WorldWideScience

Sample records for engineered trivalent antibody

  1. Antibody engineering: methods and protocols

    National Research Council Canada - National Science Library

    Chames, Patrick

    2012-01-01

    "Antibody Engineering: Methods and Protocols, Second Edition was compiled to give complete and easy access to a variety of antibody engineering techniques, starting from the creation of antibody repertoires and efficient...

  2. Antibody Responses to Trivalent Inactivated Influenza Vaccine in Health Care Personnel Previously Vaccinated and Vaccinated for The First Time

    OpenAIRE

    Kuan-Ying A. Huang; Shih-Cheng Chang; Yhu-Chering Huang; Cheng-Hsun Chiu; Tzou-Yien Lin

    2017-01-01

    Inactivated influenza vaccination induces a hemagglutinin-specific antibody response to the strain used for immunization. Annual vaccination is strongly recommended for health care personnel. However, it is debatable if repeated vaccination would affect the antibody response to inactivated influenza vaccine through the time. We enrolled health care personnel who had repeated and first trivalent inactivated influenza vaccination in 2005?2008. Serological antibody responses were measured by hem...

  3. Prevalence of antibodies and humoral response after seasonal trivalent vaccination against influenza B lineages in an elderly population of Spain.

    Science.gov (United States)

    Muñoz, Ivan Sanz; Rello, Silvia Rojo; Lejarazu, Raúl Ortiz de

    2017-11-24

    The aim of this study was to analyze the presence of antibodies against both Yamagata and Victoria influenza B lineages and to check the response after seasonal trivalent vaccination. Haemagglutination inhibition assays were performed with pre-and post-vaccination serum samples from 174 individuals ≥65 years of age vaccinated with seasonal trivalent influenza vaccines during the 2006-2007, 2008-2009, 2009-2010 and 2010-2011 vaccine campaigns. 33.9% of individuals showed pre-vaccine protective antibodies (≥1/40) against B/Yamagata lineage and 41.4% against B/Victoria lineage. The annual trivalent vaccine induced significant homologous seroconversion in 14-35.6% of individuals in each vaccine campaign. The population ≥65 years has low-moderate seroprotection against B influenza lineages. Trivalent vaccination induced a slight increase of seroprotection. The trivalent vaccine should be administered to all individuals ≥65 years in all vaccine campaigns. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  4. Antibody Responses with Fc-Mediated Functions after Vaccination of HIV-Infected Subjects with Trivalent Influenza Vaccine

    DEFF Research Database (Denmark)

    Kristensen, Anne B; Lay, William N; Ana-Sosa-Batiz, Fernanda

    2016-01-01

    This study seeks to assess the ability of seasonal trivalent inactivated influenza vaccine (TIV) to induce nonneutralizing antibodies (Abs) with Fc-mediated functions in HIV-uninfected and HIV-infected subjects. Functional influenza-specific Ab responses were studied in 30 HIV-negative and 27 HIV......-positive subjects immunized against seasonal influenza. All 57 subjects received the 2015 TIV. Fc-mediated antihemagglutinin (anti-HA) Ab activity was measured in plasma before and 4 weeks after vaccination using Fc-receptor-binding assays, NK cell activation assays, and phagocytosis assays. At baseline, the HIV......-positive group had detectable but reduced functional Ab responses to both vaccine and nonvaccine influenza antigens. TIV enhanced Fc-mediated Ab responses in both HIV-positive and HIV-negative groups. A larger rise was generally observed in the HIV-positive group, such that there was no difference in functional...

  5. Neutralizing antibody responses in macaques induced by human immunodeficiency virus type 1 monovalent or trivalent envelope glycoproteins.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available A major goal of efforts to develop a vaccine to prevent HIV-1 infection is induction of broadly cross-reactive neutralizing antibodies (bcnAb. In previous studies we have demonstrated induction of neutralizing antibodies that did cross-react among multiple primary and laboratory strains of HIV-1, but neutralized with limited potency. In the present study we tested the hypothesis that immunization with multiple HIV-1 envelope glycoproteins (Envs would result in a more potent and cross-reactive neutralizing response. One Env, CM243(N610Q, was selected on the basis of studies of the effects of single and multiple mutations of the four gp41 glycosylation sites. The other two Envs included R2 (subtype B and 14/00/4 (subtype F, both of which were obtained from donors with bcnAb. Rhesus monkeys were immunized using a prime boost regimen as in previous studies. Individual groups of monkeys were immunized with either one of the three Envs or all three. The single N610Q and N615Q mutations of CM243 Env did not disrupt protein secretion, processing into, or reactivity with mAbs, unlike other single or multiple deglycosylation mutations. In rabbit studies the N610Q mutation alone or in combination was associated with an enhanced neutralizing response against homologous and heterologous subtype E viruses. In the subsequent monkey study the response induced by the R2 Env regimen was equivalent to the trivalent regimen and superior to the other monovalent regimens against the virus panel used for testing. The 14/00/4 Env induced responses superior to CM243(N610Q. The results indicate that elimination of the glycosylation site near the gp41 loop results in enhanced immunogenicity, but that immunization of monkeys with these three distinct Envs was not more immunogenic than with one.

  6. Trivalent influenza vaccine-induced antibody response to circulating influenza a (H3N2) viruses in 2010/11 and 2011/12 seasons.

    Science.gov (United States)

    Hiroi, Satoshi; Morikawa, Saeko; Nakata, Keiko; Maeda, Akiko; Kanno, Tsuneji; Irie, Shin; Ohfuji, Satoko; Hirota, Yoshio; Kase, Tetsuo

    2015-01-01

    To evaluate antibody response induced by trivalent inactivated influenza vaccine (TIV) against circulating influenza A (H3N2) strains in healthy adults during the 2010/11 and 2011/12 seasons, a hemagglutination-inhibition (HI) assay was utilized to calculate geometric mean antibody titer (GMT), seroprotection rate (post vaccination HI titers of ≥1 :40), and seroresponse rate (4-fold increase in antibody level). In the 2010/11 season, GMT increased 1.8- to 2.0-fold following the first dose of TIV against 3 circulating strains and 2.2-fold following the second compared to before vaccination. The seroresponse rate ranged from 22% to 26% following the first dose of TIV and from 31% to 33% following the second (n = 54 ). The seroprotection rate increased from a range of 6% to 13% to a range of 26% to 33% following the first dose of TIV and to a range of 37% to 42% following the second (n = 54 ). In the 2011/12 season, GMT increased 1.4-fold against A/Osaka/110/2011 and 1.8-fold against A/Osaka/5/2012. For A/Osaka/110/2011, the seroresponse rate was 29%, and the seroprotection rate increased from 26% to 55% following vaccination (n = 31 ). For A/Osaka/5/2012, the seroresponse rate was 26%, and the seroprotection rate increased from 68% to 84% following vaccination (n = 31 ). HI assays with reference antisera demonstrated that the strains in the 2011/12 season were antigenically distinct from vaccine strain (A/Victoria/210/2009). In conclusion, the vaccination increased the seroprotection rate against circulating H3N2 strains in the 2010/11 and 2011/12 seasons. Vaccination of TIV might have potential to induce reactive antibodies against antigenically distinct circulating H3N2 viruses.

  7. TriFabs—Trivalent IgG-Shaped Bispecific Antibody Derivatives: Design, Generation, Characterization and Application for Targeted Payload Delivery

    Directory of Open Access Journals (Sweden)

    Klaus Mayer

    2015-11-01

    Full Text Available TriFabs are IgG-shaped bispecific antibodies (bsAbs composed of two regular Fab arms fused via flexible linker peptides to one asymmetric third Fab-sized binding module. This third module replaces the IgG Fc region and is composed of the variable region of the heavy chain (VH fused to CH3 with “knob”-mutations, and the variable region of the light chain (VL fused to CH3 with matching “holes”. The hinge region does not contain disulfides to facilitate antigen access to the third binding site. To compensate for the loss of hinge-disulfides between heavy chains, CH3 knob-hole heterodimers are linked by S354C-Y349C disulphides, and VH and VL of the stem region may be linked via VH44C-VL100C disulphides. TriFabs which bind one antigen bivalent in the same manner as IgGs and the second antigen monovalent “in between” these Fabs can be applied to simultaneously engage two antigens, or for targeted delivery of small and large (fluorescent or cytotoxic payloads.

  8. Recent Progress towards Engineering HIV-1-specific Neutralizing Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Ming Sun

    2016-09-01

    Full Text Available The recent discoveries of broadly potent neutralizing human monoclonal antibodies (bNAbs represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer, and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the limitation of antiviral activities, multiple antibody engineering technologies have been explored to generate the better neutralizing antibodies against HIV-1 since bNAbs attack viral entry by various mechanisms. Thus, a promising direction of research is to discover and exploit rational antibody combination or engineered antibodies (eAbs as potential candidate therapeutics against HIV-1. It has been reported that inclusion of fusion-neutralizing antibodies in a set of bNAbs could improve their overall activities and neutralizing spectrum. Here we review several routes for engineering bNAbs, such as design and generation of bispecific antibodies, specific glycosylation of antibodies to enhance antiviral activity, and variable region specific modification guided by structure and computer, as well as reviewing antibody-delivery technologies by non-viral vector, viral vector and human HSPCs transduced with a lentiviral construct. We also discuss the optimized antiviral activities and benefits of these strategy and potential mechanisms.

  9. Engineering bispecific antibodies with defined chain pairing.

    Science.gov (United States)

    Krah, Simon; Sellmann, Carolin; Rhiel, Laura; Schröter, Christian; Dickgiesser, Stephan; Beck, Jan; Zielonka, Stefan; Toleikis, Lars; Hock, Björn; Kolmar, Harald; Becker, Stefan

    2017-10-25

    Bispecific IgG-like antibodies can simultaneously interact with two epitopes on the same or on different antigens. Therefore, these molecules facilitate novel modes of action, which cannot be addressed by conventional monospecific IgGs. However, the generation of such antibodies still appears to be demanding due to their specific architecture comprising four different polypeptide chains that need to assemble correctly. This review focusses on different strategies to circumvent this issue or to enforce a correct chain association with a focus on common-chain bispecific antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Opposites attract in bispecific antibody engineering

    NARCIS (Netherlands)

    van Gils, Marit J.; Sanders, Rogier W.

    2017-01-01

    Bispecific antibodies show great promise as intrinsic combination therapies, but often suffer from poor physiochemical properties, many times related to poor heterodimerization. De Nardis et al. identify specific electrostatic interactions that facilitate efficient heterodimerization, resulting in

  11. Effects of genetic engineering on the pharmacokinetics of antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Goel, A.; Pavlinkova, G.; Beresford, G.; Booth, B.; Batra, S.K.

    1999-01-01

    Monoclonal antibodies (MAbs) may be considered 'magic bullets' due to their ability to recognize and eradicate malignant cells. MAbs, however, have practical limitations for their rapid application in the clinics. The structure of the antibody molecules can be engineered to modify functional domains such as antigen-binding sites and/or effectors functions. Advanced in genetic engineering have provided rapid progress the development of new immunoglobulin constructs of MAbs with defined research and therapeutic application. Recombinant antibody constructs are being engineered, such as human mouse chimeric, domain-dispositioned, domain-deleted, humanized and single-chain Fv fragments. Genetically-engineered antibodies differ in size and rate of catabolism. Pharmacokinetics studies show that the intact IgG (150 kD), enzymatically derived fragments Fab' (50 kD) and single chain Fv (28 kD) have different clearance rates. These antibody forms clear 50% from the blood pool in 2.1 days, 30 minutes and 10 minutes, respectively. Genetically-engineered antibodies make a new class of immunotherapeutic tracers for cancer treatment

  12. A novel trivalent HPV 16/18/58 vaccine with anti-HPV 16 and 18 neutralizing antibody responses comparable to those induced by the Gardasil quadrivalent vaccine in rhesus macaque model

    Directory of Open Access Journals (Sweden)

    Fei Yin

    2017-06-01

    Full Text Available Persistent infection with human papillomavirus (HPV is a key factor in the development of precancerous lesions and invasive cervical cancer. Prophylactic vaccines to immunize against HPV are an effective approach to reducing HPV related disease burden. In this study, we investigated the immunogenicity and dosage effect of a trivalent HPV 16/18/58 vaccine (3vHPV produced in Escherichia coli (E.coli, with Gardasil quadrivalent vaccine (4vHPV, Merck & Co. as a positive control. Sera collected from rhesus macaques vaccinated with three dosage formulations of 3vHPV (termed low-, mid-, and high-dosage formulations, respectively, and the 4vHPV vaccine were analyzed by both Pseudovirus-Based Neutralization Assay (PBNA and Enzyme-Linked Immunosorbent Assay (ELISA. Strong immune responses against HPV 16/18/58 were successfully elicited, and dosage-dependence was observed, with likely occurrence of immune interference between different L1-VLP antigens. HPV 16/18 specific neutralizing antibody (nAb and total immunoglobulin G (IgG antibody responses in rhesus macaques receiving 3vHPV at the three dosages tested were generally non-inferior to those observed in rhesus macaques receiving 4vHPV throughout the study period. Particularly, HPV 18 nAb titers induced by the mid-dosage formulation that contained the same amounts of HPV 16/18 L1-VLPs as Gardasil 4vHPV were between 7.3 to 12.7-fold higher compared to the positive control arm from weeks 24–64. The durability of antibody responses specific to HPV 16/18 elicited by 3vHPV vaccines was also shown to be non-inferior to that associated with Gardasil 4vHPV. Keywords: Human papillomavirus, HPV 16/18/58, GMTs, Trivalent, Immunogenicity

  13. Antibodies and genetically engineered related molecules: production and purification.

    Science.gov (United States)

    Roque, A Cecília A; Lowe, Christopher R; Taipa, M Angela

    2004-01-01

    Antibodies and antibody derivatives constitute 20 % of biopharmaceutical products currently in development, and despite early failures of murine products, chimeric and humanized monoclonal antibodies are now viable therapeutics. A number of genetically engineered antibody constructions have emerged, including molecular hybrids or chimeras that can deliver a powerful toxin to a target such as a tumor cell. However, the general use in clinical practice of antibody therapeutics is dependent not only on the availability of products with required efficacy but also on the costs of therapy. As a rule, a significant percentage (50-80%) of the total manufacturing cost of a therapeutic antibody is incurred during downstream processing. The critical challenges posed by the production of novel antibody therapeutics include improving process economics and efficiency, to reduce costs, and fulfilling increasingly demanding quality criteria for Food and Drug Administration (FDA) approval. It is anticipated that novel affinity-based separations will emerge from the development of synthetic ligands tailored to specific biotechnological needs. These synthetic affinity ligands include peptides obtained by synthesis and screening of peptide combinatorial libraries and artificial non-peptidic ligands generated by a de novo process design and synthesis. The exceptional stability, improved selectivity, and low cost of these ligands can lead to more efficient, less expensive, and safer procedures for antibody purification at manufacturing scales. This review aims to highlight the current trends in the design and construction of genetically engineered antibodies and related molecules, the recombinant systems used for their production, and the development of novel affinity-based strategies for antibody recovery and purification.

  14. Single domain antibodies in tissue engineering

    OpenAIRE

    Rodrigues, E.D.

    2014-01-01

    The aim of this thesis is to demonstrate the potential of VHH in tissue engineering applications, with a focus on bone and cartilage tissue regeneration. After a general introduction to this thesis in chapter 1, the selection of VHH targeting growth factors is described in chapter 2. VHH were selected to target growth factors relevant in skeletal tissue engineering and VHH were found to modulate BMP activity with high affinity. Chapter 3 describes the immobilization of VHH and its potential t...

  15. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  16. Therapeutic assessment of SEED: a new engineered antibody platform designed to generate mono- and bispecific antibodies.

    Science.gov (United States)

    Muda, Marco; Gross, Alec W; Dawson, Jessica P; He, Chaomei; Kurosawa, Emmi; Schweickhardt, Rene; Dugas, Melanie; Soloviev, Maria; Bernhardt, Anna; Fischer, David; Wesolowski, John S; Kelton, Christie; Neuteboom, Berend; Hock, Bjoern

    2011-05-01

    The strand-exchange engineered domain (SEED) platform was designed to generate asymmetric and bispecific antibody-like molecules, a capability that expands therapeutic applications of natural antibodies. This new protein engineered platform is based on exchanging structurally related sequences of immunoglobulin within the conserved CH3 domains. Alternating sequences from human IgA and IgG in the SEED CH3 domains generate two asymmetric but complementary domains, designated AG and GA. The SEED design allows efficient generation of AG/GA heterodimers, while disfavoring homodimerization of AG and GA SEED CH3 domains. Using a clinically validated antibody (C225), we tested whether Fab derivatives constructed on the SEED platform retain desirable therapeutic antibody features such as in vitro and in vivo stability, favorable pharmacokinetics, ligand binding and effector functions including antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. In addition, we tested SEED with combinations of binder domains (scFv, VHH, Fab). Mono- and bivalent Fab-SEED fusions retain full binding affinity, have excellent biochemical and biophysical stability, and retain desirable antibody-like characteristics conferred by Fc domains. Furthermore, SEED is compatible with different combinations of Fab, scFv and VHH domains. Our assessment shows that the new SEED platform expands therapeutic applications of natural antibodies by generating heterodimeric Fc-analog proteins.

  17. Single domain antibodies in tissue engineering

    NARCIS (Netherlands)

    Rodrigues, E.D.

    2014-01-01

    The aim of this thesis is to demonstrate the potential of VHH in tissue engineering applications, with a focus on bone and cartilage tissue regeneration. After a general introduction to this thesis in chapter 1, the selection of VHH targeting growth factors is described in chapter 2. VHH were

  18. Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.

    2002-01-17

    This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use of such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.

  19. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains

    DEFF Research Database (Denmark)

    Álvarez-Cienfuegos, Ana; Alanes, Natalia Nuñez del Prado; Compte, Marta

    2016-01-01

    Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIEXVIII) we p...

  20. Patients with humoral primary immunodeficiency do not develop protective anti-influenza antibody titers after vaccination with trivalent subunit influenza vaccine

    NARCIS (Netherlands)

    van Assen, Sander; Holvast, Albert; Telgt, Denise S.C.; Benne, Cornelis A.; de Haan, Aalzen; Westra, Johanna; Kallenberg, Cornelis; Bijl, Marc

    Yearly influenza vaccination is recommended for patients with humoral primary immunodeficiency (hPID). However, humoral responses following vaccination can be expected to be reduced in these patients.The efficacy of influenza vaccination in patients with hPID, anti-influenza antibody responses was

  1. Engineered antibodies for monitoring of polynuclear aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Karu, A.E.; Li, Q.X.; Roberts, V.A.

    1998-01-01

    'The long-term goal of this project is to develop antibodies and antibody-based methods for detection and recovery of polynuclear aromatic hydrocarbons (PAHs) and PAH adducts that are potential biomarkers in environmental and biological samples. The inherent cross-reactivity will be exploited by pattern recognition methods. Dr. Karu''s laboratory uses new haptens representing key PAHs to derive recombinant Fab (rFab) and single-chain Fv (scFv) antibodies from hybridoma lines and combinatorial phage display libraries. Computational models of the haptens and combining sites made by Dr. Roberts''s group are used to guide antibody engineering by mutagenesis. Dr. Li''s laboratory develops enzyme immunoassays (EIAs), sensors, and immunoaffinity methods that make use of the novel haptens and antibodies for practical analytical applications in support of DOE''s mission. This report summarizes work completed in one and one-half years of a 3-year project, with close collaboration between the three research groups. Dr. Alexander Karu''s laboratory: the authors proceeded with the two strategies described in the original proposal. Site-directed mutagenesis was used to correct differences in the rFab N-terminal amino acids that were introduced by the degenerate PCR primers used for gene amplification. The binding constants of the rFabs with the corrected sequences will be compared with those of the parent MAbs, and should be very similar. The 4D5 and 10C10 heavy and light chain sequences are being moved to the pCOMB3H phagemid vector to facilitate selection of new engineered mutants.'

  2. Antibody Kinetics and Response to Routine Vaccinations in Infants Born to Women Who Received an Investigational Trivalent Group B Streptococcus Polysaccharide CRM197-Conjugate Vaccine During Pregnancy.

    Science.gov (United States)

    Madhi, Shabir A; Koen, Anthonet; Cutland, Clare L; Jose, Lisa; Govender, Niresha; Wittke, Frederick; Olugbosi, Morounfolu; Sobanjo-Ter Meulen, Ajoke; Baker, Sherryl; Dull, Peter M; Narasimhan, Vas; Slobod, Karen

    2017-11-13

    Maternal vaccination against group B Streptococcus (GBS) might provide protection against invasive GBS disease in infants. We investigated the kinetics of transplacentally transferred GBS serotype-specific capsular antibodies in the infants and their immune response to diphtheria toxoid and pneumococcal vaccination. This phase 1b/2, observer-blind, single-center study (NCT01193920) enrolled infants born to women previously randomized (1:1:1:1) to receive either GBS vaccine at dosages of 0.5, 2.5, or 5.0 μg of each of 3 CRM197-glycoconjugates (serotypes Ia, Ib, and III), or placebo. Infants received routine immunization: combination diphtheria vaccine (diphtheria-tetanus-acellular pertussis-inactivated poliovirus/Haemophilus influenzae type b vaccine; age 6/10/ 14 weeks) and 13-valent pneumococcal CRM197-conjugate vaccine (PCV13; age 6/14 weeks and 9 months). Antibody levels were assessed at birth, day (D) 43, and D91 for GBS serotypes; 1 month postdose 3 (D127) for diphtheria; and 1 month postprimary (D127) and postbooster (D301) doses for pneumococcal serotypes. Of 317 infants enrolled, 295 completed the study. In infants of GBS vaccine recipients, GBS serotype-specific antibody geometric mean concentrations were significantly higher than in the placebo group at all timepoints and predictably decreased to 41%-61% and 26%-76% of birth levels by D43 and D91, respectively. Across all groups, ≥95% of infants were seroprotected against diphtheria at D127 and ≥91% of infants had seroprotective antibody levels against each PCV13 pneumococcal serotype at D301. Maternal vaccination with an investigational CRM197-glycoconjugate GBS vaccine elicited higher GBS serotype-specific antibody levels in infants until 90 days of age, compared with a placebo group, and did not affect infant immune responses to diphtheria toxoid and pneumococcal vaccination. NCT01193920. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  3. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Surinder Batra, Ph D

    2006-02-27

    its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  4. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    International Nuclear Information System (INIS)

    Surinder Batra

    2006-01-01

    increase its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  5. IBC's 23rd Antibody Engineering and 10th Antibody Therapeutics Conferences and the Annual Meeting of The Antibody Society: December 2-6, 2012, San Diego, CA.

    Science.gov (United States)

    Marquardt, John; Begent, Richard H J; Chester, Kerry; Huston, James S; Bradbury, Andrew; Scott, Jamie K; Thorpe, Philip E; Veldman, Trudi; Reichert, Janice M; Weiner, Louis M

    2012-01-01

    Now in its 23rd and 10th years, respectively, the Antibody Engineering and Antibody Therapeutics conferences are the Annual Meeting of The Antibody Society. The scientific program covers the full spectrum of challenges in antibody research and development from basic science through clinical development. In this preview of the conferences, the chairs provide their thoughts on sessions that will allow participants to track emerging trends in (1) the development of next-generation immunomodulatory antibodies; (2) the complexity of the environment in which antibodies must function; (3) antibody-targeted central nervous system (CNS) therapies that cross the blood brain barrier; (4) the extension of antibody half-life for improved efficacy and pharmacokinetics (PK)/pharmacodynamics (PD); and (5) the application of next generation DNA sequencing to accelerate antibody research. A pre-conference workshop on Sunday, December 2, 2012 will update participants on recent intellectual property (IP) law changes that affect antibody research, including biosimilar legislation, the America Invents Act and recent court cases. Keynote presentations will be given by Andreas Plückthun (University of Zürich), who will speak on engineering receptor ligands with powerful cellular responses; Gregory Friberg (Amgen Inc.), who will provide clinical updates of bispecific antibodies; James D. Marks (University of California, San Francisco), who will discuss a systems approach to generating tumor targeting antibodies; Dario Neri (Swiss Federal Institute of Technology Zürich), who will speak about delivering immune modulators at the sites of disease; William M. Pardridge (University of California, Los Angeles), who will discuss delivery across the blood-brain barrier; and Peter Senter (Seattle Genetics, Inc.), who will present his vision for the future of antibody-drug conjugates. For more information on these meetings or to register to attend, please visit www.IBCLifeSciences.com/Antibody

  6. Pharmacokinetics and biodistribution of genetically-engineered antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Pavlinkova, G.; Beresford, G.; Booth, B.J.M.; Choudhury, A.; Batra, S.K.; Omaha, Univ. of Nebraska Medical Center, NE

    1998-01-01

    Genetic manipulations of the immunoglobulin molecules are effective means of altering stability, functional affinity, pharmacokinetics, and biodistribution of the antibodies required for the generation of the 'magic bullet'

  7. IBC's 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics International Conferences and 2010 Annual Meeting of the Antibody Society. December 5-9, 2010, San Diego, CA USA.

    Science.gov (United States)

    Arnett, Samantha O; Teillaud, Jean-Luc; Wurch, Theirry; Reichert, Janice M; Dunlop, Cameron; Huber, Michael

    2011-01-01

    The 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics international conferences, and the 2010 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 5-9, 2010 in San Diego, CA. The conferences were organized with a focus on antibody engineering only on the first day and a joint engineering/therapeutics session on the last day. Delegates could select from presentations that occurred in two simultaneous sessions on days 2 and 3. Day 1 included presentations on neutralizing antibodies and the identification of vaccine targets, as well as a historical overview of 20 years of phage display utilization. Topics presented in the Antibody Engineering sessions on day 2 and 3 included antibody biosynthesis, structure and stability; antibodies in a complex environment; antibody half-life; and targeted nanoparticle therapeutics. In the Antibody Therapeutics sessions on days 2 and 3, preclinical and early stage development and clinical updates of antibody therapeutics, including TRX518, SYM004, MM111, PRO140, CVX-241, ASG-5ME, U3-1287 (AMG888), R1507 and trastuzumab emtansine, were discussed, and perspectives were provided on the development of biosimilar and biobetter antibodies, including coverage of regulatory and intellectual property issues. The joint engineering/therapeutics session on the last day focused on bispecific and next-generation antibodies.

  8. Amended Final Report - Antibodies to Radionuclides. Engineering by Surface Display for Immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Diane A. [Tulane Univ., New Orleans, LA (United States)

    2013-06-14

    The relatively new techniques of antibody display, which permit molecular engineering of antibody structure and function, have the potential to revolutionize the way scientists generate binding proteins for specific applications. However, the skills required to efficiently use antibody display techniques have proven difficult for other laboratories to acquire without hands-on training and exchange of laboratory personnel. This research project is designed bring important expertise in antibody display to the State of Louisiana while pursuing a project with direct relevance to the DOE’s EM program.

  9. A trivalent virus-like particle vaccine elicits protective immune responses against seasonal influenza strains in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Ted M Ross

    Full Text Available There is need for improved human influenza vaccines, particularly for older adults who are at greatest risk for severe disease, as well as to address the continuous antigenic drift within circulating human subtypes of influenza virus. We have engineered an influenza virus-like particle (VLP as a new generation vaccine candidate purified from the supernatants of Sf9 insect cells following infection by recombinant baculoviruses to express three influenza virus proteins, hemagglutinin (HA, neuraminidase (NA, and matrix 1 (M1. In this study, a seasonal trivalent VLP vaccine (TVV formulation, composed of influenza A H1N1 and H3N2 and influenza B VLPs, was evaluated in mice and ferrets for the ability to elicit antigen-specific immune responses. Animals vaccinated with the TVV formulation had hemagglutination-inhibition (HAI antibody titers against all three homologous influenza virus strains, as well as HAI antibodies against a panel of heterologous influenza viruses. HAI titers elicited by the TVV were statistically similar to HAI titers elicited in animals vaccinated with the corresponding monovalent VLP. Mice vaccinated with the TVV had higher level of influenza specific CD8+ T cell responses than a commercial trivalent inactivated vaccine (TIV. Ferrets vaccinated with the highest dose of the VLP vaccine and then challenged with the homologous H3N2 virus had the lowest titers of replicating virus in nasal washes and showed no signs of disease. Overall, a trivalent VLP vaccine elicits a broad array of immunity and can protect against influenza virus challenge.

  10. Nanobodies - the new concept in antibody engineering | Deffar ...

    African Journals Online (AJOL)

    These newly discovered VHH domains with their unique structural and functional properties form the basis of a new generation of therapeutic antibodies which were named Nanobodies. The aim of this paper is to show the properties of Nanobodies, their production and expression, applications and their clinical status.

  11. In vitro-engineered non-antibody protein therapeutics.

    Science.gov (United States)

    Simeon, Rudo; Chen, Zhilei

    2018-01-01

    Antibodies have proved to be a valuable mode of therapy for numerous diseases, mainly owing to their high target binding affinity and specificity. Unfortunately, antibodies are also limited in several respects, chief amongst those being the extremely high cost of manufacture. Therefore, non-antibody binding proteins have long been sought after as alternative therapies. New binding protein scaffolds are constantly being designed or discovered with some already approved for human use by the FDA. This review focuses on protein scaffolds that are either already being used in humans or are currently being evaluated in clinical trials. Although not all are expected to be approved, the significant benefits ensure that these molecules will continue to be investigated and developed as therapeutic alternatives to antibodies. Based on the location of the amino acids that mediate ligand binding, we place all the protein scaffolds under clinical development into two general categories: scaffolds with ligand-binding residues located in exposed flexible loops, and those with the binding residues located in protein secondary structures, such as α-helices. Scaffolds that fall under the first category include adnectins, anticalins, avimers, Fynomers, Kunitz domains, and knottins, while those belonging to the second category include affibodies, β-hairpin mimetics, and designed ankyrin repeat proteins (DARPins). Most of these scaffolds are thermostable and can be easily produced in microorganisms or completely synthesized chemically. In addition, many of these scaffolds derive from human proteins and thus possess very low immunogenic potential. Additional advantages and limitations of these protein scaffolds as therapeutics compared to antibodies will be discussed.

  12. Trivalent Cation Induced Bundle Formation of Filamentous fd Phages.

    Science.gov (United States)

    Korkmaz Zirpel, Nuriye; Park, Eun Jin

    2015-09-01

    Bacteriophages are filamentous polyelectrolyte viral rods infecting only bacteria. In this study, we investigate the bundle formation of fd phages with trivalent cations having different ionic radii (Al(3+) , La(3+) and Y(3+) ) at various phage and counterion concentrations, and at varying bundling times. Aggregated phage bundles were detected at relatively low trivalent counterion concentrations (1 mM). Although 10 mM and 100 mM Y(3+) and La(3+) treatments formed larger and more intertwined phage bundles, Al(3+) and Fe(3+) treatments lead to the formation of networking filaments. Energy dispersive X-ray spectroscopy (EDX) analyses confirmed the presence of C, N and O peaks on densely packed phage bundles. Immunofluorescence labelling and ELISA analyses with anti-p8 antibodies showed the presence of phage filaments after bundling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bandgap engineering of lead-free double perovskite Cs{sub 2}AgBiBr{sub 6} through trivalent metal alloying

    Energy Technology Data Exchange (ETDEWEB)

    Du, Ke-zhao; Mitzi, David B. [Department of Mechanical Engineering and Materials Science, and Department of Chemistry, Duke University, Durham, NC (United States); Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, OH (United States)

    2017-07-03

    The double perovskite family, A{sub 2}M{sup I}M{sup III}X{sub 6}, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH{sub 3}NH{sub 3}PbI{sub 3}. Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs{sub 2}AgBiBr{sub 6} as host, band-gap engineering through alloying of In{sup III}/Sb{sup III} has been demonstrated in the current work. Cs{sub 2}Ag(Bi{sub 1-x}M{sub x})Br{sub 6} (M=In, Sb) accommodates up to 75 % In{sup III} with increased band gap, and up to 37.5 % Sb{sup III} with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs{sub 2}Ag(Bi{sub 0.625}Sb{sub 0.375})Br{sub 6}. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Structural Insights for Engineering Binding Proteins Based on Non-Antibody Scaffolds

    OpenAIRE

    Gilbreth, Ryan N.; Koide, Shohei

    2012-01-01

    Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these “alternative” scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering stra...

  15. Genetic engineering of cell lines using lentiviral vectors to achieve antibody secretion following encapsulated implantation.

    Science.gov (United States)

    Lathuilière, Aurélien; Bohrmann, Bernd; Kopetzki, Erhard; Schweitzer, Christoph; Jacobsen, Helmut; Moniatte, Marc; Aebischer, Patrick; Schneider, Bernard L

    2014-01-01

    The controlled delivery of antibodies by immunoisolated bioimplants containing genetically engineered cells is an attractive and safe approach for chronic treatments. To reach therapeutic antibody levels there is a need to generate renewable cell lines, which can long-term survive in macroencapsulation devices while maintaining high antibody specific productivity. Here we have developed a dual lentiviral vector strategy for the genetic engineering of cell lines compatible with macroencapsulation, using separate vectors encoding IgG light and heavy chains. We show that IgG expression level can be maximized as a function of vector dose and transgene ratio. This approach allows for the generation of stable populations of IgG-expressing C2C12 mouse myoblasts, and for the subsequent isolation of clones stably secreting high IgG levels. Moreover, we demonstrate that cell transduction using this lentiviral system leads to the production of a functional glycosylated antibody by myogenic cells. Subsequent implantation of antibody-secreting cells in a high-capacity macroencapsulation device enables continuous delivery of recombinant antibodies in the mouse subcutaneous tissue, leading to substantial levels of therapeutic IgG detectable in the plasma.

  16. Titration of individual strains in trivalent live-attenuated influenza vaccine without neutralization.

    Science.gov (United States)

    Sirinonthanawech, Naraporn; Surichan, Somchaiya; Namsai, Aphinya; Puthavathana, Pilaipan; Auewarakul, Prasert; Kongchanagul, Alita

    2016-11-01

    Formulation and quality control of trivalent live-attenuated influenza vaccine requires titration of infectivity of individual strains in the trivalent mix. This is usually performed by selective neutralization of two of the three strains and titration of the un-neutralized strain in cell culture or embryonated eggs. This procedure requires standard sera with high neutralizing titer against each of the three strains. Obtaining standard sera, which can specifically neutralize only the corresponding strain of influenza viruses and is able to completely neutralize high concentration of virus in the vaccine samples, can be a problem for many vaccine manufacturers as vaccine stocks usually have very high viral titers and complete neutralization may not be obtained. Here an alternative approach for titration of individual strain in trivalent vaccine without the selective neutralization is presented. This was done by detecting individual strains with specific antibodies in an end-point titration of a trivalent vaccine in cell culture. Similar titers were observed in monovalent and trivalent vaccines for influenza A H3N2 and influenza B strains, whereas the influenza A H1N1 strain did not grow well in cell culture. Viral interference among the vaccine strains was not observed. Therefore, providing that vaccine strains grow well in cell culture, this assay can reliably determine the potency of individual strains in trivalent live-attenuated influenza vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Trivalent Chromium Process (TCP) as a Sealer for MIL-A-8625F Type II, IIB, and IC Anodic Coatings

    National Research Council Canada - National Science Library

    Matzdorf, Craig; Beck, Erin; Hilgeman, Amy; Prado, Ruben

    2008-01-01

    This report documents evaluations of trivalent chromium compositions (TCP) as sealers for MIL-A-8625F Type II, IIB, and IC anodic coatings conducted from March 2001 through December 2007 by Materials Engineering...

  18. A bioinformatics pipeline to build a knowledge database for in silico antibody engineering.

    Science.gov (United States)

    Zhao, Shanrong; Lu, Jin

    2011-04-01

    A challenge to antibody engineering is the large number of positions and nature of variation and opposing concerns of introducing unfavorable biochemical properties. While large libraries are quite successful in identifying antibodies with improved binding or activity, still only a fraction of possibilities can be explored and that would require considerable effort. The vast array of natural antibody sequences provides a potential wealth of information on (1) selecting hotspots for variation, and (2) designing mutants to mimic natural variations seen in hotspots. The human immune system can generate an enormous diversity of immunoglobulins against an almost unlimited range of antigens by gene rearrangement of a limited number of germline variable, diversity and joining genes followed by somatic hypermutation and antigen selection. All the antibody sequences in NCBI database can be assigned to different germline genes. As a result, a position specific scoring matrix for each germline gene can be constructed by aligning all its member sequences and calculating the amino acid frequencies for each position. The position specific scoring matrix for each germline gene characterizes "hotspots" and the nature of variations, and thus reduces the sequence space of exploration in antibody engineering. We have developed a bioinformatics pipeline to conduct analysis of human antibody sequences, and generated a comprehensive knowledge database for in silico antibody engineering. The pipeline is fully automatic and the knowledge database can be refreshed anytime by re-running the pipeline. The refresh process is fast, typically taking 1min on a Lenovo ThinkPad T60 laptop with 3G memory. Our knowledge database consists of (1) the individual germline gene usage in generation of natural antibodies; (2) the CDR length distributions; and (3) the position specific scoring matrix for each germline gene. The knowledge database provides comprehensive support for antibody engineering

  19. Structural definition by antibody engineering of an idiotypic determinant.

    Science.gov (United States)

    Sollazzo, M; Castiglia, D; Billetta, R; Tramontano, A; Zanetti, M

    1990-05-01

    Using computer-aided techniques for predicting molecular structure, we constructed an atomic model of the variable domain of a murine anti-thyroglobulin antibody whose immunodominant idiotypic determinant (Id62) was mapped by site-directed mutagenesis and immunochemical analysis. We previously showed that under experimental conditions this idiotype activates anti-idiotypic B cells and T cells, and modulates the response to thyroglobulin in mice. Because idiotype interactions are considered of physiological importance for immune regulation, we studied this idiotype as a model to understand the relationship between function and structure. To determine the contribution of heavy- and light-chain variable domains to the idiotype structure, we constructed chimeric expression vectors and introduced them into the (non-secreting) P3X63Ag8.653 myeloma cell line. Mutants of the heavy-chain variable domain were obtained by site-directed mutagenesis and transfected into the murine (lambda 1) light-chain producer J558L cell line. The expressed proteins were purified from culture supernatants of transfected cells and characterized. We provide evidence that the third hypervariable loop (D region) of the heavy-chain variable domain is the structural correlate of the idiotypic determinant of this autoantibody and is independent from the nature of the associated light chain. Substitution of residues of the first and second complementarity-determining regions do not affect idiotype expression. The results described here are discussed in relation to our understanding, at a molecular level, of the interaction of idiotopes with B- and T-cell compartments.

  20. Ocaratuzumab, an Fc-engineered antibody demonstrates enhanced antibody-dependent cell-mediated cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Cheney, Carolyn M; Stephens, Deborah M; Mo, Xiaokui; Rafiq, Sarwish; Butchar, Jonathan; Flynn, Joseph M; Jones, Jeffrey A; Maddocks, Kami; O'Reilly, Adrienne; Ramachandran, Abhijit; Tridandapani, Susheela; Muthusamy, Natarajan; Byrd, John C

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is common in both developed and developing nations where the need for inexpensive and convenient administration of therapy is apparent. Ocaratuzumab is a novel Fc-engineered humanized IgG1 anti-CD20 monoclonal antibody (mAb) designed for effective antibody-dependent cell-mediated cytotoxicity (ADCC) at very low concentrations that may facilitate sub-cutaneous (vs. intravenous) dosing. Here, we report ocaratuzumab's potency against CLL cells. In vitro assessment of ocaratuzumab's direct cytotoxicity (DC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and ADCC was performed on CLL cells. Ocaratuzumab induced DC, CDC, and ADCP similarly to rituximab or ofatumumab (anti-CD20 mAbs). However, ocaratuzumab showed an advantage in NK cell-mediated ADCC over these antibodies. In allogeneic ADCC, [E:T (effector:target) ratios = 25:1, 12:1, 6:1], ocaratuzumab (10 µg/mL) improved ADCC by ~3-fold compared with rituximab or ofatumumab (P<0.001 all tested E:T ratios). Notably, the superiority of ocaratuzumab-induced ADCC was observed at low concentrations (0.1-10 ug/ml; P<0.03; allogeneic assays). In extended allogeneic ADCC E:T titration, ocaratuzumab (0.1 µg/mL) demonstrated 19.4% more cytotoxicity than rituximab (E:T = 0.38:1; P = 0.0066) and 21.5% more cytotoxicity than ofatumumab (E:T = 1.5:1; P = 0.0015). In autologous ADCC, ocaratuzumab (10 µg/mL) demonstrated ~1.5-fold increase in cytotoxicity compared with rituximab or ofatumumab at all E:T ratios tested (E:Ts = 25:1,12:1,6:1; all P<0.001). Obinutuzumab, a glyco-engineered anti-CD20 mAb, showed no improvement in ADCC activity compared with ocaratuzumab. The enhanced ADCC of ocaratuzumab suggests that it may be effective at low concentrations. If supported by clinical investigation, this feature could potentially allow for subcutaneous dosing at low doses that could expand the potential of administering chemoimmunotherapy in developing

  1. Engineered protease-resistant antibodies with selectable cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Grugan, Katharine D; Soring, Keri L; Heeringa, Katharine A; McCarthy, Stephen G; Bannish, Gregory; Perpetua, Meredith; Lynch, Frank; Jordan, Robert E; Strohl, William R; Brezski, Randall J

    2013-10-25

    Molecularly engineered antibodies with fit-for-purpose properties will differentiate next generation antibody therapeutics from traditional IgG1 scaffolds. One requirement for engineering the most appropriate properties for a particular therapeutic area is an understanding of the intricacies of the target microenvironment in which the antibody is expected to function. Our group and others have demonstrated that proteases secreted by invasive tumors and pathological microorganisms are capable of cleaving human IgG1, the most commonly adopted isotype among monoclonal antibody therapeutics. Specific cleavage in the lower hinge of IgG1 results in a loss of Fc-mediated cell-killing functions without a concomitant loss of antigen binding capability or circulating antibody half-life. Proteolytic cleavage in the hinge region by tumor-associated or microbial proteases is postulated as a means of evading host immune responses, and antibodies engineered with potent cell-killing functions that are also resistant to hinge proteolysis are of interest. Mutation of the lower hinge region of an IgG1 resulted in protease resistance but also resulted in a profound loss of Fc-mediated cell-killing functions. In the present study, we demonstrate that specific mutations of the CH2 domain in conjunction with lower hinge mutations can restore and sometimes enhance cell-killing functions while still retaining protease resistance. By identifying mutations that can restore either complement- or Fcγ receptor-mediated functions on a protease-resistant scaffold, we were able to generate a novel protease-resistant platform with selective cell-killing functionality.

  2. Structural insights for engineering binding proteins based on non-antibody scaffolds.

    Science.gov (United States)

    Gilbreth, Ryan N; Koide, Shohei

    2012-08-01

    Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these 'alternative' scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering strategies. Furthermore, the structural features of these synthetic proteins produced under tightly controlled, directed evolution deepen our understanding of the underlying principles governing molecular recognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  4. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice.

    Directory of Open Access Journals (Sweden)

    Kirsi Tamminen

    Full Text Available Rotavirus (RV and norovirus (NoV are the two major causes of viral gastroenteritis (GE in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1 derived virus-like particles (VLPs of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6, the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50% as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.

  5. Antibody-engineered nanoparticles selectively inhibit mesenchymal cells isolated from patients with chronic lung allograft dysfunction.

    Science.gov (United States)

    Cova, Emanuela; Colombo, Miriam; Inghilleri, Simona; Morosini, Monica; Miserere, Simona; Peñaranda-Avila, Jesus; Santini, Benedetta; Piloni, Davide; Magni, Sara; Gramatica, Furio; Prosperi, Davide; Meloni, Federica

    2015-01-01

    Chronic lung allograft dysfunction represents the main cause of death after lung transplantation, and so far there is no effective therapy. Mesenchymal cells (MCs) are primarily responsible for fibrous obliteration of small airways typical of chronic lung allograft dysfunction. Here, we engineered gold nanoparticles containing a drug in the hydrophobic section to inhibit MCs, and exposing on the outer hydrophilic surface a monoclonal antibody targeting a MC-specific marker (half-chain gold nanoparticles with everolimus). Half-chain gold nanoparticles with everolimus have been synthesized and incubated with MCs to evaluate the effect on proliferation and apoptosis. Drug-loaded gold nanoparticles coated with the specific antibody were able to inhibit proliferation and induce apoptosis without stimulating an inflammatory response, as assessed by in vitro experiments. These findings demonstrate the effectiveness of our nanoparticles in inhibiting MCs and open new perspectives for a local treatment of chronic lung allograft dysfunction.

  6. [Antibody response to trivalent anti-influenza vaccination (inactivated virus) A/Texas/1/77 H3N2), A/URSS/90/77 (H1N1), B/Hong Kong/8/73].

    Science.gov (United States)

    Mancini, G; Andreoni, M; Arangio-Ruiz, G; Sarrecchia, C; Donatelli, I; Resta, S; Rozera, C; Sordillo, P; Rocchi, G

    1982-05-01

    Seventy-five young recruits received an intramuscular dose of anti-influenza virus vaccine containing 300 U.I. of A/Texas/1/77 (H3N2), A/URSS/90/77 (H1N1), B/Hong Kong/8/73 strains. Antibody responses were detected by HI and SRH tests: immunogenicity of the preparation was different for the individual vaccine strain in spite of the similar amount of antigenic content, and the immunity conferred by vaccine strains did not significantly extend to new influenza virus strains which prevailed in 1979/80 winter season with the exception for A/Brazil/11/78 (H1N1).

  7. Stabilizing the CH2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon.

    Science.gov (United States)

    Chen, Wentao; Kong, Leopold; Connelly, Stephen; Dendle, Julia M; Liu, Yu; Wilson, Ian A; Powers, Evan T; Kelly, Jeffery W

    2016-07-15

    Monoclonal antibodies (mAbs) exhibiting highly selective binding to a protein target constitute a large and growing proportion of the therapeutics market. Aggregation of mAbs results in the loss of their therapeutic efficacy and can result in deleterious immune responses. The CH2 domain comprising part of the Fc portion of Immunoglobulin G (IgG) is typically the least stable domain in IgG-type antibodies and therefore influences their aggregation propensity. We stabilized the CH2 domain by engineering an enhanced aromatic sequon (EAS) into the N-glycosylated C'E loop and observed a 4.8 °C increase in the melting temperature of the purified IgG1 Fc fragment. This EAS-stabilized CH2 domain also conferred enhanced stability against thermal and low pH induced aggregation in the context of a full-length monoclonal IgG1 antibody. The crystal structure of the EAS-stabilized (Q295F/Y296A) IgG1 Fc fragment confirms the design principle, i.e., the importance of the GlcNAc1•F295 interaction, and surprisingly reveals that the core fucose attached to GlcNAc1 also engages in an interaction with F295. Inhibition of core fucosylation confirms the contribution of the fucose-Phe interaction to the stabilization. The Q295F/Y296A mutations also modulate the binding affinity of the full-length antibody to Fc receptors by decreasing the binding to low affinity Fc gamma receptors (FcγRIIa, FcγRIIIa, and FcγRIIIb), while maintaining wild-type binding affinity to FcRn and FcγRI. Our results demonstrate that engineering an EAS into the N-glycosylated reverse turn on the C'E loop leads to stabilizing N-glycan-protein interactions in antibodies and that this modification modulates antibody-Fc receptor binding.

  8. Immobilization of Murine Anti-BMP-2 Monoclonal Antibody on Various Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sahar Ansari

    2014-01-01

    Full Text Available Biomaterials are widely used as scaffolds for tissue engineering. We have developed a strategy for bone tissue engineering that entails application of immobilized anti-BMP-2 monoclonal antibodies (mAbs to capture endogenous BMPs in vivo and promote antibody-mediated osseous regeneration (AMOR. The purpose of the current study was to compare the efficacy of immobilization of a specific murine anti-BMP-2 mAb on three different types of biomaterials and to evaluate their suitability as scaffolds for AMOR. Anti-BMP-2 mAb or isotype control mAb was immobilized on titanium (Ti microbeads, alginate hydrogel, and ACS. The treated biomaterials were surgically implanted in rat critical-sized calvarial defects. After 8 weeks, de novo bone formation was assessed using micro-CT and histomorphometric analyses. Results showed de novo bone regeneration with all three scaffolds with immobilized anti-BMP-2 mAb, but not isotype control mAb. Ti microbeads showed the highest volume of bone regeneration, followed by ACS. Alginate showed the lowest volume of bone. Localization of BMP-2, -4, and -7 antigens was detected on all 3 scaffolds with immobilized anti-BMP-2 mAb implanted in calvarial defects. Altogether, these data suggested a potential mechanism for bone regeneration through entrapment of endogenous BMP-2, -4, and -7 proteins leading to bone formation using different types of scaffolds via AMOR.

  9. An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses.

    Science.gov (United States)

    Thomas, Paul G; Brown, Scott A; Yue, Wen; So, Jenny; Webby, Richard J; Doherty, Peter C

    2006-02-21

    The ovalbumin(323-339) peptide that binds H2I-A(b) was engineered into the globular heads of hemagglutinin (H) molecules from serologically non-cross-reactive H1N1 and H3N2 influenza A viruses, the aim being to analyze recall CD4+ T cell responses in a virus-induced respiratory disease. Prime/challenge experiments with these H1ova and H3ova viruses in H2(b) mice gave the predicted, ovalbumin-specific CD4+ T cell response but showed an unexpectedly enhanced, early expansion of viral epitope-specific CD8+ T cells in spleen and a greatly diminished inflammatory process in the virus-infected respiratory tract. At the same time, the primary antibody response to the H3N2 challenge virus was significantly reduced, an effect that has been associated with preexisting neutralizing antibody in other experimental systems. Analysis of serum from the H1ova-primed mice showed low-level binding to H3ova but not to the wild-type H3N2 virus. Experiments with CD4+ T cell-depleted and Ig-/- mice indicated that this cross-reactive Ig is indeed responsible for the modified pathogenesis after respiratory challenge. Furthermore, the effect does not seem to be virus-dose related, although it does require infection. These findings suggest intriguing possibilities for vaccination and, at the same time, emphasize that engineered modifications in viruses may have unintended immunological consequences.

  10. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model.

    Science.gov (United States)

    Awasthi, Sita; Hook, Lauren M; Shaw, Carolyn E; Friedman, Harvey M

    2017-12-02

    An estimated 417 million people worldwide ages 15 to 49 are infected with herpes simplex virus type 2 (HSV-2), the most common cause of genital ulcer disease. Some individuals experience frequent recurrences of genital lesions, while others only have subclinical infection, yet all risk transmitting infection to their intimate partners. A vaccine was developed that prevents shingles, which is a recurrent infection caused by varicella-zoster virus (VZV), a closely related member of the Herpesviridae family. The success of the VZV vaccine has stimulated renewed interest in a therapeutic vaccine for genital herpes. We have been evaluating a trivalent subunit antigen vaccine for prevention of genital herpes. Here, we assess the trivalent vaccine as immunotherapy in guinea pigs that were previously infected intravaginally with HSV-2. The trivalent vaccine contains HSV-2 glycoproteins C, D, and E (gC2, gD2, gE2) subunit antigens administered with CpG and alum as adjuvants. We previously demonstrated that antibodies to gD2 neutralize the virus while antibodies to gC2 and gE2 block their immune evasion activities, including evading complement attack and inhibiting activities mediated by the IgG Fc domain, respectively. Here, we demonstrate that the trivalent vaccine significantly boosts ELISA titers and neutralizing antibody titers. The trivalent vaccine reduces the frequency of recurrent genital lesions and vaginal shedding of HSV-2 DNA by approximately 50% and almost totally eliminates vaginal shedding of replication-competent virus, suggesting that the trivalent vaccine is a worthy candidate for immunotherapy of genital herpes.

  11. Separation method of trivalent actinide and rare earth element

    International Nuclear Information System (INIS)

    Koma, Yoshikazu; Watabe, Masayuki; Nemoto, Shin-ichi.

    1997-01-01

    Trivalent actinides and rare earth elements are extracted to a solvent from highly acidic liquid wastes generated upon reprocessing of spent fuels. The concentration of nitric acid in the extracted solvent is reduced. Trivalent actinides and the rare earth elements contained in the solvent at low nitric acid concentration are separated from each other. Trivalent actinides and rare earth elements are extracted into a highly acidic solvent in the extracting step of trivalent actinides and rare earth elements. On the other hand, they can be separated by extraction only at a predetermined pH in the separation step of the rare earth elements and trivalent actinides. In the present invention, trivalent actinides and rare earth elements are separated after removing a predetermined amount of nitric acid from the solution obtained in the trivalent actinide and rare earth element extraction step to provide a proper acidic concentration. Accordingly, they can be separated satisfactorily. (T.M.)

  12. N+1 Engineering of an Aspartate Isomerization Hotspot in the Complementarity-Determining Region of a Monoclonal Antibody.

    Science.gov (United States)

    Patel, Chetan N; Bauer, Scott P; Davies, Julian; Durbin, Jim D; Shiyanova, Tatiyana L; Zhang, Kai; Tang, Jason X

    2016-02-01

    Aspartate (Asp) isomerization is a common degradation pathway and a potential critical quality attribute that needs to be well characterized during the optimization and development of therapeutic antibodies. A putative Asp-serine (Ser) isomerization motif was identified in the complementarity-determining region of a humanized monoclonal antibody and shown to be a developability risk using accelerated stability analyses. To address this issue, we explored different antibody engineering strategies. Direct engineering of the Asp residue resulted in a greater than 5× loss of antigen-binding affinity and bioactivity, indicating a critical role for this residue. In contrast, rational engineering of the Ser residue at the n+1 position had a negligible impact on antigen binding affinity and bioactivity compared with the parent molecule. Furthermore, the n+1 engineering strategy effectively eliminated Asp isomerization as determined by accelerated stability analysis. This outcome affirms that the rate of Asp isomerization is strongly dependent on the identity of the n+1 residue. This report highlights a systematic antibody engineering strategy for mitigating an Asp isomerization developability risk during lead optimization. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies

    Science.gov (United States)

    Andersen, Kasper Krogh; Strokappe, Nika M.; Hultberg, Anna; Truusalu, Kai; Smidt, Imbi; Mikelsaar, Raik-Hiio; Mikelsaar, Marika; Verrips, Theo; Hammarström, Lennart

    2015-01-01

    Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA− TcdB+ strain of C. difficile (P survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients. PMID:26573738

  14. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  15. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Strohl, William R; Jordan, Robert E; Brezski, Randall J

    2015-01-01

    Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.

  16. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  17. Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins.

    Science.gov (United States)

    Karlsson, Amy J; Lim, Hyung-Kwon; Xu, Hansen; Rocco, Mark A; Bratkowski, Matthew A; Ke, Ailong; DeLisa, Matthew P

    2012-02-10

    A hallmark of the bacterial twin-arginine translocation (Tat) pathway is its ability to export folded proteins. Here, we discovered that overexpressed Tat substrate proteins form two distinct, long-lived translocation intermediates that are readily detected by immunolabeling methods. Formation of the early translocation intermediate Ti-1, which exposes the N- and C-termini to the cytoplasm, did not require an intact Tat translocase, a functional Tat signal peptide, or a correctly folded substrate. In contrast, formation of the later translocation intermediate, Ti-2, which exhibits a bitopic topology with the N-terminus in the cytoplasm and C-terminus in the periplasm, was much more particular, requiring an intact translocase, a functional signal peptide, and a correctly folded substrate protein. The ability to directly detect Ti-2 intermediates was subsequently exploited for a new protein engineering technology called MAD-TRAP (membrane-anchored display for Tat-based recognition of associating proteins). Through the use of just two rounds of mutagenesis and screening with MAD-TRAP, the intracellular folding and antigen-binding activity of a human single-chain antibody fragment were simultaneously improved. This approach has several advantages for library screening, including the unique involvement of the Tat folding quality control mechanism that ensures only native-like proteins are displayed, thus eliminating poorly folded sequences from the screening process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle.

    Science.gov (United States)

    Matsushita, Hiroaki; Sano, Akiko; Wu, Hua; Wang, Zhongde; Jiao, Jin-An; Kasinathan, Poothappillai; Sullivan, Eddie J; Kuroiwa, Yoshimi

    2015-01-01

    Large-scale production of fully human IgG (hIgG) or human polyclonal antibodies (hpAbs) by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC) engineering and tested these engineered HAC in cattle. Our previous study has demonstrated that site-specific genomic chimerization of pre-B cell receptor/B cell receptor (pre-BCR/BCR) components on HAC vectors significantly improves human IgG expression in cattle where the endogenous bovine immunoglobulin genes were knocked out. In this report, hIgG1 class switch regulatory elements were subjected to site-specific genomic chimerization on HAC vectors to further enhance hIgG expression and improve hIgG subclass distribution in cattle. These species-specific modifications in a chromosome scale resulted in much higher production levels of fully hIgG of up to 15 g/L in sera or plasma, the highest ever reported for a transgenic animal system. Transchromosomic (Tc) cattle containing engineered HAC vectors generated hpAbs with high titers against human-origin antigens following immunization. This study clearly demonstrates that species-specific sequence differences in pre-BCR/BCR components and IgG1 class switch regulatory elements between human and bovine are indeed functionally distinct across the two species, and therefore, are responsible for low production of fully hIgG in our early versions of Tc cattle. The high production levels of fully hIgG with hIgG1 subclass dominancy in a large farm animal species achieved here is an important milestone towards broad therapeutic applications of hpAbs.

  19. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  20. Citric complexes of trivalent cerium and berkelium

    International Nuclear Information System (INIS)

    Boulhassa, S.

    1977-01-01

    The extraction by thenoyltrifluoroacetone (TTA) in benzene of trivalent cerium, berkelium and californium, at the indicator scale, hydrolysis and complexation by citric acid of these cations are studied. The radionuclides used were 144 Ce, 249 Bk and 249 Cf respectively γ, β and α emitters. The solvent extraction technique of the elements by TTA in benzene from a perchloric medium at the ionic stength 0.1 was employed. The distribution coefficients D were measured by the γ, β or α radiometry. Cerium and berkelium, which have a comparable redox behavior, show in solution a relatively stable valency IV. Therefore the study by solvent extraction of their trivalent form required the standing up of complete reducing conditions of these elements and their stabilization in solution at the valency III. The thermodynamic data obtained for berkelium and californium contribute to understand the chemistry of these elements and permit to complete the third 'tetrad branch' of 5f elements from Cm 3+ to Es 3+ . This tetrad effect is a manifestation of thermodynamic consequence of the 'nephelauxetic effect'. As for Ce(III), the data confirm the pronounced acid property and may be show no neglected ligand effect for f 1 configuration [fr

  1. Evading pre-existing anti-hinge antibody binding by hinge engineering

    Science.gov (United States)

    Kim, Hok Seon; Kim, Ingrid; Zheng, Linda; Vernes, Jean-Michel; Meng, Y. Gloria; Spiess, Christoph

    2016-01-01

    ABSTRACT Antigen-binding fragments (Fab) and F(ab′)2 antibodies serve as alternative formats to full-length anti-bodies in therapeutic and immune assays. They provide the advantage of small size, short serum half-life, and lack of effector function. Several proteases associated with invasive diseases are known to cleave antibodies in the hinge-region, and this results in anti-hinge antibodies (AHA) toward the neoepitopes. The AHA can act as surrogate Fc and reintroduce the properties of the Fc that are otherwise lacking in antibody fragments. While this response is desired during the natural process of fighting disease, it is commonly unwanted for therapeutic antibody fragments. In our study, we identify a truncation in the lower hinge region of the antibody that maintains efficient proteolytic cleavage by IdeS protease. The resulting neoepitope at the F(ab′)2 C-terminus does not have detectable binding of pre-existing AHA, providing a practical route to produce F(ab′)2 in vitro by proteolytic digestion when the binding of pre-existing AHA is undesired. We extend our studies to the upper hinge region of the antibody and provide a detailed analysis of the contribution of C-terminal residues of the upper hinge of human IgG1, IgG2 and IgG4 to pre-existing AHA reactivity in human serum. While no pre-existing antibodies are observed toward the Fab of IgG2 and IgG4 isotype, a significant response is observed toward most residues of the upper hinge of human IgG1. We identify a T225L variant and the natural C-terminal D221 as solutions with minimal serum reactivity. Our work now enables the production of Fab and F(ab′)2 for therapeutic and diagnostic immune assays that have minimal reactivity toward pre-existing AHA. PMID:27606571

  2. Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Larissa M. Alvarenga

    2014-08-01

    Full Text Available Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.

  3. Chelation of di- and trivalent iron with some polyaminopolycarboxylic acids

    International Nuclear Information System (INIS)

    Hafez, M.B.; Sharabi, Nahid; Patti, Francois.

    1979-02-01

    The chelation of di- and trivalent iron with some polyaminopolycarboxylic acids was studied. The influence of pH on the formation of the complex was investigated, the molecular ratio and the stability constants were determined [fr

  4. Assessment of immune response in cattle against experimentally prepared trivalent (O, A, and Asia-1 FMD vaccine in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Mashfiqur Rahman Chowdhury

    2015-12-01

    Full Text Available This research work was conducted to investigate the effects of age, sex and breed on the induction of immune response against experimentally prepared inactivated trivalent (type O, A, and Asia-1 FMD vaccine. Twenty six cattle were divided into four test groups (Group A, B, C, and D; 5 cattle in each group and one control group (n=6 based on breed (local and cross, age (≤12 months and >12 months, and sex (male and female. Test cattle were vaccinated with the experimentally prepared trivalent FMD vaccine. Pre- and post vaccinated sera from the vaccinated cattle were collected upto 63 days, and the sera were tested using liquid phase blocking enzyme linked immunosorbent assay (LPBE that was specific for FMD serotypes O, A, and Asia-1. Antibody titers of all the pre-vaccinated serum samples were found to be under protection level. The females were found to be more protected (90%; n=9/10 as compared to males (70%; n=7/10. The titers obtained were statistically analyzed using t–test to observe the effects of age, breed and sex. It was observed that the mean values of antibody titer in cattle aging >12 months against O, A, and Asia-1 serotypes were significant (P12 months showed better immune response towards trivalent FMD vaccine.

  5. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency

    Directory of Open Access Journals (Sweden)

    Hempel Franziska

    2012-09-01

    Full Text Available Abstract Background Although there are many different expression systems for recombinant production of pharmaceutical proteins, many of these suffer from drawbacks such as yield, cost, complexity of purification, and possible contamination with human pathogens. Microalgae have enormous potential for diverse biotechnological applications and currently attract much attention in the biofuel sector. Still underestimated, though, is the idea of using microalgae as solar-fueled expression system for the production of recombinant proteins. Results In this study, we show for the first time that completely assembled and functional human IgG antibodies can not only be expressed to high levels in algal systems, but also secreted very efficiently into the culture medium. We engineered the diatom Phaeodactylum tricornutum to synthesize and secrete a human IgG antibody against the Hepatitis B Virus surface protein. As the diatom P. tricornutum is not known to naturally secrete many endogenous proteins, the secreted antibodies are already very pure making extensive purification steps redundant and production extremely cost efficient. Conclusions Microalgae combine rapid growth rates with all the advantages of eukaryotic expression systems, and offer great potential for solar-powered, low cost production of pharmaceutical proteins.

  6. Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone Skp

    Directory of Open Access Journals (Sweden)

    Rongzhi eWang

    2013-11-01

    Full Text Available Single-chain variable fragment (scFv is a class of engineered antibodies generated by the fusion of the heavy (VH and light chains (VL of immunoglobulins through a short polypeptide linker. ScFv play a critical role in therapy and diagnosis of human diseases, and may in fact also be developed into a potential diagnostic and/or therapeutic agent. However, the fact that current scFv antibodies have poor stability, low solubility and affinity, seriously limits their diagnostic and clinical implication. Here we have developed four different expression vectors, and evaluated their abilities to express a soluble scFv protein. The solubility and binding activity of the purified proteins were determined using both SDS-PAGE and ELISA. Amongst the four purified proteins, the Skp co-expressed scFv showed the highest solubility, and the binding activity to antigen TLH was 3-4 fold higher than the other three purified scFv. In fact, this scFv is specific for TLH and does not cross-react with other TLH-associated proteins and could be used to detect TLH directly in real samples. These results suggest that the pACYC-Duet-skp co-expression vector might be a useful tool for the production of soluble and functional scFv antibody.

  7. Engineered Bovine Antibodies in the Development of Novel Therapeutics, Immunomodulators and Vaccines

    Directory of Open Access Journals (Sweden)

    Madhuri Koti

    2014-05-01

    Full Text Available Some bovine antibodies across all classes are unique, such as the CDR3 of the variable heavy-domain (VH CDR3, which is exceptionally long (up to 66 amino acids, unlike most conventional antibodies where the VH CDR3 loops range from 10 to 25 amino acids. The exceptionally long VH CDR3 is encoded by unusually long germline IGHD genes together with insertion of novel “a” nucleotide rich conserved short nucleotide sequence (CSNS specifically at the IGH V-D junction. Such an exceptionally long VH CDR3 confers unique “knob and stalk” structural architecture where the knob, formed by intra-VH CDR3 disulfide bridges, is separated by 20 Å solvent exposed stalk composed of anti-parallel beta strands. The substitution of the knob with cytokines, such as, erythropoietin and granulocyte colony stimulating factor 3 (granulocyte colony stimulating factor, results in expression of functional fusion proteins with enhanced pharmacokinetics. The beta stranded stalk can be substituted with other rigid structures, for example, repeat alpha helices to form coiled-coil that mimics the beta-stranded stalk and, thus, opens opportunities for insertion of this structure in the CDRs of antibodies across species. Given the versatility of such a structural platform in bovine antibody VH CDR3, it provides the opportunity for the development of new generation of diagnostics, therapeutics, vaccines and immunomodulating drugs.

  8. Engineering and functional evaluation of a single-chain antibody against HIV-1 external glycoprotein gp120.

    Science.gov (United States)

    Wang, H W; Cole, D; Jiang, W Z; Jin, H T; Fu, N; Chen, Z L; Jin, N Y

    2005-07-01

    The HIV-1 envelope glycoprotein surface subunit gp120 is an attractive target for molecular intervention. This is because anti-HIV-1 gp120 neutralizing antibodies display the potential ability to inhibit HIV-1 infection. The present investigation describes the construction of a genetically engineered single chain antibody (scFv102) against HIV-1 gp120, its expression and functional evaluation. The parental hybridoma cell line (102) produces an immunoglobulin directed against the conserved CD4-binding region of gp120. cDNAs encoding the variable regions of the heavy (V(H)) and light (V(L)) chains were prepared by reverse transcription PCR and linked together with an oligonucleotide encoding a linker peptide (Gly(4)Ser)(3) to produce a single chain antibody gene. The resulting DNA construct was cloned into a prokaryotic expression vector (pET28) and recombinant scFv102 was expressed in Eserichia coli as an insoluble protein. The denatured scFv102 was refolded and purified by immobilized metal ion affinity chromatography. Purified scFv102 had the same specificity as the intact IgG in immuno-blotting assays and immuno-fluorescence (IF) detection, but ELISA analyses demonstrated the affinity of scFv102 to be 5-fold lower than that of the parental monoclonal antibody. In neutralization assays, scFv102 at concentrations lower than 40 microg/ml exhibited efficient interference with viral replication and inhibition of viral infection (90%) across a range of primary isolates of subtype B HIV-1. These results suggest that the constructed anti-HIV-1 gp120 scFv102 has good biological activity and can potentially be used for in vitro diagnostic and in vivo therapeutic applications.

  9. Immunogenicity and safety of a trivalent inactivated influenza vaccine

    Directory of Open Access Journals (Sweden)

    Eddy Fadlyana

    2011-02-01

    Full Text Available Background Trivalent inactivated influenza vaccines (TIV containing antigens of two influenza A strains, A(H1N1 and A(H3N2, and one influenza B strain, are the standard {onnulation for influenza prevention. The vaccines must be updated annually to provide optimal protection against the predicted prevalent strains for the next influenza season. Objective To assess the immunogenidty and safety of the inactivated influenza vaccine (Flubio® in adolescents and adults, 28 days after a single dose. Methods In this experimental, randomized, single-blind, bridging study, we included 60 healthy adolescents and adults. A single, 0.5 mL dose was administered intramuscularly in the deltoid muscle of the left ann. Blood samples were obtained before and 28 days after immunization. Standardized hemagglutination inhibition (HI test was used to assess antibody response to influenza antigens. Results From January to February 2010, a total of 60 adolescents and adults enrolled in the study, but two participants did not provide the required blood samples. One hundred percent of the subjects had an anti-influenza titer ≥ 1:40 HI units to all three strains, A/Brisbane/59/2007 (H1N1, A/Uruguay/716/2007 (H3N2, and B/Brisbane/60/2008 (P=1.000 after immunization. The Geometric Mean Titers (GMT after immunization increased for all strains: A/Brisbane, 76.4 to 992.7, A/Uruguay, 27.6 to 432.1, and B/Brisbane, 19.9 to 312.7. Twenty eight days after immunization, we found a 4 times increase in antibody titers in 75.8% of the subjects for A/Brisbane, 84.5% for A/Uruguay, and 77.6% for B/Brisbane. We also observed that 100% of seronegative subjects converted to seropositive for all 3 strains. All vaccines were well-tolerated. There were no serious adverse events reported during the study. Conclusion In adolescents and adults, the Flubio® vaccine was immunogenic and safe.

  10. Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFβ1 antibody.

    Science.gov (United States)

    Lord, Dana M; Bird, Julie J; Honey, Denise M; Best, Annie; Park, Anna; Wei, Ronnie R; Qiu, Huawei

    2018-01-15

    Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies.

  11. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    Science.gov (United States)

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  12. Charged-soft-sphere potentials for trivalent metal halides

    International Nuclear Information System (INIS)

    Erbolukbas, A.; Akdeniz, Z.; Tosi, M.P.

    1991-09-01

    Octahedral-type coordination by halogens in the liquid state has been reported for a number of trivalent metal ions from diffraction and Raman scattering experiments on their molten trihalides and from Raman scattering spectroscopy of liquid mixtures of trihalides with alkali halides. We analyze the available data on bond lengths and Raman frequencies by treating an isolated (MX 6 ) 3- species within a model which adopts charged-soft-sphere interionic potentials supplemented by an account of ionic polarization. The trivalent metal ions that we consider are M = La, Ce, Pr, Nd, Sm, Gd, Dy and Y for X = Cl and M = Al for X = F. The main result of the analysis is the prediction of trends in the soft-sphere repulsive parameters for the trivalent metal ions, leading to estimates of all the vibrational frequencies and the binding energy of such octahedral species. (author). 26 refs, 1 fig., 4 tabs

  13. The extraction of some trivalent elements with Aliquat-336

    Energy Technology Data Exchange (ETDEWEB)

    FLandgren, A.; Liljenzin, J.O.; Skalberg, M. [Chalmers Univ. of Technology, Goeteborg (Sweden)

    1995-10-01

    The extraction behaviour of some trivalent elements in the Aliquate-336-1,3-diisopropyl genzene-nitric acid system has been investigated. For most of the elements a maximum in the distribution ratio occur at about 2 molar nitric acid. At 0.20 molar Aliquate-336 lanthanum attained the highest distribution ratio, about 0.05, of all investigated elements. It was found that nitric acid to a large extent influences the distribution ratio of trivalent elements since it competes with metal nitrate complexes for the extractant molecules. A first approach to a model describing the extraction system is derived.

  14. Antibody-Mediated Osseous Regeneration for Bone Tissue Engineering in Canine Segmental Defects

    Directory of Open Access Journals (Sweden)

    A. Khojasteh

    2018-01-01

    Full Text Available Among many applications of therapeutic monoclonal antibodies (mAbs, a unique approach for regenerative medicine has entailed antibody-mediated osseous regeneration (AMOR. In an effort to identify a clinically relevant model of craniofacial defect, the present study investigated the efficacy of mAb specific for bone morphogenetic protein- (BMP- 2 to repair canine segmental mandibular continuity defect model. Accordingly, a 15 mm unilateral segmental defect was created in mandible and fixated with a titanium plate. Anorganic bovine bone mineral with 10% collagen (ABBM-C was functionalized with 25 μg/mL of either chimeric anti-BMP-2 mAb or isotype-matched mAb (negative control. Recombinant human (rh BMP-2 served as positive control. Morphometric analyses were performed on computed tomography (CT and histologic images. Bone densities within healed defect sites at 12 weeks after surgery were 1360.81 ± 10.52 Hounsfield Unit (HU, 1044.27 ± 141.16 HU, and 839.45 ± 179.41 HU, in sites with implanted anti-BMP-2 mAb, rhBMP-2, and isotype mAb groups, respectively. Osteoid bone formation in anti-BMP-2 mAb (42.99% ± 8.67 and rhBMP-2 (48.97% ± 2.96 groups was not significantly different but was higher (p<0.05 than in sites with isotype control mAb (26.8% ± 5.35. In view of the long-term objective of translational application of AMOR in humans, the results of the present study demonstrated the feasibility of AMOR in a large clinically relevant animal model.

  15. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering

    DEFF Research Database (Denmark)

    Fan, Yuzhou

    protein with ensured safety, efficacy and cost-effectiveness, holistic understanding of titer and N-glycosylation of the protein in relation to cell culture process as well as genomic, proteomic, metabolic and physiological status of the cells becomes a superior approach. Combining the knowledge of CHO...... CHO cell factory. In the early part of the thesis, the first strategy was displayed by a number of successful case studies, in which process and media engineering approach was successfully used to direct N-glycosylation. Controlling the balance between glucose and amino acid metabolism, using...... and metabolic engineering approach to improve N-glycosylation capability of CHO cells was also presented promising results. Overexpression of either N-acetylglucosaminyltransferase I (GnTI) in CHO cells was confirmed to improve the maturation of glycans in mAb. In conclusion, integrating the concept of systems...

  16. Electro-deposition behaviors of trivalent chromium during pulse plating

    Science.gov (United States)

    Choi, Yong

    2010-10-01

    Thick trivalent chromium layers were prepared in a modified chromium sulfate bath by pulse plating to replace hexavalent hard chromium coating in industrial fields; layer microstructure development was systematically studied by using electron microscopy and small angle neutron scattering (SANS) to give a model for nucleation and growth behaviors during the pulse plating. Finer columnar grain was formed by pulse plating due to its high nucleation rate at the same current density. Average deposition rate of the trivalent chromium layers is in the range of 32.4 μm/h to 49.7 μm/h. The deposition rate increases as the diameter of cylindrical shape of chromium cluster in a columnar grain is reduced. The highest deposition rate in this study was observed under the conditions of direct current density of 0.4 Acm-2, combined with a rectangular shape pulse current density of 1.5 Acm-2 with a 10/2 on-off time ratio. Most of the inner-cracks of the trivalent chromium layers have dimensions in the range of about 39 nm. Ultrasonic agitation during pulse plating resulted in an increase of neutral salt fog spray life, which is related to smaller crack size and broader size distribution in the trivalent chromium.

  17. Effective multiple oral administration of reverse genetics engineered infectious bursal disease virus in mice in the presence of neutralizing antibodies.

    Science.gov (United States)

    Hornyák, Ákos; Lipinski, Kai S; Bakonyi, Tamás; Forgách, Petra; Horváth, Ernő; Farsang, Attila; Hedley, Susan J; Palya, Vilmos; Bakács, Tibor; Kovesdi, Imre

    2015-01-01

    Despite spectacular successes in hepatitis B and C therapies, severe hepatic impairment is still a major treatment problem. The clinically tested infectious bursal disease virus (IBDV) superinfection therapy promises an innovative, interferon-free solution to this great unmet need, provided that a consistent manufacturing process preventing mutations or reversions to virulent strains is obtained. To address safety concerns, a tissue culture adapted IBDV vaccine strain V903/78 was cloned into cDNA plasmids ensuring reproducible production of a reverse engineered virus R903/78. The therapeutic drug candidate was characterized by immunocytochemistry assay, virus particle determination and immunoblot analysis. The biodistribution and potential immunogenicity of the IBDV agent was determined in mice, which is not a natural host of this virus, by quantitative detection of IBDV RNA by a quantitative reverse transcriptase-polymerase chain reaction and virus neutralization test, respectively. Several human cell lines supported IBDV propagation in the absence of visible cytopathic effect. The virus was stable from pH 8 to pH 6 and demonstrated significant resistance to low pH and also proved to be highly resistant to high temperatures. No pathological effects were observed in mice. Single and multiple oral administration of IBDV elicited antibodies with neutralizing activities in vitro. Repeat oral administration of R903/78 was successful despite the presence of neutralizing antibodies. Single oral and intravenous administration indicated that IBDV does not replicate in mammalian liver alleviating some safety related concerns. These data supports the development of an orally delivered anti-hepatitis B virus/ anti-hepatitis C virus viral agent for human use. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection.

    Science.gov (United States)

    Kim, Yeu-Chun; Lee, Su-Hwa; Choi, Won-Hyung; Choi, Hyo-Jick; Goo, Tae-Won; Lee, Ju-Hie; Quan, Fu-Shi

    2016-12-01

    A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.

  19. A Rational Engineering Strategy for Designing Protein A-Binding Camelid Single-Domain Antibodies.

    Directory of Open Access Journals (Sweden)

    Kevin A Henry

    Full Text Available Staphylococcal protein A (SpA and streptococcal protein G (SpG affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species.

  20. Bispecific engineered antibody domains (nanoantibodies that interact noncompetitively with an HIV-1 neutralizing epitope and FcRn.

    Directory of Open Access Journals (Sweden)

    Rui Gong

    Full Text Available Libraries based on an isolated human immunoglobulin G1 (IgG1 constant domain 2 (CH2 have been previously diversified by random mutagenesis. However, native isolated CH2 is not very stable and the generation of many mutations could lead to an increase in immunogenicity. Recently, we demonstrated that engineering an additional disulfide bond and removing seven N-terminal residues results in an engineered antibody domain (eAd (m01s with highly increased stability and enhanced binding to human neonatal Fc receptor (FcRn (Gong et al, JBC, 2009 and 2011. We and others have also previously shown that grafting of the heavy chain complementarity region 3 (CDR-H3 (H3 onto cognate positions of the variable domain leads to highly diversified libraries from which a number of binders to various antigens have been selected. However, grafting of H3s to non-cognate positions in constant domains results in additional residues at the junctions of H3s and the CH2 framework. Here we describe a new method based on multi-step PCR that allows the precise replacement of loop FG (no changes in its flanking sequences by human H3s from another library. Using this method and limited mutagenesis of loops BC and DE we generated an eAd phage-displayed library. Panning of this library against an HIV-1 gp41 MPER peptide resulted in selection of a binder, m2a1, which neutralized HIV-1 isolates from different clades with modest activity and retained the m01s capability of binding to FcRn. This result provides a proof of concept that CH2-based antigen binders that also mimic to certain extent other functions of full-size antibodies (binding to FcRn can be generated; we have previously hypothesized that such binders can be made and coined the term nanoantibodies (nAbs. Further studies in animal models and in humans will show how useful nAbs could be as therapeutics and diagnostics.

  1. Generation of a monoclonal antibody against the glycosylphosphatidylinositol-linked protein Rae-1 using genetically engineered tumor cells.

    Science.gov (United States)

    Hu, Jiemiao; Vien, Long T; Xia, Xueqing; Bover, Laura; Li, Shulin

    2014-02-04

    Although genetically engineered cells have been used to generate monoclonal antibodies (mAbs) against numerous proteins, no study has used them to generate mAbs against glycosylphosphatidylinositol (GPI)-anchored proteins. The GPI-linked protein Rae-1, an NKG2D ligand member, is responsible for interacting with immune surveillance cells. However, very few high-quality mAbs against Rae-1 are available for use in multiple analyses, including Western blotting, immunohistochemistry, and flow cytometry. The lack of high-quality mAbs limits the in-depth analysis of Rae-1 fate, such as shedding and internalization, in murine models. Moreover, currently available screening approaches for identifying high-quality mAbs are excessively time-consuming and costly. We used Rae-1-overexpressing CT26 tumor cells to generate 60 hybridomas that secreted mAbs against Rae-1. We also developed a streamlined screening strategy for selecting the best anti-Rae-1 mAb for use in flow cytometry assay, enzyme-linked immunosorbent assay, Western blotting, and immunostaining. Our cell line-based immunization approach can yield mAbs against GPI-anchored proteins, and our streamlined screening strategy can be used to select the ideal hybridoma for producing such mAbs.

  2. Trivalent pneumococcal protein vaccine protects against experimental acute otitis media caused by Streptococcus pneumoniae in an infant murine model.

    Science.gov (United States)

    Xu, Qingfu; Pryharski, Karin; Pichichero, Michael E

    2017-01-05

    Currently licensed serotype-based pneumococcal vaccines are effective in preventing invasive pneumococcal diseases, but less effective in preventing non-bacteremic pneumonia and acute otitis media (AOM). We previously reported that a trivalent pneumococcal protein recombinant vaccine (PPrV) protected against pneumonia in a murine model. Here we evaluated PPrV protection against AOM in an infant murine model. C57BL/6J mice were intramuscularly vaccinated at 1-3weeks of age with monovalent pneumococcal histidine triad protein D (PhtD), or pneumococcal choline binding protein A (PcpA), or detoxified pneumolysin (PlyD1), or trivalent vaccine, and transtympanically challenged at 7-8weeks of age with 1×10 2 CFU of pneumococcal strain BG7322 (6A) or 1×10 4 CFU of pneumococcal nontypeable strain 0702064MEF. Serum IgG titers were determined by ELISA. At 24 and 48h post infection (hpi), animals were sacrificed and middle ear fluid (MEF) samples were collected to determine pneumococcal CFUs. We found that vaccination of infant mice with monovalent and trivalent pneumococcal proteins elicited significant serum IgG antibody responses to corresponding component proteins. Vaccination with PhtD reduced BG7322 bacterial burdens in MEF at both 24 (p=0.05) and 48hpi (p=0.16). Vaccination with PcpA significantly reduced the bacterial burdens in MEF at both 24 (p=0.02) and 48hpi (p=0.004), and PlyD1 significantly reduced bacterial burden in MEF at 48hpi (p=0.02). Vaccination with trivalent PPrV (PhtD, PcpA and PlyD1) significantly reduced Spn burdens in MEF at both 24 (p=0.001) and 48hpi (panimals were challenged with a non-typeable Spn strain. Vaccinated mice had significantly milder inflammatory cytokine levels (IL-1β, IL-6, TNF-α, MIP-2 and KC) in middle ears at 24hpi (all p values<0.05). Trivalent PPrV confers protection against pneumococcal AOM in an infant murine model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influenza A haemagglutinin specific IgG responses in children and adults after seasonal trivalent live attenuated influenza vaccination.

    Science.gov (United States)

    Islam, Shahinul; Mohn, Kristin Greve-Isdahl; Krammer, Florian; Sanne, Mari; Bredholt, Geir; Jul-Larsen, Åsne; Tete, Sarah M; Zhou, Fan; Brokstad, Karl Albert; Cox, Rebecca Jane

    2017-10-09

    Influenza is a major respiratory pathogen and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV3) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoprotein, haemagglutinin (HA), play an important role in virus neutralization through different mechanism. The objective of this study was to dissect the HA specific antibody responses induced after LAIV3 immunization to the influenza A viruses in children and adults. Plasma was collected from 20 children and 20 adults pre- and post-LAIV3 vaccination (up to ayear) and analysed by the haemagglutination inhibition (HI) and ELISA assays. We found that LAIV3 boosted the HA specific IgG response against the head and the full-length of H3N2 in children, but not adults. Adults had higher levels of pre-existing stalk antibodies (towards H3N2 and H1N1), but these were not boosted by LAIV3. Importantly, we observed a trend in boosting of H1N1 HA stalk specific antibodies in children after LAIV3. Whereas, heterosubtypic H5 and H7 full-length HA specific antibodies were not boosted in either children or adults. In conclusion, LAIV3 elicited H3-head and low levels of H1 stalk specific antibody responses in children, supporting the prophylactic use of LAIV in children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Advancing the scientific basis of trivalent actinide-lanthanide separations

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Washington State University, Department of Chemistry, PO Box 644630, Pullman, WA 99164-4630 (United States)

    2013-07-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  5. Advancing the scientific basis of trivalent actinide-lanthanide separations

    International Nuclear Information System (INIS)

    Nash, K.L.

    2013-01-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl - ). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  6. Study on thermostabilizers for trivalent oral poliomyelitis vaccine

    Directory of Open Access Journals (Sweden)

    M. L. F. Leal

    1990-09-01

    Full Text Available Different formulations of trivalent oral poliomyelitis vaccine were tested, in order to obtain better thermostability, reduce corrosion of machinery and improve production costs. Magnesium chloride, sucrose, arginine and 199-Hank's medium were used in the formulations. The most appropriate formulation was a mixture of MgCl2 and arginine, which was highly thermostable, and had low production costs. The low corrosive formulation was rejected, due to low thermostability on storage.

  7. PREFERENTIAL SEGREGATION OF CHROMOSOMES FROM A TRIVALENT IN HAPLOPAPPUS GRACILIS.

    Science.gov (United States)

    JACKSON, R C

    1964-07-31

    Crosses between plants of Haplopappus gracilis (n = 2) and a race with three pairs of chromosomes (tribivalens) gave a highly fertile five-chromosome hybrid. In both races the chromosomes with the satellites appear homologous, but the other two tribivalens chromosomes pair with the A chromosome (without a satellite) of H. gracilis. Disjunction from the resulting trivalent is preferential: the A chromosome goes to one pole and the two tribivalens chromosomes to the other.

  8. Fc-specific biotinylation of antibody using an engineered photoactivatable Z–Biotin and its biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong-Ming; Bao, Ru-Meng; Yu, Chang-Mei; Lv, Yan-Na; Zhang, Wei-Fen; Tang, Jin-Bao, E-mail: tangjb@wfmc.edu.cn

    2017-01-01

    The development of a site-specific and covalent attachment methodology is crucial for antibody–biotin conjugates to preserve the antigen-binding ability of antibodies and yield homogeneous products. In this study, an engineered photoactivatable Z-domain variant [an UV-active amino acid benzoylphenylalanine (Bpa) was genetically incorporated into the Z-domain] carrying one biotin molecule (Z{sub Bpa}–Biotin) was prepared by employing aminoacyl-tRNA synthetase/suppressor tRNA and Avitag/BirA techniques. The site-specific and covalent attachment of IgG–biotin conjugates, viz. photo-biotinylated IgG, was successfully achieved after UV exposure by combining the inherent Fc-binding capability of the Z-domain with the formation of covalent bond by the photo-crosslinker. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay showed that more than 90% of IgGs conjugated with Z{sub Bpa}–Biotin molecules suffered 3 h UV irradiation. Further pepsin digestion analysis confirmed that the Z{sub Bpa}–Biotin was conjugated to the Fc fragment of IgG without interference. We took the tumor biomarker carcinoembryoic antigen (CEA) as model to evaluate the detection efficiency of the site-specific photo-biotinylated IgG in biosensing application using surface plasmon resonance (SPR) technology. The photo-biotinylated IgG coated surface gave a limit of detection (LOD) of 2 ng mL{sup -1}, is 5-fold lower than that of the randomly NHS-biotinylated IgG (10 ng mL{sup -1}). Given that the (strept)avidin–biotin complex is extensively used in immunoassays, the proposed method for biotinylated IgG provides a powerful approach to further expand related applications. - Highlights: • A photoactivable Z{sub Bpa}–Biotin was fabricated by aaRS/tRNA and Avitag/BirA techniques. • A approach for Fc-specific photo-biotinylated IgG via Z{sub Bpa}–Biotin was proposed. • The photo-biotinylated IgG was used to fabricate an immunosensor for detecting CEA. • It gave a LOD

  9. Fc-specific biotinylation of antibody using an engineered photoactivatable Z–Biotin and its biosensing application

    International Nuclear Information System (INIS)

    Yang, Hong-Ming; Bao, Ru-Meng; Yu, Chang-Mei; Lv, Yan-Na; Zhang, Wei-Fen; Tang, Jin-Bao

    2017-01-01

    The development of a site-specific and covalent attachment methodology is crucial for antibody–biotin conjugates to preserve the antigen-binding ability of antibodies and yield homogeneous products. In this study, an engineered photoactivatable Z-domain variant [an UV-active amino acid benzoylphenylalanine (Bpa) was genetically incorporated into the Z-domain] carrying one biotin molecule (Z Bpa –Biotin) was prepared by employing aminoacyl-tRNA synthetase/suppressor tRNA and Avitag/BirA techniques. The site-specific and covalent attachment of IgG–biotin conjugates, viz. photo-biotinylated IgG, was successfully achieved after UV exposure by combining the inherent Fc-binding capability of the Z-domain with the formation of covalent bond by the photo-crosslinker. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay showed that more than 90% of IgGs conjugated with Z Bpa –Biotin molecules suffered 3 h UV irradiation. Further pepsin digestion analysis confirmed that the Z Bpa –Biotin was conjugated to the Fc fragment of IgG without interference. We took the tumor biomarker carcinoembryoic antigen (CEA) as model to evaluate the detection efficiency of the site-specific photo-biotinylated IgG in biosensing application using surface plasmon resonance (SPR) technology. The photo-biotinylated IgG coated surface gave a limit of detection (LOD) of 2 ng mL -1 , is 5-fold lower than that of the randomly NHS-biotinylated IgG (10 ng mL -1 ). Given that the (strept)avidin–biotin complex is extensively used in immunoassays, the proposed method for biotinylated IgG provides a powerful approach to further expand related applications. - Highlights: • A photoactivable Z Bpa –Biotin was fabricated by aaRS/tRNA and Avitag/BirA techniques. • A approach for Fc-specific photo-biotinylated IgG via Z Bpa –Biotin was proposed. • The photo-biotinylated IgG was used to fabricate an immunosensor for detecting CEA. • It gave a LOD of 2 ng mL -1 CEA, was 5

  10. Indication of viruses and virus-specific antibodies by ELISA using conjugates based on β-lactamase obtained by genetic engineering

    International Nuclear Information System (INIS)

    Kharitonenkov, I.G.; Kordym, V.A.; Khristova, M.L.; Leonov, S.V.; Kirillova, V.S.; Chernykh, S.I.

    1987-01-01

    The method of enzyme-linked immunosorbent assay (ELISA), by means of which antigens and antibodies of different origin can be detected with high sensitivity and specificity, is an immunoenzymatic technique based on the use of conjugates, or macromolecular complexes formed by covalent attachment of enzyme molecules to antigen or antibody molecules. Conjugates based on peroxidase, alkaline phosphatase, and beta-galactosidase are most frequently used to construct immunoenzymatic test systems. The use of these enzymes in ELISA, however, is complicated by the fact that they are often present in free or bound form in the biological material under study, and that their substrates either possess low stability, are difficult to synthesize, or are toxic. In this paper, in order to avoid these shortcomings, the authors develop a method for the biosynthesis of lactamase conjugates which is based on genetic engineering, and demonstrate the viability and stability of these conjugates in radioimmunoenzymatic assay of viruses

  11. Squeezing clathrate cages to host trivalent rare-earth guests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States); He, Yuping [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mordvinova, Natalia E. [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Lebedev, Oleg [Laboratoire CRISMAT, ENSICAEN, CNRS UMR (France); Kovnir, Kirill [Iowa State Univ., Ames, IA (United States). Department of Chemistry; Ames Lab., Ames, IA (United States)

    2017-11-01

    Strike difference of the trivalent rare-earth cations from their alkali and alkaline-earth peers is in the presence of localized 4f-electrons and strong spin-orbit coupling. Placing trivalent rare-earth cations inside the fullerene molecules or in between the blocks of itinerant magnetic intermetallics gave rise to plethora of fascinating properties and materials. A long-time missing but hardly desired piece is the semiconducting or metallic compound where rare-earth cations are situated inside the oversized polyhedral cages of three-dimensional framework. In this work we present a synthesis of such compounds, rare-earth containing clathrates Ba8-xRxCu16P30. The unambiguous proofs of their composition and crystal structure were achieved by a combination of synchrotron powder diffraction, time-of-flight neutron powder diffraction, scanning-transmission electron microscopy, and electron energy-loss spectroscopy. Our quantum-mechanical calculations and experimental characterizations show that the incorporation of the rare-earth cations significantly enhances the hole mobility and concentration which results in the drastic increase in the thermoelectric performance.

  12. Liquid structure and melting of trivalent metal chlorides

    International Nuclear Information System (INIS)

    Tosi, M.P.; Pastore, G.; Saboungi, M.L.; Price, D.L.

    1991-03-01

    Many divalent and trivalent metal ions in stoichiometric liquid mixtures of their halides with alkali halides are fourfold or sixfold coordinated by halogens into relatively long-lived ''complexes''. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure polyvalent metal halide melt determines the character of its short-range and possible intermediate-range order. The available evidence on local coordination in some 140 mixtures has been successfully classified by a structure sorting method based on Pettifor's chemical scale of the elements. Within the general phenomenological frame provided by structure sorting, main attention is given in this work to the liquid structure and melting mechanisms of trivalent metal chlorides. The liquid structure of YCl 3 is first discussed on the basis of neutron diffraction measurements and of calculations within a simple ionic model, and the melting mechanisms of YCl 3 and AlCl 3 , which are structurally isomorphous in the crystalline state, are contrasted. By appeal to macroscopic melting parameters and transport coefficients and to liquid structure data on SbCl 3 , it is proposed that the melting mechanisms of these salts may be classified into three main types in correlation with the character of the chemical bond. (author). 31 refs, 1 fig., 3 tabs

  13. The effect of circulating antigen on the biodistribution of the engineered human antibody hCTM01 in a nude mice model

    International Nuclear Information System (INIS)

    Davies, Q.; Perkins, A.C.; Frier, M.; Watson, S.; Lalani, E.N.; Symonds, E.M.

    1997-01-01

    Clinical studies are currently underway to assess the biodistribution and therapeutic potential of the genetically engineered human antibody hCTM01 directed against polymorphic epithelial mucin (PEM) in patients with ovarian carcinoma. The present study was undertaken to assess the effect of circulating PEM antigen on the biodistribution of the anti-PEM antibody in mice bearing MUC-1 transfected adenocarcinoma cell lines. Tumour xenografts were established from three cell lines: 413-BCR, which expressed antigen on the cell surface and also shed antigen into the circulation, E3P23, which expressed the antigen but did not shed into the circulation, and a negative control (410.4 MUCI). Groups of five mice were injected with 1.0 mg/kg antibody, imaged after 72 h and then sacrificed, followed by assay of tissue uptake. The results showed a clear difference in the tumour and liver uptake, with the non-secreting cell line showing almost twice the tumour uptake and approximately 20% of the liver uptake of the secreting cell line. (orig.). With 4 figs., 1 tab

  14. Bi-photon imaging and diagnostics using ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies

    Science.gov (United States)

    Hafian, Hilal; Sukhanova, Alyona; Chames, Patrick; Baty, Daniel; Pluot, Michel; Cohen, Jacques H. M.; Nabiev, Igor R.; Millot, Jean-Marc

    2012-10-01

    Semiconductor fluorescent quantum dots (QDs) have just demonstrated their numerous advantages over organic dyes in bioimaging and diagnostics. One of characteristics of QDs is a very large cross section of their twophoton absorption. A common approach to biodetection by means of QDs is to use monoclonal antibodies (mAbs) for targeting. Recently, we have engineered ultrasmall diagnostic nanoprobes (sdAb-QD) based on highly oriented conjugates of QDs with the single-domain antibodies (sdAbs) against cancer biomarkers. With a molecular weight of only 13 kDa (12-fold smaller than full-size mAbs) and extreme stability and capacity to refolding, sdAbs are the smallest functional Ab fragments capable of binding antigens with affinities comparable to those of conventional Abs. Ultrasmall diagnostic sdAb-QD nanoprobes were engineered through oriented conjugation of QDs with sdAbs. This study is the first to demonstrate the possibility of immunohistochemical imaging of colon carcinoma biomarkers with sdAb-QD conjugates by means of two-photon excitation. The optimal excitation conditions for imaging of the markers in clinical samples with sdAb-QD nanoprobes have been determined. The absence of sample autofluorescence significantly improves the sensitivity of biomarker detection with the use of the two-photon excitation diagnostic setup.

  15. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  16. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad A

    2013-01-01

    Despite the preclinical success of adoptive therapy with T cells bearing chimeric nanoconstructed antigen receptors (CARs), certain limitations of this therapeutic approach such as the immunogenicity of the antigen binding domain, the emergence of tumor cell escape variants and the blocking...... expressing tumor cells, the combination of CD3ζ, OX40, CD28 as well as the CH3-CH2-hinge-hinge domains most efficiently triggered T cell activation. Importantly, CAR mediated functions were not blocked by the soluble TAG-72 antigen at a supraphysiological concentration. Our approach may have the potential...... capacity of soluble antigen still remain. Here, we address these issues using a novel CAR binding moiety based on the oligoclonal camelid single domain antibodies. A unique set of 13 single domain antibodies were selected from an immunized camel phage library based on their target specificity and binding...

  17. Engineering of ultra-small diagnostic nanoprobes through oriented conjugation of single-domain antibodies and quantum dots

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Alyona Sukhanova, Klervi Even-Desrumeaux, Patrick Chames, Daniel Baty, Mikhail Artemyev, Vladimir Oleinikov & Igor Nabiev ### Abstract Nanoparticle-based biodetection commonly employs monoclonal antibodies (mAbs) for targeting. Although several types of conjugates have been used for biomarker labeling, the large size of mAbs limits the number of ligands per nanoparticle, impedes their intratumoral distribution, and limits intracellular penetration. Furthermore, the condition...

  18. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    Science.gov (United States)

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  19. Atomistic Simulation of Intrinsic Defects and Trivalent and Tetravalent Ion Doping in Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Ricardo D. S. Santos

    2014-01-01

    Full Text Available Atomistic simulation techniques have been employed in order to investigate key issues related to intrinsic defects and a variety of dopants from trivalent and tetravalent ions. The most favorable intrinsic defect is determined to be a scheme involving calcium and hydroxyl vacancies. It is found that trivalent ions have an energetic preference for the Ca site, while tetravalent ions can enter P sites. Charge compensation is predicted to occur basically via three schemes. In general, the charge compensation via the formation of calcium vacancies is more favorable. Trivalent dopant ions are more stable than tetravalent dopants.

  20. Protective efficacy in mice of monovalent and trivalent live attenuated influenza vaccines in the background of cold-adapted A/X-31 and B/Lee/40 donor strains.

    Science.gov (United States)

    Jang, Yo Han; Lee, Eun-Young; Byun, Young Ho; Jung, Eun-Ju; Lee, Yoon Jae; Lee, Yun Ha; Lee, Kwang-Hee; Lee, Jinhee; Seong, Baik Lin

    2014-01-23

    Influenza virus continues to take a heavy toll on human health and vaccination remains the mainstay of efforts to reduce the clinical impact imposed by viral infections. Proven successful for establishing live attenuated vaccine donor strains, cold-adapted live attenuated influenza vaccines (CAIVs) have become an attractive modality for controlling the virus infection. Previously, we developed the cold-adapted strains A/X-31 and B/Lee/40 as novel donor strains of CAIVs against influenza A and B viruses. In this study, we investigated the protective immune responses of both mono- and trivalent vaccine formulations in the mouse model. Two type A vaccines and one type B vaccine against A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), and B/Shangdong/7/97 in the background of the A/X-31 ca or B/Lee/40 ca were generated by a reassortment procedure and evaluated for their immunogenicity and protective efficacy. Each monovalent vaccine elicited high levels of serum antibodies and conferred complete protection against homologous wild type virus infection. As compared to the monovalent vaccines, trivalent formulation induced higher levels of type A-specific serum antibodies and slightly lower levels of type B-specific antibodies, suggesting an immunological synergism within type A viruses and an interference in the replication of type B virus. Relatively lower type B-specific immunogenicity in trivalent vaccine formulation could be effectively implemented by increasing the vaccine dose of influenza B virus. These results of immunogenicity, protection efficacy, and immunological synergism between type A vaccines provide an experimental basis for optimal composition of trivalent vaccines for subsequent developments of multivalent CAIVs against seasonal and pandemic influenza viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effect of different culture systems on the production of foot and mouth disease trivalent vaccine

    Directory of Open Access Journals (Sweden)

    Amr Ismail Hassan

    2016-01-01

    Full Text Available Aim: This study aims to determine the effect of the stationary rawx, roller, and the suspension cell culture systems on the total virus yield infectivity and antigenicity. Materials and Methods: Three serotypes of foot and mouth disease virus (FMDV (serotype A, O and SAT-2 were inoculated separately into baby hamster kidney-21 cell line in rawx, roller, and suspension cultivation systems using multiplicity of infection (1:100. Samples were taken from the total virus yield from each system at 15, 18, 21, and 24 h post-inoculation. Testing the total virus yield infectivity through virus titration and antigenicity through estimation of complement fixing titer and 146S content and evaluation of the potency of the vaccine prepared from the different cultivation systems were done. Results: The results showed that the FMDV titer of serotype A, O, and SAT-2 obtained from the roller cultivation system showed the highest level followed by suspension cultivation system then the rawx cultivation system. The FMDV titer showed its highest level at 21 h post-inoculation in all the cultivation systems and then decline at 24 h post-inoculation. The antigenicity reached its highest value content at 18 h post-inoculation either by complement fixation test or by quantifying the 146S intact virion. Montanide ISA 206 oil inactivated trivalent vaccines were prepared from the tested serotypes (A Iran O5. O Panasia and SAT-2/EGY/2012 harvested at 18 h post-inoculation from the 3 culture systems. The results of tracing the antibody response showed that the mean antibody response from the roller cultivation system start its protective antibody titer earlier at 2 weeks post-vaccination (WPV than the vaccine prepared from the other two cultivation system and the immune protection period lasts longer for 36 WPV for the roller cultivation system vaccine than the other two cultivation systems. Conclusion: The best cultivation system used for the production of FMD vaccine

  2. Trivalent europium speciation in a room-temperature ionic liquid

    International Nuclear Information System (INIS)

    Mekki, S.

    2006-10-01

    Since the nuclear industry is playing an important role in the power production field, a relevant number of problems have been revealed. Indeed, high-level radioactive long-lived nuclear wastes present a real difficulty for nuclear wastes management. Minor actinides, which compose most of these wastes, will be radioactive for several thousands of years. For eventual disposal deep underground, their reprocessing needs to be optimized. The extraction processes used industrially to separate actinides and lanthanides from other metal species characterizing the spent nuclear fuel produce, nevertheless, enormous quantities of contaminated liquid wastes directly issued from the liquid/liquid extraction step. During the last decade, some room-temperature ionic liquid have been studied and integrated into industrial processes. The interest on this class of solvent came out from their 'green' properties (non volatile, non flammable, recyclable, etc...), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL chemical composition. Indeed, it has been shown that classical chemical industrial processes could be transferred into those media, even more improved, while a certain number of difficulties arising from using traditional solvent can be avoided. In this respect, it could be promising to investigate the ability to use room-temperature ionic liquid into the spent nuclear fuel reprocessing field. The aim of this thesis is to test the ability of the specific ionic liquid bumimTf 2 N to allow trivalent europium extraction. The choice of this metal is based on the chemical analogy with trivalent minor actinides Curium and Americium which are contributing the greatest part of the long-lived high-level radioactive wastes. Handling these elements needs to be very cautious for the safety and radioprotection aspect. Moreover, europium is a very sensitive luminescent probe to its environment even at the

  3. Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: The garnet family

    Science.gov (United States)

    Speghini, Adolfo; Piccinelli, Fabio; Bettinelli, Marco

    2011-01-01

    In this review, we deal with the preparation, structural investigation and especially optical spectroscopy of the garnet family of oxide materials activated with trivalent lanthanide ions, in the nanocrystalline form. In particular, attention is devoted here to the important garnet hosts; their synthesis, structure and luminescence spectroscopy are presented and discussed, with particular emphasis given to the possibility of obtaining efficient luminescence from trivalent lanthanide ions at the nanoscale, and to the potential and envisaged technological applications of this class of materials.

  4. Spectroscopic properties of trivalent Europium in various composites with an eulytin structure. Internship report

    International Nuclear Information System (INIS)

    Raynal, Francoise

    1975-01-01

    Eulytin is a bismuth orthosilicate and eulytin compounds revealed to be interesting matrix materials which can be used as medium gain laser materials. This research report is thus a contribution for a better knowledge of this material. Different eulytin compounds doped with lanthanide ions have been used to study the cationic polyhedron (by using structural probes such as the trivalent Europium in spectroscopy, or the trivalent gadolinium in electronic paramagnetic resonance) and the anionic polyhedron

  5. Phase III, randomized controlled trial to evaluate lot consistency of a trivalent subunit egg-based influenza vaccine in adults.

    Science.gov (United States)

    Rivera, Luis; Mazara, Sonia; Vargas, Maria; Fragapane, Elena; Casula, Daniela; Groth, Nicola

    2012-07-27

    Vaccination is the most effective preventive strategy to control influenza. The demonstration of lot-to-lot consistency to confirm the reliability of the manufacturing process has become a mandatory step in vaccine development. This phase III, observer-blind, controlled trial assessed lot-to-lot consistency, immunogenicity, and safety of a subunit trivalent influenza vaccine (Agrippal®, Novartis Vaccines and Diagnostics) in healthy adults aged 18-49 years. The immunogenicity and safety profile of Agrippal was compared with a control vaccine (Fluvirin®, Novartis Vaccines and Diagnostics). A total of 1507 subjects were randomized 2:2:2:1 to receive one vaccination of one of the three lots of influenza vaccine or control vaccine. Antibody levels were measured by hemagglutination inhibition assay on days 1 and 22. Adverse reactions were solicited via diary cards for 7 days after vaccination, and unsolicited adverse events were collected throughout the study period. Equivalence of day 22 immune responses to the three lots was shown for each of the three strains. Robust immunogenic responses after one dose were observed for all vaccine groups, and both Center for Biologics Evaluation and Research criteria for licensure of influenza vaccines were met for all three virus strains. Both vaccines exhibited a robust safety profile and were well tolerated, with no differences in local and systemic solicited reactions or in unsolicited adverse events. The demonstration of consistency between manufacturing lots confirms for purposes of clinical development the reliability of the production process. The robust immunogenic responses and favorable safety profiles further support the use of trivalent subunit influenza vaccines Agrippal and Fluvirin for active immunization against influenza. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. New insights into formation of trivalent actinides complexes with DTPA.

    Science.gov (United States)

    Leguay, Sébastien; Vercouter, Thomas; Topin, Sylvain; Aupiais, Jean; Guillaumont, Dominique; Miguirditchian, Manuel; Moisy, Philippe; Le Naour, Claire

    2012-12-03

    Complexation of trivalent actinides with DTPA (diethylenetriamine pentaacetic acid) was studied as a function of pcH and temperature in (Na,H)Cl medium of 0.1 M ionic strength. Formation constants of both complexes AnHDTPA(-) and AnDTPA(2-) (where An stands for Am, Cm, and Cf) were determined by TRLFS, CE-ICP-MS, spectrophotometry, and solvent extraction. The values of formation constants obtained from the different techniques are coherent and consistent with reinterpreted literature data, showing a higher stability of Cf complexes than Am and Cm complexes. The effect of temperature indicates that formation constants of protonated and nonprotonated complexes are exothermic with a high positive entropic contribution. DFT calculations were also performed on the An/DTPA system. Geometry optimizations were conducted on AnDTPA(2-) and AnHDTPA(-) considering all possible protonation sites. For both complexes, one and two water molecules in the first coordination sphere of curium were also considered. DFT calculations indicate that the lowest energy structures correspond to protonation on oxygen that is not involved in An-DTPA bonds and that the structures with two water molecules are not stable.

  7. Engineered resistance to Nosema bombycis by in vitro expression of a single-chain antibody in Sf9-III cells

    Science.gov (United States)

    Huang, Yukang; Chen, Jie; Sun, Bin; Zheng, Rong; Li, Boning; Li, Zeng; Tan, Yaoyao; Wei, Junhong; Pan, Guoqing; Li, Chunfeng

    2018-01-01

    Nosema bombycis is a destructive, obligate intracellular parasite of the Bombyx mori. In this study, a single-chain variable fragment (scFv) dependent technology is developed for the purpose of inhibiting parasite proliferation in insect cells. The scFv-G4, which we prepared from a mouse G4 monoclonal antibody, can target the N. bombycis spore wall protein 12 (NbSWP12). Indirect immunofluorescence assays showed that NbSWP12 located mainly on the outside of the N. bombycis cytoskeleton, although some of it co-localized with β-tubulin in the meront-stage of parasites. When meront division began, NbSWP12 became concentrated at both ends of each meront. Western blotting showed that scFv-G4 could express in Sf9-III cells and recognized native NbSWP12. The transgenic Sf9-III cell line showed better resistance than the controls when challenged with N. bombycis, indicating that NbSWP12 is a promising target in this parasite and this scFv dependent strategy could be a solution for construction of N. bombycis-resistant Bombyx mori. PMID:29447266

  8. Compatibility of a bivalent modified-live vaccine against Bordetella bronchiseptica and CPiV, and a trivalent modified-live vaccine against CPV, CDV and CAV-2.

    Science.gov (United States)

    Jacobs, A A C; Bergman, J G H E; Theelen, R P H; Jaspers, R; Helps, J M; Horspool, L J I; Paul, G

    2007-01-13

    Eight puppies (group 1) were vaccinated once with a bivalent modified-live vaccine against infectious tracheobronchitis by the intranasal route and at the same time with an injectable trivalent vaccine against canine parvovirus, canine distemper virus and canine adenovirus; a second group of eight puppies (group 2) was vaccinated only with the intranasal bivalent vaccine, and a further eight puppies (group 3) were vaccinated only with the injectable trivalent vaccine. Three weeks later they were all challenged with wildtype Bordetella bronchiseptica and canine parainfluenza virus by the aerosol route, and their antibody responses to the five vaccine organisms were determined. Oronasal swabs were taken regularly before and after the challenge for the isolation of bacteria and viruses, and the puppies were observed for clinical signs for three weeks after the challenge. There were no significant differences in the puppies' titres against canine parvovirus, canine distemper virus and canine adenovirus type 2 between the groups vaccinated with or without the bivalent intranasal vaccine. After the challenge the mean clinical scores of the two groups vaccinated with the intranasal vaccine were nearly 90 per cent lower (P=0.001) than the mean score of the group vaccinated with only the trivalent injectable vaccine, and the puppies in this group all became culture-positive for B bronchiseptica and canine parainfluenza virus. There were only small differences between the rates of isolation of B bronchiseptica from groups 1, 2 and 3, but significantly lower yields of canine parainfluenza virus were isolated from groups 1 and 2 than from group 3.

  9. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.

    Science.gov (United States)

    Fatemi, Farnaz; Amini, Seyed Mohammad; Kharrazi, Sharmin; Rasaee, Mohammad Javad; Mazlomi, Mohammad Ali; Asadi-Ghalehni, Majid; Rajabibazl, Masoumeh; Sadroddiny, Esmaeil

    2017-11-01

    The most common techniques of antibody phage display are based on the use of M13 filamentous bacteriophages. This study introduces a new genetically engineered M13K07 helper phage displaying multiple copies of a known gold binding peptide on p8 coat proteins. The recombinant helper phages were used to rescue a phagemid vector encoding the p3 coat protein fused to the nuclear matrix protein 22 (NMP22) ScFv antibody. Transmission electron microscopy (TEM), UV-vis absorbance spectroscopy, and field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) analysis revealed that the expression of gold binding peptide 1 (GBP1) on major coat protein p8 significantly enhances the gold-binding affinity of M13 phages. The recombinant bacteriophages at concentrations above 5×10 4 pfu/ml red-shifted the UV-vis absorbance spectra of gold nanoparticles (AuNPs); however, the surface plasmon resonance of gold nanoparticles was not changed by the wild type bacteriophages at concentrations up to 10 12 pfu/ml. The phage ELISA assay demonstrated the high affinity binding of bifunctional bacteriophages to NMP22 antigen at concentrations of 10 5 and 10 6 pfu/ml. Thus, the p3 end of the bifunctional bacteriophages would be able to bind to specific target antigen, while the AuNPs were assembled along the coat of virus for signal generation. Our results indicated that the complex of antigen-bacteriophages lead to UV-vis spectral changes of AuNPs and NMP22 antigen in concentration range of 10-80μg/ml can be detected by bifunctional bacteriophages at concentration of 10 4 pfu/ml. The ability of bifunctional bacteriophages to bind to antigen and generate signal at the same time, makes this approach applicable for identifying different antigens in immunoassay techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. FcRn affinity-pharmacokinetic relationship of five human IgG4 antibodies engineered for improved in vitro FcRn binding properties in cynomolgus monkeys.

    Science.gov (United States)

    Datta-Mannan, Amita; Chow, Chi-Kin; Dickinson, Craig; Driver, David; Lu, Jirong; Witcher, Derrick R; Wroblewski, Victor J

    2012-08-01

    The pH-dependent binding of IgGs to the neonatal Fc receptor (FcRn) plays a critical role in regulating IgG homeostasis in vivo. Enhancing interactions between Fc and FcRn via protein engineering has been successfully used as an approach for improving the pharmacokinetics of monoclonal antibodies (mAbs). Although the quantitative translatability of the in vitro FcRn affinity enhancement to an in vivo pharmacokinetic benefit has been supported by several studies, there are also published reports indicating a disconnect in this relation. The body of literature suggests there are likely additional biochemical and biophysical properties of the mAbs along with their FcRn affinity that influence the in vivo pharmacokinetics. Herein, we more broadly evaluate the in vitro Fc-FcRn interactions and biochemical properties of five humanized IgG4 antibodies each with two Fc variant sequences (T250Q/M428L and V308P) and their corresponding pharmacokinetics in cynomolgus monkeys. Our findings indicate that the FcRn affinity-pharmacokinetic relationship does not show a direct correlation either across different IgGs or between the two variant sequences within a platform. Other parameters that have been suggested to contribute to mAb pharmacokinetic properties, such as the pH-dependent dissociation of the FcRn-IgG complexes, mAb biophysical properties, and nonspecific/charge binding characteristics of the mAbs, also did not independently explain the differing pharmacokinetic behaviors. Our results suggest that there is likely not a single in vitro parameter that readily predicts in vivo pharmacokinetics, but that the relative contribution and interplay of several factors along with the FcRn binding affinity are important determinants of mAb pharmacokinetic properties.

  11. Reverse engineering the antigenic architecture of the haemagglutinin from influenza H5N1 clade 1 and 2.2 viruses with fine epitope mapping using monoclonal antibodies.

    Science.gov (United States)

    Rockman, Steve; Camuglia, Sarina; Vandenberg, Kirsten; Ong, Chi; Baker, Mark A; Nation, Roger L; Li, Jian; Velkov, Tony

    2013-04-01

    The induction of neutralising antibodies to the viral surface glycoprotein, haemagglutinin (HA) is considered the cornerstone of current seasonal and pandemic influenza vaccines. Mapping of neutralising epitopes using monoclonal antibodies (mAbs) helps define mechanisms of antigenic drift, neutralising escape and facilitates pre-pandemic vaccine design. In the present study we reverse engineered the antigenic structure of the HAs of two highly pathogenic H5N1 vaccine strains representative of currently circulating clade 1 and 2.2 H5N1 viruses. The HA sequence of the A/Vietnam/1194/04 clade 1 virus was progressively mutated into the HA sequence of the clade 2.2 virus, A/Bar-headed Goose/Qinghai/1A/05. Fine mapping of clade-specific neutralising epitopes was performed by examining the cross-reactivity of mAbs raised against the native HA of each parent virus. The reactivity across all clade specific mAbs centred around a constellation of mutations at positions 140, 145, 171 and 172, all of which are proximal to the receptor binding site on the membrane distal globular head of the HA. Overlapping cross-reactivity of these antigenic sites suggests that these amino acid positions relate to the antigenic evolution of the H5 clade 1 and 2.2 viruses. This finding may prove useful for the design of vaccines with broader neutralising cross-reactivity against the different H5 HA sublineages currently in circulation. These findings provide important information about the amino acid changes involved in the cross-clade evolution of H5N1 viruses and their potential for human to human transmission; and facilitates a greater understanding of the pandemic potential of H5N1 isolates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  13. Interactions between alpha-latrotoxin and trivalent cations in rat striatal synaptosomal preparations

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, H.W.

    1989-05-01

    The interactions between alpha-latrotoxin (alpha-LTx), a neurosecretagogue purified from the venom of the black widow spider, and the trivalent cations Al3+, Y3+, La3+, Gd3+, and Yb3+ were investigated in rat striatal synaptosomal preparations. All trivalent cations tested were inhibitors of alpha-LTx-induced (/sup 3/H)dopamine ((/sup 3/H)DA) release (order of potency: Yb3+ greater than Gd3+ approximately Y3+ greater than La3+ greater than Al3+). Only with Al3+ could inhibition of (/sup 3/H)DA release be attributed to a block of /sup 125/I-alpha-LTx specific binding to synaptosomal preparations. The inhibitory effect of trivalent ions was reversible provided synaptosomes were washed with buffer containing EDTA. Trivalent ions also inhibited alpha-LTx-induced (/sup 3/H)DA release at times when alpha-LTx-stimulated release was already evident. alpha-LTx-induced synaptosomal membrane depolarization was blocked by La3+, but not affected by Gd3+, Y3+, and Yb3+. alpha-LTx-stimulated uptake of /sup 45/Ca/sup 2 +/ was inhibited by all trivalent cations tested. These results demonstrate that there exist at least three means by which trivalent cations can inhibit alpha-LTx action in rat striatal synaptosomal preparations: (1) inhibition of alpha-LTx binding (Al3+); (2) inhibition of alpha-LTx-induced depolarization (La3+); and (3) inhibition of alpha-LTx-induced /sup 45/Ca/sup 2 +/ uptake (Gd3+, Y3+, Yb3+, La3+).

  14. Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: Capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model.

    Science.gov (United States)

    Günaydın, Gökçe; Zhang, Ran; Hammarström, Lennart; Marcotte, Harold

    2014-01-16

    Rotavirus-induced diarrhea causes more than 500,000 deaths annually in the world, and although vaccines are being made available, new effective treatment strategies should still be considered. Purified antibodies derived from hyperimmune bovine colostrum (HBC), from cows immunized with rotavirus, were previously used for treatment of rotavirus diarrhea in children. A combination of HBC antibodies and a probiotic strain of Lactobacillus (L. rhamnosus GG) was also found to be more effective than HBC alone in reducing diarrhea in a mouse model of rotavirus infection. In order to further improve this form of treatment, L. rhamnosus GG was engineered to display surface expressed IgG-binding domains of protein G (GB1, GB2, and GB3) which capture HBC-derived IgG antibodies (HBC-IgG) and thus target rotavirus. The expression of IgG-binding domains on the surface of the bacteria as well as their binding to HBC-IgG and to rotavirus (simian strain RRV) was demonstrated by Western blot, flow cytometry, and electron microscopy. The prophylactic effect of engineered L. rhamnosus GG and anti-rotaviral activity of HBC antibodies was evaluated in a mouse pup model of RRV infection. The combination therapy with engineered L. rhamnosus GG (PG3) and HBC was significantly more effective in reducing the prevalence, severity, and duration of diarrhea in comparison to HBC alone or a combination of wild-type L. rhamnosus GG and HBC. The new therapy reduces the effective dose of HBC between 10 to 100-fold and may thus decrease treatment costs. This antibody capturing platform, tested here for the first time in vivo, could potentially be used to target additional gastrointestinal pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Chalcogenides formed by trivalent rare earth elements with d-elements

    International Nuclear Information System (INIS)

    Flao, Zh.; Laruehl', P.; Olitro, R.

    1981-01-01

    Data on ternary compounds formed by trivalent rare earth elements with 3d-, 4d- and 5d-elements of the Periodic system is presented. Compounds of 3d-elements both in bivalent and trivalent states are considered. The main attention is paid to the structure of the compounds. Description of a great number of new structural types of compounds is given. In certain cases the structure has not been deciphered and, besides, structural investigations with monocrystals are not numerous. Attention is drawn to the existence of nonstoichiometric compounds. References to the works on investigation of thermal (melting temperature), magnetic, optical and electric properties as well as Moessbauer effect are presented

  16. Pro region engineering of nerve growth factor by deep mutational scanning enables a yeast platform for conformational epitope mapping of anti-NGF monoclonal antibodies.

    Science.gov (United States)

    Medina-Cucurella, Angélica V; Zhu, Yaqi; Bowen, Scott J; Bergeron, Lisa M; Whitehead, Timothy A

    2018-04-12

    Nerve growth factor (NGF) plays a central role in multiple chronic pain conditions. As such, anti-NGF monoclonal antibodies (mAbs) that function by antagonizing NGF downstream signaling are leading drug candidates for non-opioid pain relief. To evaluate anti-canine NGF (cNGF) mAbs we sought a yeast surface display platform of cNGF. Both mature cNGF and pro-cNGF displayed on the yeast surface but bound conformationally sensitive mAbs at most 2.5-fold in mean fluorescence intensity above background, suggesting that cNGF was mostly misfolded. To improve the amount of folded, displayed cNGF, we used comprehensive mutagenesis, FACS, and deep sequencing to identify point mutants in the pro-region of canine NGF that properly enhance the folded protein displayed on the yeast surface. Out of 1,737 tested single point mutants in the pro region, 49 increased the amount of NGF recognized by conformationally sensitive mAbs. These gain-of-function mutations cluster around residues A-61-P-26. Gain-of-function mutants were additive, and a construct containing three mutations increased amount of folded cNGF to 23- fold above background. Using this new cNGF construct, fine conformational epitopes for tanezumab and three anti-cNGF mAbs were evaluated. The epitope revealed by the yeast experiments largely overlapped with the tanezumab epitope previously determined by X-ray crystallography. The other mAbs showed site-specific differences with tanezumab. As the number of binding epitopes of functionally neutralizing anti-NGF mAbs on NGF are limited, subtle differences in the individual interacting residues on NGF that bind each mAb contribute to the understanding of each antibody and variations in its neutralizing activity. These results demonstrate the potential of deep sequencing-guided protein engineering to improve the production of folded surface-displayed protein, and the resulting cNGF construct provides a platform to map conformational epitopes for other anti-neurotrophin m

  17. Effect of buffer on the immune response to trivalent oral poliovirus vaccine in Bangladesh: a community based randomized controlled trial.

    Science.gov (United States)

    Chandir, Subhash; Ahamed, Kabir U; Baqui, Abdullah H; Sutter, Roland W; Okayasu, Hiromasa; Pallansch, Mark A; Oberste, Mark S; Moulton, Lawrence H; Halsey, Neal A

    2014-11-01

    Polio eradication efforts have been hampered by low responses to trivalent oral poliovirus vaccine (tOPV) in some developing countries. Since stomach acidity may neutralize vaccine viruses, we assessed whether administration of a buffer solution could improve the immunogenicity of tOPV. Healthy infants 4-6 weeks old in Sylhet, Bangladesh, were randomized to receive tOPV with or without a sodium bicarbonate and sodium citrate buffer at age 6, 10, and 14 weeks. Levels of serum neutralizing antibodies for poliovirus types 1, 2, and 3 were measured before and after vaccination, at 6 and 18 weeks of age, respectively. Serologic response rates following 3 doses of tOPV for buffer recipients and control infants were 95% and 88% (P=.065), respectively, for type 1 poliovirus; 95% and 97% (P=.543), respectively, for type 2 poliovirus; and 90% and 89% (P=.79), respectively, for type 3 poliovirus. Administration of a buffer solution prior to vaccination was not associated with statistically significant increases in the immune response to tOPV; however, a marginal 7% increase (P=.065) in serologic response to poliovirus type 1 was observed. NCT01579825. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Antibodies Targeting EMT

    Science.gov (United States)

    2017-10-01

    determine their targets on the cell. The newly discovered antibodies will then be engineered for utility as new highly specific drugs and diagnostics in...are from the aldo-keto reductase family (AKRs). Remarkably, 3 of the top 10 genes with induction in the mesenchymal TES2b cells Figure 1. Amino

  19. Optical spectra and spin-Hamiltonian parameters of trivalent ...

    Indian Academy of Sciences (India)

    Key Laboratory for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China; Department of Applied Physics, Chongqing University of Technology, Chongqing, 400054, China; International Centre for Materials Physics, Chinese ...

  20. Randomized safety and immunogenicity trial of a seasonal trivalent inactivated split virion influenza vaccine (IVACFLU-S) in healthy young Vietnamese adults.

    Science.gov (United States)

    Anh, Dang Duc; Thiem, Vu Dinh; Anh, Nguyen Thi Hien; Huong, Vu Minh; Nga, Nguyen Tuyet; Thang, Tran Cong; Thai, Duong Huu; Chien, Vien Chinh; Holt, Renee; Wahid, Rahnuma; Flores, Jorge; Berlanda Scorza, Francesco; Taylor, David N

    2016-10-26

    Under the auspices of the World Health Organization (WHO) Global Action Plan, PATH supported evaluation of a trivalent, seasonal inactivated influenza vaccine candidate produced by the Institute of Vaccines and Medical Biologicals (IVAC), a Vietnamese manufacturer. In 2015, 60 healthy adult subjects 18-45years of age were enrolled in a Phase 1, single center, double blind, randomized, placebo-controlled study conducted at a district health center in Thai Binh Province, Vietnam. The study evaluated the overall safety and immunogenicity of a seasonal, trivalent inactivated split virion influenza vaccine. Volunteers were given either vaccine or placebo in a randomized 1:1 ratio. After undergoing screening, eligible volunteers provided their signed consent and were enrolled in the study. On the first day of immunization, randomly chosen volunteers received IVACFLU-S 15μg (mcg) hemagglutinin of each of the three strains in 0.5mL or placebo by intramuscular injection. All volunteers were monitored for adverse events and underwent blood testing at screening and Day 8 to assess the vaccine candidate's safety. Sera obtained before and 21days after immunization were tested for influenza antibody titers using the hemagglutination-inhibition (HAI) and microneutralization tests (MNT). Vaccine was well tolerated, and there were no serious adverse events reported. HAI and MNT identified serum antibody responses against the three influenza strains in nearly all volunteers who received the vaccine. Overall, serum HAI responses of fourfold or greater were observed in 93 percent, 83 percent, and 77 percent of H1, H3, and B strains, respectively. Seroprotection rates were also very high. IVAC's seasonal, trivalent influenza vaccine was safe and well tolerated and induced high levels of seroconversion and seroprotection rates. These clinical data are a first step towards demonstrating the feasibility of producing the vaccine locally and that seasonal vaccine production in Vietnam may

  1. Safety and immunogenicity of a quadrivalent inactivated influenza vaccine compared to licensed trivalent inactivated influenza vaccines in adults.

    Science.gov (United States)

    Greenberg, David P; Robertson, Corwin A; Noss, Michael J; Blatter, Mark M; Biedenbender, Rex; Decker, Michael D

    2013-01-21

    To evaluate the safety and immunogenicity of a prototype quadrivalent inactivated influenza vaccine (QIV) containing two influenza B strains, one of each lineage, compared with licensed trivalent inactivated influenza vaccines (TIVs) containing either a Victoria B-lineage strain (2009-2010 TIV) or a Yamagata B-lineage strain (2008-2009 TIV). Healthy adults ≥18 years of age were eligible to participate in this phase II, open-label, randomized, controlled, multicenter study conducted in the US. Participants received a single dose of 2009-2010 TIV, 2008-2009 TIV, or QIV. Sera were collected before and 21 days after vaccine administration to test for hemagglutination inhibition (HAI) antibodies to each of the four influenza strains. Immunogenicity endpoints included geometric mean HAI antibody titers (GMTs) and rates of seroprotection (titer ≥1:40) and seroconversion (4-fold rise pre- to post-vaccination). Safety endpoints included frequency of solicited injection-site and systemic reactions occurring within 3 days of vaccination, and unsolicited non-serious adverse events (AEs) and serious AEs (SAEs) within 21 days of vaccination. One hundred and ninety participants were enrolled to each vaccine group. QIV induced GMTs to each A and B strain that were noninferior to those induced by the 2009-2010 and 2008-2009 TIVs (i.e., lower limit of the two-sided 95% confidence interval of the ratio of GMT(QIV)/GMT(TIV)>0.66 for each strain). Rates of seroprotection and seroconversion were similar in all groups. Incidence and severity of solicited injection-site and systemic reactions, AEs, and SAEs were similar among groups. QIV, containing two B strains (one from each B lineage), was as safe and immunogenic as licensed TIV. QIV has the potential to be a useful alternative to TIV and offer protection against both B lineages. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.

    Science.gov (United States)

    Strasser, Richard; Stadlmann, Johannes; Schähs, Matthias; Stiegler, Gabriela; Quendler, Heribert; Mach, Lukas; Glössl, Josef; Weterings, Koen; Pabst, Martin; Steinkellner, Herta

    2008-05-01

    A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.

  3. Cost-effectiveness of quadrivalent versus trivalent influenza vaccine in the United States

    NARCIS (Netherlands)

    de Boer, Pieter; Pitman, R.J.; Macabeo, B.; Chit, A.; Postma, M.J.; Crépey, P.

    2014-01-01

    BACKGROUND: Currently used trivalent influenza vaccines (TIVs) contain two strains of influenza A and one strain of influenza B. However, co-circulation of two distinct B lineages and difficulties in predicting which lineage will predominate in the next season have led to frequent B-strain

  4. Metaphase I orientation of Robertsonian trivalents in the water-hyacinth grasshopper, Cornops aquaticum (Acrididae, Orthoptera

    Directory of Open Access Journals (Sweden)

    Pablo César Colombo

    2009-01-01

    Full Text Available Trivalents resulting from polymorphic Robertsonian rearrangements must have a regular orientation in metaphase I if the polymorphisms are to be maintained. It has been argued that redistribution of proximal and interstitial chiasmata to more distal positions is necessary for a convergent orientation, the only one that produces viable gametes. Cornops aquaticum is a South-American grasshopper that lives and feeds on water-hyacinths, and has three polymorphic Robertsonian rearrangements in its southernmost distribution area in Central Argentina and Uruguay. The orientation of trivalents in metaphase I, the formation of abnormal spermatids and the frequency and position of chiasmata in the trivalents, was analysed in a polymorphic population of C. aquaticus. In this study we observed a correlation between the number of trivalents with the frequency of abnormal spermatids; additionally, the number of chiasmata, especially proximal and interstitial ones, was strongly correlated with the frequency of the linear orientation. Therefore we confirmed our previous assumption, based on other evidence, that the chiasmata redistribution in fusion carriers is essential to the maintenance of the polymorphisms.

  5. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    Science.gov (United States)

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  6. Aging of trivalent metal hydroxide/oxide gels in divalent metal salt ...

    Indian Academy of Sciences (India)

    Unknown

    Aging of trivalent metal hydroxide/oxide gels in divalent metal salt solutions: Mechanism of formation of layered double hydroxides (LDHs). A V RADHA and P ..... This situation promotes coprecipitation of the two metal hydroxides, by virtue of which the titrations yield the. Zn–Al LDH. The LDHs isolated before and after ...

  7. Safety and immunogenicity of a high dosage trivalent influenza vaccine among elderly subjects

    NARCIS (Netherlands)

    Couch, Robert B.; Winokur, Patricia; Brady, Rebecca; Belshe, Robert; Chen, Wilbur H.; Cate, Thomas R.; Sigurdardottir, Bryndis; Hoeper, Amy; Graham, Irene L.; Edelman, Robert; He, Fenhua; Nino, Diane; Capellan, Jose; Ruben, Frederick L.

    2007-01-01

    To improve immune responses to influenza vaccine, a trivalent inactivated vaccine containing 60 mu g of the HA of each component (A/H3N2, A/H1N1, B) was compared to a licensed vaccine containing 15 mu g of the HA of each. More local and systemic reactions were reported by subjects given the high

  8. METABOLISM AND TISSUE DOSIMETRY OF PENTAVALENT AND TRIVALENT MONOMETHYLATED ARSENIC AFTER ORAL

    Science.gov (United States)

    METABOLISM AND TISSUE DOSIMETRY OF PENTAVALENT AND TRIVALENT MONOMETHYLATED ARSENIC AFTER ORAL ADMINISTRATION IN MICEM F Hughes1, V Devesa2, B M Adair1, M Styblo2, E M Kenyon1, and D J Thomas1. 1US EPA, ORD, NHEERL, ETD, Research Triangle Park, NC; 2UNC-CH, CEMALB, Chapel Hi...

  9. Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar.

    Science.gov (United States)

    Andrewes, Paul; Demarini, David M; Funasaka, Kunihiro; Wallace, Kathleen; Lai, Vivian W M; Sun, Hongsui; Cullen, William R; Kitchin, Kirk T

    2004-08-01

    Seafood frequently contains high concentrations of arsenic (approximately 10-100 mg/kg dry weight). In marine algae (seaweed), this arsenic occurs predominantly as ribose derivatives known collectively as arsenosugars. Although it is clear that arsenosugars are not acutely toxic, there is a possibility of arsenosugars having slight chronic toxicity. In general, trivalent arsenicals are more toxic than their pentavalent counterparts, so in this work we examine the hypothesis that trivalent arsenosugars might be significantly more toxic than pentavalent arsenosugars in vitro. We compared the in vitro toxicity of (R)-2,3-dihydroxypropyl-5-deoxy-5-dimethylarsinoyl-beta-D-riboside, a pentavalent arsenosugar, to that of its trivalent counterpart, (R)-2,3-dihydroxypropyl-5-deoxy-5-dimethylarsino-beta-D-riboside. The trivalent arsenosugar nicked plasmid DNA, whereas the pentavalent arsenosugar did not. The trivalent arsenosugar was more cytotoxic (IC50 = 200 microM, 48 h exposure) than its pentavalent counterpart (IC50 > 6000 microM, 48 h exposure) in normal human epidermal keratinocytes in vitro as determined via the neutral red uptake assay. However, both the trivalent and the pentavalent arsenosugars were significantly less toxic than MMA(III), DMA(III), and arsenate. Neither the pentavalent arsenosugar nor the trivalent arsenosugar were mutagenic in Salmonella TA104. The trivalent arsenosugar was readily formed by reaction of the pentavalent arsenosugar with thiol compounds, including, cysteine, glutathione, and dithioerythritol. This work suggests that the reduction of pentavalent arsenosugars to trivalent arsenosugars in biology might have environmental consequences, especially because seaweed consumption is a significant environmental source for human exposure to arsenicals.

  10. False-positive result when a diphenylcarbazide spot test is used on trivalent chromium-passivated zinc surfaces

    DEFF Research Database (Denmark)

    Reveko, Valeriia; Lampert, Felix; Din, Rameez Ud

    2018-01-01

    A colorimetric 1,5-diphenylcarbazide (DPC)-based spot test can be used to identify hexavalent chromium on various metallic and leather surfaces. DPC testing on trivalent chromium-passivated zinc surfaces has unexpectedly given positive results in some cases, apparently indicating the presence...... was used for the initial detection of hexavalent chromium on new and 1-year-aged trivalent chromium-passivated zinc surfaces. Then, X-ray photoelectron spectroscopy (XPS) was performed for all samples. Results The DPC spot test indicated the presence of hexavalent chromium in aged, but not new, trivalent...

  11. Antiprothrombin Antibodies

    Directory of Open Access Journals (Sweden)

    Polona Žigon

    2015-05-01

    Full Text Available In patients with the antiphospholipid syndrome (APS, the presence of a group of pathogenic autoantibodies called antiphospholipid antibodies causes thrombosis and pregnancy complications. The most frequent antigenic target of antiphospholipid antibodies are phospholipid bound β2-glycoprotein 1 (β2GPI and prothrombin. The international classification criteria for APS connect the occurrence of thrombosis and/or obstetric complications together with the persistence of lupus anticoagulant, anti-cardiolipin antibodies (aCL and antibodies against β2GPI (anti-β2GPI into APS. Current trends for the diagnostic evaluation of APS patients propose determination of multiple antiphospholipid antibodies, among them also anti-prothrombin antibodies, to gain a common score which estimates the risk for thrombosis in APS patients. Antiprothrombin antibodies are common in APS patients and are sometimes the only antiphospholipid antibodies being elevated. Methods for their determination differ and have not yet been standardized. Many novel studies confirmed method using phosphatidylserine/prothrombin (aPS/PT ELISA as an antigen on solid phase encompass higher diagnostic accuracy compared to method using prothrombin alone (aPT ELISA. Our research group developed an in-house aPS/PT ELISA with increased analytical sensitivity which enables the determination of all clinically relevant antiprothrombin antibodies. aPS/PT exhibited the highest percentage of lupus anticoagulant activity compared to aCL and anti-β2GPI. aPS/PT antibodies measured with the in-house method associated with venous thrombosis and presented the strongest independent risk factor for the presence of obstetric complications among all tested antiphospholipid antibodies

  12. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies.

    Science.gov (United States)

    Li, Demin; Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H

    2017-01-01

    Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy.

  13. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    Science.gov (United States)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-01-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  14. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Science.gov (United States)

    Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko

    2013-08-13

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  15. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C.; Larese, Kathleen Caroline; Bontchev, Ranko Panayotov

    2017-05-30

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  16. Humoral antibody response after receipt of inactivated seasonal influenza vaccinations one year apart in children

    OpenAIRE

    Fang, VJ; Ip, DKM; Ng, S; Chiu, SS; Cowling, BJ; Leung, GM; Peiris, JSM

    2012-01-01

    Background: Annual vaccination against seasonal influenza viruses is recommended for school-age children in some countries. There are limited data on the immunogenicity and efficacy of repeated influenza vaccinations. Methods: In a randomized controlled trial, we administered seasonal trivalent inactivated influenza vaccine (TIV) or placebo to 64 children 6-15 years of age in two consecutive years and explored their humoral antibody responses. Results: Receipt of TIV in the first year was ass...

  17. Trivalent lanthanide/actinide separation in the spent nuclear fuel wastes' reprocessing

    International Nuclear Information System (INIS)

    Narbutt, J.; Krejzler, J.

    2006-01-01

    Separation of trivalent actinides, in particular americium and curium, from lanthanides is an important step in an advanced partitioning process for future reprocessing of spent nuclear fuels. Since the trivalent actinides and lanthanides have similar chemistries, it is rather difficult to separate them from each other. The aim of presented work was to study solvent extraction of Am(III) and Eu(III) in a system containing diethylhemi-BTP (6-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine) and COSAN (protonated bis(chlorodicarbollido)cobalt(III)). The system was chosen by several groups working in the integrated EC research Project EUROPART. Several physicochemical properties of the extraction system were analyzed and discussed

  18. A new incorporation mechanism for trivalent actinides into bioapatite: a TRLFS and EXAFS study.

    Science.gov (United States)

    Holliday, Kiel; Handley-Sidhu, Stephanie; Dardenne, Kathy; Renshaw, Joanna; Macaskie, Lynne; Walther, Clemens; Stumpf, Thorsten

    2012-02-28

    One of the most toxic byproducts of nuclear power and weapons production is the transuranics, which have a high radiotoxicity and long biological half-life due to their tendency to accumulate in the skeletal system. This accumulation is inhomogeneous and has been associated with the chemical properties and structure of the bone material rather than its location or function. This suggests a chemical driving force to incorporation and requires an atomic scale mechanistic understanding of the incorporation process. Here we propose a new incorporation mechanism for trivalent actinides and lanthanides into synthetic and biologically produced hydroxyapatite. Time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure have been used to demonstrate that trivalent actinides and lanthanides incorporate into the amorphous grain boundaries of apatite. This incorporation site can be used to explain patterns in uptake and distribution of radionuclides in the mammalian skeletal system. © 2012 American Chemical Society

  19. Adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution

    International Nuclear Information System (INIS)

    Tatsuya Suzuki

    2013-01-01

    The adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution were investigated. The adsorbed amounts of lanthanides and the degree of mutual separation of lanthanides increased with an increase in the concentration of lithium chloride in aqueous solution. The group separation of the trivalent actinides and lanthanides was observed. This separation phenomenon is similar in a hydrochloric acid solution. However, the adsorption behavior of lanthanides in lithium chloride is different from their behavior in a hydrochloric acid solution. This fact shows that the adsorption mechanisms of lanthanides in a lithium chloride aqueous solution and in a hydrochloric acid solution are different; the adsorption mechanisms are attributed to the ion exchange in a hydrochloric acid solution, and to the complex formation with pyridine group in a lithium chloride solution. (author)

  20. Synergistic extraction of trivalent lanthanoids with 3-phenyl-4-benzoyl-5-isoxazolone and various sulphoxides

    International Nuclear Information System (INIS)

    Sahu, S.K.; Chakravortty, V.; Reddy, M.L.P.; Ramamohan, T.R.

    1999-01-01

    Synergistic extraction of trivalent lanthanoids Nd, Tb and Tm with mixtures of 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) and dioctyl sulphoxide (DOSO), bis-2-ethylhexyl sulphoxide (B2EHSO) or diphenyl sulphoxide (DPhSO) in xylene from perchlorate solution was investigated. Lanthanoids were found to be extracted as Ln(PBI) 3 with HPBI alone. In the presence of sulphoxides, Nd(III) was found to be extracted as Nd(PBI) 3 . S and Nd(PBI) 3 . 2 S (where S = sulphoxide). On the other hand, Tb(III) and Tm(III) were extracted as Tb(PBI) 3 . S and Tm(PBI) 3 . S respectively. The equilibrium constants of the synergistic species were found to increase monotonically with decreasing ionic radii of these metal ions. The addition of a sulphoxide to the metal chelate system not only enhances the extraction efficiency but also improves the selectivities among these trivalent lanthanoids. (orig.)

  1. Immunogenicity and safety assessment of a trivalent, inactivated split influenza vaccine in Korean children: Double-blind, randomized, active-controlled multicenter phase III clinical trial.

    Science.gov (United States)

    Han, Seung Beom; Rhim, Jung-Woo; Shin, Hye Jo; Lee, Soo Young; Kim, Hyun-Hee; Kim, Jong-Hyun; Lee, Kyung-Yil; Ma, Sang Hyuk; Park, Joon Soo; Kim, Hwang Min; Kim, Chun Soo; Kim, Dong Ho; Choi, Young Youn; Cha, Sung-Ho; Hong, Young Jin; Kang, Jin Han

    2015-01-01

    A multicenter, double-blind, randomized, active-control phase III clinical trial was performed to assess the immunogenicity and safety of a trivalent, inactivated split influenza vaccine. Korean children between the ages of 6 months and 18 y were enrolled and randomized into a study (study vaccine) or a control vaccine group (commercially available trivalent, inactivated split influenza vaccine) in a 5:1 ratio. Antibody responses were determined using hemagglutination inhibition assay, and post-vaccination immunogenicity was assessed based on seroconversion and seroprotection rates. For safety assessment, solicited local and systemic adverse events up to 28 d after vaccination and unsolicited adverse events up to 6 months after vaccination were evaluated. Immunogenicity was assessed in 337 and 68 children of the study and control groups. In the study vaccine group, seroconversion rates against influenza A/H1N1, A/H3N2, and B strains were 62.0% (95% CI: 56.8-67.2), 53.4% (95% CI: 48.1-58.7), and 54.9% (95% CI: 48.1-60.2), respectively. The corresponding seroprotection rates were 95.0% (95% CI: 92.6-97.3), 93.8% (95% CI: 91.2-96.4), and 95.3% (95% CI: 93.0-97.5). The lower 95% CI limits of the seroconversion and seroprotection rates were over 40% and 70%, respectively, against all strains. Seroconversion and seroprotection rates were not significantly different between the study and control vaccine groups. Furthermore, the frequencies of adverse events were not significantly different between the 2 vaccine groups, and no serious vaccination-related adverse events were noted. In conclusion, the study vaccine exhibited substantial immunogenicity and safety in Korean children and is expected to be clinically effective.

  2. Assessing the Heterogeneity of the Fc-Glycan of a Therapeutic Antibody Using an engineered FcγReceptor IIIa-Immobilized Column.

    Science.gov (United States)

    Kiyoshi, Masato; Caaveiro, Jose M M; Tada, Minoru; Tamura, Hiroko; Tanaka, Toru; Terao, Yosuke; Morante, Koldo; Harazono, Akira; Hashii, Noritaka; Shibata, Hiroko; Kuroda, Daisuke; Nagatoishi, Satoru; Oe, Seigo; Ide, Teruhiko; Tsumoto, Kouhei; Ishii-Watabe, Akiko

    2018-03-02

    The N-glycan moiety of IgG-Fc has a significant impact on multifaceted properties of antibodies such as in their effector function, structure, and stability. Numerous studies have been devoted to understanding its biological effect since the exact composition of the Fc N-glycan modulates the magnitude of effector functions such as the antibody-dependent cell mediated cytotoxicity (ADCC), and the complement-dependent cytotoxicity (CDC). To date, systematic analyses of the properties and influence of glycan variants have been of great interest. Understanding the principles on how N-glycosylation modulates those properties is important for the molecular design, manufacturing, process optimization, and quality control of therapeutic antibodies. In this study, we have separated a model therapeutic antibody into three fractions according to the composition of the N-glycan by using a novel FcγRIIIa chromatography column. Notably, Fc galactosylation was a major factor influencing the affinity of IgG-Fc to the FcγRIIIa immobilized on the column. Each antibody fraction was employed for structural, biological, and physicochemical analysis, illustrating the mechanism by which galactose modulates the affinity to FcγRIIIa. In addition, we discuss the benefits of the FcγRIIIa chromatography column to assess the heterogeneity of the N-glycan.

  3. Studies on trivalent lanthanide complexes of bis-vanillin p-phenylenediamine

    International Nuclear Information System (INIS)

    Shahma, Abu; Ahmad, Naseer

    1983-01-01

    The coordination interaction of lanthanide(III) chlorides with bis-vanillin o-phenylenediamine was studied by Ansari and Ahmad (1977). It was thought fruitful to compare these with the complexes of trivalent lanthanide ions with bis-vanillin p-phenylenediamine. The newly synthesized complexes were subjected to elemental, thermogravimetric and differential thermal analyses and their melting points, magnetic susceptibilities, molar conductances determined and infrared and electronic spectra taken. (author)

  4. Factors Affecting the Adsorption of Trivalent Chromium Ions by Activated Carbon Prepared from Waste Rubber Tyres

    OpenAIRE

    Sylvia E. Benjamin; Muhammad Ashfaq Sajjid

    2017-01-01

    Economic gains are generally the outcome of industrialization and consequently urbanization. However, positive fiscal index generates a negative impact on natural environment sources heaving pollutant burden on soil, air and water. Industries throw tones of contaminated water into soil and water bodies without proper treatment and create a potential threat for both living and non-living species. Chromium in trivalent state (Cr3+) is added in water bodies and soil through waste water from tann...

  5. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    Science.gov (United States)

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  6. Extraction characteristics of trivalent lanthanides and actinides in mixtures of dinonylnaphthalenesulfonic acid and carboxylic acids

    International Nuclear Information System (INIS)

    West, M.H.

    1983-03-01

    Dinonylnaphthalenesulfonic acid (HDNNS) has been shown to be an effective liquid cation exchanger for the extraction of metal ions. This extractant has proven to be successful in the extraction of trivalent lanthanides and actinides in the pH range of 2.0 to 3.0, although it shows little selectivity for individual ions because of its strong acid character. In an effort to improve the selectivity of HDNNS between trivalent lanthanides and actinides, carboxylic acids were added to the organic phase and the effects on the extraction characteristics of HDNNS were investigated. Three carboxylic acids - nonanoic, cyclohexanecarboxylic, and cyclohexanebutyric - were studied with the following metals: Am(III), Cm(III), Ce(III), Eu(III), and Tm(III). The distributions of the metal ions were studied holding the HDNNS concentration constant while varying the carboxylic acid concentrations over a range of 1.0 x 10 -5 M to 1.0 M. Results indicated that the greatest enhancement of the extraction occurred at a carboxylic acid concentration of 1.0 x 10 -2 M with negative effects occurring at 0.5 M and 1.0 M. The effects on the extraction of the trivalent lanthanides and actinides were interpreted in terms of the structural differences of the carboxylic acids, the effect of the carboxylic acids on the HDNNS extraction mechanism, and the ionic properties of the metals studied

  7. Linear free energy relationship applied to trivalent cations with lanthanum and actinium oxide and hydroxide structure

    International Nuclear Information System (INIS)

    Ragavan, Anpalaki J.

    2006-01-01

    Linear free energy relationships for trivalent cations with crystalline M 2 O 3 and, M(OH) 3 phases of lanthanides and actinides were developed from known thermodynamic properties of the aqueous trivalent cations, modifying the Sverjensky and Molling equation. The linear free energy relationship for trivalent cations is as ΔG f,MvX 0 =a MvX ΔG n,M 3+ 0 +b MvX +β MvX r M 3+ , where the coefficients a MvX , b MvX , and β MvX characterize a particular structural family of MvX, r M 3+ is the ionic radius of M 3+ cation, ΔG f,MvX 0 is the standard Gibbs free energy of formation of MvX and ΔG n,M 3+ 0 is the standard non-solvation free energy of the cation. The coefficients for the oxide family are: a MvX =0.2705, b MvX =-1984.75 (kJ/mol), and β MvX =197.24 (kJ/molnm). The coefficients for the hydroxide family are: a MvX =0.1587, b MvX =-1474.09 (kJ/mol), and β MvX =791.70 (kJ/molnm).

  8. Potential of Live Spirulina platensis on Biosorption of Hexavalent Chromium and Its Conversion to Trivalent Chromium.

    Science.gov (United States)

    Colla, Luciane Maria; Dal'Magro, Clinei; De Rossi, Andreia; Thomé, Antônio; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalga biomass has been described worldwide according their capacity to realize biosorption of toxic metals. Chromium is one of the most toxic metals that could contaminate superficial and underground water. Considering the importance of Spirulina biomass in production of supplements for humans and for animal feed we assessed the biosorption of hexavalent chromium by living Spirulina platensis and its capacity to convert hexavalent chromium to trivalent chromium, less toxic, through its metabolism during growth. The active biomass was grown in Zarrouk medium diluted to 50% with distilled water, keeping the experiments under controlled conditions of aeration, temperature of 30°C and lighting of 1,800 lux. Hexavalent chromium was added using a potassium dichromate solution in fed-batch mode with the aim of evaluate the effect of several additions contaminant in the kinetic parameters of the culture. Cell growth was affected by the presence of chromium added at the beginning of cultures, and the best growth rates were obtained at lower metal concentrations in the medium. The biomass removed until 65.2% of hexavalent chromium added to the media, being 90.4% converted into trivalent chromium in the media and 9.6% retained in the biomass as trivalent chromium (0.931 mg.g(-1)).

  9. Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble, versatile anti-homogalacturonan scFv

    DEFF Research Database (Denmark)

    Manfield, I. W.; Bernal Giraldo, Adriana Jimena; Møller, I.

    2006-01-01

    Antibody phage display is an increasingly important alternative method for the production of monoclonal antibodies (mAbs) and involves the expression of antibody fragments (scFvs) at the surface of bacteriophage particles. We have previously used this technique to generate a phage mAb (PAM1phage...... of the PAM1 mAb, we describe here the production of a phage-free, soluble scFv version of the PAM1 mAb (PAM1scFv). Using the new PAM1scFv probe, the occurrence of the HG epitope recognized can now be localized with high resolution within micro-domains of plant cell walls....

  10. Antibody Modeling and Structure Analysis. Application to biomedical problems.

    OpenAIRE

    Chailyan, Anna

    2013-01-01

    Background The usefulness of antibodies and antibody derived artificial constructs in various medical and biochemical applications has made them a prime target for protein engineering, modelling, and structure analysis. The huge number of known antibody sequences, that far outpaces the number of solved structures, raises the need for reliable automatic methods of antibody structure prediction. Antibodies have a very characteristic molecular structure that is reflected in their modelli...

  11. A novel Fc-engineered human ICAM-1/CD54 antibody with potent anti-myeloma activity developed by cellular panning of phage display libraries.

    Science.gov (United States)

    Klausz, Katja; Cieker, Michael; Kellner, Christian; Oberg, Hans-Heinrich; Kabelitz, Dieter; Valerius, Thomas; Burger, Renate; Gramatzki, Martin; Peipp, Matthias

    2017-09-29

    To identify antibodies suitable for multiple myeloma (MM) immunotherapy, a cellular screening approach was developed using plasma cell lines JK-6L and INA-6 and human synthetic single-chain fragment variable (scFv) phage libraries. Isolated phage antibodies were screened for myeloma cell surface reactivity. Due to its binding characteristics, phage PIII-15 was selected to generate the scFv-Fc fusion protein TP15-Fc with an Fc domain optimized for FcγRIIIa binding. Various MM cell lines and patient-derived CD138-positive malignant plasma cells, but not granulocytes, B or T lymphocytes from healthy donors were recognized by TP15-Fc. Human intercellular adhesion molecule-1 (ICAM-1/CD54) was identified as target antigen by using transfected Chinese hamster ovary (CHO) cells. Of note, no cross-reactivity of TP15-Fc with mouse ICAM-1 transfected cells was detected. TP15-Fc was capable to induce antibody-dependent cell-mediated cytotoxicity (ADCC) against different human plasma cell lines and patients' myeloma cells with peripheral blood mononuclear cells (PBMC) and purified NK cells. Importantly, TP15-Fc showed potent in vivo efficacy and completely prevented growth of human INA-6.Tu1 plasma cells in a xenograft SCID/beige mouse model. Thus, the novel ADCC-optimized TP15-Fc exerts potent anti-myeloma activity and has promising characteristics to be further evaluated for MM immunotherapy.

  12. The effect of age and recent influenza vaccination history on the immunogenicity and efficacy of 2009-10 seasonal trivalent inactivated influenza vaccination in children.

    Directory of Open Access Journals (Sweden)

    Sophia Ng

    Full Text Available There is some evidence that annual vaccination of trivalent inactivated influenza vaccine (TIV may lead to reduced vaccine immunogenicity but evidence is lacking on whether vaccine efficacy is affected by prior vaccination history. The efficacy of one dose of TIV in children 6-8 y of age against influenza B is uncertain. We examined whether immunogenicity and efficacy of influenza vaccination in school-age children varied by age and past vaccination history.We conducted a randomized controlled trial of 2009-10 TIV. Influenza vaccination history in the two preceding years was recorded. Immunogenicity was assessed by comparison of HI titers before and one month after receipt of TIV/placebo. Subjects were followed up for 11 months with symptom diaries, and respiratory specimens were collected during acute respiratory illnesses to permit confirmation of influenza virus infections. We found that previous vaccination was associated with reduced antibody responses to TIV against seasonal A(H1N1 and A(H3N2 particularly in children 9-17 y of age, but increased antibody responses to the same lineage of influenza B virus in children 6-8 y of age. Serological responses to the influenza A vaccine viruses were high regardless of vaccination history. One dose of TIV appeared to be efficacious against confirmed influenza B in children 6-8 y of age regardless of vaccination history.Prior vaccination was associated with lower antibody titer rises following vaccination against seasonal influenza A vaccine viruses, but higher responses to influenza B among individuals primed with viruses from the same lineage in preceding years. In a year in which influenza B virus predominated, no impact of prior vaccination history was observed on vaccine efficacy against influenza B. The strains that circulated in the year of study did not allow us to study the effect of prior vaccination on vaccine efficacy against influenza A.

  13. Characterization of the sorption behavior of trivalent actinides on zirconium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Eibl, Manuel; Huittinen, Nina [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Virtanen, S.; Merilaeinen, S.; Lehto, J. [Helsinki Univ. (Finland); Rabung, T. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The uptake of trivalent Eu and Cm on zirconium(IV) oxide was investigated in batch sorption and TRLFS studies, respectively. Sorption of Eu{sup 3+} was found to start at a pH-value of 4. Based on TRLFS results, sorption of Cm{sup 3+} was assigned to occur through innersphere complex formation at the zirconia surface. A deconvolution of the TRLFS emission spectra gave three different sorption species with strong red-shifts of the peak positions (600.3 nm, 604.3 nm and 608.2 nm) compared to similar systems.

  14. Origin of the fluorescence of trivalent europium inclusions in ZnS matrices

    International Nuclear Information System (INIS)

    Charreire, Yves; Loriers, Jean

    1977-01-01

    The red fluorescence of trivalent europium associated in zinc sulfide with another but optically inactive lanthanide ion (La, Gd) originates from rare earth oxysulfide inclusions, that are always formed during the preparation of the compounds. This interpretation results from the examination of the materials by X-ray diffraction, optical and electronic microscopy and from the study of their absorption, excitation and luminescence spectra. It allows one to understand some of the observed properties, which were left unexplained by the assumption that the Eu 3+ ions enter the ZnS crystal lattice [fr

  15. Current strategic thinking for the development of a trivalent alphavirus vaccine for human use.

    Science.gov (United States)

    Wolfe, Daniel N; Heppner, D Gray; Gardner, Shea N; Jaing, Crystal; Dupuy, Lesley C; Schmaljohn, Connie S; Carlton, Kevin

    2014-09-01

    Vaccinations against the encephalitic alphaviruses (western, eastern, and Venezuelan equine encephalitis virus) are of significant interest to biological defense, public health, and agricultural communities alike. Although vaccines licensed for veterinary applications are used in the Western Hemisphere and attenuated or inactivated viruses have been used under Investigational New Drug status to protect at-risk personnel, there are currently no licensed vaccines for use in humans. Here, we will discuss the need for a trivalent vaccine that can protect humans against all three viruses, recent progress to such a vaccine, and a strategy to continue development to Food and Drug Administration licensure. © The American Society of Tropical Medicine and Hygiene.

  16. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Douillet, Christelle [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Currier, Jenna [Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Saunders, Jesse [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Bodnar, Wanda M. [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431 (United States); Matoušek, Tomáš [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); Stýblo, Miroslav, E-mail: styblo@med.unc.edu [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States)

    2013-02-15

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} or DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of

  17. Synthesis and structural studies of some trivalent lanthanide complexes of isonicotinic acid hydrazide

    International Nuclear Information System (INIS)

    Rao, T.R.; Khan, I.A.; Aggarwal, R.C.

    1985-01-01

    Trivalent lanthanides have been found to form complexes with isonicotinic acid hydrazide (INH) of the type M(INH) 3 X 3 [X=Cl, SCN; M=La(III), Pr(III), Nd(III), Sm(III) and Gd(III)]. The complexes have been characterized by elemental analysis, molar conductance, magnetic susceptibility, infrared and electronic spectral studies. The nephelauxetic ratio (β), covalency (δ) and bonding parameter (b 1/1 ) have been calculated from the electronic spectra. Infrared spectral studies reveal that INH acts as a neutral bidentate chelating ligand in all the complexes and that thiocyanate is N-bonded. (author)

  18. Antibody biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... and automated, the hybrid cells can be stored for many years in liquid nitrogen and antibodies production is homogeneous. The hybridoma method .... they may be modified to vehicle active molecules such as radio-isotopes, toxins, cytokines, enzyme etc. In these cases, the therapeutic effect is due to ...

  19. Catalytic Antibodies

    Indian Academy of Sciences (India)

    The ability of the highly evolved machinery of immune system to produce structurally and functionally complex ... to Pauling, if the structure of the antigen binding site of antibodies were to be produced in a random ..... where the immune system of the body is destructive, as in autoimmune disorders or after organ transplant.

  20. Catalytic Antibodies

    Indian Academy of Sciences (India)

    While chemistry provides the framework for understanding the structure and function of biomolecules, the immune sys- tem provides a highly evolved natural process to generate one class of complex biomolecules – the antibodies. A combination of the two could be exploited to generate new classes of molecules with novel ...

  1. Efficient In Vitro and In Vivo Activity of Glyco-Engineered Plant-Produced Rabies Monoclonal Antibodies E559 and 62-71-3.

    Directory of Open Access Journals (Sweden)

    Tsepo Lebiletsa Tsekoa

    Full Text Available Rabies is a neglected zoonotic disease that has no effective treatment after onset of illness. However the disease can be prevented effectively by prompt administration of post exposure prophylaxis which includes administration of passive immunizing antibodies (Rabies Immune Globulin, RIG. Currently, human RIG suffers from many restrictions including limited availability, batch-to batch inconsistencies and potential for contamination with blood-borne pathogens. Anti-rabies monoclonal antibodies (mAbs have been identified as a promising alternative to RIG. Here, we applied a plant-based transient expression system to achieve rapid, high level production and efficacy of the two highly potent anti-rabies mAbs E559 and 62-71-3. Expression levels of up to 490 mg/kg of recombinant mAbs were obtained in Nicotiana benthamiana glycosylation mutants by using a viral based transient expression system. The plant-made E559 and 62-71-3, carrying human-type fucose-free N-glycans, assembled properly and were structurally sound as determined by mass spectrometry and calorimetric density measurements. Both mAbs efficiently neutralised diverse rabies virus variants in vitro. Importantly, E559 and 62-71-3 exhibited enhanced protection against rabies virus compared to human RIG in a hamster model post-exposure challenge trial. Collectively, our results provide the basis for the development of a multi-mAb based alternative to RIG.

  2. Analysis of trivalent cation complexation to functionalized mesoporous silica using solid-state NMR spectroscopy.

    Science.gov (United States)

    Shusterman, Jennifer; Mason, Harris; Bruchet, Anthony; Zavarin, Mavrik; Kersting, Annie B; Nitsche, Heino

    2014-11-28

    Functionalized mesoporous silica has applications in separations science, catalysis, and sensors. In this work, we studied the fundamental interactions of trivalent cations with functionalized mesoporous silica. We contacted trivalent cations of varying ionic radii with N-[5-(trimethoxysilyl)-2-aza-1-oxopentyl]caprolactam functionalized mesoporous silica with the aim of probing the binding mechanism of the metal to the surface of the solid. We studied the functionalized silica using solid-state nuclear magnetic resonance (NMR) spectroscopy before and after contact with the metals of interest. We collected NMR spectra of the various metals, as well as of (29)Si and (13)C to probe the silica substrate and the ligand properties, respectively. The NMR spectra indicate that the metals bind to the functionalized silica via two mechanisms. Aluminum sorbed to both the silica and the ligand, but with different coordination for each. Scandium also sorbed to both the silica and the ligand, and unlike the aluminum, had the same coordination number. Additionally, the functionalized silica was susceptible to acid hydrolysis and two primary mechanisms of degradation were observed: detachment from the silica surface and opening of the seven-membered ring in the ligand. Opening of the seven-membered ring may be beneficial in that it decreases steric hindrance of the molecule for binding.

  3. Identification of Pyridinoline Trivalent Collagen Cross-Links by Raman Microspectroscopy.

    Science.gov (United States)

    Gamsjaeger, Sonja; Robins, Simon P; Tatakis, Dimitris N; Klaushofer, Klaus; Paschalis, Eleftherios P

    2017-06-01

    Intermolecular cross-linking of bone collagen is intimately related to the way collagen molecules are arranged in a fibril, imparts certain mechanical properties to the fibril, and may be involved in the initiation of mineralization. Raman microspectroscopy allows the analysis of minimally processed bone blocks and provides simultaneous information on both the mineral and organic matrix (mainly type I collagen) components, with a spatial resolution of ~1 μm. The aim of the present study was to validate Raman spectroscopic parameters describing one of the major mineralizing type I trivalent cross-links, namely pyridinoline (PYD). To achieve this, a series of collagen cross-linked peptides with known PYD content (as determined by HPLC analysis), human bone, porcine skin, predentin and dentin animal model tissues were analyzed by Raman microspectroscopy. The results of the present study confirm that it is feasible to monitor PYD trivalent collagen cross-links by Raman spectroscopic analysis in mineralized tissues, exclusively through a Raman band ~1660 wavenumbers. This allows determination of the relative PYD content in undecalcified bone tissues with a spatial resolution of ~1 μm, thus enabling correlations with histologic and histomorphometric parameters.

  4. New trivalent ion conducting solid electrolyte with the NASICON type structure

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y.; Tamura, S.; Imanaka, N.; Adachi, G

    2004-10-06

    New trivalent ion conducting solid electrolytes with NASICON type structure, [(Ce{sub 1-x}La{sub x}){sub 0.1}Zr{sub 0.9}]{sub 40/39}Nb(PO{sub 4}){sub 3}, were successfully developed and their ion conducting behaviors were investigated. Among the [(Ce{sub 1-x}La{sub x}){sub 0.1}Zr{sub 0.9}]{sub 40/39}Nb(PO{sub 4}){sub 3} series prepared, the highest ion conductivity was obtained for [(Ce{sub 1-x}La{sub x}){sub 0.1}Zr{sub 0.9}]{sub 40/39}Nb(PO{sub 4}){sub 3} (x=0.8). The trivalent ion conductivity was approximately four times higher than that of cerium (Ce{sup 3+}) ion conducting (Ce{sub 0.1}Zr{sub 0.9}){sub 40/39}Nb(PO{sub 4}){sub 3}, and the values exceeded the region of the representative divalent oxide anion conductors such as yttria stabilized zirconia (YSZ) and calcia stabilized zirconia (CSZ) at temperatures below 500 deg. C.

  5. Cu L 3 x-ray absorption of formally trivalent Cu compounds

    Science.gov (United States)

    Bianconi, A.; Budnick, J.; Demazeau, G.; Flank, A. M.; Fontaine, A.; Lagarde, P.; Jegoudez, J.; Revcolevski, A.; Marcelli, A.; Verdaguer, M.

    1988-06-01

    The Cu L 3 X-ray Absorption Spectra (XAS) of formally trivalent Cu compounds NaCuO 2, La 2Li 0.5Cu 0.5O 4, and KCu(III)(biuret) 2 have been measured. The spectra of trivalent systems exhibit two white lines. The low energy white line is found to be at about the same energy, between 930.9 eV and 931.2 eV on the contrary the high energy white line in the range between 933 eV and 933.9 eV is dependent on the chemical bond and it is assigned to the 3d 9L initial state. The joint analysis of the Cu 2p XPS and XAS spectra of NaCuO 2 shows that both white lines are below the XPS main line 3d 10L2 and the energy separation between the XAS(3d 10L) and the XPS (3d 10L2) final state Δ = 1.7 ± 0.2eV is related to the energy for excitation of a ligand hole.

  6. Biochemical and Hematological Profiles of Common Carp (Cyprinus Carpio under Sublethal Effects of Trivalent Chromium

    Directory of Open Access Journals (Sweden)

    Zeynab Abedi

    2016-07-01

    Full Text Available Background: In natural waters and/or aquaculture facilities, fish are often exposed to chromium waste and demonstrate cumulative deleterious effects. To our knowledge, there are no studies concerning the effects of trivalent Cr on C. carpio hematology. This study presents hematological and some biochemical parameters of common carp, Cyprinus carpio, affected by sublethal concentration of trivalent chromium. Methods: The fish in the experimental aquaria (three replicates each were exposed to a sublethal chromium chloride concentration of 2 mg L−1, which was prepared as stock solution and added depending on the volume of the aquaria to obtain the required concentration. After a period of 28 days, parameters such as hematocrit (Hct, hemoglobin (Hb, lymphocytes (Lym, neutrophils (Neu, total protein (TP, albumin, immunoglobulin M (IgM, glucose, red and white blood cells (RBC and WBC, mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, and mean corpuscular hemoglobin concentration (MCHC were examined. Results: Chromium exposure for 28 days significantly (P0.05 between the Cr-exposed fish and the control. Conclusion: Hematological indices of fish, caused by chromium toxicity to C. carpio, can be secondary responses to toxicants, including exposure to low concentrations of heavy metals, which reflect the launch of stress reaction in the affected fish.

  7. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  8. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D.; Treu-Filho, O.; Bannach, G.

    2014-01-01

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L) 3 , in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand

  9. Preparation of γ-immunoglobulins coupled with DTPA and their labelling with trivalent metal radionuclides for radiotherapy

    International Nuclear Information System (INIS)

    Rekova, M.; Miler, V.; Budsky, F.; Malek, Z.; Prokop, J.; Prazak, Z.

    2007-06-01

    The scope of the report is as follows: immunoglobulin coupling with cDTPAA and labelling of the conjugate with 90 Y; Acid-base and complexation equilibria in the coupled immunoglobulin solution; Theory of the complex equilibrium of yttrium between coupled immunoglobulin and EDTA; and Procedures and results of recent experiments. The following was achieved: (i) The dependence of the bovine immunoglobulin on the cDTPAA/IgG coupling ratio and immunoglobulin concentration was obtained; (ii) A procedure aimed to free phosphate buffer from ubiquitous trivalent cations was tested; (iii) The procedure of lyophilization of coupled bovine IgG-DTPA in a phosphate buffer at pH 7.34 and I = 0.16 mol.l -1 .was elaborated. (iv) A procedure for lyophilization of the coupled CD20 monoclonal antibody in the same phosphate buffer was elaborated. (v) Acid-base and complexation equilibria were calculated for citrate and phosphate buffer solutions in the presence of coupled immunoglobulin. ( vi) A theory of the complexation equilibrium of yttrium between coupled immunoglobulin and EDTA was developed. (vii) Experiments were performed leading to the determination of a so far unknown constant of complexity of yttrium to DTPA coupled to immunoglobulin; its 3rd and 4th dissociation constants. (viii) The method sub (vii) can be applied to the determination of the complexity constants of other radionuclides with DTPA coupled to immunoglobulin; the 3rd and 4th dissociation constants of IgG-DTPA will not have to be sought any more. (ix) Samples of lyophilizate of the Y-CD20-DTPA complex can be sent to the biochemical laboratory for immunoreactivity determination. (x) Lyophilizates from experiments (iv-vi) are stored in a refrigerator at 4 deg C to be used for labelling with 177 Lu. (xi) The results obtained can be used to plan an experiment with CD20 in which a specific radioactivity of 400 MBq 177 Lu per mg CD20 will be achieved. (P.A.)

  10. A trivalent Apx-fusion protein delivered by E. coli outer membrane vesicles induce protection against Actinobacillus pleuropneumoniae of serotype 1 and 7 challenge in a murine model.

    Science.gov (United States)

    Xu, Kui; Zhao, Qin; Wen, Xintian; Wu, Rui; Wen, Yiping; Huang, Xiaobo; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Chang, Yung-Fu; Cao, Sanjie

    2018-01-01

    Actinobacillus pleuropneumoniae (APP) causes serious economic losses in the swine industry, and is the etiologic agent of porcine pleuropneumonia. In this study we have engineered a trivalent Apx fusion protein enclosed in outer membrane vesicles (Apxr-OMV) and studied its immunoprotective efficacy against APP serotypes 1 and 7 challenge in mice. The results showed that the IgG levels in the Apxr-OMVs immune group were significantly higher than those of the negative control (P < 0.05). Up-regulation of both Th1 (IFN-γ, IL-2) and Th2 (IL-4) cytokines were detected in splenocytes of Apxr-OMVs immune group. The survival rates 87.5% and 62.5% were observed against APP strain 1516 of serotype 7 and APP strain 2701 of serotype 1 in the groups of Apxr-OMVs immune group, respectively. Histopathological lesions of the pulmonary structure alveoli were found to be minimal in APX-OMV group challenged with APP serotypes 1 and 7. These results strongly indicated that engineered OMVs could effectively induce specific humoral or cellular immune responses. Moreover, Apxr-OMVs used as novel vaccine provides cross-protective immunity against different serotype 1 and 7 of APP infection in a mouse model. In contrast, the OMV-empty and PBS as negative controls or inactivated strain of APP-2701 and APP-1516 as positive controls for the animal study cannot provide protection or cross-protection.

  11. Single Dose Trivalent Vesiculovax Vaccine Protects Macaques from Lethal Ebolavirus and Marburgvirus Challenge.

    Science.gov (United States)

    Matassov, Demetrius; Mire, Chad E; Latham, Theresa; Geisbert, Joan B; Xu, Rong; Ota-Setlik, Ayuko; Agans, Krystle N; Kobs, Dean J; Wendling, Morgan Q S; Burnaugh, Amanda; Rudge, Thomas L; Sabourin, Carol L; Egan, Michael A; Clarke, David K; Geisbert, Thomas W; Eldridge, John H

    2017-11-15

    Previous studies demonstrated that a single intramuscular (IM) dose of an attenuated vesicular stomatitis virus vector (Vesiculovax™, rVSV-N4CT1) expressing the glycoprotein (GP) from the Mayinga strain of Zaire ebolavirus (EBOV) protected nonhuman primates (NHP) from lethal challenge with EBOV Kikwit and Makona strains. Here we studied the immunogenicity of an expanded range of attenuated rVSV vectors expressing filovirus GP in mice. Based on data from those studies an optimal attenuated tri-valent rVSV vector formulation was identified which included rVSV vectors expressing EBOV , Sudan ebolavirus (SUDV) or Angola strain of Marburg marburgvirus (MARV) GPs. NHPs were then vaccinated with a single dose of the tri-valent formulation, followed by lethal challenge 28 days later with each of the three corresponding filoviruses. At day 14 post vaccination, a serum IgG response specific for all three GPs was detected in all vaccinated macaques. A modest and balanced cell-mediated immune response specific for each GP protein was also detected in a majority of vaccinated macaques. No matter the level of total GP-specific immune response detected post vaccination, all vaccinated macaques were protected from disease and death following lethal challenge with each of the three filoviruses. These findings indicate that vaccination with a single dose of attenuated rVSV-N4CT1 vectors each expressing a single filovirus GP may provide protection against those filoviruses most commonly responsible for outbreaks of hemorrhagic fever in sub-Saharan Africa. IMPORTANCE The West African Ebola Zaire outbreak in 2013 showed that this disease was not only a regional concern, but a worldwide problem and highlighted the need for a safe and efficacious vaccine to be administered to the populace. However, other endemic pathogens like Ebola Sudan and Marburg also pose an important health risk to the public and therefore require development of a vaccine prior to the occurrence of an outbreak

  12. The cost-effectiveness of trivalent and quadrivalent influenza vaccination in communities in South Africa, Vietnam and Australia

    NARCIS (Netherlands)

    de Boer, Pieter T.; Kelso, Joel K.; Haider, Nilimesh; Thi-Phuong-Lan Nguyen,; Moyes, Jocelyn; Cohen, Cheryl; Barr, Ian G.; Postma, Maarten J.; Milne, George J.

    2018-01-01

    provide better value for money than trivalent influenza vaccines (TIVs), we assessed the cost-effectiveness of TIV and QIV in low-and-middle income communities based in South Africa and Vietnam and contrasted these findings with those from a high-income community in Australia. Methods: Individual

  13. Cost-utility of quadrivalent versus trivalent influenza vaccine in Brazil – comparison of outcomes from different static model types

    Directory of Open Access Journals (Sweden)

    Laure-Anne Van Bellinghen

    2018-01-01

    Conclusion: All three models predicted a cost per quality-adjusted life year gained for quadrivalent versus trivalent influenza vaccine in the range of R$19,257 (FLORENCE to R$22,768 (FLORA with the best available data in Brazil (Appendix A.

  14. Shearing and compression behavior of end-grafted polyelectrolyte brushes with mono- and trivalent counterions: a molecular dynamics simulation

    International Nuclear Information System (INIS)

    Cao, Qianqian; Zuo, Chuncheng; Li, Lujuan; He, Hongwei

    2010-01-01

    We investigate polyelectrolytes end-grafted on two apposing walls using molecular dynamics simulation techniques. Monovalent and trivalent counterions are explicitly treated. Under normal compression, the osmotic pressure is examined in detail by decomposing it into various virial terms. It has been found that at small wall separations the increase in the osmotic pressure can be ascribed to the increase in the short-range virial term. At large wall separations, a negative osmotic pressure is observed in trivalent systems. Moreover, we study the effect of lateral shear on the density profiles of monomers and counterions, the net charge distribution, the local pressure tensor, the degree of interpenetration and the friction coefficient. At large shear ratios, the electrostatic interactions are weakened at the interface between two brushes. It is worth noting that although the magnitudes of the normal and shear stress components for the trivalent case are significantly lesser than those for the monovalent case, the friction coefficient is larger in the trivalent systems

  15. Fate of trivalent chromium in presence of organic acids - a hydroponic study on soyabean plant using radiotracer

    International Nuclear Information System (INIS)

    Srivastava, Sonal; Prakash, Satya; Srivastava, M.M.

    1999-01-01

    Hydroponic experiments have been conducted to examine the uptake and translocation of root absorbed trivalent chromium in the presence of organic acid supplementation. Statistically significant increase in chromium accumulation in various plant tissues with increasing concentration of organic acids has been observed. Potentiality of organic acids to form labile organically bound Cr III is explored. (author)

  16. Biophysical characterization of antibodies with isothermal titration calorimetry

    Directory of Open Access Journals (Sweden)

    Verna Frasca

    2016-07-01

    Full Text Available Antibodies play a key role in the immune response. Since antibodies bind antigens with high specificity and tight affinity, antibodies are an important reagent in experimental biology, assay development, biomedical research and diagnostics. Monoclonal antibodies are therapeutic drugs and used for vaccine development. Antibody engineering, biophysical characterization, and structural data have provided a deeper understanding of how antibodies function, and how to make better drugs. Isothermal titration calorimetry (ITC is a label-free binding assay, which measures affinity, stoichiometry, and binding thermodynamics for biomolecular interactions. When thermodynamic data are used together with structural and kinetic data from other assays, a complete structure-activity-thermodynamics profile can be constructed. This review article describes ITC, and discusses several applications on how data from ITC provides insights into how antibodies function, guide antibody engineering, and aid design of new therapeutic drugs.

  17. Polo-like kinase inhibitor volasertib marginally enhances the efficacy of the novel Fc-engineered anti-CD33 antibody BI 836858 in acute myeloid leukemia

    Science.gov (United States)

    Gopalakrishnan, Bhavani; Cheney, Carolyn; Mani, Rajeswaran; Mo, Xiaokui; Bucci, Donna; Walker, Alison; Klisovic, Rebecca; Bhatnagar, Bhavana; Walsh, Katherine; Rueter, Bjoern; Waizenegger, Irene C.; Heider, Karl-Heinz; Blum, William; Vasu, Sumithira; Muthusamy, Natarajan

    2018-01-01

    Acute myeloid leukemia (AML) is the second most common type of leukemia in adults. Incidence of AML increases with age with a peak incidence at 67 years. Patients older than 60 years have an unfavorable prognosis due to resistance to conventional chemotherapy. Volasertib (BI 6727) is a cell-cycle regulator targeting polo-like kinase which has been evaluated in clinical trials in AML. We evaluated effects of volasertib in primary patient samples and NK cells. At equivalent doses, volasertib is cytotoxic to AML blasts but largely spares healthy NK cells. We then evaluated the effect of volasertib treatment in combination with BI 836858 on primary AML blast samples using antibody-dependent cellular cytotoxicity (ADCC) assays. Volasertib treatment of NK cells did not impair NK function as evidenced by comparable levels of BI 836858 mediated ADCC in both volasertib-treated and control-treated NK cells. In summary, volasertib is cytotoxic to AML blasts while sparing NK cell viability and function. Higher BI 836858 mediated ADCC was observed in patient samples pretreated with volasertib. These findings provide a strong rationale to test combination of BI 836858 and volasertib in AML. PMID:29515764

  18. The future of antibodies as cancer drugs.

    Science.gov (United States)

    Reichert, Janice M; Dhimolea, Eugen

    2012-09-01

    Targeted therapeutics such as monoclonal antibodies (mAbs) have proven successful as cancer drugs. To profile products that could be marketed in the future, we examined the current commercial clinical pipeline of mAb candidates for cancer. Our analysis revealed trends toward development of a variety of noncanonical mAbs, including antibody-drug conjugates (ADCs), bispecific antibodies, engineered antibodies and antibody fragments and/or domains. We found substantial diversity in the antibody sequence source, isotype, carbohydrate residues, targets and mechanisms of action (MOA). Although well-validated targets, such as epidermal growth factor receptor (EGFR) and CD20, continue to provide opportunities for companies, we found notable trends toward targeting less-well-validated antigens and exploration of innovative MOA such as the generation of anticancer immune responses or recruitment of cytotoxic T cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  20. Separation of trivalent americium and europium by purified Cyanex 301 immobilized in macro porous polymer

    International Nuclear Information System (INIS)

    Jing Chen; Veltkamp, A.C.; Booij, A.S.

    2002-01-01

    High separation ability of purified Cyanex 301 towards trivalent americium over europium in liquid-liquid extraction is confirmed. Solvent 2-nitrophenyl octyl ether (NPOE) lowered the partitioning of Am 3+ but remained the separation ability over europium. Solvent toluene and 3-octanone lowered the separation factor to ∼ 1000. It is feasible to separate Am 3+ from Eu 3+ by Cyanex 301 which was immobilized in the macro porous polymer (MPP). 3-Octanone is a suitable solvent for dissolving NH 4 OH-saponified Cyanex 301 and MPP is a suitable solid supported material for column operation. A five-step column experiment demonstrated the feasibility to separate Am 3+ from Eu 3+ in column which was packed with Cyanex 301-impregnated MPP. (author)

  1. Carbon nanotubes doped with trivalent elements by using back - scattering Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    S. A. Babanejad

    2008-12-01

    Full Text Available  In this paper by using DC arc discharge method and acetylene gas, as the carbon source, and nitrogen, as the carrier gas, canrbon nanotubes, CNTs, doped with trivalent element boron, B, have been produced. The deposited CNTs on the cathod electrod, which have structural doped properties to boron element, have been collected and after purification have been investigated by back-scattering Raman spectroscopy. The results reveal that the high frequency G mode component in CNTs doped with electron acceptor element, B, shift to higher wavenumbers. The low frequency G mode component which can appear at approximately 1540–1570 cm-1 wavenumber region, called BWF mode, is a sign of metallic CNT. In the synthesized doped CNTs due to the presence of boron dopant, D mode has sharp peaks and has relatively high intensity in the Raman spectra .

  2. Magnesium ionophore II as an extraction agent for trivalent europium and americium

    Energy Technology Data Exchange (ETDEWEB)

    Makrlik, Emanuel [Czech Univ. of Life Sciences, Prague (Czech Republic). Faculty of Environmental Sciences; Vanura, Petr [Univ. of Chemistry and Technology, Prague (Czech Republic). Dept. of Analytical Chemistry

    2016-11-01

    Solvent extraction of microamounts of trivalent europium and americium into nitrobenzene by using a mixture of hydrogen dicarbollylcobaltate (H{sup +}B{sup -}) and magnesium ionophore II (L) was studied. The equilibrium data were explained assuming that the species HL{sup +}, HL{sup +}{sub 2}, ML{sup 3+}{sub 2}, and ML{sup 3+}{sub 3} (M{sup 3+} = Eu{sup 3+}, Am{sup 3+}; L=magnesium, ionophore II) are extracted into the nitrobenzene phase. Extraction and stability constants of the cationic complex species in nitrobenzene saturated with water were determined and discussed. From the experimental results it is evident that this effective magnesium ionophore II receptor for the Eu{sup 3+} and Am{sup 3+} cations could be considered as a potential extraction agent for nuclear waste treatment.

  3. VHH Antibodies: Reagents for Mycotoxin Detection in Food Products

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2018-02-01

    Full Text Available Mycotoxins are the toxic secondary metabolites produced by fungi and they are a worldwide public health concern. A VHH antibody (or nanobody is the smallest antigen binding entity and is produced by heavy chain only antibodies. Compared with conventional antibodies, VHH antibodies overcome many pitfalls typically encountered in clinical therapeutics and immunodiagnostics. Likewise, VHH antibodies are particularly useful for monitoring mycotoxins in food and feedstuffs, as they are easily genetic engineered and have superior stability. In this review, we summarize the efforts to produce anti-mycotoxins VHH antibodies and associated assays, presenting VHH as a potential tool in mycotoxin analysis.

  4. Review of 10 years of clinical experience with Chinese domestic trivalent influenza vaccine Anflu®.

    Science.gov (United States)

    Liu, Yan; Wu, Jun-Yu; Wang, Xu; Chen, Jiang-Ting; Xia, Ming; Hu, Wei; Zou, Yong; Yin, Wei-Dong

    2014-01-01

    Influenza viruses cause annual winter epidemics globally and influenza vaccination is most effective way to prevent the disease or severe outcomes from the illness, especially in developing countries. However, the majority of the world's total production capacity of influenza vaccine is concentrated in several large multinational manufacturers. A safe and effective preventive vaccine for the developing countries is urgent. Anflu®, a Chinese domestic preservative-free, split-virus trivalent influenza vaccine (TIV), was introduced by Sinovac Biotech Ltd. in 2006. Until now, 20.6 million doses worldwide of Anflu® were sold. Since 2003, 13 company-sponsored clinical studies investigating the immunogenicity and safety of Anflu® have been completed, in which 6642 subjects participated and were vaccinated by Anflu®. Anflu® was generally well tolerated in all age groups, and highly immunogenic in healthy adults and elderly and exceeded the licensure criteria in Europe. This review presents and discusses the experience with Anflu® during the past decade. A new Chinese domestic, preservative-free, unadjuvanted, inactivated split-virus trivalent influenza vaccine (TIV), Anflu®, was introduced into human clinical trials in 2003 and then licensed in China in 2006. The vaccine contains 15 µg/0.5 ml hemagglutinin from each of the 3 influenza virus strains (including an H1N1 influenza A virus subtype, an H3N2 influenza A virus subtype, and an influenza B virus) that are expected to be circulating in the up-coming influenza season. The clinical data pertaining to Anflu® will be reviewed and compared with other TIVs available at present.

  5. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    Science.gov (United States)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  6. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria.

    Science.gov (United States)

    Vaks, Lilach; Benhar, Itai

    2011-01-01

    The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus there is an urgent need to develop new antimicrobial agents. To be effective, these new antimicrobials should possess novel modes of action and/or different cellular targets compared with existing antibiotics. Bacteriophages (phages) have been used for over a century as tools for the treatment of bacterial infections, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. We describe a new application in the area of antibacterial nanomedicines where filamentous phages can be formulated as targeted drug-delivery vehicles of nanometric dimensions (phage nanomedicines) and used for therapeutic purposes. This protocol involves both genetic and chemical engineering of these phages. The genetic engineering of the phage coat, which results in the display of a target-specificity-conferring peptide or protein on the phage coat, can be used to design the drug-release mechanism and is not described herein. However, the methods used to chemically conjugate cytotoxic drugs at high density on the phage coat are described. Further, assays to measure the drug load on the surface of the phage and the potency of the system in the inhibition of growth of target cells as well as assessment of the therapeutic potential of the phages in a mouse disease model are discussed.

  7. The research progress and medicine application of the ScFv antibody

    International Nuclear Information System (INIS)

    Qin Lili; Zhang Chunming

    2005-01-01

    Since the scholar of England and Japan had found the diphtheria antitoxin, the research of the antibody has experienced three phases: polyclonal antibodies, monoclonal antibodies and genetically engineered antibodies. In recent years, far more attention has been paid to single-chain antibody by researchers owing to it's small molecular, strong ability of penetration, short half-lives in blood, high specificity to combine with the corresponding antibody, weak immunogenicity and possibility to be expressed in prokaryocyte. (authors)

  8. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells.

    Science.gov (United States)

    Estupina, Pauline; Fontayne, Alexandre; Barret, Jean-Marc; Kersual, Nathalie; Dubreuil, Olivier; Le Blay, Marion; Pichard, Alexandre; Jarlier, Marta; Pugnière, Martine; Chauvin, Maëva; Chardès, Thierry; Pouget, Jean-Pierre; Deshayes, Emmanuel; Rossignol, Alexis; Abache, Toufik; de Romeuf, Christophe; Terrier, Aurélie; Verhaeghe, Lucie; Gaucher, Christine; Prost, Jean-François; Pèlegrin, André; Navarro-Teulon, Isabelle

    2017-06-06

    Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10-11 M vs 7.9 × 10-10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was

  9. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants.

    Science.gov (United States)

    Grimes, Travis S; Heathman, Colt R; Jansone-Popova, Santa; Ivanov, Alexander S; Roy, Santanu; Bryantsev, Vyacheslav S; Zalupski, Peter R

    2018-02-05

    The novel metal chelator N-2-(pyridylmethyl)diethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am 3+ , Cm 3+ , and Ln 3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalent europium is found in mixtures containing EuHL (aq) complexes at the same aqueous acidity. The denticity change observed for Eu 3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL (aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am 3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am 3+ , Cm 3+ ) and trivalent lanthanide chelates (La 3+ -Lu 3+ ) are observed in liquid-liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA-PyM as an aqueous holdback reagent. In addition, the enhanced nitrogen-donor softness of the new DTTA-PyM chelator was perturbed by

  10. Influence of a Heterocyclic Nitrogen-Donor Group on the Coordination of Trivalent Actinides and Lanthanides by Aminopolycarboxylate Complexants

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heathman, Colt R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jansone-Popova, Santa [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Alexander S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roy, Santanu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryantsev, Vyacheslav S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zalupski, Peter R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-01-05

    Here, the novel metal chelator N-2-(pyridylmethyl)diethylenetriamine-N,N',N",N"-tetraacetic acid (DTTA-PyM) was designed to replace a single oxygen-donor acetate group of the well-known aminopolycarboxylate complexant diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA) with a nitrogen-donor 2-pyridylmethyl. Potentiometric, spectroscopic, computational, and radioisotope distribution methods show distinct differences for the 4f and 5f coordination environments and enhanced actinide binding due to the nitrogen-bearing heterocyclic moiety. The Am3+, Cm3+, and Ln3+ complexation studies for DTTA-PyM reveal an enhanced preference, relative to DTPA, for trivalent actinide binding. Fluorescence studies indicate no changes to the octadentate coordination of trivalent curium, while evidence of heptadentate complexation of trivalent europium is found in mixtures containing EuHL(aq) complexes at the same aqueous acidity. The denticity change observed for Eu3+ suggests that complex protonation occurs on the pyridyl nitrogen. Formation of the CmHL(aq) complex is likely due to the protonation of an available carboxylate group because the carbonyl oxygen can maintain octadentate coordination through a rotation. The observed suppressed protonation of the pyridyl nitrogen in the curium complexes may be attributed to stronger trivalent actinide binding by DTTA-PyM. Density functional theory calculations indicate that added stabilization of the actinide complexes with DTTA-PyM may originate from π-back-bonding interactions between singly occupied 5f orbitals of Am3+ and the pyridyl nitrogen. The differences between the stabilities of trivalent actinide chelates (Am3+, Cm3+) and trivalent lanthanide chelates (La3+–Lu3+) are observed in liquid–liquid extraction systems, yielding unprecedented 4f/5f differentiation when using DTTA

  11. Antibodies: an alternative for antibiotics?

    Science.gov (United States)

    Berghman, L R; Abi-Ghanem, D; Waghela, S D; Ricke, S C

    2005-04-01

    In 1967, the success of vaccination programs, combined with the seemingly unstoppable triumph of antibiotics, prompted the US Surgeon General to declare that "it was time to close the books on infectious diseases." We now know that the prediction was overly optimistic and that the fight against infectious diseases is here to stay. During the last 20 yr, infectious diseases have indeed made a staggering comeback for a variety of reasons, including resistance against existing antibiotics. As a consequence, several alternatives to antibiotics are currently being considered or reconsidered. Passive immunization (i.e., the administration of more or less pathogen-specific antibodies to the patient) prior to or after exposure to the disease-causing agent is one of those alternative strategies that was almost entirely abandoned with the introduction of chemical antibiotics but that is now gaining interest again. This review will discuss the early successes and limitations of passive immunization, formerly referred to as "serum therapy," the current use of antibody administration for prophylaxis or treatment of infectious diseases in agriculture, and, finally, recent developments in the field of antibody engineering and "molecular farming" of antibodies in various expression systems. Especially the potential of producing therapeutic antibodies in crops that are routine dietary components of farm animals, such as corn and soy beans, seems to hold promise for future application in the fight against infectious diseases.

  12. Study of FAO/IAEA/PANAFTOSA ELISA kit for the detection of antibodies against FMD

    International Nuclear Information System (INIS)

    Ravison, J.A.; Andrade Goncalves, D. de; Souza, R. de

    1998-01-01

    Two groups of sera were used to evaluate a liquid phase blocking ELISA (LPBE) for the detection of antibody against foot-and-mouth disease virus. One hundred and twenty sera, from animals with no previous history of FMD infection or vaccination, were analyzed by screening assay at a final dilution of 1:32. A second group of 120 sera, from animals vaccinated with an oil trivalent vaccine (O, A, C) were tested by titration in the LPBE. All the sera were tested against virus of three FMD serotypes, using O 1 Campos, A 24 Cruzeiro, C 3 Indaial virus strains. (author)

  13. Nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in olefin metathesis: a computational study.

    Science.gov (United States)

    Pazio, A; Woźniak, K; Grela, K; Trzaskowski, B

    2015-12-14

    We used the density functional theory to evaluate the suitability of nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in ruthenium-based metathesis catalysts. We demonstrate that these analogues induce only minor structural changes in Hoveyda-Grubbs-like precatalysts, but have major impact on precatalyst initiation. Nitrenium ion-modified precatalysts are characterized by a weak Ru-N bond resulting in a relatively strong Ru-O bond and large free energy barriers for initiation, making them good candidates for efficient latent Ru-based catalysts. On the other hand the trivalent boron ligand, bearing a formal -1 charge, binds strongly to the ruthenium ion, weakening the Ru-O bond and facilitating its dissociation, to promote fast reaction initiation. We show that the calculated bond dissociation energy of the Ru-C/N/B bond may serve as an accurate indicator of the Ru-O bond strength and the rate of metathesis initiation.

  14. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  15. Photoluminescence and sensitized IR emission of the trivalent rare earths in Ca3La2Te2O12

    International Nuclear Information System (INIS)

    Autenrieth, H.D.; Kottmann, B.; Kemmler-Sack, S.

    1985-01-01

    By activation of the new host lattice Ca 3 La 2 Te 2 O 12 with trivalent rare earth ions an emission in the visible (Ln 3+ =Sm, Eu, Tb, Dy, Ho, Er, Tm) or near infrared region (Nd, Ho, Er, Tm, Yb) is observed. Energy transfer from Nd 3+ to Yb 3+ , from Er 3+ , Yb 3+ to Ho 3+ and from Yb 3+ to Tm 3+ has been found to occur. The excitation, emission and diffuse reflectance spectra are analyzed. (orig.)

  16. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite

    International Nuclear Information System (INIS)

    Chakir, Achraf; Bessiere, Jacques; Kacemi, Kacem EL.; Marouf, Bouchaieb

    2002-01-01

    Local bentonite and expanded perlite (Morocco) have been characterised and used for the removal of trivalent chromium from aqueous solutions. The kinetic study had showed that the uptake of Cr(III) by bentonite is very rapid compared to expanded perlite. To calculate the sorption capacities of the two sorbents, at different pH, the experimental data points have been fitted to the Freundlich and Langmuir models, respectively, for bentonite and expanded perlite. For both sorbents the sorption capacity increases with increasing the pH of the suspensions. The removal efficiency has been calculated for both sorbents resulting that bentonite (96% of Cr(III) was removed) is more effective in removing trivalent chromium from aqueous solution than expanded perlite (40% of Cr(III) was removed). In the absence of Cr(III) ions, both bentonite and expanded perlite samples yield negative zeta potential in the pH range of 2-11. The changes of expanded perlite charge, from negative to positive, observed after contact with trivalent chromium(III) solutions was related to Cr(III) sorption on the surface of the solid. Thus, it was concluded that surface complexation plays an important role in the sorption of Cr(III) species on expanded perlite. In the case of bentonite, cation-exchange is the predominate mechanism for sorption of trivalent chromium ions, wherefore no net changes of zeta potential was observed after Cr(III) sorption. X-ray photoelectron spectroscopy measurements, at different pH values, were also made to corroborate the zeta potential results

  17. Immunogenicity and safety of high-dose trivalent inactivated influenza vaccine compared to standard-dose vaccine in children and young adults with cancer or HIV infection.

    Science.gov (United States)

    Hakim, Hana; Allison, Kim J; Van de Velde, Lee-Ann; Tang, Li; Sun, Yilun; Flynn, Patricia M; McCullers, Jonathan A

    2016-06-08

    Approaches to improve the immune response of immunocompromised patients to influenza vaccination are needed. Children and young adults (3-21 years) with cancer or HIV infection were randomized to receive 2 doses of high-dose (HD) trivalent influenza vaccine (TIV) or of standard-dose (SD) TIV. Hemagglutination inhibition (HAI) antibody titers were measured against H1, H3, and B antigens after each dose and 9 months later. Seroconversion was defined as ≥4-fold rise in HAI titer comparing pre- and post-vaccine sera. Seroprotection was defined as a post-vaccine HAI titer ≥1:40. Reactogenicity events (RE) were solicited using a structured questionnaire 7 and 14 days after each dose of vaccine, and adverse events by medical record review for 21 days after each dose of vaccine. Eighty-five participants were enrolled in the study; 27 with leukemia, 17 with solid tumor (ST), and 41 with HIV. Recipients of HD TIV had significantly greater fold increase in HAI titers to B antigen in leukemia group and to H1 antigen in ST group compared to SD TIV recipients. This increase was not documented in HIV group. There were no differences in seroconversion or seroprotection between HD TIV and SD TIV in all groups. There was no difference in the percentage of solicited RE in recipients of HD TIV (54% after dose 1 and 38% after dose 2) compared to SD TIV (40% after dose 1 and 20% after dose 2, p=0.27 and 0.09 after dose 1 and 2, respectively). HD TIV was more immunogenic than SD TIV in children and young adults with leukemia or ST, but not with HIV. HD TIV was safe and well-tolerated in children and young adults with leukemia, ST, or HIV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Immunopotentiation of trivalent influenza vaccine when given with VAX102, a recombinant influenza M2e vaccine fused to the TLR5 ligand flagellin.

    Directory of Open Access Journals (Sweden)

    H Keipp Talbot

    Full Text Available BACKGROUND: Currently controversy exists about the immunogenicity of seasonal trivalent influenza vaccine in certain populations, especially the elderly. STF2.4×M2e (VAX102 is a recombinant fusion protein that links four copies of the ectodomain of influenza virus matrix protein 2 (M2e antigen to Salmonella typhimurium flagellin, a TLR5 ligand. The objectives of this study were to assess the feasibility of giving VAX102 and TIV in combination in an effort to achieve greater immunogenicity and to provide cross-protection. METHODOLOGY/PRINCIPAL FINDINGS: Eighty healthy subjects, 18-49 years old, were enrolled in May and June 2009 in a double-blind, randomized, controlled trial at two clinical sites. Subjects were randomized to receive either TIV + VAX102 or TIV + placebo. Both arms tolerated the vaccines. Pain at the injection site was more severe with TIV + VAX102. Two weeks after immunization the HAI responses to the H1 and H3 antigens of TIV were higher in those that received TIV + VAX102 than in TIV + placebo (309 vs 200 and 269 vs 185, respectively, although statistically non-significant. There was no difference in the HAI of the B antigen. In the TIV + VAX102 arm, the geometric mean M2e antibody concentration was 0.5 µg/ml and 73% seroconverted. CONCLUSIONS/SIGNIFICANCE: The combination of TIV + VAX102 has the potential to increase the immune response to the influenza A components of TIV and to provide M2e immunity which may protect against influenza A strains not contained in seasonal TIV. TRIAL REGISTRATION: ClinicalTrials.gov NCT00921973.

  19. Dietary Enterococcus faecium NCIMB 10415 and zinc oxide stimulate immune reactions to trivalent influenza vaccination in pigs but do not affect virological response upon challenge infection.

    Science.gov (United States)

    Wang, Zhenya; Burwinkel, Michael; Chai, Weidong; Lange, Elke; Blohm, Ulrike; Breithaupt, Angele; Hoffmann, Bernd; Twardziok, Sven; Rieger, Juliane; Janczyk, Pawel; Pieper, Robert; Osterrieder, Nikolaus

    2014-01-01

    Swine influenza viruses (SIV) regularly cause significant disease in pigs worldwide. Since there is no causative treatment of SIV, we tested if probiotic Enterococcus (E.) faecium NCIMB 10415 or zinc (Zn) oxide as feed supplements provide beneficial effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium or different levels of Zn (2500 ppm, Zn(high); 50 ppm, Zn(low)). Half of the piglets were vaccinated intramuscularly (VAC) twice with an inactivated trivalent SIV vaccine, while all piglets were then infected intranasally with H3N2 SIV. Significantly higher weekly weight gains were observed in the E. faecium group before virus infection, and piglets in Zn(high) and E. faecium groups gained weight after infection while those in the control group (Zn(low)) lost weight. Using ELISA, we found significantly higher H3N2-specific antibody levels in the E. faecium+VAC group 2 days before and at the day of challenge infection as well as at 4 and 6 days after challenge infection. Higher hemagglutination inhibition (HI) titers were also observed in the Zn(high)+VAC and E. faecium+VAC groups at 0, 1 and 4 days after infection. However, there were no significant differences in virus shedding and lung lesions between the dietary groups. Using flow cytometry analysis significantly higher activated T helper cells and cytotoxic T lymphocyte percentages in the PBMCs were detected in the Zn(high) and E. faecium groups at single time points after infection compared to the Zn(low) control group, but no prolonged effect was found. In the BAL cells no influence of dietary supplementation on immune cell percentages could be detected. Our results suggest that feeding high doses of zinc oxide and particularly E. faecium could beneficially influence humoral immune responses after vaccination and recovery from SIV infection, but not affect virus shedding and lung pathology.

  20. Dietary Enterococcus faecium NCIMB 10415 and zinc oxide stimulate immune reactions to trivalent influenza vaccination in pigs but do not affect virological response upon challenge infection.

    Directory of Open Access Journals (Sweden)

    Zhenya Wang

    Full Text Available Swine influenza viruses (SIV regularly cause significant disease in pigs worldwide. Since there is no causative treatment of SIV, we tested if probiotic Enterococcus (E. faecium NCIMB 10415 or zinc (Zn oxide as feed supplements provide beneficial effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium or different levels of Zn (2500 ppm, Zn(high; 50 ppm, Zn(low. Half of the piglets were vaccinated intramuscularly (VAC twice with an inactivated trivalent SIV vaccine, while all piglets were then infected intranasally with H3N2 SIV. Significantly higher weekly weight gains were observed in the E. faecium group before virus infection, and piglets in Zn(high and E. faecium groups gained weight after infection while those in the control group (Zn(low lost weight. Using ELISA, we found significantly higher H3N2-specific antibody levels in the E. faecium+VAC group 2 days before and at the day of challenge infection as well as at 4 and 6 days after challenge infection. Higher hemagglutination inhibition (HI titers were also observed in the Zn(high+VAC and E. faecium+VAC groups at 0, 1 and 4 days after infection. However, there were no significant differences in virus shedding and lung lesions between the dietary groups. Using flow cytometry analysis significantly higher activated T helper cells and cytotoxic T lymphocyte percentages in the PBMCs were detected in the Zn(high and E. faecium groups at single time points after infection compared to the Zn(low control group, but no prolonged effect was found. In the BAL cells no influence of dietary supplementation on immune cell percentages could be detected. Our results suggest that feeding high doses of zinc oxide and particularly E. faecium could beneficially influence humoral immune responses after vaccination and recovery from SIV infection, but not affect virus shedding and lung pathology.

  1. Factors Affecting the Adsorption of Trivalent Chromium Ions by Activated Carbon Prepared from Waste Rubber Tyres

    Directory of Open Access Journals (Sweden)

    Sylvia E. Benjamin

    2017-08-01

    Full Text Available Economic gains are generally the outcome of industrialization and consequently urbanization. However, positive fiscal index generates a negative impact on natural environment sources heaving pollutant burden on soil, air and water. Industries throw tones of contaminated water into soil and water bodies without proper treatment and create a potential threat for both living and non-living species. Chromium in trivalent state (Cr3+ is added in water bodies and soil through waste water from tanneries, cooling water systems, chemical and pulp and paper industries. The present research work aims at the preparation of an inexpensive activated carbon prepared from non- degradable waste scrap rubber tyres. The carbon produced from scrap rubber tyres was activated by 5% solution of BaCl2 and 0.4 N solution of HCl and verified by ethylene blue solution. The adsorption capacity of the Tyre activated carbon (TAC was investigated for different parameters i.e., initial chromium (III ion concentration, activated carbon dosage, contact/ stirring time and pH. The adsorption capacity of TAC depends on the initial metal ion concentration and the TAC dose. pH of the chromium solution effects the adsorption capacity of TAC due to the formation of tetra hydroxochromate(III complexes,. The results show that TAC offers a cost effective reclamation process for the removal of Cr3+ from effluent waters.

  2. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13.

    Science.gov (United States)

    Wen, Hanyu; Qin, Yuan; Zhong, Weilong; Li, Cong; Liu, Xiang; Shen, Yehua

    2016-10-01

    Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications. Copyright © 2016. Published by Elsevier Inc.

  3. Titanium Pyrophosphate for Removal of Trivalent Heavy Metals and Actinides Simulated by Retention of Europium

    Science.gov (United States)

    Flores-Espinosa, Rosa María; Ordoñez-Regil, Eduardo; Fernández-Valverde, Suilma Marisela

    2017-01-01

    This work addresses the synthesis of titanium pyrophosphate, as well as the characterization and evaluation of the sorption process of europium, for removal of trivalent heavy metals and actinides simulate. The evaluation of the surface properties of titanium pyrophosphate was carried out determining the surface roughness and surface acidity constants. The values obtained from the determination of the surface roughness of the synthesized solid indicate that the surface of the material presents itself as slightly smooth. The FITEQL program was used to fit the experimental titration curves to obtain the surface acidity constants: log⁡K+ = 3.59 ± 0.06 and log⁡K− = −3.90 ± 0.05. The results of sorption kinetics evidenced that the pseudo-order model explains the retention process of europium, in which the initial sorption velocity was 8.3 × 10−4 mg g−1 min−1 and kinetic constant was 1.8 × 10−3 g mg min−1. The maximum sorption capacity was 0.6 mg g−1. The results obtained from sorption edge showed the existence of two bidentate complexes on the surface. PMID:28785720

  4. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor

    International Nuclear Information System (INIS)

    Sundar, K.; Sadiq, I. Mohammed; Mukherjee, Amitava; Chandrasekaran, N.

    2011-01-01

    Highlights: ► Effective bioremoval of Cr(III) using bacterial biofilms. ► Simplified bioreactor was fabricated for the biofilm development and Cr(III) removal. ► Economically feasible substrate like coarse sand and pebbles were used. - Abstract: Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30 °C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand > pebbles > glass beads (4.8 × 10 7 , 4.5 × 10 7 and 3.5 × 10 5 CFU/cm 2 ), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation.

  5. Stability of trivalent lanthanide ion complexes with oximes and nitroso compounds

    International Nuclear Information System (INIS)

    Poluehktov, N.S.; Meshkova, S.B.; Topilova, Z.M.; Danlkovich, M.M.

    1985-01-01

    It is shown that earlier derived expression relating the properties of trivalent lanthanide ions (Ln) or their compounds with the number of f-electrons (NA) as well as spin S and orbital L quantum numbers of their ground states lg Ksub(Ln)=lg Ksub(La)+αxNsub(f)+βxs+γ'Lsub(1-6)(γ''Lsub(8-13)) is useful for describing changes of values of the first and second stability constants (lg Ksub(1, 2)) of Ln 3+ complexes with oximes (I) and nitroso compounds (2). The relation between lg Ksub(1, 2) values and ligand properties was explained on the basis of calculated values of α, β, γ' and γ'' correlation coefficients. Stability of Ln 3+ compounds with 1 and 2 inreases from La to Lu in the case of all ligands (α are positive). β, γ' and γ'' coefficients have both positive and negative values, which testify to stabilizing or destabilizing effec; on stability of complexes of interaction of spin and orbital angular moments of Ln 3+ and donor ligand atoms

  6. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination.

    Directory of Open Access Journals (Sweden)

    M Anthony Moody

    Full Text Available BACKGROUND: During the recent H1N1 influenza pandemic, excess morbidity and mortality was seen in young but not older adults suggesting that prior infection with influenza strains may have protected older subjects. In contrast, a history of recent seasonal trivalent vaccine in younger adults was not associated with protection. METHODS AND FINDINGS: To study hemagglutinin (HA antibody responses in influenza immunization and infection, we have studied the day 7 plasma cell repertoires of subjects immunized with seasonal trivalent inactivated influenza vaccine (TIV and compared them to the plasma cell repertoires of subjects experimentally infected (EI with influenza H3N2 A/Wisconsin/67/2005. The majority of circulating plasma cells after TIV produced influenza-specific antibodies, while most plasma cells after EI produced antibodies that did not react with influenza HA. While anti-HA antibodies from TIV subjects were primarily reactive with single or few HA strains, anti-HA antibodies from EI subjects were isolated that reacted with multiple HA strains. Plasma cell-derived anti-HA antibodies from TIV subjects showed more evidence of clonal expansion compared with antibodies from EI subjects. From an H3N2-infected subject, we isolated a 4-member clonal lineage of broadly cross-reactive antibodies that bound to multiple HA subtypes and neutralized both H1N1 and H3N2 viruses. This broad reactivity was not detected in post-infection plasma suggesting this broadly reactive clonal lineage was not immunodominant in this subject. CONCLUSION: The presence of broadly reactive subdominant antibody responses in some EI subjects suggests that improved vaccine designs that make broadly reactive antibody responses immunodominant could protect against novel influenza strains.

  7. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures.

    Science.gov (United States)

    Rossi, Edmund A; Goldenberg, David M; Chang, Chien-Hsing

    2012-03-21

    Advances in recombinant protein technology have facilitated the production of increasingly complex fusion proteins with multivalent, multifunctional designs for use in various in vitro and in vivo applications. In addition, traditional chemical conjugation remains a primary choice for linking proteins with polyethylene glycol (PEG), biotin, fluorescent markers, drugs, and others. More recently, site-specific conjugation of two or more interactive modules has emerged as a valid approach to expand the existing repertoires produced by either recombinant engineering or chemical conjugation alone, thus advancing the range of potential applications. Five such methods, each involving a specific binding event, are highlighted in this review, with a particular focus on the Dock-and-Lock (DNL) method, which exploits the natural interaction between the dimerization and docking domain (DDD) of cAMP-dependent protein kinase (PKA) and the anchoring domain (AD) of A-kinase anchoring proteins (AKAP). The various enablements of DNL to date include trivalent, tetravalent, pentavalent, and hexavalent antibodies of monospecificity or bispecificity; immnocytokines comprising multiple copies of interferon-alpha (IFNα); and site-specific PEGylation. These achievements attest to the power of the DNL platform technology to develop novel therapeutic and diagnostic agents from both proteins and nonproteins for unmet medical needs.

  8. Development and Testing of Diglycolamide Functionalized Mesoporous Silica for Sorption of Trivalent Actinides and Lanthanides.

    Science.gov (United States)

    Shusterman, Jennifer A; Mason, Harris E; Bowers, Jon; Bruchet, Anthony; Uribe, Eva C; Kersting, Annie B; Nitsche, Heino

    2015-09-23

    Sequestration of trivalent actinides and lanthanides present in used nuclear fuel and legacy wastes is necessary for appropriate long-term stewardship of these metals, particularly to prevent their release into the environment. Organically modified mesoporous silica is an efficient material for recovery and potential subsequent separation of actinides and lanthanides because of its high surface area, tunable ligand selection, and chemically robust substrate. We have synthesized the first novel hybrid material composed of SBA-15 type mesoporous silica functionalized with diglycolamide ligands (DGA-SBA). Because of the high surface area substrate, the DGA-SBA was found to have the highest Eu capacity reported so far in the literature of all DGA solid-phase extractants. The sorption behavior of europium and americium on DGA-SBA in nitric and hydrochloric acid media was tested in batch contact experiments. DGA-SBA was found to have high sorption of Am and Eu in pH 1, 1 M, and 3 M nitric and hydrochloric acid concentrations, which makes it promising for sequestration of these metals from used nuclear fuel or legacy waste. The kinetics of Eu sorption were found to be two times slower than that for Am in 1 M HNO3. Additionally, the short-term susceptibility of DGA-SBA to degradation in the presence of acid was probed using (29)Si and (13)C solid-state NMR spectroscopy. The material was found to be relatively stable under these conditions, with the ligand remaining intact after 24 h of contact with 1 M HNO3, an important consideration in use of the DGA-SBA as an extractant from acidic media.

  9. The secondary and aggregation structural changes of BSA induced by trivalent chromium: A biophysical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingmao [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China); Liu, Yan, E-mail: liuyan@fjirsm.ac.cn [The State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian (China); Cao, Huan [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China); Song, Ling [The State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China)

    2015-02-15

    Trivalent chromium Cr(III), which was originally considered to be innocuous as a nutriment, has been suspected to induce some abnormalities in human body recently. In the present work, the effects of Cr(III) on the structural state of BSA were comprehensively investigated through a series of appropriate methods in combination, including X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), UV–vis absorption, synchronous fluorescence, fluorescence lifetime analysis, resonance light scattering (RLS), dynamic light scattering (DLS) and excitation–emission matrix spectroscopy (EEMS) methods. XPS accurately described the binding activity of Cr(III) with protein C, N and O atoms. The structural analysis according to FTIR and CD methods showed that the Cr(III) binding altered BSA conformation with a major reduction of α-helix. RLS and DLS analyses demonstrated that the presence of Cr(III) with low concentration could induce the aggregation structural changes of BSA. UV–vis absorption, EEMS and synchronous fluorescence suggested that the interaction between Cr(III) and BSA induced a slight unfolding of the polypeptide backbone and altered the microenvironments of Trp and Tyr residues in BSA. This research is helpful for understanding the structure-function relationship involved in metal ion-protein bioconjugate process. - Highlights: • The effect of Cr(III) on the conformational state of BSA was comprehensively studied. • XPS described the binding activity of Cr(III) with protein C, N and O atoms. • FTIR and CD data revealed secondary structural alteration in BSA. • Cr(III) complexation induced microenvironmental changes of Trp and Tyr. • RLS, DLS and EEMS presented the aggregational states of Cr(III)–BSA complex.

  10. Basicity of coordinating ligands in trivalent uranium and cerium metallocene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, M.D.

    1988-09-01

    Although much is known about the affinity of various Lewis bases for transition metal centers, the chemical literature contains only scant information about the relative affinities of Lewis bases for lanthanide and actinide metal centers. In terms of ligand affinities for f-metal centers, traditional HSAB theory characterizes trivalent and tetravalent f-metal cations as ''hard'' acids, preferring to be coordinated to ''hard'' Lewis bases (e.g., nitrogen or oxygen donor ligands) rather than ''soft'' (e.g., phosphorous or sulfur donor ligands) Lewis bases. Recent work by Brennan and Stults, however, has shown that, trimethylphosphine has a much greater affinity than does pyridine for the metal center in (MeC/sub 5/H/sub 4/)/sub 3/U and in (MeC/sub 5/H/sub 4/)/sub 3/Ce. This work established the ligand displacement series PMe/sub 3/, is quantitatively displaced by trimethylphosphine oxide in both the uranium and cerium systems. In the cerium system, trimethylphosphine sulfide and dimethyl sulfoxide were also found to quantitatively displace PMe/sub 3/. Trimethylphosphine oxide was found to be by far the strongest ligand in both systems, quantitatively displacing all ligands studied in both systems, with one exception: in the (me/sub 3/SiC/sub 5/H/sub 4/)/sub 3/U system, t-butyl isocyanide is displaced, but not completely displaced, by OPME/sub 3/. 9 refs.

  11. Nanobodies - the new concept in antibody engineering

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... are well suited for construction of larger molecules and selection systems such as a phage, yeast, .... framework-2 region (the residues in this region of the VH normally interact with the VL domain and are ... to the substitution of hydrophobic by hydrophilic residues in the framework-2 region compared with ...

  12. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  13. Acetylcholine receptor antibody

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  14. Platelet antibodies blood test

    Science.gov (United States)

    This blood test shows if you have antibodies against platelets in your blood. Platelets are a part of the blood ... Chernecky CC, Berger BJ. Platelet antibody - blood. In: Chernecky ... caused by platelet destruction, hypersplenism, or hemodilution. ...

  15. Epitope focused immunogens and recombinant antibody ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Combining cutting-edge immunology and protein engineering methods, this collaborative research project aims to develop affordable antibody-based therapies for dengue patients and improved vaccines for the control of dengue fever and East Coast fever in both humans and animals. The core technologies that will be ...

  16. The effect of doping crystals of tgs with some di- and trivalent ions on its: (ii) polarization and piezoelectricity

    OpenAIRE

    Gaffar, M. A [محمد عبد العزيز جعفر; Mohamed, A. A.; Al-Muraikhi, M.; Al-Houty, L. I.

    1987-01-01

    The polarization, coercive field,piezoelectricity and electromechanical coupling for pure and doped single crystals of TGS arp investigated in the temperature range 77-325 K. The influence of the divalent ions Ni 2+, Cu2 and Co2 and the trivalent ions Cr34^ and Fe3'1' on the temperature of phase transition, the hysteresis loops of polarization and the seconed coefficient in the expansion of the free energy in powers of polarization is examined. The temperature dependence of the spontaneous po...

  17. Antibody proteases: induction of catalytic response.

    Science.gov (United States)

    Gabibov, A G; Friboulet, A; Thomas, D; Demin, A V; Ponomarenko, N A; Vorobiev, I I; Pillet, D; Paon, M; Alexandrova, E S; Telegin, G B; Reshetnyak, A V; Grigorieva, O V; Gnuchev, N V; Malishkin, K A; Genkin, D D

    2002-10-01

    Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP(89-104)) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an "internal image" of protease is described. The "second order" monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.

  18. Monoclonal antibodies and cancer

    International Nuclear Information System (INIS)

    Haisma, H.J.

    1987-01-01

    The usefulness of radiolabeled monoclonal antibodies for imaging and treatment of human (ovarian) cancer was investigated. A review of tumor imaging with monoclonal antibodies is presented. Special attention is given to factors that influence the localization of the antibodies in tumors, isotope choice and methods of radiolabeling of the monoclonal antibodies. Two monoclonal antibodies, OC125 and OV-TL3, with high specificity for human epithelial ovarian cancer are characterized. A simple radio-iodination technique was developed for clinical application of the monoclonal antibodies. The behavior of monoclonal antibodies in human tumor xenograft systems and in man are described. Imaging of tumors is complicated because of high background levels of radioactivity in other sites than the tumor, especially in the bloodpool. A technique was developed to improve imaging of human tumor xenographs in nude mice, using subtraction of a specific and a non-specific antibody, radiolabeled with 111 In, 67 Ga and 131 I. To investigate the capability of the two monoclonal antibodies, to specifically localize in human ovarian carcinomas, distribution studies in mice bearing human ovarian carcinoma xenografts were performed. One of the antibodies, OC125, was used for distribution studies in ovarian cancer patients. OC125 was used because of availability and approval to use this antibody in patients. The same antibody was used to investigate the usefulness of radioimmunoimaging in ovarian cancer patients. The interaction of injected radiolabeled antibody OC125 with circulating antigen and an assay to measure the antibody response in ovarian cancer patients after injection of the antibody is described. 265 refs.; 30 figs.; 19 tabs

  19. Association of HLA class II genes with clinical hyporesponsiveness to trivalent inactivated influenza vaccine in children.

    Science.gov (United States)

    Narwaney, Komal J; Glanz, Jason M; Norris, Jill M; Fingerlin, Tasha E; Hokanson, John E; Rewers, Marian; Hambidge, Simon J

    2013-02-04

    The primary prevention measure for influenza infection has been the use of influenza vaccines. However, even when the vaccine and circulating strains are well-matched, some healthy children do not respond to the vaccine, likely due to a genetic basis for immune hyporesponsiveness. The primary objective of this study was to identify HLA class II genes associated with clinical hyporesponsiveness after trivalent inactivated influenza vaccine (TIV) in children. We conducted a case-control study nested within a retrospective cohort of children that were screened at birth for HLA-DR,DQ genotypes by the Diabetes Autoimmunity Study in the Young (DAISY) and were subsequently followed for up to 8 years by Kaiser Permanente, Colorado (KPCO). Hyporesponsiveness was clinically defined as the occurrence of influenza or influenza-like illness (ILI) in peak influenza weeks in children fully vaccinated with TIV. Each child with clinical hyporesponse (n=252) was matched to 4 randomly selected controls (n=1006) by age and season. Children with clinical hyporesponse to TIV were identified using the Kaiser electronic clinical and immunization databases. Fully vaccinated children within the KPCO-DAISY cohort who did not have a diagnosis of ILI during the entire influenza season were eligible to be controls for that season. Class II HLA-DRB1 and HLA-DQB1 genes were the primary exposure variables. We used conditional logistic regression to calculate the matched odds ratios. In non-Hispanic white children, HLA-DR7/4,DQB1 0302 genotype was significantly associated (OR=5.15; 95% CI=1.94, 13.67; p=0.001), while in Hispanic children, HLA-DRB1 15 or 16 allele (OR=0.31; 95% CI=0.14, 0.69; p=0.004) and HLA-DR7/Y (DRB1 11, DRB1 13 and DRB1 14) genotype (OR=5.84; 95% CI=1.68, 20.28; p=0.006) were significantly associated with clinical hyporesponsiveness after TIV. HLA class II genes are associated with clinical hyporesponsiveness to TIV. This finding is important as it may help identify a group of

  20. Radiolabeled antibody imaging

    International Nuclear Information System (INIS)

    Wahl, R.L.

    1987-01-01

    Radiolabeled antibodies, in particular monoclonal antibodies, offer the potential for the specific nuclear imaging of malignant and benign diseases in man. If this imaging potential is realized, they may also have a large role in cancer treatment. This paper reviews: (1) what monoclonal antibodies are and how they differ from polyclonal antibodies, (2) how they are produced and radiolabeled, (3) the results of preclinical and clinical trials in cancer imaging, including the utility of SPECT and antibody fragments, (4) the role of antibodies in the diagnosis of benign diseases, (5) alternate routes of antibody delivery, (6) the role of these agents in therapy, and (7) whether this technology ''revolutionizes'' the practice of nuclear radiology, or has a more limited complementary role in the imaging department

  1. Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions.

    Science.gov (United States)

    Akiba, Hiroki; Tsumoto, Kouhei

    2015-07-01

    Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  2. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    International Nuclear Information System (INIS)

    Mohan, Dinesh; Singh, Kunwar P.; Singh, Vinod K.

    2006-01-01

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater

  3. Theoretical Study of pKaValues for Trivalent Rare-Earth Metal Cations in Aqueous Solution.

    Science.gov (United States)

    Yu, Donghai; Du, Ruobing; Xiao, Ji-Chang; Xu, Shengming; Rong, Chunying; Liu, Shubin

    2018-01-18

    Molecular acidity of trivalent rare-earth metal cations in aqueous solution is an important factor dedicated to the efficiency of their extraction and separation processes. In this work, the aqueous acidity of these metal ions has been quantitatively investigated using a few theoretical approaches. Our computational results expressed in terms of pK a values agree well with the tetrad effect of trivalent rare-earth ions extensively reported in the extraction and separation of these elements. Strong linear relationships have been observed between the acidity and quantum electronic descriptors such as the molecular electrostatic potential on the acidic nucleus and the sum of the valence natural atomic orbitals energies of the dissociating proton. Making use of the predicted pK a values, we have also predicted the major ionic forms of these species in the aqueous environment with different pH values, which can be employed to rationalize the behavior difference of different rare-earth metal cations during the extraction process. Our present results should provide needed insights not only for the qualitatively understanding about the extraction and separation between yttrium and lanthanide elements but also for the prediction of novel and more efficient rare-earth metal extractants in the future.

  4. Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides

    Science.gov (United States)

    Maitra, Urmimala; Naidu, B. S.; Govindaraj, A.; Rao, C. N. R.

    2013-01-01

    Prompted by the early results on the catalytic activity of LiMn2O4 and related oxides in the photochemical oxidation of water, our detailed study of several manganese oxides has shown that trivalency of Mn is an important factor in determining the catalytic activity. Thus, Mn2O3, LaMnO3, and MgMn2O4 are found to be very good catalysts with turnover frequencies of 5 × 10−4 s−1, 4.8 × 10−4 s−1, and 0.8 ×10−4 s−1, respectively. Among the cobalt oxides, Li2Co2O4 and LaCoO3—especially the latter—exhibit excellent catalytic activity, with the turnover frequencies being 9 × 10−4 s−1 and 1.4 × 10−3 s−1, respectively. The common feature among the catalytic Mn and Co oxides is not only that Mn and Co are in the trivalent state, but Co3+ in the Co oxides is in the intermediate t2g5eg1 state whereas Mn3+ is in the t2g3eg1 state. The presence of the eg1 electron in these Mn and Co oxides is considered to play a crucial role in the photocatalytic properties of the oxides. PMID:23818589

  5. A thermodynamical and structural study on the complexation of trivalent lanthanides with a polycarboxylate based concrete superplasticizer.

    Science.gov (United States)

    Fröhlich, Daniel R; Maiwald, Martin M; Taube, Franziska; Plank, Johann; Panak, Petra J

    2017-03-21

    The complexation of trivalent lanthanides with a commercial polycarboxylate based concrete superplasticizer (Glenium® 51) is investigated using different spectroscopic techniques. Time-resolved laser fluorescence spectroscopy (TRLFS) in combination with a charge neutralization model is used to determine temperature dependent conditional stability constants (log β'(T)) for the complexation of Eu(iii) with Glenium® 51 in 0.1 mol kg -1 NaCl solution in the temperature range of 20-90 °C. Only one complex species is observed, and log β'(T) (given in kg per mol eq) shows a very slight increase with temperature from 7.5 to 7.9. The related conditional molar reaction enthalpy (Δ r H' m ) and entropy (Δ r S' m ) obtained using the Van't Hoff equation show that the complexation reaction is slightly endothermic and entropy driven. The thermodynamic investigations are complemented by structural data for complexes formed with Gd(iii) or Tb(iii) and Glenium® 51 using extended X-ray absorption fine structure (EXAFS) spectroscopy. The results imply a non-chelate coordination of the trivalent metals through approximately three carboxylic functions of the polycarboxylate comb polymer which are attached predominantly in a bidentate fashion to the lanthanide under the given experimental conditions.

  6. Sustained systemic delivery of monoclonal antibodies by genetically modified skin fibroblasts

    DEFF Research Database (Denmark)

    Noël, D; Pelegrin, M; Brockly, F

    2000-01-01

    In vivo production and systemic delivery of therapeutic antibodies by engineered cells might advantageously replace injection of purified antibodies for treating a variety of life-threatening diseases, including cancer, acquired immunodeficiency syndrome, and autoimmune diseases. We report here...... that skin fibroblasts retrovirally transduced to express immunoglobulin genes can be used for sustained long-term systemic delivery of cloned antibodies in immunocompetent mice. Importantly, no anti- idiotypic response against the ectopically expressed model antibody used in this study was observed...

  7. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo.

    Science.gov (United States)

    Rentsch, Barbe; Bernhardt, Anne; Henß, Anja; Ray, Seemun; Rentsch, Claudia; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael; Rammelt, Stefan; Lode, Anja

    2018-03-15

    Remodeling of calcium phosphate bone cements is a crucial prerequisite for their application in the treatment of large bone defects. In the present study trivalent chromium ions were incorporated into a brushite forming calcium phosphate cement in two concentrations (10 and 50 mmol/mol β-tricalcium phosphate) and implanted into a femoral defect in rats for 3 and 6 month, non-modified brushite was used as reference. Based on our previous in vitro findings indicating both an enhanced osteoclastic activity and cytocompatibility towards osteoprogenitor cells we hypothesized a higher in vivo remodeling rate of the Cr 3+ doped cements compared to the reference. A significantly enhanced degradation of the modified cements was evidenced by micro computed tomography, X-ray and histological examinations. Furthermore the formation of new bone tissue after 6 month of implantation was significantly increased from 29% to 46% during remodeling of cements, doped with the higher Cr 3+ amount. Time of flight secondary ion mass spectrometry (ToF-SIMS) of histological sections was applied to investigate the release of Cr 3+ ions from the cement after implantation and to image their distribution in the implant region and the surrounding bone tissue. The relatively weak incorporation of chromium into the newly formed bone tissue is in agreement to the low chromium concentrations which were released from the cements in vitro. The faster degradation of the Cr 3+ doped cements was also verified by ToF-SIMS. The positive effect of Cr 3+ doping on both degradation and new bone formation is discussed as a synergistic effect of Cr 3+ bioactivity on osteoclastic resorption on one hand and improvement of cytocompatibility and solubility by structural changes in the calcium phosphate matrix on the other hand. While biologically active metal ions like strontium, magnesium and zinc are increasingly applied for the modification of ceramic bone graft materials, the present study is the first

  8. Application of a room temperature ionic liquid for nuclear spent fuel reprocessing: speciation of trivalent europium and solvatation effects

    International Nuclear Information System (INIS)

    Moutiers, G.; Mekki, S.; Billard, I.

    2007-01-01

    One of the solutions proposed for the optimization of the long term storage and conditioning of spent nuclear fuel is to separate actinide and lanthanide both from each other and from other less radioactive metallic species. The industrial proposed processes, based on liquid liquid extraction steps, involve solvents with non negligible vapour pressure and may generate contaminated liquid wastes that will have to be reprocessed. During the last decade, some room-temperature ionic liquids have been studied and integrated into industrial processes. The interest on this class of solvent came out from their 'green' properties (non volatile, non flammable, recyclable, etc...), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL chemical composition. Indeed, it has been shown that classical chemical industrial processes could be transferred into those media, even more improved, while a certain number of difficulties arising from using traditional solvent can be avoided. In this respect, it could be promising to investigate the ability to use room temperature ionic liquid into the spent nuclear fuel reprocessing field. The aim of this this study is to test the ability of the specific ionic liquid bumimTf 2 N to allow trivalent europium extraction. The choice of this metal is based on the chemical analogy with trivalent minor actinides Curium and Americium which are contributing the greatest part of the long-lived high level radioactive wastes. Handling these elements needs to be very cautious for the safety and radioprotection aspect. Moreover, europium is a very sensitive luminescent probe to its environment even at the microscopic scale. The report is structured with four parts. In a first chapter, we present the main physico-chemical properties of an imidazolium-based ionic liquid family, and then we choose the ionic liquid bumimTf 2 N for the whole thesis and start with the electrochemical

  9. Partial protection of seasonal trivalent inactivated vaccine against novel pandemic influenza A/H1N1 2009: case-control study in Mexico City.

    Science.gov (United States)

    Garcia-Garcia, Lourdes; Valdespino-Gómez, Jose Luis; Lazcano-Ponce, Eduardo; Jimenez-Corona, Aida; Higuera-Iglesias, Anjarath; Cruz-Hervert, Pablo; Cano-Arellano, Bulmaro; Garcia-Anaya, Antonio; Ferreira-Guerrero, Elizabeth; Baez-Saldaña, Renata; Ferreyra-Reyes, Leticia; Ponce-de-León-Rosales, Samuel; Alpuche-Aranda, Celia; Rodriguez-López, Mario Henry; Perez-Padilla, Rogelio; Hernandez-Avila, Mauricio

    2009-10-06

    To evaluate the association of 2008-9 seasonal trivalent inactivated vaccine with cases of influenza A/H1N1 during the epidemic in Mexico. Frequency matched case-control study. Specialty hospital in Mexico City, March to May 2009. 60 patients with laboratory confirmed influenza A/H1N1 and 180 controls with other diseases (not influenza-like illness or pneumonia) living in Mexico City or the State of Mexico and matched for age and socioeconomic status. Odds ratio and effectiveness of trivalent inactivated vaccine against influenza A/H1N1. Cases were more likely than controls to be admitted to hospital, undergo invasive mechanical ventilation, and die. Controls were more likely than cases to have chronic conditions that conferred a higher risk of influenza related complications. In the multivariate model, influenza A/H1N1 was independently associated with trivalent inactivated vaccine (odds ratio 0.27, 95% confidence interval 0.11 to 0.66) and underlying conditions (0.15, 0.08 to 0.30). Vaccine effectiveness was 73% (95% confidence interval 34% to 89%). None of the eight vaccinated cases died. Preliminary evidence suggests some protection from the 2008-9 trivalent inactivated vaccine against pandemic influenza A/H1N1 2009, particularly severe forms of the disease, diagnosed in a specialty hospital during the influenza epidemic in Mexico City.

  10. Benzene-centred tripodal diglycolamides for the sequestration of trivalent actinides : Metal ion extraction and luminescence spectroscopic investigations in a room temperature ionic liquid

    NARCIS (Netherlands)

    Ansari, Seraj Ahmad; Mohapatra, Prasanta Kumar; Leoncini, Andrea; Huskens, Jurriaan; Verboom, Willem

    2017-01-01

    Three benzene-centred tripodal diglycolamide (Bz-T-DGA) ligands, where the diglycolamide (DGA) moieties are attached to a central benzene ring through ethylene spacers (LI), amide groups (LII) or ether linkages (LIII), were evaluated for their extraction behaviour towards trivalent actinide and

  11. Randomized controlled ferret study to assess the direct impact of 2008-09 trivalent inactivated influenza vaccine on A(H1N1)pdm09 disease risk

    NARCIS (Netherlands)

    D.M. Skowronski (Danuta); M.E. Hamelin (Marie Ève); G. de Serres (Gaston); N.Z. Janjua (Naveed); G. Li (Guiyun); S. Sabaiduc (Suzana); X. Bouhy (Xavier); C. Couture (Christian); A. Leung (Anders); D. Kobasa (Darwyn); C. Embury-Hyatt (Carissa); E.I. de Bruin (Esther); R. Balshaw (Robert); S. Lavigne (Sophie); M. Petric (Martin); M.P.G. Koopmans D.V.M. (Marion); G. Boivin (Guy)

    2014-01-01

    textabstractDuring spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008-09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect

  12. Co-ordination properties of diglycol-amide (DGA) to trivalent curium and lanthanides studied by XAS, XRD and XPS methods

    International Nuclear Information System (INIS)

    Yaita, T.; Hirata, M.; Narita, H.; Tachimori, S.; Yamamoto, H.; Edelstein, N.M.; Bucher, J.J.; Shuh, D.K.; Rao, L.

    2001-01-01

    Co-ordination properties of diglycol-amide (DGA) to trivalent curium and to the trivalent lanthanides were studied by the EXAFS, the XRD and the XPS methods. The structural determinations by both the crystal XRD and the solution EXAFS methods showed that the DGA co-ordinated to the trivalent lanthanide ion in a tridentate fashion: co-ordination of three oxygen atoms of each ligand to the metal ion. The bond distances of Er-O (carbonyl) and Er-O (ether) in the Er-DGA complex were 2.35 Angstrom, and 2.46 Angstrom, respectively, while the atom distances of Cm-O (carbonyl) and Cm-O (ether) in the Cm-DGA complex were 2.42 Angstrom and 3.94 Angstrom, respectively from the EXAFS data for the Cm-DGA complex. Accordingly, the DGA would behave only as a semi-tridentate in the co-ordination to trivalent curium in solution. We determined the valence band structures of the Er-DGA complex by the XPS in order to clarify the bond properties of the complex, and assigned the XPS spectrum by using the DV-DS molecular orbital calculation method. (authors)

  13. Therapeutic Antibodies against Intracellular Tumor Antigens

    Directory of Open Access Journals (Sweden)

    Iva Trenevska

    2017-08-01

    Full Text Available Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8–10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I molecules. These tumor-associated peptide–MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm or T-cell receptor (TCR-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.

  14. Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Juan C. Almagro

    2018-01-01

    Full Text Available The remarkable progress in engineering and clinical development of therapeutic antibodies in the last 40 years, after the seminal work by Köhler and Milstein, has led to the approval by the United States Food and Drug Administration (FDA of 21 antibodies for cancer immunotherapy. We review here these approved antibodies, with emphasis on the methods used for their discovery, engineering, and optimization for therapeutic settings. These methods include antibody engineering via chimerization and humanization of non-human antibodies, as well as selection and further optimization of fully human antibodies isolated from human antibody phage-displayed libraries and immunization of transgenic mice capable of generating human antibodies. These technology platforms have progressively led to the development of therapeutic antibodies with higher human content and, thus, less immunogenicity. We also discuss the genetic engineering approaches that have allowed isotype switching and Fc modifications to modulate effector functions and bioavailability (half-life, which together with the technologies for engineering the Fv fragment, have been pivotal in generating more efficacious and better tolerated therapeutic antibodies to treat cancer.

  15. Antibodies Against Melanin

    African Journals Online (AJOL)

    1973-01-06

    Jan 6, 1973 ... Departments of Internal Medicine and Anatomical Pathology, University of Stellenbosch and MRC. Pigment Metabolism Research Unit, ... at the production of antibodies against natural melanoprotein. and a consideration of our negative .... the random polymerization of several monomers, antibody formed ...

  16. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  17. The X-ray Structures of Six Octameric RNA Duplexes in the Presence of Different Di- and Trivalent Cations

    Directory of Open Access Journals (Sweden)

    Michelle F. Schaffer

    2016-06-01

    Full Text Available Due to the polyanionic nature of RNA, the principles of charge neutralization and electrostatic condensation require that cations help to overcome the repulsive forces in order for RNA to adopt a three-dimensional structure. A precise structural knowledge of RNA-metal ion interactions is crucial to understand the mechanism of metal ions in the catalytic or regulatory activity of RNA. We solved the crystal structure of an octameric RNA duplex in the presence of the di- and trivalent metal ions Ca2+, Mn2+, Co2+, Cu2+, Sr2+, and Tb3+. The detailed investigation reveals a unique innersphere interaction to uracil and extends the knowledge of the influence of metal ions for conformational changes in RNA structure. Furthermore, we could demonstrate that an accurate localization of the metal ions in the X-ray structures require the consideration of several crystallographic and geometrical parameters as well as the anomalous difference map.

  18. Arrested disproportionation in trivalent, mononuclear, and non-metallocene complexes of Zr(iii) and Hf(iii).

    Science.gov (United States)

    Grant, Lauren N; Miehlich, Matthias E; Meyer, Karsten; Mindiola, Daniel J

    2018-02-20

    Reduction of the group 4 transition metal precursors [(PN) 2 MCl 2 ] (M = Zr (1), and Hf (2)); PN - = (N-(2-(diisopropylphosphino)-4-methylphenyl)-2,4,6-trimethylanilide), both readily prepared by transmetallation of 2 LiPN with [MCl 4 (THF) 2 ], with a slight excess of KC 8 , resulted in the isolation of the trivalent complexes [(PN) 2 MCl] (M = Zr (3), and Hf (4)). Complexes 1-4 were all identified by solid-state X-ray diffraction analysis, whereas in the case of 3 and 4 low temperature X-band EPR spectroscopy allowed for the identification of these metal-centered d 1 radicals. A comparison with the isostructural and isoelectronic but more stable [(PN) 2 TiCl] is also presented.

  19. Targeting FcRn for the modulation of antibody dynamics.

    Science.gov (United States)

    Ward, E Sally; Devanaboyina, Siva Charan; Ober, Raimund J

    2015-10-01

    The MHC class I-related receptor, FcRn, is a multitasking protein that transports its IgG ligand within and across cells of diverse origins. The role of this receptor as a global regulator of IgG homeostasis and transport, combined with knowledge of the molecular details of FcRn-IgG interactions, has led to opportunities to modulate the in vivo dynamics of antibodies and their antigens through protein engineering. Consequently, the generation of half-life extended antibodies has shown a rapid expansion over the past decade. Further, FcRn itself can be targeted by inhibitors to induce decreased levels of circulating IgGs, which could have applications in multiple clinical settings. The engineering of antibody-antigen interactions to reduce antibody-mediated buffering of soluble ligand has also developed into an active area of investigation, leading to novel antibody platforms designed to result in more effective antigen clearance. Similarly, the target-mediated elimination of antibodies by internalizing, membrane bound antigens (receptors) can be decreased using novel engineering approaches. These strategies, combined with subcellular trafficking analyses of antibody/antigen/FcRn behavior in cells to predict in vivo behavior, have considerable promise for the production of next generation therapeutics and diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  1. Topical imiquimod before intradermal trivalent influenza vaccine for protection against heterologous non-vaccine and antigenically drifted viruses: a single-centre, double-blind, randomised, controlled phase 2b/3 trial.

    Science.gov (United States)

    Hung, Ivan Fan-Ngai; Zhang, Anna Jinxia; To, Kelvin Kai-Wang; Chan, Jasper Fuk-Woo; Li, Patrick; Wong, Tin-Lun; Zhang, Ricky; Chan, Tuen-Ching; Chan, Brian Chun-Yuan; Wai, Harrison Ho; Chan, Lok-Wun; Fong, Hugo Pak-Yiu; Hui, Raymond Kar-Ching; Kong, Ka-Lun; Leung, Arthur Chun-Fung; Ngan, Abe Ho-Ting; Tsang, Louise Wing-Ki; Yeung, Alex Pat-Chung; Yiu, Geo Chi-Ngo; Yung, Wing; Lau, Johnson Y-N; Chen, Honglin; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2016-02-01

    Pretreatment with topical imiquimod, a synthetic agonist of toll-like receptor 7, significantly improved the immunogenicity of influenza vaccination in elderly people. We aimed to clarify its effect in a younger age group. In this double-blind, randomised controlled trial, we enrolled healthy volunteers aged 18-30 years in early 2014 to receive the 2013-14 northern-hemisphere winter trivalent influenza vaccine at the Queen Mary Hospital, (Hong Kong, China). Eligible participants were randomly assigned (1:1:1:1) to one of the four vaccination groups: the study group, topical imiquimod-cream followed by intradermal trivalent influenza vaccine (INF-Q-ID), or one of three control groups, topical aqueous-cream control followed by intradermal trivalent influenza vaccine (INF-C-ID), topical aqueous-cream control followed by intramuscular trivalent influenza vaccine (INF-C-IM), and topical imiquimod-cream followed by intradermal normal-saline injection (SAL-Q-ID). Randomisation was by computer-generated lists in blocks of four. The type of topical treatment was masked from volunteers and investigators, although not from the study nurse. Serum haemagglutination-inhibition and microneutralisation-antibody titres were assayed. The primary outcome was seroconversion at day 7 after treatment for three vaccine strains of influenza (A/California/07/2009 H1N1-like virus [A/California/H1N1], A/Victoria/361/2011 H3N2-like virus [A/Victoria/H3N2], and B/Massachusetts/2/2012-like virus [B/Yamagata lineage]) and four non-vaccine strains (A/HK/485197/14 [H3N2 Switzerland-like lineage], prototype A/WSN/1933 [H1N1], A/HK/408027/09 [prepandemic seasonal H1N1], and B/HK/418078/11 [Victoria lineage]). Analysis was done on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, number NCT02103023. We enrolled 160 healthy volunteers between March 1 and May 31, 2014, and 40 participants were randomly assigned to each study group. For the A/California/H1N1 strain

  2. Anti-insulin antibody test

    Science.gov (United States)

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... You appear to have an allergic response to insulin Insulin no longer seems to control your diabetes

  3. ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy

    DEFF Research Database (Denmark)

    Harwood, Seandean Lykke; Alvarez-Cienfuegos, Ana; Alanes, Natalia Nuñez del Prado

    2018-01-01

    (scFv; clone OKT3) in an intermediate molecular weight package. The two specificities are oriented in opposite directions in order to simultaneously engage cancer cells and T cell effectors, and thereby promote immunological synapse formation. EgA1 ATTACK was expressed as a homogenous, non...

  4. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  5. Antibody Fragments as Probe in Biosensor Development

    Directory of Open Access Journals (Sweden)

    Serge Muyldermans

    2008-08-01

    Full Text Available Today’s proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed.

  6. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    surface expression of various antibody formats in the generated knockout strain. Functional scFv and scFab fragments were efficiently displayed on yeast whereas impaired chain assembly and heavy chain degradation was observed for display of full-length IgG molecules. To identify the optimal polypeptide......-antibody interface and the antibody intraface.the microenvironment and ecology of Acaryochloris and Prochloron, and in this thesis we attempted to further describe the distribution, growth characteristics and adaptive/regulatory mechanisms of these two cyanobacteria, both in their natural habitat and under defined...

  7. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  8. Serum herpes simplex antibodies

    Science.gov (United States)

    ... causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test is Performed A blood sample ... person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

  9. Anti-sulfotyrosine antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R [Berkeley, CA; Kehoe, John [Saint Davids, PA; Bradbury, Andrew M [Santa Fe, NM

    2009-09-15

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  10. Bifunctional antibodies for radioimmunotherapy.

    Science.gov (United States)

    Chatal, J F; Faivre-Chauvet, A; Bardies, M; Peltier, P; Gautherot, E; Barbet, J

    1995-04-01

    In two-step targeting technique using bifunctional antibodies, a nonradiolabeled immunoconjugate with slow uptake kinetics (several days) is initially injected, followed by a small radiolabeled hapten with fast kinetics (several hours) that binds to the bispecific immunoconjugate already taken up by the tumor target. In patients with colorectal or medullary thyroid cancer, clinical studies performed with an anti-CEA/anti-DTPA-indium bifunctional antibody and an indium-111-labeled di-DTPA-TL bivalent hapten showed that tumor uptake was not modified compared to results for F(ab')2 fragments of the same anti-CEA antibody directly labeled with indium-111, whereas the radioactivity of normal tissues was significantly reduced (3- to 6-fold). The fast tumor uptake kinetics (several hours) and high or very high tumor-to-normal tissue ratios obtained with the bifunctional antibody technique are favorable parameters for efficient radioimmunotherapy.

  11. Antibody Blood Tests

    Science.gov (United States)

    Antibody Blood Tests Researchers have discovered that people with celiac disease who eat gluten have higher than normal levels of ... do I do if I have a negative blood test (or panel) but I’m still having symptoms? ...

  12. scFv Antibody: Principles and Clinical Application

    OpenAIRE

    Ahmad, Zuhaida Asra; Yeap, Swee Keong; Ali, Abdul Manaf; Ho, Wan Yong; Alitheen, Noorjahan Banu Mohamed; Hamid, Muhajir

    2012-01-01

    To date, generation of single-chain fragment variable (scFv) has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional prot...

  13. Bispecific antibodies and their use in applied research

    Directory of Open Access Journals (Sweden)

    Harshit Verma

    Full Text Available Bispecific antibodies (BsAb can, by virtue of combining two binding specificities, improve the selectivity and efficacy of antibody-based treatment of human disease. Antibodies with two distinct binding specificities have great potential for a wide range of clinical applications as targeting agents for in vitro and in vivo immunodiagnosis, therapy and for improving immunoassays. They have shown great promise for targeting cytotoxic effector cells, delivering radionuclides, toxins or cytotoxic drugs to specific targets, particularly tumour cells. The development of BsAb research goes through three main stages: chemical cross linking of murine-derived monoclonal antibody, hybrid hybridomas and engineered BsAb. This article is providing the potential applications of bispecific antibodies. [Vet World 2012; 5(12.000: 775-780

  14. Covalent and Oriented Surface Immobilization of Antibody Using Photoactivatable Antibody Fc-Binding Protein Expressed in Escherichia coli.

    Science.gov (United States)

    Lee, Yeolin; Jeong, Jiyun; Lee, Gabi; Moon, Jeong Hee; Lee, Myung Kyu

    2016-10-04

    Fc-specific antibody binding proteins (FcBPs) with the minimal domain of protein G are widely used for immobilization of well-oriented antibodies onto solid surfaces, but the noncovalently bound antibodies to FcBPs are unstable in sera containing large amounts of antibodies. Here we report novel photoactivatable FcBPs with photomethionine (pMet) expressed in E. coli, which induce Fc-specific photo-cross-linking with antibodies upon UV irradiation. Unfortunately, pMet did not support protein expression in the native E. coli system, and therefore we also developed an engineered methionyl tRNA synthetase (MRS5m). Coexpression of MRS5m proteins successfully induced photoactivatable FcBP overexpression in methionine-auxotroph E. coli cells. The photoactivatable FcBPs could be easily immobilized on beads and slides via their N-terminal cysteine residues and 6xHis tag. The antibodies photo-cross-linked onto the photoactivatable FcBP-beads were resistant from serum-antibody mediated dissociation and efficiently captured antigens in human sera. Furthermore, photo-cross-linked antibody arrays prepared using this system allowed sensitive detection of antigens in human sera by sandwich immunoassay. The photoactivatable FcBPs will be widely applicable for well-oriented antibody immobilization on various surfaces of microfluidic chips, glass slides, and nanobeads, which are required for development of sensitive immunosensors.

  15. Incorporation of the ELISA technique to determine antibody levels against foot-and-mouth disease

    International Nuclear Information System (INIS)

    Vergara, N.N.; Caballero, P.H.; Santiago Gonzalez Patino, S.; Orue, P.M.

    1998-01-01

    Two groups of sera were evaluated by a liquid phase blocking ELISA (LPBE) for the detection and quantification of foot-and-mouth disease (FMD) antibodies to serotypes O, A and C to assess the sensitivity and specificity of the assay. The first group consisted of 120 sera from non-infected and non-vaccinated cattle, which were tested by a screening assay at a fix dilution of 1/32. The second group consisted of 120 sera from cattle vaccinated with a trivalent (O, A and C) vaccine. Sera from this group were titrated in a five fold dilution range: 1/10, 1/50, 1/250 and 1/1250. (author)

  16. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  17. Evaluating the synergistic neutralizing effect of anti-botulinum oligoclonal antibody preparations.

    Science.gov (United States)

    Diamant, Eran; Lachmi, Bat-El; Keren, Adi; Barnea, Ada; Marcus, Hadar; Cohen, Shoshana; David, Alon Ben; Zichel, Ran

    2014-01-01

    Botulinum neurotoxins (BoNT) are considered some of the most lethal known substances. There are seven botulinum serotypes, of which types A, B and E cause most human botulism cases. Anti-botulinum polyclonal antibodies (PAbs) are currently used for both detection and treatment of the disease. However, significant improvements in immunoassay specificity and treatment safety may be made using monoclonal antibodies (MAbs). In this study, we present an approach for the simultaneous generation of highly specific and neutralizing MAbs against botulinum serotypes A, B, and E in a single process. The approach relies on immunization of mice with a trivalent mixture of recombinant C-terminal fragment (Hc) of each of the three neurotoxins, followed by a parallel differential robotic hybridoma screening. This strategy enabled the cloning of seven to nine MAbs against each serotype. The majority of the MAbs possessed higher anti-botulinum ELISA titers than anti-botulinum PAbs and had up to five orders of magnitude greater specificity. When tested for their potency in mice, neutralizing MAbs were obtained for all three serotypes and protected against toxin doses of 10 MsLD50-500 MsLD50. A strong synergistic effect of up to 400-fold enhancement in the neutralizing activity was observed when serotype-specific MAbs were combined. Furthermore, the highly protective oligoclonal combinations were as potent as a horse-derived PAb pharmaceutical preparation. Interestingly, MAbs that failed to demonstrate individual neutralizing activity were observed to make a significant contribution to the synergistic effect in the oligoclonal preparation. Together, the trivalent immunization strategy and differential screening approach enabled us to generate highly specific MAbs against each of the A, B, and E BoNTs. These new MAbs may possess diagnostic and therapeutic potential.

  18. Evaluating the synergistic neutralizing effect of anti-botulinum oligoclonal antibody preparations.

    Directory of Open Access Journals (Sweden)

    Eran Diamant

    Full Text Available Botulinum neurotoxins (BoNT are considered some of the most lethal known substances. There are seven botulinum serotypes, of which types A, B and E cause most human botulism cases. Anti-botulinum polyclonal antibodies (PAbs are currently used for both detection and treatment of the disease. However, significant improvements in immunoassay specificity and treatment safety may be made using monoclonal antibodies (MAbs. In this study, we present an approach for the simultaneous generation of highly specific and neutralizing MAbs against botulinum serotypes A, B, and E in a single process. The approach relies on immunization of mice with a trivalent mixture of recombinant C-terminal fragment (Hc of each of the three neurotoxins, followed by a parallel differential robotic hybridoma screening. This strategy enabled the cloning of seven to nine MAbs against each serotype. The majority of the MAbs possessed higher anti-botulinum ELISA titers than anti-botulinum PAbs and had up to five orders of magnitude greater specificity. When tested for their potency in mice, neutralizing MAbs were obtained for all three serotypes and protected against toxin doses of 10 MsLD50-500 MsLD50. A strong synergistic effect of up to 400-fold enhancement in the neutralizing activity was observed when serotype-specific MAbs were combined. Furthermore, the highly protective oligoclonal combinations were as potent as a horse-derived PAb pharmaceutical preparation. Interestingly, MAbs that failed to demonstrate individual neutralizing activity were observed to make a significant contribution to the synergistic effect in the oligoclonal preparation. Together, the trivalent immunization strategy and differential screening approach enabled us to generate highly specific MAbs against each of the A, B, and E BoNTs. These new MAbs may possess diagnostic and therapeutic potential.

  19. Bis(2-ethylhexyl)-N,N-diethylcarbamoylmethyl phosphonate as a synergist in the extraction of trivalent lanthanides by 1-phenyl-3-methyl-4-trifluoroacetyl-pyrazolone-5

    International Nuclear Information System (INIS)

    Luxmi Varma, R.; Sujatha, S.; Reddy, M.L.P.; Prasada Rao, T.; Iyer, C.S.P.; Damodaran, A.D.

    1996-01-01

    Synergism in the extraction of trivalent lanthanides such as Nd. Eu and Lu has been investigated using mixtures of 1-phenyl-3-methyl-4-trifluoroacetyl-pyrazolone-5 (HPMTFP) and bis(2-ethylhexyl)-N,N-diethylcarbamoylmethyl phosphonate (CMP) in chloroform. Lanthanides are found to be extracted from 0.01 mol/dm 3 chloroacetate medium with HPMTFP as Ln(PMTFP) 3 or Ln(PMTFP) 3 . CMP in the absence or presence of CMP, respectively. The equilibrium constants of these synergistic species do not increase monotonically with atomic number but have a maximum at Eu. The addition of a synergist, CMP to the metal chelate system not only enhances the extraction efficiency but also improves the selectivities among these trivalent lanthanides. The IR results indicate that CMP acts as a bidentate ligand in these mixed-ligand systems. (orig.)

  20. Molecular dynamics study of the coordination sphere of trivalent lanthanum in a highly concentrated LiCl aqueous solution: A combined classical and ab initio approach

    International Nuclear Information System (INIS)

    Vuilleumier, R.; Petit, L.; Maldivi, P.; Adamo, C.

    2008-01-01

    The first coordination sphere of trivalent lanthanum in a highly concentrated (14 M) lithium chloride solution is studied with a combination of classical molecular dynamics and density functional theory based first principle molecular dynamics. This method enables us to obtain a solvation shell of La 3+ containing 2 chloride ions and 6 water molecules. After refinement using first principle molecular dynamics, the resulting cation-water and cation-anion distances are in very good agreement with experiment. The 2 Cl - and the 6 water molecules arrange in a square anti-prism around La 3+ . Exchange of water molecules was also observed in the first-principle simulation, with an intermediate structure comprising 7 water molecules stable for 2.5 ps. Finally, evaluation of dipole moments using maximally localized Wannier functions shows a substantial polarization of the chloride anions and the water molecules in the first solvation shell of trivalent lanthanum. (authors)

  1. Effect of alcohols on elution chromatography of trivalent actinides and lanthanides using tertiary pyridine resin with hydrochloric acid-alcohol mixed solvents.

    Science.gov (United States)

    Ikeda, Atsushi; Suzuki, Tatsuya; Aida, Masao; Fujii, Yasuhiko; Itoh, Keisuke; Mitsugashira, Toshiaki; Hara, Mitsuo; Ozawa, Masaki

    2004-07-02

    Elution chromatography with a tertiary pyridine resin has been used to separate the trivalent actinides (An3+) from the lanthanides (Ln3+) using an alcoholic hydrochloric acid solvent. Trivalent Am and Cm were separated from the Ln by employing a 1 cm(phi) x 10 cm resin column with the mixed solvent system composed of concentrated hydrochloric acid (HCl) and alcohols. The distribution coefficients (Kd) and the separation factors between An and Ln (alpha(An)(Ln)) increased as the alcohol content of the solvent mixture increased. On the other hand, the Kd and alpha(An)(Ln) decreased drastically upon the addition of water to the solvent mixture. Among the four alcohols investigated (methanol, ethanol, n-propanol and n-butanol), the ethanol-HCl mixed solvent system showed the largest Kd and alpha(An)(Ln). The mechanism of adsorption for An and Ln cations on the pyridine resin is discussed in addition to the results presented herein.

  2. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody.

    Science.gov (United States)

    Zhang, Di; Whitaker, Brian; Derebe, Mehabaw G; Chiu, Mark L

    2018-04-01

    Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.

  3. Site-selective excitation and polarized absorption and emission spectra of trivalent thulium and erbium in strontium fluorapatite

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, J.B. [Department of Physics, San Jose State University, San Jose, California 95192-0106 (United States); Wright, A.O.; Seltzer, M.D. [Research and Technology Division, Naval Air Warfare Center, Code 474230D, China Lake, California 93555-6001 (United States); Zandi, B.; Merkle, L.D. [IR Optics Technology OFC, Army Research Laboratory, Ft. Belvoir, Virginia 22060-5838 (United States); Hutchinson, J.A. [Night Vision and Electronics Sensors Directorate, The United States Army, Ft. Belvoir, Virginia 22060-5806 (United States); Morrison, C.A. [Army Research Laboratory, Adelphi, Maryland 20783-1145 (United States); Allik, T.H. [Science Applications International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102 (United States); Chai, B.H. [Center for Research on Electro-optics and Lasers, University of Central Florida, Orlando, Florida 32836 (United States)

    1997-05-01

    Polarized fluorescence spectra produced by site-selective excitation and conventional polarized absorption spectra were obtained for Tm{sup 3+} and Er{sup 3+} ions individually incorporated into single crystals of strontium fluorapatite, Sr{sub 5}(PO{sub 4}){sub 3}F. Substitution of the trivalent rare earth ion for divalent strontium was achieved by passive charge compensation during Czochralski growth of the fluorapatite crystals. Spectra were obtained between 1780 and 345 nm at temperatures from 4 K to room temperature on crystals having the hexagonal structure [P6{sub 3}/m(C{sub 6h}{sup 2})]. The polarized fluorescence spectra due to transitions from multiplet manifolds of Tm{sup 3+}(4f{sup 12}), including {sup 1}D{sub 2}, {sup 1}G{sub 4}, and {sup 3}H{sub 4} to manifolds {sup 3}H{sub 6} (the ground-state manifold), {sup 3}F{sub 4}, {sup 3}H{sub 5}, {sup 3}H{sub 4}, and {sup 3}F{sub 3} were analyzed for the details of the crystal-field splitting of the manifolds. Fluorescence lifetimes were measured for Tm{sup 3+} transitions from {sup 1}D{sub 2}, {sup 1}G{sub 4}, and {sup 3}H{sub 4} at room temperature and from {sup 1}G{sub 4} at 16 K. Results of the analysis indicate that the majority of Tm{sup 3+} ions occupy sites having C{sub s} symmetry. A point-charge lattice-sum calculation was made in which the crystal-field components, A{sub nm}, were determined assuming that trivalent thulium replaces divalent strontium in the metal site having C{sub s} symmetry. Results support the conclusion that the nearest-neighbor fluoride (F{sup {minus}}) is replaced by divalent oxygen (O{sup 2{minus}}), thus preserving overall charge neutrality and local symmetry. Crystal-field splitting calculations predict energy levels in agreement with experimental data. By varying the crystal-field parameters, B{sub nm}, we obtained a rms difference of 7cm{sup {minus}1} between 43 calculated and experimental Stark levels for Tm{sup 3+}(4f{sup 12}) in Tm:SFAP. (Abstract Truncated)

  4. Characterization of divalent and trivalent species generated in the chemical and electrochemical oxidation of a dimeric pincer complex of nickel.

    Science.gov (United States)

    Spasyuk, Denis M; Gorelsky, Serge I; van der Est, Art; Zargarian, Davit

    2011-03-21

    The electrolytic and chemical oxidation of the dimeric pincer complex [κ(P),κ(C),κ(N),μ(N)-(2,6-(i-Pr(2)POC(6)H(3)CH(2)NBn)Ni](2) (1; Bn = CH(2)Ph) has been investigated by various analytic techniques. Cyclic voltammetry measurements have shown that 1 undergoes a quasi-reversible, one electron, Ni-based redox process (ΔE(0)(1/2) = -0.07 V vs Cp(2)Fe/[Cp(2)Fe](+)), and spectroelectrochemical measurements conducted on the product of the electrolytic oxidation, [1](+•), have shown multiple low-energy electronic transitions in the range of 10,000-15,000 cm(-1). Computational studies using Density Functional Theory (B3LYP) have corroborated the experimentally obtained structure of 1, provided the electronic structure description, and helped interpret the experimentally obtained absorption spectra for 1 and [1](+·). These calculations indicate that the radical cation [1](+·) is a dimeric, mixed-valent species (class III) wherein most of the spin density is delocalized over the two nickel centers (Ni(+2.5)(2)N(2)), but some spin density is also present over the two nitrogen atoms (Ni(2+)(2)N(2)·). Examination of alternative structures for open shell species generated from 1 has shown that the spin density distribution is highly sensitive toward changes in the ligand environment of the Ni ions. NMR, UV-vis, electron paramagnetic resonance (EPR), and single crystal X-ray diffraction analyses have shown that chemical oxidation of 1 with N-Bromosuccinimide (NBS) follows a complex process that gives multiple products, including the monomeric trivalent species κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr(2) (2). These studies also indicate that oxidation of 1 with 1 equiv of NBS gives an unstable, paramagnetic intermediate that decomposes to a number of divalent species, including succinimide and the monomeric divalent complexes κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH═NBn)}NiBr (3) and κ(P),κ(C),κ(N)-{2,6-(i-Pr(2)PO)(C(6)H(3))(CH(2)N

  5. Carbon monoxide and related π-acceptors are good ligands for trivalent metallocenes of uranium and the trans-uranium metals

    International Nuclear Information System (INIS)

    Andersen, R.A.

    1990-01-01

    The evolution of the concept that tertiary phosphines are good ligands towards the tetravalent uranium halides and that phosphines, carbon monoxide, and related π-acceptor ligands are good ligands towards the trivalent uranium metallocenes will be described. Solid state X-ray, crystallographic and solution state equilibrium quotient studies show the ligand displacement series: (RO) 3 P > R 3 P > R 3 N; RNC > RCN. These concepts will be extended to the trans-uranium element neptunium and plutonium

  6. Natural and Man-made Antibody Repertories for Antibody Discovery

    Directory of Open Access Journals (Sweden)

    Juan C eAlmagro

    2012-11-01

    Full Text Available Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of human, mice and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity and composition of a repertoire impact the antibody discovery process.

  7. Cell-Free Synthesis Meets Antibody Production: A Review

    Directory of Open Access Journals (Sweden)

    Marlitt Stech

    2015-01-01

    Full Text Available Engineered antibodies are key players in therapy, diagnostics and research. In addition to full size immunoglobulin gamma (IgG molecules, smaller formats of recombinant antibodies, such as single-chain variable fragments (scFv and antigen binding fragments (Fab, have emerged as promising alternatives since they possess different advantageous properties. Cell-based production technologies of antibodies and antibody fragments are well-established, allowing researchers to design and manufacture highly specific molecular recognition tools. However, as these technologies are accompanied by the drawbacks of being rather time-consuming and cost-intensive, efficient and powerful cell-free protein synthesis systems have been developed over the last decade as alternatives. So far, prokaryotic cell-free systems have been the focus of interest. Recently, eukaryotic in vitro translation systems have enriched the antibody production pipeline, as these systems are able to mimic the natural pathway of antibody synthesis in eukaryotic cells. This review aims to overview and summarize the advances made in the production of antibodies and antibody fragments in cell-free systems.

  8. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry 605 014 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry 605 014 (India)

    2014-03-07

    Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460 K for Zn{sub 0.97}Al{sub 0.03}O, 463 K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503 K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

  9. Phase IV: randomized controlled trial to evaluate lot consistency of trivalent split influenza vaccines in healthy adults.

    Science.gov (United States)

    Song, Joon Young; Cheong, Hee Jin; Lee, Jacob; Wie, Seong-Heon; Park, Kyung-Hwa; Kee, Sae Yoon; Jeong, Hye Won; Kim, Yeon-Sook; Noh, Ji Yun; Choi, Won Suk; Park, Dae Won; Sohn, Jang Wook; Kim, Woo Joo

    2014-01-01

    Influenza vaccines are the primary method for preventing influenza and its complications. Considering the increasing demand for influenza vaccines, vaccine manufacturers are required to establish large-scale production systems. This phase IV randomized trial was conducted to evaluate the lot consistency of trivalent split influenza vaccines regarding immunogenicity and safety. A total of 1,023 healthy adults aged 18-64 y were enrolled in the study. Subjects were randomly assigned in a 1:1 ratio to receive the GC FLU® Prefilled Syringe or the GC FLU® Injection, and they were further randomized to one of 3 lots of each vaccine in a 1:1:1 ratio. In both GC FLU® Injection and GC FLU® Prefilled Syringe groups, immune responses were equivalent between lots for each of the 3 vaccine strains on day 21. The 2-sided 95% CI of GMT ratios between pairs of lots were between 0.67 and 1.5, meeting the equivalence criteria. After vaccination, all 3 criteria of the European Medicines Agency were met in both GC FLU® Injection and GC FLU® Prefilled Syringe groups. The vaccines showed tolerable safety profiles without serious adverse events. The demonstration of lot consistency, robust immunogenic responses and favorable safety profiles support the reliability of mass-manufacturing systems for the GC FLU® Injection and GC FLU® Prefilled Syringe.

  10. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    Science.gov (United States)

    Cancès, Benjamin; Benedetti, Marc; Farges, François; Brown, Gordon E.

    2007-02-01

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution — MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.

  11. Complexation of tetraalkyl diglycolamides with trivalent f-cations in a room temperature ionic liquid: extraction and spectroscopic investigations.

    Science.gov (United States)

    Ansari, Seraj Ahmad; Gujar, Rajesh Bhikaji; Mohapatra, Prasanta Kumar

    2017-06-13

    This paper reports the complexation of a series of tetraalkyl diglycolamides (TRDGA) with trivalent f-cations in a room temperature ionic liquid, viz., 3-octyl-1-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C 8 mim][Tf 2 N]). The stability constants of TRDGA/Nd 3+ complexes (where R = n-pentyl, n-hexyl, n-octyl, n-decyl and 2-ethylhexl) were determined by absorbance spectroscopy. All the DGA ligands formed a 1 : 3 (Nd 3+ /DGA) complex as the limiting species. Solvent extraction data on Am 3+ and Eu 3+ were obtained with the TRDGA ligands in [C 8 mim][Tf 2 N] to arrive at a correlation between their extraction behaviour and complexation constant. The nature of the complex formed in the single phase titration (in [C 8 mim][Tf 2 N]) and those extracted in the [C 8 mim][Tf 2 N] medium from the aqueous phase were found to be identical. Fluorescence lifetime data confirmed that, in both single phase titration and biphasic solvent extraction, the complexation proceeded via replacement of water molecules from the primary coordination sphere of the metal ion. The spectroscopic data confirmed the absence of NO 3 - and Tf 2 N - ions or H 2 O in the extracted complexes.

  12. Preformulation characterization of an aluminum salt-adjuvanted trivalent recombinant protein-based vaccine candidate against Streptococcus pneumoniae.

    Science.gov (United States)

    Iyer, Vidyashankara; Hu, Lei; Liyanage, Mangala Roshan; Esfandiary, Reza; Reinisch, Christoph; Meinke, Andreas; Maisonneuve, Jeff; Volkin, David B; Joshi, Sangeeta B; Middaugh, C Russell

    2012-09-01

    The preformulation of a trivalent recombinant protein-based vaccine candidate for protection against Streptococcus pneumoniae is described both in the presence and in the absence of aluminum salt adjuvants. The biophysical properties of the three protein-based antigens, fragments of pneumococcal surface adhesion A (PsaA), serine-threonine protein kinase (StkP), and protein required for cell wall separation of group B streptococcus (PcsB), were studied using several spectroscopic and light scattering techniques. An empirical phase diagram was constructed to assess the overall conformational stability of the three antigens as a function of pH and temperatures. A variety of excipients were screened on the basis of their ability to stabilize each antigen using intrinsic fluorescence spectroscopy and circular dichroism spectroscopy. Sorbitol, sucrose, and trehalose stabilized the three proteins in solution. The addition of manganese also showed a drastic increase in the thermal stability of SP1650 in solution. The adsorption and desorption processes of each of the antigens to aluminum salt adjuvants were evaluated, and the stability of the adsorbed proteins was then assessed using intrinsic fluorescence spectroscopy and Fourier transform infrared spectroscopy. All the three proteins showed good adsorption to Alhydrogel. PsaA was destabilized when adsorbed onto Alhydrogel® and adding sodium phosphate showed a stabilizing effect. PcsB was found to be stabilized when adsorbed to Alhydrogel®, and no destabilizing or stabilizing effects were seen in the case of StkP. Copyright © 2012 Wiley Periodicals, Inc.

  13. Immunogenicity and safety of an inactivated trivalent split influenza virus vaccine in young children with recurrent wheezing.

    Science.gov (United States)

    Bae, E Young; Choi, Ui Yoon; Kwon, Hyo Jin; Jeong, Dae Chul; Rhim, Jung Woo; Ma, Sang Hyuk; Lee, Kyung Il; Kang, Jin Han

    2013-06-01

    Influenza virus vaccination is recommended for children, but so far, active vaccination has not been achieved because most parents lack knowledge of vaccine safety and many doctors are reluctant to administer vaccine due to concerns that steroids might alter immunogenicity. The aim of this study was to compare the immunogenicity and safety of inactivated trivalent split influenza virus vaccine between children with recurrent wheezing and healthy children of the same age group. Sixty-eight healthy children and 62 children with recurrent wheezing took part in this study. Seroconversion rates, seroprotection rates, geometric mean titers (GMTs), and geometric mean titer ratios (GMTRs) were measured by a hemagglutination inhibition assay for the assessment of immunogenicity. Solicited and unsolicited local and systemic adverse events were measured for the assessment of safety. Regarding immunogenicity, the seroconversion and seroprotection rates showed no difference overall between healthy children and children with recurrent wheezing. Also, no difference was observed between steroid-treated and nontreated groups with recurrent wheezing. Generally, the GMTs after vaccination were higher in the one-dose vaccination groups for healthy children and children with recurrent wheezing, but the GMTRs revealed different results according to strain in the two groups. Regarding safety, solicited local and systemic adverse events showed no differences between healthy children and children with recurrent wheezing. This study demonstrates that inactivated split influenza virus vaccine is able to induce protective immune responses in healthy children, as observed in previous studies, as well as in children with recurrent wheezing who require frequent steroid treatment.

  14. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Sergio Efrain [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Carbajal-Arizaga, Gregorio Guadalupe [Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Manriquez-Gonzalez, Ricardo [Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, carretera Guadalajara-Nogales, Las Agujas, C.P. 45020 Zapopan, Jalisco (Mexico); De la Cruz-Hernandez, Wencel [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, C.P. 22830 Ensenada, Baja California (Mexico); Gomez-Salazar, Sergio, E-mail: sergio.gomez@cucei.udg.mx [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico)

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  15. Thermoanalytical, spectroscopic and DFT studies of heavy trivalent lanthanides and yttrium(III) with oxamate as ligand

    Energy Technology Data Exchange (ETDEWEB)

    Caires, Flavio Junior; Gaglieri, Caroline, E-mail: caires.flavio@fc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil). Faculdade de Ciencias; Nunes, Wilhan Donizete Goncalves; Nascimento, Andre Luiz Carneiro Soares do; Teixeira, Jose Augusto; Zangaro, Georgia Alvim Coelho; Treu-Filho, Oswaldo; Ionashiro, Massao [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil)

    2017-07-15

    Solid-state LnL{sub 3}∙nH{sub 2}O complexes, where Ln stands for trivalent lanthanides (Tb to Lu) or yttrium(III) and L is oxamate (NH{sub 2}COCO{sub 2}{sup -}), have been synthesized. The characterization of the complexes was performed by using elemental analysis (EA), complexometric titration with EDTA, thermoanalytical techniques such as simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), evolved gas analysis (TG-FTIR), infrared spectroscopy (IR) and powder X-ray diffraction (XRPD). The results provided information about thermal behavior, crystallinity, stoichiometry, coordination sites, as well as the products released during thermal degradation of the complexes studied. Theoretical calculation of yttrium oxamate, as representative of all complexes was performed using density functional theory (DFT) for studying the molecular structure and vibrational spectrum of the investigated molecule in the ground state. The optimized geometrical parameters and theoretical vibrational spectrum obtained by DFT calculations are in good agreement with the experimental results. (author)

  16. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  17. Validation of a foot-and-mouth disease antibody ELISA in five Latin American countries

    International Nuclear Information System (INIS)

    Sondahl, M.S.; Penha Dias Gomes, M. da; Aurnheimer Martins, M.; Washington Lopez, J.

    1998-01-01

    The work plan consisted of using a liquid phase blocking ELISA test for the detection of antibodies to foot-and-mouth disease virus (FMDV) using the following categories of sera: (A) Spot test 120 non-infected/non-vaccinated bovine sera diluted 1:32; (B) Titration test: 120 bovine sera from animals vaccinated with trivalent oil vaccine, bled 30 days after vaccination; (C) Titration test with sera from non-infected/non-vaccinated bovines that presented titers >1:32 in the spot test. To detect FMD positive animals in the field, the spot test established with a cut-off of 1: 32 demonstrated in this work a good specificity with the non-vaccinated group, where 3 animals out of 120 were considered positive. The antibody titration test is an excellent tool to determine the level of antibodies in cattle populations. The protocol indicates that positive sera from the spot test should be tested in the titration assay in a starting dilution of 1:32. We suggest to use a lower starting dilution (1:16) in order to start below the discriminative of positive spot test sera 1:32 for the titration assay procedures. (author)

  18. Technetium-99m labelling of monoclonal antibodies for in vivo radioimmunodiagnostic use

    International Nuclear Information System (INIS)

    Beyers, M.

    1988-01-01

    The strong chelating agent diethylenetriaminepentaacetate (DTPA), either as the bicyclic or as the mixed anhydride, is most commonly used to link Tc-99m to proteinaceous compounds. A method for the batch production of DTPA-labelled antibody kits as well as a novel method of DTPA chelation of unpurified ascites fluid is given. Loss of immunoreactivity and in vivo stability occurs with this method. That DTPA conjugation is not the ideal method of labelling, is borne out by the fact that Hnatowich - a pioneer of DTPA-protein chelating - changed to an avidin-biotin labelling system. Modifications of the carbohydrate moiety have also been attempted. High molecular mass polymers with chelate-linkage to the antibodies can bind up to 150 di- or trivalent ions per mole without a loss in antigen-binding activity. Other than DTPA, several chelating agents such as bisthiosemicarbazones, metallothionein and diamide dimercaptide ligands may be used. The simple treatment of a proteinaceous substance with a disulpide-reducing agent, followed by exposure of the reduced protein to a suitable radionuclide, leads to a promising stable radiolabelled product. A Tc-99m-labelled antibody is, subject to FDA approval, scheduled for released by a Kodak-financed company in the near future

  19. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  20. Antithyroglobulin Antibodies and Antimicrosomal Antibodies in Various Thyroid Diseases

    International Nuclear Information System (INIS)

    Lee, Gwon Jun; Hong, Key Sak; Choi, Kang Won; Lee, Kyu; Koh, Chang Soon; Lee, Mun Ho; Park, Sung Hoe; Chi, Je Geun; Lee, Sang Kook

    1979-01-01

    The authors investigated the incidence of antithyroglobulin antibodies and antibodies and antimicrosomal antibodies measured by tanned red cell hemagglutination method in subjects suffering from various thyroid disorders. 1) In 15 normal patients, neither suffering from any thyroid diseases nor from any other autoimmune disorders, the antithyroglobulin antibodies were all negative, but the antimicrosomal antibody was positive only in one patient (6.7%). 2) The antithyroglobulin antibodies were positive in 31.5% (34 patients) of 108 patients with various thyroid diseases, and the antimicrosomal antibodies were positive in 37.0% (40 patients). 3) of the 25 patients with Graves' diseases, 7 patients (28.0%) showed positive for the antithyroglobulin antibodies, and 9 (36.0%) for the antimicrosomal antibodies. There was no definite differences in clinical and thyroid functions between the groups with positive and negative results. 4) Both antibodies were positive in 16 (88.9%) and 17 (94.4%) patients respectively among 18 patients with Hashimoto's thyroiditis, all of them were diagnosed histologically. 5) Three out of 33 patients with thyroid adenoma showed positive antibodies, and 3 of 16 patients with thyroid carcinoma revealed positive antibodies. 6) TRCH antibodies demonstrated negative results in 2 patients with subacute thyroiditis, but positive in one patient with idiopathic primary myxedema. 7) The number of patients with high titers(>l:802) was 16 for antithyroglobulin antibody, and 62.5% (10 patients) of which was Hashimoto's thyroiditis. Thirteen (65.0) of 20 patients with high titers (>l:802) for antimicrosomal antibody was Hashimoto's thyroiditis. TRCH test is a simple, sensitive method, and has high reliability and reproducibility. The incidences and titers of antithyroglobulin antibody and antimicrosomal antibody are especially high in Hashimoto's thyroiditis.

  1. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongjun; Zangar, Richard C.

    2017-01-17

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine, and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.

  2. Antithyroid microsomal antibody

    Science.gov (United States)

    ... that you have a higher chance of developing thyroid disease in the future. Antithyroid microsomal antibodies may be ... PA: Elsevier; 2016:chap 11. Weiss RE, Refetoff S. Thyroid function testing. In: Jameson JL, De Groot LJ, eds. Endocrinology: Adult and ... Lupus Read more ...

  3. Monoclonal antibodies in haematopathology

    Energy Technology Data Exchange (ETDEWEB)

    Grignani, F.; Martelli, M.F.; Mason, D.Y.

    1985-01-01

    This book contains over 40 selections. Some of the titles are: Oncogene (c-myc, c-myb) amplification in acute myelogenous leukaemia; Ultrastructural characterization of leukaemic cells with monoloclonal antibodies; Origin of B-cell malignancies; Immunohistology of gut lymphomas; and Spurious evidence of lineage infidelity in monocytic leukaemia.

  4. Monoclonal antibodies in myeloma

    DEFF Research Database (Denmark)

    Sondergeld, P.; van de Donk, N. W. C. J.; Richardson, P. G.

    2015-01-01

    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting add...

  5. Fluorescent labeling of antibody fragments using split GFP.

    Directory of Open Access Journals (Sweden)

    Fortunato Ferrara

    Full Text Available Antibody fragments are easily isolated from in vitro selection systems, such as phage and yeast display. Lacking the Fc portion of the antibody, they are usually labeled using small peptide tags recognized by antibodies. In this paper we present an efficient method to fluorescently label single chain Fvs (scFvs using the split green fluorescent protein (GFP system. A 13 amino acid tag, derived from the last beta strand of GFP (termed GFP11, is fused to the C terminus of the scFv. This tag has been engineered to be non-perturbing, and we were able to show that it exerted no effect on scFv expression or functionality when compared to a scFv without the GFP11 tag. Effective functional fluorescent labeling is demonstrated in a number of different assays, including fluorescence linked immunosorbant assays, flow cytometry and yeast display. Furthermore, we were able to show that this split GFP system can be used to determine the concentration of scFv in crude samples, as well an estimate of antibody affinity, without the need for antibody purification. We anticipate this system will be of widespread interest in antibody engineering and in vitro display systems.

  6. Humanized Antibodies for Antiviral Therapy

    Science.gov (United States)

    Co, Man Sung; Deschamps, Marguerite; Whitley, Richard J.; Queen, Cary

    1991-04-01

    Antibody therapy holds great promise for the treatment of cancer, autoimmune disorders, and viral infections. Murine monoclonal antibodies are relatively easy to produce but are severely restricted for therapeutic use by their immunogenicity in humans. Production of human monoclonal antibodies has been problematic. Humanized antibodies can be generated by introducing the six hypervariable regions from the heavy and light chains of a murine antibody into a human framework sequence and combining it with human constant regions. We humanized, with the aid of computer modeling, two murine monoclonal antibodies against herpes simplex virus gB and gD glycoproteins. The binding, virus neutralization, and cell protection results all indicate that both humanized antibodies have retained the binding activities and the biological properties of the murine monoclonal antibodies.

  7. Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells

    Czech Academy of Sciences Publication Activity Database

    Ohradanova-Repic, A.; Nogueira, E.; Hartl, I.; Gomes, A.C.; Preto, A.; Steinhuber, E.; Muehlgrabner, V.; Repic, M.; Kuttke, M.; Zwirzitz, A.; Prouza, M.; Suchánek, M.; Wozniak-Knopp, G.; Hořejší, Václav; Schabbauer, G.; Cavaco-Paulo, A.; Stockinger, H.

    2018-01-01

    Roč. 14, č. 1 (2018), s. 123-130 ISSN 1549-9634 Institutional support: RVO:68378050 Keywords : Active targeting * Liposome functionalization * Immunoliposome * Antibody engineering * Recombinant Fab antibody fragment Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 5.720, year: 2016

  8. Immuno-PET : A navigator in monoclonal antibody development and applications

    NARCIS (Netherlands)

    van Dongen, Guus A. M. S.; Visser, Gerard W. M.; Hooge, Marjolijn N. Lub-de; Perk, Lars R.; de Vries, Elisabeth G. E.

    2007-01-01

    Monoclonal antibodies (mAbs) have been approved for use as diagnostics and therapeutics in a broad range of medical indications, but especially in oncology. In addition, hundreds of new mAbs, engineered mAb fragments, and nontraditional antibody-like scaffolds directed against either validated or

  9. Engineering Encounters: Reverse Engineering

    Science.gov (United States)

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  10. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery...

  11. Impact of cell culture on recombinant monoclonal antibody product heterogeneity.

    Science.gov (United States)

    Liu, Hongcheng; Nowak, Christine; Shao, Mei; Ponniah, Gomathinayagam; Neill, Alyssa

    2016-09-01

    Recombinant monoclonal antibodies are commonly expressed in mammalian cell culture and purified by several steps of filtration and chromatography. The resulting high purity bulk drug substance still contains product variants differing in properties such as charge and size. Posttranslational modifications and degradations occurring during cell culture are the major sources of heterogeneity in bulk drug substance of recombinant monoclonal antibodies. The focus of the current review is the impact of cell culture conditions on the types and levels of various modifications and degradations of recombinant monoclonal antibodies. Understanding the relationship between cell culture and product variants can help to make consistently safe and efficacious products. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1103-1112, 2016. © 2016 American Institute of Chemical Engineers.

  12. Bispecific Antibodies as a Development Platform for New Concepts and Treatment Strategies

    Directory of Open Access Journals (Sweden)

    Fa Yang

    2016-12-01

    Full Text Available With the development of molecular cloning technology and the deep understanding of antibody engineering, there are diverse bispecific antibody formats from which to choose to pursue the optimal biological activity and clinical purpose. The single-chain-based bispecific antibodies usually bridge tumor cells with immune cells and form an immunological synapse because of their relatively small size. Bispecific antibodies in the IgG format include asymmetric bispecific antibodies and homodimerized bispecific antibodies, all of which have an extended blood half-life and their own crystalline fragment (Fc-mediated functions. Besides retargeting effector cells to the site of cancer, new applications were established for bispecific antibodies. Bispecific antibodies that can simultaneously bind to cell surface antigens and payloads are a very ideal delivery system for therapeutic use. Bispecific antibodies that can inhibit two correlated signaling molecules at the same time can be developed to overcome inherent or acquired resistance and to be more efficient angiogenesis inhibitors. Bispecific antibodies can also be used to treat hemophilia A by mimicking the function of factor VIII. Bispecific antibodies also have broad application prospects in bone disorders and infections and diseases of the central nervous system. The latest developments of the formats and application of bispecific antibodies will be reviewed. Furthermore, the challenges and perspectives are summarized in this review.

  13. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  14. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  15. Efficacy of trivalent influenza vaccine against laboratory-confirmed influenza among young children in a randomized trial in Bangladesh.

    Science.gov (United States)

    Rolfes, Melissa A; Goswami, Doli; Sharmeen, Amina Tahia; Yeasmin, Sultana; Parvin, Nasrin; Nahar, Kamrun; Rahman, Mustafizur; Barends, Marion; Ahmed, Dilruba; Rahman, Mohammed Ziaur; Bresee, Joseph; Luby, Stephen; Moulton, Lawrence H; Santosham, Mathuram; Fry, Alicia M; Brooks, W Abdullah

    2017-12-15

    Few trials have evaluated influenza vaccine efficacy (VE) in young children, a group particularly vulnerable to influenza complications. We aimed to estimate VE against influenza in children aged Children aged 6-23 months were enrolled 1:1 in a parallel, double-blind, randomized controlled trial of trivalent inactivated influenza vaccine (IIV3) versus inactivated polio vaccine (IPV); conducted August 2010-March 2014 in Dhaka, Bangladesh. Children received two pediatric doses of vaccine, one month apart, and were followed for one year for febrile and respiratory illness. Field assistants conducted weekly home-based, active surveillance and ill children were referred to the study clinic for clinical evaluation and nasopharyngeal wash specimen collection. Analysis included all children who received a first vaccine dose and compared yearly incidence of reverse transcription polymerase chain reaction (RT-PCR)-confirmed influenza between trial arms. The VE was estimated as 1-(rate ratio of illness) × 100%, using unadjusted Poisson regression. The trial was registered with ClinicalTrials.gov, number NCT01319955. Across four vaccination rounds, 4081 children were enrolled and randomized, contributing 2576 child-years of observation to the IIV3 arm and 2593 child-years to the IPV arm. Influenza incidence was 10 episodes/100 child-years in the IIV3 arm and 15 episodes/100 child-years in the IPV arm. Overall, the VE was 31% (95% confidence interval 18, 42%) against any RT-PCR-confirmed influenza. The VE varied by season, but was similar by influenza type/subtype and participant age and sex. Vaccination of young children with IIV3 provided a significant reduction in laboratory-confirmed influenza; however, exploration of additional influenza vaccine strategies, such as adjuvanted vaccines or standard adult vaccine doses, is warranted to find more effective influenza vaccines for young children in low-income countries. Published by Elsevier Ltd.

  16. Impact of influenza B lineage-level mismatch between trivalent seasonal influenza vaccines and circulating viruses, 1999-2012.

    Science.gov (United States)

    Heikkinen, Terho; Ikonen, Niina; Ziegler, Thedi

    2014-12-01

    Influenza B virus strains in trivalent influenza vaccines are frequently mismatched to the circulating B strains, but the population-level impact of such mismatches is unknown. We assessed the impact of vaccine mismatch on the epidemiology of influenza B during 12 recent seasonal outbreaks of influenza in Finland. We analyzed all available nationwide data on virologically confirmed influenza infections in all age groups in Finland between 1 July 1999 and 30 June 2012, with the exclusion of the pandemic season of 2009-2010. We derived data on influenza infections and the circulation of different lineages of B viruses during each season from the Infectious Diseases Register and the National Influenza Center, National Institute for Health and Welfare, Finland. A total of 34 788 cases of influenza were recorded. Influenza A accounted for 74.0% and influenza B for 26.0% of all typed viruses. Throughout the 12 seasons, we estimated that 41.7% (3750 of 8993) of all influenza B infections were caused by viruses representing the other genetic lineage than the one in the vaccine. Altogether, opposite-lineage influenza B viruses accounted for 10.8% of all influenza infections in the population, the proportion being highest (16.8%) in children aged 10-14 years and lowest (2.6%) in persons aged ≥70 years. The population-level impact of lineage-level mismatch between the vaccine and circulating strains of influenza B viruses is substantial, especially among children and adolescents. The results provide strong support for the inclusion of both influenza B lineages in seasonal influenza vaccines. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. A systematic analysis of the spectra of trivalent actinide chlorides in D sub 3h site symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Carnall, W.T.

    1989-11-01

    The optical spectra of actinide ions in the compound AnCl{sub 3} and doped into single crystal LaCl{sub 3} were interpreted in terms of transitions within 5f{sup N} configurations. Energy-level calculations were carried out using an effective operator Hamiltonian, the parameters of which were determined by fitting experimental data. Atomic and crystal-field matrices were diagonalized simultaneously assuming an approximate D{sub 3h} site symmetry. The spectroscopic data were taken from the literature but in most cases supplemented by unpublished measurements in absorption and in fluorescence. Spectroscopic data for each ion were analyzed independently, then the model parameters were intercompared and in many cases adjusted such that in the final fitting process the principal interactions showed uniform trends in parameter values with increasing atomic number. Consistent with analyses of the spectra of lanthanide ions in both LaCl{sub 3} and LaF{sub 3}, abrupt changes in magnitude of certain crystal-field parameters were found near the center of the 5f{sup N}-series. This resulted in two groups of parameter values, but with consistent trends for both halves of the series, and generally very good agreement between observed and computed energies. A new energy level chart based on computed crystal-field level energies for each trivalent actinide ion has been prepared. in addition, the parameters of the atomic part of each 5f{sup N} Hamiltonian were used to calculate the matrix elements of U{sup ({lambda})} for selected transitions. The values were tabulated to facilitate calculation of intensity-related parameters for 5f{sup N}-transitions using the Judd-Ofelt theory. 44 refs., 10 figs., 3 tabs.

  18. Uptake and Effectiveness of a Trivalent Inactivated Influenza Vaccine in Children in Urban and Rural Kenya, 2010 to 2012.

    Science.gov (United States)

    Katz, Mark A; Lebo, Emmaculate; Emukule, Gideon O; Otieno, Nancy; Caselton, Deborah L; Bigogo, Godfrey; Njuguna, Henry; Muthoka, Philip M; Waiboci, Lilian W; Widdowson, Marc-Alain; Xu, Xiyan; Njenga, Moses K; Mott, Joshua A; Breiman, Robert F

    2016-03-01

    In Africa, recent surveillance has demonstrated a high burden of influenza, but influenza vaccine is rarely used. In Kenya, a country with a tropical climate, influenza has been shown to circulate year-round, like in other tropical countries. During 3 months in 2010 and 2011 and 2 months in 2012, the Kenya Medical Research Institute/Centers for Disease Control and Prevention-Kenya offered free injectable trivalent inactivated influenza vaccine to children 6 months to 10 years old in 2 resource-poor communities in Kenya-Kibera and Lwak (total population ~50,000). We conducted a case-control study to evaluate vaccine effectiveness (VE) in preventing laboratory-confirmed influenza associated with influenza-like illness and acute lower respiratory illness. Of the approximately 18,000 eligible children, 41%, 48% and 51% received at least 1 vaccine in 2010, 2011 and 2012, respectively; 30%, 36% and 38% were fully vaccinated. VE among fully vaccinated children was 57% [95% confidence interval (CI): 29% to 74%] during a 6-month follow-up period, 39% (95% CI: 17% to 56%) during a 9-month follow-up period and 48% (95% CI: 32% to 61%) during a 12-month follow-up period. For the 12-month follow-up period, VE was statistically significant in children Kenya, parents of nearly half of the eligible children <10 years old chose to get their children vaccinated with a free influenza vaccine. During a 12-month follow-up period, the vaccine was moderately effective in preventing medically attended influenza-associated respiratory illness.

  19. Prediction of mono-, bi-, and trivalent metal cation relative toxicity to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta) in synthetic seawater.

    Science.gov (United States)

    Mendes, Luiz Fernando; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Bastos, Erick Leite; Stevani, Cassius Vinicius; Colepicolo, Pio

    2013-11-01

    The present study reports a 48-h aquatic metal-toxicity assay based on daily growth rates of the red seaweed Gracilaria domingensis (Gracilariales, Rhodophyta) in synthetic seawater. The median inhibitory concentration (IC50) for each metal cation was experimentally determined, and the ratios of free ions (aqueous complex) were calculated by software minimization of the total equilibrium activity (MINTEQA2) to determine the free median inhibitory concentration (IC50F). A model for predicting the toxicity of 14 metal cations was developed using the generic function approximation algorithm (GFA) with log IC50F values as the dependent variables and the following properties as independent variables: ionic radius (r), atomic number (AN), electronegativity (Xm ), covalent index (Xm (2) r), first hydrolysis constant (|log KOH |), softness index (σp ), ion charge (Z), ionization potential (ΔIP), electrochemical potential (ΔEo ), atomic number divided by ionization potential (AN/ΔIP), and the cation polarizing power for Z(2) /r and Z/AR. The 3-term independent variables were predicted as the best-fit model (log IC50F: -23.64 + 5.59 Z/AR + 0.99 |log KOH | + 37.05 σp ; adjusted r(2) : 0.88; predicted r(2) : 0.68; Friedman lack-of-fit score: 1.6). This mathematical expression can be used to predict metal-biomolecule interactions, as well as the toxicity of mono-, bi-, and trivalent metal cations, which have not been experimentally tested in seaweed to date. Quantitative ion-character relationships allowed the authors to infer that the mechanism of toxicity might involve an interaction between metals and functional groups of biological species containing sulfur or oxygen. © 2013 SETAC.

  20. Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier Backfill Material for Trapping Trivalent Minor Actinides.

    Science.gov (United States)

    Xu, Lin; Zheng, Tao; Yang, Shitong; Zhang, Linjuan; Wang, Jianqiang; Liu, Wei; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2016-04-05

    The permeable reactive barrier (PRB) technique has attracted an increasing level of attention for the in situ remediation of contaminated groundwater. In this study, the macroscopic uptake behaviors and microscopic speciation of Eu(III) on hydroxyapatite (HAP) were investigated by a combination of theoretical modeling, batch experiments, powder X-ray diffraction (PXRD) fitting, and X-ray absorption spectroscopy (XAS). The underlying removal mechanisms were identified to further assess the application potential of HAP as an effective PRB backfill material. The macroscopic analysis revealed that nearly all dissolved Eu(III) in solution was removed at pH 6.5 within an extremely short reaction time of 5 min. In addition, the thermodynamic calculations, desorption experiments, and PXRD and XAS analyses definitely confirmed the formation of the EuPO4·H2O(s) phase during the process of uptake of dissolved Eu(III) by HAP via the dissolution-precipitation mechanism. A detailed comparison of the present experimental findings and related HAP-metal systems suggests that the relative contribution of precipitation to the total Eu(III) removal increases as the P:Eu ratio decreases. The dosage of HAP-based PRB for the remediation of groundwater polluted by Eu(III) and analogous trivalent actinides [e.g., Am(III) and Cm(III)] should be strictly controlled depending on the dissolved Eu(III) concentration to obtain an optimal P:M (M represents Eu, Am, or Cm) ratio and treatment efficiency.

  1. The effectiveness of seasonal trivalent inactivated influenza vaccine in preventing laboratory confirmed influenza hospitalisations in Auckland, New Zealand in 2012

    Science.gov (United States)

    Turner, Nikki; Pierse, Nevil; Bissielo, Ange; Huang, Q Sue; Baker, Michael; Widdowson, Marc-Alain; Kelly, Heath

    2015-01-01

    Background Few studies report the effectiveness of trivalent inactivated influenza vaccine (TIV) in preventing hospitalisation for influenza-confirmed respiratory infections. Using a prospective surveillance platform, this study reports the first such estimate from a well-defined ethnically diverse population in New Zealand (NZ). Methods A case test-negative study was used to estimate propensity adjusted vaccine effectiveness. Patients with a severe acute respiratory infection (SARI), defined as a patient of any age requiring hospitalization with a history of a fever or a measured temperature ≥38°C and cough and onset within the past 7 days, admitted to public hospitals in Central, South and East Auckland were eligible for inclusion in the study. Cases were SARI patients who tested positive for influenza, while non-cases (controls) were SARI patients who tested negative. Results were adjusted for the propensity to be vaccinated and the timing of the influenza season Results The propensity and season adjusted vaccine effectiveness (VE) was estimated as 37% (95% CI 18;51). The VE point estimate against influenza A (H1N1) was higher than for influenza B or influenza A (H3N2) but confidence intervals were wide and overlapping. Estimated VE was 51% (95% CI 28;67) in patients aged 18-64 years but only 6% (95% CI -51;42) in those aged 65 years and above. Conclusion Prospective surveillance for SARI has been successfully established in NZ . This study for the first year, the 2012 influenza season, has shown low to moderate protection by TIV against hospitalisation for laboratory-confirmed influenza. PMID:24768730

  2. Cost-effectiveness of seasonal quadrivalent versus trivalent influenza vaccination in the United States: A dynamic transmission modeling approach.

    Science.gov (United States)

    Brogan, Anita J; Talbird, Sandra E; Davis, Ashley E; Thommes, Edward W; Meier, Genevieve

    2017-03-04

    Trivalent inactivated influenza vaccines (IIV3s) protect against 2 A strains and one B lineage; quadrivalent versions (IIV4s) protect against an additional B lineage. The objective was to assess projected health and economic outcomes associated with IIV4 versus IIV3 for preventing seasonal influenza in the US. A cost-effectiveness model was developed to interact with a dynamic transmission model. The transmission model tracked vaccination, influenza cases, infection-spreading interactions, and recovery over 10 y (2012-2022). The cost-effectiveness model estimated influenza-related complications, direct and indirect costs (2013-2014 US$), health outcomes, and cost-effectiveness. Inputs were taken from published/public sources or estimated using regression or calibration. Outcomes were discounted at 3% per year. Scenario analyses tested the reliability of the results. Seasonal vaccination with IIV4 versus IIV3 is predicted to reduce annual influenza cases by 1,973,849 (discounted; 2,325,644 undiscounted), resulting in 12-13% fewer cases and influenza-related complications and deaths. These reductions are predicted to translate into 18,485 more quality-adjusted life years (QALYs) accrued annually for IIV4 versus IIV3. Increased vaccine-related costs ($599 million; 5.7%) are predicted to be more than offset by reduced influenza treatment costs ($699 million; 12.2%), resulting in direct medical cost saving annually ($100 million; 0.6%). Including indirect costs, savings with IIV4 are predicted to be $7.1 billion (5.6%). Scenario analyses predict IIV4 to be cost-saving in all scenarios tested apart from low infectivity, where IIV4 is predicted to be cost-effective. In summary, seasonal influenza vaccination in the US with IIV4 versus IIV3 is predicted to improve health outcomes and reduce costs.

  3. Magnetic Purification of Antibodies

    Science.gov (United States)

    Dhadge, Vijaykumar Laxman

    This work aimed at the development of magnetic nanoparticles for antibody purification and at the evaluation of their performance in Magnetic fishing and in a newly developed hybrid technology Magnetic Aqueous Two Phase Systems. Magnetic materials were produced by coprecipitation and solvothermal approaches. Natural polymers such as dextran, extracellular polysaccharide and gum Arabic were employed for coating of iron oxide magnetic supports. Polymer coated magnetic supports were then modified with synthetic antibody specific ligands,namely boronic acid, a triazine ligand (named 22/8) and an Ugi ligand (named A2C7I1). To optimize the efficacy of magnetic nanoparticles for antibody magnetic fishing, various solutions of pure and crude antibody solutions along with BSA as a non-specific binding protein were tested. The selectivity of magnetic nanoparticle for antibody, IgG, was found effective with boronic acid and ligand 22/8. Magnetic supports were then studied for their performance in high gradient magnetic separator for effective separation capability as well as higher volume handling capability. The magnetic materials were also supplemented to aqueous two phase systems, devising a new purification technology. For this purpose, magnetic particles modified with boronic acid were more effective. This alternative strategy reduced the time of operation,maximized separation capability (yield and purity), while reducing the amount of salt required. Boronic acid coated magnetic particles bound 170 +/- 10 mg hIgG/g MP and eluted 160 +/- 5 mg hIgG/g MP, while binding only 15 +/- 5 mg BSA/g MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 x 105 M-1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed/g MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely

  4. Immune engineering: from systems immunology to engineering immunity.

    Science.gov (United States)

    Jiang, Ning

    2017-03-01

    The smallpox vaccine represents the earliest attempt in engineering immunity. The recent success of chimeric antigen receptor T cells (CAR-T cells) in cancer once again demonstrates the clinical potential of immune engineering. Inspired by this success, diverse approaches have been used to boost various aspects of immunity: engineering dendritic cells (DCs), natural killer (NK) cells, T cells, antibodies, cytokines, small peptides, and others. With recent development of various high-throughput technologies (of which engineers, especially biomedical engineers/bioengineers contributed significantly), such as immune repertoire sequencing, and analytical methods, a systems level of understanding immunity (or the lack of it) beyond model animals has provided critical insights into the human immune system. This review focuses on recent progressed made in systems biology and the engineering of adaptive immunity.

  5. Clinical use of antibodies

    International Nuclear Information System (INIS)

    Baum, R.P.; Hoer, Gustav; Cox, P.H.; Buraggi, G.L.

    1991-01-01

    Use of monoclonal antibodies as tumour specific carrier molecules for therapeutic agents or as in vivo diagnostic reagents when labelled with radionuclides or NMR signal enhancers is attracting more and more attention. The potential is enormous but the technical problems are also considerable requiring the concerted action of many different scientific disciplines. This volume is based upon a symposium organised in Frankfurt in 1990 under the auspices of the European Association of Nuclear Medicines' Specialist Task Groups on Cardiology and the Utility of Labelled Antibodies. It gives a multidisciplinary review of the state of the art and of problems to be solved as well as recording the not inconsiderable successes which have been booked to date. The book will be of value as a reference to both clinicians and research scientists. refs.; figs.; tabs

  6. Natural killer (NK cell mediated antibody-dependent cellular cytotoxicity (ADCC in tumour immunotherapy with therapeutic antibodies

    Directory of Open Access Journals (Sweden)

    Ursula Jördis Eva Seidel

    2013-03-01

    Full Text Available In the last decade several therapeutic antibodies have been FDA and EMEA approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC mediated by natural killer (NK cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumour models. However, a direct in vivo effect of ADCC in tumour reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic haematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of KIR-receptor-ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function.

  7. Antibody Production with Synthetic Peptides.

    Science.gov (United States)

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column.

  8. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  9. Efficacy of a Trivalent Hand, Foot, and Mouth Disease Vaccine against Enterovirus 71 and Coxsackieviruses A16 and A6 in Mice.

    Science.gov (United States)

    Caine, Elizabeth A; Fuchs, Jeremy; Das, Subash C; Partidos, Charalambos D; Osorio, Jorge E

    2015-11-17

    Hand, foot, and mouth disease (HFMD) has recently emerged as a major public health concern across the Asian-Pacific region. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the primary causative agents of HFMD, but other members of the Enterovirus A species, including Coxsackievirus A6 (CVA6), can cause disease. The lack of small animal models for these viruses have hampered the development of a licensed HFMD vaccine or antivirals. We have previously reported on the development of a mouse model for EV71 and demonstrated the protective efficacy of an inactivated EV71 vaccine candidate. Here, mouse-adapted strains of CVA16 and CVA6 were produced by sequential passage of the viruses through mice deficient in interferon (IFN) α/β (A129) and α/β and γ (AG129) receptors. Adapted viruses were capable of infecting 3 week-old A129 (CVA6) and 12 week-old AG129 (CVA16) mice. Accordingly, these models were used in active and passive immunization studies to test the efficacy of a trivalent vaccine candidate containing inactivated EV71, CVA16, and CVA6. Full protection from lethal challenge against EV71 and CVA16 was observed in trivalent vaccinated groups. In contrast, monovalent vaccinated groups with non-homologous challenges failed to cross protect. Protection from CVA6 challenge was accomplished through a passive transfer study involving serum raised against the trivalent vaccine. These animal models will be useful for future studies on HFMD related pathogenesis and the efficacy of vaccine candidates.

  10. Efficacy of a Trivalent Hand, Foot, and Mouth Disease Vaccine against Enterovirus 71 and Coxsackieviruses A16 and A6 in Mice

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Caine

    2015-11-01

    Full Text Available Hand, foot, and mouth disease (HFMD has recently emerged as a major public health concern across the Asian-Pacific region. Enterovirus 71 (EV71 and Coxsackievirus A16 (CVA16 are the primary causative agents of HFMD, but other members of the Enterovirus A species, including Coxsackievirus A6 (CVA6, can cause disease. The lack of small animal models for these viruses have hampered the development of a licensed HFMD vaccine or antivirals. We have previously reported on the development of a mouse model for EV71 and demonstrated the protective efficacy of an inactivated EV71 vaccine candidate. Here, mouse-adapted strains of CVA16 and CVA6 were produced by sequential passage of the viruses through mice deficient in interferon (IFN α/β (A129 and α/β and γ (AG129 receptors. Adapted viruses were capable of infecting 3 week-old A129 (CVA6 and 12 week-old AG129 (CVA16 mice. Accordingly, these models were used in active and passive immunization studies to test the efficacy of a trivalent vaccine candidate containing inactivated EV71, CVA16, and CVA6. Full protection from lethal challenge against EV71 and CVA16 was observed in trivalent vaccinated groups. In contrast, monovalent vaccinated groups with non-homologous challenges failed to cross protect. Protection from CVA6 challenge was accomplished through a passive transfer study involving serum raised against the trivalent vaccine. These animal models will be useful for future studies on HFMD related pathogenesis and the efficacy of vaccine candidates.

  11. Engineer Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Sik; Kim, Yeong Pil; Kim, Yeong Jin

    2003-03-15

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  12. Engineer Ethics

    International Nuclear Information System (INIS)

    Lee, Dae Sik; Kim, Yeong Pil; Kim, Yeong Jin

    2003-03-01

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  13. [Study of anti-idiotype antibodies to human monoclonal antibody].

    Science.gov (United States)

    Harada, R; Takahashi, N; Owaki, I; Kannagi, R; Endo, N; Morita, N; Inoue, M

    1992-02-01

    A human monoclonal antibody, ll-50 (IgM, lambda), was generated, which reacted specifically with a major of glycolipid present in LS174T colon cancer cells. The glycolipid antigen which reacted with the ll-50 antibody was expected to four sugar residues from its TLC mobility, and it was ascertained that the glycolipid antigen which reacted with ll-50 antibody might be Lc4 antigen [Gal beta 1----3 GLcNAc beta 1----3 Gal beta 1----4 Glc beta 1----1 Cer] judging from TLC immunostaining and ELISA when the reactivity of ll-50 antibody was tested using various pure glycolipids in 3-5 sugar residues as an antigen. Sera in patients with malignant disorders and healthy individuals were analyzed by Sandwich assay of immobilized and biotinylated ll-50 antibody. The serum of the Lc4 antigen recognized by ll-50 antibody was significantly higher in patients with malignant disorders than that in healthy individuals (p less than 0.05). Three mouse monoclonal anti-idiotype antibodies, G3, B3 and C5 (all IgG1), were generated by the immunization of BALB/c mice with ll-50 antibody. These anti-idiotype antibodies specifically bound to to human monoclonal antibody, ll-50 and had a significant inhibitory activity towards the binding of ll-50 antibody to the Lc4 antigen. This indicated that these anti-idiotype antibodies, G3, B3, and C5, were paratope-related anti-idiotype antibodies. G3, B3, and C5 were expected to define the nearest idiotope because they could mutually inhibit ll-50 antibody. Sera in patients with malignant disorders and healthy individuals were analyzed by Sandwich assay of immobilized and biotinylated anti-idiotype antibodies, G3, B3, and C5. As to the ll-50 like antibodies defined by C5 (Id-C5+), the mean serum level in patients with malignant disorders was significantly higher than that in healthy individuals (p less than 0.05). As to the ll-50 like antibodies defined by B3 (Id-B3+), the mean serum level in patients with malignant disorders was significantly higher

  14. Antibody-Based Therapies in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Tai

    2011-01-01

    Full Text Available The unmet need for improved multiple myeloma (MM therapy has stimulated clinical development of monoclonal antibodies (mAbs targeting either MM cells or cells of the bone marrow (BM microenvironment. In contrast to small-molecule inhibitors, therapeutic mAbs present the potential to specifically target tumor cells and directly induce an immune response to lyse tumor cells. Unique immune-effector mechanisms are only triggered by therapeutic mAbs but not by small molecule targeting agents. Although therapeutic murine mAbs or chimeric mAbs can cause immunogenicity, the advancement of genetic recombination for humanizing rodent mAbs has allowed large-scale production and designation of mAbs with better affinities, efficient selection, decreasing immunogenicity, and improved effector functions. These advancements of antibody engineering technologies have largely overcome the critical obstacle of antibody immunogenicity and enabled the development and subsequent Food and Drug Administration (FDA approval of therapeutic Abs for cancer and other diseases.

  15. The antibody Hijikata Tatsumi

    Directory of Open Access Journals (Sweden)

    Éden Peretta

    2012-11-01

    Full Text Available Considered one of the most influential modern dance representatives in Japan, Tatsumi Hijikata’s work was a milestone in the Japanese post-war experimental artistic scene. Heretic son of his time, he staged a fertile mix of artistic and cultural influences, overlapping subversive elements of European arts and philosophy with radical references from pre-modern Japanese culture. In this way he built the foundations of its unstable antibody, its political-artistic project of dissolution of a organism, both physical and social.

  16. Data on atherosclerosis specific antibody conjugation to nanoemulsions

    Directory of Open Access Journals (Sweden)

    Geoffrey Prévot

    2017-12-01

    Full Text Available This article present data related to the publication entitled “Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging” (Prévot et al., 2017 [1]. Herein we describe the engineering in the baculovirus-insect cell system and purification processes of the human scFv-Fc TEG4-2C antibody, specific of platelets within the atheroma plaque. For molecular targeting purpose, atheroma specific antibody was conjugated to nanoemulsions (NEs using a heterobifunctional linker (DSPE-PEG-maleimide. Atheroma labelling was assayed by immunochemistry on arterial sections from rabbits.

  17. Simulant molecules with trivalent or pentavalent phosphorus atoms: bond dissociation energies and other thermodynamic and structural properties from quantum chemical models.

    Science.gov (United States)

    Hahn, David K; RaghuVeer, Krishans S; Ortiz, J V

    2011-08-04

    The CBS-QB3 and G4 thermochemical models have been used to generate energetic, structural, and spectroscopic data on a set of molecules with trivalent or pentavalent phosphorus atoms that can serve as simulants of chemical warfare agents. Based on structural data, the conformational stabilities of these molecules are explained in terms of the anomeric interaction within the OPOC and OPSC fragments. For those cases where experimental data are available, comparisons have been made between calculated and previously reported vibrational frequencies. All varieties of bond dissociation energies have been examined except those for C-H and P═O bonds. In trivalent phosphorus molecules, the O-C and S-C bonds have the lowest dissociation energies. In the pentavalent phosphorus set, the S-C bonds, followed by P-S bonds, have the lowest dissociation energies. In the fluorinated simulant molecules, the P-F bond is strongest, and the P-C or O-C bonds are weakest. © 2011 American Chemical Society

  18. Hybrid silica nanoparticles for sequestration and luminescence detection of trivalent rare-earth ions (Dy3+ and Nd3+) in solution

    Science.gov (United States)

    Topel, Seda Demirel; Legaria, Elizabeth Polido; Tiseanu, Carmen; Rocha, João; Nedelec, Jean-Marie; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2014-12-01

    New hybrid material-based adsorbents acting also as luminescent probes upon uptake of trivalent rare-earth (RE) ions Nd3+ and Dy3+ have been developed. SiO2 NPs functionalized by three different organic ligands, N-aminopropylen-amido-iminodiacetic acid (L1), pyridine-α,β-dicarboxylic acid bis(propylenamide) (L2), and N-propylen-iminodiacetic acid (L3), have been produced and fully characterized by 13C, 1H, and 29Si solid-state NMR, FTIR, TGA, XRD, TEM, nitrogen gas adsorption, and also by NTA and DLS in solution. The synthesized hybrid materials are well dispersible and stable in aqueous solutions according to NTA and consist of spheres with diameters less than 100 nm. Their affinities to the lanthanide ions Dy3+ and Nd3+ have been investigated in aqueous solution and characterized by SEM-EDS and complexometric titration, demonstrating that they can be successfully used as adsorbents for sequestration of trivalent RE ions. The adsorbed RE ions can efficiently be desorbed from saturated nanoadsorbents by addition of hydrochloric acid. The produced nanomaterials may also be used as luminescent probes for Dy3+ and Nd3+ ions in solution.

  19. Safety of a Trivalent Inactivated Influenza Vaccine in Health Care Workers in Kurdistan Province, Western Iran; A Longitudinal Follow-up Study.

    Science.gov (United States)

    Soltani, Jafar; Jamil Amjadi, Mohamad

    2014-03-01

    We studied the safety of a trivalent inactivated surface antigen (split virion, inactivated) influenza vaccine, Begrivac® (Novartis Company), widely used in health care workers in Kurdistan. A longitudinal follow-up study was performed in Sanandaj city, west of Iran, recruiting 936 people. A questionnaire was completed for each participant, and all symptoms or abnormal physical findings were recorded. In part 1 of the study, the post-vaccination complaints were headache (5.3%), fever (7.9%), weakness (9.6%), chills (10.1%), sweating (10.5%), arthralgia (20.2%), and malaise (21.5%). Swelling of the injection site was seen in 267 (30.3%) participants, and pruritus of the injection site was seen in 290 (32.9%) participants. Redness and induration were also reported in 42.5% of the participants. Local reactions were mainly mild and lasted for 1-2 days. No systemic reactions were reported in the second part of the study. None of the participants experienced any inconvenience. We concluded that local adverse reactions after the trivalent inactivated split influenza vaccine, Begrivac®, in health care workers were far more common than expected. Continuous surveillance is needed to assess the potential risks and benefits of newly produced influenza vaccines.

  20. Importance of trivalency and the e(g)(1) configuration in the photocatalytic oxidation of water by Mn and Co oxides.

    Science.gov (United States)

    Maitra, Urmimala; Naidu, B S; Govindaraj, A; Rao, C N R

    2013-07-16

    Prompted by the early results on the catalytic activity of LiMn2O4 and related oxides in the photochemical oxidation of water, our detailed study of several manganese oxides has shown that trivalency of Mn is an important factor in determining the catalytic activity. Thus, Mn2O3, LaMnO3, and MgMn2O4 are found to be very good catalysts with turnover frequencies of 5 × 10(-4) s(-1), 4.8 × 10(-4) s(-1), and 0.8 × 10(-4) s(-1), respectively. Among the cobalt oxides, Li2Co2O4 and LaCoO3--especially the latter--exhibit excellent catalytic activity, with the turnover frequencies being 9 × 10(-4) s(-1) and 1.4 × 10(-3) s(-1), respectively. The common feature among the catalytic Mn and Co oxides is not only that Mn and Co are in the trivalent state, but Co(3+) in the Co oxides is in the intermediate t2g(5)e(g)(1) state whereas Mn(3+) is in the t2g(3e(g)(1) state. The presence of the e(g)(1) electron in these Mn and Co oxides is considered to play a crucial role in the photocatalytic properties of the oxides.

  1. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    Energy Technology Data Exchange (ETDEWEB)

    Binupriya, A.R. [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Sathishkumar, M., E-mail: cvemuthu@nus.edu.sg [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Vijayaraghavan, K. [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Yun, S.-I., E-mail: siyun@chonbuk.ac.kr [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2010-05-15

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  2. The future of monoclonal antibody technology

    OpenAIRE

    Zider, Alexander; Drakeman, Donald L

    2010-01-01

    With the rapid growth of monoclonal antibody-based products, new technologies have emerged for creating modified forms of antibodies, including fragments, conjugates and multi-specific antibodies. We created a database of 450 therapeutic antibodies in development to determine which technologies and indications will constitute the “next generation” of antibody products. We conclude that the antibodies of the future will closely resemble the antibodies that have already been approved for commer...

  3. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    Directory of Open Access Journals (Sweden)

    Rami Sommerstein

    2015-11-01

    Full Text Available Arenaviruses such as Lassa virus (LASV can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  4. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection

    Science.gov (United States)

    Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.

    2015-01-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  5. Monoclonal antibodies for treating cancer

    International Nuclear Information System (INIS)

    Dillman, R.O.

    1989-01-01

    The purpose of this study is to assess the current status of in-vivo use of monoclonal antibodies for treating cancer. Publications appearing between 1980 and 1988 were identified by computer searches using MEDLINE and CANCERLIT, by reviewing the table of contents of recently published journals, and by searching bibliographies of identified books and articles. More than 700 articles, including peer-reviewed articles and book chapters, were identified and selected for analysis. The literature was reviewed and 235 articles were selected as relevant and representative of the current issues and future applications for in-vivo monoclonal antibodies for cancer therapy and of the toxicity and efficacy which has been associated with clinical trials. Approaches include using antibody alone (interacting with complement or effector cells or binding directly with certain cell receptors) and immunoconjugates (antibody coupled to radioisotopes, drugs, toxins, or other biologicals). Most experience has been with murine antibodies. Trials of antibody alone and radiolabeled antibodies have confirmed the feasibility of this approach and the in-vivo trafficking of antibodies to tumor cells. However, tumor cell heterogeneity, lack of cytotoxicity, and the development of human antimouse antibodies have limited clinical efficacy. Although the immunoconjugates are very promising, heterogeneity and the antimouse immune response have hampered this approach as has the additional challenge of chemically or genetically coupling antibody to cytotoxic agents. As a therapeutic modality, monoclonal antibodies are still promising but their general use will be delayed for several years. New approaches using human antibodies and reducing the human antiglobulin response should facilitate treatment. 235 references

  6. Tabhu: tools for antibody humanization

    DEFF Research Database (Denmark)

    Olimpieri, Pier Paolo; Marcatili, Paolo; Tramontano, Anna

    2015-01-01

    and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps...... elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity...... of the humanization experiment protocol....

  7. Theranostics Using Antibodies and Antibody-Related Therapeutics

    NARCIS (Netherlands)

    Moek, Kirsten L; Giesen, Danique; Kok, Iris C; de Groot, Derk Jan A; Jalving, Mathilde; Fehrmann, Rudolf S N; Lub-de Hooge, Marjolijn N; Brouwers, Adrienne H; de Vries, Elisabeth G E

    In theranostics, radiolabeled compounds are used to determine a treatment strategy by combining therapeutics and diagnostics in the same agent. Monoclonal antibodies (mAbs) and antibody-related therapeutics represent a rapidly expanding group of cancer medicines. Theranostic approaches using these

  8. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.

    Science.gov (United States)

    Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias

    2017-09-01

    In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.

  9. Antibodies and Plasmodium falciparum merozoites

    NARCIS (Netherlands)

    Ramasamy, R; Ramasamy, M; Yasawardena, S

    There is considerable interest in using merozoite proteins in a vaccine against falciparum malaria. Observations that antibodies to merozoite surface proteins block invasion are a basis for optimism. This article draws attention to important and varied aspects of how antibodies to Plasmodium

  10. Catalytic Antibodies: Concept and Promise

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Catalytic Antibodies: Concept and Promise. Desirazu N Rao Bharath Wootla. General Article Volume 12 Issue ... Keywords. Catalytic antibodies; abzymes; hybridome technology; Diels– Alder reaction; Michaelis– Menten kinetics; Factor VIII.

  11. Antiphospholipid antibodies: standardization and testing.

    Science.gov (United States)

    Riley, R S; Friedline, J; Rogers, J S

    1997-09-01

    A phenomenon originally scorned as a laboratory nuisance has turned out to be an important cause of thromboembolism, fetal death, and other forms of human disease. Investigations of this inaptly named "lupus anticoagulant" has led to the discovery of at least two distinct types of autoimmune antibodies. In spite of recent discoveries regarding the pathophysiology of these antibodies, their clinical significance is still controversial.

  12. Educational paper: Primary antibody deficiencies

    NARCIS (Netherlands)

    G.J.A. Driessen (Gertjan); M. van der Burg (Mirjam)

    2011-01-01

    textabstractPrimary antibody deficiencies (PADs) are the most common primary immunodeficiencies and are characterized by a defect in the production of normal amounts of antigen-specific antibodies. PADs represent a heterogeneous spectrum of conditions, ranging from often asymptomatic selective IgA

  13. scFv Antibody: Principles and Clinical Application

    Directory of Open Access Journals (Sweden)

    Zuhaida Asra Ahmad

    2012-01-01

    Full Text Available To date, generation of single-chain fragment variable (scFv has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional proteins having both antigen-binding capacity and marker activity can be obtained from transformed bacteria and used for one-step immunodetection of biological agents. Alternatively, antibody fragments could also be applied in the construction of immunotoxins, therapeutic gene delivery, and anticancer intrabodies for therapeutic purposes. This paper provides an overview of the current studies on the principle, generation, and application of scFv. The potential of scFv in breast cancer research is also discussed in this paper.

  14. scFv antibody: principles and clinical application.

    Science.gov (United States)

    Ahmad, Zuhaida Asra; Yeap, Swee Keong; Ali, Abdul Manaf; Ho, Wan Yong; Alitheen, Noorjahan Banu Mohamed; Hamid, Muhajir

    2012-01-01

    To date, generation of single-chain fragment variable (scFv) has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional proteins having both antigen-binding capacity and marker activity can be obtained from transformed bacteria and used for one-step immunodetection of biological agents. Alternatively, antibody fragments could also be applied in the construction of immunotoxins, therapeutic gene delivery, and anticancer intrabodies for therapeutic purposes. This paper provides an overview of the current studies on the principle, generation, and application of scFv. The potential of scFv in breast cancer research is also discussed in this paper.

  15. [Antibody induction after intrauterine interventions].

    Science.gov (United States)

    Hoch, J; Giers, G; Bald, R; Hansmann, M; Hanfland, P

    1993-06-01

    Immunohematologic and clinical data, i.e., antibody profile, location of the placenta, mode of cordocentesis, obtained from 48 pregnant patients with irregular erythrocyte antibodies during the last 2 years have been retrospectively evaluated. All fetuses of the patients received intrauterine transfusions for the treatment of fetal erythroblastosis. In 16 (33%) patients (group I) a secondarily induced antibody was detected after the onset of intrauterine transfusion therapy. 32 (67%) patients (group II) did not further develop new antibody specificities. Group I exhibited a significantly different distribution in the location of the placenta (p pregnant women. In group I a 5-fold higher rate of anterior than posterior placenta location was found. The mode of cordocentesis differed significantly (p antibodies by invasive intrauterine interventions in our patients depended indirectly on the location of the placenta and directly on the mode of the puncture (trans- vs. paraplacental access).

  16. Enhanced and persistent antibody response against homologous and heterologous strains elicited by a MF59-adjuvanted influenza vaccine in infants and young children.

    Science.gov (United States)

    Nolan, Terry; Bravo, Lulu; Ceballos, Ana; Mitha, Essack; Gray, Glenda; Quiambao, Beatriz; Patel, Sanjay S; Bizjajeva, Svetlana; Bock, Hans; Nazaire-Bermal, Nancy; Forleo-Neto, Eduardo; Cioppa, Giovanni Della; Narasimhan, Vas

    2014-10-21

    Non-adjuvanted seasonal influenza vaccines show only modest efficacy in young children. This study compared the immunogenicity, reactogenicity and safety of the MF59-adjuvanted trivalent subunit vaccine (aTIV) with two non-adjuvanted trivalent vaccines, TIV-1, the non-adjuvanted version of aTIV, and TIV-2, a split virion vaccine. 6078 children received two doses of aTIV (n=3125), TIV-1 (n=1479), or TIV-2 (n=1474) four weeks apart (Days 1 and 29). Children aged 6 to vaccination (Day 50), the aTIV group showed significantly higher geometric mean HI titers and seroconversion rates than the TIV-1 or TIV-2 groups against all homologous and heterologous strains. The difference was enhanced at HI titers ≥110. aTIV elicited a faster, more persistent antibody response, with significantly higher titers in the aTIV group after one vaccination (Day 29) and after six months (Day 209) than in either TIV group. aTIV was more reactogenic than were TIV-1 and TIV-2 but rates of severe adverse events were very low for all three vaccines. In infants and young children, the MF59-adjuvanted vaccine induced substantially faster (after one dose), higher, persistent HI titers than the non-adjuvanted vaccines, with consistently higher seroprotection rates at increased threshold HI titers. This trial is registered at clinicaltrials.gov: NCT01346592. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  18. Role of the metal oxidation state in the SNS-Cr catalyst for ethylene trimerization: isolation of di- and trivalent cationic intermediates.

    Science.gov (United States)

    Jabri, Amir; Temple, Claire; Crewdson, Patrick; Gambarotta, Sandro; Korobkov, Ilia; Duchateau, Robbert

    2006-07-19

    The reaction of the highly selective [CySCH2CH2N(H)CH2CH2SCy]CrCl3 catalyst precursor with alkyl aluminum activators was examined with the aim of isolating reactive intermediates. Reaction with Me3Al afforded a cationic trivalent chromium alkyl species {[CySCH2CH2N(H)CH2CH2SCy]CrMe(mu-Cl)}2{(AlMe3)2(m-Cl}2.(C7H8)2 (1a). Although it was not possible to obtain crystalline samples of sufficient quality from the reaction with MAO (the most preferred activator), the near-to-identical EPR spectra indicated a very close structural similarity with 1a. Ethylene oligomerization tests clearly revealed that 1 and other cationic trivalent dimeric complexes {[CySCH2CH2N(H)CH2CH2SCy] CrCl(mu-Cl)}2{AlCl4}2.(C7H8)1.5 (2), monomeric [(CySCH2CH2N(H)CH2CH2SCy)CrCl2 (THF)][AlCl4] (3), and {[CySCH2CH2N(H)CH2CH2SCy]Cr(eta2-AlCl4)}{Al2Cl7} (4) adducts display the same catalyst selectivity as the [CySCH2CH2N(H)CH2CH2SCy]CrCl3 complex and, therefore, are probably all precursors to the same catalytically active species. 2, 3, and 4 were obtained upon treatment of [CySCH2CH2N(H)CH2CH2SCy] CrCl3 with different stoichiometric ratios of AlCl3.. When i-BAO activator was used, reduction of the metal center occurred readily, affording {([CySCH2CH2N(H)CH2CH2S Cy]Cr)(mu-Cl)]2}{(i-Bu)2AlCl2}2 (5). 5 is also a selective catalyst, thus indicating that trivalent species are most probably precursors to a divalent catalytically active complex. Reaction of CrCl2(THF)2 with the ligand afforded the labile divalent adduct [CySCH2CH2N(H)CH2CH2SCy]CrCl2(THF) (6), also catalytically active and selective. Instead, deprotonation of the ligand with n-BuLi followed by reaction with CrCl2(THF)2 gave the dinuclear complex [(mu-CySCH2CH2NCH2CH2SCy)CrCl]2 (7), which did not produce oligomers.

  19. Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    Science.gov (United States)

    Chen, Ing-Chien; Lee, Yu-Ching; Chen, Jun-Bo; Tsai, Keng-Chang; Chen, Ching-Tai; Chang, Jeng-Yih; Yang, Ei-Wen; Hsu, Po-Chiang; Jian, Jhih-Wei; Hsu, Hung-Ju; Chang, Hung-Ju; Hsu, Wen-Lian; Huang, Kai-Fa; Ma, Alex Che; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes. PMID:22457753

  20. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    Science.gov (United States)

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  1. Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys

    Science.gov (United States)

    Leabman, Maya K; Meng, Y Gloria; Kelley, Robert F; DeForge, Laura E; Cowan, Kyra J; Iyer, Suhasini

    2013-01-01

    Antibody interactions with Fcγ receptors (FcγRs), like FcγRIIIA, play a critical role in mediating antibody effector functions and thereby contribute significantly to the biologic and therapeutic activity of antibodies. Over the past decade, considerable work has been directed towards production of antibodies with altered binding affinity to FcγRs and evaluation of how the alterations modulate their therapeutic activity. This has been achieved by altering glycosylation status at N297 or by engineering modifications in the crystallizable fragment (Fc) region. While the effects of these modifications on biologic activity and efficacy have been examined, few studies have been conducted to understand their effect on antibody pharmacokinetics (PK). We present here a retrospective analysis in which we characterize the PK of three antibody variants with decreased FcγR binding affinity caused by amino acid substitutions in the Fc region (N297A, N297G, and L234A/L235A) and three antibody variants with increased FcγRIIIA binding affinity caused by afucosylation at N297, and compare their PK to corresponding wild type antibody PK in cynomolgus monkeys. For all antibodies, PK was examined at a dose that was known to be in the linear range. Since production of the N297A and N297G variants in Chinese hamster ovary cells results in aglycosylated antibodies that do not bind to FcγRs, we also examined the effect of expression of an aglycosylated antibody, without sequence change(s), in E. coli. All the variants demonstrated similar PK compared with that of the wild type antibodies, suggesting that, for the six antibodies presented here, altered FcγR binding affinity does not affect PK. PMID:24492343

  2. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection

    Science.gov (United States)

    Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.

    2017-01-01

    HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635

  3. Targeted cancer therapy through antibody fragments-decorated nanomedicines.

    Science.gov (United States)

    Alibakhshi, Abbas; Abarghooi Kahaki, Fatemeh; Ahangarzadeh, Shahrzad; Yaghoobi, Hajar; Yarian, Fatemeh; Arezumand, Roghaye; Ranjbari, Javad; Mokhtarzadeh, Ahad; de la Guardia, Miguel

    2017-12-28

    Active targeting in cancer nanomedicine, for improved delivery of agents and diagnose, has been reviewed as a successful way for facilitating active uptake of theranostic agents by the tumor cells. The application of a targeting moiety in the targeted carrier complexes can play an important role in differentiating between tumor and healthy tissues. The pharmaceutical carriers, as main part of complexes, can be polymeric nanoparticles, micelles, liposomes, nanogels and carbon nanotubes. The antibodies are among the natural ligands with highest affinity and specificity to target pharmaceutical nanoparticle conjugates. However, the limitations, such as size and long circulating half-lives, hinder reproducible manufacture in clinical studies. Therefore, novel approaches have moved towards minimizing and engineering conventional antibodies as fragments like scFv, Fab, nanobody, bispecific antibody, bifunctional antibody, diabody and minibody preserving their functional potential. Different formats of antibody fragments have been reviewed in this literature update, in terms of structure and function, as smart ligands in cancer diagnosis and therapy of tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Potential impact of B lineage mismatch on trivalent influenza vaccine effectiveness during the 2015-2016 influenza season among nursery school children in Suzhou, China.

    Science.gov (United States)

    Wang, Yin; Chen, Liling; Cheng, Yuejia; Zhou, Suizan; Pang, Yuanyuan; Zhang, Jun; Greene, Carolyn M; Song, Ying; Zhang, Tao; Zhao, Genming

    2018-03-04

    We actively followed a cohort of nursery school children in Suzhou, China to assess the impact of vaccination with trivalent influenza vaccine on the prevention of influenza like illness (ILI). We enrolled children aged 36 to 72 months from 13 nursery schools in Suzhou starting two weeks after vaccination during October 2015-February 2016. Every school-day, teachers reported the names of students with ILI to study clinicians, who collected the student's nasopharyngeal swab or throat swab, either at a study clinic or the child's home. Swabs were sent to the Suzhou Center for Disease Control and Prevention's laboratory for influenza testing by RT-PCR. In total, 3278 children were enrolled; 83 (3%) were lost to follow-up, while 3195 (vaccinated: 1492, unvaccinated: 1703) were followed for 24 weeks. During the study, 40 samples tested positive; 17 in the vaccinated (B Victoria: 12; A(H1N1)pdm09: 5) and 23 in the unvaccinated group (B Victoria: 10; B Yamagata: 2; A(H1N1)pdm09: 11). The VE estimates were: 16% overall (95%CI:-58%,56%), 48% (-47%,84%) for influenza A(H1N1)pdm09, 43% (-650%,98%) for influenza B Yamagata, and -37% (-227%,42%) for influenza B Victoria. Data were analyzed by vaccinated and unvaccinated groups based on enrollees' vaccination records. The VE for A(H1N1)pdm09 was moderate but not significant. Mismatching of B lineage may have compromised trivalent influenza vaccine effectiveness during the 2015-2016 influenza season among nursery school children in Suzhou, China. Additional larger studies are warranted to inform policy related to quadrivalent influenza vaccine licensure in China in the future.

  5. Health-related behaviors and effectiveness of trivalent inactivated versus live attenuated influenza vaccine in preventing influenza-like illness among young adults.

    Science.gov (United States)

    Woolpert, Tabitha; Phillips, Christopher J; Sevick, Carter; Crum-Cianflone, Nancy F; Blair, Patrick J; Faix, Dennis

    2014-01-01

    Vaccination is the preferred preventive strategy against influenza. Though health behaviors are known to affect immunity and vaccine delivery modes utilize different immune processes, data regarding the preferred influenza vaccine type among adults endorsing specific health-related behaviors (alcohol use, tobacco use, and exercise level) are limited. The relative effectiveness of two currently available influenza vaccines were compared for prevention of influenza-like illness during 2 well-matched influenza seasons (2006/2007, 2008/2009) among US military personnel aged 18-49 years. Relative vaccine effectiveness was compared between those self-reporting and not reporting recent smoking history and potential alcohol problem, and by exercise level using Cox proportional hazard modeling adjusted for sociodemographic and military factors, geographic area, and other health behaviors. 28,929 vaccination events and 3936 influenza-like illness events over both influenza seasons were studied. Of subjects, 27.5% were smokers, 7.7% had a potential alcohol-related problem, 10.5% reported minimal exercise, and 4.4% reported high exercise levels. Overall, the risk of influenza-like illness did not significantly differ between live attenuated and trivalent inactivated influenza vaccine recipients (hazard ratio, 0.98; 95% confidence interval, 0.90-1.06). In the final adjusted model, the relative effectiveness of the 2 vaccine types did not differ by smoking status (p = 0.10), alcohol status (p = 0.21), or activity level (p = 0.11). Live attenuated and trivalent inactivated influenza vaccines were similarly effective in preventing influenza-like illness among young adults and did not differ by health-related behavior status. Influenza vaccine efforts should continue to focus simply on delivering vaccine.

  6. Association of Liposome-Encapsulated Trivalent Antimonial with Ascorbic Acid: An Effective and Safe Strategy in the Treatment of Experimental Visceral Leishmaniasis

    Science.gov (United States)

    Castro, Renata A. O.; Silva-Barcellos, Neila M.; Licio, Carolina S. A.; Souza, Janine B.; Souza-Testasicca, Míriam C.; Ferreira, Flávia M.; Batista, Mauricio A.; Silveira-Lemos, Denise; Moura, Sandra L.; Frézard, Frédéric; Rezende, Simone A.

    2014-01-01

    Background: Visceral leishmaniasis (VL) is a chronic debilitating disease endemic in tropical and subtropical areas, caused by protozoan parasites of the genus Leishmania. Annually, it is estimated the occurrence of 0.2 to 0.4 million new cases of the disease worldwide. Considering the lack of an effective vaccine the afflicted population must rely on both, an accurate diagnosis and successful treatment to combat the disease. Here we propose to evaluate the efficacy of trivalent antimonial encapsulated in conventional liposomes, in association with ascorbic acid, by monitoring its toxicity and efficacy in BALB/c mice infected with Leishmania infantum. Methodology/Principal Findings: Infected mice were subjected to single-dose treatments consisting in the administration of either free or liposome-encapsulated trivalent antimony (SbIII), in association or not with ascorbic acid. Parasite burden was assessed in the liver, spleen and bone marrow using the serial limiting dilution technique. After treatment, tissue alterations were examined by histopathology of liver, heart and kidney and confirmed by serum levels of classic biomarkers. The phenotypic profile of splenocytes was also investigated by flow cytometry. Treatment with liposome-encapsulated SbIII significantly reduced the parasite burden in the liver, spleen and bone marrow. Co-administration of ascorbic acid, with either free SbIII or its liposomal form, did not interfere with its leishmanicidal activity and promoted reduced toxicity particularly to the kidney and liver tissues. Conclusions/Significance: Among the evaluated posological regimens treatment of L. infantum-infected mice with liposomal SbIII, in association with ascorbic acid, represented the best alternative as judged by its high leishmanicidal activity and absence of detectable toxic effects. Of particular importance, reduction of parasite burden in the bone marrow attested to the ability of SbIII-carrying liposomes to efficiently reach this

  7. Antibacterial monoclonal antibodies: the next generation?

    Science.gov (United States)

    DiGiandomenico, Antonio; Sellman, Bret R

    2015-10-01

    There is a clear need for renewed efforts to combat the increasing incidence of antibiotic resistance. While the antibiotic resistance epidemic is due in part to the misuse of antibiotics, even proper empiric antibiotic therapy increases the selective pressure and potential for drug-resistance and spread of resistance mechanisms between bacteria. Antibiotic resistance coupled with the detrimental effects of broad-spectrum antibiotics on the healthy microbiome, have led the field to explore pathogen specific antibacterials such as monoclonal antibodies (mAbs). Medical need along with advances in mAb discovery, engineering, and production have driven significant effort developing mAb-based antibacterials. If successful, they will provide physicians with precision weapons to combat bacterial infections and can help prevent a return to a pre-antibiotic era. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Modulating antibody pharmacokinetics using hydrophilic polymers.

    Science.gov (United States)

    Chen, Chen; Constantinou, Antony; Deonarain, Mahendra

    2011-09-01

    The use of hydrophilic polymers as a substitute for the Fc-domain in immuno- or non-immuno-based binding proteins is accelerating. Chemical PEGylation has led the way and is still the most advanced and clinically-approved approach. Hydrophilic polymers act by maintaining a flexible conformation and hydrogen bonding to a network of water molecules to acquire a larger hydrodynamic volume and apparent mass than their actual molecular mass suggest. The benefits are increased blood half-life and bioavailability, stability and reduced immunogenicity. In the case of PEG, there is also evidence of enhanced targeting and reduced side effects, but drawbacks include the fact that PEG is non-biodegradable. This report reviews the state of the art for antibody PEGylation in terms of approaches and effects. Additionally, non-biological (such as N-(2-hydroxypropyl)methacrylamide) and potentially superior biological alternatives (such as polysialylation) are described, ending with recombinant approaches (such as hydrophilic peptides and glyco-engineering), which promise to circumvent the need for chemical modification altogether. The emergence of many small, antibody fragment-like mimics will drive the need for such technologies, and PEGylation is still the choice polymer due to its established use and track record. However, there will be a place for many alternative technologies if they can match the pharmacokinetics of PEG-conjugates and bring addition beneficial features such as easier production.

  9. Industrial Engineering

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally).......Industrial engineering is a discipline that is concerned with increasing the effectiveness of (primarily) manufacturing and (occasionally)....

  10. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2012-01-01

    Most people agree that our world face daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel dominant...... perspectives in challenge per-ception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping of engineering education...... and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter strives to elicit the bodies...

  11. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2011-01-01

    Abstract: Most people agree that our world faces daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel...... dominant perspectives in challenge perception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping...... of engineering education and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter...

  12. Engineering _ litteraturliste

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Daugbjerg, Peer; Nielsen, Keld

    2017-01-01

    Litteraturliste udarbejdet som grundlag for artiklen ”Engineering – svaret på naturfagenes udfordringer?”......Litteraturliste udarbejdet som grundlag for artiklen ”Engineering – svaret på naturfagenes udfordringer?”...

  13. Dissecting Immunogenicity of Monoclonal Antibodies

    National Research Council Canada - National Science Library

    Snyder, Christopher

    2002-01-01

    The potential of monoclonal antibodies, (mAbs), for use in therapeutic and diagnostic applications has not been fully realized in part due to counter-immune responses that often arise in patient recipients of mAb...

  14. Dissecting Immunogenicity of Monoclonal Antibodies

    National Research Council Canada - National Science Library

    Snyder, Christopher

    2003-01-01

    The potential of monoclonal antibodies, (mAbs), for use in therapeutic and diagnostic applications has not been fully realized in part due to counter-immune responses that often arise in patient recipients of mAb...

  15. Antisperm antibodies and fertility association.

    Science.gov (United States)

    Restrepo, B; Cardona-Maya, W

    2013-10-01

    To evaluate the relation between antisperm antibodies (ASA) and human fertility by reviewing the scientific literature of the last 45 years. We carried out a review of scientific literature about antisperm antibodies and infertility published in spanish or english in databases as Pubmed, Medline, Scielo, some books and another gray literature include information related to this review and that is published in the last 45 years. Infertile couples suffer infertility by immunological mechanisms mainly by the presence of antisperm antibodies ASA in blood, semen or cervicovaginal secretions; the formation of ASA in men and women may be associated with disturbance in immunomodulatory mechanisms that result in functional impairment of sperm and thus its inability to fertilize the oocyte. Immunological infertility caused by ASA is the result of interference of these antibodies in various stages of fertilization process, inhibiting the ability of interaction between sperm and oocyte. Copyright © 2012 AEU. Published by Elsevier Espana. All rights reserved.

  16. Antibody Drug Conjugates: Preclinical Considerations.

    Science.gov (United States)

    Bornstein, Gadi G

    2015-05-01

    The development path for antibody drug conjugates (ADCs) is more complex and challenging than for unmodified antibodies. While many of the preclinical considerations for both unmodified and antibody drug conjugates are shared, special considerations must be taken into account when developing an ADC. Unlike unmodified antibodies, an ADC must preferentially bind to tumor cells, internalize, and traffic to the appropriate intracellular compartment to release the payload. Parameters that can impact the pharmacological properties of this class of therapeutics include the selection of the payload, the type of linker, and the methodology for payload drug conjugation. Despite a plethora of in vitro assays and in vivo models to screen and evaluate ADCs, the challenge remains to develop improved preclinical tools that will be more predictive of clinical outcome. This review will focus on preclinical considerations for clinically validated small molecule ADCs. In addition, the lessons learned from Mylotarg®, the first in class FDA-approved ADC, are highlighted.

  17. Pharmacokinetics of Genetically Engineered Antibody Forms Using Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Nai-Kong V. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Dept. of Pediatrics; Modak, Shakeel [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Dept. of Pediatrics; Lin, Yukang [NeoRX Corporation, Seattle, WA (United States); Guo, Hongfen [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Dept. of Pediatrics; Zanzonico, Pat [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Dept. of Nuclear Medicine; Chung, John [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Dept. of Pediatrics; Zuo, Yuting [NeoRX Corporation, Seattle, WA (United States); Sanderson, James [NeoRX Corporation, Seattle, WA (United States); Wilbert, Sibylle [NeoRX Corporation, Seattle, WA (United States); Theodore, Louis J. [NeoRX Corporation, Seattle, WA (United States); Axworthy, Donald B. [NeoRX Corporation, Seattle, WA (United States); Larson, Steven M. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Dept. of Nuclear Medicine

    2004-08-31

    In the last grant period we have focused on multi-step targeting methodologies (MST), as a method for delivery of high dose to the tumor, with low dose to the bone marrow. We have explored uptake in colorectal, pancreatic and prostate cancer, using an special preparation, developed in collaboration with NeoRex A high tumor/bone marrow ratio is clearly achieved with MST, but with a cost, namely the higher dose to normal kidney. For this reason, we have in particular, (a) looked dosimetry for both tumor and normal organ, and especially renal dosimetry, which appears to be the target organ, for Y-90. (b) In parallel with this we have explored the dosimetry of very high dose rate radionuclides, including Holmium-166. (c) In addition, with NaiKong Cheung, we have developed a new MST construct based on the anti-GD2 targeting 5F11; (d) we have successfully completed development of s-factor tables for mice. In summary, renal dosimetry is dominated by about 4-5% of the injected dose being held long-term in the renal cortex, probably in the proximal tubule, due to the universal uptake of small proteins. This appears to be a function of a biotynlated protein binding of the strept-avidin construct, to HSP70. This cortical uptake has caused us to reconsider renal dosimetry as a whole, with the smaller mass of the cortex, rather than the whole kidney, as the target organ. These insights into dosimetry will be of great importance as MST, becomes more common in clinical practice.

  18. Nanobodies - the new concept in antibody engineering | Deffar ...

    African Journals Online (AJOL)

    African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 12 (2009) >. Log in or Register to get access to full text downloads.

  19. Monoclonal antibodies technology. Protocols

    International Nuclear Information System (INIS)

    Acevado Castro, B.E.

    1997-01-01

    Full text: Immunization. The first step in preparing useful monoclonal antibodies (MAbs) is to immunize an animal (Balb/c for example) with an appropriate antigen. Methods (only for soluble antigen): Solubilize selected antigen in Phosphate buffer solution (PBS) at pH 7.2-7.4, ideally at a final concentration per animal between 10 to 50 μg/ml. It is recommended that the antigen under consideration be incorporated into the emulsion adjuvants in 1:1 volumetric relation. We commonly use Frend's adjuvant (FA) to prepared immunized solution. The first immunization should be prepared with complete FA, and the another could be prepared with incomplete FA. It is recommended to inject mice with 0.2 ml intraperitoneal (ip) or subcutaneous (sc). Our experience suggests the sc route is the preferred route. A minimum protocol for immunizing mice to generate cells for preparing hybridomas is s follows: immunize sc on day 0, boost sc on day 21, take a trial bleeding on day 26; if antibody titters are satisfactory, boost ip on day 35 with antigen only, and remove the spleen to obtain cells for fusion on day 38. Fusion protocol. The myeloma cell line we are using is X63 Ag8.653. At the moment of fusion myeloma cells need a good viability (at least a 95%). 1. Remove the spleen cells from immunized mice using sterile conditions. An immune spleen should yield between 7 a 10x10 7 nucleated cells. 2. Place the spleen in 20 ml of serum-free RPMI 1640 in a Petri dish. Using a needle and syringe, inject the spleen with medium to distend and disrupt the spleen stroma and free the nucleated cells. 3. Flush the cell suspension with a Pasteur pipet to disperse clumps of cells. 4. Centrifuge the spleen cell suspension at 250g for 10 min. Resuspend the pellet in serum-free RPMI 1640. Determine cell concentration using Neuhabuer chamber. 5. Mix the myeloma cells and spleen cells in a conical 50-ml tube in serum-free RPMI 1640, 1 x10 7 spleen cells to 1x10 6 myeloma cells (ratio 10:1). Centrifuge

  20. Engineering Motion

    Science.gov (United States)

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  1. Radiolabeled monoclonal antibodies: a review

    International Nuclear Information System (INIS)

    Toledo e Souza, I.T. de; Okada, H.

    1990-05-01

    Since the description by Kohler and Milstein 1975 of their technique for producing monoclonal antibodies of predefined specificity, it has become a mainstay in most laboratories that utilize immunochemical techniques to study problems in basic, applied or clinical research. Paradoxically, the very success of monoclonal antibodies has generated a literature which is now so vast and scattered that it has become difficult to obtain a perspective. This brief review represents the distillation of many publications relating to the production and use of monoclonaal antibodies as radiopharmaceuticals. Significant advances were made possible in the last few years by combined developments in the fields of tumor-associated antigens and of monoclonal antibodies. In fact monoclonal antibodies against some well defined tumor-associated antigens, has led to significantly greater practical possibilities for producing highly specific radiolabeled antibodies as radiopharmaceuticals for diagnosis and therapy of human tumors. One of the main requirements of this methodology is the availability of stable radiopharmaceutical reagents which after labeling in vivo injection retain the capacity of specific interaction with the defined antigen and their molecular integrity. Since injection into human is the objetive of this kind of study all the specifications of radiopharmaceutical have to be fulfilled e.g. sterility, apirogenicity and absence of toxicity. (author) [pt

  2. Avian Diagnostic and Therapeutic Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David Sherman [UND SMHS

    2012-12-31

    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic, i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.

  3. Tabhu: tools for antibody humanization.

    KAUST Repository

    Olimpieri, Pier Paolo

    2014-10-09

    SUMMARY: Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity into a suitable human template. Unfortunately, this procedure may results in a partial or complete loss of affinity of the grafted molecule that can be restored by back-mutating some of the residues of human origin to the corresponding murine ones. This trial-and-error procedure is hard and involves expensive and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps of the humanization experiment protocol. AVAILABILITY: http://www.biocomputing.it/tabhu CONTACT: anna.tramontano@uniroma1.it, pierpaolo.olimpieri@uniroma1.it SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  4. Site-Selective Orientated Immobilization of Antibodies and Conjugates for Immunodiagnostics Development

    Science.gov (United States)

    Rusling, James

    2016-01-01

    Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay. PMID:27876681

  5. Robertsonian chromosome polymorphism of Akodon molinae (Rodentia: Sigmodontinae: analysis of trivalents in meiotic prophase Polimorfismo cromosómico Robertsoniano de Akodon molinae (Rodentia: Sigmodontinae

    Directory of Open Access Journals (Sweden)

    RAÚL FERNÁNDEZ-DONOSO

    2001-03-01

    Full Text Available Akodon molinae (with 2n = 42-43-44 and an FN = 44 shows a remarkable polymorphism of chromosome 1 in natural and laboratory populations. Specimens 2n = 42, named single homozygotes (SH, have a chromosome pair 1 formed by two large metacentric chromosomes. Specimens 2n = 3, heterozygotes (Ht, have one chromosome 1 and two medium-sized subtelocentric chromosomes, 1a and 1b, which are homologous with the long and short arms of chromosome 1 respectively. Specimens 2n = 44 are double homozygotes (DH, with just two pairs of medium-sized subtelocentric chromosomes, 1a and 1b. Analysis of meiotic metaphases I and II showed that anomalous segregation occurs more frequently in spermatocytes carrying the 1a and 1b chromosomes. This would disturb gametogenesis and other reproductive and developmental processes, producing a marked decrease in viability of DH individuals. There is, as yet, no satisfactory explanation for these phenomena. To investigate structural elements which might explain such segregational anomalies, we have studied bivalent and trivalent synapsis in pachytene spermatocytes from SH, Ht and DH specimens. Of a total of 80 spermatocyte nuclei microspreads, the following results were obtained: of 16 microspreads from two SH individuals, 20 autosomic bivalents plus the XY bivalent were observed; of 48 microspreads from three Ht individuals, 19 autosomic bivalents, 1 trivalent and an XY bivalent were seen; and of the 16 microspreads from two DH individuals, 21 autosomic bivalents plus the XY bivalent were found. Trivalents analysed showed complete pairing between the short arms of 1a and 1b, and having an apparently normal synaptonemal complex (SC with lengths of 1 and 2.8 µm. The trivalent SC showed three telomeric ends, corresponding to arms: q1 and q1a; p1 and q1b; and p1a and p1b, with attachment plates to the nuclear envelope of normal organisation. None of the trivalents showed asynapsis or desynapsis between p1a and p1b, nor an

  6. Computational engineering

    CERN Document Server

    2014-01-01

    The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.

  7. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    International Nuclear Information System (INIS)

    Wang, Lin-Xu; Mellon, Michael; Bowder, Dane; Quinn, Meghan; Shea, Danielle; Wood, Charles; Xiang, Shi-Hua

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture

  8. Architectural Engineers

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    engineering is addresses from two perspectives – as an educational response and an occupational constellation. Architecture and engineering are two of the traditional design professions and they frequently meet in the occupational setting, but at educational institutions they remain largely estranged....... The paper builds on a multi-sited study of an architectural engineering program at the Technical University of Denmark and an architectural engineering team within an international engineering consultancy based on Denmark. They are both responding to new tendencies within the building industry where...... the role of engineers and architects increasingly overlap during the design process, but their approaches reflect different perceptions of the consequences. The paper discusses some of the challenges that design education, not only within engineering, is facing today: young designers must be equipped...

  9. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  10. Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries.

    Science.gov (United States)

    Blanchard, Joel W; Xie, Jia; El-Mecharrafie, Nadja; Gross, Simon; Lee, Sohyon; Lerner, Richard A; Baldwin, Kristin K

    2017-10-01

    The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular de-differentiation and nuclear reprogramming by acting at the cell surface. We screen a lentiviral library encoding ∼100 million secreted and membrane-bound single-chain antibodies and identify antibodies that can replace either Sox2 and Myc (c-Myc) or Oct4 during reprogramming of mouse embryonic fibroblasts into iPSCs. We show that one Sox2-replacing antibody antagonizes the membrane-associated protein Basp1, thereby de-repressing nuclear factors WT1, Esrrb and Lin28a (Lin28) independent of Sox2. By manipulating this pathway, we identify three methods to generate iPSCs. Our results establish unbiased selection from autocrine combinatorial antibody libraries as a robust method to discover new biologics and uncover membrane-to-nucleus signaling pathways that regulate pluripotency and cell fate.

  11. Opsonophagocytic Antibodies to Serotype Ia, Ib, and III Group B Streptococcus among Korean Infants and in Intravenous Immunoglobulin Products.

    Science.gov (United States)

    Kim, Han Wool; Lee, Ji Hyen; Cho, Hye Kyung; Lee, Hyunju; Seo, Ho Seong; Lee, Soyoung; Kim, Kyung Hyo

    2017-05-01

    Group B streptococcus (GBS) infection is a leading cause of sepsis and meningitis among infants, and is associated with high rates of morbidity and mortality in many countries. Protection against GBS typically involves antibody-mediated opsonization by phagocytes and complement components. The present study evaluated serotype-specific functional antibodies to GBS among Korean infants and in intravenous immunoglobulin (IVIG) products. An opsonophagocytic killing assay (OPA) was used to calculate the opsonization indices (OIs) of functional antibodies to serotypes Ia, Ib, and III in 19 IVIG products from 5 international manufacturers and among 98 Korean infants (age: 0-11 months). The GBS Ia, Ib, and III serotypes were selected because they are included in a trivalent GBS vaccine formulation that is being developed. The OI values for the IVIG products were 635-5,706 (serotype Ia), 488-1,421 (serotype Ib), and 962-3,315 (serotype III), and none of the IVIG lots exhibited undetectable OI values (Korean manufacturers. The seropositive rate among infants was significantly lower for serotype Ia (18.4%), compared to serotype Ib and serotype III (both, 38.8%). Infant age of ≥ 3 months was positively correlated with the seropositive rates for each serotype. Therefore, only a limited proportion of infants exhibited protective immunity against serotype Ia, Ib, and III GBS infections. IVIG products that exhibit high antibody titers may be a useful therapeutic or preventive measure for infants. Further studies are needed to evaluate additional serotypes and age groups. © 2017 The Korean Academy of Medical Sciences.

  12. Radioiodination of antibodies for tumor imaging

    International Nuclear Information System (INIS)

    Saha, G.B.

    1983-01-01

    In view of the great potential of radioiodinated antibody for the detection and treatment of cancer, the present article deals with the various techniques of radioiodination of antibody and their uses. Topics include methods of iodination of antibody, advantages and disadvantages of different methods, and effects of radioiodination on the antibody molecules with respect to their physiochemical and immunologic reactivity. In addition, the clinical usefulness of radioiodinated antibodies is discussed. (Auth.)

  13. Antibodies from plants for bionanomaterials.

    Science.gov (United States)

    Edgue, Gueven; Twyman, Richard M; Beiss, Veronique; Fischer, Rainer; Sack, Markus

    2017-11-01

    Antibodies are produced as part of the vertebrate adaptive immune response and are not naturally made by plants. However, antibody DNA sequences can be introduced into plants, and together with laboratory technologies that allow the design of antibodies recognizing any conceivable molecular structure, plants can be used as 'green factories' to produce any antibody at all. The advent of plant-based transient expression systems in particular allows the rapid, convenient, and safe production of antibodies, ranging from laboratory-scale expression to industrial-scale manufacturing. The key features of plant-based production include safety, speed, low cost, and convenience, allowing newcomers to rapidly master the technology and use it to its full advantage. Manufacturing in plants has recently achieved significant milestones and offers more than just an alternative to established microbial and mammalian cell platforms. The use of plants for product development in particular offers the power and flexibility to easily coexpress many different genes, allowing the plug-and-play construction of novel bionanomaterials, perfectly complementing existing approaches based on plant virus-like particles. As well as producing single antibodies for applications in medicine, agriculture, and industry, plants can be used to produce antibody-based supramolecular structures and scaffolds as a new generation of green bionanomaterials that promise a bright future based on clean and renewable nanotechnology applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1462. doi: 10.1002/wnan.1462 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  14. Antibody-Directed Phototherapy (ADP

    Directory of Open Access Journals (Sweden)

    M. Adil Butt

    2013-04-01

    Full Text Available Photodynamic therapy (PDT is a clinically-approved but rather under-exploited treatment modality for cancer and pre-cancerous superficial lesions. It utilises a cold laser or LED to activate a photochemical reaction between a light activated drug (photosensitiser-drug and oxygen to generate cytotoxic oxygen species. These free radical species damage cellular components leading to cell death. Despite its benefits, the complexity, limited potency and side effects of PDT have led to poor general usage. However, the research area is very active with an increasing understanding of PDT-related cell biology, photophysics and significant progress in molecular targeting of disease. Monoclonal antibody therapy is maturing and the next wave of antibody therapies includes antibody-drug conjugates (ADCs, which promise to be more potent and curable. These developments could lift antibody-directed phototherapy (ADP to success. ADP promises to increase specificity and potency and improve drug pharmacokinetics, thus delivering better PDT drugs whilst retaining its other benefits. Whole antibody conjugates with first generation ADP-drugs displayed problems with aggregation, poor pharmacokinetics and loss of immuno-reactivity. However, these early ADP-drugs still showed improved selectivity and potency. Improved PS-drug chemistry and a variety of conjugation strategies have led to improved ADP-drugs with retained antibody and PS-drug function. More recently, recombinant antibody fragments have been used to deliver ADP-drugs with superior drug loading, more favourable pharmacokinetics, enhanced potency and target cell selectivity. These improvements offer a promise of better quality PDT drugs.

  15. Antibody Validation by Western Blotting.

    Science.gov (United States)

    Signore, Michele; Manganelli, Valeria; Hodge, Alex

    2017-01-01

    Validation of antibodies is an integral part of translational research, particularly for biomarker discovery. Assaying the specificity of the reagent (antibody) and confirming the identity of the protein biomarker is of critical importance prior to implementing any biomarker in clinical studies, and the lack of such quality control tests may result in unexpected and/or misleading results.Antibody validation is the procedure in which a single antibody is thoroughly assayed for sensitivity and specificity. Although a plethora of commercial antibodies exist, antibody specificity must be extensively demonstrated using diverse complex biological samples, rather than purified recombinant proteins, prior to use in clinical translational research. In the simplest iteration, antibody specificity is determined by the presence of a single band in a complex biological sample, at the expected molecular weight, on a Western blot.To date, numerous Western blotting procedures are available, based on either manual or automated systems and spanning the spectrum of single blots to multiplex blots. X-ray film is still employed in many research laboratories, but digital imaging has become a gold standard in immunoblotting. The basic principles of Western blotting are (a) separation of protein mixtures by gel electrophoresis, (b) transfer of the proteins to a blot, (c) probing the blot for a protein or proteins of interest, and (d) subsequent detection of the protein by chemiluminescent, fluorescent, or colorimetric methods. This chapter focuses on the chemiluminescent detection of proteins using a manual Western blotting system and a vacuum-enhanced detection system (SNAP i.d.™, Millipore).

  16. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy

    Directory of Open Access Journals (Sweden)

    Muhamad Alif Che Nordin

    2018-02-01

    Full Text Available The discovery of highly active antiretroviral therapy (HAART in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS. However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.

  17. Invisible Engineers

    Science.gov (United States)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  18. Engineering mechanics

    CERN Document Server

    Gross, Dietmar; Schröder, Jörg; Wall, Wolfgang A; Rajapakse, Nimal

    Statics is the first volume of a three-volume textbook on Engineering Mechanics. The authors, using a time-honoured straightforward and flexible approach, present the basic concepts and principles of mechanics in the clearest and simplest form possible to advanced undergraduate engineering students of various disciplines and different educational backgrounds. An important objective of this book is to develop problem solving skills in a systematic manner. Another aim of this volume is to provide engineering students as well as practising engineers with a solid foundation to help them bridge the gap between undergraduate studies on the one hand and advanced courses on mechanics and/or practical engineering problems on the other. The book contains numerous examples, along with their complete solutions. Emphasis is placed upon student participation in problem solving. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Now in i...

  19. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics

    Directory of Open Access Journals (Sweden)

    Peter Bannas

    2017-11-01

    Full Text Available Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL. The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL. VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv. scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa and nanobody-based human heavy chain antibodies (75 kDa can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb. Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo. Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo. Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody

  20. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics.

    Science.gov (United States)

    Bannas, Peter; Hambach, Julia; Koch-Nolte, Friedrich

    2017-01-01

    Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL). The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL). VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv). scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa) and nanobody-based human heavy chain antibodies (75 kDa) can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb). Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo . Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo . Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody-based human heavy

  1. Human engineering

    International Nuclear Information System (INIS)

    Yang, Seong Hwan; Park, Bum; Gang, Yeong Sik; Gal, Won Mo; Baek, Seung Ryeol; Choe, Jeong Hwa; Kim, Dae Sung

    2006-07-01

    This book mentions human engineering, which deals with introduction of human engineering, Man-Machine system like system design, and analysis and evaluation of Man-Machine system, data processing and data input, display, system control of man, human mistake and reliability, human measurement and design of working place, human working, hand tool and manual material handling, condition of working circumstance, working management, working analysis, motion analysis working measurement, and working improvement and design in human engineering.

  2. Software engineering

    CERN Document Server

    Sommerville, Ian

    2010-01-01

    The ninth edition of Software Engineering presents a broad perspective of software engineering, focusing on the processes and techniques fundamental to the creation of reliable, software systems. Increased coverage of agile methods and software reuse, along with coverage of 'traditional' plan-driven software engineering, gives readers the most up-to-date view of the field currently available. Practical case studies, a full set of easy-to-access supplements, and extensive web resources make teaching the course easier than ever.

  3. Information engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  4. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  5. Neural engineering

    CERN Document Server

    2013-01-01

    Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.

  6. Engineering tribology

    CERN Document Server

    Stachowiak, Gwidon; Batchelor, A W; Batchelor, Andrew W

    2005-01-01

    As with the previous edition, the third edition of Engineering Tribology provides a thorough understanding of friction and wear using technologies such as lubrication and special materials. Tribology is a complex topic with its own terminology and specialized concepts, yet is vitally important throughout all engineering disciplines, including mechanical design, aerodynamics, fluid dynamics and biomedical engineering. This edition includes updated material on the hydrodynamic aspects of tribology as well as new advances in the field of biotribology, with a focus throughout on the engineering ap

  7. Observational safety study of specific outcomes after trivalent cell culture seasonal influenza vaccination (Optaflu®) among adults in THIN database of electronic UK primary healthcare records.

    Science.gov (United States)

    Hall, Gillian C; Davies, Paul T G; Karim, M Yousuf; Haag, Mendel D M; O'Leary, Caroline

    2018-01-01

    To investigate the safety of trivalent seasonal influenza vaccine (TIVc) (Optaflu ® ), the first cell culture seasonal trivalent influenza vaccine available in Europe. Codes and unstructured text in adult electronic healthcare records (The Health Improvement Network) were searched for a TIVc brand name or batch number and possible outcomes within a 3 month pre- to 6 month post-TIVc exposure study period (2012-2015). The outcomes were severe allergic reactions, Bell's palsy, convulsions, demyelination, paresthesia, noninfectious encephalitis, neuritis (optic and brachial), vasculitis, inflammatory bowel disease, and thrombocytopenia. Risk periods were defined based on biologically plausible time frame postvaccination when an outcome caused by the vaccine might be expected to occur. Possible outcomes were adjudicated against outcome specific case definitions and a date of onset assigned by using electronic and other medical records. Observed (risk period) to expected (outside risk and preexposure periods) rate ratios, postexposure incidence, and plots of time from exposure to outcome were reported. Sixteen of 1011 events from 4578 exposures fulfilled a primary case definition and had a date of onset during the study period. Three were in observed time. The observed-to-expected rate ratios were (3.3, 95% CI 0.3, 31.7) for convulsions and (1.5, 95% CI 0.2, 14.9) for thrombocytopenia with 1 outcome each in observed time. There was 1 incident inflammatory bowel disease in observed, but none in expected, time. The small sample size restricts interpretation; however, no hypothesis of an increased risk of a study outcome was generated. Adjudication of events against case definitions to reduce misclassification of onset and outcomes allowed use of precise risk periods. KEY POINTS This observational study did not generate a hypothesis of an association between the first cell-culture seasonal influenza vaccination available in the European Union and any of the study

  8. Immunogenicity and safety of a quadrivalent inactivated influenza vaccine compared with two trivalent inactivated influenza vaccines containing alternate B strains in adults: A phase 3, randomized noninferiority study.

    Science.gov (United States)

    Treanor, John T; Albano, Frank R; Sawlwin, Daphne C; Graves Jones, Alison; Airey, Jolanta; Formica, Neil; Matassa, Vince; Leong, Jane

    2017-04-04

    Vaccination is the most effective means of influenza prevention. Efficacy of trivalent vaccines may be enhanced by including both B strain lineages. This phase 3, double-blind study assessed the immunogenicity and safety/tolerability of a quadrivalent inactivated influenza vaccine (IIV4) versus the United States (US)-licensed 2014-2015 trivalent inactivated influenza vaccine (IIV3-Yamagata [IIV3-YAM]; Afluria) and IIV3 containing the alternate Victoria B strain (IIV3-VIC) in adults ≥18years. Participants (n=3484) were randomized 2:1:1 and stratified by age to receive IIV4 (n=1741), IIV3-YAM (n=871), or IIV3-VIC (n=872). The primary objective was to demonstrate noninferiority of the immunological response to IIV4 versus IIV3-YAM and IIV3-VIC. Noninferiority was assessed by hemagglutination inhibition geometric mean titer (GMT) ratio (IIV3/IIV4; upper bound of two-sided 95% confidence interval [CI]≤1.5) and seroconversion rate (SCR) difference (IIV3 - IIV4; upper bound of two-sided 95% CI≤10%) for vaccine strains. Solicited local and systemic adverse events (AEs) were assessed for 7days postvaccination, AEs recorded for 28days postvaccination, and serious AEs for 6months postvaccination. IIV4 elicited a noninferior immune response for matched strains, and superior response for unmatched B strains not contained in IIV3 comparators. Adjusted GMT ratios (95% CI) for A/H1N1, A/H3N2, B/YAM, and B/VIC strains were 0.93 (0.88, 0.99), 0.93 (0.88, 0.98), 0.87 (IIV3-YAM; 0.82, 0.93), and 0.95 (IIV3-VIC; 0.88, 1.03), respectively. Corresponding values for SCR differences (95% CI) were -1.1 (-4.5, 2.3), -1.7 (-5.0, 1.7), -3.2 (IIV3-YAM; -7.4, 0.9), and -1.6 (IIV3-VIC; -5.8, 2.5). AEs were generally mild and experienced by 52.9% of participants. Serious AEs were reported with a slightly higher frequency with IIV4 (2.3%) versus IIV3-YAM (1.6%) and IIV3-VIC (1.5%). IIV4 demonstrated immunological noninferiority to the US-licensed IIV3, and superiority for unmatched B strains

  9. Cancer Imaging and Therapy with Bispecific Antibody Pretargeting.

    Science.gov (United States)

    Goldenberg, David M; Chatal, Jean-Francois; Barbet, Jacques; Boerman, Otto; Sharkey, Robert M

    2007-03-01

    This article reviews recent preclinical and clinical advances in the use of pretargeting methods for the radioimmunodetection and radioimmunotherapy of cancer. Whereas directly-labeled antibodies, fragments, and subfragments (minibodies and other constructs) have shown promise in both imaging and therapy applications over the past 25 years, their clinical adoption has not fulfilled the original expectations due to either poor image resolution and contrast in scanning or insufficient radiation doses delivered selectively to tumors for therapy. Pretargeting involves the separation of the localization of tumor with an anticancer antibody from the subsequent delivery of the imaging or therapeutic radionuclide. This has shown improvements in both imaging and therapy by overcoming the limitations of conventional, or 1-step, radioimmunodetection or radioimmunotherapy. We focus herein on the use of bispecific antibodies followed by radiolabeled peptide haptens as a new modality of selective delivery of radionuclides for the imaging and therapy of cancer. Our particular emphasis in pretargeting is the use of bispecific trimeric (3 Fab's) recombinant constructs made by a modular method of antibody and protein engineering of fusion molecules called Dock and Lock (DNL).

  10. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A; Thompson, Vicki S

    2013-02-26

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  11. Antibody profiling sensitivity through increased reporter antibody layering

    International Nuclear Information System (INIS)

    Apel, William A.; Thompson, Vickie S.

    2013-01-01

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  12. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S.

    2013-02-26

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  13. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S

    2010-04-13

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  14. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S.

    2017-03-28

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  15. Hu and Yo antibodies have heterogeneous avidity.

    Science.gov (United States)

    Totland, Cecilie; Aarseth, Jan; Vedeler, Christian

    2007-04-01

    Onconeural antibodies such as anti-Hu and anti-Yo may be important in the pathogenesis of paraneoplastic neurological syndromes. The avidity of these antibodies is not known. In this study, we compared the avidity of Hu and Yo antibodies both at single time points and over a time range of 2 months to 6 years. The avidity of Yo and Hu antibodies differed among the patients, but anti-Yo generally had higher avidity than anti-Hu. Whether Yo antibodies are more pathogenic than Hu antibodies are presently unknown.

  16. Purification of the therapeutic antibody trastuzumab from genetically modified plants using safflower Protein A-oleosin oilbody technology.

    Science.gov (United States)

    McLean, Michael D; Chen, Rongji; Yu, Deqiang; Mah, Kor-Zheng; Teat, John; Wang, Haifeng; Zaplachinski, Steve; Boothe, Joseph; Hall, J Christopher

    2012-12-01

    Production of therapeutic monoclonal antibodies using genetically modified plants may provide low cost, high scalability and product safety; however, antibody purification from plants presents a challenge due to the large quantities of biomass that need to be processed. Protein A column chromatography is widely used in the pharmaceutical industry for antibody purification, but its application is limited by cost, scalability and column fouling problems when purifying plant-derived antibodies. Protein A-oleosin oilbodies (Protein A-OB), expressed in transgenic safflower seeds, are relatively inexpensive to produce and provide a new approach for the capture of monoclonal antibodies from plants. When Protein A-OB is mixed with crude extracts from plants engineered to express therapeutic antibodies, the Protein A-OB captures the antibody in the oilbody phase while impurities remain in the aqueous phase. This is followed by repeated partitioning of oilbody phase against an aqueous phase via centrifugation to remove impurities before purified antibody is eluted from the oilbodies. We have developed this purification process to recover trastuzumab, an anti-HER2 monoclonal antibody used for therapy against specific breast-cancers that over express HER2 (human epidermal growth factor receptor 2), from transiently infected Nicotiana benthamiana. Protein A-OB overcomes the fouling problem associated with traditional Protein A chromatography, allowing for the development of an inexpensive, scalable and novel high-resolution method for the capture of antibodies based on simple mixing and phase separation.

  17. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  18. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  19. Systems Engineering

    Science.gov (United States)

    Pellerano, Fernando

    2015-01-01

    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  20. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  1. Food Engineering

    NARCIS (Netherlands)

    Boom, R.M.; Janssen, A.E.M.

    2014-01-01

    Food engineering is a rapidly changing discipline. Traditionally, the main focus was on food preservation and stabilization, whereas trends now are on diversity, health, taste, and sustainable production. Next to a general introduction of the definition of food engineering, this article gives a

  2. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  3. Emotional engineering

    CERN Document Server

    In an age of increasing complexity, diversification and change, customers expect services that cater to their needs and to their tastes. Emotional Engineering vol 2. describes how their expectations can be satisfied and managed throughout the product life cycle, if producers focus their attention more on emotion. Emotional engineering provides the means to integrate products to create a new social framework and develops services beyond product realization to create of value across a full lifetime.  14 chapters cover a wide range of topics that can be applied to product, process and industry development, with special attention paid to the increasing importance of sensing in the age of extensive and frequent changes, including: • Multisensory stimulation and user experience  • Physiological measurement • Tactile sensation • Emotional quality management • Mental model • Kansei engineering.   Emotional Engineering vol 2 builds on Dr Fukuda’s previous book, Emotional Engineering, and provides read...

  4. 9 CFR 113.452 - Erysipelothrix Rhusiopathiae Antibody.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD... Antibody is a specific antibody product containing antibodies directed against one or more somatic antigens...

  5. Multi-Dimensional Measurement of Antibody-Mediated Heterosubtypic Immunity to Influenza.

    Directory of Open Access Journals (Sweden)

    Jiong Wang

    Full Text Available The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA's, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA's. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the m

  6. Monoclonal antibodies to Treponema Pallidum.

    NARCIS (Netherlands)

    H.J.M. van de Donk; J.D.A. van Embden; M.F. van Olderen; A.D.M.E. Osterhaus (Albert); J.C. de Jong (Jan)

    1984-01-01

    textabstractThree successive fusions of mouse myeloma cells and spleen lymphocytes of a mouse immunized with Treponema Pallidum resulted in one hybridoma producing anti T. pallidum antibodies for each fusion. The mice were immunized with live pallidum cells respectively 1, 3 and 5 months before

  7. Randomized trial to compare the safety and immunogenicity of CSL Limited's 2009 trivalent inactivated influenza vaccine to an established vaccine in United States children.

    Science.gov (United States)

    Brady, Rebecca C; Hu, Wilson; Houchin, Vonda G; Eder, Frank S; Jackson, Kenneth C; Hartel, Gunter F; Sawlwin, Daphne C; Albano, Frank R; Greenberg, Michael

    2014-12-12

    A trivalent inactivated influenza vaccine (CSL's TIV, CSL Limited) was licensed under USA accelerated approval regulations for use in persons≥18 years. We performed a randomized, observer-blind study to assess the safety and immunogenicity of CSL's TIV versus an established US-licensed vaccine in a population≥6 months to vaccination history determined the dosing regimen (one or two vaccinations). Subjects received CSL's TIV (n=739) or the established vaccine (n=735) in the autumn of 2009. Serum hemagglutination-inhibition titers were determined pre-vaccination and 30 days after the last vaccination. No febrile seizures or other vaccine-related SAEs were reported. After the first vaccination for Cohorts A and B, respectively, the relative risks of fever were 2.73 and 2.32 times higher for CSL's TIV compared to the established vaccine. Irritability and loss of appetite (for Cohort A) and malaise (for Cohort B) were also significantly higher for CSL's TIV compared to the established vaccine. Post-vaccination geometric mean titers (GMTs) for CSL's TIV versus the established vaccine were 385.49 vs. 382.45 for H1N1; 669.13 vs. 705.61 for H3N2; and 100.65 vs. 93.72 for B. CSL's TIV demonstrated immunological non-inferiority to the established vaccine in all cohorts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hydrothermal synthesis and crystal structure of a europium(III) coordination polymer with 5-sulfoisophthalate trivalent anions and free 4, 4'-bipyridine molecules

    International Nuclear Information System (INIS)

    Lin Humao; Qing Caixiao; Qian Miao; Ping Xiaohong

    2005-01-01

    A novel europium(III) coordination polymer [Eu(Sip)(H 2 O) 5 ] n · nH 2 O · 1.5 n(Bipy) (I) (Sip is 5-sulfoisophthalate trivalent anion and Bipy is 4,4'-bipyridine) is hydrothermally synthesized and determined by the single crystal X-ray diffraction method. Polymer I crystallizes in the monoclinic system, space group C2/c with a = 30.7515(6), b = 10.9577(2), c = 17.5545(4) A, β = 112.040(1) deg, Z = 4. In I, each Eu 3+ ion is coordinated by four oxygen atoms from two carboxylate groups of two different Sip anions and five oxygen atoms from five coordinated water molecules to complete a deformed mono-cap square antiprism. Moreover, each Sip anion acts as a tetradentate ligand to connect two adjacent Eu 3+ ions through its two chelating carboxylate groups, resulting in one-dimensional linear chains. In addition, fifteen different kinds of hydrogen-bonding interactions link the chains, lattice water molecules, and free Bipy molecules to engender a complicated hydrogen-bonding network [ru

  9. Benzene-centred tripodal diglycolamides for the sequestration of trivalent actinides: metal ion extraction and luminescence spectroscopic investigations in a room temperature ionic liquid.

    Science.gov (United States)

    Ansari, Seraj Ahmad; Mohapatra, Prasanta Kumar; Leoncini, Andrea; Huskens, Jurriaan; Verboom, Willem

    2017-08-29

    Three benzene-centred tripodal diglycolamide (Bz-T-DGA) ligands, where the diglycolamide (DGA) moieties are attached to a central benzene ring through ethylene spacers (LI), amide groups (LII) or ether linkages (LIII), were evaluated for their extraction behaviour towards trivalent actinide and lanthanide ions in a room temperature ionic liquid (RTIL), viz. 1-butyl-3-methylimidazolium bis(trifluoromethane)sulfonimide ([C 4 mim][Tf 2 N]). The extraction behaviour of these ligands in [C 4 mim][Tf 2 N] medium was compared with that obtained in the molecular solvent n-dodecane showing an opposite selectivity of LIII > LII > LIvs. LI > LII > LIII. In contrast to the n-dodecane medium, where a solvation extraction mechanism prevailed, a cation exchange mechanism was found to be operative in the RTIL medium. The stoichiometry of the extracted Am 3+ complex was found to be 1 : 2 (metal/ligand) and a nitrate ion was absent in the extracted complex. The luminescence spectroscopy of the Eu 3+ /ligand extracted complexes in the [C 4 mim][Tf 2 N] phase confirmed the absence of water molecules and that all the primary coordination sites of the metal ion are occupied by the ligands. The ligands display very large Pu/U, Am/U and Eu/U separation factor in the RTIL medium.

  10. Synthesis of zirconia sol stabilized by trivalent cations (yttrium and neodymium or americium): a precursor for Am-bearing cubic stabilized zirconia.

    Science.gov (United States)

    Lemonnier, Stephane; Grandjean, Stephane; Robisson, Anne-Charlotte; Jolivet, Jean-Pierre

    2010-03-07

    Recent concepts for nuclear fuel and targets for transmuting long-lived radionuclides (minor actinides) and for the development of innovative Gen-IV nuclear fuel cycles imply fabricating host phases for actinide or mixed actinide compounds. Cubic stabilized zirconia (Zr, Y, Am)O(2-x) is one of the mixed phases tested in transmutation experiments. Wet chemical routes as an alternative to the powder metallurgy are being investigated to obtain the required phases while minimizing the handling of contaminating radioactive powder. Hydrolysis of zirconium, neodymium (a typical surrogate for americium) and yttrium in aqueous media in the presence of acetylacetone was firstly investigated. Progressive hydrolysis of zirconium acetylacetonate and sorption of trivalent cations and acacH on the zirconia particles led to a stable dispersion of nanoparticles (5-7 nm) in the 6-7 pH range. This sol gels with time or with temperature. The application to americium-containing solutions was then successfully tested: a stable sol was synthesized, characterized and used to prepare cubic stabilized zirconia (Zr, Y, Am)O(2-x).

  11. Leaching of Light Rare Earth Elements from Sichuan Bastnaesite: A Facile Process to Leach Trivalent Rare Earth Elements Selectively from Tetravalent Cerium

    Science.gov (United States)

    Shen, Yueyue; Jiang, Ying; Qiu, Xianying; Zhao, Shilin

    2017-10-01

    The effects of the nitric acid concentration, leaching time, leaching temperature, and solid-to-liquid ratio on leaching efficiency were examined. From those results, a facile process for the selective leaching of trivalent rare earth elements (RE(III)) from tetravalent cerium (Ce(IV)) was proposed. The roasted bastnaesite was used to leach 34.87% of RE(III) and 2.15% of Ce(IV) at 60°C for 0.5 h with an acid concentration of 0.5 mol/L. This selective leaching process can be described by the shrinking-core model that follows the kinetic model 1 - 2/3 α - (1 - α)2/3. Subsequently, the leached slag was hydrothermally treated and followed by thorough leaching with 4.0-mol/L nitric acid. Furthermore, the specific surface area of the final leached slag is 57.7 m2/g, which is approximately 650 times higher than that of raw ore. Finally, selective leaching of RE(III) (>90%) was achieved without using an organic solvent for extraction, whereas lower value Ce(IV)was presented in the leached slag (>92%).

  12. Managing the Planned Cessation of a Global Supply Market: Lessons Learned From the Global Cessation of the Trivalent Oral Poliovirus Vaccine Market.

    Science.gov (United States)

    Rubin, Jennifer; Ottosen, Ann; Ghazieh, Andisheh; Fournier-Caruana, Jacqueline; Ntow, Abraham Kofi; Gonzalez, Alejandro Ramirez

    2017-07-01

    The Polio Eradication and Endgame Strategic Plan 2013-2018 calls for the phased withdrawal of OPV, beginning with the globally synchronized cessation of tOPV by mid 2016. From a global vaccine supply management perspective, the strategy provided two key challenges; (1) the planned cessation of a high volume vaccine market; and (2) the uncertainty of demand leading and timeline as total vaccine requirements were contingent on epidemiology. The withdrawal of trivalent OPV provided a number of useful lessons that could be applied for the final OPV cessation. If carefully planned for and based on a close collaboration between programme partners and manufacturers, the cessation of a supply market can be undertaken with a successful outcome for both parties. As financial risks to manufacturers increase even further with OPV cessation, early engagement from the cessation planning phase and consideration of production lead times will be critical to ensure sufficient supply throughout to achieve programmatic objectives. As the GPEI will need to rely on residual stocks including with manufacturers through to the last campaign to achieve its objectives, the GPEI should consider to decide on and communicate a suitable mechanism for co-sharing of financial risks or other financial arrangement for the outer years. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  13. Radioimmunological determination of growth hormone antibodies

    International Nuclear Information System (INIS)

    Kracmar, P.; Hnikova, O.

    1979-01-01

    The method is based on the assumption of the presence of antibodies in the serum of the patient and the formation of the complex antibody-tracer ( 125 I-STH). For separation the principle is used of two antibodies and subsequent ultrafiltration with membrane ultrafilters. Clinical experience, reproducibility and the procedure recommended for simple monitoring and the determination of the amount of antibodies in the serum of patients are presented. (author)

  14. Antibody therapeutics - the evolving patent landscape.

    Science.gov (United States)

    Petering, Jenny; McManamny, Patrick; Honeyman, Jane

    2011-09-01

    The antibody patent landscape has evolved dramatically over the past 30 years, particularly in areas of technology relating to antibody modification to reduce immunogenicity in humans or improve antibody function. In some cases antibody techniques that were developed in the 1980s are still the subject of patent protection in the United States or Canada. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Antibodies against chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Giwercman, B; Rasmussen, J W; Ciofu, Oana

    1994-01-01

    A murine monoclonal anti-chromosomal beta-lactamase antibody was developed and an immunoblotting technique was used to study the presence of serum and sputum antibodies against Pseudomonas aeruginosa chromosomal group 1 beta-lactamase in patients with cystic fibrosis (CF). The serum antibody resp...... against the infection. On the other hand, immune complexes between the beta-lactamase and corresponding antibodies could play a role in the pathogenesis of bronchopulmonary injury in CF by mediating hyperimmune reactions....

  16. Requirements Engineering

    CERN Document Server

    Hull, Elizabeth; Dick, Jeremy

    2011-01-01

    Written for those who want to develop their knowledge of requirements engineering process, whether practitioners or students.Using the latest research and driven by practical experience from industry, Requirements Engineering gives useful hints to practitioners on how to write and structure requirements. It explains the importance of Systems Engineering and the creation of effective solutions to problems. It describes the underlying representations used in system modeling and introduces the UML2, and considers the relationship between requirements and modeling. Covering a generic multi-layer r

  17. Glycosylation Engineering

    DEFF Research Database (Denmark)

    Clausen, Henrik; Wandall, Hans H.; Steentoft, Catharina

    2017-01-01

    Knowledge of the cellular pathways of glycosylation across phylogeny provides opportunities for designing glycans via genetic engineering in a wide variety of cell types including bacteria, fungi, plant cells, and mammalian cells. The commercial demand for glycosylation engineering is broad......, including production of biological therapeutics with defined glycosylation (Chapter 57). This chapter describes how knowledge of glycan structures and their metabolism (Parts I–III of this book) has led to the current state of glycosylation engineering in different cell types. Perspectives for rapid...

  18. Engineering mathematics

    CERN Document Server

    Bird, John

    2014-01-01

    A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure

  19. Radioimmunoassay method for detection of gonorrhea antibodies

    International Nuclear Information System (INIS)

    1975-01-01

    A novel radioimmunoassay for the detection of gonorrhea antibodies in serum is described. A radionuclide is bound to gonorrhea antigens produced by a growth culture. In the presence of gonorrhea antibodies in the serum, an antigen-antibody conjugate is formed, the concentration of which can be measured with conventional radiometric methods. The radioimmunoassay is highly specific

  20. Antibodies Against Melanin | Wassermann | South African Medical ...

    African Journals Online (AJOL)

    This study reports on unsuccessful attempts to produce antibodies against melanoprotein in rabbits. Available evidence suggests antibodies against melanocytes in the aetiology of vitiligo, but there is no convincing evidence for antibodies against melanin per se. It is suggested that the demonstration of antibodif's against ...

  1. Single-Domain Antibodies and the Promise of Modular Targeting in Cancer Imaging and Treatment

    Directory of Open Access Journals (Sweden)

    María Elena Iezzi

    2018-02-01

    Full Text Available Monoclonal antibodies and their fragments have significantly changed the outcome of cancer in the clinic, effectively inhibiting tumor cell proliferation, triggering antibody-dependent immune effector cell activation and complement mediated cell death. Along with a continued expansion in number, diversity, and complexity of validated tumor targets there is an increasing focus on engineering recombinant antibody fragments for lead development. Single-domain antibodies (sdAbs, in particular those engineered from the variable heavy-chain fragment (VHH gene found in Camelidae heavy-chain antibodies (or IgG2 and IgG3, are the smallest fragments that retain the full antigen-binding capacity of the antibody with advantageous properties as drugs. For similar reasons, growing attention is being paid to the yet smaller variable heavy chain new antigen receptor (VNAR fragments found in Squalidae. sdAbs have been selected, mostly from immune VHH libraries, to inhibit or modulate enzyme activity, bind soluble factors, internalize cell membrane receptors, or block cytoplasmic targets. This succinct review is a compilation of recent data documenting the application of engineered, recombinant sdAb in the clinic as epitope recognition “modules” to build monomeric, dimeric and multimeric ligands that target, tag and stall solid tumor growth in vivo. Size, affinity, specificity, and the development profile of sdAbs drugs are seemingly consistent with desirable clinical efficacy and safety requirements. But the hepatotoxicity of the tetrameric anti-DR5-VHH drug in patients with pre-existing anti-drug antibodies halted the phase I clinical trial and called for a thorough pre-screening of the immune and poly-specific reactivities of the sdAb leads.

  2. Safety and General Considerations for the Use of Antibodies in Infectious Diseases.

    Science.gov (United States)

    Hey, Adam Seidelin

    2017-01-01

    Monocolonal antibodies are valuable potential new tools for meeting unmet needs in treating infectious dieseases and to provide alternatives and supplements to antibiotics in these times of growing resistance. Especially when considering the ability to screen for antibodies reacting to very diverse target antigens and the ability to design and engineer them to work specifically to hit and overcome their strategies, like toxins and their hiding in specific cells to evade the immuneresponse and their special features enabling killing of the infectious agents and or the cells harbouring them. Antibodies are generally very safe and adverse effects of treatments with therapeutic antibodies are usually related to exaggeration of the intended pharmacology. In this chapter general safety considerations for the use of antibodies is reviewed and the general procedures for nonclinical testing to support their clinical development. Special considerations for anti-infective mAb treatments are provided including the special features that makes nonclinical safety programs for anti-infective mAbs much more simple and restricted. However at a cost since only limited information for clinical safety and modeling can be derived from such programs. Then strategies for optimally designing antibodies are discussed including the use of combination of antibodies. Finally ways to facilitate development of more than the currently only three approved mAb based treatments are discussed with a special focus on high costs and high price and how collaboration and new strategies for development in emerging markets can be a driver for this.

  3. Zeolite-based SCR catalysts and their use in diesel engine emission treatment

    Science.gov (United States)

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al.sup.+3, wherein the catalyst decreases NO.sub.x emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu--Fe-ZSM5, Cu--La-ZSM-5, Fe--Cu--La-ZSM5, Cu--Sc-ZSM-5, and Cu--In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.

  4. Coastal Engineering

    NARCIS (Netherlands)

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  5. Software engineering

    CERN Document Server

    Sommerville, Ian

    2016-01-01

    For courses in computer science and software engineering The Fundamental Practice of Software Engineering Software Engineering introduces readers to the overwhelmingly important subject of software programming and development. In the past few years, computer systems have come to dominate not just our technological growth, but the foundations of our world's major industries. This text seeks to lay out the fundamental concepts of this huge and continually growing subject area in a clear and comprehensive manner. The Tenth Edition contains new information that highlights various technological updates of recent years, providing readers with highly relevant and current information. Sommerville's experience in system dependability and systems engineering guides the text through a traditional plan-based approach that incorporates some novel agile methods. The text strives to teach the innovators of tomorrow how to create software that will make our world a better, safer, and more advanced place to live.

  6. Nuclear Engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Nuclear Engineering Division is engaged in both teaching and research. Staff members teach both graduate and undergraduate courses at the UPR Mayaguez Campus and direct the thesis work of nuclear engineering students. They do research on their own projects and assist the staff of other PRNC divisions as the need arises. The scientists on the Division's staff all hold joint appointments at PRNC and UPR, and they make up the faculty of the UPR Nuclear Engineering Department, the Head of the PRNC Division being also the Chairman of the UPR Department. The Division provides the classrooms, offices, laboratories and equipment, and most of the administrative personnel required for the education and training of the graduate students at the UPR Nuclear Engineering Department

  7. Harmonic engine

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  8. Green Engineering

    Science.gov (United States)

    Green Engineering is the design, commercialization and use of processes and products that are feasible and economical while reducing the generation of pollution at the source and minimizing the risk to human health and the environment.

  9. Engineering personnel

    International Nuclear Information System (INIS)

    Paskievici, W.

    The expansion of nuclear power is taxing human, material, and capital resources in developed and developing countries. This paper explores the human resources as represented by employment, graduation statistics, and educational curricula for nuclear engineers. (E.C.B.)

  10. Crystal Engineering

    Indian Academy of Sciences (India)

    Nangia (2002). “Today, research areas under the wide umbrella of crystal engineering include: supramolecular synthesis; nanotechnology; separation science and catalysis; supramolecular materials and devices; polymorphism; cocrystals, crystal structure prediction; drug design and ligand–protein binding.”

  11. Detection of antibodies to co-trimoxazole (preservative drug interfering with routine red cell antibody screening

    Directory of Open Access Journals (Sweden)

    Deepti Sachan

    2018-01-01

    Full Text Available Drug-dependent antibodies can rarely cause interference in pretransfusion antibody screening. The diluents for commercial reagent red blood cells contain different antibiotics, such as chloramphenicol, neomycin sulfate, and gentamycin as a preservative. The presence of antibodies to a given drug in patient may lead to positive results when performing antibody identification. We present a rare case of detection of anti-co-trimoxazole antibody during routine antibody screening in a female patient undergoing neurosurgery. These antibodies mimicked as antibody against high-frequency red cell antigens reacting in both saline phase as well as antiglobulin phase. Anti-co-trimoxazole antibody was confirmed by repeating antibody screen using reagent red cells of different manufacturers with and without co-trimoxazole drug as preservative as well as using washed red cell panels. There were no associated clinical or laboratory evidence of hemolysis.

  12. Geoenvironmental engineering

    International Nuclear Information System (INIS)

    Shin, Eun Cheol; Park, Jeong Jun

    2009-08-01

    This book deals with definition of soil and scope of clean-up of soil, trend of geoenvironmental engineering at home and foreign countries, main concern of geoenvironmental engineering in domestic and abroad, design and building of landfills such as summary, trend of landfill policy in Korea, post management of landfill facilities, stabilizing and stability of landfill, research method and soil pollution source, restoration technology of soil pollution like restoration technique of oil pollution with thermal processing.

  13. Reliability Engineering

    International Nuclear Information System (INIS)

    Lee, Sang Yong

    1992-07-01

    This book is about reliability engineering, which describes definition and importance of reliability, development of reliability engineering, failure rate and failure probability density function about types of it, CFR and index distribution, IFR and normal distribution and Weibull distribution, maintainability and movability, reliability test and reliability assumption in index distribution type, normal distribution type and Weibull distribution type, reliability sampling test, reliability of system, design of reliability and functionality failure analysis by FTA.

  14. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  15. Solid phase double-antibody radioimmunoassay procedure

    International Nuclear Information System (INIS)

    Niswender, G.D.

    1977-01-01

    The present invention is concerned with the radioimmunoassay (RIA) procedure for assaying body fluid content of an antigenic substance which may either be an antigen itself or a hapten capable of being converted, such as by means of reaction with a protein, to an antigenic material. The present invention is concerned with a novel and improved modification of a double-antibody RIA technique in which there is a first antibody that is specific to the antigenic substance suspected to be present in a body fluid from which the assay is intended. The second antibody, however, is not specific to the antigenic substance or analyte, but is an antibody against the first antibody

  16. Production of Monoclonal Antibody against Human Nestin

    OpenAIRE

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-01-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140?250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such a...

  17. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy.

    Science.gov (United States)

    Goldenberg, David M; Sharkey, Robert M; Paganelli, Giovanni; Barbet, Jacques; Chatal, Jean-François

    2006-02-10

    This article reviews the methods of pretargeting, which involve separating the targeting antibody from the subsequent delivery of an imaging or therapeutic agent that binds to the tumor-localized antibody. This provides enhanced tumor:background ratios and the delivery of a higher therapeutic dose than when antibodies are directly conjugated with radionuclides, as currently practiced in cancer radioimmunotherapy. We describe initial promising clinical results using streptavidin-antibody constructs with biotin-radionuclide conjugates in the treatment of patients with malignant gliomas, and of bispecific antibodies with hapten-radionuclides in the therapy of tumors expressing carcinoembryonic antigen, such as medullary thyroid and small-cell lung cancers.

  18. Serum Antibody Biomarkers for ASD

    Science.gov (United States)

    2015-10-01

    45-56. Singh VK. (2009) Phenotypic expression of autoimmune autistic disorder (AAD): A major subset of autism. Ann Clin Psychiat. 21:148-160. 5...spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in communication (verbal and nonverbal), social interactions, and... autoimmunity ; in particular, the generation of antibodies reactive against brain and CNS proteins. The goal of this grant is to identify serum

  19. Antibody Repertoire Development in Swine

    Czech Academy of Sciences Publication Activity Database

    Butler, J. E.; Wertz, N.; Šinkora, Marek

    2017-01-01

    Roč. 5, FEB 17 (2017), s. 255-279 ISSN 2165-8102 R&D Projects: GA ČR GA15-02274S; GA ČR(CZ) GA16-09296S Institutional support: RVO:61388971 Keywords : swine * pre-immune antibody repertoire * ileal Peyer's patches Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.708, year: 2016

  20. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.

    Directory of Open Access Journals (Sweden)

    Masato Kiyoshi

    Full Text Available The optimization of antibodies is a desirable goal towards the development of better therapeutic strategies. The antibody 11K2 was previously developed as a therapeutic tool for inflammatory diseases, and displays very high affinity (4.6 pM for its antigen the chemokine MCP-1 (monocyte chemo-attractant protein-1. We have employed a virtual library of mutations of 11K2 to identify antibody variants of potentially higher affinity, and to establish benchmarks in the engineering of a mature therapeutic antibody. The most promising candidates identified in the virtual screening were examined by surface plasmon resonance to validate the computational predictions, and to characterize their binding affinity and key thermodynamic properties in detail. Only mutations in the light-chain of the antibody are effective at enhancing its affinity for the antigen in vitro, suggesting that the interaction surface of the heavy-chain (dominated by the hot-spot residue Phe101 is not amenable to optimization. The single-mutation with the highest affinity is L-N31R (4.6-fold higher affinity than wild-type antibody. Importantly, all the single-mutations showing increase affinity incorporate a charged residue (Arg, Asp, or Glu. The characterization of the relevant thermodynamic parameters clarifies the energetic mechanism. Essentially, the formation of new electrostatic interactions early in the binding reaction coordinate (transition state or earlier benefits the durability of the antibody-antigen complex. The combination of in silico calculations and thermodynamic analysis is an effective strategy to improve the affinity of a matured therapeutic antibody.

  1. Safety and tolerability of a cell culture derived trivalent subunit inactivated influenza vaccine administered to healthy children and adolescents: A Phase III, randomized, multicenter, observer-blind study.

    Science.gov (United States)

    Nolan, Terry; Chotpitayasunondh, Tawee; Capeding, Maria Rosario; Carson, Simon; Senders, Shelly David; Jaehnig, Peter; de Rooij, Richard; Chandra, Richa

    2016-01-04

    Cell culture-derived inactivated influenza vaccines (TIVc) are necessary for scale and predictability of production to meet global demand. This study compared the safety and tolerability of TIVc with an egg-derived trivalent influenza vaccine (TIVf) in 4-17 yearolds. A Phase 3 observer blind, multicenter study enrolled 2055 healthy participants randomized 2:1 to receive either TIVc or TIVf, respectively (1372 TIVc and 683 TIVf evaluable subjects). Participants received one dose each on Days 1 and 28 (4-8 year-olds not previously vaccinated [NPV]) or one dose on Day 1 (4-8 and 9-17 yearolds previously vaccinated [PV]). Solicited adverse events (AEs) occurring within 7 days after each vaccination were assessed; participants were followed up for 6 months after their last dose for safety. Most solicited and unsolicited AEs were mild to moderate with vaccine-related SAEs were reported. TIVc and TIVf were similar in percentages of participants reporting solicited reactions in 4-8 years NPV group after the 1st dose: local reactions, TIVc: 48%, TIVf: 43%; systemic reactions, TIVc: 34%, TIVf: 32%; percentages were lower following the 2nd dose in TIVc; local reactions: TIVc: 40%; TIVf: 43%; systemic reactions: TIVc: 21%; TIVf: 22%. In 4-17 years PV group, solicited reactions were lower following TIVf, local reactions: TIVc: 53%; TIVf: 43%; systemic reactions: TIVc: 37%, TIVf: 30%. Injection-site pain was the most common solicited reaction, and was similar following TIVc and TIVf in 4-8 yearolds (TIVc: 56%; TIVf: 55%), and lower following TIVf in 9-17 years group (TIVc: 52%; TIVf: 42%). Reporting of unsolicited AEs was similar for TIVc and TIVf across the two age groups. TIVc was well tolerated and had a safety and reactogenicity profile similar to that of TIVf in healthy 4-17 yearolds (NCT01857206). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Effects of aging temperature and time on the corrosion protection provided by trivalent chromium process coatings on AA2024-T3.

    Science.gov (United States)

    Li, Liangliang; Swain, Greg M

    2013-08-28

    The effects of aging temperature and time on the physical structure of and corrosion protection provided by trivalent chromium process (TCP) coatings on AA2024-T3 are reported. The TCP coating forms a partially blocking barrier layer on the alloy surface that consists of hydrated channels and or defects. It is through these channels and defects that ions and dissolved O2 can be transported to small areas of the underlying alloy. Reactions initiate at these sites, which can ultimately lead to undercutting of the coating and localized corrosion. We tested the hypothesis that collapsing the channels and or reducing the number of defects in the coating might be possible through post-deposition heat treatment, and that this would enhance the corrosion protection provided by the coating. This was tested by aging the TCP-coated AA2024 alloys in air overnight at room temperature (RT), 55, 100, or 150 °C. The TCP coating became dehydrated and thinner at the high temperatures (55 and 100 °C). This improved the corrosion protection as evidenced by a 2× increase in the charge transfer resistance. Aging at 150 °C caused excessive coating dehydration and shrinkage. This led to severe cracking and detachment of the coating from the surface. The TCP-coated AA2024 samples were also aged in air at RT from 1 to 7 days. There was no thinning of the coating, but the corrosion protection was enhanced with a longer aging period as evidenced by a 4× increase in the charge transfer resistance. The coating became more hydrophobic after aging at elevated temperature (up to 100 °C) and with aging time at RT as evidenced by an increased water contact angle from 7 to 100 °C.

  3. Thermal and spectroscopic study to investigate p-aminobenzoic acid, sodium p-aminobenzoate and its compounds with some lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, J.A.; Nunes, W.D.G.; Colman, T.A.D.; Nascimento, A.L.C.S do [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil); Caires, F.J. [Faculdade de Ciências, UNESP—Universidade Estadual Paulista, Campus Bauru, Departamento de Química, Bauru 17033-260, SP (Brazil); Campos, F.X. [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil); Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Primavera do Leste 78850-000, MT (Brazil); Gálico, D.A. [Instituto de Química, UNICAMP—Universidade Estadual de Campinas, Campinas 13083-970, SP (Brazil); Ionashiro, M., E-mail: massaoi@yahoo.com.br [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil)

    2016-01-20

    Highlights: • The p-aminobenzoic acid melts followed partial evaporation. • The stoichiometry of compounds was established by TG, EA and complexometry. • The TG–DTA curves provided previously unreported information about thermal behavior. - Abstract: The characterization, thermal stability and thermal decomposition of some lighter trivalent lanthanide p-aminobenzoates, Ln(C{sub 7}H{sub 6}NO{sub 2}){sub 3}·H{sub 2}O (Ln = La, Ce, Pr, Nd, Sm), as well as the thermal behavior and spectroscopic study of p-aminobenzoic acid C{sub 7}H{sub 7}NO{sub 2} and its sodium salt were investigated. The following methods were utilized: simultaneous thermogravimetry and differential thermal analysis (TG–DTA) in dynamic dry air and nitrogen atmospheres; differential scanning calorimetry (DSC); middle (MIR) and near (NIR) infrared region spectroscopy; evolved gas analysis (EGA); elemental analysis; complexometry; X-ray diffraction (XRD); and diffuse reflectance spectroscopy (DR) in the ultraviolet and visible regions. All the compounds were obtained monohydrated and the thermal decomposition occurred in two, three or four steps in an air atmosphere, and three or four steps in N{sub 2} atmosphere. In both atmospheres (air and N{sub 2}) the final residues were CeO{sub 2}, Pr{sub 6}O{sub 11}, Ln{sub 2}O{sub 3} (Ln = La, Nd, Sm). The results also provided information concerning the coordination mode and thermal behavior, as well as the identification of the gaseous products which evolved during the thermal decomposition of these compounds. The DR and NIR spectra provided information about the ligand absorption bands and the f–f transitions of the Nd{sup 3+}, Pr{sup 3+} and Sm{sup 3+} ions.

  4. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    International Nuclear Information System (INIS)

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-01-01

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  5. [Effectiveness of Live Attenuated Influenza Vaccines and Trivalent Inactivated Influenza Vaccines against confirmed Influenza In Children and Adolescents in Saxony-Anhalt, 2012/13].

    Science.gov (United States)

    Hermann, N

    2015-07-01

    Since 2012, there are not only trivalent inactivated influenza vaccines (TIV) but also live attenuated influenza vaccines (LAIV) available for children aged 2-17 years in Germany. The Saxony-Anhalt State Office for Consumer Protection conducted a test-negative case-control-study. The aim of the study was to identify the effectiveness of LAIV and TIV against a confirmed influenza diagnosis in children and adolescents in Saxony-Anhalt in the season 2012/13. The children had nasal swabs taken, which were further diagnosed in a laboratory using the PCR method. 834 patients of 15 voluntarily participating paediatric surgeries in Saxony-Anhalt were analysed by multivariate logistic regression with STATA 12. Controlling for age group, gender and month of the disease's onset showed an effectiveness of all vaccines amongst the 2-17 years old (38% with 95% CI: 0.8-61%; p=0.046). A differentiation according to LAIV and TIV demonstrated a significant effectiveness for LAIV (84%) in children of all ages (95% CI: 45-95%, p=0.004). After stratification for age groups LAIV was proven efficient in children aged 2-6 years (90% with 95% CI: 20-99%, p=0.03), whilst it led to a non-significant result in children aged 7-17 years (74% with 95% CI: -32-95%, p=0.106). There was no significant effectiveness of TIV seen in any age group.The Saxony-Anhalt State Office for Consumer Protection endorses the use of LAIV in children in accordance with the STIKO recommendations, as long as no contraindication is evident. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Synthesis, characterization and electric evaluation of barium zirconate doped with trivalent lanthanides; Sintesis, caracterizacion y evaluacion electrica de circonatos de bario dopados con lantanidos trivalentes

    Energy Technology Data Exchange (ETDEWEB)

    Gerena, O. A.; Carda, J. B.; Beltran, H.; Cordoncillo, E.; Valencia, J. S.

    2014-04-01

    Barium zirconate is an oxidic material having perovskite structure that exhibits high chemical stability in both oxidizing and reducing environments, such as in the presence of water and carbon dioxide, its conductivity has led to consider it as a electrolyte for solid oxide fuel cell finding good results, with the limitation of operating at temperatures above 800 degree centigrade. Several researchers have proposed that it is possible to improve their electrical conductivity by changes in chemical composition, particularly for doping with trivalent cations that replace the zirconium in B site of perovskite. In this study, barium zirconate was synthesized by the amorphous citrate method to examine the possibility of obtaining in more favorable conditions than those made by the conventional method of synthesis (ceramic method or solid state reaction) conditions are synthesized. Barium zirconate doped with europium, gadolinium, holmium, lanthanum, neodymium and praseodymium was prepared, the present phase identified cation was verified by X-ray diffraction (XRD), the electrical properties were examined by impedance spectroscopy (IS) at temperatures between 480 and 680 degree centigrade in order to evaluate its potential use as a fuel cell electrolyte in solid oxide. The contributions of this research has focused on the synthesis method, in the production of ceramic powders of barium zirconate at temperatures lower than those required by the ceramic method, in obtaining chemical, structural, morphological and electrical information of material synthesized. The desired phase synthesis conditions set found, also, a significant increase is seen in the solid conductivity of doped lanthanum, holmium and europium zirconate of barium in relation to the material without doping. (Author)

  7. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro

    Science.gov (United States)

    Ganguly, Rituparna; Wen, Amy M.; Myer, Ashley B.; Czech, Tori; Sahu, Soumyadip; Steinmetz, Nicole F.; Raman, Priya

    2016-03-01

    Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-β (TGF-β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.

  8. Possible Impact of Yearly Childhood Vaccination With Trivalent Inactivated Influenza Vaccine (TIV) on the Immune Response to the Pandemic Strain H1N1.

    Science.gov (United States)

    Amer, Ahdi; Fischer, Howard; Li, Xiaoming; Asmar, Basim

    2016-03-01

    Annual vaccination of children against seasonal influenza with trivalent inactivated influenza vaccine (TIV) has shown to be beneficial. However, this yearly practice may have unintended effect. Studies have shown that infection with wild type influenza A viruses can stimulate protective heterotypic immunity against unrelated or new influenza subtypes. We hypothesized that a consequence of yearly TIV vaccination is lack of induction of heterotypic immunity against the recent H1N1 pandemic. This was a retrospective case-control study. We reviewed the medical records of polymerase chain reaction-confirmed cases of 2009 H1N1 influenza infection in children 6 months to 18 years and a matched control group seen during the pandemic. We identified 353 polymerase chain reaction-confirmed H1N1 cases and 396 matching control subjects. Among the H1N1 group, 202/353 (57%) cases received a total of 477 doses of seasonal TIV compared with 218/396 (55%) in the control group who received a total of 435 doses. Seasonal TIV uptake was significantly higher in the H1N1 group 477/548 (87%) than in the control group, 435/532 (81%) (P = .017). Seasonal TIV uptake was significantly higher in H1N1-infected group. The finding suggests that the practice of yearly vaccination with TIV might have negatively affected the immune response against the novel pandemic H1N1 strain. Given the rarity of pandemic novel influenza viruses, and the high predictability of seasonal influenza occurrence, the practice of yearly influenza vaccination should be continued. However, the use of live attenuated intranasal vaccine, as opposed to TIV, may allow for the desirable development of a vigorous heterotypic immune response against future pandemics. © The Author(s) 2015.

  9. Donor-derived HLA antibody production in patients undergoing SCT from HLA antibody-positive donors.

    Science.gov (United States)

    Taniguchi, K; Yoshihara, S; Maruya, E; Ikegame, K; Kaida, K; Hayashi, K; Kato, R; Inoue, T; Fujioka, T; Tamaki, H; Okada, M; Onuma, T; Fujii, N; Kusunoki, Y; Soma, T; Saji, H; Ogawa, H

    2012-10-01

    Pre-existing donor-specific HLA antibodies in patients undergoing HLA-mismatched SCT have increasingly been recognized as a risk factor for primary graft failure. However, the clinical implications of the presence of HLA antibodies in donors remain unknown. We prospectively examined 123 related donors for the presence of HLA antibodies by using a Luminex-based single antigen assay. Of these, 1/57 (1.8%) male, 6/27 (22%) parous female and 0/39 (0%) nonparous female donors were HLA antibody-positive. Then, we determined the presence of HLA antibodies in seven patients who received SCT from antibody-positive donors. Of these, four became HLA antibody-positive after SCT. The specificities of the antibodies that emerged in the patients closely resembled those of the antibodies found in the donors, indicating their production by donor-derived plasma cells. Moreover, the kinetics of the HLA antibody levels were similar in all four patients: levels started increasing within 1 week after SCT and peaked at days 10-21, followed by a gradual decrease. These results suggest that donor-derived HLA antibody production frequently occurs in patients undergoing SCT from antibody-positive donors. Further studies are warranted for clarifying the clinical significance of donor-derived HLA antibodies, including the role of these antibodies in post transplant platelet transfusion refractoriness.

  10. Biomolecular immunoreactivity factor in antibody labelling design for potent radiopharmaceutical

    International Nuclear Information System (INIS)

    Best, M.P.

    1990-01-01

    Biomolecular factors' importance in optimum immunoconjugate design when high specific labelling is attempted is discussed. High specific labelling allows a small dose to be administered avoiding saturating antigen binding sites and to compensate for loss of bivalency etc. upon fragmentation. Clinical therapeutic and diagnostic applications result in adverse toxicity and poor scintigraphic resolution from the corrupted distribution upon labelling. DTPA is a strong chelator and forms a tight sequestering cryptate structure of small dimensions with the radioactive metals Tc-99m and In-111. Size severely affects permeability with reticuloendothelial accumulation. Compact scaled radiolabels are advantageous as potent payload moieties for radiotherapy as well as imaging. The antibody binding site requires close surface contact with its epitope to effect the specificity of immunoreaction. Binding site exposure to coupling chemistry can be directed via affinity purification methodology. The globular antibody with an amphiphilic structure presents conformed surface chemistry and is relatively inert requiring excess reaction stoichiometry. Radiolabelled antibodies to calcitonin (a 32 aminoacid polypeptide ectopic lung tumor antigen) in a solid phase immunoreactivity assay demonstrate 48 hours for 90% uptake. Site directed radiolabelling is of interest in preservation of immunoreactivity in protein engineering. 19 refs., 8 figs

  11. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  12. Engineering physics

    CERN Document Server

    Mukherji, Uma

    2015-01-01

    ENGINEERING PHYSICS is designed as a textbook for first year engineering students of a two semester course in Applied Physics according to new revised syllabus. However the scope of this book is not only limited to undergraduate engineering students and science students, it can also serve as a reference book for practicing scientists.Advanced technological topics like LCD, Squid, Maglev system, Electron microscopes, MRI, Photonics - Photonic fibre, Nano-particles, CNT, Quantum computing etc., are explained with basic underlying principles of Physics.This text explained following topics with numerous solved, unsolved problems and questions from different angles. Part-I contains crystal structure, Liquid crystal, Thermo-electric effect, Thermionic emission, Ultrasonic, Acoustics, semiconductor and magnetic materials. Whereas Part-2 contains Optics, X-rays, Electron optics, Dielectric materials, Quantum Physics and Schrodinger wave equation, Laser, Fibre-optics and Holography, Radio-activity, Super-conductivity,...

  13. Engineering surveying

    CERN Document Server

    Schofield, W

    2007-01-01

    Engineering surveying involves determining the position of natural and man-made features on or beneath the Earth's surface and utilizing these features in the planning, design and construction of works. It is a critical part of any engineering project. Without an accurate understanding of the size, shape and nature of the site the project risks expensive and time-consuming errors or even catastrophic failure.Engineering Surveying 6th edition covers all the basic principles and practice of this complex subject and the authors bring expertise and clarity. Previous editions of this classic text have given readers a clear understanding of fundamentals such as vertical control, distance, angles and position right through to the most modern technologies, and this fully updated edition continues that tradition.This sixth edition includes:* An introduction to geodesy to facilitate greater understanding of satellite systems* A fully updated chapter on GPS, GLONASS and GALILEO for satellite positioning in surveying* Al...

  14. Application of a room temperature ionic liquid for nuclear spent fuel reprocessing: speciation of trivalent europium and solvatation effects; Application d'un liquide ionique basse temperature pour les procedes de separation: speciation de l'europium trivalent et effets solvatation

    Energy Technology Data Exchange (ETDEWEB)

    Moutiers, G.; Mekki, S. [CEA Saclay, Dept. de Physico-Chimie, Service de Chimie Physique, 91 - Gif sur Yvette (France); Billard, I. [IN2P3/CNRS, 69 - Villeurbanne (France)

    2007-07-01

    One of the solutions proposed for the optimization of the long term storage and conditioning of spent nuclear fuel is to separate actinide and lanthanide both from each other and from other less radioactive metallic species. The industrial proposed processes, based on liquid liquid extraction steps, involve solvents with non negligible vapour pressure and may generate contaminated liquid wastes that will have to be reprocessed. During the last decade, some room-temperature ionic liquids have been studied and integrated into industrial processes. The interest on this class of solvent came out from their 'green' properties (non volatile, non flammable, recyclable, etc...), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL chemical composition. Indeed, it has been shown that classical chemical industrial processes could be transferred into those media, even more improved, while a certain number of difficulties arising from using traditional solvent can be avoided. In this respect, it could be promising to investigate the ability to use room temperature ionic liquid into the spent nuclear fuel reprocessing field. The aim of this this study is to test the ability of the specific ionic liquid bumimTf{sub 2}N to allow trivalent europium extraction. The choice of this metal is based on the chemical analogy with trivalent minor actinides Curium and Americium which are contributing the greatest part of the long-lived high level radioactive wastes. Handling these elements needs to be very cautious for the safety and radioprotection aspect. Moreover, europium is a very sensitive luminescent probe to its environment even at the microscopic scale. The report is structured with four parts. In a first chapter, we present the main physico-chemical properties of an imidazolium-based ionic liquid family, and then we choose the ionic liquid bumimTf{sub 2}N for the whole thesis and start with

  15. Construction of Rabbit Immune Antibody Libraries.

    Science.gov (United States)

    Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo

    2018-01-01

    Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.

  16. Micro Engineering

    DEFF Research Database (Denmark)

    Alting, Leo; Kimura, F.; Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products. The implica......The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products...

  17. Biochemistry engineering

    International Nuclear Information System (INIS)

    Jang, Ho Nam

    1993-01-01

    This deals with biochemistry engineering with nine chapters. It explains bionics on development and prospect, basics of life science on classification and structure, enzyme and metabolism, fundamentals of chemical engineering on viscosity, shear rate, PFR, CSTR, mixing, dispersion, measurement and response, Enzyme kinetics, competitive inhibition, pH profile, temperature profile, stoichiometry and fermentation kinetics, bio-reactor on Enzyme-reactor and microorganism-reactor, measurement and processing on data acquisition and data processing, separation and purification, waste water treatment and economics of bionics process.

  18. Software engineering

    CERN Document Server

    Thorin, Marc

    1985-01-01

    Software Engineering describes the conceptual bases as well as the main methods and rules on computer programming. This book presents software engineering as a coherent and logically built synthesis and makes it possible to properly carry out an application of small or medium difficulty that can later be developed and adapted to more complex cases. This text is comprised of six chapters and begins by introducing the reader to the fundamental notions of entities, actions, and programming. The next two chapters elaborate on the concepts of information and consistency domains and show that a proc

  19. Engineering tribology

    CERN Document Server

    Stachowiak, Gwidon

    2014-01-01

    Engineering Tribology, 4th Edition is an established introductory reference focusing on the key concepts and engineering implications of tribology. Taking an interdisciplinary view, the book brings together the relevant knowledge from different fields needed to achieve effective analysis and control of friction and wear. Updated to cover recent advances in tribology, this new edition includes new sections on ionic and mesogenic lubricants, surface texturing, and multiscale characterization of 3D surfaces and coatings. Current trends in nanotribology are discussed, such as those relating to

  20. Construction and sequencing analysis of scFv antibody fragment derived from monoclonal antibody against norfloxacin (Nor155

    Directory of Open Access Journals (Sweden)

    J. Mala

    2017-06-01

    Full Text Available Norfloxacin belongs to the group of fluoroquinolone antibiotics which has been approved for treatment in animals. However, its residues in animal products can pose adverse side effects to consumer. Therefore, detection of the residue in different food matrices must be concerned. In this study, a single chain variable fragment (scFv that recognizes norfloxacin antibiotic was constructed. The cDNA was synthesized from total RNA of hybridoma cells against norfloxacin. Genes encoding VH and VL regions of monoclonal antibody against norfloxacin (Nor155 were amplified and size of VH and VL fragments was 402 bp and 363 bp, respectively. The scFv of Nor155 was constructed by an addition of (Gly4Ser3 as a linker between VH and VL regions and subcloned into pPICZαA, an expression vector of Pichia pastoris. The sequence of scFv Nor155 (GenBank No. AJG06891.1 was confirmed by sequencing analysis. The complementarity determining regions (CDR I, II, and III of VH and VL were specified by Kabat method. The obtained recombinant plasmid will be useful for production of scFv antibody against norfloxacin in P. pastoris and further engineer scFv antibody against fluoroquinolone antibiotics.

  1. Update on antiphospholipid antibody syndrome.

    Science.gov (United States)

    Lopes, Michelle Remião Ugolini; Danowski, Adriana; Funke, Andreas; Rêgo, Jozelia; Levy, Roger; Andrade, Danieli Castro Oliveira de

    2017-11-01

    Antiphospholipid syndrome (APS) is an autoimmune disease characterized by antiphospholipid antibodies (aPL) associated with thrombosis and/or pregnancy morbidity. Most APS events are directly related to thrombotic events, which may affect small, medium or large vessels. Other clinical features like thrombocytopenia, nephropathy, cardiac valve disease, cognitive dysfunction and skin ulcers (called non-criteria manifestations) add significant morbidity to this syndrome and represent clinical situations that are challenging. APS was initially described in patients with systemic lupus erythematosus (SLE) but it can occur in patients without any other autoimmune disease. Despite the autoimmune nature of this syndrome, APS treatment is still based on anticoagulation and antiplatelet therapy.

  2. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  3. Metabolic Engineering

    Indian Academy of Sciences (India)

    IAS Admin

    and in vitro to be able to alter properties of the encoded enzyme, and (6) assemble an array of genes for their expression inside the host cell. Although bacteria and yeast are the pioneering hosts for metabolic engineering, other organisms such as fungi, animal as well as plant cells are also used nowadays for similar experi ...

  4. Metabolic Engineering

    Indian Academy of Sciences (India)

    IAS Admin

    Metabolic engineering is a process for modulating the me- tabolism of the organisms so as to produce the required amounts of the desired metabolite through genetic manipula- tions. Considering its advantages over the other chemical synthesis routes, this area of biotechnology is likely to revolu- tionize the way in which ...

  5. Sound engineer

    CERN Document Server

    Mara, Wil

    2015-01-01

    "Readers will learn what it takes to succeed as a sound engineer. The book also explains the necessary educational steps, useful character traits, potential hazards, and daily job tasks related to this career. Sidebars include thought-provoking trivia. Questions in the backmatter ask for text-dependent analysis. Photos, a glossary, and additional resources are included."-- Provided by publisher.

  6. Analytical results for crystalline electric field eigenvalues of trivalent rare-earth ions using computer algebra: application to the magnetism of PrX2 (X=Mg, Al, Ru, Rh, Pt)

    International Nuclear Information System (INIS)

    Sobral, R.R.; Guimaraes, A.P.; Silva, X.A. da

    1994-01-01

    The eigenvalues of the Crystalline Electric Field (CEF) Hamiltonian with cubic symmetry are analytically obtained for trivalent rare-earth ions of ground state J=5/2, 7/2, 4, 9/2, 6, 15/2 and 8, via a Computer Algebra approach. In the presence of both CEF and an effective exchange field, Computer Algebra still allows a partial factorization of the characteristic polynomial equation associated to the total Hamiltonian, a result of interest to the study of the magnetic behavior of rare-earth intermetallics. An application to the PrX 2 intermetallic compounds (X=Mg, Al, Ru, Rh, Pt) is reported. ((orig.))

  7. Biocommodity Engineering.

    Science.gov (United States)

    Lynd; Wyman; Gerngross

    1999-10-01

    The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of

  8. Phase Separation in Solutions of Monoclonal Antibodies

    Science.gov (United States)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  9. Warm antibody autoimmune hemolytic anemia.

    Science.gov (United States)

    Kalfa, Theodosia A

    2016-12-02

    Autoimmune hemolytic anemia (AIHA) is a rare and heterogeneous disease that affects 1 to 3/100 000 patients per year. AIHA caused by warm autoantibodies (w-AIHA), ie, antibodies that react with their antigens on the red blood cell optimally at 37°C, is the most common type, comprising ∼70% to 80% of all adult cases and ∼50% of pediatric cases. About half of the w-AIHA cases are called primary because no specific etiology can be found, whereas the rest are secondary to other recognizable underlying disorders. This review will focus on the postulated immunopathogenetic mechanisms in idiopathic and secondary w-AIHA and report on the rare cases of direct antiglobulin test-negative AIHA, which are even more likely to be fatal because of inherent characteristics of the causative antibodies, as well as because of delays in diagnosis and initiation of appropriate treatment. Then, the characteristics of w-AIHA associated with genetically defined immune dysregulation disorders and special considerations on its management will be discussed. Finally, the standard treatment options and newer therapeutic approaches for this chronic autoimmune blood disorder will be reviewed. © 2016 by The American Society of Hematology. All rights reserved.

  10. An anti vimentin antibody promotes tube formation

    DEFF Research Database (Denmark)

    Jørgensen, Mathias Lindh; Møller, Carina Kjeldahl; Rasmussen, Lasse

    2017-01-01

    antibody technology, promotes tube formation of endothelial cells in a 2D matrigel assay. By binding vimentin, the antibody increases the tube formation by 21% after 5 hours of incubation. Addition of the antibody directly to cultured endothelial cells does not influence endothelial cell migration...... or proliferation. The enhanced tube formation can be seen for up to 10 hours where after the effect decreases. It is shown that the antibody-binding site is located on the coil 2 domain of vimentin. To our knowledge this is the first study that demonstrates an enhanced tube formation by binding vimentin in a 2D...

  11. Uses of monoclonal antibody 8H9

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Nai-Kong V.

    2018-04-10

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  12. Exceptional Antibodies Produced by Successive Immunizations.

    Directory of Open Access Journals (Sweden)

    Patricia J Gearhart

    2015-12-01

    Full Text Available Antibodies stand between us and pathogens. Viruses mutate quickly to avoid detection, and antibodies mutate at similar rates to hunt them down. This death spiral is fueled by specialized proteins and error-prone polymerases that change DNA sequences. Here, we explore how B lymphocytes stay in the race by expressing activation-induced deaminase, which unleashes a tsunami of mutations in the immunoglobulin loci. This produces random DNA substitutions, followed by selection for the highest affinity antibodies. We may be able to manipulate the process to produce better antibodies by expanding the repertoire of specific B cells through successive vaccinations.

  13. New High Affinity Monoclonal Antibodies Recognize Non-Overlapping Epitopes On Mesothelin For Monitoring And Treating Mesothelioma

    Science.gov (United States)

    Zhang, Yi-Fan; Phung, Yen; Gao, Wei; Kawa, Seiji; Hassan, Raffit; Pastan, Ira; Ho, Mitchell

    2015-01-01

    Mesothelin is an emerging cell surface target in mesothelioma and other solid tumors. Most antibody drug candidates recognize highly immunogenic Region I (296–390) on mesothelin. Here, we report a group of high-affinity non-Region I rabbit monoclonal antibodies. These antibodies do not compete for mesothelin binding with the immunotoxin SS1P that binds Region I of mesothelin. One pair of antibodies (YP218 and YP223) is suitable to detect soluble mesothelin in a sandwich ELISA with high sensitivity. The new assay can also be used to measure serum mesothelin concentration in mesothelioma patients, indicating its potential use for monitoring patients treated with current antibody therapies targeting Region I. The antibodies are highly specific and sensitive in immunostaining of mesothelioma. To explore their use in tumor therapy, we have generated the immunotoxins based on the Fv of these antibodies. One immunotoxin (YP218 Fv-PE38) exhibits potent anti-tumor cytotoxicity towards primary mesothelioma cell lines in vitro and an NCI-H226 xenograft tumor in mice. Furthermore, we have engineered a humanized YP218 Fv that retains full binding affinity for mesothelin-expressing cancer cells. In conclusion, with their unique binding properties, these antibodies may be promising candidates for monitoring and treating mesothelioma and other mesothelin-expressing cancers. PMID:25996440

  14. Neutralization of antibody-enhanced dengue infection by VIS513, a pan serotype reactive monoclonal antibody targeting domain III of the dengue E protein

    Science.gov (United States)

    Robinson, Luke N.; Ong, Li Ching; Rowley, Kirk J.; Winnett, Alexander; Tan, Hwee Cheng; Hobbie, Sven; Shriver, Zachary; Babcock, Gregory J.; Alonso, Sylvie; Ooi, Eng Eong

    2018-01-01

    Dengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy. Here, we tested the ability of VIS513, an engineered cross-neutralizing humanized antibody targeting the DENV E protein domain III, to overcome antibody-enhanced infection and high but brief viremia, which are commonly encountered in dengue patients, in various in vitro and in vivo models. We observed that VIS513 efficiently neutralizes DENV at clinically relevant viral loads or in the presence of enhancing levels of DENV immune sera. Single therapeutic administration of VIS513 in mouse models of primary infection or lethal secondary antibody-enhanced infection, reduces DENV titers and protects from lethal infection. Finally, VIS513 administration does not readily lead to resistance, either in cell culture systems or in animal models of dengue infection. The findings suggest that rapid viral reduction during acute DENV infection with a monoclonal antibody is feasible. PMID:29425203

  15. High throughput discovery of influenza virus neutralizing antibodies from phage-displayed synthetic antibody libraries.

    Science.gov (United States)

    Chen, Ing-Chien; Chiu, Yi-Kai; Yu, Chung-Ming; Lee, Cheng-Chung; Tung, Chao-Ping; Tsou, Yueh-Liang; Huang, Yi-Jen; Lin, Chia-Lung; Chen, Hong-Sen; Wang, Andrew H-J; Yang, An-Suei

    2017-10-31

    Pandemic and epidemic outbreaks of influenza A virus (IAV) infection pose severe challenges to human society. Passive immunotherapy with recombinant neutralizing antibodies can potentially mitigate the threats of IAV infection. With a high throughput neutralizing antibody discovery platform, we produced artificial anti-hemagglutinin (HA) IAV-neutralizing IgGs from phage-displayed synthetic scFv libraries without necessitating prior memory of antibody-antigen interactions or relying on affinity maturation essential for in vivo immune systems to generate highly specific neutralizing antibodies. At least two thirds of the epitope groups of the artificial anti-HA antibodies resemble those of natural protective anti-HA antibodies, providing alternatives to neutralizing antibodies from natural antibody repertoires. With continuing advancement in designing and constructing synthetic scFv libraries, this technological platform is useful in mitigating not only the threats of IAV pandemics but also those from other newly emerging viral infections.

  16. Not All Antibodies Are Created Equal: Factors That Influence Antibody Mediated Rejection

    Directory of Open Access Journals (Sweden)

    Carrie L. Butler

    2017-01-01

    Full Text Available Consistent with Dr. Paul Terasaki’s “humoral theory of rejection” numerous studies have shown that HLA antibodies can cause acute and chronic antibody mediated rejection (AMR and decreased graft survival. New evidence also supports a role for antibodies to non-HLA antigens in AMR and allograft injury. Despite the remarkable efforts by leaders in the field who pioneered single antigen bead technology for detection of donor specific antibodies, a considerable amount of work is still needed to better define the antibody attributes that are associated with AMR pathology. This review highlights what is currently known about the clinical context of pre and posttransplant antibodies, antibody characteristics that influence AMR, and the paths after donor specific antibody production (no rejection, subclinical rejection, and clinical dysfunction with AMR.

  17. Engineering Review Information System

    Science.gov (United States)

    Grems, III, Edward G. (Inventor); Henze, James E. (Inventor); Bixby, Jonathan A. (Inventor); Roberts, Mark (Inventor); Mann, Thomas (Inventor)

    2015-01-01

    A disciplinal engineering review computer information system and method by defining a database of disciplinal engineering review process entities for an enterprise engineering program, opening a computer supported engineering item based upon the defined disciplinal engineering review process entities, managing a review of the opened engineering item according to the defined disciplinal engineering review process entities, and closing the opened engineering item according to the opened engineering item review.

  18. Influences of different environmental parameters on the sorption of trivalent metal ions on bentonite: batch sorption, fluorescence, EXAFS and EPR studies.

    Science.gov (United States)

    Verma, P K; Pathak, P N; Mohapatra, P K; Godbole, S V; Kadam, R M; Veligzhanin, A A; Zubavichus, Y V; Kalmykov, S N

    2014-04-01

    The presence of long-lived radionuclides in natural aquatic systems is of great environmental concern in view of their possible migration into biospheres of mankind. Trivalent actinides such as (241/243)Am can contribute a great deal to radioactivity for several thousand years. This migration is significantly influenced by various factors such as pH, complexing ions present in aquatic environments, and the sorption of species involving radionuclides by sediments around water bodies. Clay minerals such as bentonite are known to be highly efficient in radionuclide retention and hence are suitable candidates for backfill materials. This study presents experimental results on the interaction of Eu(iii) and Gd(iii) (chemical analogs of Am(iii) and Cm(iii)) with bentonite clay under varying experimental conditions of contact time, pH, and the presence of complexing anions such as humic acid (HA) and citric acid (cit). The sorption of HA on bentonite decreased with increasing the pH from 2 to 8, which was attributed to electrostatic interactions between HA and the bentonite surfaces. The sorption of Eu(iii) on bentonite colloids showed marginal variation with pH (>95%). However, a decrease in Eu(iii) sorption was observed in the presence of HA beyond pH 5 due to the increased aqueous complexation of Eu(iii) with deprotonated HA in the aqueous phase. The complexation of Eu(iii) with citrate ions was studied using Time Resolved Laser induced Fluorescence Spectroscopy (TRLFS) to explain the sorption data. Extended X-ray absorption fine structure (EXAFS) and electron paramagnetic resonance (EPR) investigations were carried out to understand the local chemical environment surrounding Eu(iii) and Gd(iii) (EPR probe) sorbed on bentonite under different experimental conditions. Surface complexation modelling shows the predominant formation of ≡XOEu(+2) (silanol) up to pH < 7, and beyond which ≡YOEu(OH)(+) (aluminol) is responsible for the quantitative sorption of Eu(iii) onto

  19. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.

    Science.gov (United States)

    Fernandes, M Marques; Scheinost, A C; Baeyens, B

    2016-08-01

    The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. In this study we couple macroscopic sorption experiments to surface complexation modelling and spectroscopic investigations, including extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS), to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/An(III)) by montmorillonite in the absence and presence of dissolved carbonate. Based on the experimental sorption isotherms for the carbonate-free system, the previously developed 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model needed to be complemented with an additional surface complexation reaction onto weak sites. The fitting of sorption isotherms in the presence of carbonate required refinement of the previously published model by reducing the strong site capacity and by adding the formation of Ln/An(III)-carbonato complexes both on strong and weak sites. EXAFS spectra of selected Am samples and TRLFS spectra of selected Cm samples corroborate the model assumptions by showing the existence of different surface complexation sites and evidencing the formation of Ln/An(III) carbonate surface complexes. In the absence of carbonate and at low loadings, Ln/An(III) form strong inner-sphere complexes through binding to three Al(O,OH)6 octahedra, most likely by occupying vacant sites in the octahedral layers of montmorillonite, which are exposed on {010} and {110} edge faces. At higher loadings, Ln/An(III) binds to only one Al octahedron, forming a weaker, edge-sharing surface complex. In the presence of carbonate, we identified a ternary mono- or dicarbonato Ln/An(III) complex binding directly to one Al(O,OH)6 octahedron, revealing that type-A ternary complexes form with the one

  20. Complexation behavior of trivalent actinides and lanthanides with 1,10-phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory.

    Science.gov (United States)

    Manna, Debashree; Ghanty, Tapan K

    2012-08-21

    We have investigated the complexation behavior of preorganized 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) based ligands with trivalent lanthanides and actinides using density functional theory with various GGA type exchange-correlation functionals and different basis sets. New ligands have been designed from PDA through functionalization with soft donor atoms such as sulfur, resulting in mono-thio-dicarboxylic acids (TCA/TCA1) and di-thio-dicarboxylic acid (THIO). It has been found that selectivity in terms of complexation energy of actinides over lanthanides is the maximum with TCA1 where the metal-ligand binding is through the O atoms. This unusual feature where a softer actinide metal ion is bonded strongly with hard donor oxygen atoms has been explained using the popular chemical concepts, viz., Pearson's Hard-Soft-Acid-Base (HSAB) principle and the frontier orbital theory of chemical reactivity as proposed by Fukui. Detailed analysis within the framework of the HSAB principle indicates that the presence of softer nitrogen atoms in the phenanthroline moiety (which also act as donors to the metal ion) has a profound influence in changing the soft nature of the actinide ion, which in turn binds with the hard oxygen atoms in a stronger way as compared to the valence isoelectronic lanthanide ion. Also, the trends in the variation of calculated values of the metal-ligand bond distances and the corresponding complex formation energies have been rationalized using the Fukui reactivity indices corresponding to the metal ions and the donor sites. All the calculations have also been done in the presence of solvent. The "intra-ligand synergistic effect" demonstrated here for PDA or TCA1 with soft and hard donor centers might be very important in designing new ligands for selective extraction of various metal ions in a competitive environment. However, for TCA and THIO ligands with only soft donor centers, "intra-ligand synergism" may not be very efficient although

  1. Luminescence and photo-thermally stimulated defects creation processes in PbWO{sub 4} crystals doped with trivalent rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Fabeni, P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Krasnikov, A.; Kärner, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Laguta, V.V.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Pazzi, G.P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Zazubovich, S., E-mail: svet@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-04-15

    In PbWO{sub 4} crystals, doped with various trivalent rare-earth A{sup 3+} ions (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, Gd{sup 3+}), electron (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers can be created under UV irradiation not only in the host absorption region but also in the energy range around 3.85 eV (Böhm et al., 1999; Krasnikov et al., 2010). Under excitation in the same energy range, the UV emission peak at 3.05–3.20 eV is observed. In the present work, the origin of this emission is investigated in detail by low-temperature time-resolved luminescence methods. Photo-thermally stimulated creation of (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers is studied also in PbWO{sub 4}:Mo,A{sup 3+} crystals. Various processes, which could explain both the appearance of the UV emission and the creation of the {(WO_4)"3"−–A"3"+}-type centers under irradiation of PbWO{sub 4}: A{sup 3+} crystals in the 3.85±0.35 eV energy range, are discussed. The radiative and non-radiative decay of the excitons localized near A{sup 3+} ions is considered as the most probable mechanism to explain the observed features. -- Highlights: ► UV emission of PbWO{sub 4}: A{sup 3+} (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, and Gd{sup 3+}) crystals is studied. ► The emission is ascribed to the radiative decay of excitons localized near A{sup 3+} ions. ► The excitons are created at 3.85 eV excitation by a two-step process. ► Non-radiative decay of the excitons leads to the creation of (WO{sub 4}){sup 3−}–A{sup 3+} centers.

  2. Human anti-Dectin-1 antibody, hybridoma producing said antibody and applications thereof

    OpenAIRE

    Kremer, Leonor; Llorente Gómez, María de las Mercedes; Casasnovas, José María; Fernández Ruíz, Elena; Galán Díez, Marta

    2008-01-01

    [EN] The invention relates to hybridoma MGD3 and the monoclonal antibody produced thereby (also called MGD3), which specifically recognises the human Dectin-1 membrane receptor. Antibody MGD3 is capable of inhibiting the binding of Dectin-1 to the natural ligand thereof, the ss-glucans that are components of the fungal wall. In addition, the aforementioned antibody specifically blocks binding to Candida albicans and the secretion of cytokines induced thereby. The MGD3 antibody obtained enable...

  3. Stratification of Antibody-Positive Subjects by Antibody Level Reveals an Impact of Immunogenicity on Pharmacokinetics

    OpenAIRE

    Zhou, Lei; Hoofring, Sarah A.; Wu, Yu; Vu, Thuy; Ma, Peiming; Swanson, Steven J.; Chirmule, Narendra; Starcevic, Marta

    2012-01-01

    The availability of highly sensitive immunoassays enables the detection of antidrug antibody (ADA) responses of various concentrations and affinities. The analysis of the impact of antibody status on drug pharmacokinetics (PK) is confounded by the presence of low-affinity or low-concentration antibody responses within the dataset. In a phase 2 clinical trial, a large proportion of subjects (45%) developed ADA following weekly dosing with AMG 317, a fully human monoclonal antibody therapeutic....

  4. Anti-idiotypic antibodies to poliovirus antibodies in commercial immunoglubulin preparations, human serum and milk.

    NARCIS (Netherlands)

    M. Hahn-Zoric; B. Carlsson; S. Jeansson; H.P. Ekre; A.D.M.E. Osterhaus (Albert); D. Roberton; L.A. Hanson

    1993-01-01

    textabstractOur previous studies have suggested that fetal antibody production can be induced by maternal antiidiotypic antibodies transferred to the fetus via the placenta. We tested commercial Ig, sera, and milk for the presence of anti-idiotypic antibodies to poliovirus type 1, using affinity

  5. Engine Handling.

    Science.gov (United States)

    1983-02-01

    air seal for long life turbine engine. AIAA - 81 - 1440 4.- STEWART P.A.E., BRASNETT K.A., The contribution of dynamic x - ray to gas turbine air...trio exigeant A ce nivoau. Los calculo 4’int~gration du syotime adjoint sont trio p~nalisanto en tempo de calcul. LuA vatu g.aeh d & apt~If adjoint

  6. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  7. Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules.

    Directory of Open Access Journals (Sweden)

    Anna Hultberg

    2011-04-01

    Full Text Available For efficient prevention of viral infections and cross protection, simultaneous targeting of multiple viral epitopes is a powerful strategy. Llama heavy chain antibody fragments (VHH against the trimeric envelope proteins of Respiratory Syncytial Virus (Fusion protein, Rabies virus (Glycoprotein and H5N1 Influenza (Hemagglutinin 5 were selected from llama derived immune libraries by phage display. Neutralizing VHH recognizing different epitopes in the receptor binding sites on the spikes with affinities in the low nanomolar range were identified for all the three viruses by viral neutralization assays. By fusion of VHH with variable linker lengths, multimeric constructs were made that improved neutralization potencies up to 4,000-fold for RSV, 1,500-fold for Rabies virus and 75-fold for Influenza H5N1. The potencies of the VHH constructs were similar or better than best performing monoclonal antibodies. The cross protection capacity against different viral strains was also improved for all three viruses, both by multivalent (two or three identical VHH and biparatopic (two different VHH constructs. By combining a VHH neutralizing RSV subtype A, but not subtype B with a poorly neutralizing VHH with high affinity for subtype B, a biparatopic construct was made with low nanomolar neutralizing potency against both subtypes. Trivalent anti-H5N1 VHH neutralized both Influenza H5N1 clade1 and 2 in a pseudotype assay and was very potent in neutralizing the NIBRG-14 Influenza H5N1 strain with IC(50 of 9 picomolar. Bivalent and biparatopic constructs against Rabies virus cross neutralized both 10 different Genotype 1 strains and Genotype 5.The results show that multimerization of VHH fragments targeting multiple epitopes on a viral trimeric spike protein is a powerful tool for anti-viral therapy to achieve "best-in-class" and broader neutralization capacity.

  8. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  9. Web Engineering

    Energy Technology Data Exchange (ETDEWEB)

    White, Bebo

    2003-06-23

    Web Engineering is the application of systematic, disciplined and quantifiable approaches to development, operation, and maintenance of Web-based applications. It is both a pro-active approach and a growing collection of theoretical and empirical research in Web application development. This paper gives an overview of Web Engineering by addressing the questions: (a) why is it needed? (b) what is its domain of operation? (c) how does it help and what should it do to improve Web application development? and (d) how should it be incorporated in education and training? The paper discusses the significant differences that exist between Web applications and conventional software, the taxonomy of Web applications, the progress made so far and the research issues and experience of creating a specialization at the master's level. The paper reaches a conclusion that Web Engineering at this stage is a moving target since Web technologies are constantly evolving, making new types of applications possible, which in turn may require innovations in how they are built, deployed and maintained.

  10. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  11. Monoclonal antibodies in pediatric allergy

    Directory of Open Access Journals (Sweden)

    Amelia Licari

    2015-10-01

    Full Text Available Production of monoclonal antibodies (mAbs involving human-mouse hybrid cells was first described in 1970s, but these biologics are now used for a variety of diseases including cancers, autoimmune disorders and allergic diseases. The aim of this article is to review current and future applications of mAbs, in particular focusing on anti-IgE therapy, in the field of pediatric allergy. Proceedings of the 11th International Workshop on Neonatology and Satellite Meetings · Cagliari (Italy · October 26th-31st, 2015 · From the womb to the adultGuest Editors: Vassilios Fanos (Cagliari, Italy, Michele Mussap (Genoa, Italy, Antonio Del Vecchio (Bari, Italy, Bo Sun (Shanghai, China, Dorret I. Boomsma (Amsterdam, the Netherlands, Gavino Faa (Cagliari, Italy, Antonio Giordano (Philadelphia, USA

  12. Update on antiphospholipid antibody syndrome

    Directory of Open Access Journals (Sweden)

    Michelle Remião Ugolini Lopes

    Full Text Available Summary Antiphospholipid syndrome (APS is an autoimmune disease characterized by antiphospholipid antibodies (aPL associated with thrombosis and/or pregnancy morbidity. Most APS events are directly related to thrombotic events, which may affect small, medium or large vessels. Other clinical features like thrombocytopenia, nephropathy, cardiac valve disease, cognitive dysfunction and skin ulcers (called non-criteria manifestations add significant morbidity to this syndrome and represent clinical situations that are challenging. APS was initially described in patients with systemic lupus erythematosus (SLE but it can occur in patients without any other autoimmune disease. Despite the autoimmune nature of this syndrome, APS treatment is still based on anticoagulation and antiplatelet therapy.

  13. Nano antibody therapy for cancer

    International Nuclear Information System (INIS)

    Venkatachallam, M.; Sivakumar, T.; Nazeema; Venkateswari, P.

    2011-01-01

    Nanomedicine, an offshoot of nanotechnology, refers to highly specific medical intervention at the molecular scale for curing disease or repairing damaged tissues, such as bone, muscle, or nerve. Nanotechnology can have an early, paradigm-changing impact on how clinicians will detect cancer in its earliest stages. Exquisitely sensitive devices constructed of nanoscale components-such as nanocantilevers, nanowires and nanochannels-offer the potential for detecting even the rarest molecular signals associated with malignancy. One of the most pressing needs in clinical oncology is for imaging agents that can identify tumors that are far smaller than is possible with today's technology, at a scale of 100,000 cells rather than 1,000,000,000 cells. A new approach in nanotechnology for treating cancer incorporates nano iron particles and attaches them to an antibody that has targets only cancer cells and not healthy cells. The treatment works in two steps. This treatment is an ingenious way to make localized tumor ablation a systemic treatment. The advantages are incredible. There are absolutely no side effects from this treatment. It is not painful or even uncomfortable. The iron particles get flushed harmlessly from the body. It is not a drug and so the cancer cannot build up a resistance to the treatment. It is a systematic treatment; even cancer cells and tumors that are not known about get heated up and ablated. This treatment can even be used to enhance imaging of the cancer because once the cancer cells are coated with the iron particles, they are easy to identify. Everything depends on how reliably the antibodies target cancer cells and not healthy cells. When used in conjunction with other systemic treatments, such as vaccine treatments, we could be looking at a time when even advanced cancers can be brought under control. (author)

  14. [Radiolabeled antibodies for cancer treatment].

    Science.gov (United States)

    Barbet, Jacques; Chatal, Jean-François; Kraeber-Bodéré, Françoise

    2009-12-01

    The first treatment ever by radio-immunotherapy (RIT) was performed by William H. Beierwaltes in 1951 and was a success. Fifty years later, the main question is to find ways of extending the success of radiolabelled anti-CD20 antibodies in indolent non-Hodgkin's lymphoma to other forms of cancer. Solid tumours are much more radioresistant than lymphomas, but they respond to RIT if the lesions are small. Clinical situations of residual or minimal disease are thus the most likely to benefit from RIT in the adjuvant or consolidation settings. For disseminated disease, like leukemias or myelomas, the problem is different: beta- particles emitted by the radioactive atoms classically used for cancer treatment (iodine-131 or yttrium-90) disperse their energy in large volumes (ranges 1 mm to 1 cm) and are not very effective against isolated cells. Advances in RIT progress in two directions. One is the development of pretargeting strategies in which the antibody is not labelled but used to provide binding sites to small molecular weight radioactivity vectors (biotin, haptens). These techniques have been shown to increase tumour to non-target uptake ratios and anti-tumour efficacy has been demonstrated in the clinic. The other approach is the use of radionuclides adapted to the various clinical situations. Lutetium-177 or copper-67, because of the lower energy of their emission, their relatively long half-life and good gamma emission, may significantly improve RIT efficacy and acceptability. Beyond that, radionuclides emitting particles such as alpha particles or Auger electrons, much more efficient to kill isolated tumour cells, are being tested for RIT in the clinic. Finally, RIT should be integrated with other cancer treatment approaches in multimodality protocols. Thus RIT, now a mature technology, should enter a phase of well designed and focused clinical developments that may be expected to afford significant therapeutic advances.

  15. Applications of recombinant antibodies in plant pathology.

    Science.gov (United States)

    Ziegler, Angelika; Torrance, Lesley

    2002-09-01

    Summary Advances in molecular biology have made it possible to produce antibody fragments comprising the binding domains of antibody molecules in diverse heterologous systems, such as Escherichia coli, insect cells, or plants. Antibody fragments specific for a wide range of antigens, including plant pathogens, have been obtained by cloning V-genes from lymphoid tissue, or by selection from large naive phage display libraries, thus avoiding the need for immunization. The antibody fragments have been expressed as fusion proteins to create different functional molecules, and fully recombinant assays have been devised to detect plant viruses. The defined binding properties and unlimited cheap supply of antibody fusion proteins make them useful components of standardized immunoassays. The expression of antibody fragments in plants was shown to confer resistance to several plant pathogens. However, the antibodies usually only slowed the progress of infection and durable 'plantibody' resistance has yet to be demonstrated. In future, it is anticipated that antibody fragments from large libraries will be essential tools in high-throughput approaches to post-genomics research, such as the assignment of gene function, characterization of spatio-temporal patterns of protein expression, and elucidation of protein-protein interactions.

  16. Monoclonal antibodies against rat leukocyte surface antigens

    NARCIS (Netherlands)

    van den Berg, T. K.; Puklavec, M. J.; Barclay, A. N.; Dijkstra, C. D.

    2001-01-01

    Monoclonal antibodies have proven to be powerful tools for studying the properties of leukocyte surface antigens and the cells that express them. In the past decades many monoclonal antibodies (mAb) for identifying the different rat leukocyte surface antigens have been described. A list of mAb is

  17. Quantitative Changes In Antibodies Against Onchocercal Native ...

    African Journals Online (AJOL)

    Quantitative Changes In Antibodies Against Onchocercal Native Antigens Two Months Postivermectin Treatment Of Onchocerciasis Patients. ... Those without onchocercal skin disease, OSD (n=18) had a significant increase of 20.5±29.6%, with pre- and posttreatment values of 0.59±0.15 versus 0.68±0.13 for IgG antibody ...

  18. Anti-influenza M2e antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.

    2013-04-16

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  19. Anti-influenza M2e antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Santa Fe, NM

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  20. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Science.gov (United States)

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.