WorldWideScience

Sample records for engineered disulfides improve

  1. Stabilisation of the Fc fragment of human IgG1 by engineered intradomain disulfide bonds.

    Directory of Open Access Journals (Sweden)

    Gordana Wozniak-Knopp

    Full Text Available We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of T(m of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the T(m of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the T(m of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule.

  2. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    Energy Technology Data Exchange (ETDEWEB)

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  3. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.

    Science.gov (United States)

    Yang, Jing; He, Bao-Ji; Jang, Richard; Zhang, Yang; Shen, Hong-Bin

    2015-12-01

    Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g., >3 bonds, is too low to effectively assist structure assembly simulations. We propose a new hierarchical order reduction protocol called Cyscon for disulfide-bonding prediction. The most confident disulfide bonds are first identified and bonding prediction is then focused on the remaining cysteine residues based on SVR training. Compared with purely machine learning-based approaches, Cyscon improved the average accuracy of connectivity pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve the ab initio structure modeling for cysteine-rich proteins. http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/ zhng@umich.edu or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering

    Czech Academy of Sciences Publication Activity Database

    Álvarez, M. P.; del Corro, Elena; Morales-García, A.; Kavan, Ladislav; Kalbáč, Martin; Frank, Otakar

    2015-01-01

    Roč. 15, č. 5 (2015), s. 3139-3146 ISSN 1530-6984 R&D Projects: GA ČR GA14-15357S; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Molybdenum disulfide * band gap engineering * out-of-plane compression Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.779, year: 2015

  5. Design of new disulfide-based organic compounds for the improvement of self-healing materials.

    Science.gov (United States)

    Matxain, Jon M; Asua, José M; Ruipérez, Fernando

    2016-01-21

    Self-healing materials are a very promising kind of materials due to their capacity to repair themselves. Among others, diphenyl disulfide-based compounds (Ph2S2) appear to be among the best candidates to develop materials with optimum self-healing properties. However, few is known regarding both the reaction mechanism and the electronic structure that make possible such properties. In this vein, theoretical approaches are of great interest. In this work, we have carried out theoretical calculations on a wide set of different disulfide compounds, both aromatic and aliphatic, in order to elucidate the prevalent reaction mechanism and the necessary electronic conditions needed for improved self-healing properties. Two competitive mechanisms were considered, namely, the metathesis and the radical-mediated mechanism. According to our calculations, the radical-mediated mechanism is the responsible for this process. The formation of sulfenyl radicals strongly depends on the S-S bond strength, which can be modulated chemically by the use of proper derivatives. At this point, amino derivatives appear to be the most promising ones. In addition to the S-S bond strength, hydrogen bonding between disulfide chains seems to be relevant to favour the contact among disulfide units. This is crucial for the reaction to take place. The calculated hydrogen bonding energies are of the same order of magnitude as the S-S bond energies. Finally, reaction barriers have been analysed for some promising candidates. Two reaction mechanisms were compared, namely, the [2+2] metathesis reaction mechanism and the [2+1] radical-mediated mechanism. No computational evidence for the existence of any transition state for the metathesis mechanism was found, which indicates that the radical-mediated mechanism is the one responsible in the self-healing process of these materials. Interestingly, the calculated reaction barriers are around 10 kcal mol(-1) regardless the substituent employed. All these

  6. Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm.

    Science.gov (United States)

    Shriver-Lake, Lisa C; Goldman, Ellen R; Zabetakis, Daniel; Anderson, George P

    2017-04-01

    Single domain antibodies are recombinantly expressed variable domains derived from camelid heavy chain antibodies. Natural single domain antibodies can have noncanonical disulfide bonds between their complementarity-determining regions that help position the binding site. In addition, engineering a second disulfide bond serves to tie together β-sheets thereby inhibiting unfolding. Unfortunately, the additional disulfide bond often significantly decreases yield, presumably due to formation of incorrect disulfide bonds during the folding process. Here, we demonstrate that inclusion of the helper plasmid pTUM4, which results in the expression of four chaperones, DsbA, DsbC, FkpA, and SurA, increased yield on average 3.5-fold for the nine multi-disulfide bond single domain antibodies evaluated. No increase in production was observed for single domain antibodies containing only the canonical disulfide bond. Published by Elsevier B.V.

  7. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... as a structural reorganization of residues in the immediate chromophore environment. By combining this information with spectroscopic data, we propose a detailed mechanism accounting for the observed redox state-dependent fluorescence. The redox potential of the cysteine couple was found to be within...

  8. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...

  9. Productivity Improvement for Engineers.

    Science.gov (United States)

    1981-08-01

    Executive Performance, American Management Association, New York, 1958. Sutermeister , R.A., People and Productivity , McGraw-Hill, New York, 1963...AD-AIA9 754 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F/G 5/I PRODUCTIVITY IMPROVEMENT FOR ENGINEERS.(u) A’ 81 R J CALLOWAY UNCLASSIFIED AFIT/C...12. GOVY ACCESION NdOa IIN CATALOG NUMBER 81- 38T - 14. TITLE C..A961uiea. Productivity Improvement for i. TYPE OFr REPORT & PERNOO COVERED Engineers

  10. Software Engineering Improvement Plan

    Science.gov (United States)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  11. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Yu

    Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.

  12. Improved automobile gas turbine engine

    Science.gov (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  13. Production of Disulfide-Bonded Proteins in Escherichia coli.

    Science.gov (United States)

    Ke, Na; Berkmen, Mehmet

    2014-10-01

    Production of recombinant proteins at high yields in Escherichia coli requires extensive optimization of expression conditions. Production is further complicated for proteins that require specific post-translational modifications for their eventual folding. One common and particularly important post-translational modification is oxidation of the correct pair of cysteines to form a disulfide bond. This unit describes methods to produce disulfide-bonded proteins in E. coli in either the naturally oxidizing periplasm or the cytoplasm of appropriately engineered cells. The focus is on variables key to improving the oxidative folding of disulfide-bonded proteins, with the aim of helping the researcher optimize expression conditions for a protein of interest. Copyright © 2014 John Wiley & Sons, Inc.

  14. An Engineered Disulfide Bond Reversibly Traps the IgE-Fc3-4 in a Closed, Nonreceptor Binding Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Kim, Beomkyu; Tarchevskaya, Svetlana S.; Eggel, Alexander; Vogel, Monique; Jardetzky, Theodore S. [Bern; (Stanford-MED)

    2013-08-02

    IgE antibodies interact with the high affinity IgE Fc receptor, FcϵRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcϵRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of an IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcϵRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.

  15. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer

    Science.gov (United States)

    Pan, Amy; Zhang, Hongyong; Li, Yuanpei; Lin, Tzu-yin; Wang, Fuli; Lee, Joyce; Cheng, Mingshan; Dall'Era, Marc; Li, Tianhong; deVere White, Ralph; Pan, Chong-Xian; Lam, Kit S.

    2016-10-01

    Chemotherapy commonly used in the treatment of advanced bladder cancer is only moderately effective and associated with significant toxicity. There has been no appreciable improvement in overall survival over the last three decades. The goal of this project is to develop and characterize bladder cancer-specific nanometer-scale micelles loaded with the chemotherapeutic drug paclitaxel (PTX) and determine the anti-tumor activity and toxicity. Micelle-building-material telodendrimers were synthesized through the stepwise conjugation of eight cholic acid units at one terminus of polyethylene glycol (PEG) and a bladder cancer-specific targeting peptide named PLZ4 at the other terminus. To synthesize disulfide-crosslinked PLZ4 nanomicelles (DC-PNM), cysteine was introduced between the cholic acid and PEG. DC-PNM-PTX was synthesized through the evaporation method by loading PTX in the core. The loading capacity of PTX in DC-PNM was 25% (W/W). The loading efficiency was over 99%. DC-PNM-PTX was spherical with the median size of 25 nm. The stability of DC-PNM-PTX was determined in a solution containing sodium docecyl sulfate (SDS). It was stable in a SDS solution, but dissolved within 5 min after the addition of glutathione at the physiological intracellular concentration of 10 mM. In vivo targeting and anti-tumor activity were determined in immunodeficient mice carrying patient-derived bladder cancer xenografts (PDXs). After intravenous administration, DC-PNM specifically targeted the bladder cancer PDXs, but very little to the lung cancer xenografts in the same mice (p bladder cancer xenografts in vivo, and improved the anti-cancer efficacy of PTX.

  16. Origin of Improved Optical Quality of Monolayer Molybdenum Disulfide Grown on Hexagonal Boron Nitride Substrate.

    Science.gov (United States)

    Wan, Yi; Zhang, Hui; Wang, Wei; Sheng, Bowen; Zhang, Kun; Wang, Yilun; Song, Qingjun; Mao, Nannan; Li, Yanping; Wang, Xinqiang; Zhang, Jin; Dai, Lun

    2016-01-13

    Monolayer MoS2 is synthesized on hexagonal boron nitride (h-BN) flakes with a simple, high-yield method. Monolayer MoS2 on h-BN exhibits improved optical quality. Combining the theoretical and experimental analysis, it is concluded that the enhanced photoluminescence and Raman intensities of monolayer MoS2 probably originate from the relatively weak doping effect from the h-BN substrate rather than the optical interference effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Specification Improvements for Engineered Projects

    Science.gov (United States)

    1991-12-01

    Bliss SOURCE: Fort Worth District, Corps of Engineers SPEC#: 88 SPEC TYPE: Buildings & Facilities DESCRIPTION: Clinic/ Dental Clinic RMPT, Randolph...5 Metals 41 _ V Metal Materiale V _ Structural Metal Framing / e STuctural Aluminum 01 Misc. Metal Fabrications V Metal Stairs Handrails & Raing V

  18. Software Engineering Improvement Activities/Plan

    Science.gov (United States)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  19. Improving engineering performance by utilizing process indicators

    International Nuclear Information System (INIS)

    Roberts, T.E.

    1992-01-01

    The purpose of the work discussed in this paper was to develop engineering performance indicators used to facilitate improvement to the technical quality, cost-effectiveness, and delivery of engineering products and service. This work was specifically tailored for engineering support products and service associated with operating Florida Power and Light Company (FP and L) nuclear plants. The engineering process for the development of plant change packages was reviewed to identify critical in-process activities. Because each engineering project usually deals with a specific component or plant system, the different tasks are usually technically unique and of varying magnitudes. Although each engineering product may employ different analytical techniques or industry code requirements, several activities in documenting the engineering design process are generic. The quality of performance in these activities can be monitored analogously to the steps in a manufacturing process. This concept builds quality concepts into the package in lieu of inspecting package quality at the end of the process. The work has resulted in a valuable self-assessment tool that serves as a basis for engineering process improvements. The indicators are published in a semi-yearly performance report for FP and L contractors as well as FP and L in-house engineering work. Contracts have been set up to base fees on meeting targets established for the performance report. The ability to meet performance targets continues to improve

  20. Improving requirements engineering by artefact orientation

    NARCIS (Netherlands)

    Méndez Fernández, Daniel; Wieringa, Roelf J.

    2013-01-01

    The importance of continuously improving requirements engineering (RE) has been recognised for many years. Similar to available software process improvement approaches, most RE improvement approaches focus on a normative and solution-driven assessment of companies rather than on a problem-driven RE

  1. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm

    Directory of Open Access Journals (Sweden)

    Lobstein Julie

    2012-05-01

    Full Text Available Abstract Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using

  2. Improving Formwork Engineering Using the Toyota Way

    Directory of Open Access Journals (Sweden)

    Jiun-De Kuo

    2011-07-01

    Full Text Available Construction is a labor-intensive industry with formwork engineering requiring a disproportionate amount of labor and costs. Formwork accounts for approximately one-third of the cost of reinforced concrete construction, partly because traditional formwork processes frequently result in delivery delays and material waste. The purpose of this research is to adapt production concepts pioneered by Toyota (the “Toyota Way” to improve formwork engineering. The Toyota Way of production consists of four tiers of management philosophy, known as the “4Ps” model. This research adopts the 4Ps as steps for formwork improvement. The first step, “establishing long term vision,” emphasizes long term considerations for formwork improvement. Step two, “establishing value streams,” reviews formwork flows and eliminates wastage. The third step, “developing the crew,” forms mold workers as a team. The final step is “developing a culture of continuous improvement” that provides a basis for constant review and provides a basis for continuous progress. The present research used the Toyota Way to improve formwork engineering. The improvements include reductions in resource waste and increases in operational value. In the long run, the proposed model could provide a learning and growth platform for individuals, the business unit, and the company’s extended network of partners. It could also serve to spur innovative thinking in the improvement of formwork engineering.

  3. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    KELMENSON, R.L.

    1999-01-01

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project (the Project) to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819 (1819). These requirements are imposed on all engineering activities performed for the Project and apply to all life-cycle stages of the Project's systems, structures and components (SSCs). This Plan describes the steps that will be taken by the Project during the transition period to ensure that new procedures are effectively integrated into the Project's work process as these procedures are issued. The consolidated procedures will be issued and implemented by September 30, 1999

  4. SNF Project Engineering Process Improvement Plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    2000-01-01

    This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities

  5. Reliability Improvements in Liquid Rocket Engine Instrumentation

    Science.gov (United States)

    Hill, A.; Acosta, E.

    2005-01-01

    Instrumentation hardware is often the weak link in advanced liquid fueled propulsion systems. The development of the Space Shuttle Main Engine (SSME) was no exception. By sheer necessity, a reusable, high energy, low weight engine system often relegates the instrumentation hardware to the backseat in the critical hardware development process. This produces less than optimum hardware constraints; including size, location, mounting, redundancy, and signal conditioning. This can negatively affect the development effort and ultimately the system reliability. The challenge was clear, however, the outcome was less certain. Unfortunately, the SSME hardware development culminated in series of measurement failures, most significant of which was the premature engine shutdown during the launch of STS-51F on July 29, 1985. The Return to Flight activities following the Challenger disaster redoubled our efforts to eliminate, once and for all, sensor malfunctions as the determining factor in overall engine reliability. This paper describes each phase of this effort in detail and includes discussion of the tasks related to improving measurement reliability.

  6. GPU Computing to Improve Game Engine Performance

    Directory of Open Access Journals (Sweden)

    Abu Asaduzzaman

    2014-07-01

    Full Text Available Although the graphics processing unit (GPU was originally designed to accelerate the image creation for output to display, today’s general purpose GPU (GPGPU computing offers unprecedented performance by offloading computing-intensive portions of the application to the GPGPU, while running the remainder of the code on the central processing unit (CPU. The highly parallel structure of a many core GPGPU can process large blocks of data faster using multithreaded concurrent processing. A game engine has many “components” and multithreading can be used to implement their parallelism. However, effective implementation of multithreading in a multicore processor has challenges, such as data and task parallelism. In this paper, we investigate the impact of using a GPGPU with a CPU to design high-performance game engines. First, we implement a separable convolution filter (heavily used in image processing with the GPGPU. Then, we implement a multiobject interactive game console in an eight-core workstation using a multithreaded asynchronous model (MAM, a multithreaded synchronous model (MSM, and an MSM with data parallelism (MSMDP. According to the experimental results, speedup of about 61x and 5x is achieved due to GPGPU and MSMDP implementation, respectively. Therefore, GPGPU-assisted parallel computing has the potential to improve multithreaded game engine performance.

  7. Multiple ways to make disulfides

    DEFF Research Database (Denmark)

    Bulleid, Neil J; Ellgaard, Lars

    2011-01-01

    Our concept of how disulfides form in proteins entering the secretory pathway has changed dramatically in recent years. The discovery of endoplasmic reticulum (ER) oxidoreductin 1 (ERO1) was followed by the demonstration that this enzyme couples oxygen reduction to de novo formation of disulfides....... However, mammals deficient in ERO1 survive and form disulfides, which suggests the presence of alternative pathways. It has recently been shown that peroxiredoxin 4 is involved in peroxide removal and disulfide formation. Other less well-characterized pathways involving quiescin sulfhydryl oxidase, ER......-localized protein disulfide isomerase peroxidases and vitamin K epoxide reductase might all contribute to disulfide formation. Here we discuss these various pathways for disulfide formation in the mammalian ER and highlight the central role played by glutathione in regulating this process....

  8. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  9. Civil Engineering: Improving the Quality of Life.

    Science.gov (United States)

    One Feather, Sandra

    2002-01-01

    American Indian civil engineers describe the educational paths that led them to their engineering careers, applications of civil engineering in reservation communities, necessary job skills, opportunities afforded by internship programs, continuing education, and the importance of early preparation in math and science. Addresses of 12 resource Web…

  10. Collaborative Engineering Environments. Two Examples of Process Improvement

    NARCIS (Netherlands)

    Spee, J.B.R.M.; Bijwaard, D.; Laan, D.J.

    Companies are recognising that innovative processes are determining factors in competitiveness. Two examples from projects in aircraft development describe the introduction of collaborative engineering environments as a way to improve engineering processes. A multi-disciplinary simulation

  11. Improving Powder Tableting Performance through Materials Engineering

    Science.gov (United States)

    Osei-Yeboah, Frederick

    Adequate mechanical strength is a critical requirement to the successful development of a tablet product. Before tablet compression, powders are often engineered by various processes including wet granulation and surface coating, which may improve or adversely affect the powder tableting performance. Such effects, commonly, result from a change in either particle mechanical properties or particulate (size, shape) properties. In this work, tableting performance is interpreted based on the qualitative bonding-area and bonding-strength (BABS) model. The tabletability of the microcrystalline cellulose (MCC) granules deteriorates rapidly with increasing amount of granulating water and eventually leads to over-granulation at high water level. Granule surface smoothing, size enlargement, granule densification and shape rounding are the dominant factors leading to the tabletability reduction of plastic MCC. Incorporation of increasing amounts of brittle excipients, such as lactose or dibasic calcium phosphate reduces the rate of tabletability reduction by promoting more granule fragmentation, introducing more surface area available for bonding. When a sufficient amount of brittle excipients is used, the over-granulation phenomenon can be eliminated. Surface coating of incompressible MCC pellets with highly bonding polymer leads to sufficient surface deformation and adhesion to enable direct compression of the pellets into tablets of adequate mechanical strength. This improvement is enhanced by the presence of moisture, which plasticizes the polymer to allow the development of a larger bonding area between coated pellets. The relationship between mechanical properties and tableting behavior is systematically investigated in polymeric composites using celecoxib-polyvinylpyrrolidone vinyl acetate solid dispersions. Mechanical properties such as indentation hardness of the solid dispersions were measured using nanoindentation. Incorporation of celecoxib up to 60% by weight

  12. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  13. Engineered Emitters for Improved Silicon Photovoltaics

    Science.gov (United States)

    Kamat, Ronak A.

    In 2014, installation of 5.3GW of new Photovoltaic (PV) systems occurred in the United States, raising the total installed capacity to 16.36GW. Strong growth is predicted for the domestic PV market with analysts reporting goals of 696GW by 2020. Conventional single crystalline silicon cells are the technology of choice, accounting for 90% of the installations in the global commercial market. Cells made of GaAs offer higher efficiencies, but at a substantially higher cost. Thin film technologies such as CIGS and CdTe compete favorably with multi-crystalline Si (u-Si), but at 20% efficiency, still lag the c-Si cell in performance. The c-Si cell can be fabricated to operate at approximately 25% efficiency, but commercially the efficiencies are in the 18-21% range, which is a direct result of cost trade-offs between process complexity and rapid throughput. With the current cost of c-Si cell modules at nearly 0.60/W. The technology is well below the historic metric of 1/W for economic viability. The result is that more complex processes, once cost-prohibitive, may now be viable. An example is Panasonic's HIT cell which operates in the 22-24% efficiency range. To facilitate research and development of novel PV materials and techniques, RIT has developed a basic solar cell fabrication process. Student projects prior to this work had produced cells with 12.8% efficiency using p type substrates. This thesis reports on recent work to improve cell efficiencies while simultaneously expanding the capability of the rapid prototyping process. In addition to the p-Si substrates, cells have been produced using n-Si substrates. The cell emitter, which is often done with a single diffusion or implant has been re-engineered using a dual implant of the same dose. This dual-implanted emitter has been shown to lower contact resistance, increase Voc, and increase the efficiency. A p-Si substrate cell has been fabricated with an efficiency of 14.6% and n-Si substrate cell with a 13

  14. Improving Engineer Reconnaissance in First Marine Division

    National Research Council Canada - National Science Library

    Banta, Edward

    1997-01-01

    ... to current and future maneuver commanders. This thesis expands on current deficiencies in training, organization, and coordination to define the engineer reconnaissance deficiency in terms of an organizational design problem...

  15. CF6 jet engine performance improvement: New fan

    Science.gov (United States)

    Fasching, W. A.

    1980-01-01

    As part of the NASA sponsored engine component improvement program, and fan package was developed to reduce fuel consumption in current CF6 turbofan aircraft engine. The new fan package consist of an improved fan blade, reduced fan tip clearance due to a fan case stiffener, and a smooth fan casing tip shroud. CF6 engine performance and acoustic tests demonstrated the predicted 1.8% improvement in cruise sfc without an increase in engine noise. Power management thrust/fan speed characteristics were defined. Mechanical and structural integrity was demonstrated in model fan rotor photoelastic stress tests, full-size fan blade bench fatigue tests, and CF6 engine bird ingestion, crosswind, and cyclic endurance tests. The fan was certified in the CF6-500c2/E2 engines and is in commerical service on the Boeing 747-200, Douglas DC-10-30, and Atrbus industrie A300B aircraft.

  16. Improving Software Engineering on NASA Projects

    Science.gov (United States)

    Crumbley, Tim; Kelly, John C.

    2010-01-01

    Software Engineering Initiative: Reduces risk of software failure -Increases mission safety. More predictable software cost estimates and delivery schedules. Smarter buyer of contracted out software. More defects found and removed earlier. Reduces duplication of efforts between projects. Increases ability to meet the challenges of evolving software technology.

  17. Strategy to improve the quantitative LC-MS analysis of molecular ions resistant to gas-phase collision induced dissociation: application to disulfide-rich cyclic peptides.

    Science.gov (United States)

    Ciccimaro, Eugene; Ranasinghe, Asoka; D'Arienzo, Celia; Xu, Carrie; Onorato, Joelle; Drexler, Dieter M; Josephs, Jonathan L; Poss, Michael; Olah, Timothy

    2014-12-02

    Due to observed collision induced dissociation (CID) fragmentation inefficiency, developing sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assays for CID resistant compounds is especially challenging. As an alternative to traditional LC-MS/MS, we present here a methodology that preserves the intact analyte ion for quantification by selectively filtering ions while reducing chemical noise. Utilizing a quadrupole-Orbitrap MS, the target ion is selectively isolated while interfering matrix components undergo MS/MS fragmentation by CID, allowing noise-free detection of the analyte's surviving molecular ion. In this manner, CID affords additional selectivity during high resolution accurate mass analysis by elimination of isobaric interferences, a fundamentally different concept than the traditional approach of monitoring a target analyte's unique fragment following CID. This survivor-selected ion monitoring (survivor-SIM) approach has allowed sensitive and specific detection of disulfide-rich cyclic peptides extracted from plasma.

  18. QUALITY IMPROVEMENT OF ESP IN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Alina-Andreea Dragoescu

    2010-09-01

    Full Text Available The latest political positioning of Serbia has caused many changes in the society with the most dramatic economic shift on the market. The market requires young educated employees with special additional "soft skills". This has resulted in the need to change the Serbian educational system with the Bologna process implemented. Therefore, the syllabus of ESP in Mechanical Engineering must be adjusted to the demands as regards needs analysis so that it can meet the requirements of the rapidly growing market. This paper offers an outline of ESP syllabus which can be regularly updated with respect to technological and other changes on the market.

  19. Disulfide bridges as essential elements for the thermostability of lytic polysaccharide monooxygenase LPMO10C from Streptomyces coelicolor.

    Science.gov (United States)

    Tanghe, Magali; Danneels, Barbara; Last, Matthias; Beerens, Koen; Stals, Ingeborg; Desmet, Tom

    2017-05-01

    Lytic polysaccharide monooxygenases (LPMOs) are crucial components of cellulase mixtures but their stability has not yet been studied in detail, let alone been engineered for industrial applications. In this work, we have evaluated the importance of disulfide bridges for the thermodynamic stability of Streptomyces coelicolor LPMO10C. Interestingly, this enzyme was found to retain 34% of its activity after 2-h incubation at 80°C while its apparent melting temperature (Tm) is only 51°C. When its three disulfide bridges were broken, however, irreversible unfolding occurred and no residual activity could be detected after a similar heat treatment. Based on these findings, additional disulfide bridges were introduced, as predicted by computational tools (MOdelling of DIsulfide bridges in Proteins (MODiP) and Disulfide by Design (DbD)) and using the most flexible positions in the structure as target sites. Four out of 16 variants displayed an improvement in Tm, ranging from 2 to 9°C. Combining the positive mutations yielded additional improvements (up to 19°C) but aberrant unfolding patterns became apparent in some cases, resulting in a diminished capacity for heat resistance. Nonetheless, the best variant, a combination of A143C-P183C and S73C-A115C, displayed a 12°C increase in Tm and was able to retain and was able to retain no less than 60% of its activity after heat treatment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. A New, Highly Improved Two-Cycle Engine

    Science.gov (United States)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  1. Probing the Conformational and Functional Consequences of Disulfide Bond Engineering in Growth Hormone by Hydrogen-Deuterium Exchange Mass Spectrometry Coupled to Electron Transfer Dissociation

    DEFF Research Database (Denmark)

    Seger, Signe T; Breinholt, Jens; Faber, Johan H

    2015-01-01

    Human growth hormone (hGH), and its receptor interaction, is essential for cell growth. To stabilize a flexible loop between helices 3 and 4, while retaining affinity for the hGH receptor, we have engineered a new hGH variant (Q84C/Y143C). Here, we employ hydrogen-deuterium exchange mass...... ranging effects, stabilizing a short α-helix quite distant from the mutation sites, but also rendering a part of the α-helical hGH core slightly more dynamic. In the regions where the hGH variant exhibits a different deuterium uptake than the wild type protein, electron transfer dissociation (ETD...

  2. Software Engineering Program: Software Process Improvement Guidebook

    Science.gov (United States)

    1996-01-01

    The purpose of this document is to provide experience-based guidance in implementing a software process improvement program in any NASA software development or maintenance community. This guidebook details how to define, operate, and implement a working software process improvement program. It describes the concept of the software process improvement program and its basic organizational components. It then describes the structure, organization, and operation of the software process improvement program, illustrating all these concepts with specific NASA examples. The information presented in the document is derived from the experiences of several NASA software organizations, including the SEL, the SEAL, and the SORCE. Their experiences reflect many of the elements of software process improvement within NASA. This guidebook presents lessons learned in a form usable by anyone considering establishing a software process improvement program within his or her own environment. This guidebook attempts to balance general and detailed information. It provides material general enough to be usable by NASA organizations whose characteristics do not directly match those of the sources of the information and models presented herein. It also keeps the ideas sufficiently close to the sources of the practical experiences that have generated the models and information.

  3. Improving Safety through Human Factors Engineering.

    Science.gov (United States)

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  4. NASA/General Electric Engine Component Improvement Program

    Science.gov (United States)

    Albright, A. J.; Lennard, D. J.; Ziemianski, J. A.

    1978-01-01

    The Engine Component Improvement (ECI) Program has been initiated in connection with projects designed to reduce the impact of the world-wide energy crisis in the area of aviation. The two parts of the ECI program have the overall objective to identify and quantify the sources and causes of CF6 engine performance deterioration, and to reduce the fuel consumption of CF6 engines through the development and the incorporation of various performance improvement concepts. The CF6 high-bypass turbofan engine was selected as a basis for this effort, since it is expected to be a significant fuel user in commercial revenue service for the next 15 to 20 years. The first part of the ECI program represents the initial step in an effort to achieve a goal of five percent reduction in fuel usage for CF6 engines in the 1979-82 time period. The first performance improvement concept selected is an improved efficiency fan blade. Other improvements are related to a short core exhaust system and an improved high pressure turbine.

  5. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  6. Reaming process improvement and control: An application of statistical engineering

    DEFF Research Database (Denmark)

    Müller, Pavel; Genta, G.; Barbato, G.

    2012-01-01

    A reaming operation had to be performed within given technological and economical constraints. Process improvement under realistic conditions was the goal of a statistical engineering project, supported by a comprehensive experimental investigation providing detailed information on single...... and combined effects of several parameters on key responses. Results supported selection of production parameters meeting specified quality and cost targets, as well as substantial improvements....

  7. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph; Loparo, Kenneth

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  8. Improving Free-Piston Stirling Engine Power Density

    Science.gov (United States)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  9. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  10. Teaching quality improvement: a collaboration project between medicine and engineering.

    Science.gov (United States)

    Varkey, Prathibha; Karlapudi, Sudhakar P; Bennet, Kevin E

    2008-01-01

    Systems failures and their impact on quality and cost have fueled the need for a paradigm shift in medical education. Despite a growing interest in health care quality improvement (QI), few physician educators possess the necessary expertise in either systems engineering or QI. In this article, we describe a novel teaching partnership between engineers and physicians in implementing a 3-week elective QI training curriculum on health care QI. Nine learners, 2 preventive medicine and 7 endocrinology fellows, participated in this rotation. Key concepts taught by the 4 engineering faculty include stake-holder analysis, root cause analysis, process mapping, failure mode and effects analysis, resource management, negotiation, and leadership. Learner scores on the QI knowledge application tool improved significantly (P effectiveness, efficacy, and scope of using engineering expertise in QI education initiatives.

  11. Biological process of soil improvement in civil engineering: A review

    Directory of Open Access Journals (Sweden)

    Murtala Umar

    2016-10-01

    Full Text Available The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically controlled and biologically induced mineralization, were also discussed. Environmental and other factors that may be encountered in situ during microbially induced calcite precipitation (MICP and their influences on the process were identified and presented. Improvements in the engineering properties of soil such as strength/stiffness and permeability as evaluated in some studies were explored. Potential applications of the process in geotechnical engineering and the challenges of field application of the process were identified.

  12. Analysis of Disulfide Bond Formation

    NARCIS (Netherlands)

    Braakman, Ineke; Lamriben, Lydia; van Zadelhoff, Guus; Hebert, Daniel N.

    2017-01-01

    In this unit, protocols are provided for detection of disulfide bond formation in cultures of intact cells and in an in vitro translation system containing isolated microsomes or semi-permeabilized cells. First, the newly synthesized protein of interest is biosynthetically labeled with radioactive

  13. Improved Engine Design Concepts Using the Second Law of Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-30

    This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx

  14. Manipulating DNA repair for improved genetic engineering in Aspergillus

    DEFF Research Database (Denmark)

    Nødvig, Christina Spuur

    Aspergillus is a genus of filamentous fungi, which members includes industrial producers of enzymes, organic acids and secondary metabolites, important pathogens and a model organism. As such no matter the specific area of interest there are many reasons to perform genetic engineering, whether...... it is metabolic engineering to create better performing cell factory, elucidating pathways to study secondary metabolism etc. In this thesis, the main focus is on different ways to manipulate DNA repair for optimizing gene targeting, ultimately improving the methods available for faster and better genetic...... engineering strategies. Chapter 1 gives an introduction to the genus Aspergillus and some of the tools relevant to fungal genetic engineering. It also contains a short introduction to DNA repair and its interplay with gene targeting and finally an overview over the different genome editing technologies...

  15. CF6 Jet Engine Performance Improvement Program: High Pressure Turbine Aerodynamic Performance Improvement

    Science.gov (United States)

    Fasching, W. A.

    1980-01-01

    The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.

  16. Innovation Pilot – to Improve Innovation Competences of Engineering Students

    DEFF Research Database (Denmark)

    Løje, Hanne; Grex, Sara

    2017-01-01

    innovation skills in addition to personal and interpersonal skills. This is done in close collaboration with companies. The outline for the course is that the students work in multidisciplinary teams with specific challenges offered by the companies. The main findings so far show the importance of the use......In the future, there will be increasing demands for skilled and well-educated engineers who are capable of developing new solutions through innovation and can work in multidisciplinary teams. Therefore the universities are developing innovation and entrepreneurship programs to improve...... the innovation competences of the engineering students to meet this demand. In this paper, we will discuss how to improve innovation competences of engineering students and describe how it is done in a newly developed course at the Technical University of Denmark (DTU). The aim of the course is to strengthened...

  17. Genetic engineering for improvement of Musa production in Africa ...

    African Journals Online (AJOL)

    The transgenic approach shows potential for the genetic improvement of the crop using a wide set of transgenes currently available which may confer resistance to nematode pests, fungal, bacterial and viral diseases. This article discusses the applications of genetic engineering for the enhancement of Musa production.

  18. Improving Teacher-Made Assessments in Technology and Engineering Education

    Science.gov (United States)

    White, Jesse W.; Moye, Johnny J.; Gareis, Christopher R.; Hylton, Sarah P.

    2018-01-01

    In the interest of learning how to effectively use the technological literacy standards and of adhering to education regulation, this article focuses on efforts to improve the professional teaching practices of Technology and Engineering Education (TEE) teachers by using the Gareis and Grant (2015) process with respect to "Standards for…

  19. Biological process of soil improvement in civil engineering: A review

    OpenAIRE

    Murtala Umar; Khairul Anuar Kassim; Kenny Tiong Ping Chiet

    2016-01-01

    The concept of using biological process in soil improvement which is known as bio-mediated soil improvement technique has shown greater potential in geotechnical engineering applications in terms of performance and environmental sustainability. This paper presents a review on the soil microorganisms responsible for this process, and factors that affect their metabolic activities and geometric compatibility with the soil particle sizes. Two mechanisms of biomineralization, i.e. biologically co...

  20. Improving microbial biogasoline production in Escherichia coli using tolerance engineering.

    Science.gov (United States)

    Foo, Jee Loon; Jensen, Heather M; Dahl, Robert H; George, Kevin; Keasling, Jay D; Lee, Taek Soon; Leong, Susanna; Mukhopadhyay, Aindrila

    2014-11-04

    Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production. The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically

  1. Improvement of Selected Logistics Processes Using Quality Engineering Tools

    Science.gov (United States)

    Zasadzień, Michał; Žarnovský, Jozef

    2018-03-01

    Increase in the number of orders, the increasing quality requirements and the speed of order preparation require implementation of new solutions and improvement of logistics processes. Any disruption that occurs during execution of an order often leads to customer dissatisfaction, as well as loss of his/her confidence. The article presents a case study of the use of quality engineering methods and tools to improve the e-commerce logistic process. This made it possible to identify and prioritize key issues, identify their causes, and formulate improvement and prevention measures.

  2. Space Shuttle Main Engine - The Relentless Pursuit of Improvement

    Science.gov (United States)

    VanHooser, Katherine P.; Bradley, Douglas P.

    2011-01-01

    The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize

  3. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  4. Protein engineering of subtilisins to improve stability in detergent formulations.

    Science.gov (United States)

    von der Osten, C; Branner, S; Hastrup, S; Hedegaard, L; Rasmussen, M D; Bisgård-Frantzen, H; Carlsen, S; Mikkelsen, J M

    1993-03-01

    Microbial proteases are used extensively in a large number of industrial processes and most importantly in detergent formulations facilitating the removal of proteinaceous stains. Site-directed mutagenesis has been employed in the construction of subtilisin variants with improved storage and oxidation stabilities. It is shown that in spite of significant structural homology between subtilisins subjected to protein engineering the effects of specific mutations can be quite different. Mutations that stabilize one subtilisin may destabilize another.

  5. Software process improvement in the NASA software engineering laboratory

    Science.gov (United States)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin

    1994-01-01

    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  6. Innovation pilot - to improve innovation competences of engineering students

    DEFF Research Database (Denmark)

    Løje, Hanne; Grex, Sara

    2017-01-01

    the innovation competences of the engineering students to meet this demand. In this paper, we will discuss how to improve innovation competences of engineering students and describe how it is done in a newly developed course at the Technical University of Denmark (DTU). The aim of the course is to strengthened...... innovation skills in addition to personal and interpersonal skills. This is done in close collaboration with companies. The outline for the course is that the students work in multidisciplinary teams with specific challenges offered by the companies. The main findings so far show the importance of the use...... of a simple model for structuring the process which the students can easily adapt to. For the company the course can give access to students and give a lot of inspiration and new ideas from the students. Furthermore participating in the course is a good occasion to get new ideas tested....

  7. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Science.gov (United States)

    2010-07-01

    ... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering...

  8. Some approaches to system reliability improvement in engineering design

    International Nuclear Information System (INIS)

    Shen, Kecheng.

    1990-01-01

    In this thesis some approaches to system reliability improvement in engineering design are studied. In particular, the thesis aims at developing alternative methodologies for ranking of component importance which are more related to the design practice and which are more useful in system synthesis than the existing ones. It also aims at developing component reliability models by means of stress-strength interference which will enable both component reliability prediction and design for reliability. A new methodology for ranking of component importance is first developed based on the notion of the increase of the expected system yield. This methodology allows for incorporation of different improvement actions at the component level such as parallel redundancy, standby redundancy, burn-in, minimal repair and perfect replacement. For each of these improvement actions, the increase of system reliability is studied and used as the component importance measure. A possible connection between the commonly known models of component lifetimes and the stress-strength interference models is suggested. Under some general conditions the relationship between component failure rate and the stress and strength distribution characteristics is studied. A heuristic approach for obtaining bounds on failure probability through stress-strength interference is also presented. A case study and a worked example are presented, which illustrate and verify the developed importance measures and their applications in the analytical as well as synthetical work of engineering design. (author)

  9. Improvement of ecological characteristics of the hydrogen diesel engine

    Science.gov (United States)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  10. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.

    Directory of Open Access Journals (Sweden)

    Chengtuo Niu

    Full Text Available 1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation.

  11. Improving capability, motivation and turnover of engineering personnel

    International Nuclear Information System (INIS)

    Alonso Zabalo, F.; Gonzalez Junco, J.

    1995-01-01

    The electricity sector today is continually improving the technical and economic performance of power plants and extending their operating life. This means that to serve the electricity industry, engineering companies must continually adapt and innovate in technology. Human resources are vital for today's engineering companies, to satisfy demand within the industry, and to remain strong in their home market and competitive abroad. A company can optimize the potential and cost-effectiveness of its people by balancing the experience and specialization of senior engineers, who can apply their abilities to new fields, and recruiting younger people with new methods and outlook. In parallel, the company must foster an environment in which staff share technical information, think positively about the future, avoid routine and welcome change and stimulating work. To harmonize individual and collective interests to achieve shared goals, the company must manage the knowledge, expertise and professional aspirations of each individual, rotate people among group without losing individuality, and promote in house and outside training. Weekly briefing give people a personal awareness of the technical and economic goals of the work group and its specific tasks and their cost, and a sense of responsibility, to give the organization the vitality it needs to succeed today. This presentation describes the procedures, and organizational and management tools needed to achieve these objectives and practical experience in applying them. (Author)

  12. Study the impact of internship on improving engineering students' competency

    Science.gov (United States)

    Marsono, Sugandi, Machmud; Tuwoso, Purnomo

    2017-09-01

    An effort to improve human resources quality in higher education can be done through an internship program. This program is important for the graduate student to enhance their self-development and entrepreneurship ability. This study aims to evaluate the effectiveness of internship course on the student's achievement, particularly of their professional competencies. Furthermore, this research was conducted to identify the type of industries that are suitable for internship program of the engineering students. The results showed that the investigation information related to data collection and assignment, lodging, suitability of expertise and some matters correlated to the process students' internship in industry. This study also found the method to improve the services of industries and university.

  13. [Improving 3-dehydroshikimate production by metabolically engineered Escherichia coli].

    Science.gov (United States)

    Yuan, Fei; Chen, Wujiu; Jia, Shiru; Wang, Qinhong

    2014-10-01

    In the aromatic amino acid biosynthetic pathway 3-dehydroshikimate (DHS) is a key intermediate. As a potent antioxidant and important feedstock for producing a variety of important industrial chemicals, such as adipate and vanillin, DHS is of great commercial value. Here, in this study, we investigated the effect of the co-expression of aroFFBR (3-deoxy-D-arabino-heptulosonate 7-phosphate synthase mutant with tyrosine feedback-inhibition resistance) and tktA (Transketolase A) at different copy number on the production of DHS. The increased copy number of aroFFBR and tktA would enhance the production of DHS by the fold of 2.93. In order to further improve the production of DHS, we disrupted the key genes in by-product pathways of the parent strain Escherichia coli AB2834. The triple knockout strain of ldhA, ackA-pta and adhE would further increase the production of DHS. The titer of DHS in shake flask reached 1.83 g/L, 5.7-fold higher than that of the parent strain E. coli AB2834. In 5-L fed-batch fermentation, the metabolically engineered strain produced 25.48 g/L DHS after 62 h. Metabolically engineered E. coli has the potential to further improve the production of DHS.

  14. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops.

    Science.gov (United States)

    Sharwood, Robert E

    2017-01-01

    494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO 2 fixation. Fixation of CO 2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO 2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.

  15. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Weyens, N.; van der Lelie, D.; Artois, T.; Smeets, K.; Taghavi, S.; Newman, L.; Carleer, R.; Vangronsveld, J.

    2009-12-01

    Phytoremediation of volatile organic contaminants often proves not ideal because plants and their rhizosphere microbes only partially degrade these compounds. Consequently, plants undergo evapotranspiration that contaminates the ambient air and, thus, undermines the merits of phytoremediation. Under laboratory conditions, endophytic bacteria equipped with the appropriate degradation pathways can improve in plant degradation of volatile organic contaminants. However, several obstacles must be overcome before engineered endophytes will be successful in field-scale phytoremediation projects. Here we report the first in situ inoculation of poplar trees, growing on a TCE-contaminated site, with the TCE-degrading strain Pseudomonas putida W619-TCE. In situ bioaugmentation with strain W619-TCE reduced TCE evapotranspiration by 90% under field conditions. This encouraging result was achieved after the establishment and enrichment of P. putida W619-TCE as a poplar root endophyte and by further horizontal gene transfer of TCE metabolic activity to members of the poplar's endogenous endophytic population. Since P. putida W619-TCE was engineered via horizontal gene transfer, its deliberate release is not restricted under European genetically modified organisms (GMO) regulations.

  16. Rationally engineered polymeric cisplatin nanoparticles for improved antitumor efficacy

    International Nuclear Information System (INIS)

    Paraskar, Abhimanyu; Soni, Shivani; Basu, Sudipta; Srivats, Shyam; Roy, Rituparna Sinha; Sengupta, Shiladitya; Amarasiriwardena, Chitra J; Lupoli, Nicola

    2011-01-01

    The use of cisplatin, a first line chemotherapy for most cancers, is dose-limited due to nephrotoxicity. While this toxicity can be addressed through nanotechnology, previous attempts at engineering cisplatin nanoparticles have been limited by the impact on the potency of cisplatin. Here we report the rational engineering of a novel cisplatin nanoparticle by harnessing a novel polyethylene glycol-functionalized poly-isobutylene-maleic acid (PEG-PIMA) copolymer, which can complex with cis-platinum (II) through a monocarboxylato and a coordinate bond. We show that this complex self-assembles into a nanoparticle, and exhibits an IC 50 = 0.77 ± 0.11 μM comparable to that of free cisplatin (IC 50 = 0.44 ± 0.09 μM). The nanoparticles are internalized into the endolysosomal compartment of cancer cells, and release cisplatin in a pH-dependent manner. Furthermore, the nanoparticles exhibit significantly improved antitumor efficacy in a 4T1 breast cancer model in vivo, with limited nephrotoxicity, which can be explained by preferential biodistribution in the tumor with reduced kidney concentrations. Our results suggest that the PEG-PIMA-cisplatin nanoparticle can emerge as an attractive solution to the challenges in cisplatin chemotherapy.

  17. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  18. Thiol/disulfide homeostasis in postmenopausal osteoporosis.

    Science.gov (United States)

    Korkmaz, V; Kurdoglu, Z; Alisik, M; Turgut, E; Sezgın, O O; Korkmaz, H; Ergun, Y; Erel, O

    2017-04-01

    To evaluate the impact of postmenopausal osteoporosis on thiol/disulfide homeostasis. A total of 75 participants were divided into two groups: Group 1 (n = 40) was composed of healthy postmenopausal women, and group 2 (n = 35) was composed of women with postmenopausal osteoporosis. Clinical findings and thiol/disulfide homeostasis were compared between the two groups. The disulfide/native thiol ratio was 8.6% ± 3.6 in group 1 and 12.7% ± 8.4 in group 2 (p = 0.04). The disulfide/native thiol percent ratio was significantly higher in group 2 after adjustment for the years since menopause and age (p menopause and age (p menopause in postmenopausal osteoporosis.

  19. Improving Free-Piston Stirling Engine Specific Power

    Science.gov (United States)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  20. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  1. Improved Nanomechanical Test Techniques for Surface Engineered Materials

    Directory of Open Access Journals (Sweden)

    Stephen R. Goodes

    2010-06-01

    Full Text Available The development and implementation of a wide range of innovative nanomechanical test techniques to solve tribological problems in applications as diverse as biomedical and automotive are described in this review. For improved wear resistance and durability, the importance of understanding the system response rather than the coating-only properties is emphasized. There are many applications involving mechanical contact where the key to understanding the problem is to test at higher load and to combine reliable measurements taken across different length scales using both nano- and micro-indentation and related wear measurement techniques which more closely simulate contact conditions to fully understand the mechanical behaviour and hence deliver improved application performance. Results are presented with the NanoTest platform for applications for biomedical devices and surface engineering of lightweight alloys for the automotive industry. By combining results with different techniques it is possible to postulate predictive design rules – based on the elastic and plastic deformation energies involved in contact - to aid the reliable optimisation of mechanical properties in the various contact situations in the different applications.

  2. Decontamination of Oils Contaminated with Polychlorinated Biphenyls and Dibenzyl Disulfide Using Polar Aprotic Solvents

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Matějková, Martina; Spáčilová, Lucie; Maléterová, Ywetta; Kaštánek, P.; Šolcová, Olga

    2015-01-01

    Roč. 4, č. 2 (2015), s. 41-48 ISSN 2319-5967 R&D Projects: GA TA ČR(CZ) TA04020151 Institutional support: RVO:67985858 Keywords : corrosive sulfur * dibenzyl disulfide * polar aprotic solvents Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.ijesit.com/Volume%204/Issue%202/IJESIT201502_06.pdf

  3. Novel Methods for the Chemical Synthesis of Insulin Superfamily Peptides and of Analogues Containing Disulfide Isosteres.

    Science.gov (United States)

    Hossain, Mohammed Akhter; Wade, John D

    2017-09-19

    The insulin superfamily of peptides is ubiquitous within vertebrates and invertebrates and is characterized by the presence of a set of three disulfide bonds in a unique disposition. With the exception of insulin-like growth factors I and II, which are single chain peptides, the remaining 8 members of the human insulin superfamily are two-chain peptides containing one intramolecular and two intermolecular disulfide bridges. These structural features have long made the chemical synthesis of the peptides a considerable challenge, in particular, including their correct disulfide bond pairing and formation. However, they have also afforded the opportunity to develop modern solid phase synthesis methods for the preparation of such peptides that incorporate novel or improved chemical methods for the controlled introduction of both disulfide bonds and their surrogates, both during and after peptide chain assembly. In turn, this has enabled a detailed probing of the structure and function relationship of this small but complex superfamily of peptides. After initially using and subsequently identifying significant limitations of the approach of simultaneous random chain combination and oxidative folding, our laboratory undertook to develop robust chemical synthesis strategies in concert with orthogonal cysteine S-protecting groups and corresponding regioselective disulfide bond formation. These have included the separate synthesis of each of the two chains or of the two chains linked by an artificial C-peptide that is removed following postoxidative folding. These, in turn, have enabled an increased ease of acquisition in a good yield of not only members of human insulin superfamily but other insulin-like peptides. Importantly, these successful methods have enabled, for the first time, a detailed analysis of the role that the disulfide bonds play in the structure and function of such peptides. This was achieved by selective removal of the disulfide bonds or by the judicious

  4. Improved CPAS Photogrammetric Capabilities for Engineering Development Unit (EDU) Testing

    Science.gov (United States)

    Ray, Eric S.; Bretz, David R.

    2013-01-01

    This paper focuses on two key improvements to the photogrammetric analysis capabilities of the Capsule Parachute Assembly System (CPAS) for the Orion vehicle. The Engineering Development Unit (EDU) system deploys Drogue and Pilot parachutes via mortar, where an important metric is the muzzle velocity. This can be estimated using a high speed camera pointed along the mortar trajectory. The distance to the camera is computed from the apparent size of features of known dimension. This method was validated with a ground test and compares favorably with simulations. The second major photogrammetric product is measuring the geometry of the Main parachute cluster during steady-state descent using onboard cameras. This is challenging as the current test vehicles are suspended by a single-point attachment unlike earlier stable platforms suspended under a confluence fitting. The mathematical modeling of fly-out angles and projected areas has undergone significant revision. As the test program continues, several lessons were learned about optimizing the camera usage, installation, and settings to obtain the highest quality imagery possible.

  5. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis.

    Science.gov (United States)

    Wan, Gang; Yu, Pengfei; Chen, Hangrong; Wen, Jianguo; Sun, Cheng-Jun; Zhou, Hua; Zhang, Nian; Li, Qianru; Zhao, Wanpeng; Xie, Bing; Li, Tao; Shi, Jianlin

    2018-04-01

    The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Bhaarathy, V. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Lee Kong Chian School of Medicine, Nanyang Technological University, 138673 (Singapore); Venugopal, J., E-mail: nnijrv@nus.edu.sg [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Gandhimathi, C. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore); Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Ramakrishna, S. [Centre for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering, National University of Singapore, 117576 (Singapore)

    2014-11-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  7. Biologically improved nanofibrous scaffolds for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Bhaarathy, V.; Venugopal, J.; Gandhimathi, C.; Ponpandian, N.; Mangalaraj, D.; Ramakrishna, S.

    2014-01-01

    Nanofibrous structure developed by electrospinning technology provides attractive extracellular matrix conditions for the anchorage, migration and differentiation of stem cells, including those responsible for regenerative medicine. Recently, biocomposite nanofibers consisting of two or more polymeric blends are electrospun more tidily in order to obtain scaffolds with desired functional and mechanical properties depending on their applications. The study focuses on one such an attempt of using copolymer Poly(L-lactic acid)-co-poly (ε-caprolactone) (PLACL), silk fibroin (SF) and Aloe Vera (AV) for fabricating biocomposite nanofibrous scaffolds for cardiac tissue engineering. SEM micrographs of fabricated electrospun PLACL, PLACL/SF and PLACL/SF/AV nanofibrous scaffolds are porous, beadless, uniform nanofibers with interconnected pores and obtained fibre diameter in the range of 459 ± 22 nm, 202 ± 12 nm and 188 ± 16 nm respectively. PLACL, PLACL/SF and PLACL/SF/AV electrospun mats obtained at room temperature with an elastic modulus of 14.1 ± 0.7, 9.96 ± 2.5 and 7.0 ± 0.9 MPa respectively. PLACL/SF/AV nanofibers have more desirable properties to act as flexible cell supporting scaffolds compared to PLACL for the repair of myocardial infarction (MI). The PLACL/SF and PLACL/SF/AV nanofibers had a contact angle of 51 ± 12° compared to that of 133 ± 15° of PLACL alone. Cardiac cell proliferation was increased by 21% in PLACL/SF/AV nanofibers compared to PLACL by day 6 and further increased to 42% by day 9. Confocal analysis for cardiac expression proteins myosin and connexin 43 was observed better by day 9 compared to all other nanofibrous scaffolds. The results proved that the fabricated PLACL/SF/AV nanofibrous scaffolds have good potentiality for the regeneration of infarcted myocardium in cardiac tissue engineering. - Highlights: • Fabricated nanofibrous scaffolds are porous, beadless and uniform structures. • PLACL/SF/AV nanofibers improve the

  8. The Use of the Software MATLAB To Improve Chemical Engineering Education.

    Science.gov (United States)

    Damatto, T.; Maegava, L. M.; Filho, R. Maciel

    In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…

  9. Field Tests of In-Service Modifications to Improve Performance of An Icebreaker Main Diesel Engine

    Science.gov (United States)

    1977-08-01

    Field tests of in-service modifications to improve engine efficiency and lower the emissions were performed on the no. 3 main diesel engine of the USCGC Mackinaw (WAGB-83). This engine is a model 38D8-1/8 manufactured by Colt Industries, Fairbanks Mo...

  10. Improving innovation and multidisciplinary competences among bachelor of engineering students

    DEFF Research Database (Denmark)

    Løje, Hanne; Andersson, Pernille Hammar; Grex, Sara

    2017-01-01

    From society and industry, there are increasing requirements for skilled and well-educated engineers who can develop new solutions through innovation and this have pushed universities to meet these requirements by having an increasing focus on developing innovation and entrepreneurship programmes...... within Engineering Education. Furthermore, there is also a demand for the graduates to be able to work multidisciplinary and to be able to use generic skills in their work. In this paper, the research question is how to enhance innovation and multidisciplinary competences of engineering students......? This is a central question in order to educate engineers that can create sustainable solutions for the environment, for products and to secure future workplaces. In this paper, a new mandatory course for Bachelor of Engineering students at the Technical University of Denmark (DTU) "Innovation Pilot...

  11. Dimethyl Ether as an Ignition Improver for Hydrous Methanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

    OpenAIRE

    M. Venkatesan; N. Shenbaga Vinayaga Moorthi; R. Karthikeyan; A. Manivannan

    2014-01-01

    Homogeneous Charge Compression (HCCI) Ignition technology has been around for a long time, but has recently received renewed attention and enthusiasm. This paper deals with experimental investigations of HCCI engine using hydrous methanol as a primary fuel and Dimethyl Ether (DME) as an ignition improver. A regular diesel engine has been modified to work as HCCI engine for this investigation. The hydrous methanol is inducted and DME is injected into a single cylinder engine. Hence, hydrous me...

  12. Collaborative learning in engineering: A quest to improve student retention

    Science.gov (United States)

    Marquard, Paul J.

    Colleges of engineering are concerned with retention of their undergraduates. Several studies have determined the reasons students leave engineering to major in other disciplines. The list includes poor teaching, a difficult curriculum, and a lack of belonging. This study alters the traditional lecture format of an engineering dynamics class by using a flipped classroom where scheduled class time emphasizes a collaborative learning pedagogy. Material coverage was facilitated with online lectures. After initiating this change, student attitudes and self-efficacy were measured as well as test performance and study time.

  13. Data structure and software engineering challenges and improvements

    CERN Document Server

    Antonakos, James L

    2011-01-01

    Data structure and software engineering is an integral part of computer science. This volume presents new approaches and methods to knowledge sharing, brain mapping, data integration, and data storage. The author describes how to manage an organization's business process and domain data and presents new software and hardware testing methods. The book introduces a game development framework used as a learning aid in a software engineering at the university level. It also features a review of social software engineering metrics and methods for processing business information. It explains how to

  14. Industrial Engineering Tool Use in Quality Improvement Projects

    Energy Technology Data Exchange (ETDEWEB)

    Rodin, Wayne [Pantex Plant (PTX), Amarillo, TX (United States); Beruvides, Mario [Texas Tech Univ., Lubbock, TX (United States)

    2017-10-30

    This paper presents the results of an examination of industrial engineering tool use in Six Sigma projects for a contractor providing specialty manufacturing and service activities for a United States federal government agency.

  15. Improved Barriers to Turbine Engine Fragments: Interim Report II

    National Research Council Canada - National Science Library

    Shockey, Donald

    1999-01-01

    ... the effects of uncontained engine bursts. SRI International is evaluating the ballistic effectiveness of fabric structures made from advanced polymers and developing a computational ability to design fragment barriers...

  16. Measurement of glutathione-protein mixed disulfides

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1984-01-01

    The development of a sensitive and highly specific assay for the presence of mixed disulfides between protein thiol groups and endogenous thiols has been undertaken. Previous investigations on the concentrations of glutathione (GSH), glutathione disulfide (GSSG) and protein glutathione mixed disulfides (ProSSG) have been of limited usefulness because of the poor specificity of the assays used. Our assay for these forms of glutathione is based on high performance liquid chromatography (HPLC) and is an extension of an earlier method. After perchloric acid precipitation, the protein sample is washed with an organic solvent to fully denature the protein. Up to a 10-fold increase in GSH released from fetal bovine serum (FBS) protein has been found when the protein precipitate is washed with ethanol rather than ether, as earlier suggested. Similar effects have been observed with an as yet unidentified thiol which elutes in the chromatography system with a retention volume similar to cysteine

  17. Brain MRI findings of carbon disulfide poisoning

    International Nuclear Information System (INIS)

    Cha, Joo Hee; Kim, Mi Jung; Yim, Sang Hyuk; Kim, Sam Soo; Han, Heon; Kim, Rok Ho

    2002-01-01

    To evaluate the findings of brain MRI in patients with carbon disulfide poisoning. Ninety-one patients who had suffered carbon disulfide poisoning [male:female=87:4; age, 32-74 (mean 53.3) years] were included in this study. To determine the extent of white matter hyperintensity (Grade 0-V) and lacunar infarction, T2-weighted MR imaging of the brain was performed. T2-weighted images depicted white matter hyperintensity in 70 patients (76.9%) and lacunar infarcts in 27 (29.7%). In these patients, the prevalent findings at T2-weighted MR imaging of the brain were white matter hyperintensity and lacunar infarcts. Disturbance of the cardiovascular system by carbon disulfide might account for these results

  18. Dynamic combinatorial chemistry with diselenides and disulfides in water

    DEFF Research Database (Denmark)

    Rasmussen, Brian; Sørensen, Anne; Gotfredsen, Henrik

    2014-01-01

    Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is...

  19. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  20. System Engineering Analysis For Improved Scout Business Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Slyke, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-30

    The project uses system engineering principles to address the need of Boy Scout leaders for an integrated system to facilitate advancement and awards records, leader training and planning for meetings and activities. Existing products to address needs of Scout leaders and relevant stakeholders function to support record keeping and some communication functions but opportunity exists for a better system to fully integrate these functions with training delivery and recording, activity planning along with feedback and information gathering from stakeholders. Key stakeholders for the sytem include Scouts and their families, leaders, training providers, sellers of supplies and awards, content generators and facilities that serve Scout activities. Key performance parameters for the system are protection of personal information, availability of current information, information accuracy and information content that has depth. Implementation concepts considered for the system include (1) owned and operated by Boy Scouts of America, (2) Contracted out to a vendor (3) distributed system that functions with BSA managed interfaces. The selected concept is to contract out to a vendor to maximize the likelihood of successful integration and take advantage of the best technology. Development of requirements considers three key use cases (1) System facilitates planning a hike with training needed satisfied in advance and advancement recording real time (2) Scheduling and documenting in-person training, (3) Family interested in Scouting receives information and can request follow-up. Non-functional requirements are analyzed with the Quality Function Deployment tool. Requirement addressing frequency of backup, compatibility with legacy and new technology, language support, software update are developed to address system reliability and intuitive interface. System functions analyzed include update of activity database, maintenance of advancement status, archive of documents, and

  1. Why is DsbA such an oxidizing disulfide catalyst?

    DEFF Research Database (Denmark)

    Grauschopf, U; Winther, Jakob R.; Korber, P

    1995-01-01

    DsbA, a member of the thioredoxin family of disulfide oxidoreductases, acts in catalyzing disulfide bond formation by donating its disulfide to newly translocated proteins. We have found that the two central residues within the active site Cys-30-Pro-31-His-32-Cys-33 motif are critical in determi...

  2. Improved Ultrasonic Fuel Mass Flowmeter for Army Aircraft Engine Diagnostics

    Science.gov (United States)

    1975-06-01

    London (1955). 21. Anon. ( EDO Corp.), Chem. Engineering, p. 54 (Nov. 25, 1974). 22. G. G. Twidle et al, Ultrasonics 10(5). 197...reference vector. The small circular orbits centered on the S tips represent the allowable contributions of N. It appears reasonable, from a

  3. Metabolic engineering for improved fermentation of pentoses by yeasts

    Science.gov (United States)

    T. W. Jeffries; Jin. Y.-S.

    2004-01-01

    The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing...

  4. Improving Collaborative Learning in Online Software Engineering Education

    Science.gov (United States)

    Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.

    2017-01-01

    Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all…

  5. Improving Engine Oil Warm Up through Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Davide Di Battista

    2017-12-01

    Full Text Available In the transportation sector, engine oil thermal management has not yet received the attention it deserves in the path towards carbon dioxide and pollutants reduction. During the homologation cycle (which represents a typical daily trip, oil temperature reaches its thermal steady value, which insures best performances in terms of viscosity, only in the final part of the trip, when most part of the harmful emissions have been already emitted; therefore, a warm up acceleration would surely represent a strong beneficial action. In this paper, a faster warming up of the lubricant oil was done using the heat owned by the exhaust gases, which was almost immediately ready after the engine ignition, in the early part of a driving cycle. An experimental activity has been developed in a turbocharged engine (F1C 3L IVECO, modifying the oil circuit in order to heat up the oil during the cold phase of a homologation cycle by the exhaust gases. A significant reduction of fuel consumption and pollutant emissions savings has been experimentally demonstrated. Also, the interaction between the modified oil circuit, engine, coolant circuit, and exhaust line has been investigated in order to have a system view of the new heating oil technology.

  6. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    Science.gov (United States)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave

  7. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  8. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...

  9. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry

    Science.gov (United States)

    Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu

    2017-06-01

    Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. [Figure not available: see fulltext.

  10. SYSTEMS ENGINEERING APPROACHES FOR IMPROVING REUSABLE MEDICAL EQUIPMENT REPROCESSING PROCESSES

    OpenAIRE

    JAMES C. BENNEYAN; CLAIRE BOND

    2013-01-01

    Hospital reusable medical equipment (RME) includes any items that are intended to be reprocessed and reused indefinitely, including surgical instruments, dental equipment, endoscopes, and others. Such equipment represent a significant portion of a hospital's inventory costs and recently have generated significant patient cross-contamination concerns due to reprocessing cleaning failures. This paper discusses recent applications of industrial and systems engineering (ISyE) methods within healt...

  11. Rationally engineered synthetic coculture for improved biomass and product formation.

    Directory of Open Access Journals (Sweden)

    Suvi Santala

    Full Text Available In microbial ecosystems, bacteria are dependent on dynamic interspecific interactions related to carbon and energy flow. Substrates and end-metabolites are rapidly converted to other compounds, which protects the community from high concentrations of inhibitory molecules. In biotechnological applications, pure cultures are preferred because of the more straight-forward metabolic engineering and bioprocess control. However, the accumulation of unwanted side products can limit the cell growth and process efficiency. In this study, a rationally engineered coculture with a carbon channeling system was constructed using two well-characterized model strains Escherichia coli K12 and Acinetobacter baylyi ADP1. The directed carbon flow resulted in efficient acetate removal, and the coculture showed symbiotic nature in terms of substrate utilization and growth. Recombinant protein production was used as a proof-of-principle example to demonstrate the coculture utility and the effects on product formation. As a result, the biomass and recombinant protein titers of E. coli were enhanced in both minimal and rich medium simple batch cocultures. Finally, harnessing both the strains to the production resulted in enhanced recombinant protein titers. The study demonstrates the potential of rationally engineered cocultures for synthetic biology applications.

  12. Improvement of natural image search engines results by emotional filtering

    Directory of Open Access Journals (Sweden)

    Patrice Denis

    2016-04-01

    Full Text Available With the Internet 2.0 era, managing user emotions is a problem that more and more actors are interested in. Historically, the first notions of emotion sharing were expressed and defined with emoticons. They allowed users to show their emotional status to others in an impersonal and emotionless digital world. Now, in the Internet of social media, every day users share lots of content with each other on Facebook, Twitter, Google+ and so on. Several new popular web sites like FlickR, Picassa, Pinterest, Instagram or DeviantArt are now specifically based on sharing image content as well as personal emotional status. This kind of information is economically very valuable as it can for instance help commercial companies sell more efficiently. In fact, with this king of emotional information, business can made where companies will better target their customers needs, and/or even sell them more products. Research has been and is still interested in the mining of emotional information from user data since then. In this paper, we focus on the impact of emotions from images that have been collected from search image engines. More specifically our proposition is the creation of a filtering layer applied on the results of such image search engines. Our peculiarity relies in the fact that it is the first attempt from our knowledge to filter image search engines results with an emotional filtering approach.

  13. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  14. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor.

    Science.gov (United States)

    Li, De-Qiang; Li, Ming; Liu, Pei-Lai; Zhang, Yuan-Kai; Lu, Jian-Xi; Li, Jian-Min

    2014-10-01

    Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.]. Copyright 2014, SLACK Incorporated.

  15. IMPROVEMENT OF ECOLOGICAL CHARACTERISTICS OF THE DIESEL ENGINE WORKING ON BIODIESEL FUEL COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. Levterov

    2015-07-01

    Full Text Available The ways of decreasing the toxicity of exhaust gases produced by the biodiesel engine are determined analitically. Optimization of the corner of advancing the fuel supply and the coefficient of air surplus is offered as the action of adjusting character, providing the improvement of ecological indexes of the biodiesel engine.

  16. Engineered fluorescent proteins illuminate the bacterial periplasm

    Directory of Open Access Journals (Sweden)

    Thorben Dammeyer

    2012-10-01

    Full Text Available The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP, remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat pathway, but actively fold in the periplasm following general secretory pathway (Sec and signal recognition particle (SRP mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  17. Engineered fluorescent proteins illuminate the bacterial periplasm.

    Science.gov (United States)

    Dammeyer, Thorben; Tinnefeld, Philip

    2012-01-01

    The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP), remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat) pathway, but actively fold in the periplasm following general secretory pathway (Sec) and signal recognition particle (SRP) mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  18. ENGINEERED FLUORESCENT PROTEINS ILLUMINATE THE BACTERIAL PERIPLASM

    Directory of Open Access Journals (Sweden)

    Thorben Dammeyer

    2012-10-01

    Full Text Available The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation – a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP, remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat pathway, but actively fold in the periplasm following general secretory pathway (Sec and signal recognition particle (SRP mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.

  19. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation

    International Nuclear Information System (INIS)

    Nemoto, Naoto; Tsutsui, Chihiro; Yamaguchi, Junichi; Ueno, Shingo; Machida, Masayuki; Kobayashi, Toshikatsu; Sakai, Takafumi

    2012-01-01

    Highlights: ► Disulfide-rich peptide aptamer inhibits IL-6-dependent cell proliferation. ► Disulfide bond of peptide aptamer is essential for its affinity to IL-6R. ► Inhibitory effect of peptide depends on number and pattern of its disulfide bonds. -- Abstract: Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library by in vitro peptide selection using the evolutionary molecular engineering method “cDNA display”. In this report, the antagonistic activity of the peptide aptamers were examined by an in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody.

  20. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  1. How Does Software Process Improvement Address Global Software Engineering?

    DEFF Research Database (Denmark)

    Kuhrmann, Marco; Diebold, Philipp; Münch, Jürgen

    2016-01-01

    For decades, Software Process Improvement (SPI) programs have been implemented, inter alia, to improve quality and speed of software development. To set up, guide, and carry out SPI projects, and to measure SPI state, impact, and success, a multitude of different SPI approaches and considerable...

  2. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food.

    Science.gov (United States)

    Giovinazzo, Giovanna; Ingrosso, Ilaria; Paradiso, Annalisa; De Gara, Laura; Santino, Angelo

    2012-09-01

    The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.

  3. Display of disulfide-rich proteins by complementary DNA display and disulfide shuffling assisted by protein disulfide isomerase.

    Science.gov (United States)

    Naimuddin, Mohammed; Kubo, Tai

    2011-12-01

    We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Commentary: the role of mentored internships for systems engineering in improving health care delivery.

    Science.gov (United States)

    Day, T Eugene; Goldlust, Eric J; True, William R

    2010-09-01

    The authors advise the adoption of mentored internships in systems engineering, conducted at academic hospitals, directed by physicians, epidemiologists, and health administrators and overseen by faculty at attendant schools of engineering. Such internships are anticipated to directly address the immediate objectives of administrators and clinicians. Additionally, this affords future generations of health care engineers the opportunity to learn the language and methodology of the medical sciences to provide a common ground for the analysis and understanding of medical systems. In turn, this should foster collaboration between the principal stakeholders in health care delivery--practitioners, administrators, engineers, and researchers--in the collective efforts to improve the quality of services provided.

  5. Modified Thermoresponsive Hyperbranched Polymers for Improved Viscosity and Enhanced Lubricity of Engine Oils

    Energy Technology Data Exchange (ETDEWEB)

    Cosimbescu, Lelia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Robinson, Joshua W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bays, John Timothy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-30

    The manuscript captures the chronological succession of the molecular design progression through multiple architectures and topologies of the polymeric viscosity index improvers and their rheology bench test performance. Tribology testing was also performed on selected analogs and their friction and wear was evaluated. Finally, a top performing polymer was selected for engine testing, scaled-up, and its rheological performance in a complete formulation was assessed. The engine performance of the viscosity index improver was examined against an industry-established baseline.

  6. Engineering crassulacean acid metabolism to improve water-use efficiency.

    Science.gov (United States)

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. How does Software Process Improvement Address Global Software Engineering?

    DEFF Research Database (Denmark)

    Kuhrmann, Marco; Diebold, Philipp; Münch, Jürgen

    2016-01-01

    of SPI. Our findings show the analyzed papers delivering a substantial discussion of cultural models and how such models can be used to better address and align SPI programs with multi-national environments. Furthermore, experience is shared discussing how agile approaches can be implemented in companies...... working at the global scale. Finally, success factors and barriers are studied to help companies implementing SPI in a GSE context....... a systematic mapping study on the state-of-the-art in SPI from a general perspective, we observed Global Software Engineering (GSE) becoming a topic of interest in recent years. Therefore, in this paper, we provide a detailed investigation of those papers from the overall systematic mapping study that were...

  8. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.

    Directory of Open Access Journals (Sweden)

    Julien Becker

    Full Text Available Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix together with the CSP (cysteine separation profile are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of [Formula: see text] on the benchmark dataset SPX[Formula: see text], which corresponds to

  9. Re-engineering pre-employment check-up systems: a model for improving health services.

    Science.gov (United States)

    Rateb, Said Abdel Hakim; El Nouman, Azza Abdel Razek; Rateb, Moshira Abdel Hakim; Asar, Mohamed Naguib; El Amin, Ayman Mohammed; Gad, Saad abdel Aziz; Mohamed, Mohamed Salah Eldin

    2011-01-01

    The purpose of this paper is to develop a model for improving health services provided by the pre-employment medical fitness check-up system affiliated to Egypt's Health Insurance Organization (HIO). Operations research, notably system re-engineering, is used in six randomly selected centers and findings before and after re-engineering are compared. The re-engineering model follows a systems approach, focusing on three areas: structure, process and outcome. The model is based on six main components: electronic booking, standardized check-up processes, protected medical documents, advanced archiving through an electronic content management (ECM) system, infrastructure development, and capacity building. The model originates mainly from customer needs and expectations. The centers' monthly customer flow increased significantly after re-engineering. The mean time spent per customer cycle improved after re-engineering--18.3 +/- 5.5 minutes as compared to 48.8 +/- 14.5 minutes before. Appointment delay was also significantly decreased from an average 18 to 6.2 days. Both beneficiaries and service providers were significantly more satisfied with the services after re-engineering. The model proves that re-engineering program costs are exceeded by increased revenue. Re-engineering in this study involved multiple structure and process elements. The literature review did not reveal similar re-engineering healthcare packages. Therefore, each element was compared separately. This model is highly recommended for improving service effectiveness and efficiency. This research is the first in Egypt to apply the re-engineering approach to public health systems. Developing user-friendly models for service improvement is an added value.

  10. Engineering of Taxadiene Synthase for Improved Selectivity and Yield of a Key Taxol Biosynthetic Intermediate.

    Science.gov (United States)

    Edgar, Steven; Li, Fu-Shuang; Qiao, Kangjian; Weng, Jing-Ke; Stephanopoulos, Gregory

    2017-02-17

    Attempts at microbial production of the chemotherapeutic agent Taxol (paclitaxel) have met with limited success, due largely to a pathway bottleneck resulting from poor product selectivity of the first hydroxylation step, catalyzed by taxadien-5a-hydroxylase (CYP725A4). Here, we systematically investigate three methodologies, terpene cyclase engineering, P450 engineering, and hydrolase-enzyme screening to overcome this early pathway selectivity bottleneck. We demonstrate that engineering of Taxadiene Synthase, upstream of the promiscuous oxidation step, acts as a practical method for selectivity improvement. Through mutagenesis we achieve a 2.4-fold improvement in yield and selectivity for an alternative cyclization product, taxa-4(20)-11(12)-diene; and for the Taxol precursor taxadien-5α-ol, when coexpressed with CYP725A4. This works lays the foundation for the elucidation, engineering, and improved production of Taxol and early Taxol precursors.

  11. Stirling engine or heat pump having an improved seal

    Science.gov (United States)

    White, Maurice A.; Riggle, Peter; Emigh, Stuart G.

    1985-01-01

    A Stirling Engine or Heat Pump having two relatively movable machine elements for power transmission purposes includes a hermetic seal bellows interposed between the elements for separating a working gas from a pressure compensating liquid that balances pressure across the bellows to reduce bellows stress and to assure long bellows life. The volume of pressure compensating liquid displaced due to relative movement between the machine elements is minimized by enclosing the compensating liquid within a region exposed to portions of both machine elements at one axial end of a slidable interface presented between them by a clearance seal having an effective diameter of the seal bellows. Pressure equalization across the bellows is achieved by a separate hermetically sealed compensator including a movable enclosed bellows. The interior of the compensator bellows is in communication with one side of the seal bellows, and its exterior is in communication with the remaining side of the seal bellows. A buffer gas or additional liquid region can be provided at the remaining axial end of the clearnace seal, along with valved arrangements for makeup of liquid leakage through the clearance seal.

  12. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  13. Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine

    Directory of Open Access Journals (Sweden)

    Gürbüz Habib

    2015-01-01

    Full Text Available In this study, we have investigated the recovery of energy lost as waste heat from exhaust gas and engine coolant, using an improved thermoelectric generator (TEG in a LPG fueled SI engine. For this purpose, we have designed and manufactured a 5-layer heat exchanger from aluminum sheet. Electrical energy generated by the TEG was then used to produce hydrogen in a PEM water electrolyzer. The experiment was conducted at a stoichiometric mixture ratio, 1/2 throttle position and six different engine speeds at 1800-4000 rpm. The results of this study show that the configuration of 5-layer counterflow produce a higher TEG output power than 5-layer parallel flow and 3-layer counterflow. The TEG produced a maximum power of 63.18 W when used in a 5-layer counter flow configuration. This resulted in an improved engine performance, reduced exhaust emission as well as an increased engine speed when LPG fueled SI engine is enriched with hydrogen produced by the PEM electrolyser supported by TEG. Also, the need to use an extra evaporator for the LPG fueled SI engine is eliminated as LPG heat exchangers are added to the fuel line. It can be concluded that an improved exhaust recovery system for automobiles can be developed by incorporating a PEM electrolyser, however at the expense of increasing costs.

  14. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Julien Jorda

    2011-01-01

    Full Text Available Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  15. Widespread disulfide bonding in proteins from thermophilic archaea.

    Science.gov (United States)

    Jorda, Julien; Yeates, Todd O

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  16. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    OpenAIRE

    Jorda, Julien; Yeates, Todd O.

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaea...

  17. Risk Management Improvement of Engineering Projects in Woodworking Industry

    Directory of Open Access Journals (Sweden)

    Simona Bartkutė

    2014-02-01

    Full Text Available Risk is a complex phenomenon that has physical, monetary, cultural and social dimensions. Every company wants tosave money, time, increase quality, optimise manufacturing, but each factor may involve different risks with different influenceto company, its reputation. The aim of the research is to find better risk management improvement decisions, using techniquesthat could help to reduce risk impact in wood-based nonstandard production with shorter project time, smoother design process,lower costs, better project coordination, increased ability to manage problems, technical solutions.

  18. Continuous Improvement in the Industrial and Management Systems Engineering Programme at Kuwait University

    Science.gov (United States)

    Aldowaisan, Tariq; Allahverdi, Ali

    2016-01-01

    This paper describes the process employed by the Industrial and Management Systems Engineering programme at Kuwait University to continuously improve the programme. Using a continuous improvement framework, the paper demonstrates how various qualitative and quantitative analyses methods, such as hypothesis testing and control charts, have been…

  19. Analysis on nuclear power plant control room system design and improvement based on human factor engineering

    International Nuclear Information System (INIS)

    Gao Feng; Liu Yanzi; Sun Yongbin

    2014-01-01

    The design of nuclear power plant control room system is a process of improvement with the implementation of human factor engineering theory and guidance. The method of implementation human factor engineering principles into the nuclear power plant control room system design and improvement was discussed in this paper. It is recommended that comprehensive address should be done from control room system function, human machine interface, digital procedure, control room layout and environment design based on the human factor engineering theory and experience. The main issues which should be paid more attention during the control room system design and improvement also were addressed in this paper, and then advices and notices for the design and improvement of the nuclear power plant control room system were afforded. (authors)

  20. Improving the performance of a compression ignition engine by directing flow of inlet air

    Science.gov (United States)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  1. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.

    Science.gov (United States)

    Wang, Qingjie; Yang, Hui; Bai, Aobing; Jiang, Wei; Li, Xiuya; Wang, Xinhong; Mao, Yishen; Lu, Chao; Qian, Ruizhe; Guo, Feng; Ding, Tianling; Chen, Haiyan; Chen, Sifeng; Zhang, Jianyi; Liu, Chen; Sun, Ning

    2016-10-01

    With the advent of induced pluripotent stem cells and directed differentiation techniques, it is now feasible to derive individual-specific cardiac cells for human heart tissue engineering. Here we report the generation of functional engineered human cardiac patches using human induced pluripotent stem cells-derived cardiac cells and decellularized natural heart ECM as scaffolds. The engineered human cardiac patches can be tailored to any desired size and shape and exhibited normal contractile and electrical physiology in vitro. Further, when patching on the infarct area, these patches improved heart function of rats with acute myocardial infarction in vivo. These engineered human cardiac patches can be of great value for normal and disease-specific heart tissue engineering, drug screening, and meet the demands for individual-specific heart tissues for personalized regenerative therapy of myocardial damages in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. To improve training methods in an engine room simulator-based training

    OpenAIRE

    Lin, Chingshin

    2016-01-01

    The simulator based training are used widely in both industry and school education to reduce the accidents nowadays. This study aims to suggest the improved training methods to increase the effectiveness of engine room simulator training. The effectiveness of training in engine room will be performance indicators and the self-evaluation by participants. In the first phase of observation, the aim is to find out the possible shortcomings of current training methods based on train...

  3. Analysis of the dynamic response improvement of a turbocharged diesel engine driven alternating current generating set

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz; Medica, Vladimir; Trenc, Ferdinand

    2005-01-01

    Reliability of electric supply systems is among the most required necessities of modern society. Turbocharged diesel engine driven alternating current generating sets are often used to prevent electric black outs and/or as prime electric energy suppliers. It is well known that turbocharged diesel engines suffer from an inadequate response to a sudden load increase, this being a consequence of the nature of the energy exchange between the engine and the turbocharger. The dynamic response of turbocharged diesel engines could be improved by electric assisting systems, either by direct energy supply with an integrated starter-generator-booster (ISG) mounted on the engine flywheel, or by an indirect energy supply with an electrically assisted turbocharger. An experimentally verified zero dimensional computer simulation method was used for the analysis of both types of electrical assistance. The paper offers an analysis of the interaction between a turbocharged diesel engine and different electric assisting systems, as well as the requirements for the supporting electric motors that could improve the dynamic response of a diesel engine while driving an AC generating set. When performance class compliance is a concern, it is evident that an integrated starter-generator-booster outperforms an electrically assisted turbocharger for the investigated generating set. However, the electric energy consumption and frequency recovery times are smaller when an electrically assisted turbocharger is applied

  4. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  5. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.

    Science.gov (United States)

    Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias

    2017-09-01

    In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.

  6. Disulfide Chromophore and Its Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Maloň, Petr; Bednárová, Lucie; Straka, Michal; Krejčí, Lucie; Kumprecht, Lukáš; Kraus, Tomáš; Kubáňová, M.; Baumruk, V.

    2010-01-01

    Roč. 22, 1E (2010), E47-E55 ISSN 0899-0042 R&D Projects: GA ČR(CZ) GA203/07/1335; GA ČR GA203/06/1550; GA ČR GA203/09/2037; GA ČR GAP208/10/0376; GA AV ČR IAA400550810 Institutional research plan: CEZ:AV0Z40550506 Keywords : disulfide chromophore * Raman optical activity * vibrational optical activity * circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2010

  7. Single-layer Molybdenum disulfide photodetectors

    OpenAIRE

    López Sánchez, Oriol

    2012-01-01

    Projecte realitzat mitjançant programa de mobilitat. École polytechnique fédérale de Lausanne [ANGLÈS] Two-dimensional (2D) materials are very attractive candidates for use in next-generation nanoelectronic devices. Compared to one-dimensional materials, with 2D materials is relatively easy to fabricate complex structures. 2D materials, such as molybdenum disulfide (MoS2), have attracted increasing attention for their electronic and optoelectronic particular properties and size. MoS2 is a...

  8. Engineering rhizosphere hydraulics: pathways to improve plant adaptation to drought

    Science.gov (United States)

    Ahmed, Mutez; Zarebanadkouki, Mohsen; Ahmadi, Katayoun; Kroener, Eva; Kostka, Stanley; Carminati, Andrea

    2017-04-01

    rhizosphere reproduced well the experimental observations. Rhizoligands increase the rhizosphere wetting kinetics and decrease the maximum swelling of mucilage. As a consequence, root rehydration upon irrigation is faster, a larger volume of water is available to the plant and this water is used more slowly. This slower water consumption would allow the plant to stay turgid over a prolonged dying period. We propose that by managing the hydraulic properties of the rhizosphere, we can improve plants adaptation to drought.

  9. An Instructional Design Framework to Improve Student Learning in a First-Year Engineering Class

    Directory of Open Access Journals (Sweden)

    Kumar Yelamarthi

    2016-12-01

    Full Text Available Increasingly, numerous universities have identified benefits of flipped learning environments and have been encouraging instructors to adapt such methodologies in their respective classrooms, at a time when departments are facing significant budget constraints. This article proposes an instructional design framework utilized to strategically enhance traditional flipped methodologies in a first-year engineering course, by using low-cost technology aids and proven pedagogical techniques to enhance student learning. Implemented in a first-year engineering course, this modified flipped model demonstrated an improved student awareness of essential engineering concepts and improved academic performance through collaborative and active learning activities, including flipped learning methodologies, without the need for expensive, formal active learning spaces. These findings have been validated through two studies and have shown similar results confirming that student learning is improved by the implementation of multi-pedagogical strategies in-formed by the use of an instructional design in a traditional classroom setting.

  10. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  11. Direct injection of gaseous LPG in a two-stroke SI engine for improved performance

    International Nuclear Information System (INIS)

    Pradeep, V.; Bakshi, Shamit; Ramesh, A.

    2015-01-01

    Improvements in a two-stroke, spark-ignition (2S–SI) engine can be realized by curtailing short-circuiting losses effectively through direct injection of the fuel. Liquefied petroleum gas (LPG) is an alternative transportation fuel that is used in several countries. However, limited information is available on LPG fuelled direct injected engines. Hence, there is a need to study these systems as applied to 2S–SI engines in order to bring out their potential benefits. A manifold injected 2S–SI engine is modified for direct injection of LPG, in gaseous form, from the cylinder head. This engine is evaluated for performance, emission and combustion. Evaluation at various throttle positions and constant speed showed that this system can significantly improve the thermal efficiency and lower the hydrocarbon (HC) emissions. Up to 93% reduction in HC emissions and improved combustion rates are observed compared to the conventional manifold injection system with LPG. CO emissions are higher and peak NO emissions are lower with this system due to the presence of richer in–cylinder trapped mixtures and charge stratification. This system can operate with similar injection timings at different throttle positions which make electronic control simpler. It can work with low injection pressures in the range of 4–5 bars. All these advantages are attractive for commercial viability of this engine. - Highlights: • Energy saving, low pressure, direct gaseous LPG injection in engine. • Significant reduction in HC emissions at all operating conditions. • No significant changes in injection timings for different throttle positions.

  12. Cause-Effect Analysis: Improvement of a First Year Engineering Students' Calculus Teaching Model

    Science.gov (United States)

    van der Hoff, Quay; Harding, Ansie

    2017-01-01

    This study focuses on the mathematics department at a South African university and in particular on teaching of calculus to first year engineering students. The paper reports on a cause-effect analysis, often used for business improvement. The cause-effect analysis indicates that there are many factors that impact on secondary school teaching of…

  13. Study and program plan for improved heavy duty gas turbine engine ceramic component development

    Science.gov (United States)

    Helms, H. E.

    1977-01-01

    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  14. Assessing Cognitive Load Theory to Improve Student Learning for Mechanical Engineers

    Science.gov (United States)

    Impelluso, Thomas J.

    2009-01-01

    A computer programming class for students of mechanical engineering was redesigned and assessed: Cognitive Load Theory was used to redesign the content; online technologies were used to redesign the delivery. Student learning improved and the dropout rate was reduced. This article reports on both attitudinal and objective assessment: comparing…

  15. Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering

    DEFF Research Database (Denmark)

    Liu, Zihe; Liu, Lifang; Osterlund, Tobias

    2014-01-01

    engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could...

  16. Integrating the development of continuous improvement andinnovation capabilities into engineering education

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Kofoed, Lise B.

    2007-01-01

    In this paper, a study is presented in which engineering students at a Danish university developed Continuous Improvement (CI) and innovation capabilities through action research and experientiallearning methods. The paper begins with a brief overview of the literature on CI and innovation...

  17. Urban air quality improvement by using a CNG lean burn engine for city buses

    NARCIS (Netherlands)

    Merétei, T.; Ling, J.A.N. van; Havenith, C.

    1998-01-01

    The use of compressed natural gas (CNG)-fuelled lean-burn city bus engines has a significant potential for air quality improvement in urban areas. Particularly important is the reduction of NO, as well as particulate and non regulated HC-emissions. For this reason, a CNG-fuelled, lean-burn,

  18. Improving Aerospace Engineering Students' Achievements by an Open Aero Control Experiment Apparatus

    Science.gov (United States)

    Zeng, QingHua; Zhang, WeiHua; Huang, ZheZhi; Dong, RongHua

    2014-01-01

    This paper describes the development of an aero control experiment apparatus (ACEA) for use in aerospace control practical courses. The ACEA incorporates a systematic multihierarchy learning and teaching method, and was designed to improve aerospace engineering students' understanding of unmanned aerial vehicle (UAV) control systems. It offers a…

  19. U.S. Engineering Degrees for Improving South Indian Graduate Students' Marriage and Dowry Options

    Science.gov (United States)

    Yakaboski, Tamara; Sheridan, Robyn Stout; Dade, Kristin

    2014-01-01

    The article examines improved marriage opportunities as an unexplored motivator for pursuing international education via U.S. graduate engineering degrees and stresses the need to centralize gender in analyzing academic mobility and international education. This interdisciplinary qualitative study explores how South Indian men and women's…

  20. THE METHODOLOGY OF ASSESSING CALL IN IMPROVING LISTENING SKILLS AMONG ENGINEERING COLLEGE STUDENTS

    OpenAIRE

    M.Anand

    2017-01-01

    In the recent trend and development, the scope for the study in improving language skills through CALL plays an important role in building a bridge between language and technology, the conceptual details of how computers could be used to learn language can be something inimitable and different. In this study, the researcher tries to find out The Methodology of Assessing CALL in Improving Listening Skills among Engineering College Students, Virudhunagar.

  1. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry

    DEFF Research Database (Denmark)

    Cramer, Christian N; Haselmann, Kim F; Olsen, Jesper V

    2016-01-01

    to avoid disulfide scrambled and incorrectly folded forms in the final product. Mass spectrometry (MS) is a highly utilized analytical tool for this due to fast and accurate characterization. However, disulfide bonds being an additional covalent bond in the protein structure represent a challenge...... link between parent disulfide-linked fragments and free reduced peptides in an LC-EC-MS platform of nonreduced proteolytic protein digestions. Here we report the successful use of EC as a partial reduction approach in mapping of disulfide bonds of intact human insulin (HI) and lysozyme. In addition, we......Unravelling of disulfide linkage patterns is a crucial part of protein characterization, whether it is for a previously uncharacterized protein in basic research or a recombinant pharmaceutical protein. In the biopharmaceutical industry, elucidation of the cysteine connectivities is a necessity...

  2. Role of disulfide linkage in action of bis(dialkylaminethiocarbonyl)disulfides as potent double-Edged microbicidal spermicide: Design, synthesis and biology.

    Science.gov (United States)

    Lal, Nand; Jangir, Santosh; Bala, Veenu; Mandalapu, Dhanaraju; Sarswat, Amit; Kumar, Lalit; Jain, Ashish; Kumar, Lokesh; Kushwaha, Bhavana; Pandey, Atindra K; Krishna, Shagun; Rawat, Tara; Shukla, Praveen K; Maikhuri, Jagdamba P; Siddiqi, Mohammad I; Gupta, Gopal; Sharma, Vishnu L

    2016-06-10

    Trichomoniasis and candidiasis are amongst the most common morbidity-causing reproductive tract infections, generally treated by Metronidazole and Fluconazole respectively. Poor vaginal efficacy, drug-resistance and non-spermicidal nature limit their use as topical microbicidal contraceptives. Bis(dialkylaminethiocarbonyl)disulfides (4-38) were designed as dually active, non-surfactant molecules capable of eliminating Trichomonas vaginalis and Candida strains as well as irreversibly immobilizing 100% human sperm instantly, at doses non-cytotoxic to human cervical epithelial cells and vaginal microflora in vitro. Compounds 12, 16, 17 were fifty times more active than nonoxynol-9, OTC vaginal spermicide, and compounds 12 and 17 have shown remarkable in vivo activity in rabbit model. Most promising compound 17 has shown promise for further development as a double-edged vaginal microbicide due to their improved activity and safety along with notable in vivo trichomonicidal activity. Role of disulfide group was established by loss of spermicidal activity on chemical modifications (39-56). These disulfides might be targeting thiol groups present over cell membrane of human sperm and Trichomonas as shown by fluorescence labeling of free thiols. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Information needs of engineers. The methodology developed by the WFEO Committee on Engineering Information and the use of value analysis for improving information services

    International Nuclear Information System (INIS)

    Darjoto, S.W.; Martono, A.; Michel, J.

    1990-05-01

    The World Federation of Engineering Organizations - WFEO - through the work of its Committee on Engineering Information, aims at improving the efficiency of engineers and particularly at developing new attitudes and practices concerning the specialized information mastering. One important part of the WFEO/CEI programme of activities during the last years and for the next years was and is devoted to a better understanding of the information needs of engineers. But also, it seems now essential to WFEO/CEI to better evaluate information services in order to correctly adapt them to the identified needs of engineers. The following communication will emphasize these two main and related perspectives: identifying the information needs of engineers; developing Value Analysis approaches for engineering information services. (author). 3 refs

  4. Improving magnetic properties of MgB{sub 2} bulk superconductors by synthetic engine oil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Taylan Koparan, E., E-mail: etaylan20@gmail.com [Department of Science Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300, Zonguldak (Turkey); Savaskan, B. [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830, Of, Trabzon (Turkey); Yanmaz, E. [Department of Mechatronics, Faculty of Engineering and Architecture, İstanbul Gelişim University, İstanbul (Turkey)

    2016-08-15

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB{sub 2} superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB{sub 2}. • The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB{sub 2} sample. • The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB{sub 2} samples immersed in synthetic engine oil on the critical current density ( J{sub c}(H)), magnetic field dependence of the pinning force density f{sub p}(b) and T{sub c} performances of MgB{sub 2} bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB{sub 2} pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB{sub 2} samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB{sub 2} sample because of the number of the pinning centers. The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J{sub c} value for the pure sample is 2.0 × 10{sup 3} A/cm{sup 2}, whereas for the MgB{sub 2} sample immersed at 300 min standby time in engine oil the J{sub c} is enhanced to 4.8 × 10{sup 3} A/cm{sup 2} at 5 K and 3 T. The superconducting transition temperature (T{sub c}) did not change

  5. Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst.

    Science.gov (United States)

    Shi, Jianping; Wang, Xina; Zhang, Shuai; Xiao, Lingfeng; Huan, Yahuan; Gong, Yue; Zhang, Zhepeng; Li, Yuanchang; Zhou, Xiebo; Hong, Min; Fang, Qiyi; Zhang, Qing; Liu, Xinfeng; Gu, Lin; Liu, Zhongfan; Zhang, Yanfeng

    2017-10-16

    Two-dimensional metallic transition metal dichalcogenides are emerging as prototypes for uncovering fundamental physical phenomena, such as superconductivity and charge-density waves, as well as for engineering-related applications. However, the batch production of such envisioned transition metal dichalcogenides remains challenging, which has hindered the aforementioned explorations. Herein, we fabricate thickness-tunable tantalum disulfide flakes and centimetre-sized ultrathin films on an electrode material of gold foil via a facile chemical vapour deposition route. Through temperature-dependent Raman characterization, we observe the transition from nearly commensurate to commensurate charge-density wave phases with our ultrathin tantalum disulfide flakes. We have obtained high hydrogen evolution reaction efficiency with the as-grown tantalum disulfide flakes directly synthesized on gold foils comparable to traditional platinum catalysts. This work could promote further efforts for exploring new efficient catalysts in the large materials family of metallic transition metal dichalcogenides, as well as exploiting their applications towards more versatile applications.Metallic transition metal dichalcogenides are important materials for catalysis, but scalable and controllable preparation methods are scarce. Here, the authors synthesize 2H-TaS 2 as centimetre-scale films of tunable thickness and show they are an efficient catalyst for hydrogen evolution.

  6. Improving Student Writing: Methods You Can Use in Science and Engineering Classrooms

    Science.gov (United States)

    Hitt, S. J.; Bright, K.

    2013-12-01

    Many educators in the fields of science and engineering assure their students that writing is an important and necessary part of their work. According to David Lindsay, in Scientific Writing=Thinking in Words, 99% of scientists agree that writing is an integral part of their jobs. However, only 5% of those same scientists have ever had formal instruction in scientific writing, and those who are also educators may then feel unconfident in teaching this skill to their students (2). Additionally, making time for writing instruction in courses that are already full of technical content can cause it to be hastily and/or peremptorily included. These situations may be some of the contributing factors to the prevailing attitude of frustration that pervades the conversation about writing in science and engineering classrooms. This presentation provides a summary of past, present, and ongoing Writing Center research on effective writing tutoring in order to give science and engineering educators integrated approaches for working with student writers in their disciplines. From creating assignments, providing instruction, guiding revisions, facilitating peer review, and using assessments, we offer a comprehensive approach to getting your students motivated to improve their writing. Our new research study focuses on developing student writing resources and support in science and engineering institutions, with the goal of utilizing cross-disciplinary knowledge that can be used by the various constituencies responsible for improving the effectiveness of writing among student engineers and scientists. We will will draw upon recent findings in the study of the rhetoric and compositional pedagogy and apply them to the specific needs of the science and engineering classroom. The fields of communication, journalism, social sciences, rhetoric, technical writing, and philosophy of science have begun to integrate these findings into classroom practice, and we will show how these can also

  7. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    DEFF Research Database (Denmark)

    Otero, José Manuel; Vongsangnak, Wanwipa; Asadollahi, Mohammadali

    2010-01-01

    selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. RESULTS: In this work we...... and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. CONCLUSIONS...

  8. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2015-04-01

    Complete utilization of all available carbon sources in lignocellulosic biomass still remains a challenge in engineering Saccharomyces cerevisiae. Even with efficient heterologous xylose catabolic pathways, S. cerevisiae is unable to utilize xylose in lignocellulosic biomass unless xylan is depolymerized to xylose. Here we demonstrate that a blended bioprospecting approach along with pathway engineering and evolutionary engineering can be used to improve xylan catabolism in S. cerevisiae. Specifically, we perform whole genome sequencing-based bioprospecting of a strain with remarkable pentose catabolic potential that we isolated and named Ustilago bevomyces. The heterologous expression of xylan catabolic genes enabled S. cerevisiae to grow on xylan as a single carbon source in minimal medium. A combination of bioprospecting and metabolic pathway evolution demonstrated that the xylan catabolic pathway could be further improved. Ultimately, engineering efforts were able to achieve xylan conversion into ethanol of up to 0.22 g/L on minimal medium compositions with xylan. This pathway provides a novel starting point for improving lignocellulosic conversion by yeast. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surface engineering of polyester-degrading enzymes to improve efficiency and tune specificity.

    Science.gov (United States)

    Biundo, Antonino; Ribitsch, Doris; Guebitz, Georg M

    2018-04-01

    Certain members of the carboxylesterase superfamily can act at the interface between water and water-insoluble substrates. However, nonnatural bulky polyesters usually are not efficiently hydrolyzed. In the recent years, the potential of enzyme engineering to improve hydrolysis of synthetic polyesters has been demonstrated. Regions on the enzyme surface have been modified by using site-directed mutagenesis in order to tune sorption processes through increased hydrophobicity of the enzyme surface. Such modifications can involve specific amino acid substitutions, addition of binding modules, or truncation of entire domains improving sorption properties and/or dynamics of the enzyme. In this review, we provide a comprehensive overview on different strategies developed in the recent years for enzyme surface engineering to improve the activity of polyester-hydrolyzing enzymes.

  10. Thiol/disulfide homeostasis in untreated schizophrenia patients.

    Science.gov (United States)

    Topcuoglu, Canan; Bakirhan, Abdurrahim; Yilmaz, Fatma Meric; Neselioglu, Salim; Erel, Ozcan; Sahiner, Safak Yalcin

    2017-05-01

    The aim of the study was to investigate dynamic thiol/disulfide (SH/SS) homeostasis in untreated schizophrenia. Blood thiol/disulfide homeostasis status, which reflects native thiol-disulfide exchanges, was investigated in 87 untreated patients (52 males, 35 females), and the obtained results were compared with 86 healthy controls. Blood serum native thiol and total thiol (ToSH) concentrations were measured in a paired test. The half value of the difference between native thiol and ToSH concentrations was calculated as the disulfide bond amount. SH and ToSH concentrations were found to be significantly lower (pschizophrenia compared with the control group, whereas disulfide levels were significantly higher (pSchizophrenia patients had significantly higher SS/ToSH and SS/SH ratios and a significantly lower SH/ToSH ratio compared to those of healthy individuals. SH and ToSH amounts were found to be insufficient in untreated schizophrenia patients. Additionally, according to the results of the study, thiol/disulfide homeostasis was also disturbed by a shift to the disulfide bond formation side. This might affect the neurotransmission processes, which are known to be related with many symptoms observed in schizophrenia. The replacement of the thiol gap and the reduction of excess SS amounts might have a positive effect in supporting therapy for schizophrenia patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2017-01-01

    Full Text Available Objective: to analyze the interactions that could indicate the potential pharmacological properties of the molecules of thiamin, thiamine disulfide, and others.Material and methods. The investigators simulated the properties of thiamine disulfide (bistiamin versus those of the reference molecules of thiamin hydrochloride and benfotiamine. The study was performed using chemoreactomic simulation that is the newest area in post-genome pharmacology.Results and discussion. Chemoreactomic analysis has shown that thiamine disulfide can inhibit the molecular receptors involved in blood pressure regulation: adrenoceptors, vasopressin receptor, and angiotensin receptor. Thiamine disulfide can inhibit the reuptake of serotonin, increase its levels, inhibit benzodiazepine receptor and dopamine reuptake, and enhance neuronal acetylcholine release to a large extent than benfotiamine. These molecular effects are consistent with the sedative and anticonvulsant action profile of thiamine disulfide. Simulation has indicated that thiamine disulfide has neuroprotective, anti-inflammatory, normolipidemic, and antitumor activities.Conclusion. The simulation results are confirmed by the available clinical and experimental findings and indicate the virtually unstudied molecular mechanisms of action of thiamine disulfide, benfotiamine, and thiamin hydrochloride. 

  12. Devices to improve the performance of a conventional two-stroke spark ignition engine

    Science.gov (United States)

    Poola, R. B.; Nagalingam, B.; Gopalakrishnan, K. V.

    1995-08-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In the second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4 degrees CA), and shorter combustion duration (4-10 degrees CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost, and easy to adopt for both production and existing engines.

  13. Devices to improve the performance of a conventional two-stroke spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Poola, R.B. [Argonne National Lab., IL (United States); Nagalingam, B.; Gopalakrishnan, K.V. [Indian Inst. of Tech., Madras (India)

    1995-06-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In die second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4{degrees}CA){degrees} and shorter combustion duration (4-10 {degrees}CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost and easy to adopt for both production and existing engines.

  14. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications

    Science.gov (United States)

    Prevey, Paul S.; Shepard, Michael; Ravindranath, Ravi A.; Gabb, Timothy

    2003-01-01

    Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine

  15. Protein disulfide bond formation in the cytoplasm during oxidative stress.

    Science.gov (United States)

    Cumming, Robert C; Andon, Nancy L; Haynes, Paul A; Park, Minkyu; Fischer, Wolfgang H; Schubert, David

    2004-05-21

    The majority of disulfide-linked cytosolic proteins are thought to be enzymes that transiently form disulfide bonds while catalyzing oxidation-reduction (redox) processes. Recent evidence indicates that reactive oxygen species can act as signaling molecules by promoting the formation of disulfide bonds within or between select redox-sensitive proteins. However, few studies have attempted to examine global changes in disulfide bond formation following reactive oxygen species exposure. Here we isolate and identify disulfide-bonded proteins (DSBP) in a mammalian neuronal cell line (HT22) exposed to various oxidative insults by sequential nonreducing/reducing two-dimensional SDS-PAGE combined with mass spectrometry. By using this strategy, several known cytosolic DSBP, such as peroxiredoxins, thioredoxin reductase, nucleoside-diphosphate kinase, and ribonucleotide-diphosphate reductase, were identified. Unexpectedly, a large number of previously unknown DSBP were also found, including those involved in molecular chaperoning, translation, glycolysis, cytoskeletal structure, cell growth, and signal transduction. Treatment of cells with a wide range of hydrogen peroxide concentrations either promoted or inhibited disulfide bonding of select DSBP in a concentration-dependent manner. Decreasing the ratio of reduced to oxidized glutathione also promoted select disulfide bond formation within proteins from cytoplasmic extracts. In addition, an epitope-tagged version of the molecular chaperone HSP70 forms mixed disulfides with both beta4-spectrin and adenomatous polyposis coli protein in the cytosol. Our findings indicate that disulfide bond formation within families of cytoplasmic proteins is dependent on the nature of the oxidative insult and may provide a common mechanism used to control multiple physiological processes.

  16. Steric effects in peptide and protein exchange with activated disulfides.

    Science.gov (United States)

    Kerr, Jason; Schlosser, Jessica L; Griffin, Donald R; Wong, Darice Y; Kasko, Andrea M

    2013-08-12

    Disulfide exchange is an important bioconjugation tool, enabling chemical modification of peptides and proteins containing free cysteines. We previously reported the synthesis of a macromer bearing an activated disulfide and its incorporation into hydrogels. Despite their ability to diffuse freely into hydrogels, larger proteins were unable to undergo in-gel disulfide exchange. In order to understand this phenomenon, we synthesized four different activated disulfide-bearing model compounds (Mn = 300 Da to 10 kDa) and quantified their rate of disulfide exchange with a small peptide (glutathione), a moderate-sized protein (β-lactoglobulin), and a large protein (bovine serum albumin) in four different pH solutions (6.0, 7.0, 7.4, and 8.0) to mimic biological systems. Rate constants of exchange depend significantly on the size and accessibility of the thiolate. pH also significantly affects the rate of reaction, with the faster reactions occurring at higher pH. Surprisingly, little difference in exchange rates is seen between macromolecular disulfides of varying size (Mn = 2 kDa - 10 kDa), although all undergo exchange more slowly than their small molecule analogue (MW = 300 g/mol). The maximum exchange efficiencies (% disulfides exchanged after 24 h) are not siginificantly affected by thiol size or pH, but somewhat affected by disulfide size. Therefore, while all three factors investigated (pH, disulfide size, and thiolate size) can influence the exchange kinetics and extent of reaction, the size of the thiolate and its accessibility plays the most significant role.

  17. Catalysis of Protein Disulfide Bond Isomerization in a Homogeneous Substrate†

    Science.gov (United States)

    Kersteen, Elizabeth A.; Barrows, Seth R.; Raines, Ronald T.

    2008-01-01

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a _-hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N-and C-terminus contain a fluorescence donor (tryptophan) and acceptor (N_-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E°_ = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys—Gly—His—Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/KM = 1.7 _ 105 M–1M s–1, which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that

  18. Catalysis of protein disulfide bond isomerization in a homogeneous substrate.

    Science.gov (United States)

    Kersteen, Elizabeth A; Barrows, Seth R; Raines, Ronald T

    2005-09-13

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a beta hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N and C terminus contain a fluorescence donor (tryptophan) and acceptor (N(epsilon)-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E(o') = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys-Gly-His-Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/K(M) = 1.7 x 10(5) M(-1) s(-1), which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude

  19. Reactivity of disulfide bonds is markedly affected by structure and environment

    DEFF Research Database (Denmark)

    Karimi, Maryam; Ignasiak, Marta T; Chan, Bun

    2016-01-01

    that selected disulfides react extremely rapidly, with a variation of 10(4) in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs...

  20. An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Shi, Lingfeng; Tian, Hua; Li, Xiaoya; Huang, Guangdai; Chang, Liwen

    2016-01-01

    Highlights: • Propose an improved CTRC system (PR-CTRC) for engine waste heat recovery. • The PR-CTRC achieves a significant increase in thermodynamic performance. • The PR-CTRC possesses a strong coupling capability for high and low grade waste heat. • The PR-CTRC uses smaller turbine design parameters than ORC systems. • Total cooling load analysis of combined engine and recovery system was conducted. - Abstract: CO 2 -based transcritical Rankine cycle (CTRC) is a promising technology for the waste heat recovery of an engine considering its safety and environment friendly characteristics, which also matchs the high temperature of the exhaust gas and satisfies the miniaturization demand of recovery systems. But the traditional CTRC system with a basic configuration (B-CTRC) has a poor thermodynamic performance. This paper introduces an improved CTRC system containing both a preheater and regenerator (PR-CTRC), for recovering waste heat in exhaust gas and engine coolant of an engine, and compares its performance with that of the B-CTRC system and also with that of the traditional excellent Organic Rankine Cycle (ORC) systems using R123 as a working fluid. The utilization rate of waste heat, total cooling load, net power output, thermal efficiency, exergy loss, exergy efficiency and component size have been investigated. Results show that, the net power output of the PR-CTRC could reach up to 9.0 kW for a 43.8 kW engine, which increases by 150% compared with that of the B-CTRC (3.6 kW). The PR-CTRC also improves the thermal efficiency and exergy efficiency of the B-CTRC, with increases of 184% and 227%, respectively. Compared with the ORC system, the PR-CTRC shows the significant advantage of highly recycling the exhaust gas and engine coolant simultaneously due to the special property of supercritical CO 2 ’s specific heat capacity. The supercritical property of CO 2 also generates a better heat transfer and flowing performances. Meanwhile, the PR

  1. Video Games and Software Engineers : Designing a study based on the benefits from Video Games and how they can improve Software Engineers

    OpenAIRE

    Cosic Prica, Srdjan

    2017-01-01

    Context: This is a study about investigating if playing video games can improve any skills and characteristics in a software engineer. Due to lack of resources and time, this study will focus on designing a study that others may use to measure the results and if video games actually can improve software engineers. Objectives: The main objectives are finding the benefits of playing video games and how those benefits are discovered. Meaning what types of games and for how long someone needs to ...

  2. Improvement of Engineering Students' Communication Skills in English through Extensive Reading

    Science.gov (United States)

    Nishizawa, Hitoshi; Yoshioka, Takayoshi; Itoh, Kazuaki

    The students' communication skills in English have improved after introducing Extensive Reading courses into the curriculum of Electrical and Electronic Engineering Department. The students' average TOEIC scores, which used to be far lower than the ones of students in other educational institutions, have increased in recent two years. The students who used to avoid learning English have welcomed extensive reading of graded readers for foreign learners and books for native children of English. This is because the extensive reading causes less stress and it is enjoyable. The students who have read more than 0.2 million words of English texts have faster reading speed and more confidence in reading. They seem to change their reading style from English-to-Japanese translation (and comprehension in Japanese) to direct comprehension in English. Their listening comprehension is also improved. Extensive reading is an effective educational method to improve English communication skills of engineering students, and it also becomes a useful method of continuous education for engineers in need of improving their skills.

  3. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    Science.gov (United States)

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Diesel engine noise source identification based on EEMD, coherent power spectrum analysis and improved AHP

    Science.gov (United States)

    Zhang, Junhong; Wang, Jian; Lin, Jiewei; Bi, Fengrong; Guo, Qian; Chen, Kongwu; Ma, Liang

    2015-09-01

    As the essential foundation of noise reduction, many noise source identification methods have been developed and applied to engineering practice. To identify the noise source in the board-band frequency of different engine parts at various typical speeds, this paper presents an integrated noise source identification method based on the ensemble empirical mode decomposition (EEMD), the coherent power spectrum analysis, and the improved analytic hierarchy process (AHP). The measured noise is decomposed into several IMFs with physical meaning, which ensures the coherence analysis of the IMFs and the vibration signals are meaningful. An improved AHP is developed by introducing an objective weighting function to replace the traditional subjective evaluation, which makes the results no longer dependent on the subject performances and provides a better consistency in the meantime. The proposed noise identification model is applied to identifying a diesel engine surface radiated noise. As a result, the frequency-dependent contributions of different engine parts to different test points at different speeds are obtained, and an overall weight order is obtained as oil pan  >  left body  >  valve chamber cover  >  gear chamber casing  >  right body  >  flywheel housing, which provides an effectual guidance for the noise reduction.

  5. Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803.

    Science.gov (United States)

    Miao, Rui; Xie, Hao; M Ho, Felix; Lindblad, Peter

    2018-03-01

    Protein engineering is a powerful tool to modify e.g. protein stability, activity and substrate selectivity. Heterologous expression of the enzyme α-ketoisovalerate decarboxylase (Kivd) in the unicellular cyanobacterium Synechocystis PCC 6803 results in cells producing isobutanol and 3-methyl-1-butanol, with Kivd identified as a potential bottleneck. In the present study, we used protein engineering of Kivd to improve isobutanol production in Synechocystis PCC 6803. Isobutanol is a flammable compound that can be used as a biofuel due to its high energy density and suitable physical and chemical properties. Single replacement, either Val461 to isoleucine or Ser286 to threonine, increased the Kivd activity significantly, both in vivo and in vitro resulting in increased overall production while isobutanol production was increased more than 3-methyl-1-butanol production. Moreover, among all the engineered strains examined, the strain with the combined modification V461I/S286T showed the highest (2.4 times) improvement of isobutanol-to-3M1B molar ratio, which was due to a decrease of the activity towards 3M1B production. Protein engineering of Kivd resulted in both enhanced total catalytic activity and preferential shift towards isobutanol production in Synechocystis PCC 6803. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Determination of Disulfide Bond Connectivity of Cysteine-rich Peptide IpTx{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Won; Kim, Jim Il [Chonnam National Univ., Gwangju (Korea, Republic of); Sato, Kazuki [Fukuoka Women' s Univ., Fukuoka (Japan)

    2013-06-15

    Cysteine-rich peptides stabilized by intramolecular disulfide bonds have often been isolated from venoms of microbes, animals and plants. These peptides typically have much higher stability and improved biopharmaceutical properties compared to their linear counterparts. Therefore the correct disulfide bond formation of small proteins and peptides has been extensively studied for a better understanding of their folding mechanism and achieving efficient generation of the naturally occurring biologically active product. Imperatoxin A (IpTx{sub a}), a peptide toxin containing 6 cysteine residues, was isolated from the venom of scorpion Pandinus imperator, selectively binds the ryanodine receptors and activates Ca{sup 2+} release from sarcoplasmic reticulum (SR). IpTx{sub a} increases the binding of ryanodine to ryanodine receptors (RyRs) and encourages reconstituted single channel to induce subconductance states.

  7. Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V.

    Science.gov (United States)

    Zavodszky, M; Chen, C W; Huang, J K; Zolkiewski, M; Wen, L; Krishnamoorthi, R

    2001-01-01

    Attempts to increase protein stability by insertion of novel disulfide bonds have not always been successful. According to the two current models, cross-links enhance stability mainly through denatured state effects. We have investigated the effects of removal and addition of disulfide cross-links, protein flexibility in the vicinity of a cross-link, and disulfide loop size on the stability of Cucurbita maxima trypsin inhibitor-V (CMTI-V; 7 kD) by differential scanning calorimetry. CMTI-V offers the advantage of a large, flexible, and solvent-exposed loop not involved in extensive intra-molecular interactions. We have uncovered a negative correlation between retention time in hydrophobic column chromatography, a measure of protein hydrophobicity, and melting temperature (T(m)), an indicator of native state stabilization, for CMTI-V and its variants. In conjunction with the complete set of thermodynamic parameters of denaturation, this has led to the following deductions: (1) In the less stable, disulfide-removed C3S/C48S (Delta Delta G(d)(50 degrees C) = -4 kcal/mole; Delta T(m) = -22 degrees C), the native state is destabilized more than the denatured state; this also applies to the less-stable CMTI-V* (Delta Delta G(d)(50 degrees C) = -3 kcal/mole; Delta T(m) = -11 degrees C), in which the disulfide-containing loop is opened by specific hydrolysis of the Lys(44)-Asp(45) peptide bond; (2) In the less stable, disulfide-inserted E38C/W54C (Delta Delta G(d)(50 degrees C) = -1 kcal/mole; Delta T(m) = +2 degrees C), the denatured state is more stabilized than the native state; and (3) In the more stable, disulfide-engineered V42C/R52C (Delta Delta G(d)(50 degrees C) = +1 kcal/mole; Delta T(m) = +17 degrees C), the native state is more stabilized than the denatured state. These results show that a cross-link stabilizes both native and denatured states, and differential stabilization of the two states causes either loss or gain in protein stability. Removal of hydrogen

  8. Diesel Engine Convert to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Problem statement: The regular development of internal combustion engines change direction to answer the two most important problems determining the development trends of engines technology and in particular, their combustion systems. They were environmental protection against emission and noise, shortage of hydrocarbon fuels, ...

  9. Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation.

    Science.gov (United States)

    Schroer, Kirsten; Peter Luef, Klaus; Stefan Hartner, Franz; Glieder, Anton; Pscheidt, Beate

    2010-01-01

    Industrial biocatalytic reduction processes require the efficient regeneration of reduced cofactors for the asymmetric reduction of prochiral compounds to chiral intermediates which are needed for the production of fine chemicals and drugs. Here, we present a new engineering strategy for improved NADH regeneration based on the Pichia pastoris methanol oxidation pathway. Studying the kinetic properties of alcohol oxidase (AOX), formaldehyde dehydrogenase (FLD) and formate dehydrogenase (FDH) and using the derived kinetic data for subsequent kinetic simulations of NADH formation rates led to the identification of FLD activity to constitute the main bottleneck for efficient NADH recycling via the methanol dissimilation pathway. The simulation results were confirmed constructing a recombinant P. pastoris strain overexpressing P. pastoris FLD and the highly active NADH-dependent butanediol dehydrogenase from S. cerevisiae. Employing the engineered strain, significantly improved butanediol production rates were achieved in whole-cell biotransformations.

  10. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...... has been replaced with serine. The exchange reaction between the reduced protein and oxidized glutathione leading to formation of the mixed disulfide could readily be monitored by isothermal titration calorimetry (ITC) due to the enthalpic contributions from the noncovalent interactions...... and the protonation of glutathione thiolate. An algorithm for the analysis of this type of reaction by ITC was developed and showed that the interaction is enthalpy driven with a large entropy penalty. The applicability of the method was verified by a mass spectrometry-based approach, which gave a standard reduction...

  11. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    Science.gov (United States)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  12. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement.

    Science.gov (United States)

    Huang, Di; Li, Shanshan; Xia, Menglei; Wen, Jianping; Jia, Xiaoqiang

    2013-05-24

    FK506 is an important immunosuppressant, which can be produced by Streptomyces tsukubaensis. However, the production capacity of the strain is very low. Hereby, a computational guided engineering approach was proposed in order to improve the intracellular precursor and cofactor availability of FK506 in S. tsukubaensis. First, a genome-scale metabolic model of S. tsukubaensis was constructed based on its annotated genome and biochemical information. Subsequently, several potential genetic targets (knockout or overexpression) that guaranteed an improved yield of FK506 were identified by the recently developed methodology. To validate the model predictions, each target gene was manipulated in the parent strain D852, respectively. All the engineered strains showed a higher FK506 production, compared with D852. Furthermore, the combined effect of the genetic modifications was evaluated. Results showed that the strain HT-ΔGDH-DAZ with gdhA-deletion and dahp-, accA2-, zwf2-overexpression enhanced FK506 concentration up to 398.9 mg/L, compared with 143.5 mg/L of the parent strain D852. Finally, fed-batch fermentations of HT-ΔGDH-DAZ were carried out, which led to the FK506 production of 435.9 mg/L, 1.47-fold higher than the parent strain D852 (158.7 mg/L). Results confirmed that the promising targets led to an increase in FK506 titer. The present work is the first attempt to engineer the primary precursor pathways to improve FK506 production in S. tsukubaensis with genome-scale metabolic network guided metabolic engineering. The relationship between model prediction and experimental results demonstrates the rationality and validity of this approach for target identification. This strategy can also be applied to the improvement of other important secondary metabolites.

  13. Improving online visibility of the web pages with Search Engine Optimization: Laurea University of Applied Sciences

    OpenAIRE

    Bhandari, Deepak

    2017-01-01

    This project was commissioned by Laurea University of Applied Sciences (UAS). The organization’s website has a wide range of users from all over the world. It is important that the contents on the website are equally accessible to users with different abilities and disabilities (e.g. visually impaired & auditory). Search engine optimization (SEO) is one of the practices that contribute to im-proving web accessibility. A functioning website is one of the main means of communication for organiz...

  14. Development of a simulation model for compression ignition engine running with ignition improved blend

    Directory of Open Access Journals (Sweden)

    Sudeshkumar Ponnusamy Moranahalli

    2011-01-01

    Full Text Available Department of Automobile Engineering, Anna University, Chennai, India. The present work describes the thermodynamic and heat transfer models used in a computer program which simulates the diesel fuel and ignition improver blend to predict the combustion and emission characteristics of a direct injection compression ignition engine fuelled with ignition improver blend using classical two zone approach. One zone consists of pure air called non burning zone and other zone consist of fuel and combustion products called burning zone. First law of thermodynamics and state equations are applied in each of the two zones to yield cylinder temperatures and cylinder pressure histories. Using the two zone combustion model the combustion parameters and the chemical equilibrium composition were determined. To validate the model an experimental investigation has been conducted on a single cylinder direct injection diesel engine fuelled with 12% by volume of 2- ethoxy ethanol blend with diesel fuel. Addition of ignition improver blend to diesel fuel decreases the exhaust smoke and increases the thermal efficiency for the power outputs. It was observed that there is a good agreement between simulated and experimental results and the proposed model requires low computational time for a complete run.

  15. Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules

    OpenAIRE

    O. A. Gromova; I. Yu. Torshin; L. V. Stakhovskaya; L. E. Fedotova

    2017-01-01

    Objective: to analyze the interactions that could indicate the potential pharmacological properties of the molecules of thiamin, thiamine disulfide, and others.Material and methods. The investigators simulated the properties of thiamine disulfide (bistiamin) versus those of the reference molecules of thiamin hydrochloride and benfotiamine. The study was performed using chemoreactomic simulation that is the newest area in post-genome pharmacology.Results and discussion. Chemoreactomic analysis...

  16. Improvement of nuclear ship engineering simulation system. Hardware renewal and interface improvement of the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki; Kyoya, Masahiko; Shimazaki, Junya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kano, Tadashi [KCS, Co., Mito, Ibaraki (Japan); Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan)

    2001-10-01

    JAERI had carried out the design study about a lightweight and compact integral type reactor (an advanced marine reactor) with passive safety equipment as a power source for the future nuclear ships, and completed an engineering design. We have developed the simulator for the integral type reactor to confirm the design and operation performance and to utilize the study of automation of the reactor operation. The simulator can be used also for future research and development of a compact reactor. However, the improvement in a performance of hardware and a human machine interface of software of the simulator were needed for future research and development. Therefore, renewal of hardware and improvement of software have been conducted. The operability of the integral-reactor simulator has been improved. Furthermore, this improvement with the hardware and software on the market brought about better versatility, maintainability, extendibility and transfer of the system. This report mainly focuses on contents of the enhancement in a human machine interface, and describes hardware renewal and the interface improvement of the integral type reactor simulator. (author)

  17. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer.

    Science.gov (United States)

    Pan, Hui

    2016-12-01

    Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.

  18. Regulation of a phage endolysin by disulfide caging.

    Science.gov (United States)

    Kuty, Gabriel F; Xu, Min; Struck, Douglas K; Summer, Elizabeth J; Young, Ry

    2010-11-01

    In contrast to canonical phage endolysins, which require holin-mediated disruption of the membrane to gain access to attack the cell wall, signal anchor release (SAR) endolysins are secreted by the host sec system, where they accumulate in an inactive form tethered to the membrane by their N-terminal SAR domains. SAR endolysins become activated by various mechanisms upon release from the membrane. In its inactive form, the prototype SAR endolysin, Lyz(P1), of coliphage P1, has an active-site Cys covalently blocked by a disulfide bond; activation involves a disulfide bond isomerization driven by a thiol in the newly released SAR domain, unblocking the active-site Cys. Here, we report that Lyz(103), the endolysin of Erwinia phage ERA103, is also a SAR endolysin. Although Lyz(103) does not have a catalytic Cys, genetic evidence suggests that it also is activated by a thiol-disulfide isomerization triggered by a thiol in the SAR domain. In this case, the inhibitory disulfide in nascent Lyz(103) is formed between cysteine residues flanking a catalytic glutamate, caging the active site. Thus, Lyz(P1) and Lyz(103) define subclasses of SAR endolysins that differ in the nature of their inhibitory disulfide, and Lyz(103) is the first enzyme found to be regulated by disulfide bond caging of its active site.

  19. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    Directory of Open Access Journals (Sweden)

    Almeida João RM

    2010-06-01

    Full Text Available Abstract Background Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. Results Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways. Conclusion To the best of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed to the improved phenotype.

  20. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast.

    Science.gov (United States)

    Brickwedde, Anja; van den Broek, Marcel; Geertman, Jan-Maarten A; Magalhães, Frederico; Kuijpers, Niels G A; Gibson, Brian; Pronk, Jack T; Daran, Jean-Marc G

    2017-01-01

    The lager brewing yeast Saccharomyces pastorianus , an interspecies hybrid of S. eubayanus and S. cerevisiae , ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14 C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.

  1. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast

    Directory of Open Access Journals (Sweden)

    Anja Brickwedde

    2017-09-01

    Full Text Available The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion (“attenuation” of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.

  2. Engineering, maintenance, and initiatives to improve LAMPF beam availability and system reliability

    International Nuclear Information System (INIS)

    Harris, H.W.; DeHaven, R.A.; Hart, V.E.; Parsons, W.M.; Sturrock, J.C.

    1992-01-01

    Two different requirements are driving engineering studies and hardware development to improve LAMPF. The first is concerned with component and system improvements to increase beam availability during the LAMPF production cycle. Hardware changes in RF, power supplies, and magnets are being implemented to increase mean time between failure and reduce time to replace or repair failed units. A joint LAMPF-Industry project is on-going to improve reliability of RF components. A component test stand is being refurbished to include significant development capability. The second approach includes several changes that will increase the duty factor of the existing accelerator. Major changes are being evaluated for replacing the front end of the accelerator. Other changes improving the high brightness capability could result in a new performance plateau for LAMPF. 2 refs., 2 figs

  3. Engineering, maintenance, and new initiatives to improve LAMPF beam availability and system reliability

    International Nuclear Information System (INIS)

    Harris, H.W.; DeHaven, R.A.; Hart, V.E.; Parsons, W.M.; Sturrock, J.C.

    1992-01-01

    Two different requirements are driving engineering studies and hardware development to improve LAMPF. The first is concerned with component and system improvements to increase beam availability during the LAMPF production cycle. Hardware changes in RF, power supplies, and magnets are being implemented to increase mean time between failure and reduce time to replace or repair failed units. A joint LAMPF-Industry project is on-going to improve reliability of RF components. A component test stand is being refurbished to include significant development capability. The second approach includes several changes that will increase the duty factor of the existing accelerator. Major changes are being evaluated for replacing the front end of the accelerator. Other changes improving high brightness capability could result in a new performance plateau for LAMPF

  4. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    Science.gov (United States)

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Engineered Photorespiratory Bypass Pathways Improve Photosynthetic Efficiency and Growth as Temperature Increases

    Science.gov (United States)

    Cavanagh, A. P.; South, P. F.; Ort, D. R.; Bernacchi, C.

    2017-12-01

    In C3 plants grown under ambient [CO2] at 25°C, 23% of the fixed carbon dioxide is lost to photorespiration, the energy expensive metabolic pathway that recycles toxic compounds produced by Rubisco oxygenation reactions. Furthermore, rates of photorespiration increase with rising temperature, as higher temperatures favor increased Rubisco oxygenation. Modelling suggests that the absence of photorespiration could improve gross photosynthesis by 12-55% under projected climate conditions; however, this is difficult to measure empirically, as photorespiration interacts with several metabolic pathways and is an essential process for all C3 plants grown at ambient [O2]. Introduced biochemical bypasses to the native photorespiration pathway hold promise as a strategy to mitigate the impact of temperature on photorespiratory losses. We grew tobacco containing engineered pathways to bypass photorespiration under ambient and elevated temperatures (+5°C) in the field to determine if bypassing photorespiration could mitigate high temperature induced losses in growth and physiology. Our preliminary results show that engineered plants have a higher quantum efficiency under heated conditions than do non-engineered plants, resulting in up to 20% lower yield losses under heated conditions compared to non-engineered plants. These results support the theoretical modelling of temperature impacts on photorespiratory losses, and suggest the bypassing photorespiration could be an important strategy to increase crop yields.

  6. Improving Metabolic Pathway Efficiency by Statistical Model-Based Multivariate Regulatory Metabolic Engineering.

    Science.gov (United States)

    Xu, Peng; Rizzoni, Elizabeth Anne; Sul, Se-Yeong; Stephanopoulos, Gregory

    2017-01-20

    Metabolic engineering entails target modification of cell metabolism to maximize the production of a specific compound. For empowering combinatorial optimization in strain engineering, tools and algorithms are needed to efficiently sample the multidimensional gene expression space and locate the desirable overproduction phenotype. We addressed this challenge by employing design of experiment (DoE) models to quantitatively correlate gene expression with strain performance. By fractionally sampling the gene expression landscape, we statistically screened the dominant enzyme targets that determine metabolic pathway efficiency. An empirical quadratic regression model was subsequently used to identify the optimal gene expression patterns of the investigated pathway. As a proof of concept, our approach yielded the natural product violacein at 525.4 mg/L in shake flasks, a 3.2-fold increase from the baseline strain. Violacein production was further increased to 1.31 g/L in a controlled benchtop bioreactor. We found that formulating discretized gene expression levels into logarithmic variables (Linlog transformation) was essential for implementing this DoE-based optimization procedure. The reported methodology can aid multivariate combinatorial pathway engineering and may be generalized as a standard procedure for accelerating strain engineering and improving metabolic pathway efficiency.

  7. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae

    Science.gov (United States)

    2012-01-01

    Through metabolic engineering microorganisms can be engineered to produce new products and further produce these with higher yield and productivities. Here, we expressed the bacterial polyhydroxybutyrate (PHB) pathway in the yeast Saccharomyces cerevisiae and we further evaluated the effect of engineering the formation of acetyl coenzyme A (acetyl-CoA), an intermediate of the central carbon metabolism and precursor of the PHB pathway, on heterologous PHB production by yeast. We engineered the acetyl-CoA metabolism by co-transformation of a plasmid containing genes for native S. cerevisiae alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6), acetyl-CoA acetyltransferase (ERG10) and a Salmonella enterica acetyl-CoA synthetase variant (acsL641P), resulting in acetoacetyl-CoA overproduction, together with a plasmid containing the PHB pathway genes coding for acetyl-CoA acetyltransferase (phaA), NADPH-linked acetoacetyl-CoA reductase (phaB) and poly(3-hydroxybutyrate) polymerase (phaC) from Ralstonia eutropha H16. Introduction of the acetyl-CoA plasmid together with the PHB plasmid, improved the productivity of PHB more than 16 times compared to the reference strain used in this study, as well as it reduced the specific product formation of side products. PMID:23009357

  8. Combining Capability Assessment and Value Engineering: a New Two-dimensional Method for Software Process Improvement

    Directory of Open Access Journals (Sweden)

    Pasi Ojala

    2008-02-01

    Full Text Available During the last decades software process improvement (SPI has been recognized as a usable possibility to increase the quality of software development. Implemented SPI investments have often indicated increased process capabilities as well. Recently more attention has been focused on the costs of SPI as well as on the cost-effectiveness and productivity of software development, although the roots of economic-driven software engineering originate from the very early days of software engineering research. This research combines Value Engineering and capability assessment into usable new method in order to better respond to the challenges that cost-effectiveness and productivity has brought to software companies. This is done in part by defining the concepts of value, worth and cost and in part by defining the Value Engineering process and different enhancements it has seen to offer to software assessment. The practical industrial cases show that proposed two-dimensional method works in practise and is useful to assessed companies.

  9. Improving the Teaching of ICT Engineering using Flipped Learning: a personalized model and a case study

    Directory of Open Access Journals (Sweden)

    Abdelhak Aqqal

    Full Text Available Abstract In recent years, Flipped Classroom started to be used as an effective way of teaching Engineering among various strategies in higher education. However, enabling and using the flipped learning is a complicated task, not a straightforward goal that can be simply achieved through a combination of face-to-face and online activities. It requires a more sophisticated understanding of effective teaching methods to manage the shift from the traditional to the flipped learning and the optimum adaptation of technology as part of this change. Given this challenge, this research work provides a personalized model of the flipped classroom and investigates through a case study in an Engineering School how our approach can be used to improve teaching of Information and Communication Technology (ICT Engineering. It assesses by using empirically data related to the interaction of the various actors at different levels of abstraction, particularly from a gender perspective, the relevance and the impact of the flipped classroom on student learning and achievement in ICT Engineering Education.

  10. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering

    Science.gov (United States)

    Reil, Robin

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.

  12. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    Science.gov (United States)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  13. Improvement of pristinamycin I (PI) production inStreptomyces pristinaespiralisby metabolic engineering approaches.

    Science.gov (United States)

    Meng, Jiali; Feng, Rongrong; Zheng, Guosong; Ge, Mei; Mast, Yvonne; Wohlleben, Wolfgang; Gao, Jufang; Jiang, Weihong; Lu, Yinhua

    2017-06-01

    Pristinamycin, produced by Streptomyces pristinaespiralis , which is a streptogramin-like antibiotic consisting of two chemically unrelated components: pristinamycin I (PI) and pristinamycin II (PII), shows potent activity against many antibiotic-resistant pathogens. However, so far pristinamycin production titers are still quite low, particularly those of PI. In this study, we constructed a PI single component producing strain by deleting the PII biosynthetic genes ( snaE1 and snaE2 ). Then, two metabolic engineering approaches, including deletion of the repressor gene papR3 and chromosomal integration of an extra copy of the PI biosynthetic gene cluster (BGC), were employed to improve PI production. The final engineered strain ΔPIIΔ papR3 /PI produced a maximum PI level of 132 mg/L, with an approximately 2.4-fold higher than that of the parental strain S. pristinaespiralis HCCB10218. Considering that the PI biosynthetic genes are clustered in two main regions in the 210 kb "supercluster" containing the PI and PII biosynthetic genes as well as a cryptic polyketide BGC, these two regions were cloned separately and then were successfully assembled into the PI BGC by the transformation-associated recombination (TAR) system. Collectively, the metabolic engineering approaches employed is very efficient for strain improvement in order to enhance PI titer.

  14. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops

    Directory of Open Access Journals (Sweden)

    Ophilia I. L. Mawphlang

    2017-07-01

    Full Text Available Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes, blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2, and UV-B light (UVR8. While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors.

  15. Improvement of medical content in the curriculum of biomedical engineering based on assessment of students outcomes.

    Science.gov (United States)

    Abdulhay, Enas; Khnouf, Ruba; Haddad, Shireen; Al-Bashir, Areen

    2017-08-04

    Improvement of medical content in Biomedical Engineering curricula based on a qualitative assessment process or on a comparison with another high-standard program has been approached by a number of studies. However, the quantitative assessment tools have not been emphasized. The quantitative assessment tools can be more accurate and robust in cases of challenging multidisciplinary fields like that of Biomedical Engineering which includes biomedicine elements mixed with technology aspects. The major limitations of the previous research are the high dependence on surveys or pure qualitative approaches as well as the absence of strong focus on medical outcomes without implicit confusion with the technical ones. The proposed work presents the development and evaluation of an accurate/robust quantitative approach to the improvement of the medical content in the challenging multidisciplinary BME curriculum. The work presents quantitative assessment tools and subsequent improvement of curriculum medical content applied, as example for explanation, to the ABET (Accreditation Board for Engineering and Technology, USA) accredited biomedical engineering BME department at Jordan University of Science and Technology. The quantitative results of assessment of curriculum/course, capstone, exit exam, course assessment by student (CAS) as well as of surveys filled by alumni, seniors, employers and training supervisors were, first, mapped to the expected students' outcomes related to the medical field (SOsM). The collected data were then analyzed and discussed to find curriculum weakness points by tracking shortcomings in every outcome degree of achievement. Finally, actions were taken to fill in the gaps of the curriculum. Actions were also mapped to the students' medical outcomes (SOsM). Weighted averages of obtained quantitative values, mapped to SOsM, indicated accurately the achievement levels of all outcomes as well as the necessary improvements to be performed in curriculum

  16. The impact of improved sparse linear solvers on industrial engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, M. [Cray Research, Inc., Eagan, MN (United States); Baddourah, M.; Poole, E.L.; Yang, Chao Wu

    1996-12-31

    There are usually many factors that ultimately determine the quality of computer simulation for engineering applications. Some of the most important are the quality of the analytical model and approximation scheme, the accuracy of the input data and the capability of the computing resources. However, in many engineering applications the characteristics of the sparse linear solver are the key factors in determining how complex a problem a given application code can solve. Therefore, the advent of a dramatically improved solver often brings with it dramatic improvements in our ability to do accurate and cost effective computer simulations. In this presentation we discuss the current status of sparse iterative and direct solvers in several key industrial CFD and structures codes, and show the impact that recent advances in linear solvers have made on both our ability to perform challenging simulations and the cost of those simulations. We also present some of the current challenges we have and the constraints we face in trying to improve these solvers. Finally, we discuss future requirements for sparse linear solvers on high performance architectures and try to indicate the opportunities that exist if we can develop even more improvements in linear solver capabilities.

  17. Negating Tissue Contracture Improves Volume Maintenance and Longevity of In Vivo Engineered Tissues.

    Science.gov (United States)

    Lytle, Ian F; Kozlow, Jeffrey H; Zhang, Wen X; Buffington, Deborah A; Humes, H David; Brown, David L

    2015-10-01

    Engineering large, complex tissues in vivo requires robust vascularization to optimize survival, growth, and function. Previously, the authors used a "chamber" model that promotes intense angiogenesis in vivo as a platform for functional three-dimensional muscle and renal engineering. A silicone membrane used to define the structure and to contain the constructs is successful in the short term. However, over time, generated tissues contract and decrease in size in a manner similar to capsular contracture seen around many commonly used surgical implants. The authors hypothesized that modification of the chamber structure or internal surface would promote tissue adherence and maintain construct volume. Three chamber configurations were tested against volume maintenance. Previously studied, smooth silicone surfaces were compared to chambers modified for improved tissue adherence, with multiple transmembrane perforations or lined with a commercially available textured surface. Tissues were allowed to mature long term in a rat model, before analysis. On explantation, average tissue masses were 49, 102, and 122 mg; average volumes were 74, 158 and 176 μl; and average cross-sectional areas were 1.6, 6.7, and 8.7 mm for the smooth, perforated, and textured groups, respectively. Both perforated and textured designs demonstrated significantly greater measures than the smooth-surfaced constructs in all respects. By modifying the design of chambers supporting vascularized, three-dimensional, in vivo tissue engineering constructs, generated tissue mass, volume, and area can be maintained over a long time course. Successful progress in the scale-up of construct size should follow, leading to improved potential for development of increasingly complex engineered tissues.

  18. Improving the performance of LOX/kerosene upper stage rocket engines

    Directory of Open Access Journals (Sweden)

    IgorN. Nikischenko

    2017-09-01

    Full Text Available Improved liquid rocket engine cycles were proposed and analyzed via comparison with existing staged combustion and gas-generator cycles. The key features of the proposed cycles are regenerative cooling of thrust chamber by oxygen and subsequent use of this oxygen for driving one or two oxygen pumps. The fuel pump(s are driven in a conventional manner, for example, using a fuel-rich gas-generator cycle. Comparison with staged combustion cycle based on oxygen-rich pre-burner showed that one of the proposed semi-expander cycles has a specific impulse only on 0.4% lower while providing much lower oxygen temperature, more efficient tank pressurizing system and built-in roll control. This semi-expander cycle can be considered as a more reliable and cost-effective alternative of staged combustion cycle. Another semi-expander cycle can be considered as an improvement of gas-generator cycle. All proposed semi-expander cycles were developed as a derivative of thrust chamber regenerative cooling performed by oxygen. Analysis of existing oxygen/kerosene engines showed that replacing of kerosene regenerative cooling with oxygen allows a significant increase of achievable specific impulse, via optimization of mixture ratio. It is especially the case for upper stage engines. The increasing of propellants average density can be considered as an additional benefit of mixture ratio optimization. It was demonstrated that oxygen regenerative cooling of thrust chamber is a feasible and the most promising option for oxygen/kerosene engines. Combination of oxygen regenerative cooling and semi-expander cycles potentially allows creating the oxygen/kerosene propulsion systems with minimum specific impulse losses. It is important that such propulsion systems can be fully based on inherited and well-proven technical solutions. A hypothetic upper stage engine with thrust 19.6 kN was chosen as a prospective candidate for theoretical analysis of the proposed semi

  19. Oxidation Effect in Octahedral Hafnium Disulfide Thin Film.

    Science.gov (United States)

    Chae, Sang Hoon; Jin, Youngjo; Kim, Tae Soo; Chung, Dong Seob; Na, Hyunyeong; Nam, Honggi; Kim, Hyun; Perello, David J; Jeong, Hye Yun; Ly, Thuc Hue; Lee, Young Hee

    2016-01-26

    Atomically smooth van der Waals materials are structurally stable in a monolayer and a few layers but are susceptible to oxygen-rich environments. In particular, recently emerging materials such as black phosphorus and perovskite have revealed stronger environmental sensitivity than other two-dimensional layered materials, often obscuring the interesting intrinsic electronic and optical properties. Unleashing the true potential of these materials requires oxidation-free sample preparation that protects thin flakes from air exposure. Here, we fabricated few-layer hafnium disulfide (HfS2) field effect transistors (FETs) using an integrated vacuum cluster system and study their electronic properties and stability under ambient conditions. By performing all the device fabrication and characterization procedure under an oxygen- and moisture-free environment, we found that few-layer AA-stacking HfS2-FETs display excellent field effect responses (Ion/Ioff ≈ 10(7)) with reduced hysteresis compared to the FETs prepared under ambient conditions. Oxidation of HfS2 occurs uniformly over the entire area, increasing the film thickness by 250% at a prolonged oxidation time of >120 h, while defects on the surface are the preferential initial oxidation sites. We further demonstrated that the stability of the device in air is significantly improved by passivating FETs with BN in a vacuum cluster.

  20. Bright monolayer tungsten disulfide via exciton and trion chemical modulations.

    Science.gov (United States)

    Tao, Ye; Yu, Xuechao; Li, Jiewei; Liang, Houkun; Zhang, Ying; Huang, Wei; Wang, Qi Jie

    2018-04-05

    Atomically thin transition metal dichalcogenides (TMDCs) with exceptional electrical and optical properties have drawn tremendous attention for use in novel optoelectronic applications as photodetectors, transistors, light emitters, etc. However, electron bound trions formed through the combination of neutral excitons and electrons significantly decrease the photoluminescence (PL) efficiency of TMDCs. In this study, we report a simple yet efficient chemical doping strategy to modulate the optical properties of monolayer tungsten disulfide (WS2). As a demonstrative example, a chemically doped monolayer of WS2 exhibits remarkable PL enhancement of about one order of magnitude higher than that of pristine WS2. This outstanding PL enhancement is attributed to the fact that excess electrons, which promote the formation of electron-bound trions, are reduced in number through charge transfer from WS2 to the chemical dopant. Furthermore, an improved degree of circular polarization from ∼9.0% to ∼41.5% was also observed in the chemically doped WS2 monolayer. This work describes a feasible strategy to manipulate the optical properties of TMDCs via exciton modulation, making TMDCs promising candidates for versatile semiconductor-based photonic devices.

  1. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis

    Directory of Open Access Journals (Sweden)

    Qihang Wang

    2016-07-01

    Full Text Available In this article, an improved particle filter with electromagnetism-like mechanism algorithm is proposed for aircraft engine gas-path component abrupt fault diagnosis. In order to avoid the particle degeneracy and sample impoverishment of normal particle filter, the electromagnetism-like mechanism optimization algorithm is introduced into resampling procedure, which adjusts the position of the particles through simulating attraction–repulsion mechanism between charged particles of the electromagnetism theory. The improved particle filter can solve the particle degradation problem and ensure the diversity of the particle set. Meanwhile, it enhances the ability of tracking abrupt fault due to considering the latest measurement information. Comparison of the proposed method with three different filter algorithms is carried out on a univariate nonstationary growth model. Simulations on a turbofan engine model indicate that compared to the normal particle filter, the improved particle filter can ensure the completion of the fault diagnosis within less sampling period and the root mean square error of parameters estimation is reduced.

  2. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement.

    Science.gov (United States)

    Xu, Chuan; Liu, Lili; Zhang, Zhao; Jin, Danfeng; Qiu, Juanping; Chen, Ming

    2013-01-01

    In the past few decades, despite all the significant achievements in industrial microbial improvement, the approaches of traditional random mutation and selection as well as the rational metabolic engineering based on the local knowledge cannot meet today's needs. With rapid reconstructions and accurate in silico simulations, genome-scale metabolic model (GSMM) has become an indispensable tool to study the microbial metabolism and design strain improvements. In this review, we highlight the application of GSMM in guiding microbial improvements focusing on a systematic strategy and its achievements in different industrial fields. This strategy includes a repetitive process with four steps: essential data acquisition, GSMM reconstruction, constraints-based optimizing simulation, and experimental validation, in which the second and third steps are the centerpiece. The achievements presented here belong to different industrial application fields, including food and nutrients, biopharmaceuticals, biopolymers, microbial biofuel, and bioremediation. This strategy and its achievements demonstrate a momentous guidance of GSMM for metabolic engineering breeding of industrial microbes. More efforts are required to extend this kind of study in the meantime.

  3. Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs.

    Directory of Open Access Journals (Sweden)

    Renata G Rosa

    Full Text Available The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1 was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm. While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.

  4. Pathway engineering of Propionibacterium jensenii for improved production of propionic acid.

    Science.gov (United States)

    Liu, Long; Guan, Ningzi; Zhu, Gexin; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian

    2016-01-27

    Propionic acid (PA) is an important chemical building block widely used in the food, pharmaceutical, and chemical industries. In our previous study, a shuttle vector was developed as a useful tool for engineering Propionibacterium jensenii, and two key enzymes-glycerol dehydrogenase and malate dehydrogenase-were overexpressed to improve PA titer. Here, we aimed to improve PA production further via the pathway engineering of P. jensenii. First, the phosphoenolpyruvate carboxylase gene (ppc) from Klebsiella pneumoniae was overexpressed to access the one-step synthesis of oxaloacetate directly from phosphoenolpyruvate without pyruvate as intermediate. Next, genes encoding lactate dehydrogenase (ldh) and pyruvate oxidase (poxB) were deleted to block the synthesis of the by-products lactic acid and acetic acid, respectively. Overexpression of ppc and deleting ldh improved PA titer from 26.95 ± 1.21 g·L(-1) to 33.21 ± 1.92 g·L(-1) and 30.50 ± 1.63 g·L(-1), whereas poxB deletion decreased it. The influence of this pathway engineering on gene transcription, enzyme expression, NADH/NAD(+) ratio, and metabolite concentration was also investigated. Finally, PA production in P. jensenii with ppc overexpression as well as ldh deletion was investigated, which resulted in further increases in PA titer to 34.93 ± 2.99 g·L(-1) in a fed-batch culture.

  5. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis

    Directory of Open Access Journals (Sweden)

    Li Shanshan

    2012-08-01

    Full Text Available Abstract Background Isobutanol is considered as a leading candidate for the replacement of current fossil fuels, and expected to be produced biotechnologically. Owing to the valuable features, Bacillus subtilis has been engineered as an isobutanol producer, whereas it needs to be further optimized for more efficient production. Since elementary mode analysis (EMA is a powerful tool for systematical analysis of metabolic network structures and cell metabolism, it might be of great importance in the rational strain improvement. Results Metabolic network of the isobutanol-producing B. subtilis BSUL03 was first constructed for EMA. Considering the actual cellular physiological state, 239 elementary modes (EMs were screened from total 11,342 EMs for potential target prediction. On this basis, lactate dehydrogenase (LDH and pyruvate dehydrogenase complex (PDHC were predicted as the most promising inactivation candidates according to flux flexibility analysis and intracellular flux distribution simulation. Then, the in silico designed mutants were experimentally constructed. The maximal isobutanol yield of the LDH- and PDHC-deficient strain BSUL05 reached 61% of the theoretical value to 0.36 ± 0.02 C-mol isobutanol/C-mol glucose, which was 2.3-fold of BSUL03. Moreover, this mutant produced approximately 70 % more isobutanol to the maximal titer of 5.5 ± 0.3 g/L in fed-batch fermentations. Conclusions EMA was employed as a guiding tool to direct rational improvement of the engineered isobutanol-producing B. subtilis. The consistency between model prediction and experimental results demonstrates the rationality and accuracy of this EMA-based approach for target identification. This network-based rational strain improvement strategy could serve as a promising concept to engineer efficient B. subtilis hosts for isobutanol, as well as other valuable products.

  6. Improving Performance to Engineering Students through Virtual Labs and its Monitoring in Cockpit

    Directory of Open Access Journals (Sweden)

    Leandro Rosniak Tibola

    2014-10-01

    Full Text Available Modern education needs use all resources to improve teaching-learning process. To achieve this goal, technology can be a sharp allied. Especially to the engineering education, which seeks the balance among theoretical and practice lessons. Thus, many universities are using the virtual labs and virtual worlds 3D like way to support the student's learning and enrich the teaching methods. High tech classes, broadband communication, mobility and ubiquity aren't enough if the student's engagement can't be measured. This work presents a proposal to monitor the virtual lab use by students, showing the educational parameters in a graphical interface, following the suitable pedagogical concepts.

  7. Improving the efficacy and safety of engineered T cell therapy for cancer.

    Science.gov (United States)

    Shi, Huan; Liu, Lin; Wang, Zhehai

    2013-01-28

    Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TILs) is a powerful immunotherapeutics approach against metastatic melanoma. The success of TIL therapy has led to novel strategies for redirecting normal T cells to recognize tumor-associated antigens (TAAs) by genetically engineering tumor antigen-specific T cell receptors (TCRs) or chimeric antigen receptor (CAR) genes. In this manner, large numbers of antigen-specific T cells can be rapidly generated compared with the longer term expansion of TILs. Great efforts have been made to improve these approaches. Initial clinical studies have demonstrated that genetically engineered T cells can mediate tumor regression in vivo. In this review, we discuss the development of TCR and CAR gene-engineered T cells and the safety concerns surrounding the use of these T cells in patients. We highlight the importance of judicious selection of TAAs for modified T cell therapy and propose solutions for potential "on-target, off-organ" toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    Science.gov (United States)

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  9. Improved Triacylglycerol Production in Acinetobacter baylyi ADP1 by Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-05-01

    Full Text Available Abstract Background Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Results Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. Conclusions In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  10. Using Software Product Line to improve ERP Engineering: Literature Review and Analysis

    Directory of Open Access Journals (Sweden)

    Raúl Mazo

    2014-10-01

    Full Text Available On the one hand, getting advantages of Enterprise Resource Planning (ERP systems largely depends on their capacity to be configured and adapted to fit the customer and domain requirements. On the other hand, product line engineering (PLE is a promising approach for configuring and adapting products by means of configuration and derivation processes. While the literature and industrial experiences show the benefits of PLE methods, techniques and tools, there is still a lack of interest in addressing ERP engineering issues with the product line strategy. Objective: The aim of this paper is to identify and analyze the different ways presented in the literature to improve ERP engineering issues with the methods, techniques and tools provided by PLE. Method: To achieve that objective, we reviewed the literature and analyzed available publications. Results: This literature review analyzes six research papers at the intersection between ERP and PLE. It shows that the product line strategy can indeed be applied for ERP configuration and customization. It further shows the evolving interest on this topic and discusses existing contributions.

  11. A multi-criteria optimization and decision-making approach for improvement of food engineering processes

    Directory of Open Access Journals (Sweden)

    Alik Abakarov

    2013-04-01

    Full Text Available The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demonstrated using experimental data obtained on osmotic dehydration of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses, namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality. Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP and the Tabular Method (TM, were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.

  12. Interface engineering in inorganic hybrid structures towards improved photocatalysis (Conference Presentation)

    Science.gov (United States)

    Xiong, Yujie

    2016-10-01

    Designing new photocatalytic materials for improving photoconversion efficiency is a promising route to alleviate the steadily worsening environmental issues and energy crisis. Despite the invention of a large number of catalytic materials with well-defined structures, their overall efficiency in photocatalysis is still quite limited as the three key steps - light harvesting, charge generation and separation, and charge transfer to surface for redox reactions - have not been substantially improved. To improve each step in the complex process, there is a major trend to develop materials based on inorganic hybrid structures. In this case, interface engineering holds the promise for boosting the overall efficiency, given the key roles of interface structures in charge and energy transfer. In this talk, I will demonstrate several different approaches to designing inorganic hybrid structures with improved photocatalytic performance via interface engineering. The typical demonstrations include semiconductor-plasmonics systems for broad-spectrum light harvesting, metal-semiconductor interfaces for improved charge separation, semiconductor-MOF (metal-organic framework) configurations for activated surface reactions. It is anticipated that this series of works open a new window to rationally designing inorganic hybrid materials for photo-induced applications. References: (1) Bai, S.; Yang, L.; Wang, C.; Lin, Y.; Lu, J.; Jiang, J. and Xiong, Y.*, Angew. Chem. Int. Ed. 54, 14810-14814 (2015). (2) Bai, S.; Jiang, J.; Zhang, Q. and Xiong, Y.*, Chem. Soc. Rev. 44, 2893-2939 (2015). (3) Bai, S.; Li, X.; Kong, Q.; Long, R.; Wang, C.; Jiang, J. and Xiong, Y.*, Adv. Mater. 27, 3444-3452 (2015). (4) Bai, S.; Ge, J.; Wang, L.; Gong, M.; Deng, M.; Kong, Q.; Song, L.; Jiang, J.;* Zhang, Q.;* Luo, Y.; Xie, Y. and Xiong, Y.*, Adv. Mater. 26, 5689-5695 (2014). (5) Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H. L.; Jiang, J.;* Zhang, Q.;* Xie, Y. and Xiong, Y.*, Adv. Mater

  13. Role of plant biotechnology and genetic engineering in crop-improvement, with special emphases on cotton: A review

    International Nuclear Information System (INIS)

    Akhtar, L.H.; Siddiq, S.Z.; Tariq, A.H.; Arshad, M.; Gorham, J.

    2003-01-01

    Plant biotechnology and genetic engineering offer novel approaches to plant-breeding, production, propagation and preservation of germplasm. In this manuscript, the population and food-requirements of Pakistan, role of biotechnology and genetic engineering in crop-improvement, along with potential uses in cotton, have been discussed. The latest position of plant biotechnology and genetic engineering in Pakistan and the advantages of biotechnology and genetic-engineering techniques over conventional plant-breeding techniques, along with critical views of various scientists have been reviewed. (author)

  14. Improving Soliton Compression Quality with Cascaded Nonlinearities by Engineered Multi-section Quasi-phase-matching Design

    DEFF Research Database (Denmark)

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin

    2012-01-01

    In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced.......In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced....

  15. Improving Vegetable Oil Fueled CI Engine Characteristics Through Diethyl Ether Blending

    KAUST Repository

    Vedharaj, S.

    2016-12-01

    In this research, the flow and ignition properties of vegetable oil (VO) are improved by blending it with diethyl ether (DEE). DEE, synthesized from ethanol, has lower viscosity than diesel and VO. When DEE is blended with VO, the resultant DEEVO mixtures have favorable properties for compression ignition (CI) engine operation. As such, DEEVO20 (20% DEE + 80% VO) and DEEVO40 (40% DEE + 60% VO) were initially considered in the current study. The viscosity of VO is 32.4*10−6 m2/s; the viscosity is reduced with the increase of DEE in VO. In this study, our blends were limited to a maximum of 40% DEE in VO. The viscosity of DEEVO40 is 2.1*10−6 m2/s, which is comparable to that of diesel (2.3*10−6 m2/s). The lower boiling point and flash point of DEE improves the fuel spray and evaporation for DEEVO mixtures. In addition to the improvement in physical properties, the ignition quality of DEEVO mixtures is also improved, as DEE is a high cetane fuel (DCN = 139). The ignition characteristics of DEEVO mixtures were studied in an ignition quality tester (IQT). There is an evident reduction in ignition delay time (IDT) for DEEVO mixtures compared to VO. The IDT of VO (4.5 ms), DEEVO20 (3.2 ms) and DEEVO40 (2.7 ms) was measured in IQT. Accordingly, the derived cetane number (DCN) of DEEVO mixtures increased with the increase in proportion of DEE. The reported mixtures were also tested in a single cylinder CI engine. The start of combustion (SOC) was advanced for DEEVO20 and DEEVO40 compared to diesel, which is attributed to the high DCN of DEEVO mixtures. On the other hand, the peak heat release rate decreased for DEEVO mixtures compared to diesel. Gaseous emissions such as nitrogen oxide (NOX), total hydrocarbon (THC) and smoke were reduced for DEEVO mixtures compared to diesel. The physical and ignition properties of VO are improved by the addition of DEE, and thus, the need for the trans-esterification process is averted. Furthermore, this blending strategy is simpler

  16. Improving Knowledge Management in the Health Service: Re-Engineering Approach Towards Successful Implementation

    Science.gov (United States)

    Gyampoh-Vidogah, Regina; Moreton, Robert

    Changes to business practices involve risks. There has always been an attempt to develop various concepts for successful restructuring of business processes to enable technology adoption. This is due to the fact that the success of any business depends as much on how it is structured, as well as its ability to adopt new technology. As a consequence, the great success stories of the global economy emanate from those organisations most capable of adopting new technology, which invariably includes information technology (IT). This chapter examines how business process re-engineering (BPR) can be used to improve knowledge management (KM) in health services by (i) assessing the effectiveness and usefulness of BPR; (ii) present a critical review of approaches to BPR; and (iii) describe a framework for using BPR for KM based on empirical research. The aim is to provide a sound strategic and tactical management approach for successful implementation of knowledge management systems (KMS) to improve health-care service project administration.

  17. A requirements engineering approach for improving the quality of diabetes education websites.

    Science.gov (United States)

    Shabestari, Omid; Roudsari, Abdul

    2011-01-01

    Diabetes Mellitus is a major chronic disease with multi-organ involvement and high-cost complications. Although it has been proved that structured education can control the risk of developing these complications, there is big room for improvement in the educational services for these patients. e-learning can be a good solution to fill this gap. Most of the current e-learning solutions for diabetes were designed by computer experts and healthcare professionals but the patients, as end-users of these systems, haven't been deeply involved in the design process. Considering the expectations of the patients, this article investigates a requirement engineering process comparing the level of importance given to different attributes of the e-learning by patients and healthcare professionals. The results of this comparison can be used for improving the currently developed online diabetes education systems.

  18. Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects

    International Nuclear Information System (INIS)

    Chu, Ke; Wang, Fan; Tian, Ye; Wei, Zhen

    2017-01-01

    Heteroatom-doped graphene materials emerged as promising metal-free catalysts have recently attracted a growing interest in electrochemical sensing applications. However, their catalytic activity and sensing performances still need to be further improved. Herein, we reported the development of unique phosphorus (P)-doped and plasma-etched graphene (denoted as PG-E) as an efficient metal-free electrocatalyst for dopamine (DA) sensing. It was demonstrated that introducing both P-dopants and plasma-engineered defects in graphene could synergistically improve the activity toward electrocatalytic oxidation of DA by increasing the accessible active sites and promoting the electron transport capability. The resulting PG-E modified electrode showed exceptional DA sensing performances with low detection limit, high selectivity and good stability. These results suggested that the synergistic effect of dopants and defects might be an important factor for developing the advanced graphene-based metal-free catalysts for electrochemical sensing.

  19. Improved solution methods for an inverse problem related to a population balance model in chemical engineering

    International Nuclear Information System (INIS)

    Groh, Andreas; Krebs, Jochen

    2012-01-01

    In this paper, a population balance equation, originating from applications in chemical engineering, is considered and novel solution techniques for a related inverse problem are presented. This problem consists in the determination of the breakage rate and the daughter drop distribution of an evolving drop size distribution from time-dependent measurements under the assumption of self-similarity. We analyze two established solution methods for this ill-posed problem and improve the two procedures by adapting suitable data fitting and inversion algorithms to the specific situation. In addition, we introduce a novel technique that, compared to the former, does not require certain a priori information. The improved stability properties of the resulting algorithms are substantiated with numerical examples. (paper)

  20. Improving the Teaching of Teamwork Skills in Engineering and Computer Science

    Directory of Open Access Journals (Sweden)

    Robert W. Lingard

    2010-12-01

    Full Text Available It is important that engineering and computer science students learn teamwork skills as an integral part of their educational development. These skills are often not explicitly taught, but rather it is expected that students learn them on their own through participation in various team projects. Furthermore, the actual skills that students are expected to learn are usually not well articulated, or even understood. The approach outlined here attempts to address these problems by first establishing a process for defining what is meant by teamwork, by using this definition to assess the extent to which students are learning teamwork skills, and by using the assessment results to formulate approaches to improve student learning with respect to these skills. Specific attempts at the definition, assessment, and instruction improvement process are discussed.

  1. N-Glycosylation Engineering to Improve the Constitutive Expression of Rhizopus oryzae Lipase in Komagataella phaffii.

    Science.gov (United States)

    Yu, Xiao-Wei; Yang, Min; Jiang, Chuanhuan; Zhang, Xiaofeng; Xu, Yan

    2017-07-26

    Our previous studies demonstrated that the N-glycans in Rhizopus chinensis lipase (RCL) was important for its secretion. In order to improve the secretion of Rhizopus oryzae lipase (ROL) under the control of the GAP promoter in Komagataella phaffii, two extra N-glycosylation sites were introduced in ROL according to the position of the N-glycosylation sites of RCL by sequence alignment. The results indicated that the secretion level of ROL was strongly improved by N-glycosylation engineering, and the highest value of extracellular enzyme activity was increased from 0.4 ± 0.2 U/mL to 207 ± 6 U/mL in a shake flask. In the 7-L fermenter, the extracellular enzyme activity of the mutant (2600 ± 43 U/mL) and the total protein concentration (2.5 ± 0.2 g/L) were 218- and 6.25-fold higher than these of the parent, respectively. This study presents a strategy for constitutive recombinant expression of ROL using the GAP promoter combined with N-glycosylation engineering, providing a potential enzyme for application in the food industry.

  2. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  3. Identification of Disulfides from the Biodegradation of Dibenzothiophene

    Science.gov (United States)

    Bressler, David C.; Fedorak, Phillip M.

    2001-01-01

    Several investigations have identified benzothiophene-2,3-dione in the organic solvent extracts of acidified cultures degrading dibenzothiophene via the Kodama pathway. In solution at neutral pH, the 2,3-dione exists as 2-mercaptophenylglyoxylate, which cyclizes upon acidification and is extracted as the 2,3-dione. The fate of these compounds in microbial cultures has never been determined. This study investigated the abiotic reactions of 2-mercaptophenylglyoxylate incubated aerobically in mineral salts medium at neutral pH. Oxidation led to the formation of 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, formed from two molecules of 2-mercaptophenylglyoxylate. Two sequential abiotic, net losses of both a carbon and an oxygen atom produced two additional disulfides, 2-oxo-2-(2-thiophenyl)ethanoic acid 2-benzoic acid disulfide and 2,2′-dithiosalicylic acid. The methods developed to extract and detect these three disulfides were then used for the analysis of a culture of Pseudomonas sp. strain BT1d grown on dibenzothiophene as its sole carbon and energy source. All three of the disulfides were detected, indicating that 2-mercaptophenylglyoxylate is an important, short-lived intermediate in the breakdown of dibenzothiophene via the Kodama pathway. The disulfides eluded previous investigations because of (i) their high polarity, being dicarboxylic acids; (ii) the need to lower the pH of the aqueous medium to <1 to extract them into an organic solvent such as dichloromethane; (iii) their poor solubility in organic solvents, (iv) their removal from organic extracts of cultures during filtration through the commonly used drying agent anhydrous sodium sulfate; and (v) their high molecular masses (362, 334, and 306 Da) compared to that of dibenzothiophene (184 Da). PMID:11679330

  4. Electrostatic influence of local cysteine environments on disulfide exchange kinetics.

    Science.gov (United States)

    Snyder, G H; Cennerazzo, M J; Karalis, A J; Field, D

    1981-11-10

    The ionic strength dependence of the bimolecular rate constant for reaction of the negative disulfide 5,5'-dithiobis (2-nitrobenzoic acid) with cysteines in fragments of naturally occurring proteins was determined by stopped-flow spectroscopy. The Debye-Hückel relationship was applied to determine the effective charge at the cysteine and thereby determine the extent to which nearby neighbors in the primary sequence influence the kinetics. Corrections for the secondary salt effect on cysteine pKs were determined by direct spectrometric pH titration of sulfhydryl groups or by observation of the ionic strength dependence of kinetics of cysteine reaction with the neutral disulfide 2,2'-dithiodipyridine. Quantitative expressions was verified by model studies with N-acetyl-cystein. At ionic strengths equal to or greater than 20 mM, the net charge at the polypeptide cysteine site is the sum of the single negative charge of the thiolate anion and the charges of the amino acids immediately preceding and following the cysteine in the primary sequence. At lower ionic strengths, more distant residues influence kinetics. At pH 7.0, 23 degree C, and an ionic strength of 20 mM, rate constants for reaction of the negative disulfide with a cysteine having two positive neighbors, one positive and one neutral neighbor, or two neutral neighbors are 132000, 3350, and 367 s-1 M-1, respectively. This corresponds to a contribution to the activation energy of 0.65- 1.1 kcal/mol per ion pair involved in collision between the cysteine and disulfide regions. The results permit the estimation that cysteine local environments may provide a means of achieving a 10(6)-fold range in rate constants in disulfide exchange reactions in random-coil proteins. This range may prove useful in developing strategies for directing disulfide pairing in synthetic proteins.

  5. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    Energy Technology Data Exchange (ETDEWEB)

    Ted Bestor

    2003-03-04

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement

  6. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, Mark D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an α-helix, a "scaffold" region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca2+-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of λ Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of λ Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an α-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded βsheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of 15N NMR relaxation properties.

  7. Improved corrosion protection of aluminum alloys by low-temperature plasma interface engineering

    Science.gov (United States)

    Reddy, Chandra Mudupu

    The System Approach Interface Engineering (SAIE) concept was employed to develop corrosion protection processes for aluminum (Al) alloys by application of a low temperature plasma interface engineering technique with a cathodic electrocoat (E-coat) as the primary layer coating. The SAIE concept emphasizes that the corrosion protection property of the coated system for Al alloys depends on the total system rather than any good corrosion protection component of the system. The cathodic E-coated SAIE plasma pretreatments on Alclad 2024-T3, 2024-T3 bare and 7075-T6 bare alloys showed excellent corrosion resistance property when tested by SO2 and Prohesion salt spray tests. These systems out performed the conventional conversion coated controls, chromate conversion coated then Deft primer coated (CC Deft) and chromate conversion coated then cathodic E-coated (CC E-coat) in both the corrosion testes. The corrosion protection by SAIE systems depends on three major factors; (1) improved barrier characteristics of E-coat, (2) water insensitive adhesion of E-coat to plasma polymers deposited in a DC discharge and (3) creating a stable surface oxide layer by plasma treatment or chemical cleaning. Different chemical pretreatments were employed to create a stable barrier type aluminum oxide layer on the surfaces of the substrates prior to plasma polymer deposition. The surface analysis showed that these pretreatments depend on the type of alloy and surface chemistry. As received surfaces with acetone wipe and plasma cleaning of the organic contaminants was found to be best for Alclad 2024-T3 alloy. Chemical alkaline cleaning for 2024-T3 bare and alkaline cleaning followed by deoxidization for 7075-T6 bare alloy were necessary. The adhesion of the cathodic E-coat was improved by surface energy matching techniques by deposition of various plasma polymer films of trimethylsilane (TMS) and mixtures of TMS with O2, H2, and N2. The adhesion performance evaluated by the N

  8. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain

    International Nuclear Information System (INIS)

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A.

    2011-01-01

    With the aim of forming the ‘lock-washer’ conformation of the origin-binding domain of SV40 large T antigen in solution, using structure-based analysis an intermolecular disulfide bridge was engineered into the origin-binding domain to generate higher order oligomers in solution. The 1.7 Å resolution structure shows that the mutant forms a spiral in the crystal and has the de novo disulfide bond at the protein interface, although structural rearrangements at the interface are observed relative to the wild type. The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS–PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner

  9. Chemical and Photochemical Reactions of Thioctic Acid and RelatedDisulfides

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1954-06-10

    The carbon cycle of photosynthesis is briefly reviewed in its entirety and the experiments involving it which led to the implication of disulfide rupture in photosynthesis are indicated. A review of the organic, physical and photochemistry of disulfides, with particular reference to the five-membered disulfide rings as they appear in thioctic acid, is given.

  10. Perspectives on engineering strategies for improving biofuel production from microalgae--a critical review.

    Science.gov (United States)

    Ho, Shih-Hsin; Ye, Xiaoting; Hasunuma, Tomohisa; Chang, Jo-Shu; Kondo, Akihiko

    2014-12-01

    Although the potential for biofuel production from microalgae via photosynthesis has been intensively investigated, information on the selection of a suitable operation strategy for microalgae-based biofuel production is lacking. Many published reports describe competitive strains and optimal culture conditions for use in biofuel production; however, the major impediment to further improvements is the absence of effective engineering strategies for microalgae cultivation and biofuel production. This comprehensive review discusses recent advances in understanding the effects of major environmental stresses and the characteristics of various engineering operation strategies on the production of biofuels (mainly biodiesel and bioethanol) using microalgae. The performances of microalgae-based biofuel-producing systems under various environmental stresses (i.e., irradiance, temperature, pH, nitrogen depletion, and salinity) and cultivation strategies (i.e., fed-batch, semi-continuous, continuous, two-stage, and salinity-gradient) are compared. The reasons for variations in performance and the underlying theories of the various production strategies are also critically discussed. The aim of this review is to provide useful information to facilitate development of innovative and feasible operation technologies for effectively increasing the commercial viability of microalgae-based biofuel production. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Improvement of Swirl Chamber Structure of Swirl-Chamber Diesel Engine Based on Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Wenhua Yuan

    2014-10-01

    Full Text Available In order to improve combustion characteristic of swirl chamber diesel engine, a simulation model about a traditional cylindrical flat-bottom swirl chamber turbulent combustion diesel engine was established within the timeframe of the piston motion from the bottom dead centre (BDC to the top dead centre (TDC with the fluent dynamic mesh technique and flow field vector of gas in swirl chamber and cylinder; the pressure variation and temperature variation were obtained and a new type of swirl chamber structure was proposed. The results reveal that the piston will move from BDC; air in the cylinder is compressed into the swirl chamber by the piston to develop a swirl inside the chamber, with the ongoing of compression; the pressure and temperature are also rising gradually. Under this condition, the demand of diesel oil mixing and combusting will be better satisfied. Moreover, the new structure will no longer forma small fluid retention zone at the lower end outside the chamber and will be more beneficial to the mixing of fuel oil and air, which has presented a new idea and theoretical foundation for the design and optimization of swirl chamber structure and is thus of good significance of guiding in this regard.

  12. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    Science.gov (United States)

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering. © 2014 Wiley Periodicals, Inc.

  13. Engineered particles demonstrate improved flow properties at elevated drug loadings for direct compression manufacturing.

    Science.gov (United States)

    Trementozzi, Andrea N; Leung, Cheuk-Yui; Osei-Yeboah, Frederick; Irdam, Erwin; Lin, Yiqing; MacPhee, J Michael; Boulas, Pierre; Karki, Shyam B; Zawaneh, Peter N

    2017-05-15

    Optimizing powder flow and compaction properties are critical for ensuring a robust tablet manufacturing process. The impact of flow and compaction properties of the active pharmaceutical ingredient (API) becomes progressively significant for higher drug load formulations, and for scaling up manufacturing processes. This study demonstrated that flow properties of a powder blend can be improved through API particle engineering, without critically impacting blend tabletability at elevated drug loadings. In studying a jet milled API (D 50 =24μm) and particle engineered wet milled API (D 50 =70μm and 90μm), flow functions of all API lots were similarly poor despite the vast difference in average particle size (ff c 10) compared with the jet milled API blends. Investigation of the compaction properties of both wet and jet milled powder blends also revealed that both jet and wet milled material produced robust tablets at the drug loadings used. The ability to practically demonstrate this uncommon observation that similarly poor flowing APIs can lead to a marked difference upon blending is important for pharmaceutical development. It is especially important in early phase development during API selection, and is advantageous particularly when material-sparing techniques are utilized. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cameco engineered tailings program: linking applied research with industrial processes for improved tailings performance

    International Nuclear Information System (INIS)

    Kotzer, T.G.

    2010-01-01

    'Full text:' Mine tailings at Cameco's operations are by-products of milling uranium ore having variable concentrations of uranium, metals, oxyanions and trace elements or elements of concern (EOC). Cameco has undertaken an Engineered Tailings (ET) program to optimize tailings performance and minimize environmental EOC impacts, regardless of the milled ore source. Applied geochemical and geotechnical tailings research is key within the ET program. In-situ drilling and experimental programs are used to understand long-term tailings behaviour and help validate source term predictions. Within this, the ET program proactively aids in the development of mill-based processes for production of tailings having improved long-term stability. (author)

  15. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction.

    Science.gov (United States)

    Ye, Gonglan; Gong, Yongji; Lin, Junhao; Li, Bo; He, Yongmin; Pantelides, Sokrates T; Zhou, Wu; Vajtai, Robert; Ajayan, Pulickel M

    2016-02-10

    MoS2 is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS2. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.

  16. Improved impact-resistant boron/aluminum composites for use as turbine engine fan blades

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Thin-sheet Charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on unidirectional and angleply composites containing 4, 5.6 and 8 mil boron in 1100, 2024, 5052 and 6061 Al matrices. Impact failure modes of B/Al are proposed to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of more ductile matrices and larger diameter boron fibers gave the highest impact strengths by allowing matrix shear deformation and multiple fiber breakage. Pendulum impact test results of improved B/Al were higher than notched titanium and indicate sufficient foreign object damage protection to warrant consideration of B/Al for application to fan blades in aircraft gas turbine engines.

  17. A Cell-Enriched Engineered Myocardial Graft Limits Infarct Size and Improves Cardiac Function

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil, MS

    2016-08-01

    Full Text Available Myocardial infarction (MI remains a dreadful disease around the world, causing irreversible sequelae that shorten life expectancy and reduce quality of life despite current treatment. Here, the authors engineered a cell-enriched myocardial graft, composed of a decellularized myocardial matrix refilled with adipose tissue-derived progenitor cells (EMG-ATDPC. Once applied over the infarcted area in the swine MI model, the EMG-ATDPC improved cardiac function, reduced infarct size, attenuated fibrosis progression, and promoted neovascularization of the ischemic myocardium. The beneficial effects exerted by the EMG-ATDPC and the absence of identified adverse side effects should facilitate its clinical translation as a novel MI therapy in humans.

  18. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.

    Science.gov (United States)

    Achilleos, Demetra S; Hatton, T Alan

    2015-06-01

    With the current rising world demand for energy sufficiency, there is an increased necessity for the development of efficient energy storage devices. To address these needs, the scientific community has focused on the improvement of the electrochemical properties of the most well known energy storage devices; the Li-ion batteries and electrochemical capacitors, also called supercapacitors. Despite the fact that supercapacitors exhibit high power densities, good reversibility and long cycle life, they still exhibit lower energy densities than batteries, which limit their practical application. Various strategies have been employed to circumvent this problem, specifically targetting an increase in the specific capacitance and the broadening of the potential window of operation of these systems. In recent years, sophisticated surface design and engineering of hierarchical hybrid nanostructures has facilitated significant improvements in the specific and volumetric storage capabilities of supercapacitors. These nanostructured electrodes exhibit higher surface areas for ion adsorption and reduced ion diffusion lengths for the electrolyte ions. Significant advances have also been achieved in broadening the electrochemical window of operation of these systems, as realized via the development of asymmetric two-electrode cells consisting of nanocomposite positive and negative electrodes with complementary electrochemical windows, which operate in environmentally benign aqueous media. We provide an overview of the diverse approaches, in terms of chemistry and nanoscale architecture, employed recently for the development of asymmetric supercapacitors of improved electrochemical performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Implementing resilience engineering for healthcare quality improvement using the CARE model: a feasibility study protocol.

    Science.gov (United States)

    Anderson, J E; Ross, A J; Back, J; Duncan, M; Snell, P; Walsh, K; Jaye, P

    2016-01-01

    Resilience engineering (RE) is an emerging perspective on safety in complex adaptive systems that emphasises how outcomes emerge from the complexity of the clinical environment. Complexity creates the need for flexible adaptation to achieve outcomes. RE focuses on understanding the nature of adaptations, learning from success and increasing adaptive capacity. Although the philosophy is clear, progress in applying the ideas to quality improvement has been slow. The aim of this study is to test the feasibility of translating RE concepts into practical methods to improve quality by designing, implementing and evaluating interventions based on RE theory. The CARE model operationalises the key concepts and their relationships to guide the empirical investigation. The settings are the Emergency Department and the Older Person's Unit in a large London teaching hospital. Phases 1 and 2 of our work, leading to the development of interventions to improve the quality of care, are described in this paper. Ethical approval has been granted for these phases. Phase 1 will use ethnographic methods, including observation of work practices and interviews with staff, to understand adaptations and outcomes. The findings will be used to collaboratively design, with clinical staff in interactive design workshops, interventions to improve the quality of care. The evaluation phase will be designed and submitted for ethical approval when the outcomes of phases 1 and 2 are known. Study outcomes will be knowledge about the feasibility of applying RE to improve quality, the development of RE theory and a validated model of resilience in clinical work which can be used to guide other applications. Tools, methods and practical guidance for practitioners will also be produced, as well as specific knowledge of the potential effectiveness of the implemented interventions in emergency and older people's care. Further studies to test the application of RE at a larger scale will be required

  20. Improvement of paracellular transport in the Caco-2 drug screening model using protein-engineered substrates.

    Science.gov (United States)

    DiMarco, Rebecca L; Hunt, Daniel R; Dewi, Ruby E; Heilshorn, Sarah C

    2017-06-01

    The Caco-2 assay has achieved wide popularity among pharmaceutical companies in the past two decades as an in vitro method for estimation of in vivo oral bioavailability of pharmaceutical compounds during preclinical characterization. Despite its popularity, this assay suffers from a severe underprediction of the transport of drugs which are absorbed paracellularly, that is, which pass through the cell-cell tight junctions of the absorptive cells of the small intestine. Here, we propose that simply replacing the collagen I matrix employed in the standard Caco-2 assay with an engineered matrix, we can control cell morphology and hence regulate the cell-cell junctions that dictate paracellular transport. Specifically, we use a biomimetic engineered extracellular matrix (eECM) that contains modular protein domains derived from two ECM proteins found in the small intestine, fibronectin and elastin. This eECM allows us to independently tune the density of cell-adhesive RGD ligands presented to Caco-2 cells as well as the mechanical stiffness of the eECM. We observe that lower amounts of RGD ligand presentation as well as decreased matrix stiffness results in Caco-2 morphologies that more closely resemble primary small intestinal epithelial cells than Caco-2 cells cultured on collagen. Additionally, these matrices result in Caco-2 monolayers with decreased recruitment of actin to the apical junctional complex and increased expression of claudin-2, a tight junction protein associated with higher paracellular permeability that is highly expressed throughout the small intestine. Consistent with these morphological differences, drugs known to be paracellularly transported in vivo exhibited significantly improved transport rates in this modified Caco-2 model. As expected, permeability of transcellularly transported drugs remained unaffected. Thus, we have demonstrated a method of improving the physiological accuracy of the Caco-2 assay that could be readily adopted by

  1. Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Wei, Na; Xu, Haiqing; Kim, Soo Rin; Jin, Yong-Su

    2013-05-01

    Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD(+)/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation.

  2. Metal-free oxidative coupling of thiols to disulfides using ...

    Indian Academy of Sciences (India)

    Abstract. Efficient combination of nitro urea or guanidinium nitrate and silica sulfuric acid (SiO2OSO3H) as a new oxidizing system is able to oxidize a variety of aliphatic or aromatic thiols to the corresponding disulfides. The process reported here is operationally simple, environmentally benign and reactions have been ...

  3. Alpha-cyclodextrins reversibly capped with disulfide bonds

    Czech Academy of Sciences Publication Activity Database

    Kumprecht, Lukáš; Buděšínský, Miloš; Bouř, Petr; Kraus, Tomáš

    2010-01-01

    Roč. 34, č. 10 (2010), s. 2254-2260 ISSN 1144-0546 R&D Projects: GA AV ČR IAA400550810 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclodextrin s * disulfide bond * dynamic covalent bond Subject RIV: CC - Organic Chemistry Impact factor: 2.631, year: 2010

  4. Computational design of disulfide cyclic peptide as potential ...

    African Journals Online (AJOL)

    Development of genomic and proteomic studies coupled with computational sciences could facilitate the discovery of various target proteins and potential inhibitor to be developed as drugs. Several researches by molecular docking method have been conducted to design disulfide cyclic peptide ligand as potential inhibitors ...

  5. Metal-free oxidative coupling of thiols to disulfides using ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 4. Metal-free oxidative coupling of thiols to disulfides using guanidinium nitrate or nitro urea in the presence of silica sulfuric acid. Arash Ghorbani-Choghamarani Mohsen Nikoorazm Hamid Goudarziafshar Alireza Shokr Hosein Almasi. Volume 123 Issue 4 ...

  6. Dynamic thiol-disulfide homeostasis in hyperemesis gravidarum.

    Science.gov (United States)

    Ergin, M; Cendek, B D; Neselioglu, S; Avsar, A F; Erel, O

    2015-10-01

    To determine serum thiol-disulfide homeostasis in hyperemesis gravidarum. Twenty-six pregnant women with hyperemesis gravidarum and 37 healthy pregnant women were included in the study. Native thiol, disulfide and total thiol concentrations were measured with a novel automated method. Serum disulfide levels were 15.68±4.41 μmol l(-1) in the hyperemesis gravidarum group and 13.49±2.81 μmol l(-1) in the healthy group (P=0.031). Native thiol levels were 213.86±26.29 μmol l(-1) in the hyperemesis gravidarum group and 232.18±19.21 μmol l(-1) in healthy group (P=0.004), and total thiol levels were 245.23±28.58 μmol l(-1) in the hyperemesis gravidarum group and 259.17±19.94 μmol l(-1) in the healthy group (P=0.038). Native and total thiol were deficient in the hyperemesis gravidarum group and this deficiency was correlated with the severity of the disease. The thiol-disulfide balance has shifted to the oxidative side. This metabolic disturbance may have a role in the pathogenesis of hyperemesis gravidarum.

  7. Impaired Thiol-Disulfide Balance in Acute Brucellosis.

    Science.gov (United States)

    Kolgelier, Servet; Ergin, Merve; Demir, Lutfi Saltuk; Inkaya, Ahmet Cagkan; Aktug Demir, Nazlim; Alisik, Murat; Erel, Ozcan

    2017-05-24

    The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p brucellosis than in the healthy controls (p brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.

  8. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation

    DEFF Research Database (Denmark)

    Kulp, M. S.; Frickel, E. M.; Ellgaard, Lars

    2006-01-01

    catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide...... isomerase and disulfide oxidase, respectively. These findings reveal how native disulfide folding is accomplished in the endoplasmic reticulum and provide a context for understanding the proliferation of PDI homologs with combinatorial arrangements of thioredoxin domains.......Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus...

  9. Completion of an Online Library Module Improves Engineering Student Performance on Information Literacy Skills Tests

    Directory of Open Access Journals (Sweden)

    Rachel E. Scott

    2016-12-01

    Full Text Available A Review of: Zhang, Q., Goodman, M., & Xie, S. (2015. Integrating library instruction into the Course Management System for a first-year engineering class: An evidence-based study measuring the effectiveness of blended learning on students’ information literacy levels. College & Research Libraries, 76(7, 934-958. http://dx.doi.org/10.5860/crl.76.7.934 Objective – To assess the efficacy of an online library module and of blended learning methods on students’ information literacy skills. Design – Multi-modal, pre- and posttests, survey questionnaire, and focus groups. Setting – Public research university in London, Ontario, Canada. Subjects – First-year engineering students. Methods – Of 413 students enrolled in Engineering Science (ES 1050, 252 volunteered to participate in the study. Participants were asked to complete the online module, a pretest, a posttest, an online follow-up survey, and to take part in a focus group. Researchers generated a pretest and a posttest, each comprised of 15 questions:; multiple choice, true or false, and matching questions which tested students’ general and engineering-specific information literacy skills. The pretest and posttest had different, but similarly challenging, questions to ensure that students involved in the study would not have an advantage over those who had opted out. While all components of the study were voluntary, the posttest was a graded course assignment. In-person tutorials were offered on 4 occasions, with only 15 students participating. Both tutorial and module content were designed to cover all questions and competencies tested in the pretest and the posttest, including Boolean operators, peer review, identifying plagiarism, engineering standards, engineering handbooks, search strategies, patents, article citations, identifying reliable sources, and how to read journal articles. The posttest survey was delivered in the CMS immediately after the posttest was completed. It

  10. Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle.

    Science.gov (United States)

    Matsushita, Hiroaki; Sano, Akiko; Wu, Hua; Wang, Zhongde; Jiao, Jin-An; Kasinathan, Poothappillai; Sullivan, Eddie J; Kuroiwa, Yoshimi

    2015-01-01

    Large-scale production of fully human IgG (hIgG) or human polyclonal antibodies (hpAbs) by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC) engineering and tested these engineered HAC in cattle. Our previous study has demonstrated that site-specific genomic chimerization of pre-B cell receptor/B cell receptor (pre-BCR/BCR) components on HAC vectors significantly improves human IgG expression in cattle where the endogenous bovine immunoglobulin genes were knocked out. In this report, hIgG1 class switch regulatory elements were subjected to site-specific genomic chimerization on HAC vectors to further enhance hIgG expression and improve hIgG subclass distribution in cattle. These species-specific modifications in a chromosome scale resulted in much higher production levels of fully hIgG of up to 15 g/L in sera or plasma, the highest ever reported for a transgenic animal system. Transchromosomic (Tc) cattle containing engineered HAC vectors generated hpAbs with high titers against human-origin antigens following immunization. This study clearly demonstrates that species-specific sequence differences in pre-BCR/BCR components and IgG1 class switch regulatory elements between human and bovine are indeed functionally distinct across the two species, and therefore, are responsible for low production of fully hIgG in our early versions of Tc cattle. The high production levels of fully hIgG with hIgG1 subclass dominancy in a large farm animal species achieved here is an important milestone towards broad therapeutic applications of hpAbs.

  11. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  12. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  13. A Study on Improving United States Air Force Space Systems Engineering and Acquisition

    National Research Council Canada - National Science Library

    Stahr, Jeremiah B

    2006-01-01

    ...) and United States Air Force (USAF) policies and practices, many government systems engineers today lack the systems engineering/management skills required to successfully execute national security space programs...

  14. 76 FR 46769 - Applications for New Awards; Minority Science and Engineering Improvement Program

    Science.gov (United States)

    2011-08-03

    ... science, technology, engineering, or mathematics (STEM) fields; or applications that develop articulation... Administration, National Oceanic and Atmospheric Administration, National Science Foundation and National... in science, technology, engineering and mathematics. D. For cooperative projects grants, eligible...

  15. Modulation of Thiol-Disulfide Oxidoreductases for Increased Production of Disulfide-Bond-Containing Proteins in Bacillus subtilis

    NARCIS (Netherlands)

    Kouwen, Thijs R. H. M.; Dubois, Jean-Yves F.; Freudl, Roland; Quax, Wim J.; van Dijl, Jan Maarten

    2008-01-01

    Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of

  16. Improving the Practical Education of Chemical and Pharmaceutical Engineering Majors in Chinese Universities

    Science.gov (United States)

    Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu

    2014-01-01

    Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…

  17. RFID-Based Multidisciplinary Educational Platform to Improve the Engineering and Technology Curriculums

    Science.gov (United States)

    Yelamarthi, Kumar

    2012-01-01

    Multidisciplinary projects involving electrical engineering (EE), mechanical engineering (ME), and computer engineering (CE) students are both exciting and difficult to conceptualize. Answering this challenge, this paper presents a multidisciplinary educational platform on radio frequency identification-based assistive devices. The combination of…

  18. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    Directory of Open Access Journals (Sweden)

    François-Xavier Gillet

    2017-04-01

    Full Text Available Genetically modified (GM crops producing double-stranded RNAs (dsRNAs are being investigated largely as an RNA interference (RNAi-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis, we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain combined with dsRNA forms a ribonucleoprotein particle (RNP that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  19. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Fengming Lin

    Full Text Available Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  20. Integrating Theory and Practice: Applying the Quality Improvement Paradigm to Product Line Engineering

    Science.gov (United States)

    Stark, Michael; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    My assertion is that not only are product lines a relevant research topic, but that the tools used by empirical software engineering researchers can address observed practical problems. Our experience at NASA has been there are often externally proposed solutions available, but that we have had difficulties applying them in our particular context. We have also focused on return on investment issues when evaluating product lines, and while these are important, one can not attain objective data on success or failure until several applications from a product family have been deployed. The use of the Quality Improvement Paradigm (QIP) can address these issues: (1) Planning an adoption path from an organization's current state to a product line approach; (2) Constructing a development process to fit the organization's adoption path; (3) Evaluation of product line development processes as the project is being developed. The QIP consists of the following six steps: (1) Characterize the project and its environment; (2) Set quantifiable goals for successful project performance; (3) Choose the appropriate process models, supporting methods, and tools for the project; (4) Execute the process, analyze interim results, and provide real-time feedback for corrective action; (5) Analyze the results of completed projects and recommend improvements; and (6) Package the lessons learned as updated and refined process models. A figure shows the QIP in detail. The iterative nature of the QIP supports an incremental development approach to product lines, and the project learning and feedback provide the necessary early evaluations.

  1. Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering.

    Science.gov (United States)

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.

  2. Engineered P450 biocatalysts show improved activity and regio-promiscuity in aromatic nitration.

    Science.gov (United States)

    Zuo, Ran; Zhang, Yi; Jiang, Chao; Hackett, John C; Loria, Rosemary; Bruner, Steven D; Ding, Yousong

    2017-04-12

    Nitroaromatics are among the most important and commonly used chemicals but their production often suffers from multiple unsolved challenges. We have previously described the development of biocatalytic nitration processes driven by an engineered P450 TxtE fusion construct. Herein we report the creation of improved nitration biocatalysts through constructing and characterizing fusion proteins of TxtE with the reductase domain of CYP102A1 (P450BM3, BM3R). The majority of constructs contained variable linker length while one was rationally designed for optimizing protein-protein interactions. Detailed biochemical characterization identified multiple active chimeras that showed improved nitration activity, increased coupling efficiency and higher total turnover numbers compared with TxtE. Substrate promiscuity of the most active chimera was further assessed with a substrate library. Finally, a biocatalytic nitration process was developed to nitrate 4-Me-DL-Trp. The production of both 4-Me-5-NO 2 -L-Trp and 4-Me-7-NO 2 -L-Trp uncovered remarkable regio-promiscuity of nitration biocatalysts.

  3. Improved Geometry of Decellularized Tissue Engineered Heart Valves to Prevent Leaflet Retraction.

    Science.gov (United States)

    Sanders, Bart; Loerakker, Sandra; Fioretta, Emanuela S; Bax, Dave J P; Driessen-Mol, Anita; Hoerstrup, Simon P; Baaijens, Frank P T

    2016-04-01

    Recent studies on decellularized tissue engineered heart valves (DTEHVs) showed rapid host cell repopulation and increased valvular insufficiency developing over time, associated with leaflet shortening. A possible explanation for this result was found using computational simulations, which revealed radial leaflet compression in the original valvular geometry when subjected to physiological pressure conditions. Therefore, an improved geometry was suggested to enable radial leaflet extension to counteract for host cell mediated retraction. In this study, we propose a solution to impose this new geometry by using a constraining bioreactor insert during culture. Human cell based DTEHVs (n = 5) were produced as such, resulting in an enlarged coaptation area and profound belly curvature. Extracellular matrix was homogeneously distributed, with circumferential collagen alignment in the coaptation region and global tissue anisotropy. Based on in vitro functionality experiments, these DTEHVs showed competent hydrodynamic functionality under physiological pulmonary conditions and were fatigue resistant, with stable functionality up to 16 weeks in vivo simulation. Based on implemented mechanical data, our computational models revealed a considerable decrease in radial tissue compression with the obtained geometrical adjustments. Therefore, these improved DTEHV are expected to be less prone to host cell mediated leaflet retraction and will remain competent after implantation.

  4. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters.

    Science.gov (United States)

    Zhang, Jia; Zhang, Biao; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2015-01-01

    Three transporter genes including Kluyveromyces marxianus aquaglyceroporin gene (KmFPS1), Candida intermedia glucose/xylose facilitator gene (CiGXF1) or glucose/xylose symporter gene (CiGXS1) were over-expressed in K. marxianus YZJ017 to improve xylitol production at elevated temperatures. The xylitol production of YZJ074 that harbored CiGXF1 was improved to 147.62g/L in Erlenmeyer flask at 42°C. In fermenter, 99.29 and 149.60g/L xylitol were produced from 99.55 and 151.91g/L xylose with productivity of 4.14 and 3.40g/L/h respectively at 42°C. Even at 45°C, YZJ074 could produce 101.30g/L xylitol from 101.41g/L xylose with productivity of 2.81g/L/h. Using fed-batch fermentation through repeatedly adding non-sterilized substrate directly, YZJ074 could produce 312.05g/L xylitol which is the highest yield reported to date. The engineered strains YZJ074 which can produce xylitol at elevated temperatures is an excellent foundation for xylitol bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  6. Disulfide-crosslinked electrospun poly(gamma-glutamic acid) nonwovens as reduction-responsive scaffolds.

    Science.gov (United States)

    Yoshida, Hiroaki; Klinkhammer, Kristina; Matsusaki, Michiya; Möller, Martin; Klee, Doris; Akashi, Mitsuru

    2009-06-11

    Novel water-insoluble, and reduction-responsive nonwoven scaffolds were fabricated from gamma-PGA and tested in cell culture. An electrospinning method was developed to produce scaffolds of fibers with diameters of 0.05-0.5 microm. Crosslinking of the fibers with cystamine in the presence of EDC resulted in water-insoluble gamma-PGA nonwovens with disulfide crosslinkages. These crosslinked fibers were easily decomposed under physiological conditions using L-cysteine, a biocompatible reductant. In vitro experiments with mouse L929 fibroblasts showed good adhesion onto gamma-PGA-SS fiber matrices and excellent cell proliferation. These gamma-PGA-SS nonwovens can be used as novel biocompatible and biodegradable scaffolds with reduction-responsiveness for biomedical or tissue engineering applications.

  7. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2009-04-01

    . Conclusion This work constitutes the first example of a microbial system for the environmentally-compatible synthesis of anthranilate generated by metabolic engineering. The results presented here, including the characterization of mutation in the trpD gene from strain W3110 trpD9923 and the development of a fermentation strategy, establish a step forward towards the future improvement of a sustainable process for anthranilate production. In addition, the present work provides very useful data regarding the positive and negative consequences of the evaluated metabolic engineering strategies.

  8. Characteristics of layered tin disulfide deposited by atomic layer deposition with H2S annealing

    Directory of Open Access Journals (Sweden)

    Seungjin Lee

    2017-04-01

    Full Text Available Tin disulfide (SnS2 has attracted much attention as a two-dimensional (2D material. A high-quality, low-temperature process for producing 2D materials is required for future electronic devices. Here, we investigate tin disulfide (SnS2 layers deposited via atomic layer deposition (ALD using tetrakis(dimethylaminotin (TDMASn as a Sn precursor and H2S gas as a sulfur source at low temperature (150° C. The crystallinity of SnS2 was improved by H2S gas annealing. We carried out H2S gas annealing at various conditions (250° C, 300° C, 350° C, and using a three-step method. Angle-resolved X-ray photoelectron spectroscopy (ARXPS results revealed the valence state corresponding to Sn4+ and S2- in the SnS2 annealed with H2S gas. The SnS2 annealed with H2S gas had a hexagonal structure, as measured via X-ray diffraction (XRD and the clearly out-of-plane (A1g mode in Raman spectroscopy. The crystallinity of SnS2 was improved after H2S annealing and was confirmed using the XRD full-width at half-maximum (FWHM. In addition, high-resolution transmission electron microscopy (HR-TEM images indicated a clear layered structure.

  9. Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer.

    Science.gov (United States)

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat; Wang, Zisheng

    2015-12-01

    As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.

  10. Redundancy, resilience and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations

    Directory of Open Access Journals (Sweden)

    Paul James Weimer

    2015-04-01

    Full Text Available The ruminal microbial community is remarkably diverse, containing hundreds of different bacterial and archaeal species, plus many species of fungi and protozoa. Molecular studies have identified a core microbiome dominated by phyla Firmicutes and Bacteroidetes, but also containing many other taxa. The rumen provides an ideal laboratory for studies on microbial ecology and the demonstration of ecological principles. In particular, the microbial community demonstrates both redundancy (overlap of function among multiple species and resilience (resistance to, and capacity to recover from, perturbation. These twin properties provide remarkable stability that maintains digestive function for the host across a range of feeding and management conditions, but they also provide a challenge to engineering the rumen for improved function (e.g., improved fiber utilization or decreased methane production. Direct ruminal dosing or feeding of probiotic strains often fails to establish the added strains, due to intensive competition and amensalism from the indigenous residents that are well-adapted to the historical conditions within each rumen. Known exceptions include introduced strains that can fill otherwise unoccupied niches, as in the case of specialist bacteria that degrade phytotoxins such as mimosine or fluoroacetate. An additional complicating factor in manipulating the ruminal fermentation is the individuality or host specificity of the microbiota, in which individual animals contain a particular community whose species composition is capable of reconstituting itself, even following a near-total exchange of ruminal contents from another herd mate maintained on the same diet. Elucidation of the interactions between the microbial community and the individual host that establish and maintain this specificity may provide insights into why individual hosts vary in production metrics (e.g., feed efficiency or milk fat synthesis, and how to improve herd

  11. Engineering melon plants with improved fruit shelf life using the TILLING approach.

    Directory of Open Access Journals (Sweden)

    Fatima Dahmani-Mardas

    2010-12-01

    Full Text Available Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening.To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect.We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.

  12. Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines.

    Science.gov (United States)

    Jones, Andrew R; Siepen, Jennifer A; Hubbard, Simon J; Paton, Norman W

    2009-03-01

    LC-MS experiments can generate large quantities of data, for which a variety of database search engines are available to make peptide and protein identifications. Decoy databases are becoming widely used to place statistical confidence in result sets, allowing the false discovery rate (FDR) to be estimated. Different search engines produce different identification sets so employing more than one search engine could result in an increased number of peptides (and proteins) being identified, if an appropriate mechanism for combining data can be defined. We have developed a search engine independent score, based on FDR, which allows peptide identifications from different search engines to be combined, called the FDR Score. The results demonstrate that the observed FDR is significantly different when analysing the set of identifications made by all three search engines, by each pair of search engines or by a single search engine. Our algorithm assigns identifications to groups according to the set of search engines that have made the identification, and re-assigns the score (combined FDR Score). The combined FDR Score can differentiate between correct and incorrect peptide identifications with high accuracy, allowing on average 35% more peptide identifications to be made at a fixed FDR than using a single search engine.

  13. Application of thermal barrier coating for improving the suitability of Annona biodiesel in a diesel engine

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available The Annona biodiesel was produced from Annona oil through transesterification process. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using a annona methyl ester as a fuel. They are blended together with the Neat diesel fuel such as 20%, 40%, 60%, 80%, and Neat biodiesel. The performance, emission and combustion characteristics are evaluated by operating the engine at different loads. The performance parameters such as brake thermal efficiency, brake specific fuel consumption. The emission constituents such as carbon monoxide, unburned hydrocarbons, oxides of nitrogen, and smoke were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with 100 µm of NiCrAl as lining layer. Later the same parts were coated with 400 µm material of coating that was the mixture of 88% of ZrO2, 4% of MgO, and 8% of Al2O3. After the engine coating process, the same fuels is tested in the engine at the same engine operation. The same performance and emission parameters were evaluated. Finally, these parameters are compared with uncoated engine in order to find out the changes in the performance and emission parameters of the coated engine. It is concluded that the coating engine resulting in better performance, especially in considerably lower brake specific fuel consumption values. The engine emissions are lowered both through coating and annona methyl ester biodiesel expect the nitrogen oxides emission.

  14. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    SENDILVELAN S.

    2017-11-01

    Full Text Available Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize the blends for reducing emission and improving performance. Results show improved performance with B10 blends compared to neat fuel for all conditions of the engine. Other blends recorded marginal decrease in brake thermal efficiency. The maximum efficiency for B30, B50 blends at peak load are 26.3%, 25.2% respectively against 29.1% for sole fuel. NOx emissions were found to be high or the blends. Peak pressure and rate of pressure rise are increased with increase in dioxane ratio due to improved combustion rate. Heat release pattern shows higher premixed combustion rate with the blends. Higher ignition delay and lower combustion duration are found with all blends than neat diesel fuel.

  15. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability

    Science.gov (United States)

    Huang, Li-Bo; Su, Pei-Yang; Liu, Jun-Min; Huang, Jian-Feng; Chen, Yi-Fan; Qin, Su; Guo, Jing; Xu, Yao-Wei; Su, Cheng-Yong

    2018-02-01

    This work proposes a new perovskite solar cell structure by inserting a polymer interlayer between perovskite and hole transporting material (HTM) to minimize the interface losses via interface engineering. The multifunctional interlayers improve the photovoltaic efficiency and device stability by shielding perovskite from moisture, suppressing charge combination, and promoting hole transport. The five different polymer layers are utilized to investigate the relationships of polymer structure, layer morphology and cell performance systematically. It is found that a reliable power conversion efficiency exceeding 19.0% is realized based on P3HT/spiro-OMeTAD composite structure, surpassing that of pure spiro-OMeTAD (15.0%). Moreover, the device with P3HT interlayer shows more brilliant long-term stability than that without interlayer when exposed into moisture. The enhanced device performance based on P3HT interlayer compared with the other polymers can be ascribed to the long hydrophobic alkyl chains and the small molecule monomers of P3HT, which contribute to self-assembly of the polymers into insulating layers and formation of the efficient π-π stacking in polymer/spiro-OMeTAD interface simultaneously. This study provides a practical route for the integration of a new class of easily-accessible, solution-processed interfacial polymer materials for high-performance and long-time stable PSC.

  16. Dynamic study for performance improvements of a thermo-mechanically bistable heat engine

    Science.gov (United States)

    Boughaleb, J.; Arnaud, A.; Monfray, S.; Cottinet, P. J.; Quenard, S.; Pitone, G.; Boeuf, F.; Guyomar, D.; Skotnicki, T.

    2015-12-01

    This paper focuses on a thermal study of a thermal energy harvester based on the coupling of a bimetallic strip heat engine with a piezoelectric membrane for wasted heat scavenging. Such a harvester is dedicated to power autonomous systems such as wireless sensor nodes. For a better understanding of the working principle of the system, it is compulsory to have a good understanding of the thermal specificities and phenomenon taking place inside the harvester. Attention is consequently focused on the thermal modeling of the harvester in static mode using the equivalence between the electrical and thermal quantities. This first modeling step allowed the improvement of the thermal properties inside the system by increasing the thermal gradient across it. However, the bimetal being the active part of the system has not been taken into account in this model and shadow zones persisted regarding the bimetal operation windows as a function of its snapping temperatures and hysteresis. To overcome this, a dynamic model is proposed in this paper taking into account the bimetal as a switched capacitance alternatively in contact with the hot source and the cold surface. This last model completed the static one by predicting the bimetal's operation windows in function of its intrinsic properties and the operation range evolution in function of the snapping temperature first and then in function of the bimetal thermal hysteresis. Moreover, experimental measurements enable to validate the proposed model and to point out the most powerful bimetals for scavenging higher amounts of power.

  17. Efficient fdCas9 Synthetic Endonuclease with Improved Specificity for Precise Genome Engineering

    KAUST Repository

    Aouida, Mustapha

    2015-07-30

    The Cas9 endonuclease is used for genome editing applications in diverse eukaryotic species. A high frequency of off-target activity has been reported in many cell types, limiting its applications to genome engineering, especially in genomic medicine. Here, we generated a synthetic chimeric protein between the catalytic domain of the FokI endonuclease and the catalytically inactive Cas9 protein (fdCas9). A pair of guide RNAs (gRNAs) that bind to sense and antisense strands with a defined spacer sequence range can be used to form a catalytically active dimeric fdCas9 protein and generate double-strand breaks (DSBs) within the spacer sequence. Our data demonstrate an improved catalytic activity of the fdCas9 endonuclease, with a spacer range of 15–39 nucleotides, on surrogate reporters and genomic targets. Furthermore, we observed no detectable fdCas9 activity at known Cas9 off-target sites. Taken together, our data suggest that the fdCas9 endonuclease variant is a superior platform for genome editing applications in eukaryotic systems including mammalian cells.

  18. Fumarate Production by Torulopsis glabrata: Engineering Heterologous Fumarase Expression and Improving Acid Tolerance.

    Directory of Open Access Journals (Sweden)

    Xiulai Chen

    Full Text Available Fumarate is a well-known biomass building block compound. However, the poor catalytic efficiency of fumarase is one of the major factors preventing its widespread production. To address this issue, we selected residues 159HPND162 of fumarase from Rhizopus oryzae as targets for site-directed mutagenesis based on molecular docking analysis. Twelve mutants were generated and characterized in detail. Kinetic studies showed that the Km values of the P160A, P160T, P160H, N161E, and D162W mutants were decreased, whereas Km values of H159Y, H159V, H159S, N161R, N161F, D162K, and D162M mutants were increased. In addition, all mutants displayed decreased catalytic efficiency except for the P160A mutant, whose kcat/Km was increased by 33.2%. Moreover, by overexpressing the P160A mutant, the engineered strain T.G-PMS-P160A was able to produce 5.2 g/L fumarate. To further enhance fumarate production, the acid tolerance of T.G-PMS-P160A was improved by deleting ade12, a component of the purine nucleotide cycle, and the resulting strain T.G(△ade12-PMS-P160A produced 9.2 g/L fumarate. The strategy generated in this study opens up new avenues for pathway optimization and efficient production of natural products.

  19. Methods of preparing internal combustion engine cylinder bore surfaces for frictional improvement

    Directory of Open Access Journals (Sweden)

    Chung Hwa Kong

    2017-01-01

    Full Text Available Frictional losses piston to cylinder bore contact is a major sources of mechanical losses in an internal combustion engine (ICE. Traditional plateau honing produces a relatively rough cylinder bore surface with many valleys for oil retention and plateau surfaces that are usually has micro roughness's that causes mechanical friction to act as a bearing surface. A smooth polished dimpled surface is more ideal to achieve low friction and wear in an ICE. Alternative methods to create a smooth dimpled surface on a hypereutectic aluminum ADC12 substrate for frictional improvements are evaluated in this study using an oscillating wear tester (OWT. The methods include casting in the dimples in the aluminum matrix, sandblasting as well as embossing the pits. The texture samples are evaluated by examining the surface properties, measuring frictional coefficient as well as wear characteristics. It was found that the samples embossed with #320 grit sandpaper and sandblasted with #240 sieve sand samples had a reduced coefficient of friction (μ of 23% at low sliding speeds before hydrodynamic lubrication mode and 6.9% in the fully hydrodynamic lubrication region.

  20. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications.

    Science.gov (United States)

    Hickey, Daniel J; Ercan, Batur; Sun, Linlin; Webster, Thomas J

    2015-03-01

    Magnesium plays an important role in the body, mediating cell-extracellular matrix interactions and bone apatite structure and density. This study investigated, for the first time, the effects of adding magnesium oxide (MgO) nanoparticles to poly (l-lactic acid) (PLLA) and to hydroxyapatite (HA) nanoparticle-PLLA composites for orthopedic tissue engineering applications. Results showed that MgO nanoparticles significantly enhanced osteoblast adhesion and proliferation on HA-PLLA nanocomposites while maintaining mechanical properties (Young's modulus ∼1,000 MPa) suitable for cancellous bone applications. Additionally, osteoblasts (or bone-forming cells) cultured in the supernatant of degrading nanocomposites showed improved proliferation in the presence of magnesium, indicating that the increased alkalinity of solutions containing MgO nanocomposites had no toxic effects towards cells. These results together indicated the promise of further studying MgO nanoparticles as additive materials to polymers to enhance the integration of implanted biomaterials with bone. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Engineering spray-dried rosemary extracts with improved physicomechanical properties: a design of experiments issue

    Directory of Open Access Journals (Sweden)

    Luiza T. Chaul

    Full Text Available ABSTRACT A 33 Box–Behnken design and Response Surface Methodology were performed to evaluate the influence of extract feed rate, drying air inlet temperature and spray nozzle airflow rate on the process yield, stability parameters (moisture content and water activity and on several physicomechanical properties of spray-dried rosemary extracts. Powder yield ranged from 17.1 to 74.96%. The spray-dried rosemary extracts showed moisture content and water activity below 5% and 0.5%, respectively, which indicate their chemical and microbiological stabilities. Even without using drying aids, some sets of experimental conditions rendered dried products with suitable flowability and compressibility characteristics for direct preparation of solid dosage forms. Analysis of variance and Response Surface Methodology proved that studied factors significantly affected most of the spray-dried rosemary extract quality indicators at different levels. The main processing parameter affecting the spray-dried rosemary extract characteristics was inlet temperature. The best combination of parameters used to obtain a reasonable yield of stable dry rosemary extracts with adequate technological properties for pharmaceutical purpose involves an extract feed rate of 2 ml/min, 80 °C inlet temperature and 40 l/min SA. The design of experiments approach is an interesting strategy for engineering spray-dried rosemary extracts with improved characteristics for pharmaceutical industrial purpose.

  2. A Case of Engineering Quality for Mobile Healthcare Applications Using Augmented Personal Software Process Improvement

    Directory of Open Access Journals (Sweden)

    Shahbaz Ahmed Khan Ghayyur

    2016-01-01

    Full Text Available Mobile healthcare systems are currently considered as key research areas in the domain of software engineering. The adoption of modern technologies, for mobile healthcare systems, is a quick option for industry professionals. Software architecture is a key feature that contributes towards a software product, solution, or services. Software architecture helps in better communication, documentation of design decisions, risks identification, basis for reusability, scalability, scheduling, and reduced maintenance cost and lastly it helps to avoid software failures. Hence, in order to solve the abovementioned issues in mobile healthcare, the software architecture is integrated with personal software process. Personal software process has been applied successfully but it is unable to address the issues related to architectural design and evaluation capabilities. Hence, a new technique architecture augmented personal process is presented in order to enhance the quality of the mobile healthcare systems through the use of architectural design with integration of personal software process. The proposed process was validated by case studies. It was found that the proposed process helped in reducing the overall costs and effort. Moreover, an improved architectural design helped in development of high quality mobile healthcare system.

  3. Dynamic Combinatorial Chemistry with Diselenides, Disulfides, Imines and Metal Coordination

    DEFF Research Database (Denmark)

    Sørensen, Anne

    The design and preparation of strong and selective artificial receptors, especially biomi-metic receptors that function in aqueous solution, has proved truly challenging. In this thesis it will be described how the strengths of dynamic combinatorial chemistry can be used to great advantage...... in this field. The aim of this project has therefore been to develop new ways of using dynamic combinatorial libraries for molecular recognition in aqueous media. The focus has been on using what has been learned from the well-established di-sulfide exchange chemistry to incorporate a new reaction into dynamic...... experimentally and theoretically and found to be unique in organoselenium chemistry by proceeding through a four-membered cyclic transition state following first-order kinetics. Subsequently, this thesis illustrates how an aliphatic diselenide could be used to catalyse the formation of a disulfide based dynamic...

  4. Reactive copolymers based on N-vinyl lactams with pyridyl disulfide side groups via RAFT polymerization and postmodification via thiol-disulfide exchange reaction

    NARCIS (Netherlands)

    Peng, Huan; Rübsam, Kristin; Huang, Xiaobin; Jakob, Felix; Karperien, Marcel; Schwaneberg, Ulrich; Pich, Andrij

    2016-01-01

    Herein, we report the synthesis of a series of novel pyridyl disulfide (PDS)-functionalized statistical reactive copolymers that enable facile access to complex polymeric architectures through highly selective thiol-disulfide exchange reaction with thiol-containing ligands or proteins. Functional

  5. A structural model of pestivirus E(rns) based on disulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide

    NARCIS (Netherlands)

    Langedijk, J.P.M.; Veelen, van P.A.; Schaaper, W.M.M.; Ru, de A.H.; Meloen, R.H.; Hulst, M.M.

    2002-01-01

    Erns is a pestivirus envelope glycoprotein and is the only known viral surface protein with RNase activity. Erns is a disulfide-linked homodimer of 100 kDa; it is found on the surface of pestivirus-infected cells and is secreted into the medium. In this study, the disulfide arrangement of the nine

  6. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  7. Towards a Framework to Improve the Quality of Teaching and Learning: Consciousness and Validation in Computer Engineering Science, UCT

    Science.gov (United States)

    Lévano, Marcos; Albornoz, Andrea

    2016-01-01

    This paper aims to propose a framework to improve the quality in teaching and learning in order to develop good practices to train professionals in the career of computer engineering science. To demonstrate the progress and achievements, our work is based on two principles for the formation of professionals, one based on the model of learning…

  8. Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine

    Science.gov (United States)

    Present the implementation of cEGR and CDA on an Atkinson engine and use steady state fuel consumption maps to estimate the technologies’ potential fuel economy improvements over the FTP and Highway tests. In addition to use fuel weighted modes to determine possible fuel economy...

  9. Managing project complexity : A study into adapting early project phases to improve project performance in large engineering projects

    NARCIS (Netherlands)

    Bosch-Rekveldt, M.G.C.

    2011-01-01

    Engineering projects become increasingly more complex and project complexity is assumed to be one of the causes for projects being delivered late and over budget. However, what this project complexity actually comprised of was unclear. To improve the overall project performance, this study focuses

  10. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  11. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin

    Directory of Open Access Journals (Sweden)

    Steuer Kristin

    2011-04-01

    Full Text Available Abstract Background The xanthophyll astaxanthin is a high-value compound with applications in the nutraceutical, cosmetic, food, and animal feed industries. Besides chemical synthesis and extraction from naturally producing organisms like Haematococcus pluvialis, heterologous biosynthesis in non-carotenogenic microorganisms like Escherichia coli, is a promising alternative for sustainable production of natural astaxanthin. Recent achievements in the metabolic engineering of E. coli strains have led to a significant increase in the productivity of carotenoids like lycopene or β-carotene by increasing the metabolic flux towards the isoprenoid precursors. For the heterologous biosynthesis of astaxanthin in E. coli, however, the conversion of β-carotene to astaxanthin is obviously the most critical step towards an efficient biosynthesis of astaxanthin. Results Here we report the construction of the first plasmid-free E. coli strain that produces astaxanthin as the sole carotenoid compound with a yield of 1.4 mg/g cdw (E. coli BW-ASTA. This engineered E. coli strain harbors xanthophyll biosynthetic genes from Pantoea ananatis and Nostoc punctiforme as individual expression cassettes on the chromosome and is based on a β-carotene-producing strain (E. coli BW-CARO recently developed in our lab. E. coli BW-CARO has an enhanced biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP and produces β-carotene in a concentration of 6.2 mg/g cdw. The expression of crtEBIY along with the β-carotene-ketolase gene crtW148 (NpF4798 and the β-carotene-hydroxylase gene (crtZ under controlled expression conditions in E. coli BW-ASTA directed the pathway exclusively towards the desired product astaxanthin (1.4 mg/g cdw. Conclusions By using the λ-Red recombineering technique, genes encoding for the astaxanthin biosynthesis pathway were stably integrated into the chromosome of E. coli. The expression levels of chromosomal integrated recombinant

  12. Growth engineering of Synechococcus elongatus PCC 7942 for mixotrophy under natural light conditions for improved feedstock production.

    Science.gov (United States)

    Sarnaik, Aditya; Pandit, Reena; Lali, Arvind

    2017-09-01

    Synechococcus elongatus PCC 7942 has been widely explored as cyanobacterial cell factory through genetic modifications for production of various value-added compounds. However, successful industrial scale-ups have not been reported for the system predominantly due to its obligate photoautotrophic metabolism and use of artificial light in photobioreactors. Hence, engineering the organism to perform mixotrophy under natural light could serve as an effective solution. Thus, we applied a genetically engineered strain of Synechococcus elongatus PCC 7942 expressing heterologous hexose transporter gene (galP) to perform mixotrophy under natural light in a temperature controlled environmental chamber (EC). We systematically studied the comparative performances of these transformants using autotrophy and mixotrophy, which showed 3.4 times increase in biomass productivity of mixotrophically grown transformants over autotrophs in EC. Chlorophyll a yield was found to have decreased in mixotrophic conditions, possibly indicating reduced dependency on light for energy metabolism. Although pigment yield decreases under mixotrophy, titer was found to have improved due to increased biomass productivity. Carotenoid analysis showed that zeaxanthin is the major carotenoid produced by the species which is essential for photoprotection. Our work thus demonstrates that mixotrophy under temperature controlled natural light can serve as the viable solution to improve biomass productivity of Synechococcus elongatus PCC 7942 and for commercial production of natural or engineered value added compounds from the system. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1182-1192, 2017. © 2017 American Institute of Chemical Engineers.

  13. An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept

    Science.gov (United States)

    Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.

    2007-01-01

    An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…

  14. Extracurricular training of "pedagogical creativity" as professional and personal improvement of future engineering teachers

    OpenAIRE

    Abduazizova Veronika Vadimovna

    2015-01-01

    This article provides a plan of extracurricular training for future engineering teachers on teaching creativity and its implementation in practice. Professional and personal development is aimed at training future engineering teachers for creative activities and an expression of personal pedagogical creativity in training and educating young specialists.

  15. Direct Measurement and Evaluation for Mechanical Engineering Programme Outcomes: Impact on Continuous Improvement

    Science.gov (United States)

    Tahir, Mohd Faizal Mat; Khamis, Nor Kamaliana; Wahid, Zaliha; Ihsan, Ahmad Kamal Ariffin Mohd; Ghani, Jaharah Ab; Sabri, Mohd Anas Mohd; Sajuri, Zainuddin; Abdullah, Shahrum; Sulong, Abu Bakar

    2013-01-01

    Universiti Kebangsaan Malaysia (UKM) is a research university that continuously undergoes an audit and accreditation process for the management of its courses. The Faculty of Engineering and the Built Environment (FKAB) is subjected to such processes, one of them is the auditing conducted by the Engineering Accreditation Council (EAC), which gives…

  16. Experimental Investigation on The Electromagnetic Clutch Water pump and Pneumatic Compressor for Improving the Efficiency of an Engine

    Science.gov (United States)

    Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.

    2017-05-01

    Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.

  17. The National Shipbuilding Research Program 1985 Ship Production Symposium Volume 2 Paper No. 22: Expanded Planning Yard Concept and Configuration Accounting or Improving Navy Ship Engineering

    National Research Council Canada - National Science Library

    1985-01-01

    .... Requirements for ship acquisition programs have been refined to reflect these improvements. We have learned that there is a need for clearly assigned responsibility in engineering, that configuration identification must be an integral part of engineering, and that logistics support must be an integral part of engineering.

  18. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    Science.gov (United States)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  19. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    Science.gov (United States)

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  20. A Pseudo MS3 Approach for Identification of Disulfide-Bonded Proteins: Uncommon Product Ions and Database Search

    Science.gov (United States)

    Chen, Jianzhong; Shiyanov, Pavel; Schlager, John J.; Green, Kari B.

    2012-02-01

    It has previously been reported that disulfide and backbone bonds of native intact proteins can be concurrently cleaved using electrospray ionization (ESI) and collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). However, the cleavages of disulfide bonds result in different cysteine modifications in product ions, making it difficult to identify the disulfide-bonded proteins via database search. To solve this identification problem, we have developed a pseudo MS3 approach by combining nozzle-skimmer dissociation (NSD) and CID on a quadrupole time-of-flight (Q-TOF) mass spectrometer using chicken lysozyme as a model. Although many of the product ions were similar to those typically seen in MS/MS spectra of enzymatically derived peptides, additional uncommon product ions were detected including ci-1 ions (the ith residue being aspartic acid, arginine, lysine and dehydroalanine) as well as those from a scrambled sequence. The formation of these uncommon types of product ions, likely caused by the lack of mobile protons, were proposed to involve bond rearrangements via a six-membered ring transition state and/or salt bridge(s). A search of 20 pseudo MS3 spectra against the Gallus gallus (chicken) database using Batch-Tag, a program originally designed for bottom up MS/MS analysis, identified chicken lysozyme as the only hit with the expectation values less than 0.02 for 12 of the spectra. The pseudo MS3 approach may help to identify disulfide-bonded proteins and determine the associated post-translational modifications (PTMs); the confidence in the identification may be improved by incorporating the fragmentation characteristics into currently available search programs.

  1. Radiation effects. Engineering handbook (methods of improving the radiation tolerance of electronics in space vehicles). Final report

    International Nuclear Information System (INIS)

    Holmes-siedle, A.; Freeman, R.

    1978-04-01

    Space radiation effects in electronic subsystems are discussed. Useful data from a wide range of sources are presented and methods which have been newly developed to provide engineering solutions to the problem of degradation of devices in space are described. The new developments include a simple model for analyzing space-charge buildup in MOS devices, a ranking scheme for CMOS - LSI circuits and improved dose transmission curves and tradeoff curves for spacecraft life against shield weight. A complete analysis of a piece of spacecraft equipment is given. Recommendations for future progress in hardness engineering are made

  2. Managing your engineering consultants: Steps for simultaneously improving operations, project implementation, and your bottom line

    International Nuclear Information System (INIS)

    Kirchen, E.R.; Perilloux, B.L.

    1997-01-01

    The domestic oil and gas industry has responded to depleting reserves and increasing operating costs by downsizing the overhead required to maintain production and processing facilities. For many companies this downsizing has resulted in a reduced in-house engineering staff and a greater reliance on consulting engineering services. To get the most benefit from consulting engineering companies, the partnership between consultants and the oil and gas company needs to be carefully considered. Unfortunately, these partnerships are often developed at the home office with visionary goals in mind, only to be implemented reluctantly on a local level. A better strategy is to implement partnering tools on the local level and allow these partnerships to develop naturally, and at times, uniquely, at each location. The following such tools detailed in this paper are: manpower leveraging -- using field-trained consulting engineers to address project design/implementation and field/construction support so that the operating company's engineers may focus on management and detailed development of high-return projects; enhanced project scope and design review -- developing and reviewing project scope(s) and preliminary engineering designs to minimize engineering/construction costs as well as optimize the operability and constructability of the project; and consulting rate standardization -- understanding and structuring the consultant's rates so that neither side is exploited and so that the project is staffed in the interest of project execution and not maximum profits for the consultant

  3. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.

    Science.gov (United States)

    Dilley, Rodney J; Morrison, Wayne A

    2014-11-01

    Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum.

    Science.gov (United States)

    Nguyen, Anh Q D; Schneider, Jens; Wendisch, Volker F

    2015-05-10

    Corynebacterium glutamicum has been engineered for production of the polyamide monomer putrescine or 1,4-diaminobutane. Here, N-acetylputrescine was shown to be a significant by-product of putrescine production by recombinant putrescine producing C. glutamicum strains. A systematic gene deletion approach of 18 (putative) N-acetyltransferase genes revealed that the cg1722 gene product was responsible for putrescine acetylation. The encoded enzyme was purified and characterized as polyamine N-acetyltransferase. The enzyme accepted acetyl-CoA and propionyl-CoA as donors for acetylation of putrescine and other diamines as acceptors, but showed highest catalytic efficiency with the triamine spermidine and the tetraamine spermine and, hence, was named SnaA. Upon deletion of snaA in the putrescine producing strain PUT21, no acteylputrescine accumulated, but about 41% more putrescine as compared to the parent strain. Moreover, a transcriptome approach identified increased expression of the cgmAR operon encoding a putative permease and a transcriptional TetR-family repressor upon induction of putrescine production in C. glutamicum PUT21. CgmR is known to bind to cgmO upstream of cgmAR and gel mobility shift experiments with purified CgmR revealed that putrescine and other diamines perturbed CgmR-cgmO complex formation, but not migration of free cgmO DNA. Deletion of the repressor gene cgmR resulted in expression changes of a number of genes and increased putrescine production of C. glutamicum PUT21 by 19% as compared to the parent strain. Overexpression of the putative transport gene cgmA increased putrescine production by 24% as compared to the control strain. However, cgmA overexpression in PUT21ΔsnaA did not further improve putrescine production, hence, the beneficial effects of both targets were not synergistic at the highest described yield of 0.21 g g(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Integrating societal perspectives and values for improved stewardship of a coastal ecosystem engineer

    Directory of Open Access Journals (Sweden)

    Steven B. Scyphers

    2014-09-01

    Full Text Available Oyster reefs provide coastal societies with a vast array of ecosystem services, but are also destructively harvested as an economically and culturally important fishery resource, exemplifying a complex social-ecological system (SES. Historically, societal demand for oysters has led to destructive and unsustainable levels of harvest, which coupled with multiple other stressors has placed oyster reefs among the most globally imperiled coastal habitats. However, more recent studies have demonstrated that large-scale restoration is possible and that healthy oyster populations can be sustained with effective governance and stewardship. However, both of these require significant societal support or financial investment. In our study, we explored relationships among how coastal societies (1 perceive and value oyster ecosystem services, (2 recognize and define problems associated with oyster decline, and (3 perceive or support stewardship initiatives. We specifically focused on the SES of eastern oysters (Crassostrea virginica and coastal societies in the northern Gulf of Mexico, a region identified as offering among the last and best opportunities to sustainably balance conservation objectives with a wild fishery. We found that, in addition to harvest-related benefits, oysters were highly valued for providing habitat, mitigating shoreline erosion, and improving water quality or clarity. Our results also showed that although most respondents recognized that oyster populations have declined, many respondents characterized the problem differently than most scientific literature does. Among a variety of initiatives for enhancing sustainability, spawning sanctuaries and reef restoration were well supported in all states, but support for harvest reductions was less consistent. Our study suggests that public support for maintaining both harvest and ecosystem services exists at societal levels and that enhancing public awareness regarding the extent and causes

  6. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    Science.gov (United States)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization

  7. Term Analysis – Improving the Quality of Learning and Application Documents in Engineering Design

    Directory of Open Access Journals (Sweden)

    S. Weiss

    2006-01-01

    Full Text Available Conceptual homogeneity is one determinant of the quality of text documents. A concept remains the same if the words used (termini change [1, 2]. In other words, termini can vary while the concept retains the same meaning. Human beings are able to handle concepts and termini because of their semantic network, which is able to connect termini to the actual context and thus identify the adequate meaning of the termini. Problems could arise when humans have to learn new content and correspondingly new concepts. Since the content is basically imparted by text via particular termini, it is a challenge to establish the right concept from the text with the termini. A term might be known, but have a different meaning [3, 4]. Therefore, it is very important to build up the correct understanding of concepts within a text. This is only possible when concepts are explained by the right termini, within an adequate context, and above all, homogeneously. So, when setting up or using text documents for teaching or application, it is essential to provide concept homogeneity.Understandably, the quality of documents is, ceteris paribus, reciprocally proportional to variations of termini. Therefore, an analysis of variations of termini could form a basis for specific improvement of conceptual homogeneity.Consequently, an exposition of variations of termini as control and improvement parameters is carried out in this investigation. This paper describes the functionality and the profit of a tool called TermAnalysis.It also outlines the margins, typeface and other vital specifications necessary for authors preparing camera-ready papers for submission to the 5th International Conference on Advanced Engineering Design. The aim of this paper is to ensure that all readers are clear as to the uniformity required by the organizing committee and to ensure that readers’ papers will be accepted as camera-ready for the conference.TermAnalysis is a software tool developed

  8. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    Science.gov (United States)

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  9. Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production

    Directory of Open Access Journals (Sweden)

    Thiemo Zambanini

    2017-06-01

    These results open up a wide range of possibilities for further optimization, especially combinatorial metabolic engineering to increase the flux from pyruvate to malic acid and to reduce by-product formation.

  10. Improved Rocket Test Engine Video Recording with Computational Photography and Computer Vision Techniques

    Data.gov (United States)

    National Aeronautics and Space Administration — High energy processes such as rocket engine flight certification ground testing require high-speed, high dynamic range video imaging in order to capture and record...

  11. Improved Rocket Test Engine Video Recording with Computational Photography and Computer Vision Techniques

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocket engine flight certification ground testing requires high-speed video recording that can capture essential information for NASA. This need is particularly true...

  12. Measurement of Work Generation and Improvement in Performance of a Pulse Tube Engine

    Science.gov (United States)

    Hamaguchi, Kazuhiro; Futagi, Hiroaki; Yazaki, Taichi; Hiratsuka, Yoshikatsu

    Apart from double acting type engines, Stirling engines have either 2 pistons in 2 cylinders or 2 pistons in a single cylinder. Typically, the heater, regenerator and cooler are installed between the 2 pistons. The pulse tube engine, on the other hand, consists of a single piston in a single cylinder, a pulse tube, a heater, a regenerator, a cooler and a second cooler. For this paper, a simple prototype engine that uses air at normal atmospheric pressure as the working gas was fabricated. The oscillating velocity of the working gas in the pulse tube was measured using LDV, and the work flow emitting out of the pulse tube was observed. In addition, the effect of inserting heat storage material in the pulse tube on shaft power and indicated power was examined experimentally. A dramatic increase in the shaft power was achieved.

  13. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials

    Science.gov (United States)

    Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant ...

  14. INCOSE Systems Engineering Handbook v3.2: Improving the Process for SE Practitioners

    Energy Technology Data Exchange (ETDEWEB)

    R. Douglas Hamelin; David D. Walden; Michael E. Krueger

    2010-07-01

    The INCOSE Systems Engineering Handbook is the official INCOSE reference document for understanding systems engineering (SE) methods and conducting SE activities. Over the years, the Handbook has evolved to accommodate advances in the SE discipline and now serves as the basis for the Certified Systems Engineering Professional (CSEP) exam. Due to its evolution, the Handbook had become somewhat disjointed in its treatment and presentation of SE topics and was not aligned with the latest version of International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) 15288:2008, Systems and Software Engineering. As a result, numerous inconsistencies were identified that could confuse practitioners and directly impact the probability of success in passing the CSEP exam. Further, INCOSE leadership had previously submitted v3.1 of the Handbook to ISO/IEC for consideration as a Technical Report, but was told that the Handbook would have to be updated to conform with the terminology and structure of new ISO/IEC15288:2008, Systems and software engineering, prior to being considered. The revised INCOSE Systems Engineering Handbook v3.2 aligns with the structure and principles of ISO/IEC 15288:2008 and presents the generic SE life-cycle process steps in their entirety, without duplication or redundancy, in a single location within the text. As such, the revised Handbook v3.2 serves as a comprehensive instructional and reference manual for effectively understanding SE processes and conducting SE and better serves certification candidates preparing for the CSEP exam.

  15. Improving female participation in professional engineering geology to bring new perspectives to ethics in the geosciences.

    Science.gov (United States)

    Pereira, Dolores

    2014-09-11

    Many papers have been published related to the retention and advancement of women in sciences. Engineering geology is one of the professional areas where women have not yet broken the gender barrier. The research issues of this paper are focused on why female students "leak out" at the end of engineering geology studies, and what can be done to encourage them to complete their degrees with an engineering career in mind. The author has studied students' preferences of the final year project required to complete their degree at the University of Salamanca (Salamanca, Spain). It has been found that most female students are choosing a more theoretical final project instead of a practical one relevant to professional employment, contrary to their male peers. Focus group meetings with the students showed that at the end of five years of engineering geology training, many female students, unsatisfied with the content of their courses, feel that their expectations had not been met. They often have preferences for traditional geology rather than applied branches of the subject. Also, they do not feel comfortable with future job prospects in the profession. From the findings of this research it is clear that tutoring and mentoring would be valuable from the beginning of studies to allow all students to become aware of the content and the potential outcomes of engineering geology studies. In the case of female students, it is particularly important for them to know from the very start that they are about to join what is still a man's world but that they are capable of achieving just as much as men can in the profession. Most importantly, the involvement of more female engineers in professional engineering, including teaching duties, should serve as example and role models in students' education and future careers.

  16. Determination of the Underground Engineering Parameters at Soil Improvement After and Before

    International Nuclear Information System (INIS)

    Kir, A. E.

    2007-01-01

    Soil improvement works before building at the very poor soils. To solve geotechnical problems after soil improvements. But, end of the some works less data and project not improvements. This studies is a comparison of the improvement and non improvements areas geophysical results

  17. Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heuser, Brent [Univ. of Illinois, Urbana-Champaign, IL (United States); Stubbins, James [Univ. of Illinois, Urbana-Champaign, IL (United States); Kozlowski, Tomasz [Univ. of Illinois, Urbana-Champaign, IL (United States); Uddin, Rizwan [Univ. of Illinois, Urbana-Champaign, IL (United States); Trinkle, Dallas [Univ. of Illinois, Urbana-Champaign, IL (United States); Downar, Thoms [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); ang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States); Sabharwall, piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-25

    The DOE NEUP sponsored IRP on accident tolerant fuel (ATF) entitled Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel involved three academic institutions, Idaho National Laboratory (INL), and ATI Materials (ATI). Detailed descriptions of the work at the University of Illinois (UIUC, prime), the University of Florida (UF), the University of Michigan (UMich), and INL are included in this document as separate sections. This summary provides a synopsis of the work performed across the IRP team. Two ATF solution pathways were initially proposed, coatings on monolithic Zr-based LWR cladding material and selfhealing modifications of Zr-based alloys. The coating pathway was extensively investigated, both experimentally and in computations. Experimental activities related to ATF coatings were centered at UIUC, UF, and UMich and involved coating development and testing, and ion irradiation. Neutronic and thermal hydraulic aspects of ATF coatings were the focus of computational work at UIUC and UMich, while materials science aspects were the focus of computational work at UF and INL. ATI provided monolithic Zircaloy 2 and 4 material and a binary Zr-Y alloy material. The selfhealing pathway was investigated with advanced computations only. Beryllium was identified as a valid self-healing additive early in this work. However, all attempts to fabricate a Zr-Be alloy failed. Several avenues of fabrication were explored. ATI ultimately declined our fabrication request over health concerns associated with Be (we note that Be was not part of the original work scope and the ATI SOW). Likewise, Ames Laboratory declined our fabrication request, citing known litigation dating to the 1980s and 1990s involving the U.S. Federal government and U.S. National Laboratory employees involving the use of Be. Materion (formerly, Brush Wellman) also declined our fabrication request, citing the difficulty in working with a highly reactive Zr and Be

  18. Metal Foam Analysis: Improving Sandwich Structure Technology for Engine Fan and Propeller Blades

    Science.gov (United States)

    Fedor, Jessica L.

    2004-01-01

    The Life Prediction Branch of the NASA Glenn Research Center is searching for ways to construct aircraft and rotorcraft engine fan and propeller blades that are lighter and less costly. One possible design is to create a sandwich structure composed of two metal faces sheets and a metal foam core. The face sheets would carry the bending loads and the foam core would have to resist the transverse shear loads. Metal foam is ideal because of its low density and energy absorption capabilities, making the structure lighter, yet still stiff. The material chosen for the face sheets and core was 17-4PH stainless steel, which is easy to make and has appealing mechanical properties. This material can be made inexpensively compared to titanium and polymer matrix composites, the two current fan blade alternatives. Initial tests were performed on design models, including vibration and stress analysis. These tests revealed that the design is competitive with existing designs; however, some problems were apparent that must be addressed before it can be implemented in new technology. The foam did not hold up as well as expected under stress. This could be due to a number of issues, but was most likely a result of a large number of pores within the steel that weakened the structure. The brazing between the face sheets and the foam was also identified as a concern. The braze did not hold up well under shear stress causing the foam to break away from the face sheets. My role in this project was to analyze different options for improving the design. I primarily spent my time examining various foam samples, created with different sintering conditions, to see which exhibited the most favorable characteristics for our purpose. Methods of analysis that I employed included examining strut integrity under a microscope, counting the number of cells per inch, measuring the density, testing the microhardness, and testing the strength under compression. Shear testing will also be done to examine

  19. Crankcase oils and engine design : system technologies for improving emissions performance

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, B. [Lubrizol Corp., (United States)

    2001-07-01

    This power point presentation provided an overview of how crankcase oil is formulated to meet current demands in emission standards for trucks and cars. Some system approaches were proposed to develop technologies that will meet all the performance demands of internal combustion engines. Most of the critical functions in a lubricant are controlled by the performance of additives. Additives made up 10 to 30 per cent of commercial crankcase oils for passenger cars and heavy duty diesel engines. Dispersants are used to suspend contaminants such as oxidized gasoline fuel products or diesel soot. However, these typically add nitrogen and sometimes boron to the formulation. It was concluded that engine oil chemistry is complex and changes with use, conditions and time. Much of the source of lubricant phosphorus and sulphur is from ZDP which performs several important functions in engine designs. The selection of ZDP type can have an impact on the exposure of after treatment devices to undesirable elements. The function of ZDP could be circumvented with changes to engine hardware and lubricant formulation which may not be compatible with current or past designs. 6 tabs., 11 figs.

  20. Analyzing the effect of technology-based intervention in language laboratory to improve listening skills of first year engineering students

    OpenAIRE

    Pasupathi, Madhumathi

    2012-01-01

    First year students pursuing engineering education face problems with their listening skills. Most of the Indian schools use a bilingual method for teaching subjects from primary school through high school. Nonetheless, students entering university education develop anxiety in listening to classroomlectures in English. This article reports an exploratory study that aimed to find out whether the listening competences of students improved when technology was deployed in language laboratory. It ...

  1. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.

    Science.gov (United States)

    Britto, Reuben J; Benck, Jesse D; Young, James L; Hahn, Christopher; Deutsch, Todd G; Jaramillo, Thomas F

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  2. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.; Hahn, Christopher; Deutsch, Todd G.; Jaramillo, Thomas F.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

  3. Molybdenum disulfide nanoparticles decorated reduced graphene oxide: highly sensitive and selective hydrogen sensor

    Science.gov (United States)

    Venkatesan, A.; Rathi, Servin; Lee, In-yeal; Park, Jinwoo; Lim, Dongsuk; Kang, Moonshik; Joh, Han-Ik; Kim, Gil-Ho; Kannan, E. S.

    2017-09-01

    In this work, we report on the hydrogen (H2) sensing behavior of reduced graphene oxide (RGO)/molybdenum disulfide (MoS2) nano particles (NPs) based composite film. The RGO/MoS2 composite exhibited a highly enhanced H2 response (∼15.6%) for 200 ppm at an operating temperature of 60 °C. Furthermore, the RGO/MoS2 composite showed excellent selectivity to H2 with respect to ammonia (NH3) and nitric oxide (NO) which are highly reactive gas species. The composite’s response to H2 is 2.9 times higher than that of NH3 whereas for NO it is 3.5. This highly improved H2 sensing response and selectivity of RGO/MoS2 at low operating temperatures were attributed to the structural integration of MoS2 nanoparticles in the nanochannels and pores in the RGO layer.

  4. In situ TEM observations of the lithiation of molybdenum disulfide

    International Nuclear Information System (INIS)

    Janish, Matthew T.; Carter, C. Barry

    2015-01-01

    The lithiation of molybdenum disulfide (MoS 2 ) has been directly studied in situ in the TEM by observing specimens with the viewing direction parallel to the basal planes. The MoS 2 lamella was characterized by bright-field imaging during the lithiation, and both selected-area diffraction and high-resolution imaging before and after. An overall expansion of ∼5% along the c-direction was observed with concurrent local contraction. The contraction can be related to the expulsion of Mo as Li reduces it to form Li 2 S

  5. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  6. Improving motivation and engagement in core engineering courses with student teams

    Science.gov (United States)

    Trenshaw, Kathryn Faye

    Team-based projects are common in capstone engineering design courses and increasingly common in first-year engineering programs. Despite high enrollments and budget cutbacks affecting many programs, second- and third-year students can also benefit from team-based project experiences, which motivate them to succeed in engineering and prepare them for a globally competitive workforce. My dissertation research demonstrates that team design projects can be incorporated into the curricula of engineering departments, and these projects result in positive affective outcomes for students. Using ABET outcomes and Self Determination Theory (SDT) as the background for my studies, I investigated students' confidence, motivation, and sense of community after experiencing team design projects in two different engineering departments at a large public institution. In the first study, I used a sequential mixed methods approach with a primary quantitative phase followed by an explanatory qualitative phase to evaluate a chemical engineering program that integrated team design projects throughout the curriculum. The evaluation methods included a survey based on desired ABET outcomes for students and focus groups to expand on the quantitative results. Students reported increased confidence in their design, teamwork, and communication skills after completing the projects. In my second and third studies, I used qualitative interviews based on SDT to explore student motivation in an electrical and computer engineering course redesigned to support students' intrinsic motivation to learn. SDT states that intrinsic motivation to learn is supported by increasing students' sense of autonomy, competence, and relatedness in regard to their learning. Using both narrative inquiry and phenomenological methodologies, I analyzed data from interviews of students for mentions of autonomy, competence, and relatedness as well as course events that were critical in changing students' motivation

  7. Innovation Online Teaching Module Plus Digital Engineering Kit with Proteus Software through Hybrid Learning Method to Improve Student Skills

    Science.gov (United States)

    Kholis, Nur; Syariffuddien Zuhrie, Muhamad; Rahmadian, Reza

    2018-04-01

    Demands the competence (competence) needs of the industry today is a competent workforce to the field of work. However, during this lecture material Digital Engineering (Especially Digital Electronics Basics and Digital Circuit Basics) is limited to the delivery of verbal form of lectures (classical method) is dominated by the Lecturer (Teacher Centered). Though the subject of Digital Engineering requires learning tools and is required understanding of electronic circuits, digital electronics and high logic circuits so that learners can apply in the world of work. One effort to make it happen is by creating an online teaching module and educational aids (Kit) with the help of Proteus software that can improve the skills of learners. This study aims to innovate online teaching modules plus kits in Proteus-assisted digital engineering courses through hybrid learning approaches to improve the skills of learners. The process of innovation is done by considering the skills and mastery of the technology of students (students) Department of Electrical Engineering - Faculty of Engineering – Universitas Negeri Surabaya to produce quality graduates Use of online module plus Proteus software assisted kit through hybrid learning approach. In general, aims to obtain adequate results with affordable cost of investment, user friendly, attractive and interactive (easily adapted to the development of Information and Communication Technology). With the right design, implementation and operation, both in the form of software both in the form of Online Teaching Module, offline teaching module, Kit (Educational Viewer), and e-learning learning content (both online and off line), the use of the three tools of the expenditure will be able to adjust the standard needs of Information and Communication Technology world, both nationally and internationally.

  8. Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition

    International Nuclear Information System (INIS)

    Munsin, R.; Laoonual, Y.; Jugjai, S.; Matsuki, M.; Kosaka, H.

    2015-01-01

    Highlights: • Glycerol ethoxylate (GE) shows the similar results as the commercial additive. • GE decreases injection rate, but increases injection delay and duration of ethanol. • GE shortens ignition delay and decreases heat released in premixed burn of ethanol. • GE has a minor effect on flame temperature of ethanol. • KL factor and soot of ethanol are sensitive to both GE and the commercial additive. - Abstract: This paper investigates the effects of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under a CI engine condition. Injection characteristics were investigated by an in-house injection rate measurement device based on the Zeuch method, while spray combustion has been performed in the rapid compression and expansion machine (RCEM). The CI engine condition indicated as density, pressure and temperature of compressed synthetic gas, consisting of 80% argon and 20% oxygen, at fuel injection timing in RCEM of 21 kg/m 3 , 4.4 MPa and 900 K, respectively. This condition is equivalent to the isentropic compression of air of the actual CI engine with compression ratio of 22. Hydrous ethanol without ignition improver (Eh95) and the ethanol dedicated for heavy duty vehicles (ED95: composed of hydrous ethanol with the commercial additive for ED95) are reference fuels representing low and high quality ethanol fuel for CI engines, respectively. All test fuels are injected at constant heat input. The results indicate that the additional ignition improvers change injection characteristics, i.e. injection delay, injection rate and discharge coefficient of hydrous ethanol. The maximum injection rates at fully opened needle for the ethanol dedicated for heavy duty vehicles (ED95) and hydrous ethanol with 5% glycerol ethoxylate (5%GE) are lower than that of hydrous ethanol without ignition improver (Eh95) by approximately 10%. Additional injection duration is required for ED95 and 5%GE to maintain a

  9. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering

    Science.gov (United States)

    Chen, Yingying; Stabryla, Lisa

    2016-01-01

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production. PMID:26826231

  10. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose.

    Science.gov (United States)

    Divate, Nileema R; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-11-01

    A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress.

  11. Limitations and information needs for engineered nanomaterialspecific exposure estimation and scenarios: recommendations for improved reporting practices

    NARCIS (Netherlands)

    Clark, K.; Tongeren, M. van; Christensen, F.; Brouwer, D.H.; Nowack, B.; Gottschalk, F.; Micheletti, C.; Schmid, K.; Gerritsen, R.; Aitken, R.; Vaquero, C.; Gkanis, V.; Housiadas, C.; López de Ipiña, J.M.; Riediker, M.

    2012-01-01

    The aim of this paper is to describe the process and challenges in building exposure scenarios for engineered nanomaterials (ENM), using an exposure scenario format similar to that used for the European Chemicals regulation (REACH). Over 60 exposure scenarios were developed based on information from

  12. Methods to improve efficiency of four stroke, spark ignition engines at part load

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper Tolga

    2005-01-01

    The four stroke, spark ignition (SI) engine pressure-volume diagram (p-V) contains two main parts. They are the compression-combustion-expansion (high pressure loop) and the exhaust-intake (low pressure or gas exchange loop) parts. The main reason for efficiency decrease at part load conditions for these types of engines is the flow restriction at the cross sectional area of the intake system by partially closing the throttle valve, which leads to increased pumping losses and to increased low pressure loop area on the p-V diagram. Meanwhile, the poorer combustion quality, i.e. lower combustion speed and cycle to cycle variations, additionally influence these pressure loop areas. In this study, methods for increasing efficiency at part load conditions and their potential for practical use are investigated. The study also includes a review of the vast literature on the solution of this problem. This investigation shows that the potential for increasing the efficiency of SI engines at part load conditions is not yet exhausted. Each method has its own advantages and disadvantages. Among these, the most promising methods to decrease the fuel consumption at part load conditions are stratified charge and variable displacement engines. When used in combination, the other listed methods are more effective than their usage alone

  13. IMPROVEMENT OF PERFORMANCE OF DUAL FUEL ENGINE OPERATED AT PART LOAD

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2010-12-01

    Full Text Available Rising petroleum prices, an increasing threat to the environment from exhaust emissions, global warming and the threat of supply instabilities has led to the choice of inedible Mahua oil (MO as one of the main alternative fuels to diesel oil in India. In the present work, MO was converted into biodiesel by transesterification using methanol and sodium hydroxide. The cost of Mahua oil biodiesel (MOB is higher than diesel. Hence liquefied petroleum gas (LPG, which is one of the cheapest gaseous fuels available in India, was fumigated along with the air to reduce the operating cost and to reduce emissions. The dual fuel engine resulted in lower efficiency and higher emissions at part load. Hence in the present work, the injection time was varied and the performance of the dual fuel engine was studied. From the engine tests, it is observed that an advanced injection time results in higher efficiency and lower emissions. Hence, advancing the injection timing is one of the ways of increasing the efficiency of LPG+MOB dual fuel engine operated at part load.

  14. Improving Science Scores of Middle School Students with Learning Disabilities through Engineering Problem Solving Activities

    Science.gov (United States)

    Starling, A. Leyf Peirce; Lo, Ya-Yu; Rivera, Christopher J.

    2015-01-01

    This study evaluated the differential effects of three different science teaching methods, namely engineering teaching kit (ETK), explicit instruction (EI), and a combination of the two methods (ETK+EI), in two sixth-grade science classrooms. Twelve students with learning disabilities (LD) and/or attention deficit hyperactivity disorder (ADHD)…

  15. Improving Students’ Learning in Software Engineering Education through Multi-Level Assignments

    NARCIS (Netherlands)

    Dr. Leo Pruijt; Christian Köppe

    2014-01-01

    Author supplied: DOI : http://dx.doi.org/10.1145/2691352.2691357 Assignments and exercises are an essential part of software engineering education. It usually requires a variety of these assignments to cover a desired wide range of educational objectives as defined in the revised Bloom's taxonomy.

  16. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    Science.gov (United States)

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  17. Can Interactive Web-Based CAD Tools Improve the Learning of Engineering Drawing? A Case Study

    Science.gov (United States)

    Pando Cerra, Pablo; Suárez González, Jesús M.; Busto Parra, Bernardo; Rodríguez Ortiz, Diana; Álvarez Peñín, Pedro I.

    2014-01-01

    Many current Web-based learning environments facilitate the theoretical teaching of a subject but this may not be sufficient for those disciplines that require a significant use of graphic mechanisms to resolve problems. This research study looks at the use of an environment that can help students learn engineering drawing with Web-based CAD…

  18. Improving production of ?-lactam antibiotics by Penicillium chrysogenum : Metabolic engineering based on transcriptome analysis

    NARCIS (Netherlands)

    Veiga, T.

    2012-01-01

    In Chapters 2-5 of this thesis, the applicability of transcriptome analysis to guide metabolic engineering strategies in P. chrysogenum is explored by investigating four cellular processes that are of potential relevance for industrial production of ?-lactam antibiotics: - Regulation of secondary

  19. Tissue engineering: technological advances to improve its applications in reconstructive surgery.

    Science.gov (United States)

    Alberti, C

    2012-01-01

    Tremendous advances in biomaterials science and nanotechnologies, together with thorough research on stem cells, have recently promoted an intriguing development of regenerative medicine/tissue engineering. The nanotechnology represents a wide interdisciplinary field that implies the manipulation of different materials at nanometer level to achieve the creation of constructs that mimic the nanoscale-based architecture of native tissues. The purpose of this article is to highlight the significant new knowledges regarding this matter. To widen the range of scaffold materials resort has been carried out to either recombinant DNA technology-generated materials, such as a collagen-like protein, or the incorporation of bioactive molecules, such as RDG (arginine-glycine-aspartic acid), into synthetic products. Both the bottom-up and the top-down fabrication approaches may be properly used to respectively obtain sopramolecular architectures or, instead, micro-/nanostructures to incorporate them within a preexisting complex scaffold construct. Computer-aided design/manufacturing (CAD/CAM) scaffold technique allows to achieve patient-tailored organs. Stem cells, because of their peculiar properties - ability to proliferate, self-renew and specific cell-lineage differentiate under appropriate conditions - represent an attractive source for intriguing tissue engineering/regenerative medicine applications. New developments in the realization of different organs tissue engineering will depend on further progress of both the science of nanoscale-based materials and the knowledge of stem cell biology. Moreover the in vivo tissue engineering appears to be the logical step of the current research.

  20. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  1. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production

    NARCIS (Netherlands)

    Mans, R.; Daran, J.G.; Pronk, J.T.

    2018-01-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical

  2. Improving Engineering Skills in High School Students: A Partnership between University and K-12 Teachers

    Science.gov (United States)

    Salas-Morera, Lorenzo; Cejas-Molina, María A.; Olivares-Olmedilla, José L.; Climent-Bellido, María S.; Leva-Ramírez, Josefa A.; Martínez-Jiménez, Pilar

    2013-01-01

    The level of science skills in Spanish students are significantly below the average of the Organisation for Economic Co-operation and Development, and university teachers agree that the level of freshmen students' skills is too low. Moreover, the number of engineering enrollments has been declining in recent years. The purpose of this study…

  3. Improving Educational Objectives of the Industrial and Management Systems Engineering Programme at Kuwait University

    Science.gov (United States)

    Aldowaisan, Tariq; Allahverdi, Ali

    2016-01-01

    This paper describes the process of developing programme educational objectives (PEOs) for the Industrial and Management Systems Engineering programme at Kuwait University, and the process of deployment of these PEOs. Input of the four constituents of the programme, faculty, students, alumni, and employers, is incorporated in the development and…

  4. IMPROVED INTAKE MANIFOLD DESIGN FOR I.C. ENGINE EMISSION CONTROL

    Directory of Open Access Journals (Sweden)

    R. K. TYAGI

    2015-09-01

    Full Text Available The Spark Ignition engine has been extensively used in multifaceted sectors, viz. Automobiles, Industry engineering, etc. due to their exceptional driveability, performance and minimal maintenance. However, gasoline engines have their share of complications as they release a variety of air pollutants, viz. CO, NOx, HC and CO2 etc. and other harmful emissions. In this paper a comparison of these gases with the Government policies or norms have been studied and the parameters which are responsible for increasing the more Air pollution have been minimised using innovative engineering solutions. This paper depicts research done on inlet manifolds and their modifications to achieve exemplary fuel-air swirl. During subsequent analysis at idle condition (1300 rpm, it has been concluded that the venturi-based intake manifold has shown remarkable results in decreasing the HC levels from 180 ppm to 60 ppm (66.6 % at Idle Range. The work is also complementary to the various other designs of inlet manifolds, viz. Inlet manifold Modified 1 and Inlet Manifold Modified 2 out of which it is concluded that the Inlet manifold Modified 2 results in better reduction of pollutants.

  5. How semantics can improve engineering processes: A case of units of measure and quantities

    NARCIS (Netherlands)

    Rijgersberg, H.; Wigham, M.L.I.; Top, J.L.

    2011-01-01

    Science and engineering heavily depend on the ability to share data and models. The World Wide Web provides even greater opportunity to reuse such information from disparate sources. Moreover, if the information is digitized it can to a large extent be processed automatically. However, information

  6. Growth Factor Supplementation Improves Native and Engineered Meniscus Repair in Vitro

    Science.gov (United States)

    Ionescu, Lara C.; Lee, Gregory C.; Huang, Kevin L.; Mauck, Robert L.

    2012-01-01

    Few therapeutic options exist for meniscus repair after injury. Local delivery of growth factors may stimulate repair and create a favorable environment for engineered replacement materials. In this study, we assessed the effect of basic fibroblast growth factor (bFGF) (a pro-mitotic agent) and transforming growth factor beta 3 (TGF-β3) (a pro-matrix formation agent) on meniscus repair and the integration/maturation of electrospun poly(ε-caprolactone) (PCL) scaffolds for meniscus tissue engineering. Circular meniscus repair constructs were formed and refilled with either native tissue or scaffolds. Repair constructs were cultured in serum-containing media for 4 and 8 weeks with various growth factor formulations, and assessed for mechanical strength, biochemical content, and histological appearance. Results showed that either short-term delivery of bFGF or sustained delivery of TGF-β3 increased integration strength for both juvenile and adult bovine tissue, with similar findings for engineered materials. While TGF-β3 increased proteoglycan content in the explants, bFGF did not increase DNA content after 8 weeks. This work suggests that in vivo delivery of bFGF or TGF-β3 may stimulate meniscus repair, but that the time course of delivery will strongly influence success. Further, this study demonstrates that electrospun scaffolds are a promising material for meniscus tissue engineering, achieving comparable or superior integration compared to native tissue. PMID:22698946

  7. Complete Mapping of Complex Disulfide Patterns with Closely-Spaced Cysteines by In-Source Reduction and Data-Dependent Mass Spectrometry

    DEFF Research Database (Denmark)

    Cramer, Christian N; Kelstrup, Christian D; Olsen, Jesper V

    2017-01-01

    Mapping of disulfide bonds is an essential part of protein characterization to ensure correct cysteine pairings. For this, mass spectrometry (MS) is the most widely used technique due to fast and accurate characterization. However, MS-based disulfide mapping is challenged when multiple disulfide...... of individual disulfide bonds could be done in species containing closely spaced disulfide bonds. The strength of this methodology was demonstrated by complete mapping of all four disulfide bonds in lysozyme and all 17 disulfide bonds in human serum albumin, including nested disulfide bonds and motifs...

  8. Influences of ignition improver additive on ternary (diesel-biodiesel-higher alcohol) blends thermal stability and diesel engine performance

    International Nuclear Information System (INIS)

    Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, Abdullah; Rashed, M.M.; Ashraful, A.M.

    2016-01-01

    Highlights: • Ignition improver additives makes the biodiesel-alcohol blends more thermally stable. • Density and cetane number improved significantly with EHN mixing. • BP and BSFC improved by adding ignition improver additives. • Nitric oxides and smoke of the EHN treated blends decreased. • CO and HC increased slightly with EHN addition. - Abstract: Pentanol is a long chain alcohol produced from renewable sources and considered as a promising biofuel as a blending component with diesel or biodiesel blends. However, the lower cetane number of alcohols is a limitation, and it is important to increase the overall cetane number of biodiesel fuel blends for efficient combustion and lower emission. In this consideration, ignition improver additive 2-ethylhexyl nitrate (EHN) were used at a proportion of 1000 and 2000 ppm to diesel-biodiesel-pentanol blends. Experiments were conducted in a single cylinder; water-cooled DI diesel engine operated at full throttle and varying speed condition. The thermal stability of the modified ternary fuel blends was evaluated through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis, and the physic-chemical properties of the fuel as well as engine characteristics were studied and compared. The addition of EHN to ternary fuel blends enhanced the cetane number significantly without any significant adverse effect on the other properties. TGA and DSC analysis reported about the improvement of thermal characteristics of the modified blends. It was found that, implementing ignition improver make the diesel-biodiesel-alcohol blends more thermally stable. Also, the brake specific fuel consumption (BSFC), nitric oxides (NO) and smoke emission reduced remarkably with the addition of EHN. Introducing EHN to diesel-biodiesel-alcohol blends increased the cetane number, shorten the ignition delay by increasing the diffusion rate and improve combustion. Hence, the NO and BSFC reduced while, carbon

  9. The Chemistry of Alk-1-yn-1-yl DisulfidesA Review

    DEFF Research Database (Denmark)

    Senning, Alexander Erich Eugen

    2009-01-01

    The preparation and the properties of the elusive alk-1-yn-1-yl disulfides are reviewed, including the most recent quantum chemical findings with regard to their reactivity.......The preparation and the properties of the elusive alk-1-yn-1-yl disulfides are reviewed, including the most recent quantum chemical findings with regard to their reactivity....

  10. Inhibition of carbon disulfide on bio-desulfurization in the process of ...

    African Journals Online (AJOL)

    Biological desulfurization is a novel technology for the removal of hydrogen sulfide from some biogas or sour gas, in which there are always a certain amounts of carbon disulfide together with much hydrogen sulfide. Nowadays, carbon disulfide is found to have negative effect on the biological desulfurization, but seldom ...

  11. Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues.

    Science.gov (United States)

    Petrelli, Riccardo; Sham, Yuk Yin; Chen, Liqiang; Felczak, Krzysztof; Bennett, Eric; Wilson, Daniel; Aldrich, Courtney; Yu, Jose S; Cappellacci, Loredana; Franchetti, Palmarisa; Grifantini, Mario; Mazzola, Francesca; Di Stefano, Michele; Magni, Giulio; Pankiewicz, Krzysztof W

    2009-08-01

    Diadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC(50)=6 microM) and mycobacterium NAD kinase (IC(50)=14-19 microM reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation.

  12. Identification of thioredoxin target disulfides in proteins released from barley aleurone layers

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, J.; Yang, Fen

    2010-01-01

    Thioredoxins are ubiquitous disulfide reductases involved in a wide range of cellular processes including DNA synthesis, oxidative stress response and apoptosis. In cereal seeds thioredoxins are proposed to facilitate the germination process by reducing disulfide bonds in storage proteins and other...

  13. Kinetic and Thermodynamic Aspects of Cellular Thiol-Disulfide Redox Regulation

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Hansen, Rosa Erritzøe; Winther, Jakob R

    2009-01-01

    that affect the rate of thiol-disulfide exchange and stability of disulfide bonds are discussed within the framework of the underlying chemical foundations. This includes the effect of thiol acidity (pKa), the local electrostatic environment, molecular strain and entropy. Even though a thiol...

  14. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. (Univ. of California, Berkeley (USA))

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  15. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    International Nuclear Information System (INIS)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E.

    1990-01-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a β-turn and an α-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the α-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences

  16. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Ted Bestor

    2004-06-01

    This report documents the second year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase II goals and objectives were met. We intend to proceed with the Phase III research plan, as set forth by the applicable Research Management Plan. The objective for Phase II was to further develop and optimize the micropilot ignition system for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system to demonstrate the technology's readiness for the field demonstration phase. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase II were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. Modifications to existing engine components were kept to a minimum. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. An extensive testing program at the EECL using the GMV-4 test engine demonstrated that: (1) In general, the engine operated more stable fewer misfires and partial combustion events when using the 3-hole injectors compared to the 5-hole injectors used in Phase I. (2) The engine had, in general, a wider range of operation with the 3-hole injectors. Minimum operational boost levels were approximately 5&apos

  17. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-03-01

    This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a

  18. A fault diagnosis approach for diesel engine valve train based on improved ITD and SDAG-RVM

    International Nuclear Information System (INIS)

    Yu, Liu; Junhong, Zhang; Fengrong, Bi; Jiewei, Lin; Wenpeng, Ma

    2015-01-01

    Targeting the non-stationary characteristics of the vibration signals of a diesel engine valve train, and the limitation of the autoregressive (AR) model, a novel approach based on the improved intrinsic time-scale decomposition (ITD) and relevance vector machine (RVM) is proposed in this paper for the identification of diesel engine valve train faults. The approach mainly consists of three stages: First, prior to the feature extraction, non-uniform B-spline interpolation is introduced to the ITD method for the fitting of baseline signal, then the improved ITD is used to decompose the non-stationary signals into a set of stationary proper rotation components (PRCs). Second, the AR model is established for each PRC, and the first several AR coefficients together with the remnant variance of all PRCs are regarded as the fault feature vectors. Finally, a new separability based directed acyclic graph (SDAG) method is proposed to determine the structure of multi-class RVM, and the fault feature vectors are classified using the SDAG-RVM classifier to recognize the fault of the diesel engine valve train. The experimental results demonstrate that the proposed fault diagnosis approach can effectively extract the fault features and accurately identify the fault patterns. (paper)

  19. Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides.

    Science.gov (United States)

    Calce, Enrica; Vitale, Rosa Maria; Scaloni, Andrea; Amodeo, Pietro; De Luca, Stefania

    2015-08-01

    Among the available protocols, chemically driven approaches to oxidize cysteine may not be required for molecules that, under the native-like conditions, naturally fold in conformations ensuring an effective pairing of the right disulfide bridge pattern. In this contest, we successfully prepared the distinctin, a natural heterodimeric peptide, and some synthetic cyclic peptides that are inhibitors of the CXCR4 receptor. In the first case, the air oxidation reaction allowed to connect two peptide chains via disulfide bridge, while in the second case allowed the cyclization of rationally designed peptides by an intramolecular disulfide bridge. Computational approaches helped to either drive de-novo design or suggest structural modifications and optimal oxidization protocols for disulfide-containing molecules. They are able to both predict and to rationalize the propensity of molecules to spontaneously fold in suitable conformations to achieve the right disulfide bridges.

  20. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    International Nuclear Information System (INIS)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-01-01

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production

  1. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    Energy Technology Data Exchange (ETDEWEB)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-10-12

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production.

  2. Engineering Probiotics that Improve Warfighter Performance by Maintaining Lean Body Mass and Inhibiting Anxiety

    Science.gov (United States)

    2017-10-03

    ABSTRACT The overall goal of this work is to engineer "synthetic probiotics": orally-administered gut bacteria that sense and compute the metabolic...combined computation and experiments to discover the first known biological sensor of thiosulfate, a two-component system from S. halifaxensis. We... vision . 1S. SUBJECT TERMS Synthetic biology, synthetic probiotics, diagnostic gut bacteria , colitis , bacterial two-component system, thiosulfate 16

  3. Identifying improvements to the engine assembly line simulation philosophies within Ford Motor Company

    OpenAIRE

    Dewson, Philip

    2006-01-01

    Ford Motor Company (Ford) utilise unique simulation models to represent the behaviour of their diesel engine assembly lines. The simulation model is a computerised tool used to support modification decisions that affect the assembly processes and productivity of the lines. The stakeholders, who use the simulation outputs, lack complete confidence in them. The doubt appears to stem from a lack of documentation to prove that the model accurately represents the assembly line. T...

  4. A Case Study Improvement of a Testing Process by Combining Lean Management, Industrial Engineering and Automation Methods

    Directory of Open Access Journals (Sweden)

    Simon Withers

    2013-07-01

    Full Text Available Increasingly competitive market environments have forced not only large manufacturing, but also smalland-medium size enterprises (SME to look for means to improve their operations in order to increase competitive strength. This paper presents an adaptation and adoption by a UK SME engineering service organisation, of lean management, industrial engineering, and automation metods developed within larger organisations. This SME sought to improve the overall performance of one of its core testing processes. An exploratory analysis, based on the lean management concept of “value added” and work measurement technique “time study”, was developed and carried out in order to understand the current performance of a testing process for gas turbine fuel flow dividers. A design for the automation of some operations of the testing process was followed as an approach to reduce non-value added activities, and improve the overall efficiency of the testing process. The overall testing time was reduced from 12.41 to 7.93 hours (36.09 percent while the man hours and non-value added time were also reduced from 23.91 to 12.94 hours (45.87 percent and from 11.08 to 6.69 (39.67 percent hours respectively. This resulted in an increase in process efficiency in terms of man hours from 51.91 to 61.28 percent. The contribution of this paper resides in presenting a case study that can be used as a guiding reference for managers and engineers to undertake improvement projects, in their organisations, similar to the one presented in this paper.

  5. Improvement in the production of cylinder shirt of inner diesel combustion engines

    International Nuclear Information System (INIS)

    Martinez-Perez, F.; Barroso-Moreno, A.

    2013-01-01

    This study deals with the different types of wear as well as other parameters present in the tribological system piston segment- cylinder in a combustion engine. By means of engineering methods were defined the wear rates in the three components of the system. The biggest wear in the analysis resulted in the cylinder shirt. Specialized methods applied were used to analyze the prevailing metallographic characteristics in its original construction, obtaining a gray melted iron with perlitic matrix. A new material with bainitic matrix has been proposed for increasing wear resistance. To demonstrate the efficiency of this new product, the experimental techniques carried out, were based on a dynamometric testing in a internal combustion engine diesel cycle Scania of 150 kW. It was exposed to a full charge during 500 h with 30 % of potency rising. Compared with the perlitic one, it has been proved that the bainitic matrix allows a better result. Besides, a superior dimensional stability was obtained. The piston segments had a similar wear rate in both materials in reference to the original tribological pair of the project. (Author)

  6. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.

    Science.gov (United States)

    Lee, Won-Heong; Jin, Yong-Su

    2017-03-10

    Although simultaneous saccharification and fermentation (SSF) of cellulosic biomass can offer efficient hydrolysis of cellulose through alleviating feed-back inhibition of cellulases by glucose, supplementation of β-glucosidase is necessary because most fermenting microorganisms cannot utilize cellobiose. Previously, we observed that SSF of cellulose by an engineered Saccharomyces cerevisiae expressing a cellobiose transporter (CDT-1) and an intracellular β-glucosidase (GH1-1) without β-glucosidase could not be performed as efficiently as the traditional SSF with extracellular β-glucosidase. However, we improved the ethanol production from SSF of cellulose by employing a further engineered S. cerevisiae expressing a mutant cellobiose transporter [CDT-1 (F213L) exhibiting higher V MAX than CDT-1] and GH1-1 in this study. Furthermore, limitation of cellobiose formation by reducing the amounts of cellulases mixture in SSF could lead the further engineered strain to produce ethanol considerably better than the parental strain with β-glucosidase. Probably, better production of ethanol by the further engineered strain seemed to be due to a higher affinity to cellobiose, which might be attributed to not only 2-times lower Monod constant (K S ) for cellobiose than K S of the parental strain for glucose but also 5-times lower K S than Michaelis-Menten constant (K M ) of the extracellular β-glucosidase for glucose. Our results suggest that modification of the cellobiose transporter in the engineered yeast to transport lower level of cellobiose enables a more efficient SSF for producing ethanol from cellulose. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    Science.gov (United States)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  8. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering.

    Science.gov (United States)

    Feng, Jun; Gu, Yanyan; Quan, Yufen; Cao, Mingfeng; Gao, Weixia; Zhang, Wei; Wang, Shufang; Yang, Chao; Song, Cunjiang

    2015-11-01

    A Bacillus amyloliquefaciens strain with enhanced γ-PGA production was constructed by metabolically engineering its γ-PGA synthesis-related metabolic networks: by-products synthesis, γ-PGA degradation, glutamate precursor synthesis, γ-PGA synthesis and autoinducer synthesis. The genes involved in by-products synthesis were firstly deleted from the starting NK-1 strain. The obtained NK-E7 strain with deletions of the epsA-O (responsible for extracellular polysaccharide synthesis), sac (responsible for levan synthesis), lps (responsible for lipopolysaccharide synthesis) and pta (encoding phosphotransacetylase) genes, showed increased γ-PGA purity and slight increase of γ-PGA titer from 3.8 to 4.15 g/L. The γ-PGA degrading genes pgdS (encoding poly-gamma-glutamate depolymerase) and cwlO (encoding cell wall hydrolase) were further deleted. The obtained NK-E10 strain showed further increased γ-PGA production from 4.15 to 9.18 g/L. The autoinducer AI-2 synthetase gene luxS was deleted in NK-E10 strain and the resulting NK-E11 strain showed comparable γ-PGA titer to NK-E10 (from 9.18 to 9.54 g/L). In addition, we overexpressed the pgsBCA genes (encoding γ-PGA synthetase) in NK-E11 strain; however, the overexpression of these genes led to a decrease in γ-PGA production. Finally, the rocG gene (encoding glutamate dehydrogenase) and the glnA gene (glutamine synthetase) were repressed by the expression of synthetic small regulatory RNAs in NK-E11 strain. The rocG-repressed NK-anti-rocG strain exhibited the highest γ-PGA titer (11.04 g/L), which was 2.91-fold higher than that of the NK-1 strain. Fed-batch cultivation of the NK-anti-rocG strain resulted in a final γ-PGA titer of 20.3g/L, which was 5.34-fold higher than that of the NK-1 strain in shaking flasks. This work is the first report of a systematically metabolic engineering approach that significantly enhanced γ-PGA production in a B. amyloliquefaciens strain. The engineering strategies explored here are

  9. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-05-01

    This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for

  10. Reference to the Safety Engineering Undergraduate Courses to Improve the Subjects and Contents of the Certified Safety Engineer Qualification and Examination System of China

    OpenAIRE

    Haibin Qiu; Shanghong Shi; Tingdi Zhao; Yiwei Qiao; Jiangshi Zhang

    2013-01-01

    The aim of this paper is to recommend that the subjects and contents of certified safety engineers use safety engineering undergraduate curriculum system for reference. Human resources play an important role in accident prevention and loss control. Education on safety engineering develops quickly in China. Moreover, the State Administration of Work Safety and the National Human Resources and Social Security Ministry have implemented a certified safety engineer qualification and examination sy...

  11. Role of glycolytic intermediate in regulation: Improving lycopene production in Escherichia coli by engineering metabolic control

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, W.R.; Liao, J.C.

    2001-06-01

    Metabolic engineering in the postgenomic era is expected to benefit from a full understanding of the biosynthetic capability of microorganisms as a result of the progress being made in bioinformatics and functional genomics. The immediate advantage of such information is to allow the rational design of novel pathways and the elimination of native reactions that are detrimental or unnecessary for the desired purpose. However, with the ability to manipulate metabolic pathways becoming more effective, metabolic engineering will need to face a new challenge: the reengineering of the regulatory hierarchy that controls gene expression in those pathways. In addition to constructing the genetic composition of a metabolic pathway, they propose that it will become just as important to consider the dynamics of pathways gene expression. It has been widely observed that high-level induction of a recombinant protein or pathway leads to growth retardation and reduced metabolic activity. These phenotypic characteristics result from the fact that the constant demands of production placed upon the cell interfere with its changing requirements for growth. They believe that this common situation in metabolic engineering can be alleviated by designing a dynamic controller that is able to sense the metabolic state of the cell and regulate the expression of the recombinant pathway accordingly. This approach, which is termed metabolic control engineering, involves redesigning the native regulatory circuits and applying them to the recombinant pathway. The general goal of such an effort will be to control the flux to the recombinant pathway adaptively according to the cell's metabolic state. The dynamically controlled recombinant pathway can potentially lead to enhanced production, minimized growth retardation, and reduced toxic by-product formation. The regulation of gene expression in response to the physiological state is also essential to the success of gene therapy. Here they

  12. Improving professionalism in the engineering curriculum through a novel use of oral presentations

    Science.gov (United States)

    Berjano, Enrique; Sales-Nebot, Laura; Lozano-Nieto, Albert

    2013-05-01

    This hypothesis is based on the fact that oral presentations in the context of engineering education could be used not only to develop oral communication skills but also to augment the professionalism in the curriculum. The methodological innovation is first described, which allows encouraging the capacity of summarising ideas, teamwork, assertiveness, listening skills and constructive criticism. Second, the preliminary results from two pilot groups of students during two academic years are analysed. Finally, the paper reflects on the possibilities of expanding this method to pre-university studies.

  13. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.

    Science.gov (United States)

    Ma, Wenlong; Liu, Yanfeng; Shin, Hyun-Dong; Li, Jianghua; Chen, Jian; Du, Guocheng; Liu, Long

    2018-02-01

    Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals. Copyright © 2017. Published by Elsevier Ltd.

  14. Cameco engineered tailings program: linking research with industrial processes for improved tailings performance

    International Nuclear Information System (INIS)

    Kotzer, T.; Hendry, M.J.

    2011-01-01

    The waste product from uranium mining and milling that generates the greatest public and regulatory concern is tailings. The tailings contain all of the mined material except uranium plus a host of processing reagents. These minerals and compounds have the potential to harm the local environment if not deposited in a fashion that is both geochemically and geotechnically stable. Environmental leadership impels Cameco Corporation to ensure that the methods used to dispose of tailings are at the forefront of best available technologies whereby tailings production results in a product with geotechnical and geochemical characteristics that minimize the environmental impact associated with long-term storage of this product. Cameco has developed an Engineered Tailings (ET) program to ensure optimization of long-term tailings performance and minimal impacts of elements of concern (EOCs) to the receiving environment, regardless of the ore being milled. Within this program chemical and physical performance of tailings from geochemical and geotechnical investigations and baseline environmental data, integrated with regulatory requirements and corporate commitments, will be used to evaluate and set criteria for mill- and tailings management facilities-based chemical and physical tailings characteristics, identify key knowledge gaps, prioritize areas of concern and implement appropriate responses. This paper provides an overview of the Engineered Tailings program, the research being conducted as part of the ET program, and how it links with present and future Cameco operations. (author)

  15. [Screening of Clostridium strains through ribosome engineering for improved butanol production].

    Science.gov (United States)

    Chen, Lijie; Shang, Guanglai; Yuan, Wenjie; Wu, Youduo; Bai, Fengwu

    2012-09-01

    We used ribosome engineering technology, with which antibiotic-resistant strains are resulted from mutations on microbial ribosome, to screen a high butanol-producing Clostridium strain. A novel mutant strain S3 with high butanol production and tolerance was obtained from the original Clostridium acetobutylicum L7 with the presence of mutagen of streptomycin. Butanol of 12.48 g/L and ethanol of 1.70 g/L were achieved in S3, 11.2% and 50%, respectively higher than the parent strain. The conversion rate of glucose to butanol increased from 0.19 to 0.22, and fermentation time was 9 h shorter. This caused an increase in butanol productivity by 30.5%, reaching 0.24 g/(Lh). The mutant butanol tolerance was increased from 12 g/L to 14 g/L, the viscosity of fermentation broth was dramatically decreased to 4 mPa/s, 60% lower than the parent strain. In addition, the genetic stability of mutant strain S3 was also favorable. These results demonstrate that ribosome engineering technology may be a promising process for developing high butanol-producing strains.

  16. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering.

    Science.gov (United States)

    Aikawa, Shimpei; Ho, Shih-Hsin; Nakanishi, Akihito; Chang, Jo-Shu; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-06-01

    Photosynthetic microorganisms, such as cyanobacteria and microalgae, are currently being investigated as alternative biomass resources for bioethanol production, owing to their benefits, including high-photosynthetic activity and whole-year cultivation without utilization of arable land. Polyglucans comprise the major carbohydrate content of these organisms. Polyglucans can be utilized as a carbon source for microbial fermentation. Although polyglucan production has so far been promoted by nutrient limitation, it must be further enhanced to accommodate market demand. This review focuses on the recent progress in the production of α-polyglucans such asglycogen and starch in cyanobacteria and green microalgae via cultivation design, including modifying the nutrient supply and replacing the growth medium. The control and manipulation of polyglucan metabolism necessitates the elucidation of the polyglucan production mechanism. We reviewed gene expression and metabolite accumulation profiles of cyanobacteria and green microalgae during nutrient limitation-stimulated α-polyglucan accumulation. We also focus on the enhancement in cyanobacterial glycogen production via the genetic engineering of glycolysis, CO2 concentration mechanism, and photosynthetic light-harvesting protein based on the polyglucan accumulation mechanism. The combined strategies of cultivation design and genetic engineering should be considered for further enhancement of polyglucan productivity for bioethanol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Improving Engineered Escherichia coli strains for High-level Biosynthesis of Isobutyrate

    Directory of Open Access Journals (Sweden)

    Mingyong Xiong

    2015-05-01

    Full Text Available Isobutyrate is an important platform chemical with various industrial applications. Previously, a synthetic metabolic pathway was constructed in E. coli to produce isobutyrate from glucose. However, isobutanol was found to be a major byproduct. Herein, gene knockouts and enzyme overexpressions were performed to optimize further the engineered E. coli strain. Besides yqhD, the knockouts of three genes eutG, yiaY and ygjB increased isobutyrate production in shake flasks. Furthermore, the introduction of an additional padA on a medium copy number plasmid under the constitutive promoter significantly reduced isobutanol formation. The IBA15-2C strain (BW25113, DyqhD, DygjB; carrying two copies of padA produced 39.2% more isobutyrate (0.39 g/glucose yield, 80% of the theoretical maximum yield than IBA1-1C strain (BW25113, DyqhD; carrying one copy of padA. A scale-up process was also investigated for IBA15-2C strain to optimize the conditions for the production of isobutyrate in the fermentor. With Ca(OH2 as the base for pH control and 10% dissolved oxygen level, IBA15-2C strain produced 90 g/L isobutyrate after 144 h. This study has engineered E. coli to achieve biosynthesis of a nonnative compound with the highest titer and opened up the possibility of the industrial production of isobutyrate.

  18. Improvement of diesel engine ecological and economic parameters by using hydrogen

    Directory of Open Access Journals (Sweden)

    Dalius KALISINSKAS

    2013-01-01

    Full Text Available Exhaustion and rising cost of fossil energy resources stimulates the search of ways to minimize their consumption. In the transport sector the main energy source is liquid fuel. Due to combustion of that fuel noxious gas is being emitted to atmosphere and creates the “greenhouse” effect, as well, as smog. Reduction of oil reserves increases the price of fuel as well, therefore the search for various alternatives is being made. One of them is usage of hydrogen as a supplement to the traditional fuel. During combustion of hydrogen toxic gases are not emitted. For obtaining hydrogen in a car a hydrogen generator which extracts it from water by electrolysis usually is used. The benefit of using hydrogen is better efficiency of an internal combustion engine. Hydrogen helps to reduce fuel consumption and emission of noxious gas as well. Research of efficiency and emissions of an internal combustion engine using hydrogen as an additive to the traditional fuel has been carried out, computational model to determine fuel costs and exhaust gas emissions under different working conditions has been developed.

  19. Development of the mechanical engineering complex on the basis of the improvement of large and small businesses relations

    Directory of Open Access Journals (Sweden)

    Sokolova Svetlana

    2017-01-01

    Full Text Available Condition, pace and character of the development of the mechanical engineering complex is in many aspects a crucial factor for the social and economic situation of any country. The development of market relations, changes of the conditions of doing business encourage the enterprises to search new managerial methods and to improve the interaction forms. In this respect the display of the peculiarities of the interaction of large machine engineering enterprises and small business in this sphere and also the assessment of the relationship of their development is an important and crucial issue under modern conditions. The most widely spread forms of the cooperation of large scale mechanical engineering enterprises and small businesses of the industry are: outsourcing, franchising, leasing, subcontracting, venture financing, creation of regional forms of the cooperation of large and small firms. However cooperation processes of large scale and small entrepreneurship in Russia are not properly developed. The authors determine the factors hindering the growth of the machine building industry, suggest the recommendations for the development of the large scale enterprises and small business in the industry, substantiate the role of the government in this process. Besides the mechanism of the state support of the development of small business is described.

  20. Ascent phase trajectory optimization for vehicle with multi-combined cycle engine based on improved particle swarm optimization

    Science.gov (United States)

    Zhou, Hongyu; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang

    2017-11-01

    An improved particle swarm optimization (IPSO) algorithm is proposed to optimize the ascent phase trajectory for vehicle with multi-combined cycle engine. Aerodynamic and thrust models are formulated in couple with flying states and environment. Conventional PSO has advantages in solving complicated optimization problems but has troubles in constraints handling and premature convergence preventing. To handle constraints, a modification in the fitness function of infeasible particles is executed based on the constraints violation and a comparation is executed to choose the better particle according to the fitness. To prevent premature, a diminishing number of particles are chosen to be mutated on the velocity by random times and directions. The ascent trajectory is divided into sub-phases according to engine modes. Different constraints, control parameters and engine models are considered in each sub-phase. Though the proposed algorithm is straightforward in comprehension and implementation, the numerical examples demonstrate that the algorithm has better performance than other PSO variants. In comparation with the commercial software GPOPS, the performance index of IPSO is almost the same as GPOPS but the results are less oscillating and dependent on initial values.

  1. An electrochemical engineering technique to improve the corrosion resistance of some structural materials in lead-alloy coolants

    International Nuclear Information System (INIS)

    Tacica, M.; Andrei, V.; Rusu, O.; Coaca, E.; Minca, M.; Florea, S.; Oncioiu, G.

    2013-01-01

    The goal of this paper is to present some conclusions resulted from the literature studies referring to the materials potential to be used in Lead Fast Reactors (LFR), and the results obtained in the surface engineering field which can be used in our institute in order to obtain materials with appropriate properties for their use in LFR. In this context, the paper presents some preliminary results obtained in Surface Analysis Laboratory of INR Pitesti and research works in progress referring to: controlled modification of AISI 316 L surface by electrochemical plasma treatment (carburization, nitrocarburizings); electrodeposition of some protective thin-films based on Ni and Al obtained from ionic liquids; development of some procedures related to the activities involved in the behaviour evaluation, in LFR specific conditions, for material samples subjected to treatments by surface engineering techniques using the LEad COrrosion TEsting LOop (LECOTELO) test bench. The superficial structures obtained have been characterized by metallographic microscopy, X-Ray Photoemission Spectroscopy (XPS), Electrochemical Impedance Spectroscopy (EIS); the electrochemical techniques were used to evaluate the corrosion behaviour. The preliminary results have shown that the used electrochemical surface engineering techniques are appropriate in order to improve the mechanical properties and corrosion behaviour of AISI 316 L steel. (authors)

  2. Simple Formation of Nanostructured Molybdenum Disulfide Thin Films by Electrodeposition

    Directory of Open Access Journals (Sweden)

    S. K. Ghosh

    2013-01-01

    Full Text Available Nanostructured molybdenum disulfide thin films were deposited on various substrates by direct current (DC electrolysis form aqueous electrolyte containing molybdate and sulfide ions. Post deposition annealing at higher temperatures in the range 450–700°C transformed the as-deposited amorphous films to nanocrystalline structure. High temperature X-ray diffraction studies clearly recorded the crystal structure transformations associated with grain growth with increase in annealing temperature. Surface morphology investigations revealed featureless structure in case of as-deposited surface; upon annealing it converts into a surface with protruding nanotubes, nanorods, or dumbbell shape nanofeatures. UV-visible and FTIR spectra confirmed about the presence of Mo-S bonding in the deposited films. Transmission electron microscopic examination showed that the annealed MoS2 films consist of nanoballs, nanoribbons, and multiple wall nanotubes.

  3. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  4. Contact-induced doping in aluminum-contacted molybdenum disulfide

    Science.gov (United States)

    Shimazu, Yoshihiro; Arai, Kensuke; Iwabuchi, Tatsuya

    2018-01-01

    The interface between two-dimensional semiconductors and metal contacts is an important topic of research of nanoelectronic devices based on two-dimensional semiconducting materials such as molybdenum disulfide (MoS2). We report transport properties of thin MoS2 flakes in a field-effect transistor geometry with Ti/Au and Al contacts. In contrast to widely used Ti/Au contacts, the conductance of flakes with Al contacts exhibits a smaller gate-voltage dependence, which is consistent with a substantial electron doping effect of the Al contacts. The temperature dependence of two-terminal conductance for the Al contacts is also considerably smaller than for the Ti/Au contacts, in which thermionic emission and thermally assisted tunneling play a dominant role. This result is explained in terms of the assumption that the carrier injection mechanism at an Al contact is dominated by tunneling that is not thermally activated.

  5. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation.

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G

    2016-10-21

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials.

  6. Provider-Payer Partnerships as an Engine for Continuous Quality Improvement.

    Science.gov (United States)

    Balfour, Margaret E; Zinn, Tylar E; Cason, Karena; Fox, Jerimya; Morales, Myra; Berdeja, Cesar; Gray, Jay

    2018-03-01

    The authors describe a quality improvement approach in which a crisis center and a payer collaborate to improve care. Each crisis visit is considered as a potentially missed opportunity for community stabilization. Daily data on crisis visits are sent to the payer for a more up-to-date analysis of trends than is possible with financial claims data, which may lag behind services provided by up to 90 days. Using these trend data, the two organizations collaborate to identify patterns that lead to opportunities for improvement and develop multiple rapid-cycle projects for better management of services, resulting in significant decreases in readmissions and in the number of high utilizers.

  7. The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization.

    Science.gov (United States)

    Johnston, P A; Südhof, T C

    1990-05-25

    Synaptophysin, a major membrane protein of synaptic vesicles, contains four transmembrane regions and two intravesicular loops. Synaptophysin monomers associate into homopolymers that have the potential to form channels in the synaptic vesicle membrane. Here we show that in native synaptophysin, homopolymers are linked by noncovalent forces. The molecule contains unstable intramolecular disulfide bonds that undergo disulfide exchange during solubilization, thereby covalently cross-linking neighboring synaptophysin molecules. The locations of the intramolecular disulfide bonds in synaptophysin were determined, revealing that each of the two intravesicular loops of synaptophysin is circularized by a single disulfide bond. Cross-linking of synaptophysin by disulfide bonds can be triggered in synaptic vesicles and in intact cells by a cycle of reduction and oxidation, suggesting that native synaptophysin is a homomultimer in situ. In addition, chemical cross-linking of native synaptophysin demonstrates that a low molecular weight protein is specifically associated with synaptophysin complexes and is lost upon reduction of the intramolecular disulfide bonds. These data suggest that native synaptophysin forms a noncovalent homomultimeric complex whose structure and interaction with other proteins are dependent on the integrity of its intramolecular disulfide bonds and phospholipid environment.

  8. Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models.

    Science.gov (United States)

    Carretta, Marco; de Boer, Bauke; Jaques, Jenny; Antonelli, Antonella; Horton, Sarah J; Yuan, Huipin; de Bruijn, Joost D; Groen, Richard W J; Vellenga, Edo; Schuringa, Jan Jacob

    2017-07-01

    Recently, NOD-SCID IL2Rγ -/- (NSG) mice were implanted with human mesenchymal stromal cells (MSCs) in the presence of ceramic scaffolds or Matrigel to mimic the human bone marrow (BM) microenvironment. This approach allowed the engraftment of leukemic samples that failed to engraft in NSG mice without humanized niches and resulted in a better preservation of leukemic stem cell self-renewal properties. To further improve our humanized niche scaffold model, we genetically engineered human MSCs to secrete human interleukin-3 (IL-3) and thrombopoietin (TPO). In vitro, these IL-3- and TPO-producing MSCs were superior in expanding human cord blood (CB) CD34 + hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34 + cells could be transformed efficiently along myeloid or lymphoid lineages on IL-3- and TPO-producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to differentiate into bone, adipocytes, and other stromal components. Upon transplantation of MLL-AF9-transduced CB CD34 + cells, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) developed in engineered scaffolds, in which a significantly higher percentage of myeloid clones was observed in the mouse compartments compared with previous models. Engraftment of primary AML, B-cell ALL, and biphenotypic acute leukemia (BAL) patient samples was also evaluated, and all patient samples could engraft efficiently; the myeloid compartment of the BAL samples was better preserved in the human cytokine scaffold model. In conclusion, we show that we can genetically engineer the ectopic human BM microenvironment in a humanized scaffold xenograft model. This approach will be useful for functional study of the importance of niche factors in normal and malignant human hematopoiesis. Copyright © 2017 ISEH - International Society for Experimental Hematology. All rights reserved.

  9. Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Tabatabaei, Meisam; Mohammadi, Pouya; Pourvosoughi, Navid; Nikbakht, Ali M.; Goli, Sayed Amir Hossein

    2015-01-01

    Highlights: • Exergy analysis of diesel engine fuelled with various SBE biodiesel–diesel blends containing EPS. • Profound effect of engine speed and load on exergetic performance parameters of diesel engine. • Selection of B5 containing 50 g EPS/L biodiesel as the best mixture. • Potential application of the applied framework for optimizing sustainability index of IC engines. - Abstract: Exergy analysis of a DI diesel engine running on several biodiesel/diesel blends (B5) containing various quantities of expanded polystyrene (EPS) was carried out. Neat diesel and B5 were also investigated during the engine tests. The biodiesel used was produced using waste oil extracted from spend bleaching earth (SBE). The experiments were conducted to assess the effects of fuel type, engine speed, and load on thermal efficiency, exergetic parameters, and sustainability index of the diesel engine. The obtained results revealed that the exergetic parameters strongly depended on the engine speed and load. Generally, increasing engine speed remarkably decreased the exergy efficiency and sustainability index of the diesel engine. However, increasing engine load initially enhanced the exergy efficiency and sustainability index, while its further augmentation did not profoundly affect these parameters. The maximum exergy efficiency and sustainability index of the diesel engine (i.e. 40.21% and 1.67, respectively) were achieved using B5 containing 50 g EPS/L biodiesel. Generally, the approach presented herein could be a promising strategy for energy recovery from polymer waste, emissions reduction, and performance improvement. The findings of the present study also confirmed that exergy analysis could be employed to minimize the irreversibility and losses occurring in modern engines and to enhance the sustainability index of combustion processes.

  10. A DMAIC approach for process capability improvement an engine crankshaft manufacturing process

    OpenAIRE

    Sharma, G.V.S.S.; Rao, P. Srinivasa

    2014-01-01

    The define-measure-analyze-improve-control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of crankshaft. This statistical process control study starts with selection of the critical-to-quality (CTQ) char...

  11. Methodology to improve design of accelerated life tests in civil engineering projects.

    Science.gov (United States)

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  12. Methodology to improve design of accelerated life tests in civil engineering projects.

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available For reliability testing an Energy Expansion Tree (EET and a companion Energy Function Model (EFM are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  13. Electrospun collagen-based nanofibres: A sustainable material for improved antibiotic utilisation in tissue engineering applications.

    Science.gov (United States)

    Hall Barrientos, Ivan J; Paladino, Eleonora; Szabó, Peter; Brozio, Sarah; Hall, Peter J; Oseghale, Charles I; Passarelli, Melissa K; Moug, Susan J; Black, Richard A; Wilson, Clive G; Zelkó, Romana; Lamprou, Dimitrios A

    2017-10-05

    For the creation of scaffolds in tissue engineering applications, it is essential to control the physical morphology of fibres and to choose compositions which do not disturb normal physiological function. Collagen, the most abundant protein in the human body, is a well-established biopolymer used in electrospinning compositions. It shows high in-vivo stability and is able to maintain a high biomechanical strength over time. In this study, the effects of collagen type I in polylactic acid-drug electrospun scaffolds for tissue engineering applications are examined. The samples produced were subsequently characterised using a range of techniques. Scanning electron microscopy analysis shows that the fibre morphologies varied across PLA-drug and PLA-collagen-drug samples - the addition of collagen caused a decrease in average fibre diameter by nearly half, and produced nanofibres. Atomic force microscopy imaging revealed collagen-banding patterns which show the successful integration of collagen with PLA. Solid-state characterisation suggested a chemical interaction between PLA and drug compounds, irgasan and levofloxacin, and the collagen increased the amorphous regions within the samples. Surface energy analysis of drug powders showed a higher dispersive surface energy of levofloxacin compared with irgasan, and contact angle goniometry showed an increase in hydrophobicity in PLA-collagen-drug samples. The antibacterial studies showed a high efficacy of resistance against the growth of both E. coli and S. Aureus, except with PLA-collagen-LEVO which showed a regrowth of bacteria after 48h. This can be attributed to the low drug release percentage incorporated into the nanofibre during the in vitro release study. However, the studies did show that collagen helped shift both drugs into sustained release behaviour. These ideal modifications to electrospun scaffolds may prove useful in further research regarding the acceptance of human tissue by inhibiting the potential

  14. New design of engineered safety features-component control system to improve performance and reliability

    International Nuclear Information System (INIS)

    Kim, S.T.; Jung, H.W.; Lee, S.J.; Cho, C.H.; Kim, D.H.; Kim, H.

    2006-01-01

    Full text: Full text: The Engineered Safety Features-Component Control System (ESF-CCS) controls the engineered safety features of a Nuclear Power Plant such as Solenoid Operated Valves (SOV), Motor Operated Valves (MOV), pumps, dampers, etc. to mitigate the effects of a Design Basis Accident (DBA) or an abnormal operation. ESF-CCS serves as an interface system between the Plant Protection System (PPS) and remote actuation devices. ESF-CCS is composed of fault tolerant Group Controllers GC, Loop Controllers (LC), ESF-CCS Test and Interface Processor (ETIP) and Cabinet Operator Module (COM) and Control Channel Gateway (CCG) etc. GCs in each division are designed to be fully independent triple configuration, which perform system level NSSS and BOP ESFAS logic (2-out-of-4 logic and l-out-of-2 logic, respectively) making it possible to test each GC individually during normal operation. In the existing configuration, the safety-related plant component control is part of the Plant Control System (PCS) non-safety system. For increased safety and reliability, this design change incorporates this part into the LCs, and is therefore designed according to the safety-critical system procedures. The test and diagnosis capabilities of ETIP and COM are reinforced. By means of an automatic periodic test for all main functions of the system, it is possible to quickly determine an abnormal status of the system, and to decrease the elapsed time for tests, thus effectively increasing availability. ESF-CCS consists of four independent divisions (A, B, C, and D) in the Advanced Power Reactor 1400 (APR1400). One prototype division is being manufactured and will be tested

  15. Needs assessment for nondestructive testing and materials characterization for improved reliability in structural ceramics for heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.; McClung, R.W.; Janney, M.A.; Hanusiak, W.M.

    1987-08-01

    A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structural ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.

  16. Improving of the working process of axial compressors of gas turbine engines by using an optimization method

    Science.gov (United States)

    Marchukov, E.; Egorov, I.; Popov, G.; Baturin, O.; Goriachkin, E.; Novikova, Y.; Kolmakova, D.

    2017-08-01

    The article presents one optimization method for improving of the working process of an axial compressor of gas turbine engine. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. Optimization was performed by changing the form of the middle line in the three sections of each blade and shifts of three sections of the guide vanes in the circumferential and axial directions. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  17. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins.

    Science.gov (United States)

    Lu, Xinyao; He, Shuying; Zong, Hong; Song, Jian; Chen, Wen; Zhuge, Bin

    2016-09-01

    1, 2, 4-Butanetriol (BT) is a high-value non-natural chemical and has important applications in polymers, medical production and military industry. In the constructed BT biosynthesis pathway from xylose in Escherichia coli, the xylose dehydrogenase (Xdh) and the benzoylformate decarboxylase (MdlC) are heterologous enzymes and the activity of MdlC is the key limiting factor for BT production. In this study, six chaperone protein systems were introduced into the engineered E. coli harboring the recombinant BT pathway. The chaperone GroES-GroEL was beneficial to Xdh activity but had a negative effect on MdlC activity and BT titer. The plasmid pTf16 containing the tig gene (trigger factor) was beneficial to Xdh and MdlC activities and improved the BT titer from 0.42 to 0.56 g/l from 20 g/l xylose. However, co-expression of trigger factor and GroES-GroEL simultaneously reduced the activity of MdlC and had no effect on the BT production. The plasmid pKJE7 harboring dnaK-dnaJ-grpE showed significant negative effects on these enzyme activities and cell growth, leading to completely restrained the BT production. Similarly, co-expression of DnaKJ-GrpPE and GroES-GroEL simultaneously reduced Xdh and MdlC activities and decreased the BT titer by 45.2 %. The BT production of the engineered E. coli harboring pTf16 was further improved to the highest level at 1.01 g/l under pH control (pH 7). This work showed the potential application of chaperone proteins in microorganism engineering to get high production of target compounds as an effective and valuable tool.

  18. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis

    KAUST Repository

    Merzaban, Jasmeen S.

    2015-09-13

    Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.

  19. In silico engineering and optimization of Transcription Activator-Like Effectors and their derivatives for improved DNA binding predictions.

    KAUST Repository

    Piatek, Marek J.

    2015-12-01

    Transcription Activator-Like Effectors (TALEs) can be used as adaptable DNAbinding modules to create site-specific chimeric nucleases or synthetic transcriptional regulators. The central repeat domain mediates specific DNA binding via hypervariable repeat di-residues (RVDs). This DNA-Binding Domain can be engineered to bind preferentially to any user-selected DNA sequence if engineered appropriately. Therefore, TALEs and their derivatives have become indispensable molecular tools in site-specific manipulation of genes and genomes. This thesis revolves around two problems: in silico design and improved binding site prediction of TALEs. In the first part, a study is shown where TALEs are successfully designed in silico and validated in laboratory to yield the anticipated effects on selected genes. Software is developed to accompany the process of designing and prediction of binding sites. I expanded the functionality of the software to be used as a more generic set of tools for the design, target and offtarget searching. Part two contributes a method and associated toolkit developed to allow users to design in silico optimized synthetic TALEs with user-defined specificities for various experimental purposes. This method is based on a mutual relationship of three consecutive tandem repeats in the DNA-binding domain. This approach revealed positional and compositional bias behind the binding of TALEs to DNA. In conclusion, I developed methods, approaches, and software to enhance the functionality of synthetic TALEs, which should improve understanding of TALEs biology and will further advance genome-engineering applications in various organisms and cell types.

  20. Genetic engineering technology for the improvement of the sterile insect technique. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-01-01

    Since the beginning of the joint FAO/IAEA programme on the research and development of insect pest control methodology, emphasis has been placed on the basic and applied aspects of implementing the sterile insect technique (SIT). Special emphasis has always been directed at the assembly of technological progress into workable systems that can be implemented in developing countries. The general intention is to solve problems associated with insect pests that have an adverse impact on production of food and fibre. For several insect species SIT has proven to be a powerful method for control. This includes the New World screwworm fly (Cochliomyia hominivorox), the Mediterranean fruit fly (Ceratitis capitata), the melon fly (Bactrocera cucurbitae), the Queensland fruit fly (Bactrocera tryoni) and one tsetse fly species (Glossina austeni). Improvements of the SIT are possible, especially through the use of molecular techniques. The final report of the Co-ordinated Research Programme on ''Genetic Engineering Technology for the Improvement of the Sterile Insect Technique'' highlights the progress made towards the development of transformation systems for non-drosophilid insects and the research aimed at the identification and engineering of potential target genes or traits

  1. Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

    Science.gov (United States)

    Suzuki, Toshihiro; Seta, Kohei; Nishikawa, Chiaki; Hara, Eri; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2015-01-01

    To improve the ethanol tolerance of the Klebsiella variicola strain TB-83, we obtained the streptomycin-resistant, ethanol-tolerant mutant strain TB-83D by a ribosome engineering approach. Strain TB-83D was able to grow in the presence of 7% (v/v) ethanol and it showed higher ethanol production than strain TB-83. Examination of various culture conditions revealed that yeast extract was essential for ethanol production and bacterial growth. In addition, ethanol production was elevated to 32g/L by the addition of yeast extract; however, ethanol production was inhibited by formate accumulation. With regard to cost reduction, the use of corn steep liquor (CSL) markedly decreased the formate concentration, and 34g/L ethanol was produced by combining yeast extract with CSL. Our study is the first to improve ethanol tolerance and productivity by a ribosome engineering approach, and we found that strain TB-83D is effective for ethanol production from glycerol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    OpenAIRE

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-01-01

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser108/121, HB-EGF-Cys/Ser116/132, and HB-EGF-Cys/Ser134/143) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with Mr of 6.5, 21 and 24kDa were observed from lys...

  3. Native Conformation and Canonical Disulfide Bond Formation Are Interlinked Properties of HIV-1 Env Glycoproteins.

    Science.gov (United States)

    Go, Eden P; Cupo, Albert; Ringe, Rajesh; Pugach, Pavel; Moore, John P; Desaire, Heather

    2015-12-30

    We investigated whether there is any association between a native-like conformation and the presence of only the canonical (i.e., native) disulfide bonds in the gp120 subunits of a soluble recombinant human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein. We used a mass spectrometry (MS)-based method to map the disulfide bonds present in nonnative uncleaved gp140 proteins and native-like SOSIP.664 trimers based on the BG505 env gene. Our results show that uncleaved gp140 proteins were not homogeneous, in that substantial subpopulations (20 to 80%) contained aberrant disulfide bonds. In contrast, the gp120 subunits of the native-like SOSIP.664 trimer almost exclusively retained the canonical disulfide bond pattern. We also observed that the purification method could influence the proportion of an Env protein population that contained aberrant disulfide bonds. We infer that gp140 proteins may always contain a variable but substantial proportion of aberrant disulfide bonds but that the impact of this problem can be minimized via design and/or purification strategies that yield native-like trimers. The same factors may also be relevant to the production and purification of monomeric gp120 proteins that are free of aberrant disulfide bonds. It is widely thought that a successful HIV-1 vaccine will include a recombinant form of the Env protein, a trimer located on the virion surface. To increase yield and simplify purification, Env proteins are often made in truncated, soluble forms. A consequence, however, can be the loss of the native conformation concomitant with the virion-associated trimer. Moreover, some soluble recombinant Env proteins contain aberrant disulfide bonds that are not expected to be present in the native trimer. To assess whether these observations are linked, to determine the extent of disulfide bond scrambling, and to understand why scrambling occurs, we determined the disulfide bond profiles of two soluble Env proteins with

  4. Integrating knowledge representation/engineering, the multivariant PNN, and machine learning to improve breast cancer diagnosis

    Science.gov (United States)

    Land, Walker H., Jr.; Embrechts, Mark J.; Anderson, Frances R.; Smith, Tom; Wong, Lut; Fahlbusch, Steve; Choma, Robert

    2005-03-01

    Breast cancer is second only to lung cancer as a tumor-related cause of death in women. Currently, the method of choice for the early detection of breast cancer is mammography. While sensitive to the detection of breast cancer, its positive predictive value (PPV) is low. One of the main deterrents to achieving high computer aided diagnostic (CAD) accuracy is carelessly developed databases. These "noisy" data sets have always appeared to disrupt learning agents from learning correctly. A new statistical method for cleaning data sets was developed that improves the performance of CAD systems. Initial research efforts showed the following: PLS Az value improved by 8.79% and partial Az improved by 49.71%. The K-PLS Az value at Sigma 4.1 improved by 9.18% and the partial Az by 43.47%. The K-PLS at Sigma 3.6 (best fit sigma with this data set) Az value improved by 9.24% and the partial Az by 44.29%. With larger data sets, the ROC curves potentially could look much better than they do now. The Az value for K-PLS (0.892565) is better than PLS, PNN, and most SVMs. The SVM-rbf kernel was the only agent that out performed the K-PLS with an Az value of 0.895362. However, K-PLS runs much faster and appears to be just as accurate as the SVM-rbf kernel.

  5. A DMAIC approach for process capability improvement an engine crankshaft manufacturing process

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, P. Srinivasa

    2014-05-01

    The define-measure-analyze-improve-control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of crankshaft. This statistical process control study starts with selection of the critical-to-quality (CTQ) characteristic in the define stratum. The next stratum constitutes the collection of dimensional measurement data of the CTQ characteristic identified. This is followed by the analysis and improvement strata where the various quality control tools like Ishikawa diagram, physical mechanism analysis, failure modes effects analysis and analysis of variance are applied. Finally, the process monitoring charts are deployed at the workplace for regular monitoring and control of the concerned CTQ characteristic. By adopting DMAIC approach, standard deviation is reduced from 0.003 to 0.002. The process potential capability index ( C P) values improved from 1.29 to 2.02 and the process performance capability index ( C PK) values improved from 0.32 to 1.45, respectively.

  6. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    Energy Technology Data Exchange (ETDEWEB)

    Dardalis, Dimitrios

    2013-12-31

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the original proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,

  7. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Directory of Open Access Journals (Sweden)

    Katherine E. French

    2017-07-01

    Full Text Available Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored

  8. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health.

    Science.gov (United States)

    French, Katherine E

    2017-01-01

    Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to

  9. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Science.gov (United States)

    French, Katherine E.

    2017-01-01

    Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored and protected to

  10. Dual-degradable disulfide-containing PEI–Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-09-01

    Full Text Available Lifen Zhang,* Zhenzhen Chen,* Yanfeng LiState Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou, People's Republic of China*These authors contributed equally to this workAbstract: Polymeric gene-delivery vectors to achieve lack of toxicity and a balance between protection and DNA release remains a formidable challenge. Incorporating intracellular environment-responsive degradable bonds is an appreciable step toward developing safer transfection agents. In this study, novel, dual-degradable polycation copolymers (Pluronic-diacrylate [PA]–polyethyleneimine [PEI]–SS were synthesized through the addition of low molecular weight (800 Da PEI cross-linked with SS (PEI-SS to PA. Three PA-PEI-SS copolymers (PA-PEI-SS1, 2, and 3 with different PEI-SS to Pluronic molar ratios were investigated and found to strongly condense plasmid DNA into positively charged nanoparticles with an average particle size of approximately 200 nm and to possess higher stability against DNase I digestion and sodium heparin. Disulfide and ester bonds of the copolymers were susceptible to intracellular redox conditions. In vitro experiments demonstrated that the PA-PEI-SS copolymers had significantly lower cytotoxicity and higher transfection efficiency in both BGC-823 and 293T cell lines than the controls of degradable PEI-SS and nondegradable 25 kDa PEI. Transfection activity was influenced by the PEI-SS content in the polymers and PA-PEI-SS1 showed the highest efficiency of the three copolymers. These studies suggest that these dual-degradable copolymers could be used as potential biocompatible gene delivery carriers.Keywords: Pluronic, PEI, gene vector, dual-degradable, disulfide-containing linker

  11. Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms.

    Science.gov (United States)

    Swinnen, Steve; Henriques, Sílvia F; Shrestha, Ranjan; Ho, Ping-Wei; Sá-Correia, Isabel; Nevoigt, Elke

    2017-01-09

    Besides being a major regulator of the response to acetic acid in Saccharomyces cerevisiae, the transcription factor Haa1 is an important determinant of the tolerance to this acid. The engineering of Haa1 either by overexpression or mutagenesis has therefore been considered to be a promising avenue towards the construction of more robust strains with improved acetic acid tolerance. By applying the concept of global transcription machinery engineering to the regulon-specific transcription factor Haa1, a mutant allele containing two point mutations could be selected that resulted in a significantly higher acetic acid tolerance as compared to the wild-type allele. The level of improvement obtained was comparable to the level obtained by overexpression of HAA1, which was achieved by introduction of a second copy of the native HAA1 gene. Dissection of the contribution of the two point mutations to the phenotype showed that the major improvement was caused by an amino acid exchange at position 135 (serine to phenylalanine). In order to further study the mechanisms underlying the tolerance phenotype, Haa1 translocation and transcriptional activation of Haa1 target genes was compared between Haa1 mutant, overproduction and wild-type strains. While the rapid Haa1 translocation from the cytosol to the nucleus in response to acetic acid was not affected in the Haa1 S135F mutant strain, the levels of transcriptional activation of four selected Haa1-target genes by acetic acid were significantly higher in cells of the mutant strain as compared to cells of the wild-type strain. Interestingly, the time-course of transcriptional activation in response to acetic acid was comparable for the mutant and wild-type strain whereas the maximum mRNA levels obtained correlate with each strain's tolerance level. Our data confirms that engineering of the regulon-specific transcription factor Haa1 allows the improvement of acetic acid tolerance in S. cerevisiae. It was also shown that the

  12. Advances in the genetic improvement of Prunus domestica utilizing genetic engineering

    Science.gov (United States)

    Plum producers world-wide are facing multiple challenges including climate change, reductions in available labor, the need for reduced chemical inputs, the spread of native and exotic pests and pathogens, and consumer demands for improved fruit quality and health benefits. Meeting these challenges ...

  13. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils.

    NARCIS (Netherlands)

    Karenlampi, S.; Schat, H.; Vangronsveld, J.; Verkley, J.A.C.; van der Lelie, D.; Mergeay, M.; Tervahauta, A.I.

    2000-01-01

    Metal concentrations in soils are locally quite high, and are still increasing due to many human activities, leading to elevated risk for health and the environment. Phytoremediation may offer a viable solution to this problem, and the approach is gaining increasing interest. Improvement of plants

  14. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.

    Science.gov (United States)

    Pray, Carl; Ledermann, Samuel

    2016-01-01

    In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. © 2016 S. Karger AG, Basel.

  15. Improved performance of aging human mesenchymal stromal cells for bone tissue engineering

    NARCIS (Netherlands)

    Alves, H.A.D.C.R.

    2011-01-01

    In the last decades, an improvement in general life conditions has led to an increace in human life span but, concomitantly, also led to an increasing incidence of bone related disorders. A substancial effort has been placed in the development of new techologies to overcome current limitations of

  16. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    DEFF Research Database (Denmark)

    Sanchez, R.G.; Karhumaa, Kaisa; Fonseca, C.

    2010-01-01

    prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways. Conclusion: To the best...

  17. Army Corps of Engineers: Cost Increases in Flood Control Projects and Improving Communication with Nonfederal Sponsors

    Science.gov (United States)

    2013-12-01

    prestressed concrete that are driven into the ground to retain earth or prevent water seepage. 21According to the Corps, a flowage easement is...and investigative arm of Congress, exists to support Congress in meeting its constitutional responsibilities and to help improve the performance

  18. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance.

    Science.gov (United States)

    Kaialy, Waseem; Maniruzzaman, Mohammad; Shojaee, Saeed; Nokhodchi, Ali

    2014-12-30

    The purpose of this work was to develop stable xylitol particles with modified physical properties, improved compactibility and enhanced pharmaceutical performance without altering polymorphic form of xylitol. Xylitol was crystallized using antisolvent crystallization technique in the presence of various hydrophilic polymer additives, i.e., polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) at a range of concentrations. The crystallization process did not influence the stable polymorphic form or true density of xylitol. However, botryoidal-shaped crystallized xylitols demonstrated different particle morphologies and lower powder bulk and tap densities in comparison to subangular-shaped commercial xylitol. Xylitol crystallized without additive and xylitol crystallized in the presence of PVP or PVA demonstrated significant improvement in hardness of directly compressed tablets; however, such improvement was observed to lesser extent for xylitol crystallized in the presence of PEG. Crystallized xylitols produced enhanced dissolution profiles for indomethacin in comparison to original xylitol. The influence of additive concentration on tablet hardness was dependent on the type of additive, whereas an increased concentration of all additives provided an improvement in the dissolution behavior of indomethacin. Antisolvent crystallization using judiciously selected type and concentration of additive can be a potential approach to prepare xylitol powders with promising physicomechanical and pharmaceutical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The Biomimetic Shark Skin Optimization Design Method for Improving Lubrication Effect of Engineering Surface.

    Science.gov (United States)

    Lu, Yan; Hua, Meng; Liu, Zuomin

    2014-07-01

    Nature has long been an important source of inspiration for mankind to develop artificial ways to mimic the remarkable properties of biological systems. In this work, a new method was explored to fabricate a biomimetic engineering surface comprising both the shark-skin, the shark body denticle, and rib morphology. It can help reduce water resistance and the friction contact area as well as accommodate lubricant. The lubrication theory model was established to predict the effect of geometric parameters of a biomimetic surface on tribological performance. The model has been proved to be feasible to predict tribological performance by the experimental results. The model was then used to investigate the effect of the grid textured surface on frictional performance of different geometries. The investigation was aimed at providing a rule for deriving the design parameters of a biomimetic surface with good lubrication characteristics. Results suggest that: (i) the increase in depression width ratio [Formula: see text] decreases its corresponding coefficient of friction, and (ii) the small coefficient of friction is achievable when [Formula: see text] is beyond 0.45. Superposition of depth ratio Γ and angle's couple under the condition of [Formula: see text] < 0.45 affects the value of friction coefficient. It shows the decrease in angle decreases with the increase in dimension depth [Formula: see text].

  20. Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy

    Directory of Open Access Journals (Sweden)

    Isaac A. Rodriguez

    2014-01-01

    Full Text Available Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP. PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in both in vitro and in vivo scenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use.

  1. Genetic engineering represents a safe approach for innovations improving nutritional contents of major food crops

    Directory of Open Access Journals (Sweden)

    Werner Arber

    2017-05-01

    Full Text Available About 70 years ago early microbial genetic research revealed that inherited phenotypic traits become determined by DNA filaments composed of 4 different nucleotides that are linearly arranged. In the meantime we know that genes, the determinants of specific life functions, are genomic segments of an average size of about 1000 nucleotides, i.e. a very small part of a genome. Fundamental insights into the structures and functions of selected genes can be reached by sorting out the relevant short DNA segment, splicing this fragment into a natural gene vector such as a viral genome or a fertility plasmid. This allows the researchers to transfer the genetic hybrid into an appropriate host cell in order to produce many copies that can then serve for functional and structural analysis. This research approach became efficient in the 1970s. On the request of involved researchers, safety guidelines became proposed 1975 at the Asilomar Conference on Recombinant DNA (Berg, Baltimore, Brenner, Roblin, & Singer, 1975, then generally introduced and still largely followed nowadays. Carefully carried out genetic engineering by horizontally transferring a selected and functionally well known DNA segment into the genome of another organism has in many published biosafety investigations never shown any unexpected harmful effect. We will present below selected examples of research contributions enabling innovations for the benefit of human life conditions.

  2. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.

    Science.gov (United States)

    Jang, Ji-Woong; Jung, Hwi-Min; Im, Dae-Kyun; Jung, Moo-Young; Oh, Min-Kyu

    2017-11-01

    Enterobacter aerogenes was metabolically engineered for acetoin production. To remove the pathway enzymes that catalyzed the formation of by-products, the three genes encoding a lactate dehydrogenase (ldhA) and two 2,3-butanediol dehydrogenases (budC, and dhaD), respectively, were deleted from the genome. The acetoin production was higher under highly aerobic conditions. However, an extracellular glucose oxidative pathway in E. aerogenes was activated under the aerobic conditions, resulting in the accumulation of 2-ketogluconate. To decrease the accumulation of this by-product, the gene encoding a glucose dehydrogenase (gcd) was also deleted. The resulting strain did not produce 2-ketogluconate but produced significant amounts of acetoin, with concentration reaching 71.7g/L with 2.87g/L/h productivity in fed-batch fermentation. This result demonstrated the importance of blocking the glucose oxidative pathway under highly aerobic conditions for acetoin production using E. aerogenes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Lignin engineering through laccase modification: a promising field for energy plant improvement.

    Science.gov (United States)

    Wang, Jinhui; Feng, Juanjuan; Jia, Weitao; Chang, Sandra; Li, Shizhong; Li, Yinxin

    2015-01-01

    Laccase (p-diphenol:dioxygen oxidoreductase, EC 1.10.3.2) is a member of the multicopper oxidases and catalyzes the one-electron oxidation of a wide range of substrates, coupled with the reduction of oxygen to water. It is widely distributed in bacteria, fungi, plants and insects. Laccases are encoded by multigene family, and have been characterized mostly from fungi till now, with abundant industrial applications in pulp and paper, textile, food industries, organic synthesis, bioremediation and nanobiotechnology, while limited researches have been performed in plants, and no application has been reported. Plant laccases share the common molecular architecture and reaction mechanism with fungal ones, despite of difference in redox potential and pH optima. Plant laccases are implicated in lignin biosynthesis since genetic evidence was derived from the Arabidopsis LAC4 and LAC17. Manipulation of plant laccases has been considered as a promising and innovative strategy in plant biomass engineering for desirable lignin content and/or composition, since lignin is the major recalcitrant component to saccharification in biofuel production from lignocellulose, and therefore directly limits the fermentation yields. Moreover, plant laccases have been reported to be involved in wound healing, maintenance of cell wall structure and integrity, and plant responses to environmental stresses. Here, we summarize the properties and functions of plant laccase, and discuss the potential of biotechnological application, thus providing a new insight into plant laccase, an old enzyme with a promising beginning in lignocellulose biofuel production.

  4. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  5. A knowledge engineering approach for improving secondary recovery in offshore reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Milton P.; Tovar, Felipe T.R.; Guerra, Fabio A. [Parana Institute of Technology (TECPAR), Curitiba, PR (Brazil). Artificial Intelligence Div.; Andrade, Cynthia; Baptista, Walmar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Tecnologia de Materiais, Equipamentos e Corrosao

    2004-07-01

    Secondary recovery in offshore petroleum reservoirs by seawater injection is a technique traditionally applied in oil and gas industry. However, the injected water quality must be compatible with the reservoir characteristics in order to prevent corrosion, formation plugging and reservoir souring. So, the seawater must be treated before injection in the reservoirs and on-line monitoring equipment are employed to check the treatments efficacy. Nevertheless, the amount of data to analyze is quite big and involves many different experts, which make their evaluation and the establishment of correlations very difficult. For these cases, where it's crucial to detect the contaminants presence as soon as they occur to indicate corrective procedures, the application of knowledge engineering techniques and the development of expert systems are a good solution proposal. This paper presents the expert system InjeX (heuristic approach), developed for seawater injection treatment plants to maintain the water quality in offshore platforms. The description and the analysis of the problem, a proposed solution and some preliminary results are detailed and discussed along the paper. (author)

  6. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.

    Science.gov (United States)

    Slininger Lee, Marilyn F; Jakobson, Christopher M; Tullman-Ercek, Danielle

    2017-10-20

    Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.

  7. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants.

    Science.gov (United States)

    Raphel, Jordan; Karlsson, Johan; Galli, Silvia; Wennerberg, Ann; Lindsay, Christopher; Haugh, Matthew G; Pajarinen, Jukka; Goodman, Stuart B; Jimbo, Ryo; Andersson, Martin; Heilshorn, Sarah C

    2016-03-01

    Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 h, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Efficient production of (2)H, (13)C, (15)N-enriched industrial enzyme Rhizopus chinensis lipase with native disulfide bonds.

    Science.gov (United States)

    Zhang, Meng; Yu, Xiao-Wei; Swapna, G V T; Xiao, Rong; Zheng, Haiyan; Sha, Chong; Xu, Yan; Montelione, Gaetano T

    2016-07-13

    In order to use most modern methods of NMR spectroscopy to study protein structure and dynamics, isotope-enriched protein samples are essential. Especially for larger proteins (>20 kDa), perdeuterated and Ile (δ1), Leu, and Val methyl-protonated protein samples are required for suppressing nuclear relaxation to provide improved spectral quality, allowing key backbone and side chain resonance assignments needed for protein structure and dynamics studies. Escherichia coli and Pichia pastoris are two of the most popular expression systems for producing isotope-enriched, recombinant protein samples for NMR investigations. The P. pastoris system can be used to produce (13)C, (15)N-enriched and even (2)H,(13)C, (15)N-enriched protein samples, but efficient methods for producing perdeuterated proteins with Ile (δ1), Leu and Val methyl-protonated groups in P. pastoris are still unavailable. Glycosylation heterogeneity also provides challenges to NMR studies. E. coli expression systems are efficient for overexpressing perdeuterated and Ile (δ1), Leu, Val methyl-protonated protein samples, but are generally not successful for producing secreted eukaryotic proteins with native disulfide bonds. The 33 kDa protein-Rhizopus chinensis lipase (RCL), an important industrial enzyme, was produced using both P. pastoris and E. coli BL21 trxB (DE3) systems. Samples produced from both systems exhibit identical native disulfide bond formation and similar 2D NMR spectra, indicating similar native protein folding. The yield of (13)C, (15)N-enriched r27RCL produced using P. pastoris was 1.7 times higher that obtained using E. coli, while the isotope-labeling efficiency was ~15 % lower. Protein samples produced in P. pastoris exhibit O-glycosylation, while the protein samples produced in E. coli were not glycosylated. The specific activity of r27RCL from P. pastoris was ~1.4 times higher than that produced in E. coli. These data demonstrate efficient production of (2)H, (13)C, (15)N

  9. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  10. CONTINUOUS QUALITY IMPROVEMENT (CQI FRAMEWORK: A CASE OF INDUSTRIAL ENGINEERING DEPARTMENT

    Directory of Open Access Journals (Sweden)

    Tooba Sikander

    2017-06-01

    Full Text Available This paper aims to present an educational framework for outcomes based continuous quality improvement. Well defined program outcomes, program educational objectives and assessment process have been developed to ensure graduates’ outcomes achievement. Direct and indirect tools have been used for assessment process. Course evaluation surveys, alumni surveys, and employer surveys have been deployed for indirect outcome assessment. Exams, quizzes, assignments and projects, on the other hand, have been used for direct outcome assessment. In developed framework, the educational processes committees and facilities committees have been integrated to continuously evaluate and monitor the educational processes. Furthermore, program outcomes and course learning outcomes are proposed to be evaluated and continuously monitored by programs goals committee and continuous course improvement committee respectively. Forms and procedures have been developed to assess student outcomes.

  11. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy.

    Science.gov (United States)

    Combes, S; Fortun-Lamothe, L; Cauquil, L; Gidenne, T

    2013-09-01

    In rabbits, the bacterial and archaeal community of caecal ecosystem is composed mostly of species not yet described and very specific to that species. In mammals, the digestive ecosystem plays important physiological roles: hydrolysis and fermentation of nutrients, immune system regulation, angiogenesis, gut development and acting as a barrier against pathogens. Understanding the functioning of the digestive ecosystem and how to control its functional and specific diversity is a priority, as this could provide new strategies to improve the resistance of the young rabbit to digestive disorders and improve feed efficiency. This review first recalls some facts about the specificity of rabbit digestive microbiota composition in the main fermentation compartment, and its variability with some new insights based on recent molecular approaches. The main functions of the digestive microbiota will then be explained. Finally, some possible ways to control rabbit caecal microbiota will be proposed and a suitable timing for action will be defined.

  12. An Analysis of the Aircraft Engine Component Improvement Program (CIP): A Life Cycle Cost Approach

    Science.gov (United States)

    1990-12-01

    improvement programs (CIP) was stressed during FY81 RDT&E budget programming and reprogramming hearings. An example of congressional interest in aircraft...DTC) Directive stresses early application of DTC/LCC management and procurement principles in all programs, both major and less than major [Ref. 15...intermediate level. Labor - direct intermediate labir cost for scheduled and unscheduled maintenance obtained from the product of direct labor hours

  13. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.

    Science.gov (United States)

    Karkute, Suhas G; Singh, Achuit K; Gupta, Om P; Singh, Prabhakar M; Singh, Bijendra

    2017-01-01

    Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.

  14. Improving mechanical properties of maxillary complete dentures through a bioinspired engineering design.

    Science.gov (United States)

    White, James A P; Bond, Ian P; Jagger, Daryll C

    2011-01-01

    This study investigated how ribbed design features, including palatal rugae, may be used to significantly improve the structural performance of a maxillary denture under load. A computer-aided design model of a generic maxillary denture, incorporating various rib features, was created and imported into a finite element analysis program. The denture and ribbed features were assigned the material properties of standard denture acrylic resin, and load was applied in two different ways: the first simulating a three-point flexural bend of the posterior section and the second simulating loading of the entire palatal region. To investigate the combined use of ribbing and reinforcement, the same simulations were repeated with the ribbed features having a Young modulus two orders of magnitude greater than denture acrylic resin. For a prescribed load, total displacements of tracking nodes were compared to those of a control denture (without ribbing) to assess relative denture rigidity. When subjected to flexural loading, an increase in rib depth was seen to result in a reduction of both the transverse displacement of the last molar and vertical displacement at the centerline. However, ribbed features assigned the material properties of denture acrylic resin require a depth that may impose on speech and bolus propulsion before significant improvements are observed. The use of ribbed features, when made from a significantly stiffer material (eg, fiber-reinforced polymer) and designed to mimic palatal rugae, offer an acceptable method of providing significant improvements in rigidity to a maxillary denture under flexural load.

  15. Gate engineered heterostructure junctionless TFET with Gaussian doping profile for ambipolar suppression and electrical performance improvement

    Science.gov (United States)

    Aghandeh, Hadi; Sedigh Ziabari, Seyed Ali

    2017-11-01

    This study investigates a junctionless tunnel field-effect transistor with a dual material gate and a heterostructure channel/source interface (DMG-H-JLTFET). We find that using the heterostructure interface improves device behavior by reducing the tunneling barrier width at the channel/source interface. Simultaneously, the dual material gate structure decreases ambipolar current by increasing the tunneling barrier width at the drain/channel interface. The performance of the device is analyzed based on the energy band diagram at on, off, and ambipolar states. Numerical simulations demonstrate improvements in ION, IOFF, ION/IOFF, subthreshold slope (SS), transconductance and cut-off frequency and suppressed ambipolar behavior. Next, the workfunction optimization of dual material gate is studied. It is found that if appropriate workfunctions are selected for tunnel and auxiliary gates, the JLTFET exhibits considerably improved performance. We then study the influence of Gaussian doping distribution at the drain and the channel on the ambipolar performance of the device and find that a Gaussian doping profile and a dual material gate structure remarkably reduce ambipolar current. Gaussian doped DMG-H-JLTFET, also exhibits enhanced IOFF, ION/IOFF, SS and a low threshold voltage without degrading IOFF.

  16. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Suhas G. Karkute

    2017-09-01

    Full Text Available Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9 has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.

  17. Improvement of handle grip using reverse engineering, CAE and Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Stoklasek Pavel

    2016-01-01

    Full Text Available The overwhelming majority of manual operations is even nowadays performed by using manual hand tools. These tools can be divided into 2 groups – hand tools designed for general use or a single-purpose hand tools for special operations. Tool described in this paper is used in assembling operation in the completion of electric motor. During the design of the existing tools the requirements for a functional part of the tool (lifespan, inability to damage the engine installation were fully considered, demands for ergonomic grip area, however, were not taken into account. Long-term use of incorrectly designed tool causes carpal tunnel syndrome, hand-arm vibration syndrome, diminished sensitivity or tingling in the fingers of workers. These difficulties can be reduced or entirely eliminated due to proper design of the grip of hand tool. Most authors focus on adjusting the grip for optimum ergonomics at individual types of grips (cylindrical, palmar, lateral, etc.. However, as already mentioned, there are tools for specific operations when the working area is limited by space or a specific type of load on the grip is needed. In some cases, it is often necessary to change the type of grip or combine different types of grips. This paper describes the design of an optimal grip of hand tool used for specific operation when assembling motors. Design of prototype mold and production of functional prototypes for ergonomics assessment directly in the workplace were realized. New design of handle should reduce the risk primarily of developing carpal tunnel in long-term use.

  18. Protein disulfide bond generation in Escherichia coli DsbB–DsbA

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Kenji, E-mail: inaba-k@bioreg.kyushu-u.ac.jp [Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582 (Japan)

    2008-05-01

    The crystal structure of the DsbB–DsbA–ubiquinone ternary complex has revealed a mechanism of protein disulfide bond generation in Escherichia coli. Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB–DsbA–ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of the crosstalk between the DsbA–DsbB oxidative and the DsbC–DsbD reductive pathways has also been proposed.

  19. Protein disulfide bond generation in Escherichia coli DsbB–DsbA

    International Nuclear Information System (INIS)

    Inaba, Kenji

    2008-01-01

    The crystal structure of the DsbB–DsbA–ubiquinone ternary complex has revealed a mechanism of protein disulfide bond generation in Escherichia coli. Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB–DsbA–ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of the crosstalk between the DsbA–DsbB oxidative and the DsbC–DsbD reductive pathways has also been proposed

  20. The Mitochondrial Disulfide Relay System: Roles in Oxidative Protein Folding and Beyond

    Directory of Open Access Journals (Sweden)

    Manuel Fischer

    2013-01-01

    Full Text Available Disulfide bond formation drives protein import of most proteins of the mitochondrial intermembrane space (IMS. The main components of this disulfide relay machinery are the oxidoreductase Mia40 and the sulfhydryl oxidase Erv1/ALR. Their precise functions have been elucidated in molecular detail for the yeast and human enzymes in vitro and in intact cells. However, we still lack knowledge on how Mia40 and Erv1/ALR impact cellular and organism physiology and whether they have functions beyond their role in disulfide bond formation. Here we summarize the principles of oxidation-dependent protein import mediated by the mitochondrial disulfide relay. We proceed by discussing recently described functions of Mia40 in the hypoxia response and of ALR in influencing mitochondrial morphology and its importance for tissue development and embryogenesis. We also include a discussion of the still mysterious function of Erv1/ALR in liver regeneration.

  1. Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quan; Li, Xi [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A., E-mail: volinsky@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Su, Yanjing, E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-10

    Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio. - Highlights: • Edge effects on mechanical properties of armchair MoS{sub 2} nanoribbons were investigated. • Structure changes of different width armchair MoS{sub 2} nanoribbons were obtained. • Tensile/compressive tests were conducted to determine elastic constants. • Mechanical properties are compared for two and three dimensional conditions.

  2. Improvement of NO and CO predictions for a homogeneous combustion SI engine using a novel emissions model

    International Nuclear Information System (INIS)

    Karvountzis-Kontakiotis, Apostolos; Ntziachristos, Leonidas

    2016-01-01

    Highlights: • Presentation of a novel emissions model to predict pollutants formation in engines. • Model based on detailed chemistry, requires no application-specific calibration. • Combined with 0D and 1D combustion models with low additional computational cost. • Demonstrates accurate prediction of cyclic variability of pollutants emissions. - Abstract: This study proposes a novel emissions model for the prediction of spark ignition (SI) engine emissions at homogeneous combustion conditions, using post combustion analysis and a detailed chemistry mechanism. The novel emissions model considers an unburned and a burned zone, where the latter is considered as a homogeneous reactor and is modeled using a detailed chemical kinetics mechanism. This allows detailed emission predictions at high speed practically based only on combustion pressure and temperature profiles, without the need for calibration of the model parameters. The predictability of the emissions model is compared against the extended Zeldovich mechanism for NO and a simplified two-step reaction kinetic model for CO, which both constitute the most widespread existing approaches in the literature. Under various engine load and speed conditions examined, the mean error in NO prediction was 28% for the existing models and less than 1.3% for the new model proposed. The novel emissions model was also used to predict emissions variation due to cyclic combustion variability and demonstrated mean prediction error of 6% and 3.6% for NO and CO respectively, compared to 36% (NO) and 67% (CO) for the simplified model. The results show that the emissions model proposed offers substantial improvements in the prediction of the results without significant increase in calculation time.

  3. Characterization of Disulfide-Linked Peptides Using Tandem Mass Spectrometry Coupled with Automated Data Analysis Software

    Science.gov (United States)

    Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy

    2018-01-01

    Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.

  4. Site‐Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome

    OpenAIRE

    Kuan, Seah Ling; Wang, Tao; Weil, Tanja

    2016-01-01

    Abstract The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site‐directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site‐selective modifications since most proteins contain disulfide bonds. In this Revie...

  5. Disulfide-bond scrambling promotes amorphous aggregates in lysozyme and bovine serum albumin.

    Science.gov (United States)

    Yang, Mu; Dutta, Colina; Tiwari, Ashutosh

    2015-03-12

    Disulfide bonds are naturally formed in more than 50% of amyloidogenic proteins, but the exact role of disulfide bonds in protein aggregation is still not well-understood. The intracellular reducing agents and/or improper use of antioxidants in extracellular environment can break proteins disulfide bonds, making them unstable and prone to misfolding and aggregation. In this study, we report the effect of disulfide-reducing agent dithiothreitol (DTT) on hen egg white lysozyme (lysozyme) and bovine serum albumin (BSA) aggregation at pH 7.2 and 37 °C. BSA and lysozyme proteins treated with disulfide-reducing agents form very distinct amorphous aggregates as observed by scanning electron microscope. However, proteins with intact disulfide bonds were stable and did not aggregate over time. BSA and lysozyme aggregates show unique but measurable differences in 8-anilino-1-naphthalenesulfonic acid (ANS) and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) fluorescence, suggesting a loose and flexible aggregate structure for lysozyme but a more compact aggregate structure for BSA. Scrambled disulfide-bonded protein aggregates were observed by nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for both proteins. Similar amorphous aggregates were also generated using a nonthiol-based reducing agent, tris(2-carboxyethyl)phosphine (TCEP), at pH 7.2 and 37 °C. In summary, formation of distinct amorphous aggregates by disulfide-reduced BSA and lysozyme suggests an alternate pathway for protein aggregation that may be relevant to several proteins.

  6. Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer

    DEFF Research Database (Denmark)

    Wang, Ruizhi; Whelan, Patrick Rebsdorf; Braeuninger-Weimer, Philipp

    2016-01-01

    is not only highly versatile but also yields graphene and h-BN films of high quality regarding surface contamination, layer coherence, defects, and electronic properties, without requiring additional post-transfer annealing. We highlight how such transfers rely on targeted corrosion at the catalyst interface......The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow...

  7. System and method for improving performance of a fluid sensor for an internal combustion engine

    Science.gov (United States)

    Kubinski, David [Canton, MI; Zawacki, Garry [Livonia, MI

    2009-03-03

    A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

  8. Construction of engineered Saccharomyces cerevisiae strain to improve that whole-cell biocatalytic production of melibiose from raffinose.

    Science.gov (United States)

    Zhou, Yingbiao; Zhu, Yueming; Men, Yan; Dong, Caixia; Sun, Yuanxia; Zhang, Juankun

    2017-03-01

    There are excessive by-products in the biocatalysis process of this whole-cell biocatalytic production of melibiose from raffinose with current Saccharomyces cerevisiae strains. To solve this problem, we constructed engineered strains based on a liquor yeast (S. cerevisiae) via gene deletion (mel1 gene), heterologous integration (fsy1 or/and ffzi1 gene from Candida magnoliae), and gene overexpression (gcr1 gene). Functional verification showed that deletion of the mel1 gene led to elimination of the reactions catalyzed by α-galactosidase, as well as elimination of the degradation of melibiose and the formation of galactose by-product. Insertion of the fsy1 or/and ffzi1 gene and overexpression of the gcr1 gene could contribute to fructose transport for enhancing the biopurification rate of the fructose by-product. Compared with the wild-type strain, the optimal engineered strain of MP8 (Δmel1::fsy1 cm ::ffzi1 cm ::gcr1 sc ) had improved about 30% on yield, 31% on productivity, and 36% on purity of the melibiose product.

  9. Improvement of the mechanical performance of Fergoug dam sediments treated for reuse in road engineering

    Directory of Open Access Journals (Sweden)

    Abdelkader LAROUCI

    2018-01-01

    Full Text Available The phenomenon of siltation is one of the main problems facing many dams throughout the world, and particularly in Algeria. The mud, before and even after extraction, is always harmful. Indeed, mud is a harmful material, first for dams, because it reduces their capacity of water storage, and second, for the environment following the desilting operations that generate large quantities of materials that occupy and sometimes pollute large areas. However, these materials can be exploited differently and used in other fields. The envisaged research work relates to real cases of silted dams, such as the dam of Fergoug (western Algeria whose siltation rate is very high; it is estimated at 97% of its initial capacity which, according to the National Agency for Dams (Agence Nationale des Barrages - ANB, is equal to 18 million m3. The large quantities of silt extracted present an environmental problem, and its use as a local raw material for the manufacture of civil engineering materials can contribute to solve this problem. The vulnerable lands of the sub-catchment of Wadi Fergoug (Fergoug River extend over an area of 122 km2, from a total surface of 8340 km2 for the dam catchment area. There is a great diversity of superficial formations with predominantly clay soils from marly formations. The rate of specific erosion has increased to 160 T/ km2/ year due to irregular annual rainfall resulting from a succession of dry and wet years. Sedimentary materials, which are found in considerable quantities, were collected at the foot of the dam, on its right bank. This study attempts to find a recycling pathway for these sediments. The objective of the present work is to investigate the behavior of silt from the dam of Fergoug (Algeria for the purpose of using it in road construction (foundation and base layers. The method adopted is to reconstitute, in the laboratory, samples of mixtures containing road aggregates with different proportions of silt. These

  10. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.

  11. Performance enhancement of graphene-coated surface plasmon resonance biosensor using tungsten disulfide

    Science.gov (United States)

    Anower, M. Shamim; Rahman, M. Saifur; Rikta, Khaleda Akter

    2018-01-01

    An improved performance of graphene-coated surface plasmon resonance (SPR) biosensor using tungsten disulfide (WS2) for sensing deoxyribonucleicacid (DNA) hybridization is investigated. This biosensor structure consisted of prism (SF10 glass), gold (Au), WS2, graphene, and sensing medium. Highly enhanced overall performances are achieved using a thin layer of WS2 between metal and graphene layer and are provided in terms of sensitivity, detection accuracy (DA), and quality factor (QF). Concurrent improvement of all performance parameters is depicted by adding a WS2 layer instead of another graphene layer with the existing graphene layer. This overcomes the limitation of graphene-only sensors where addition of a graphene layer increases the sensitivity but decreases the DA and QF. Analysis of Au thickness effect and limit of detection are also investigated. Numerical study demonstrates that the deviation of SPR angle for mismatched DNA strands is relatively insignificant while that for complementary DNA strands is noticeably reckonable. Thus, the proposed biosensor offers a window for detecting DNA hybridization.

  12. Improved performance of nanoscale junctionless tunnel field-effect transistor based on gate engineering approach

    Science.gov (United States)

    Molaei Imen Abadi, Rouzbeh; Sedigh Ziabari, Seyed Ali

    2016-11-01

    In this paper, a first qualitative study on the performance characteristics of dual-work function gate junctionless TFET (DWG-JLTFET) on the basis of energy band profile modulation is investigated. A dual-work function gate technique is used in a JLTFET in order to create a downward band bending on the source side similar to PNPN structure. Compared with the single-work function gate junctionless TFET (SWG-JLTFET), the numerical simulation results demonstrated that the DWG-JLTFET simultaneously optimizes the ON-state current, the OFF-state leakage current, and the threshold voltage and also improves average subthreshold slope. It is illustrated that if appropriate work functions are selected for the gate materials on the source side and the drain side, the JLTFET exhibits a considerably improved performance. Furthermore, the optimization design of the tunnel gate length ( L Tun) for the proposed DWG-JLTFET is studied. All the simulations are done in Silvaco TCAD for a channel length of 20 nm using the nonlocal band-to-band tunneling (BTBT) model.

  13. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing

    International Nuclear Information System (INIS)

    Zhao Jing; Xiao Suguang; Lu Xiong; Wang Jianxin; Weng Jie

    2006-01-01

    Various interconnected porous hydroxyapatite (HA) ceramic scaffolds are universally used to induct the tissue growth for bone repair and replacement, and serve to support the adhesion, transfer, proliferation and differentiation of cells. Impregnation of polyurethane sponges with a ceramic slurry is adopted to produce highly porous HA ceramic scaffolds with a 3D interconnected structure. However, high porosity always accompanies a decrease in the strength of the HA ceramic scaffolds. Therefore, it is significant to improve the strength of the HA ceramic scaffolds with highly interconnected porosity so that they are more suitable in clinical applications. In this work, highly porous HA ceramic scaffolds are first produced by the polymer impregnation approach, and subsequently further sintered by hot isostatic pressing (HIP). The phase composition, macro- and micro-porous structure, sintering and mechanical properties of the porous HA scaffolds are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), nanoindentation analysis and compressive test. The experimental results show that the nanohardness and compressive strength of HIP-sintered porous HA ceramics are higher than those of commonly sintered HA scaffolds. The HIP technique can effectively improve the sintering property and densification of porous HA ceramic scaffolds, so inducing an increase in the compression strength

  14. Bovicin HJ50-like lantibiotics, a novel subgroup of lantibiotics featured by an indispensable disulfide bridge.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available Lantibiotics are ribosomally-synthesized and posttranslationally modified peptides with potent antimicrobial activities. Discovery of novel lantibiotics has been greatly accelerated with the soaring release of genomic information of microorganisms. As a unique class II lantibiotic, bovicin HJ50 is produced by Streptococcus bovis HJ50 and contains one rare disulfide bridge. By using its precursor BovA as a drive sequence, 16 BovA-like peptides were revealed in a wide variety of species. From them, three representative novel lan loci from Clostridium perfringens D str. JGS1721, Bacillus cereus As 1.348 and B. thuringiensis As 1.013 were identified by PCR screening. The corresponding mature lantibiotics designated perecin, cerecin and thuricin were obtained and structurally elucidated to be bovicin HJ50-like lantibiotics especially by containing a conserved disulfide bridge. The disulfide bridge was substantiated to be essential for the function of bovicin HJ50-like lantibiotics as its disruption eliminated their antimicrobial activities. Further analysis indicated that the disulfide bridge played a crucial role in maintaining the hydrophobicity of bovicin HJ50, which might facilitate it to exert antimicrobial function. This study unveiled a novel subgroup of disulfide-containing lantibiotics from bacteria of different niches and further demonstrated the indispensable role of disulfide bridge in these novel bovicin HJ50-like lantibiotics.

  15. Common rail fuel injection system for improvement of engine performance and reduction of exhaust emission on heavy duty diesel engine; Common rail system ni yoru seino haishutsu gas no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Koyama, T.; Sasaki, K.; Mori, K.; Mori, K. [Mitsubishi Motor Corp., Tokyo (Japan)

    1997-10-01

    With the objective of improvement of engine performance and reduction of exhaust emissions, influence of control method to decrease initial injection rate and effect of injector types on fuel leakage of common rail fuel injection system (Common Rail System) were investigated. As a results, it became clear that injector with 2-way valve brings improvement of engine performance and reduction of exhaust emissions as compared with injector with 3-way valve because injector with 2-way valve has lower fuel leakage and is able to use higher injection pressure than injector with 3-way valve. 5 refs., 13 figs., 1 tab.

  16. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    Science.gov (United States)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  17. Improvement of Racing Engine Valve Spring Performance using "ARMeD" Logic and the "NOVA" Production Process

    Science.gov (United States)

    Rababeh, Mehieddine

    Due to rising costs related to the production, warranty and fatigue life requirements of high performance racing engine valve return springs, there exists a need to develop a comprehensive method of manufacturing these components. The functional characteristics and fatigue life of high performance racing engine valve springs are crucial to the overall success and total costs of such engines. The primary function of a valve return spring is to control the motion of the valve and return it to its starting position, while maintaining a preload. In this dissertation work, various concepts of performance and aspects of racing valve springs are discussed and studied with the goal of enhancing fatigue life and decreasing manufacturing and warranty costs through the utilization of the "NOVA" induction heating and hardening method and the "ARMeD" Logical approach of explaining such. The experimental methods focus on developing and utilizing the NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance valve springs. A detailed process flow is used to evaluate the expected and theorized gains in fatigue life enhancement and cost reductions. Statistical analysis methods and tools will be utilized in the course of this research to objectively substantiate the findings. Fatigue testing will be required using NOVA induction hardened racing valve springs made of ultra-high tensile material at varying mean and alternating stresses. Using the ARMeD Logic approach, a theoretical discussion is presented to validate the experimental plans and elucidate the needs for the proposed NOVA method of racing spring manufacturing. The concept utilizing the NOVA method as a viable and superior alternative manufacturing process for these types of valve springs is explained using ARMeD Logic, as it relates to a macroscopic view of fracture mechanics. The manufacturing costs are evaluated to improve volume production efficacy. The NOVA process flow

  18. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  19. Information Modelling of Engineering Systems as an Improvement Factor for the Energy Efficiency of Building

    Directory of Open Access Journals (Sweden)

    Shilov Leonid

    2017-01-01

    Full Text Available The article presents the analysis of the heat power of a heating system in accordance with valid normative documents. It also reveals some other factors influencing both the general heat balance of a building and its microclimate parameters but not taken into account in the analysis. The recommendations have been developed on the improvement of energy efficiency parameters of the buildings. The authors suggest some possible ways of solution of the problem of air-exchange disturbances due to the introduction of automation systems responsible for a continuous monitoring of climatic and micro-climatic conditions as well as for a combined regulation of heat-transfer agent and of fresh air inflow.

  20. Engineering of Cellobiose Dehydrogenases for Improved Glucose Sensitivity and Reduced Maltose Affinity

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Rahman, Mahbubur; Zangrilli, Beatrice

    2017-01-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular flavocytochrome capable of direct electron transfer (DET). Unlike other CDHs, the pH optimum for CDHs from Corynascus thermophilus (CtCDH) and Humicola insolens (HiCDH) is close to the human physiological pH in blood (7.4). These are......, therefore, interesting candidates for glucose measurements in human blood and the application in enzymatic fuel cells is, however, limited by their relatively low activity with this substrate. In this work, the substrate specificities of CtCDH and HiCDH have been altered by a single cysteine to tyrosine...... substitution in the active sites of CtCDH (position 291) and HiCDH (position 285), which resulted in improved kinetic constants with glucose while decreasing the activity with several disaccharides, including maltose. The DET properties of the generated CDH variants were tested in the absence...

  1. Pre-Clinical Study of a Novel Recombinant Botulinum Neurotoxin Derivative Engineered for Improved Safety.

    Science.gov (United States)

    Vazquez-Cintron, Edwin; Tenezaca, Luis; Angeles, Christopher; Syngkon, Aurelia; Liublinska, Victoria; Ichtchenko, Konstantin; Band, Philip

    2016-08-03

    Cyto-012 is a recombinant derivative of Botulinum neurotoxin Type A (BoNT/A). It primarily differs from wild type (wt) BoNT/A1 in that it incorporates two amino acid substitutions in the catalytic domain of the light chain (LC) metalloprotease (E224 > A and Y366 > A), designed to provide a safer clinical profile. Cyto-012 is specifically internalized into rat cortical and hippocampal neurons, and cleaves Synaptosomal-Associated Protein 25 (SNAP-25), the substrate of wt BoNT/A, but exhibits slower cleavage kinetics and therefore requires a higher absolute dose to exhibit pharmacologic activity. The pharmacodynamics of Cyto-012 and wt BoNT/A have similar onset and duration of action using the Digital Abduction Assay (DAS). Intramuscular LD50 values for Cyto-012 and wt BoNT/A respectively, were 0.63 ug (95% CI = 0.61, 0.66) and 6.22 pg (95% CI = 5.42, 7.02). ED50 values for Cyto-012 and wt BoNT/A were respectively, 0.030 ug (95% CI = 0.026, 0.034) and 0.592 pg (95% CI = 0.488, 0.696). The safety margin (intramuscular LD50/ED50 ratio) for Cyto-012 was found to be improved 2-fold relative to wt BoNT/A (p < 0.001). The DAS response to Cyto-012 was diminished when a second injection was administered 32 days after the first. These data suggest that the safety margin of BoNT/A can be improved by modulating their activity towards SNAP-25.

  2. Engineering of PHB synthesis causes improved elastic properties of flax fibers.

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Zebrowski, Jacek; Starzycki, Michał; Oszmiański, Jan; Szopa, Jan

    2007-01-01

    Flax stem is a source of fiber used by the textile industry. Flax fibers are separated from other parts of stems in the process called retting and are probably the first plant fibers used by man for textile purposes (1). Nowadays flax cultivation is often limited because of its lower elastic property compared to cotton fibers. Thus the goal of this study was to increase the flax fiber quality using a transgenic approach. Expression of three bacterial genes coding for beta-ketothiolase (phb A), acetoacetyl-CoA reductase (phb B), and PHB synthase (phb C) resulted in poly-beta-hydroxybutyrate (PHB) accumulation in the plant stem. PHB is known as a biodegradable thermoplastic displaying chemical and physical properties similar to those of conventional plastics (i.e., polypropylene). The fibers isolated from transgenic flax plants cultivated in the field and synthesizing PHB were then studied for biomechanical properties. All measured parameters, strength, Young's modulus, and energy for failure of flax fibers, were significantly increased. Thus the substantial improvement in elastic properties of fibers from the transgenic line has been achieved. Since the acetyl CoA, substrate for PHB synthesis, is involved not only for energy production but also for synthesis of many cellular constituents, the goal of this study was also the analysis of those metabolites, which interfere with plant physiology and thus fiber quality. The analyzed plants showed that reduction in lignin, pectin, and hemicellulose levels resulted in increased retting efficiency. A significant increase in phenolic acids was also detected, and this was the reason for improved plant resistance to pathogen infection. However, a slight decrease in crop production was detected.

  3. Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet.

    Science.gov (United States)

    Fan, Zhiyuan; Geng, Zhaoxin; Lv, Xiaoqin; Su, Yue; Yang, Yuping; Liu, Jian; Chen, Hongda

    2017-11-01

    The terahertz (THz) modulator, which will be applied in next-generation wireless communication, is a key device in a THz communication system. Current THz modulators based on traditional semiconductors and metamaterials have limited modulation depth or modulation range. Therefore, a THz modulator based on annealed tungsten disulfide (WS 2 , p-type) and high-resistivity silicon (n-type) is demonstrated. Pumped by a laser, the modulator presents a laser power-dependent modulation effect. Ranging from 0.25 to 2 THz, the modulation depth reaches 99% when the pumping laser is 2.59 W/cm 2 . The modulator works because the p-n heterojunction can separate and limit carriers to change the conductivity of the device, which results in a modulation of the THz wave. The wide band gap of WS 2 can promote the separation and limitation of carriers to obtain a larger modulation depth, which provides a new direction for choosing new materials and new structures to fabricate a better THz modulator.

  4. Ferroelectric memory based on molybdenum disulfide and ferroelectric hafnium oxide

    Science.gov (United States)

    Yap, Wui Chung; Jiang, Hao; Xia, Qiangfei; Zhu, Wenjuan

    Recently, ferroelectric hafnium oxide (HfO2) was discovered as a new type of ferroelectric material with the advantages of high coercive field, excellent scalability (down to 2.5 nm), and good compatibility with CMOS processing. In this work, we demonstrate, for the first time, 2D ferroelectric memories with molybdenum disulfide (MoS2) as the channel material and aluminum doped HfO2 as the ferroelectric gate dielectric. A 16 nm thick layer of HfO2, doped with 5.26% aluminum, was deposited via atomic layer deposition (ALD), then subjected to rapid thermal annealing (RTA) at 1000 °C, and the polarization-voltage characteristics of the resulting metal-ferroelectric-metal (MFM) capacitors were measured, showing a remnant polarization of 0.6 μC/cm2. Ferroelectric memories with embedded ferroelectric hafnium oxide stacks and monolayer MoS2 were fabricated. The transfer characteristics after program and erase pulses revealed a clear ferroelectric memory window. In addition, endurance (up to 10,000 cycles) of the devices were tested and effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, were observed. This research can potentially lead to advances of 2D materials in low-power logic and memory applications.

  5. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  6. Impairment of thiol-disulfide homeostasis in preeclampsia.

    Science.gov (United States)

    Korkmaz, Vakkas; Kurdoglu, Zehra; Alisik, Murat; Cetin, Orkun; Korkmaz, Hilal; Surer, Hatice; Erel, Ozcan

    2016-12-01

    To investigate the effects of severity of preeclampsia on thiol-disulfide homeostasis (TDH). A total of 108 participants were divided into three groups: Group 1 was composed of pregnant women with no obstetric complications, Group 2 included pregnant women with mild preeclampsia, and Group 3 consisted of pregnant women with severe preeclampsia. TDH parameters were determined, and comparisons of clinical and routine laboratory test findings were made in all groups. The serum native thiol level was 347.9 ± 27.4 in the control group, 237.2 ± 44.2 in the mild preeclampsia group, and 227.9 ± 53.1 in the severe preeclampsia group (p preeclampsia group, and 248.3 ± 57.4 in the severe preeclampsia group (p preeclampsia group, and 10.2 ± 4.8 in the severe preeclampsia group (p = 0.001). A significant correlation between impairment in degree of TDH and severity of preeclampsia was observed. TDH was impaired in women with preeclampsia, and this impairment increased with disease severity. Therefore, impaired TDH may have a role in the etiopathogenesis of the disease.

  7. Toward barrier free contact to molybdenum disulfide using graphene electrodes.

    Science.gov (United States)

    Liu, Yuan; Wu, Hao; Cheng, Hung-Chieh; Yang, Sen; Zhu, Enbo; He, Qiyuan; Ding, Mengning; Li, Dehui; Guo, Jian; Weiss, Nathan O; Huang, Yu; Duan, Xiangfeng

    2015-05-13

    Two-dimensional layered semiconductors such as molybdenum disulfide (MoS2) have attracted tremendous interest as a new class of electronic materials. However, there are considerable challenges in making reliable contacts to these atomically thin materials. Here we present a new strategy by using graphene as the back electrodes to achieve ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily tuned by a gate potential to enable a nearly perfect band alignment with MoS2. We demonstrate for the first time a transparent contact to MoS2 with zero contact barrier and linear output behavior at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator transition can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barriers found in conventional metal-contacted MoS2 devices. With further passivation by boron nitride (BN) encapsulation, we demonstrate a record-high extrinsic (two-terminal) field effect mobility up to 1300 cm(2)/(V s) in MoS2 at low temperature.

  8. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chung-Min; Johnson, Brett A.; Duan, Jicheng; Park, Jeong-Jin; Day, Jacob J.; Gang, David; Qian, Wei-Jun; Xian, Ming

    2016-03-04

    Protein S-sulfhydration has been recognized as an important post-translational modification that regulates H2S signals. However, the reactivity and biological implications of the products of S-sulfhydration, i.e. persulfides, are still unclear. This is mainly due to the instability of persulfides and difficulty to access these molecules. Under physiological conditions persulfides mainly exist in anionic forms because of their low pKa values. However, current methods do not allow for the direct generation of persulfide anions under biomimetic and non-H2S conditions. Herein we report the development of a functional disulfide, FmSSPy-A (Fm =9-fluorenylmethyl; Py = pyridinyl). This reagent can effectively convert both small molecule and protein thiols (-SH) to form –S-SFm adducts under mild conditions. It allows for a H2S-free and biomimetic protocol to generate highly reactive persulfides (in their anionic forms). We also demonstrated the high nucleophilicity of persulfides toward a number of thiol-blocking reagents. This method holds promise for further understanding the chemical biology of persulfides and S-sulfhydration.

  9. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur

    2017-12-24

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  10. Biotechnology for removal of carbon disulfide emissions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, M.J.

    1995-07-01

    Biological removal in a ``biofilter`` plant of carbon disulfide and hydrogen sulfide from the air effluent of a viscose plant at Teepak, Inc., is analyzed from process and economic standpoints by use of the Aspen Plus simulation program. The metabolic product from the biofilter, 3% sulfuric acid, must be transformed at the source into either a marketable or recyclable commodity (such as 95% sulfuric acid, high-quality sulfur, or high-quality gypsum) or a material with reasonable landfill costs (such as sulfur or gypsum). The simulations indicate that the total capital requirement for production of concentrated sulfuric acid is $48.9 million; for high-quality gypsum, $40.4 million; and for high-quality sulfur, $29.4 million. Production of concentrated sulfur for landfill is not economically practical. The process to neutralize the 3% acid effluent with limestone and landfill the resulting low-quality gypsum requires the lowest total investment of the processes simulated, $8.7 million, including the biofilter plant.

  11. DNA origami deposition on native and passivated molybdenum disulfide substrates

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhang

    2014-04-01

    Full Text Available Maintaining the structural fidelity of DNA origami structures on substrates is a prerequisite for the successful fabrication of hybrid DNA origami/semiconductor-based biomedical sensor devices. Molybdenum disulfide (MoS2 is an ideal substrate for such future sensors due to its exceptional electrical, mechanical and structural properties. In this work, we performed the first investigations into the interaction of DNA origami with the MoS2 surface. In contrast to the structure-preserving interaction of DNA origami with mica, another atomically flat surface, it was observed that DNA origami structures rapidly lose their structural integrity upon interaction with MoS2. In a further series of studies, pyrene and 1-pyrenemethylamine, were evaluated as surface modifications which might mitigate this effect. While both species were found to form adsorption layers on MoS2 via physisorption, 1-pyrenemethylamine serves as a better protective agent and preserves the structures for significantly longer times. These findings will be beneficial for the fabrication of future DNA origami/MoS2 hybrid electronic structures.

  12. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.

    Science.gov (United States)

    Wang, Junhua; Wang, Cheng; Song, Kejing; Wen, Jianping

    2017-10-03

    Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA

  13. Semantic technologies improving the recall and precision of the Mercury metadata search engine

    Science.gov (United States)

    Pouchard, L. C.; Cook, R. B.; Green, J.; Palanisamy, G.; Noy, N.

    2011-12-01

    The Mercury federated metadata system [1] was developed at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), a NASA-sponsored effort holding datasets about biogeochemical dynamics, ecological data, and environmental processes. Mercury currently indexes over 100,000 records from several data providers conforming to community standards, e.g. EML, FGDC, FGDC Biological Profile, ISO 19115 and DIF. With the breadth of sciences represented in Mercury, the potential exists to address some key interdisciplinary scientific challenges related to climate change, its environmental and ecological impacts, and mitigation of these impacts. However, this wealth of metadata also hinders pinpointing datasets relevant to a particular inquiry. We implemented a semantic solution after concluding that traditional search approaches cannot improve the accuracy of the search results in this domain because: a) unlike everyday queries, scientific queries seek to return specific datasets with numerous parameters that may or may not be exposed to search (Deep Web queries); b) the relevance of a dataset cannot be judged by its popularity, as each scientific inquiry tends to be unique; and c)each domain science has its own terminology, more or less curated, consensual, and standardized depending on the domain. The same terms may refer to different concepts across domains (homonyms), but different terms mean the same thing (synonyms). Interdisciplinary research is arduous because an expert in a domain must become fluent in the language of another, just to find relevant datasets. Thus, we decided to use scientific ontologies because they can provide a context for a free-text search, in a way that string-based keywords never will. With added context, relevant datasets are more easily discoverable. To enable search and programmatic access to ontology entities in Mercury, we are using an instance of the BioPortal ontology repository. Mercury accesses ontology entities

  14. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide γ-phosphate derivative

    Science.gov (United States)

    Hansen, Connie J.; Wu, Lydia; Fox, Jeffrey D.; Arezi, Bahram; Hogrefe, Holly H.

    2011-01-01

    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (−1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure. PMID:21062827

  15. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative.

    Science.gov (United States)

    Hansen, Connie J; Wu, Lydia; Fox, Jeffrey D; Arezi, Bahram; Hogrefe, Holly H

    2011-03-01

    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (-1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.

  16. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    Science.gov (United States)

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-08-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs.

  17. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants.

    Science.gov (United States)

    Zalabák, David; Pospíšilová, Hana; Šmehilová, Mária; Mrízová, Katarína; Frébort, Ivo; Galuszka, Petr

    2013-01-01

    Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Improving the engineering properties of PLA for 3D printing and beyond

    Science.gov (United States)

    Rocha Gutierrez, Carmen Raquel

    Additive manufacturing (AM), now more commonly known as 3D printing, has been classified as efficient, fast, and practical in the prototyping sector of product development. In the work presented here, we will use one of the AM techniques known as Material extrusion 3D printing (ME3DP), which has all the advantages of AM. However, one of the biggest challenges facing ME3DP technologies is the limitation of the range of materials used by this technique. Acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA) are currently the most common thermoplastics materials used in ME3DP because of their ability to melt and be reprocessed. PLA is a biodegradable polymer derived from renewable sources such as corn, and sugarcane. The expanded use of this polymer over traditional petroleum-based plastics (ABS) will decrease the demand on petrochemicals, and also lead to less non-biodegradable polymeric waste. While PLA offers an eco-friendly solution for polymeric 3D printing, the mechanical performance is limited by PLA's inherent characteristics (such as moisture absorbance) that may degrade the plastic during processing. PLA novel systems were used through this research maintaining the compatibility with material extrusion 3D printers. The purpose of this investigation is to alter the physical properties of PLA with sustainable additives in order to improve the end use products from this material.

  19. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-03-01

    Full Text Available Yumin Zhang,1,* Junhui Zhou,2,* Cuihong Yang,1 Weiwei Wang,3 Liping Chu,1 Fan Huang,1 Qiang Liu,1 Liandong Deng,2 Deling Kong,3 Jianfeng Liu,1 Jinjian Liu1 1Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, 2Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 3Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People’s Republic of China *These authors contributed equally in this work Abstract: Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM. Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against

  20. Ultrashort pulse generation in mode-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber

    Science.gov (United States)

    Liu, Mengli; Liu, Wenjun; Pang, Lihui; Teng, Hao; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    Tungsten disulfide (WS2), as one of typical transition metal dichalcogenides with the characteristics of strong nonlinear polarization and wide bandgap, has been widely used in such fields as biology and optoelectronics. With the magnetron sputtering technique, the saturable absorber (SA) is prepared by depositing WS2 and Au film on the tapered fiber. The heat elimination and damage threshold can be improved for the WS2 SA with evanescent field interaction. Besides, the Au film is deposited on the surface of the WS2 film to improve their reliability and avoid being oxidized. The fabricated SA has a modulation depth of 14.79%. With this SA, we obtain a relatively stable mode-locked fiber laser with the pulse duration of 288 fs, the repetition rate of 41.4 MHz and the signal to noise ratio of 58 dB.