso bamboo was observed with application of 100 mg kg-1 copper. However, additional application of 300 or 600 mg kg-1 copper had significantly inhibited growth of Moso bamboo. The concentration of Cu in Moso bamboo has attained the levels of 340, 60, 23 mg kg-1 in roots, stems and leaves respectively. The vacuoles were the main organs which accumulated copper and reduced toxicity of copper as studied by TEM-DEX technology.

  3. Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils.

    Science.gov (United States)

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The integrated potential of oilcake manure (OM), elemental sulphur (S(0)), Glomus fasciculatum and Pseudomonas putida by growing Helianthus annuus L for phytoremediation of cadmium and zinc contaminated soils was investigated under pot experiment. The integrated treatment (2.5 g kg(-1) OM, 0.8 g kg(-1) S(0) and co-inoculation with G. fasciculatum and P. putida promoted the dry biomass of the plant. The treatment was feasible for enhanced cadmium accumulation up to 6.56 and 5.25 mg kg(-1) and zinc accumulation up to 45.46 and 32.56 mg kg(-1) in root and shoot, respectively, which caused maximum remediation efficiency (0.73 percent and 0.25 percent) and bioaccumulation factor (2.39 and 0.83) for Cd and Zn, respectively showing feasible uptake (in mg kg(-1) dry biomass) of Cd (5.55) and Zn (35.51) at the contaminated site. Thus, authors conclude to integrate oilcake manure, S(0) and microbial co-inoculation for enhanced clean-up of cadmium and zinc-contaminated soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Mercury Information Clearinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  5. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  6. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  7. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    Science.gov (United States)

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  8. A Selective Surface-Enhanced Raman Scattering Sensor for Mercury(II) Based on a Porous Polymer Material and the Target-Mediated Displacement of a T-Rich Strand

    Science.gov (United States)

    Kang, Y.; Zhang, L.; Zhang, H.; Wu, T.; Du, Y.

    2017-05-01

    A sensitive and selective surface-enhanced Raman scattering (SERS) sensor for mercury(II) was fabricated based on the target-mediated displacement of a T-rich oligonucleotide strand. A DNA/aptamer duplex was prepared by the hybridization between a tetramethylrhodamine(TMR)-labeled thymine(T)-rich Hg2+-specific aptamer (denoted as TMR-aptamer) and a thiolated adenine-rich capturing DNA. The duplex can be immobilized onto the SERS substrate of the Ag-moiety modified glycidyl methacrylate-ethylene dimethacrylate (denoted as Ag-GMA-EDMA) via self-assembly by the thiol anchor, in which the TMR-aptamer exists in a double-stranded chain. In this case, the label of the TMR moiety approaches the substrate surface and produces a strong SERS signal. Upon the addition of the target, a pair of TMR-aptamers could cooperatively coordinate with Hg2+ to form a stable duplex-like structure mediated by the T-Hg2+-T complex between two adjacent strands, which triggers the release of the TMR-aptamer from the SERS substrate surface, thus drawing the TMR tags away from the substrate with a significant decrease in the SERS signal. This optical sensor shows a sensitive response to Hg2+ in a concentration from 5 nM to 2.0 μM with a detection limit of 2.5 nM. The prepared sensor is negligibly responsive to other metal ions, can be easily regenerated, and shows good performance in real sample analysis.

  9. Mercury Exposure and Heart Diseases

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  10. Mercury Exposure and Heart Diseases.

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  11. Mercury Exposure and Heart Diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Genchi

    2017-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  12. Intercropping with white lupin (Lupinus albus L.); a promising tool for phytoremediation and phytomining research

    Science.gov (United States)

    Wiche, Oliver; Székely, Balazs; Moschner, Christin; Heilmeier, Hermann

    2015-04-01

    In recent studies root-soil interactions of white lupine (Lupinus albus L.) have drawn special attention to researchers due to its particularly high potential to increase bioavailability of phosphorous (P) and trace nutrients in soils. In mixed cultures, white lupine has the ability to mobilize P and trace nutrients in soil in excess of its own need and make this excess available for other intercropped companion species. While improved acquisition of P and improved yield parameters have mostly been documented in cereal-lupine intercrops, compared to sole crops, only a few recent studies have evidenced similar effects for trace elements e.g. Fe, Zn and Mn. In this preliminary study we tried to obtain more information about the mobilization of trace elements due to intercropping under field conditions. We hypothesize, that processes that lead to a better acquisition of trace nutrients might also affect other trace elements what could be useful for phytoremediation and phytomining research. Here we report the results of a semi-field experiment were we investigated the effects of an intercropping of white lupine with oat (Avena sativa L.) on the concentrations of trace metals in shoots of oat. We investigated the effects on 12 trace elements, including 4 elements with relevance for plant nutrition (P, Fe, Mn, Zn) and 8 trace elements, belonging to the group of metalloids, lanthanides and actinides with high relevance in phytoremediation (Cd, Pb Th, U) and phytomining research (Sc, La, Nd, Ge). The experiment was carried out on a semi-field lysimer at the off-site soil recycling and remediation center in Hirschfeld (Saxony, Germany). To test the intercropping-dependent mobilization of trace metals in soil and enhanced uptake of elements by oat, white lupine and oat were cultivated on 20 plots (4 m² each) in monocultures and mixed cultures and two different white lupin /oat-ratios (11% and 33%, respectively) applying various treatments. The geometrical arrangement of

  13. MERCURY USAGE AND ALTERNATIVES IN THE ELECTRICAL AND ELECTRONICS INDUSTRIES

    Science.gov (United States)

    Many industries have already found alternatives for mercury or have greatly decreased mercury use. However, the unique electromechanical and photoelectric properties of mercury and mercury compounds have made replacement of mercury difficult in some applications. This study was i...

  14. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.

    Science.gov (United States)

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L; Colegrove, Dominique P; Hueber, Jacques; Moore, Christopher W; Sonke, Jeroen E; Helmig, Detlev

    2017-07-12

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  15. Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    Science.gov (United States)

    The purpose of this issue paper is to provide a concise discussion of the processes associated with the use of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is ...

  16. Betula pendula: A Promising Candidate for Phytoremediation of TCE in Northern Climates.

    Science.gov (United States)

    Lewis, Jeffrey; Qvarfort, Ulf; Sjöström, Jan

    2015-01-01

    Betula pendula (Silver birch) trees growing on two contaminated sites were evaluated to assess their capacity to phytoscreen and phytoremediate chlorinated aliphatic compounds and heavy metals. Both locations are industrially-contaminated properties in central Sweden. The first was the site of a trichloroethylene (TCE) spill in the 1980s while the second was polluted with heavy metals by burning industrial wastes. In both cases, sap and sapwood from Silver birch trees were collected and analyzed for either chlorinated aliphatic compounds or heavy metals. These results were compared to analyses of the surface soil, vadose zone pore air and groundwater. Silver birch demonstrated the potential to phytoscreen and possibly phytoremediate TCE and related compounds, but it did not demonstrate the ability to effectively phytoextract heavy metals when compared with hyperaccumulator plants. The capacity of Silver birch to phytoremediate TCE appears comparable to tree species that have been employed in field-scale TCE phytoremediation efforts, such as Populus spp. and Eucalyptus sideroxylon rosea.

  17. Phytoremediative urban design: transforming a derelict and polluted harbour area into a green and productive neighbourhood.

    Science.gov (United States)

    Wilschut, M; Theuws, P A W; Duchhart, I

    2013-12-01

    Many urban areas are polluted by industrial activities and waste disposal in landfills. Since conventional soil remediation techniques are costly and unsustainable, phytoremediation might offer an alternative. In this article, we explore how phytoremediation can be integrated into the transformation of urban post-industrial areas, while improving public space. Buiksloterham, a polluted and deprived industrial area in Amsterdam, serves as case study. Buiksloterham is polluted with heavy metals, with Zinc (Zn) concentrations being the highest. A regression-model for Alpine Pennycress (Thlaspi caerulescens) is used to estimate the time needed to remediate the site. This reveals a conflict in time between remediation and urban development. A research by design experiment shows how to overcome this conflict by dealing with polluted soil innovatively while emphasizing spatial and aesthetic qualities of the phytoremediation plant species. The resulting landscape framework integrates phytoremediation with biomass production and gives new ecological, economic and social value to Buiksloterham. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. β-ray track imaging application in phytoremediation of radionuclide-contaminated soil

    International Nuclear Information System (INIS)

    Wan Junsheng; Xiao Yan; Pan Xiaobing; Tang Xiuhuan; Yang Yongqing; Wang Beisong; Zhao Xiangfeng; Li Hua; Miao Zhengqiang; Yang Jun

    2008-01-01

    The phytoremediation was widely studied in the field of treating technology of soil contamination with long-lived nuclides. Studies on the β-ray track imaging application in phytoremediation of radionuclide-contaminated soil were carried out in the present work. Experiments showed that this technology might be used for screening plants for phytoremediation and for the studies of phytoremediation mechanism, such as radioactivity concentration and distribution in plant organs. The influence of α- and γ-rays on the β-ray track imaging was studied. Theoretical studies showed that the influence of α-rays might be heavily reduced with proper thickness of PE-film. The image sensor was not so sensitive to γ-rays as β-rays, and the influence of surrounding γ-rays could be heavily reduced with a proper thickness of Pb-shielding

  19. PHYTOREMEDIATION OF PERCHLORATE AND N-NITROSODIMETHYLAMINE AS SINGLE AND CO-CONTAMINANTS

    Science.gov (United States)

    Although potential plant species suitable for phytoremediation of perchlorate and the phytoprocesses involved (rhizodegradation and phytodegradation) have been identified in previous research, regulators and some critics argue that plants recycle the perchlorate fract...

  20. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    Science.gov (United States)

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  1. Recovery of mercury from acid waste residues

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  2. Health Effects of Exposures to Mercury

    Science.gov (United States)

    ... IRIS database Top of Page Elemental (Metallic) Mercury Effects Exposures to metallic mercury most often occur when metallic ... poor performance on tests of mental function Higher exposures may also cause kidney effects, respiratory failure and death. Note that metallic mercury ...

  3. Mercury Poisoning Linked to Skin Products

    Science.gov (United States)

    ... Products For Consumers Home For Consumers Consumer Updates Mercury Poisoning Linked to Skin Products Share Tweet Linkedin ... and, in some situations, criminal prosecution. Dangers of Mercury Exposure to mercury can have serious health consequences. ...

  4. [Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique].

    Science.gov (United States)

    Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua

    2011-02-01

    A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.

  5. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    OpenAIRE

    Zhu, Yong-Guan; Rosen, Barry P

    2009-01-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loa...

  6. Comparative assessment for hyperaccumulatory and phytoremediation capability of three wild weeds

    OpenAIRE

    Girdhar, Madhuri; Sharma, Neeta Raj; Rehman, Hasibur; Kumar, Anupam; Mohan, Anand

    2014-01-01

    The composition and the organization of soil are changing rapidly by the diverged mankind activities, leading to the contamination of environment. Several methods are employed to clean up the environment from these kinds of contaminants, but most of them are costly and ineffective to yield optimum results. Phytoremediation is a natural green technology, which is eco-friendly for the removal of toxic metals from the polluted environment. Phytoremediation is a cost-effective technique through w...

  7. Treatment of petroleum drill cuttings using bioaugmentation and biostimulation supplemented with phytoremediation.

    Science.gov (United States)

    Kogbara, Reginald B; Ogar, Innocent; Okparanma, Reuben N; Ayotamuno, Josiah M

    2016-07-28

    This study sought to compare the effectiveness of bioaugmentation and biostimulation, as well as the combination of both techniques, supplemented with phytoremediation, in the decontamination of petroleum drill cuttings. Drill cuttings with relatively low concentration of total petroleum hydrocarbons (TPH) and metals were mixed with soil in the ratio 5:1 and treated with three different combinations of the bioremediation options. Option A entailed bioaugmentation supplemented with phytoremediation. Option B had the combination of biostimulation and bioaugmentation supplemented with phytoremediation. While biostimulation supplemented with phytoremediation was deployed in option C. Option O containing the drill cuttings-soil mixture without treatment served as untreated control. Fertilizer application, tillage and watering were used for biostimulation treatment, while spent mushroom substrate (Pleurotus ostreatus) and elephant grass (Pennisetum purpureum) were employed for bioaugmentation and phytoremediation treatment, respectively. The drill cuttings-soil mixtures were monitored for TPH, organic carbon, total nitrogen, pH, metal concentrations, and fungal counts, over time. After 56 days of treatment, there was a decline in the initial TPH concentration of 4,114 mg kg(-1) by 5.5%, 68.3%, 75.6% and 48% in options O, A, B and C, respectively. Generally, higher TPH loss resulted from the phytoremediation treatment stage. The treated options also showed slight reductions in metal concentrations ranging from 0% to 16% of the initial low concentrations. The results highlight the effectiveness of bioaugmentation supplemented with phytoremediation. The combination of bioaugmentation and biostimulation supplemented with phytoremediation, however, may prove better in decontaminating petroleum drill cuttings to environmentally benign levels.

  8. IN VITRO PHYTOREMEDIATION OF PERSISTENT ORGANIC POLLUTANTS BY Helianthus annuus L. PLANTS

    OpenAIRE

    Almeida, Marcos V. de; Rissato, Sandra R.; Galhiane, Mário S.; Fernandes, João R.; Lodi, Paulo C.; Campos, Marcelo C. de

    2018-01-01

    Plant model systems are needed to properly conduct basic laboratory studies prior to field applications of phytoremediation. In vitro plant cultures are a useful tool for such research. This study focuses on the removal and/or degradation of 24 persistent organic pollutants under in vitro conditions by Helianthus annuus L (sunflower). The main purpose of exploiting this plant for phytoremediation process is due to its strong adaptability to adverse environments conditions such as resistance t...

  9. Mediational influence of spent mushroom compost on phytoremediation of black-oil hydrocarbon polluted soil and response of Megathyrsus maximus Jacq.

    Science.gov (United States)

    Asemoloye, Michael Dare; Jonathan, Segun Gbolagade; Jayeola, Adeniyi A; Ahmad, Rafiq

    2017-09-15

    Ability of a plant to develop different adaptive strategies can also determine its capability for effective soil remediation. In this study, influence of spent mushroom compost (SMC) was tested on the phytoremediation of black oil hydrocarbon polluted soil and the response of Megathyrsus maximus (guinea grass). Studies were carried out in microcosm conditions by mixing different concentration of SMC viz., 10, 20, 30 and 40% in a 5 kg of contaminated soil along with control. Seeds of M. maximus was sown in tray for two weeks and allowed to grow for height of 10 cm and transplanted in to the different experimental pots. Soil nutrient, heavy metal and PAH contents were analyzed before and after the experiment. Ecophysiological and anatomical responses due to the contaminants in the soil by M. Maximus were analyzed after 120 days. Phytomass efficiency, potential photosynthesis (Amax) and contents of chlorophylls (a and b) as well as the total chlorophyll along with anatomical evaluations were recorded. Plant alone (control) reduced the soil heavy metal and PAH contents but further improvements were observed in SMC treatments, similar results were also observed as regards to the plant's phytoremediation efficiency (PE), phytomass and potential photosynthetic rates (m mol O 2  M -2 S -1 ). The plant's root and shoot anatomical responses were enhanced in treatments compared to control, study infers that the treatment enhances the biostimulation and development of adaptive characteristics for M. maximus survival in contaminated soils and promotes its co-degradation of hydrocarbon. SMC supports remediation and as well enhances the anatomical evaluations, we therefore recommend the use of SMC on response of Megathyrsus maximus Jacq for remediation of petrochemical based phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Citric acid- and Tween(®) 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential.

    Science.gov (United States)

    Agnello, A C; Huguenot, D; van Hullebusch, E D; Esposito, G

    2016-05-01

    A pot experiment was designed to assess the phytoremediation potential of alfalfa (Medicago sativa L.) in a co-contaminated (i.e., heavy metals and petroleum hydrocarbons) soil and the influence of citric acid and Tween(®) 80 (polyethylene glycol sorbitan monooleate), applied individually and combined together, for their possible use in chemically assisted phytoremediation. The results showed that alfalfa plants could tolerate and grow in a co-contaminated soil. Over a 90-day experimental time, shoot and root biomass increased and negligible plant mortality occurred. Heavy metals were uptaken by alfalfa to a limited extent, mostly by plant roots, and their concentration in plant tissues were in the following order: Zn > Cu > Pb. Microbial population (alkane-degrading microorganisms) and activity (lipase enzyme) were enhanced in the presence of alfalfa with rhizosphere effects of 9.1 and 1.5, respectively, after 90 days. Soil amendments did not significantly enhance plant metal concentration or total uptake. In contrast, the combination of citric acid and Tween(®) 80 significantly improved alkane-degrading microorganisms (2.4-fold increase) and lipase activity (5.3-fold increase) in the rhizosphere of amended plants, after 30 days of experiment. This evidence supports a favorable response of alfalfa in terms of tolerance to a co-contaminated soil and improvement of rhizosphere microbial number and activity, additionally enhanced by the joint application of citric acid and Tween(®) 80, which could be promising for future phytoremediation applications.

  11. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  12. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Cozzolino, V; De Martino, A; Nebbioso, A; Di Meo, V; Salluzzo, A; Piccolo, A

    2016-06-01

    In a greenhouse pot experiment, lettuce plants (Lactuca sativa L.) were grown in a Hg-contaminated sandy soil with and without inoculation with arbuscular mycorrhizal fungi (AMF) (a commercial inoculum containing infective propagules of Rhizophagus irregularis and Funneliformis mosseae) amended with different rates of a humic acid (0, 1, and 2 g kg(-1) of soil), with the objective of verifying the synergistic effects of the two soil treatments on the Hg tolerance of lettuce plants. Our results indicated that the plant biomass was significantly increased by the combined effect of AMF and humic acid treatments. Addition of humic matter to soil boosted the AMF effect on improving the nutritional plant status, enhancing the pigment content in plant leaves, and inhibiting both Hg uptake and Hg translocation from the roots to the shoots. This was attributed not only to the Hg immobilization by stable complexes with HA and with extraradical mycorrhizal mycelium in soil and root surfaces but also to an improved mineral nutrition promoted by AMF. This work indicates that the combined use of AMF and humic acids may become a useful practice in Hg-contaminated soils to reduce Hg toxicity to crops.

  13. Phytoremediation of Composition-B Derived TNT and RDX in Herbaceous Plant-vegetated and Bare Lysimeters

    Science.gov (United States)

    2009-12-01

    ER D C TR -0 9- 10 Strategic Environmental Research and Development Program Phytoremediation of Composition-B Derived TNT and RDX in...Program ERDC TR-09-10 December 2009 Phytoremediation of Composition-B Derived TNT and RDX in Herbaceous Plant-vegetated and Bare Lysimeters Elly P. H...for U.S. Army Corps of Engineers Washington, DC 20314-1000 ERDC TR-09-10 ii Abstract: This report describes a study in which phytoremediation of

  14. Long-term Effects of Nutrient Addition and Phytoremediation on Diesel and Crude Oil Contaminated Soils in subarctic Alaska

    OpenAIRE

    Leewis, Mary-Cathrine; Reynolds, Charles M.; Leigh, Mary Beth

    2013-01-01

    Phytoremediation is a potentially inexpensive method of detoxifying contaminated soils using plants and associated soil microorganisms. The remote locations and cold climate of Alaska provide unique challenges associated with phytoremediation such as finding effective plant species that can achieve successful site clean-up despite the extreme environmental conditions and with minimal site management. A long-term assessment of phytoremediation was performed which capitalized on a study establi...

  15. Interior Volatile Reservoirs in Mercury

    Science.gov (United States)

    Anzures, B. A.; Parman, S. W.; Milliken, R. E.; Head, J. W.

    2018-05-01

    More measurements of 1) surface volatiles, and 2) pyroclastic deposits paired with experimental volatile analyses in silicate minerals can constrain conditions of melting and subsequent eruption on Mercury.

  16. Mercury in Canadian crude oil

    International Nuclear Information System (INIS)

    Hollebone, B.P.

    2005-01-01

    Estimates for average mercury concentrations in crude oil range widely from 10 ng/g of oil to 3,500 ng/g of oil. With such a broad range of estimates, it is difficult to determine the contributions of the petroleum sector to the total budget of mercury emissions. In response to concerns that the combustion of petroleum products may be a major source of air-borne mercury pollution, Environment Canada and the Canadian Petroleum Products Institute has undertaken a survey of the average total mercury concentration in crude oil processed in Canadian refineries. In order to calculate the potential upper limit of total mercury in all refined products, samples of more than 30 different types of crude oil collected from refineries were measured for their concentration of mercury as it enters into a refinery before processing. High temperature combustion, cold vapour atomic absorption and cold vapour atomic fluorescence were the techniques used to quantify mercury in the samples. The results of the study provide information on the total mass of mercury present in crude oil processed in Canada each year. Results can be used to determine the impact of vehicle exhaust emissions to the overall Canadian mercury emission budget. 17 refs., 2 tabs., 2 figs

  17. Mercury in bryophytes (moss)

    Energy Technology Data Exchange (ETDEWEB)

    Yeaple, D S

    1972-01-28

    Recent reports in the literature, concerning the ability of certain mosses and lichens to concentrate heavy metals, have led to an investigation of the potential application of mosses as indicators of the transport of mercury through the atmosphere. A number of moss samples were collected to provide information regarding the level of mercury in moss around several types of populated areas. The results reported are from moss collected within an 80 mile radius of Boston, Massachusetts, along the Maine coast, near the tops of Mount Katahdin in Maine and Mount Washington in New Hampshire, and from Walden, New York, a small town located about 60 miles north of New York City. The data are admittedly limited, but provide sufficient insight into the usefulness of moss as an indicator to warrant the pursuit of a more detailed investigation. 6 references, 1 table.

  18. Integrated criteria document mercury

    International Nuclear Information System (INIS)

    Sloof, W.; Beelan, P. van; Annema, J.A.; Janus, J.A.

    1995-01-01

    The document contains a systematic review and a critical evaluation of the most relevant data on the priority substance mercury for the purpose of effect-oriented environmental policy. Chapter headings are: properties and existing standards; production, application, sources and emissions (natural sources, industry, energy, households, agriculture, dental use, waste); distribution and transformation (cinnabar; Hg 2+ , Hg 2 2+ , elemental mercury, methylmercury, behavior in soil, water, air, biota); concentrations and fluxes in the environment and exposure levels (sampling and measuring methods, occurrence in soil, water, air etc.); effects (toxicity to humans and aquatic and terrestrial systems); emissions reduction (from industrial sources, energy, waste processing etc.); and evaluation (risks, standards, emission reduction objectives, measuring strategies). 395 refs

  19. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum.

    Science.gov (United States)

    Khoudi, Habib; Maatar, Yafa; Brini, Faïçal; Fourati, Amine; Ammar, Najoua; Masmoudi, Khaled

    2013-01-01

    Phosphogypsum (PG) is a by-product of the phosphorus-fertiliser industry and represents an environmental concern since it contains pollutants such as cadmium (Cd). We have recently shown that the overexpression of a proton pump gene (TaVP1) in transgenic tobacco (Nicotiana tabacum) led to an enhanced Cd tolerance and accumulation. The aim of this study was to evaluate the potential of transgenic Arabidopsis thaliana plants harbouring the TaVP1 gene to phytoremediate phosphogypsum. A pot experiment was carried out under greenhouse conditions. Transgenic A. thaliana plants harbouring the TaVP1 gene were grown on various substrates containing phosphogypsum (0, 25, 50 and 100 %) for 40 days. At the end of the growth period, we examined the growth (germination, root length, fresh weight) and physiological parameters (chlorophyll and protein contents, catalase activity and proteolysis) as well as the cadmium, Mg, Ca, and P contents of the A. thaliana plants. In order to evaluate Cd tolerance of the A. thaliana lines harbouring the TaVP1 gene, an in vitro experiment was also carried out. One week-old seedlings were transferred to Murashige and Skoog agar plates containing various concentrations of cadmium; the germination, total leaf area and root length were determined. The growth and physiological parameters of all A. thaliana plants were significantly altered by PG. The germination capacity, root growth and biomass production of wild-type (WT) plants were more severely inhibited by PG compared with the TaVP1 transgenic A. thaliana lines. In addition, TaVP1 transgenic A. thaliana plants maintained a higher antioxidant capacity than the WT. Interestingly, elemental analysis of leaf material derived from plants grown on PG revealed that the transgenic A. thaliana line accumulated up to ten times more Cd than WT. Despite its higher Cd content, the transgenic A. thaliana line performed better than the WT counterpart. In vitro evaluation of Cd tolerance showed that TaVP1

  20. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    Energy Technology Data Exchange (ETDEWEB)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury

  1. Hydrocarbon phytoremediation in the family Fabaceae--a review.

    Science.gov (United States)

    Hall, Jessica; Soole, Kathleen; Bentham, Richard

    2011-04-01

    Currently, studies often focus on the use of Poaceae species (grasses) for phytoremediation of hydrocarbon-contaminated soils. Research into the use of Fabaceae species (legumes) to remediate hydrocarbons in soils has been conducted, but these plants are commonly overlooked due to slower recorded rates of degradation compared with many grass species. Evidence in the literature suggests that in some cases Fabaceae species may increase total degradation of hydrocarbons and stimulate degradative capacity of the soil microbial community, particularly for contaminants which are normally more recalcitrant to degradation. As many recalcitrant hydrocarbons have negative impacts on human and ecosystem health, development of remediation options is crucial. Reconsideration of Fabaceae species for removal of such contaminants may lead to environmentally and economically sustainable technologies for remediation of contaminated sites.

  2. Phytoremediation of industrial mines wastewater using water hyacinth.

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-02

    The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved.

  3. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants.

  4. Factors affecting heavy metal uptake in plant selection for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A.; Mathe-Gaspar, G. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The heavy metal uptake of ten plant species was studied under different soil and climatic conditions. Effects of soil pH, temperature, plant species and phenophase on the heavy metal content of stems and leaves were determined in pot experiments. Plants and soil samples were collected from a lead/zinc mine ore (Gyoengyoesoroszi, Hungary) and characterised by high contents of Pb, Zn, As, Cd, Cu. The possibility of an adapted phytoremediation technology was indicated by different bioconcentration factors (BCF). The BCF depended markedly (10- to 100-fold) on plant species and environmental conditions. Based on our results a ''season-adapted'' phytoextraction technology with different plant species (utilising their different temperature requirements and/or harvest time) is suggested. (orig.)

  5. Removing environmental organic pollutants with bioremediation and phytoremediation.

    Science.gov (United States)

    Kang, Jun Won

    2014-06-01

    Hazardous organic pollutants represent a threat to human, animal, and environmental health. If left unmanaged, these pollutants could cause concern. Many researchers have stepped up efforts to find more sustainable and cost-effective alternatives to using hazardous chemicals and treatments to remove existing harmful pollutants. Environmental biotechnology, such as bioremediation and phytoremediation, is a promising field that utilizes natural resources including microbes and plants to eliminate toxic organic contaminants. This technology offers an attractive alternative to other conventional remediation processes because of its relatively low cost and environmentally-friendly method. This review discusses current biological technologies for the removal of organic contaminants, including chlorinated hydrocarbons, focusing on their limitation and recent efforts to correct the drawbacks.

  6. Phytoremediation of industrial mines wastewater using water hyacinth

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-01

    ABSTRACT The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved. PMID:27551860

  7. Use of Brassica Plants in the Phytoremediation and Biofumigation Processes

    Science.gov (United States)

    Szczygłowska, Marzena; Piekarska, Anna; Konieczka, Piotr; Namieśnik, Jacek

    2011-01-01

    In recent decades, serious contamination of soils by heavy metals has been reported. It is therefore a matter of urgency to develop a new and efficient technology for removing contaminants from soil. Another aspect to this problem is that environmental pollution decreases the biological quality of soil, which is why pesticides and fertilizers are being used in ever-larger quantities. The environmentally friendly solutions to these problems are phytoremediation, which is a technology that cleanses the soil of heavy metals, and biofumigation, a process that helps to protect crops using natural plant compounds. So far, these methods have only been used separately; however, research on a technology that combines them both using white cabbage has been carried out. PMID:22174630

  8. Method for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  9. Apparatus for mercury refinement

    Science.gov (United States)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  10. The planet Mercury (1971)

    Science.gov (United States)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  11. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  12. Method for scavenging mercury

    Science.gov (United States)

    Chang, Shih-ger [El Cerrito, CA; Liu, Shou-heng [Kaohsiung, TW; Liu, Zhao-rong [Beijing, CN; Yan, Naiqiang [Berkeley, CA

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  13. Apparatus for mercury refinement

    International Nuclear Information System (INIS)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the 196 Hg isotope is often contaminated with particulate mercurous chloride, Hg 2 Cl 2 . The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg 2 Cl 2 contaminant. The present invention is particularly directed to such filtering. 5 figures

  14. Method for mercury refinement

    International Nuclear Information System (INIS)

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the 196 Hg isotope is often contaminated with particulate mercurous chloride, Hg 2 Cl 2 . The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg 2 Cl 2 contaminant. The present invention is particularly directed to such filtering. 5 figures

  15. Phytoremediation potential of some halophytic species for soil salinity.

    Science.gov (United States)

    Devi, S; Nandwal, A S; Angrish, R; Arya, S S; Kumar, N; Sharma, S K

    2016-01-01

    Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm(-1) of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60-75 DAS). About 95 percent seed germination occurred up to 12 dSm(-1) and thereafter declined slightly. Mean plant height and dry weight plant(-1) were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant(-1) respectively upon salinization. Na(+)/K(+) ratio (0.87 to 2.72), Na(+)/ Ca(2+) + Mg(2+) (0.48 to 1.54) and Cl(-)/SO4(2-) (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm(-1) and 1.85 to 7.12% at 20 dSm(-1) of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant(-1)), Atriplex lentiformis (777.87 mg plant(-1)) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant(-1)) and Parkinsonia aculeata (310.59 mg plant(-1)) were the least hyperaccumulator plants.

  16. Use of Zea mays L. in phytoremediation of trichloroethylene.

    Science.gov (United States)

    Moccia, Emanuele; Intiso, Adriano; Cicatelli, Angela; Proto, Antonio; Guarino, Francesco; Iannece, Patrizia; Castiglione, Stefano; Rossi, Federico

    2017-04-01

    Trichloroethylene (TCE) is a chlorinated aliphatic organic compound often detected as pollutant in soils and ground water. "Green technologies" based on phytoremediation were proven to be effective to reclaim organic pollutants (e.g. TCE) and heavy metals from different environmental matrices. In this work, we use Zea mays L. for the removal of high TCE concentrations from medium cultures. In particular, we investigated a sealed bioreactor where the growth medium was contaminated with an increasing amount of TCE, in the range 55-280 mg/L; the removal capability of the maize plants was assessed by means of GC-MS and LC-MS analyses. An accurate mass balance of the system revealed that the plants were able to remove and metabolise TCE with an efficiency up to 20 %, depending on the total amount of TCE delivered in the bioreactor. Morphometric data showed that the growth of Z. mays is not significantly affected by the presence of the pollutant up to a concentration of 280 mg/L, while plants show significant alterations at higher TCE concentrations until the growth is completely inhibited for [TCE] ≃ 2000 mg/L. Finally, the presence of several TCE metabolites, including dichloroacetic and trichloroacetic acids, was detected in the roots and in the aerial part of the plants, revealing that Z. mays follows the green liver metabolic model. These results encourage further studies for the employment of this plant species in phytoremediation processes of soils and waters contaminated by TCE and, potentially, by many other chlorinated solvents.

  17. Phytoremediation of contaminated soils and groundwater: lessons from the field

    Energy Technology Data Exchange (ETDEWEB)

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  18. Scavenging of gaseous mercury by acidic snow at Kuujjuarapik, Northern Quebec

    International Nuclear Information System (INIS)

    Lahoutifard, Nazafarin; Poissant, Laurier; Scott, Susannah L.

    2006-01-01

    One fate of gaseous elemental mercury (GEM) in the Arctic has been identified as gas phase oxidation by halogen-containing radicals, leading to abrupt atmospheric mercury depletion concurrent with ozone depletion. Rapid deposition of oxidized mercury leads to snow enrichment in mercury. In this report, we describe experiments that demonstrate the ability of snow to directly scavenge atmospheric mercury. The study was conducted at Kuujjuarapik, Quebec, Canada (latitude 55 o 17'N). A mercury depletion event (MDE) caused the mercury concentration in the surface snow of the coastal snowpack to double, from (9.4 ± 2.0) to (19.2 ± 1.7) ng/L. Independent of the MDE, mercury concentrations increased five-fold, from (10.0 ± 0.1) to (51.4 ± 6.0) ng/L, upon spiking the snow with 500 μM hydrogen peroxide under solar irradiation. Total organic carbon in the spiked irradiated snow samples also decreased, consistent with the formation of strongly oxidizing species. The role of the snowpack in releasing GEM to the atmosphere has been reported; these findings suggest that snow may also play a role in enhancing deposition of mercury

  19. Mercury's Densely Cratered Surface

    Science.gov (United States)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.Image Credit: NASA/JPL/Northwestern University

  20. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  1. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    Energy Technology Data Exchange (ETDEWEB)

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  2. Phyto-remediation of soils infested with radionuclides and heavy metals

    International Nuclear Information System (INIS)

    Argint, Mirela

    2003-01-01

    Environmental pollution can be defined as the direct or indirect impairment of the environment suitability for supporting life due to harmful concentration of materials, whether or not toxic materials. Thus, a very high concentration of a nutrient might be polluting, whereas a deadly poison in great dilution is not. Earlier in this century, wastes could be discharged into the environment with relative impurity. Two factors have changed this. One is the population growth. The other factor is the rapid advance of technology which has enhanced the production of toxic pollutants. Unlike biological wastes, the wastes resulting from mining, processing of raw materials and manufacturing are often highly toxic. Heavy metals like Pb, Cd, As, Zn, Cr, Cu and radionuclides may damage especially the soils in the experimental military area. Passive bioaccumulation is based on bioabsorption and biostopping. Phyto-remediation is based on the capacity of some plants to absorb radionuclides and heavy metals from the soil. This process may be active or passive and now it may be done with genetic engineering help. Phytoextraction consists in using plants to absorb toxic metals from soils collecting parts in radices, leaves, flowers and fruits. Radices filtration is based on radices property, which grows in well-aired water from precipitations and concentrates toxic metal by phytovolatilisation. Phytovolatilisation is based on extraction of heavy metals from soil by plants and evaporation at the level of leaves. (author)

  3. Arsenic-contaminated soils. Genetically modified Pseudomonas spp. and their arsenic-phytoremediation potential

    Energy Technology Data Exchange (ETDEWEB)

    Sizova, O.I.; Kochetkov, V.V.; Validov, S.Z.; Boronin, A.M. [Inst. of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow (Russian Federation); Kosterin, P.V.; Lyubun, Y.V. [Inst. of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation)

    2002-07-01

    Sorghum was inoculated with Pseudomonas bacteria, including strains harboring an As-resistance plasmid, pBS3031, to enhance As-extraction by the plants. Pseudomonas strains (P. fluorescens 38a, P. putida 53a, and P. aureofaciens BS1393) were chosen because they are antagonistic to a wide range of phytopathogenic fungi and bacteria, and they can stimulate plant growth. The resistance of natural rhizospheric pseudomonads to sodium arsenite was assessed. Genetically modified Pseudomonas strains resistant to As(III)/As(V) were obtained via conjugation or transformation. The effects of the strains on the growth of sorghum on sodium-arsenite-containing soils were assessed. The conclusions from this study are: (1) It is possible to increase the survivability of sorghum growing in sodium-arsenite-containing soil by using rhizosphere pseudomonads. (2) The presence of pBS3031 offers the strains a certain selective advantage in arsenite-contaminated soil. (3) The presence of pBS3031 impairs plant growth, due to the As-resistance mechanism determined by this plasmid: the transformation of the less toxic arsenate into the more toxic, plant-root-available arsenite by arsenate reductase and the active removal of arsenite from bacterial cells. (4) Such a mechanism makes it possible to develop a bacteria-assisted phytoremediation technology for the cleanup of As-contaminated soils and is the only possible way of removing the soil-sorbed arsenates from the environment. (orig.)

  4. Influence of biochar and compost on phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Saum, Lindsey; Jiménez, Macario Bacilio; Crowley, David

    2018-01-02

    The use of pyrolyzed carbon, biochar, as a soil amendment is of potential interest for improving phytoremediation of soil that has been contaminated by petroleum hydrocarbons. To examine this question, the research reported here compared the effects of biochar, plants (mesquite tree seedlings), compost and combinations of these treatments on the rate of biodegradation of oil in a contaminated soil and the population size of oil-degrading bacteria. The presence of mesquite plants significantly enhanced oil degradation in all treatments except when biochar was used as the sole amendment without compost. The greatest extent of oil degradation was achieved in soil planted with mesquite and amended with compost (44% of the light hydrocarbon fraction). Most probable number assays showed that biochar generally reduced the population size of the oil-degrading community. The results of this study suggest that biochar addition to petroleum-contaminated soils does not improve the rate of bioremediation. In contrast, the use of plants and compost additions to soil are confirmed as important bioremediation technologies.

  5. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    Science.gov (United States)

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.

  6. Bioavailability of mercury in contaminated Oak Ridge watershed and potential remediation of river/runoff/storm water by an aquatic plant - 16319

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang X.; Chen, Jian; Xia, Yunju; Monts, David L.

    2009-01-01

    Historically as part of its national security mission, the U.S. Department of Energy's Y-12 National Security Facility in Oak Ridge, TN, USA acquired a significant fraction of the world's supply of elemental mercury. During the 1950's and 1960's, a large amount of elemental mercury escaped confinement and is still present in the buildings and grounds of the Y-12 Facility and in the Y-12 Watershed. Because of the adverse effects of elemental mercury and mercury compounds upon human health, the Oak Ridge Site is engaged in an on-going effort to monitor and remediate the area. The main thrust of the Oak Ridge mercury remediation effort is currently scheduled for implementation in FY09. In order to more cost effectively implement those extensive remediation efforts, it is necessary now to obtain an improved understanding of the role that mercury and mercury compounds play in the Oak Ridge ecosystem. Most recently, concentrations of both total mercury and methylmercury in fish and water of lower East Fork Poplar Creek (LEFPC) of Oak Ridge increased although the majority of mercury in the site is mercury sulfide. This drives the US DOE and the Oak Ridge Site to study the long-term bioavailability of mercury and speciation at the site. The stability and bioavailability of mercury sulfide as affected by various biogeochemical conditions -presence of iron oxides have been studied. We examined the kinetic rate of dissolution of cinnabar from Oak Ridge soils and possible mechanisms and pathways in triggering the most recent increase of mercury solubility, bioavailability and mobility in Oak Ridge site. The effects of pH and chlorine on oxidative dissolution of cinnabar from cinnabar-contaminated Oak Ridge soils is discussed. On the other hand, aquatic plants might be good candidate for phyto-remediate contaminated waste water and phyto-filtration of collective storm water and surface runoff and river. Our greenhouse studies on uptake of Hg by water lettuce (Pistia stratiotes

  7. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.

    Science.gov (United States)

    Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol

    2018-03-01

    Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2  at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. First In-Situ Observations of Exospheric Response to CME Impact at Mercury

    Science.gov (United States)

    Raines, J. M.; Wallace, K. L.; Sarantos, M.; Jasinksi, J. M.; Tracy, P. J.; Dewey, R. M.; Weberg, M. J.; Slavin, J. A.

    2018-05-01

    We present the first in-situ observations of enhancements to Mercury's He exosphere generated by CME impact. These results have implications for understanding exosphere generation and loss processes, as well space weathering of the planet's surface.

  9. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation.

    Science.gov (United States)

    Afegbua, Seniyat Larai; Batty, Lesley Claire

    2018-04-27

    Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.

  10. The phyto-remediation of radioactively contaminated land - a feasible approach or just bananas?

    International Nuclear Information System (INIS)

    Nesbitt, Victoria A

    2013-01-01

    Soil is an essential component of all terrestrial ecosystems and is under increasing threat from human activity. Techniques available for removing radioactive contamination from soil and aquatic substrates are limited and often costly to implement; particularly over large areas. Frequently, bulk soil removal, with its attendant consequences, is a significant component of the majority of contamination incidents. Alternative techniques capable of removing contamination or exposure pathways without damaging or removing the soil are therefore of significant interest. An increasing number of old nuclear facilities are entering 'care and maintenance', with significant ground contamination issues. Phyto-remediation - the use of plants' natural metabolic processes to remediate contaminated sites is one possible solution. Its key mechanisms include phyto-extraction and phyto-stabilisation. These are analogues of existing remedial techniques. Further, phyto-remediation can improve soil quality and stability and restore functionality. Information on the application of phyto-remediation in the nuclear industry is widely distributed over an extended period of time and sources. It is therefore difficult to quickly and effectively identify which plants would be most suitable for phyto-remediation on a site by site basis. In response, a phyto-remediation tool has been developed to address this issue. Existing research and case studies were reviewed to understand the mechanisms of phyto-remediation, its effectiveness and the benefits and limitations of implementation. The potential for cost recovery from a phyto-remediation system is also briefly considered. An overview of this information is provided here. From this data, a set of matrices was developed to guide potential users through the plant selection process. The matrices take the user through a preliminary screening process to determine whether the contamination present at their site is amenable to phyto-remediation

  11. Structural changes in response to bioaccumulation of iron and mercury in Chromolaena odorata (L.) King & Robins.

    Science.gov (United States)

    Swapna, K S; Salim, Nabeesa; Chandra, Ratheesh; Puthur, Jos T

    2015-09-01

    A comparative study was designed to elucidate the effect of iron and mercury on the morphological and anatomical changes as well as bioaccumulation potential in Chromolaena odorata. Plants were grown in half-strength Hoagland nutrient medium artificially contaminated with known quantities of HgCl2 (15 μM) and FeCl3 (1000 μM). Bioaccumulation of Hg and Fe was maximum in the root, and comparatively reduced bioaccumulation was recorded in the stem and leaves. Microscopic studies on morphology and anatomy revealed development of trichomes and lenticels on the stem and modified trichomes on leaves. Localized deposits of stained masses in various internal parts of the root, stem and leaf also were observed. Differential adaptation/strategy of C. odorata to attain tolerance towards Hg and Fe and phytoremediation potential of the plant is discussed.

  12. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  13. Rotation of the planet mercury.

    Science.gov (United States)

    Jefferys, W H

    1966-04-08

    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.

  14. Mercury: Exploration of a Planet

    Science.gov (United States)

    1976-01-01

    The flight of the Mariner 10 spacecraft to Venus and Mercury is detailed in animation and photography. Views of Mercury are featured. Also included is animation on the origin of the solar system. Dr. Bruce C. Murray, director of the Jet Propulsion Laboratory, comments on the mission.

  15. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Science.gov (United States)

    2010-10-01

    ... ounces) of mercury per package; (iv) Tubes which are completely jacketed in sealed leakproof metal cases... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For...

  16. Methyl mercury in terrestrial compartments

    International Nuclear Information System (INIS)

    Stoeppler, M.; Burow, M.; Padberg, S.; May, K.

    1993-09-01

    On the basis of the analytical methodology available at present the state of the art for the determination of total mercury and of various organometallic compounds of mercury in air, precipitation, limnic systems, soils, plants and biota is reviewed. This is followed by the presentation and discussion of examples for the data obtained hitherto for trace and ultratrace levels of total mercury and mainly methyl mercury in terrestrial and limnic environments as well as in biota. The data discussed stem predominantly from the past decade in which, due to significant methodological progress, many new aspects were elucidated. They include the most important results in this area achieved by the Research Centre (KFA) Juelich within the project 'Origin and Fate of Methyl Mercury' (contracts EV4V-0138-D and STEP-CT90-0057) supported by the Commission of the European Communities, Brussels. (orig.) [de

  17. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    OpenAIRE

    Park, Jung-Duck; Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability o...

  18. Methods for dispensing mercury into devices

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  19. Determination of mercury in plant material

    Energy Technology Data Exchange (ETDEWEB)

    Pickard, J A; Martin, J T

    1960-07-01

    An analytical procedure used for the determination of traces of mercury in plant material is described. The conditions of combustion of organic matter are controlled to avoid loss of mercury and EDTA is used to reduce the values for apparent mercury on uncontaminated samples. Satisfactory recoveries of mercury added to apples, tomatoes and coffee are obtained. 10 references, 1 table.

  20. Mercury's Lithospheric Magnetization

    Science.gov (United States)

    Johnson, C.; Phillips, R. J.; Philpott, L. C.; Al Asad, M.; Plattner, A.; Mast, S.; Kinczyk, M. J.; Prockter, L. M.

    2017-12-01

    Magnetic field data obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have been used to demonstrate the presence of lithospheric magnetization on Mercury. Larger amplitude fields resulting from the core dynamo and the strongly time-varying magnetospheric current systems are first estimated and subtracted from the magnetic field data to isolate lithospheric signals with wavelengths less than 500 km. These signals (hereafter referred to as data) are only observed at spacecraft altitudes less than 120 km, and are typically a few to 10 nT in amplitude. We present and compare equivalent source dipole magnetization models for latitudes 35°N to 75°N obtained from two distinct approaches to constrain the distribution and origin of lithospheric magnetization. First, models that fit either the data or the surface field predicted from a regional spherical harmonic representation of the data (see Plattner & Johnson abstract) and that minimize the root mean square (RMS) value of the magnetization are derived. Second, models in which the spatial distribution of magnetization required to fit the data is minimized are derived using the approach of Parker (1991). As seen previously, the largest amplitudes of lithospheric magnetization are concentrated around the Caloris basin. With this exception, across the northern hemisphere there are no overall correlations of magnetization with surface geology, although higher magnetizations are found in regions with darker surfaces. Similarly, there is no systematic correlation of magnetization signatures with crater materials, although there are specific instances of craters with interiors or ejecta that have magnetizations distinct from the surrounding region. For the latter case, we observe no correlation of the occurrence of these signatures with crater degradation state (a proxy for age). At the lowest spacecraft altitudes (source depths less than O(10 km) are unlikely in most regions