WorldWideScience

Sample records for energy-filtering transmission electron

  1. Energy-filtering transmission electron microscopy (EFTEM) in the elemental analysis of pseudoexfoliative material.

    Science.gov (United States)

    Schlötzer-Schrehardt, U; Körtje, K H; Erb, C

    2001-02-01

    To obtain more information on the basic nature of the pathological matrix product accumulating in pseudoexfoliation (PEX) syndrome by analyzing its elemental composition at the subcellular level. Energy-filtering transmission electron microscopy (EFTEM), combining the two microanalytical techniques of electron spectroscopic imaging (ESI) and energy-loss spectroscopy (EELS), were performed on ultrathin sections of lens specimens with PEX syndrome using a transmission electron microscope equipped with an integrated electron energy filter. EFTEM is based on inner shell ionization of elements present in the sample giving rise to characteristic signals in well-defined energy-loss regions. The EEL-spectra, demonstrating the presence of a particular element by its specific electron energy-loss edge, were recorded with an integrated scintillator-photomultiplier-system. ESI generated graphic images of elemental localization in the sections after a process of background correction with an IBAS image analysis program. Energy-dispersive X-ray (EDX) analysis of PEX deposits on hydrated lenses was conducted by variable pressure scanning electron microscopy. The ESI element distribution images of both intracapsular and supracapsular PEX material displayed high signals for nitrogen, sulfur, calcium, chlorine, and zinc in clear association with the PEX fibrils. The corresponding EEL-spectra confirmed the data obtained by ESI and showed the presence of the element-specific energy-loss edges. The presence of these elements in PEX fibrils was further confirmed by EDX analysis. No specific signals were obtained for phosphorus, oxygen, or aluminum. This study demonstrates the presence of nitrogen, sulfur, chlorine, zinc, and calcium both in mature and in aggregating PEX fibrils of the lens capsule. EFTEM proved to be a highly sensitive method for the microanalytical study of biological material with unknown composition, such as PEX material, at the subcellular level.

  2. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy.

    Science.gov (United States)

    Forbes, B D; Houben, L; Mayer, J; Dunin-Borkowski, R E; Allen, L J

    2014-12-01

    We present atomic-resolution energy-filtered transmission electron microscopy (EFTEM) images obtained with the chromatic-aberration-corrected FEI Titan PICO at the Ernst-Ruska Centre, Jülich, Germany. We find qualitative agreement between experiment and simulation for the background-subtracted EFTEM images of the Ti-L2,3 and O-K edges for a specimen of SrTiO3 oriented down the [110] zone axis. The simulations utilize the transition potential formulation for inelastic scattering, which permits a detailed investigation of contributions to the EFTEM image. We find that energy-filtered images of the Ti-L2,3 and O-K edges are lattice images and that the background-subtracted core-loss maps may not be directly interpretable as elemental maps. Simulations show that this is a result of preservation of elastic contrast, whereby the qualitative details of the image are determined primarily by elastic, coherent scattering. We show that this effect places a constraint on the range of specimen thicknesses which could theoretically yield directly useful elemental maps. In general, interpretation of EFTEM images is ideally accompanied by detailed simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The examination of calcium ion implanted alumina with energy filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, E.M.; Hampikian, J.M. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering; Evans, N.D. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-04-01

    Ion implantation can be used to alter in the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca{sup +} to a fluence of 5 {times} 10{sup 16} ions/cm{sup 2}. Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals {approx}7--8 nm in diameter. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm {+-} 0.002 nm. The similarity between this crystallography and that of pure aluminum suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium. Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals. EFTEM has confirmed that the aluminum present in the particles is metallic in nature, that the particles are oxygen deficient in comparison with the matrix material and that the particles are deficient in calcium, and therefore not likely to be calcia. The particles thus appear to be FCC Al (possibly alloyed with a few percent Ca) with a lattice parameter of 0.409nm. A similar result was obtained for yttrium ion implantation into alumina.

  4. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D. [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Houben, L. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Mayer, J. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Central Facility for Electron Microscopy, RWTH Aachen University, D-52074 Aachen (Germany); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2014-12-15

    We present atomic-resolution energy-filtered transmission electron microscopy (EFTEM) images obtained with the chromatic-aberration-corrected FEI Titan PICO at the Ernst-Ruska Centre, Jülich, Germany. We find qualitative agreement between experiment and simulation for the background-subtracted EFTEM images of the Ti–L{sub 2,3} and O–K edges for a specimen of SrTiO{sub 3} oriented down the [110] zone axis. The simulations utilize the transition potential formulation for inelastic scattering, which permits a detailed investigation of contributions to the EFTEM image. We find that energy-filtered images of the Ti–L{sub 2,3} and O–K edges are lattice images and that the background-subtracted core-loss maps may not be directly interpretable as elemental maps. Simulations show that this is a result of preservation of elastic contrast, whereby the qualitative details of the image are determined primarily by elastic, coherent scattering. We show that this effect places a constraint on the range of specimen thicknesses which could theoretically yield directly useful elemental maps. In general, interpretation of EFTEM images is ideally accompanied by detailed simulations. - Highlights: • Achromatic atomic-resolution EFTEM images were obtained for STO 〈110〉. • Simulations were in qualitative agreement with Ti–L{sub 2,3} and O–K edge maps. • The experimental EFTEM maps are not directly interpretable as elemental maps. • Image intensities are strongly determined by preservation of elastic contrast. • Interpretation of EFTEM images is ideally accompanied by detailed simulations.

  5. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.

    Science.gov (United States)

    Gu, Lin; Sigle, Wilfried; Koch, Christoph T; Nelayah, Jaysen; Srot, Vesna; van Aken, Peter A

    2009-08-01

    The advent of electron monochromators has opened new perspectives on electron energy-loss spectroscopy at low energy losses, including phenomena such as surface plasmon resonances or electron transitions from the valence to the conduction band. In this paper, we report first results making use of the combination of an energy filter and a post-filter annular dark-field detector. This instrumental design allows us to obtain energy-filtered (i.e. inelastic) annular dark-field images in scanning transmission electron microscopy of the 2-dimensional semiconductor band-gap distribution of a GaN/Al(45)Ga(55)N structure and of surface plasmon resonances of silver nanoprisms. In comparison to other approaches, the technique is less prone to inelastic delocalization and relativistic artefacts. The mixed contribution of elastic and inelastic contrast is discussed.

  6. Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction.

    Science.gov (United States)

    Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J

    2017-10-01

    This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nano beam diffraction and precession in an energy filtered C{sub S} corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Benner, G.; Niebel, H.; Pavia, G. [Carl Zeiss NTS, Carl Zeiss Strasse 56, 73447 Oberkochen (Germany)

    2011-06-15

    Nano beam diffraction is a prerequisite to collecting structural information from particles as small as 1 nm in diameter. We describe here a novel ray path, where the limiting illumination aperture is arranged higher up in the illumination system of a transmission electron microscope (TEM) so that it can be demagnified further. This results in a high flexibility concerning the illuminating field and electron beam convergence angle without any need for readjustments of pivot points and refocusing of the diffraction lens. We show that artifact-free diffraction patterns can be obtained with diffraction fields down to 20 nm in diameter under genuine parallel illumination conditions. The limitations of the nano beam diffraction mode by physical diffraction effects are discussed. Either the illumination field or the diffraction spots or both may show diffraction fringes as a result of these effects. Zero energy loss filtering of (precession) electron diffraction spot patterns increases their contrast and makes weak diffraction spots visible. A method to acquire (energy filtered precession) electron diffraction spot pattern in a spherical aberration (C{sub S}) corrected TEM has been developed and first results are presented. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Energy Filtering Transmission Electron Tomography (EFTET) of Bacteria-Mineral Associations within the Deep sea Hydrothermal Vent Shrimp Rimicaris exoculata.

    Science.gov (United States)

    Anderson, L. M.; Halary, S.; Lechaire, J.; Frébourg, G.; Boudier, T.; Zbinden, M.; Laval, J.; Marco, S.; Gaill, F.

    2007-12-01

    The chemical and temperature conditions around deep sea hydrothermal vents are both dynamic and extreme, yet the shrimp Rimicaris exoculata flourishes around these environments on the Mid--Atlantic Ridge (MAR). Epibiotic bacteria and minerals found within the branchial chamber (BC) of the shrimp are of great interest in the search for a chemical model for the Rainbow MAR hydrothermal vent site. Here we examine the close, three-- dimensional (3D) relationship between bacteria (on the inner surface of the BC wall) and the minerals that surround them. The morphology and chemistry of the minerals were analysed by Energy filtering Transmission Electron Microscopy (EFTEM, on a LEO--912 microscope) and X-ray Nano-analysis (EDXN, on a JEOL--2010 FEG microscope) respectively, and the 3D organization was determined by Transmission Electron Tomography (TET) and EFTET. Consecutive thin and semi--thin sections of 50--80nm (for EFTEM and EDXN) and 200--250nm (for TEM and EFTET) were cut through the BC cuticle and mounted on standard microscope grids. Sections were observed initially for morphology, to find broad relationships between bacteria and minerals. EFTET series acquisition was performed under cryo-conditions (-175°C) using a LEO-912 microscope. At each position of interest four tilt series were taken at two degree increments between -55° and +55° at various energy--losses: 1) zero--loss (ref); 2) 720 eV, 3) 690 eV and 4) 670 eV, to reconstruct the 3D location of iron. Tilted series were obtained using the ESIvision program (Soft--Imaging Software, Münster, Germany) with additional in--house scripts for automated acquisition. The 3D EFTET reconstruction volume was produced from the four tilted series using recently developed EFTET--J software (http://www.snv.jussieu.fr/~wboudier/softs.html). In many cases the observed minerals exhibit a sharp boundary against the bacteria, often with a substantial void between bacterial membrane/cell wall and mineral boundary. Mineral

  9. Experimental setup for energy-filtered scanning confocal electron microscopy (EFSCEM) in a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P; Behan, G; Kirkland, A I; Nellist, P D, E-mail: peng.wang@materials.ox.ac.u [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2010-07-01

    Scanning confocal electron microscopy (SCEM) is a new imaging mode in electron microscopy. Spherical aberration corrected electron microscope instruments fitted with two aberration correctors can be used in this mode which provides improved depth resolution and selectivity compared to optical sectioning in a conventional scanning transmission geometry. In this article, we consider a confocal optical configuration for SCEM using inelastically scattered electrons. We lay out the necessary steps for achieving this new operational mode in a double aberration-corrected instrument with uncorrected chromatic aberration and present preliminary experimental results in such mode.

  10. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    Science.gov (United States)

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  11. 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography.

    Science.gov (United States)

    Florea, Ileana; Ersen, Ovidiu; Arenal, Raul; Ihiawakrim, Dris; Messaoudi, Cédric; Chizari, Kambiz; Janowska, Izabela; Pham-Huu, Cuong

    2012-06-13

    We present here the application of the energy-filtered transmission electron microscopy (EFTEM) in the tomographic mode to determine the precise 3D distribution of nitrogen within nitrogen-doped carbon nanotubes (N-CNTs). Several tilt series of energy-filtered images were acquired on the K ionization edges of carbon and nitrogen on a multiwalled N-CNT containing a high amount of nitrogen. Two tilt series of carbon and nitrogen 2D maps were then calculated from the corresponding energy-filtered images by using a proper extraction procedure of the chemical signals. Applying iterative reconstruction algorithms provided two spatially correlated C and N elemental-selective volumes, which were then simultaneously analyzed with the shape-sensitive reconstruction deduced from Zero-Loss recordings. With respect to the previous findings, crucial information obtained by analyzing the 3D chemical maps was that, among the two different kind of arches formed in these nanotubes (transversal or rounded ones depending on their morphology), the transversal arches contain more nitrogen than do the round ones. In addition, a detailed analysis of the shape-sensitive volume allowed the observation of an unexpected change in morphology along the tube axis: close to the round arches (with less N), the tube is roughly cylindrical, whereas near the transversal ones (with more N), its shape changes to a prism. This relatively new technique is very powerful in the material science because it combines the ability of the classical electron tomography to solve 3D structures and the chemical selectivity of the EFTEM imaging.

  12. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    in 1.3mbar of H2. Three-window elemental maps and jump-ratio images of the O K edge and total inelastic mean free path images are recorded as a function of temperature and used to provide local and quantitative information about the reaction kinetics and the volume changes that result from the reaction......A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode....... Under certain assumptions, the speed of progression of the reaction front in all three dimensions is obtained, thereby providing a three-dimensional understanding of the reaction....

  13. High-resolution chemical analysis on cycled LiFePO4 battery electrodes using energy-filtered transmission electron microscopy

    Science.gov (United States)

    Sugar, Joshua D.; El Gabaly, Farid; Chueh, William C.; Fenton, Kyle R.; Tyliszczak, Tolek; Kotula, Paul G.; Bartelt, Norman C.

    2014-01-01

    We demonstrate an ex situ method for analyzing the chemistry of battery electrode particles after electrochemical cycling using the transmission electron microscope (TEM). The arrangement of particles during our analysis is the same as when the particles are being cycled. We start by sectioning LiFePO4 battery electrodes using an ultramicrotome. We then show that mapping of the Fe2+ and Fe3+ oxidation state using energy-filtered TEM (EFTEM) and multivariate statistical analysis techniques can be used to determine the spatial distribution of Li in the particles. This approach is validated by comparison with scanning transmission X-ray microscopy (STXM) analysis of the same samples [Chueh et al. Nanoletters, 13 (3) (2013) 866-72]. EFTEM uses a parallel electron beam and reduces the electron-beam dose (and potential beam-induced damage) to the sample when compared to alternate techniques that use a focused probe (e.g. STEM-EELS). Our analysis confirms that under the charging conditions of the analyzed battery, mixed phase particles are rare and thus Li intercalation is limited by the nucleation of new phases.

  14. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride.

    Science.gov (United States)

    Moriguchi, K; Mitamura, Y; Iwami, J; Hasegawa, Y; Higuchi, N; Murakami, Y; Maeda, H; Yoshimura, F; Nakamura, H; Ohno, N

    2012-11-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3'-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface.

  15. Energy-filtered environmental transmission electron microscopy for the assessment of solid–gas reactions at elevated temperature: NiO/YSZ–H{sub 2} as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel (Switzerland); Hansen, T.W.; Wagner, J.B. [Center for Electron Nanoscopy, Technical University of Denmark, Lyngby (Denmark); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Jülich Research Centre, Jülich (Germany); Hébert, C. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Van herle, J. [Fuelmat Group, Ecole Polytechnique Fédérale de Lausanne, Sion (Switzerland); Hessler-Wyser, A. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Neuchâtel (Switzerland)

    2016-10-15

    A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode in 1.3 mbar of H{sub 2}. Three-window elemental maps and jump-ratio images of the O K edge and total inelastic mean free path images are recorded as a function of temperature and used to provide local and quantitative information about the reaction kinetics and the volume changes that result from the reaction. Under certain assumptions, the speed of progression of the reaction front in all three dimensions is obtained, thereby providing a three-dimensional understanding of the reaction. - Highlights: • EFTEM is used to assess solid–gas reactions at elevated temperatures. • This novel approach provides local, quantitative chemical and structural data. • A 3D insight into how the reaction proceeds is obtained under certain assumptions. • Reaction mechanisms and their link to microstructure can be established.

  16. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    Science.gov (United States)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD

  17. Variably spaced superlattice energy filter, a new device design concept for high-energy electron injection

    Science.gov (United States)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A new variably spaced superlattice energy filter is proposed which provides high-energy injection of electrons into a bulk semiconductor layer based on resonant tunneling between adjacent quantum well levels which are brought into alignment by an applied bias. Applications of this concept to a variety of optoelectronic devices and to thin-film electroluminescent devices and photodetectors are discussed.

  18. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    Science.gov (United States)

    2015-12-17

    technical report 3. DATES COVERED {From - To) Apri 1 1, 2012 - September 30, 2015 4. TITLE AND SUBTITLE Energy-Filtered Tunnel Transistor : A...occurring at room temperature as well as its applications to practical devices such as room-temperature single-electron transistors and ultralow...energy consumption transistors . We have experimentally demonstrated, for the first time, that a quantum well energy level can filter out energetic

  19. Plasma response to electron energy filter in large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)

    2013-12-15

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  20. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  1. Scanning transmission electron microscope

    NARCIS (Netherlands)

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the

  2. Scanning transmission electron microscope

    OpenAIRE

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the object and, connected to the detector, a device for processing the detected electrons so as to form an object image, wherein a beam splitter is provided for dividing the electron beam from the electron...

  3. Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy.

    Science.gov (United States)

    Okamoto, Kenta; Miyazaki, Naoyuki; Song, Chihong; Maia, Filipe R N C; Reddy, Hemanth K N; Abergel, Chantal; Claverie, Jean-Michel; Hajdu, Janos; Svenda, Martin; Murata, Kazuyoshi

    2017-10-16

    The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 μm in length and 0.9 μm in diameter. These particles show significant variations in size. Little is known about the structure of the intact virion due to technical limitations with conventional electron cryo-microscopy (cryo-EM) when imaging thick specimens. Here we present the intact structure of the giant Pithovirus sibericum particle at near native conditions using high-voltage electron cryo-tomography (cryo-ET) and energy-filtered cryo-EM. We detected a previously undescribed low-density outer layer covering the tegument and a periodical structuring of the fibres in the striated apical cork. Energy-filtered Zernike phase-contrast cryo-EM images show distinct substructures inside the particles, implicating an internal compartmentalisation. The density of the interior volume of Pithovirus particles is three quarters lower than that of the Mimivirus. However, it is remarkably high given that the 600 kbp Pithovirus genome is only half the size of the Mimivirus genome and is packaged in a volume up to 100 times larger. These observations suggest that the interior is densely packed with macromolecules in addition to the genomic nucleic acid.

  4. Quantitative investigation of precipitate growth during ageing of Al-(Mg,Si) alloys by energy-filtered electron diffraction

    DEFF Research Database (Denmark)

    Wollgarten, M.; Chang, C. S. T.; Duchstein, Linus Daniel Leonhard

    2011-01-01

    precipitation sequence of these phases is well studied [1,2], there remains an effect which is not fully understood up to now. Strengthening upon annealing, e.g. during paint baking of car body sheets, strongly depends on the storage duration at room temperature of the semi-finished parts [3,4]. It is commonly......, Germany) that have been solution heat treated for one hour at 540°C, ice water quenched and subsequently artificially aged for various durations at 180°C. Samples for transmission electron microscopy have been prepared by electropolishing of thinly cut sections. Experiments were carried out in a Zeiss...

  5. Direct electron detection in transmission electron microscopy

    OpenAIRE

    Jin, Liang

    2009-01-01

    Since the first prototype of a transmission electron microscope was built in 1931 by Ernst Ruska and Max Knoll, Transmission Electron Microscopy (TEM) has proved to be an essential imaging tool for physicists, material scientists, and biologists. To record the TEM images for analysis, electron microscopists have used specialized electron micrograph film for a long time, until the new developments in TEM, such as electron tomography and cryo- electron microscopy, pushed for the needs of digita...

  6. Studying atomic structures by aberration-corrected transmission electron microscopy.

    Science.gov (United States)

    Urban, Knut W

    2008-07-25

    Seventy-five years after its invention, transmission electron microscopy has taken a great step forward with the introduction of aberration-corrected electron optics. An entirely new generation of instruments enables studies in condensed-matter physics and materials science to be performed at atomic-scale resolution. These new possibilities are meeting the growing demand of nanosciences and nanotechnology for the atomic-scale characterization of materials, nanosynthesized products and devices, and the validation of expected functions. Equipped with electron-energy filters and electron-energy-loss spectrometers, the new instruments allow studies not only of structure but also of elemental composition and chemical bonding. The energy resolution is about 100 milli-electron volts, and the accuracy of spatial measurements has reached a few picometers. However, understanding the results is generally not straightforward and only possible with extensive quantum-mechanical computer calculations.

  7. and transmission electron microscopy

    African Journals Online (AJOL)

    Administrator

    immune-electron microscopy (IEM) from patients' feces. They reported this virus particle as the causative agent of winter vomiting outbreaks in Norwalk (Kapikian et al.,. 1972). This is the remarkable landmark study of non- bacterial gastroenteritis viruses, especially for small round structured viruses (SRSVs). After that, many.

  8. Measurements of local chemistry and structure in Ni(O)-YSZ composites during reduction using energy-filtered environmental TEM.

    Science.gov (United States)

    Jeangros, Quentin; Hansen, Thomas W; Wagner, Jakob B; Dunin-Borkowski, Rafal E; Hébert, Cécile; Van Herle, Jan; Hessler-Wyser, Aïcha

    2014-02-21

    Energy-filtered transmission electron microscopy images are acquired during the reduction of a NiO-YSZ composite in H2 up to 600 °C. Temperature-resolved quantitative information about both chemistry and structure is extracted with nm spatial resolution from the data, paving the way for the development of detailed reduction models.

  9. Measurements of local chemistry and structure in Ni(O)-YSZ composites during reduction using energy-filtered environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Quentin; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    Energy-filtered transmission electron microscopy images are acquired during the reduction of a NiO-YSZ composite in H-2 up to 600 degrees C. Temperature-resolved quantitative information about both chemistry and structure is extracted with nm spatial resolution from the data, paving the way...

  10. Electron transmission across ferromagnetic layers

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, V.I. [Institute of Metal Physics, Russian Academy of Sciences, Ural Division, 620219 Ekaterinburg GSP-170 (Russian Federation)]. E-mail: greben@imp.uran.ru

    2006-05-15

    Movement of spin-polarized electrons through a finite periodic system formed by n pairs of alternating ferromagnetic and nonmagnetic layers is considered. General features of electron scattering in super layers and their dependence on a number of layers are described. An electron wave function is found in one-dimension rectangular potential with finite number of periods. It is written as superposition of eigenvectors of a translation matrix or Bloch-like functions for an infinite periodic system. We obtain an exact solution for scattering of monochromatic wave on a system with an arbitrary number of layers. Energy dependence of a reflection and transmission coefficients is presented in an explicit symbol form. Number of spectral windows, their energy positions and widths are found as well as regions of almost full reflection. The system can be used as spin filter due to high-energy dispersion and dependence of exchange energy on electron spin direction.

  11. 3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography

    DEFF Research Database (Denmark)

    Gondo, Takashi; Kasama, Takeshi; Kaneko, Kenji

    2014-01-01

    Mesoporous silica, SBA-15, is one of the best candidate for the supporting material of catalytic nanoparticles because of its relative large and controllable pore size and large specific surface area [1]. So far, various nanoparticles, such as Au, Pt and Pd, have been introduced into the pore for...

  12. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    Science.gov (United States)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  13. Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine)

    DEFF Research Database (Denmark)

    Gontard, Lionel C.; Fernández, Asunción; Dunin-Borkowski, Rafal E.

    2014-01-01

    of the organic molecular components remains largely unknown. Here, we apply TEM to the physico-chemical characterization of Au nanoparticles that are coated with plasma-polymerized-allylamine, an organic compound with the formula C3H5NH2. We discuss the use of energy-filtered TEM in the low-energy-loss range......Hybrid (organic shell-inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement...

  14. Advanced Transmission Electron Microscopy Applications in Nano-Materials and Nano-Technology Developments

    Institute of Scientific and Technical Information of China (English)

    KAI; J.J.

    2001-01-01

    Nano-technology development is nowadays a very hot topics in many research fields. Nano-materials are the foundations for developing this new technology. In order to fully understand the basic material science problems behind this topics, transmission electron microscopy (TEM) becomes the must and one of the most important technique to analyze the nano-size structure and composition using the most advanced high resolution TEM technique with nano-beam EDS and energy filter EELS to study the fine structures, crystallography, chemical composition, and optical properties of many different nano-materials in different industries applications.  ……

  15. Holography and transmission electron microscopy

    OpenAIRE

    Matteucci, G.; Pozzi, G.; Tonomura, A.

    1993-01-01

    The basic principles and methods of off-axis electron holography are presented and illustrated by means of three examples related to its application in high resolution electron microscopy and the investigation of electric and magnetic fields in thin specimens.

  16. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  17. Transmission electron microscope studies of extraterrestrial materials

    Science.gov (United States)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  18. Isotope analysis in the transmission electron microscope

    OpenAIRE

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T.; Pennycook, Timothy J.; Mangler, Clemens; Meyer, Jannik C.; Kotakoski, Jani

    2016-01-01

    The {\\AA}ngstr\\"om-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either $^{12}$C or $^{13}$C and describe the proc...

  19. Exploring the environmental transmission electron microscope

    OpenAIRE

    Wagner, Jakob B.; Cavalca, Filippo; Damsgaard, Christian D.; Duchstein, Linus D.L.; Hansen, Thomas W.; Renu Sharma, Peter A. Crozier

    2012-01-01

    The increasing interest and development in the field of in situ techniques have now reached a level where the idea of performing measurements under near realistic conditions has become feasible for transmission electron microscopy (TEM) while maintaining high spatial resolution.In this paper, some of the opportunities that the environmental TEM (ETEM) offers when combined with other in situ techniques will be explored, directly in the microscope, by combining electron-based and photon-based t...

  20. Transmission electron microscopy characterization of nanomaterials

    CERN Document Server

    2014-01-01

    Third volume of a 40volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Transmission electron microscopy characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  1. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  2. Isotope analysis in the transmission electron microscope

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T.; Pennycook, Timothy J.; Mangler, Clemens; Meyer, Jannik C.; Kotakoski, Jani

    2016-10-01

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12C or 13C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  3. Transmission Electron Microscopy of Minerals and Rocks

    Science.gov (United States)

    McLaren, Alex C.

    1991-04-01

    Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.

  4. Aberration corrected Lorentz scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McVitie, S., E-mail: stephen.mcvitie@glasgow.ac.uk; McGrouther, D.; McFadzean, S.; MacLaren, D.A.; O’Shea, K.J.; Benitez, M.J.

    2015-05-15

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale. - Highlights: • Demonstration of nanometre scale resolution in magnetic field free environment using aberration correction in the scanning transmission electron microscope (STEM). • Implementation of differential phase contrast mode of Lorentz microscopy in aberration corrected STEM with improved sensitivity. • Quantitative imaging of magnetic induction of nanostructures in amorphous and cross-section samples.

  5. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  6. Introduction to Conventional Transmission Electron Microscopy

    Science.gov (United States)

    de Graef, Marc

    2003-04-01

    This book covers the fundamentals of conventional transmission electron microscopy (CTEM) as applied to crystalline solids. In addition to including a large selection of worked examples and homework problems, the volume is accompanied by a supplementary website (http://ctem.web.cmu.edu/) containing interactive modules and over 30,000 lines of free Fortran 90 source code. The work is based on a lecture course given by Marc De Graef in the Department of Materials Science and Engineering at Carnegie Mellon University.

  7. Transmission electron microscopy in micro-nanoelectronics

    CERN Document Server

    Claverie, Alain

    2013-01-01

    Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs.This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize sem

  8. Transmission electron microscopy of polymer blends and block copolymers

    Science.gov (United States)

    Gomez, Enrique Daniel

    -consistent field theory (SCFT). The liquid-like nature of this system at room temperature makes traditional staining methods for the enhancement of contrast ineffective. As an alternative, we take advantage of the large inelastic scattering cross-section of soft materials to generate contrast in zero-loss TEM images. Independent spatially resolved thickness measurements enable quantification of electron scattering. This enabled a comparison between the TEM data and predictions based on SCFT without any adjustable parameters. The second example involves the utilization of energy-filtered transmission electron microscopy (EFTEM) to compute elemental maps by taking advantage of ionization events. Elemental mapping of lithium is used to determine the distribution of salt in nanostructured poly(styrene-block-ethylene oxide) (SEO) copolymer/lithium salt electrolytes. Surprisingly, the concentration of lithium within a poly(ethylene oxide) (PEO) domain is found to be inhomogeneous; the salt is localized to the middle of the channels. Self-consistent field theory simulations suggest that localization of lithium is due to chain stretching at the interface, which increases with molecular weight. EFTEM and SCFT results show that the segregation of lithium salt to the middle of the PEO lamellae is greater for higher molecular weight polymers. This is correlated with the ionic conductivity of the copolymer electrolyte, which is found to show a higher conductivity for thinner lithium lamellae.

  9. Long distance electron transmission in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    suggest that the electron conductance is mediated by microorgan-isms. The spatial separation of electron and proton donors and acceptors has major impacts on element cycling by redox processes, pH balances, mineral dissolution/precipitations, and electromigration of ions. The sepa-ration of redox...... processes leads to formation of electrical fields, which modifies ion transport. The local proton producing and proton consuming half reactions induces pH extremes that accelerate dissolution of iron sul-phides and calcium carbonates in anoxic layers and promotes the formation of Mg-calcite and iron oxides...... in the system. Long distance electron transmission may flourishes in marine sediments exposed to tran-sient oxygen depletion, leaving distinct signatures of such events in the geological record....

  10. Phase-contrast scanning transmission electron microscopy.

    Science.gov (United States)

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Single-shot dynamic transmission electron microscopy

    Science.gov (United States)

    LaGrange, T.; Armstrong, M. R.; Boyden, K.; Brown, C. G.; Campbell, G. H.; Colvin, J. D.; DeHope, W. J.; Frank, A. M.; Gibson, D. J.; Hartemann, F. V.; Kim, J. S.; King, W. E.; Pyke, B. J.; Reed, B. W.; Shirk, M. D.; Shuttlesworth, R. M.; Stuart, B. C.; Torralva, B. R.; Browning, N. D.

    2006-07-01

    A dynamic transmission electron microscope (DTEM) has been designed and implemented to study structural dynamics in condensed matter systems. The DTEM is a conventional in situ transmission electron microscope (TEM) modified to drive material processes with a nanosecond laser, "pump" pulse and measure it shortly afterward with a 30-ns-long probe pulse of ˜107 electrons. An image with a resolution of <20nm may be obtained with a single pulse, largely eliminating the need to average multiple measurements and enabling the study of unique, irreversible events with nanosecond- and nanometer-scale resolution. Space charge effects, while unavoidable at such a high current, may be kept to reasonable levels by appropriate choices of operating parameters. Applications include the study of phase transformations and defect dynamics at length and time scales difficult to access with any other technique. This single-shot approach is complementary to stroboscopic TEM, which is capable of much higher temporal resolution but is restricted to the study of processes with a very high degree of repeatability.

  12. On the role of inelastic scattering in phase-plate transmission electron microscopy.

    Science.gov (United States)

    Hettler, Simon; Wagner, Jochen; Dries, Manuel; Oster, Marco; Wacker, Christian; Schröder, Rasmus R; Gerthsen, Dagmar

    2015-08-01

    The phase contrast of Au nanoparticles on amorphous-carbon films with different thicknesses is analyzed using an electrostatic Zach phase plate in a Zeiss 912 Ω transmission electron microscope with in-column energy filter. Specifically, unfiltered and plasmon-filtered phase-plate transmission electron microscopy (PP TEM) images are compared to gain insight in the role of coherence after inelastic scattering processes. A considerable phase-contrast contribution resulting from a combined elastic-inelastic scattering process is found in plasmon-filtered PP TEM images. The contrast reduction compared to unfiltered images mainly originates from zero-order beam broadening caused by the inelastic scattering process. The effect of the sequence of the elastic and inelastic scattering processes is studied by varying the position of the nanoparticles, which can be either located on top or at the bottom of the amorphous-carbon film with respect to the incident electron beam direction. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Nanoindentation in situ a Transmission Electron Microscope

    OpenAIRE

    Johnson, Lars

    2007-01-01

    The technique of Nanoindentation in situ Transmission Electron Microscope has been implemented on a Philips CM20. Indentations have been performed on Si and Sapphire (α-Al2O3) cut from wafers; Cr/Sc multilayers and Ti3SiC2 thin films. Different sample geometries and preparation methods have been evaluated. Both conventional ion and Focused Ion Beam milling were used, with different ways of protecting the sample during milling. Observations were made of bending and fracture of samples, disloca...

  14. Transmission electron microscopy of mercury metal

    KAUST Repository

    Anjum, Dalaver H.

    2016-03-28

    Summary: Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. © 2016 Royal Microscopical Society.

  15. Cathodoluminescence in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kociak, M., E-mail: mathieu.kociak@u-psud.fr [Laboratoire de Physique des Solides, Université Paris-SudParis-Sud, CNRS-UMR 8502, Orsay 91405 (France); Zagonel, L.F. [“Gleb Wataghin” Institute of Physics University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2017-05-15

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. - Highlights: • Reviews the field of STEM-CL. • Introduces the technical requirements and challenges for STEM-CL. • Introduces the different types of excitations probed by STEM-CL. • Gives comprehensive overview of the last fifteenth years in the field.

  16. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  17. Transmission Electron Microscopy Characterization of Nanocrystalline Copper

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H.; Sanders, P.G.; Weertman, J.R.

    1999-11-01

    The microstructure and grain boundary structure of nanocrystalline Cu powders and a compact prepared by the inert-gas condensation technique have been characterized by transmission electron microscopy. The as-prepared particles are round in shape and have no distinct surface facets. Annealing twins (coherent {Sigma}3 boundaries) have been observed in the as-prepared Cu particles as well as in the compact. Pores are commonly found at grain boundaries, triple grain junctions and some in the interior of grains in the compact. In addition to twin boundaries, a number of special grain boundaries have been observed. These special grain boundaries have low-index interface planes, and sometimes have misorientation angles close to coincidence site lattice (CSL) orientations.

  18. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    Science.gov (United States)

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  19. Thermal diffuse scattering in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D.; D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics, Monash University, Victoria 3800 (Australia); Van Dyck, D. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); LeBeau, J.M. [North Carolina State University, Raleigh, NC 27695-7907 (United States); Stemmer, S. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2011-12-15

    In conventional transmission electron microscopy, thermal scattering significantly affects the image contrast. It has been suggested that not accounting for this correctly is the main cause of the Stobbs factor, the ubiquitous, large contrast mismatch found between theory and experiment. In the case where a hard aperture is applied, we show that previous conclusions drawn from work using bright field scanning transmission electron microscopy and invoking the principle of reciprocity are reliable in the presence of thermal scattering. In the aperture-free case it has been suggested that even the most sophisticated mathematical models for thermal diffuse scattering lack in their numerical implementation, specifically that there may be issues in sampling, including that of the contrast transfer function of the objective lens. We show that these concerns can be satisfactorily overcome with modest computing resources; thermal scattering can be modelled accurately enough for the purpose of making quantitative comparison between simulation and experiment. Spatial incoherence of the source is also investigated. Neglect or inadequate handling of thermal scattering in simulation can have an appreciable effect on the predicted contrast and can be a significant contribution to the Stobbs factor problem. -- Highlights: Black-Right-Pointing-Pointer We determine the numerical requirements for accurate simulation of TDS in CTEM. Black-Right-Pointing-Pointer TDS can be simulated to high precision using the Born-Oppenheimer model. Black-Right-Pointing-Pointer Such calculations establish the contribution of TDS to the Stobbs factor problem. Black-Right-Pointing-Pointer Treating spatial incoherence using envelope functions increases image contrast. Black-Right-Pointing-Pointer Rigorous treatment of spatial incoherence significantly reduces image contrast.

  20. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  1. 8 CFR 217.7 - Electronic data transmission requirement.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Electronic data transmission requirement... VISA WAIVER PROGRAM § 217.7 Electronic data transmission requirement. (a) An alien who applies for... manifest data relative to that alien passenger in accordance with 19 CFR 4.7b or 19 CFR 122.49a. Upon...

  2. Transmission of electrons through Al2O3 nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.J.; Víkor, Gy.

    2012-01-01

    We investigate transmission of low-energy electrons (250 eV) through insulating AlO nanocapillaries (270 nm diameter and 15 μm length). Kinetic energy distribution of electrons transmitted through the nanocapillaries in the straightforward direction, time dependence of the transmission rate both...

  3. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  4. Quantitative High-Resolution Transmission Electron Microscopy of Single Atoms

    OpenAIRE

    Gamm, B.; Popescu, R.; Blank, H.; Schneider, R; Beyer, A.; Gölzhäuser, A.; Gerthsen, D.

    2010-01-01

    Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate which induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weick...

  5. Transmission Electron Microscopy of Itokawa Regolith Grains

    Science.gov (United States)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  6. Electronic transmission in Graphene suppressed by interlayer interference

    Directory of Open Access Journals (Sweden)

    Daniel Valencia

    2013-10-01

    Full Text Available We investigate electronic transport property of a graphene monolayer covered by a graphene nanoribbon. We demonstrate that electronic transmission of a monolayer can be reduced when covered by a nanoribbon. The energy at which the transmission reduction occurs depends on the width of nanoribbon. We explain the transmission reduction as interference between wavefunctions in the monolayer and the nanoribbon. Furthermore, we show that the transmission reduction of a monolayer is combinable when covered by more than one nanoribbon and we propose a concept of “combination of control” for possible nano-application designs.

  7. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  8. Image Resolution in Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  9. Small round structured viruses (SRSVs) and transmission electron ...

    African Journals Online (AJOL)

    Small round structured viruses (SRSVs) and transmission electron microscopy. Etsuko Tajiri-Utagawa. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics Loading ... Metrics powered by PLOS ALM

  10. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  11. The Titan Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Jinschek, Jörg R.

    2009-01-01

    them and many additional considerations are required when compared to conventional TEM. In particular the parameter space that affects the result of an experiment increases significantly, and it becomes even more important to consider the effect of both electron/solid and electron/gas interactions...... as well as of gases using high-energy electrons. In addition to microscope performance (stability and resolution) the primary challenges of ETEM experiments involve stable and reproducible control of gas pressure, gas flux, and temperature (heating) of gas and specimen. Increased power is required...... to operate TEM heating holders in the presence of gas in the column as a result of the transport of heat away from the sample region by the gas. Even small variations in gas flow will result in large variations in holder and specimen temperature giving rise to sample drift and instability. DTU’s ETEM...

  12. Exploring the environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Wagner, Jakob B.; Cavalca, Filippo; Damsgaard, Christian D.

    2012-01-01

    of the opportunities that the environmental TEM (ETEM) offers when combined with other in situ techniques will be explored, directly in the microscope, by combining electron-based and photon-based techniques and phenomena. In addition, application of adjacent setups using sophisticated transfer methods...

  13. Magnetic insulation of electron flow in curved transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Geary, J. [Berkeley Research Associates, Springfield, VA (United States); Grossmann, J. [Naval Research Lab., Washington, DC (United States); Swanekamp, S. [Science Applications International Corp., McLean, VA (United States)

    1994-12-31

    Magnetically insulated transmission lines with curved sections are often used to transport electrical power in pulsed power generators. These sections can have substantial current losses, which are difficult to model accurately with circuit codes. The authors study the electron flow in curved transmission lines with the particle-in-cell code ISIS. ISIS is formulated using nonorthogonal boundary-fitted coordinates that allow the computational mesh to conform to the conductors. The authors examine a triplate transmission line with a 90{degree} degree bend. Two dimensional simulations with and without the bend show that the critical current for magnetic insulation agrees with the predictions from Brillouin flow within a constant factor of 1.6. They also find that the impedance of an electron beam diode decreases when the diode is attached to a transmission line with a bend compared to when the same diode is attached to a straight transmission line. This appears to result from additional power reflection off the bend in the transmission line and from changes in the vacuum electron flow launched in the bend and the diode. They will also examine the transition from a coaxial to a triplate transmission line.

  14. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1989-01-01

    The aim of this book is to present the theory of image and contrast formation and the analytical modes in transmission electron microscopy The principles of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal structure determination and imaging of lattice defects X-ray microanalysis and energy-loss spectroscopy are treated as analytical methods The second edition includes discussion of recent progress, especially in the areas of energy-loss spectroscopy, crystal-lattice imaging and reflection electron microscopy

  15. Electron transmission through a stacking domain boundary in multilayer graphene

    Science.gov (United States)

    Nam, Nguyen N. T.; Koshino, Mikito

    2015-06-01

    We present a theoretical study of the electron transmission through the AB-BA stacking boundary in multilayer graphenes. Using the tight-binding model and the transfer matrix method, we calculate the electron transmission probability through the boundary as a function of electron Fermi energy in multilayers from bilayer to five-layer. We find that the transmission is strongly suppressed particularly near the band touching point, suggesting that the electronic conductivity in general multilayer graphenes is significantly interfered with by stacking fault. The conductivity suppression by stacking fault is the strongest in the bilayer graphene, while it is gradually relaxed as the number of layers increases. At a large carrier density, we observe an even-odd effect where the transmission is relatively lower in trilayer and five-layer than in bilayer and four-layer, and this is related to the existence of a monolayerlike linear band in odd layers. For bilayer graphene, we also study the effect of the perpendicular electric field opening an energy gap, and show that the band deformation enhances the electron transmission at a fixed carrier density.

  16. Transmission electron imaging in the Delft multibeam scanning electron microscope 1

    NARCIS (Netherlands)

    Ren, Y.; Kruit, P.

    2016-01-01

    Our group is developing a multibeam scanning electron microscope (SEM) with 196 beams in order to increase the throughput of SEM. Three imaging systems using, respectively, transmission electron detection, secondary electron detection, and backscatter electron detection are designed in order to

  17. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    Energy Technology Data Exchange (ETDEWEB)

    Danilatos, Gerasimos, E-mail: gerry@danilatos.com [ESEM Research Laboratory, 28 Wallis Parade, North Bondi, NSW 2026 (Australia); Kollia, Mary [Laboratory of Electron Microscopy and Microanalysis, School of Natural Sciences, University of Patras, GR-26504 Patras (Greece); Dracopoulos, Vassileios [Foundation for Research & Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani P.O.Box 1414, GR-26504 Patras (Greece)

    2015-03-15

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy.

  18. Quantitative magnetic measurements with transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Rusz, Jan, E-mail: jan.rusz@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, S-751 21 (Sweden); Lidbaum, Hans [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 (Sweden); Liebig, Andreas; Hjoervarsson, Bjoergvin; Oppeneer, Peter M. [Department of Physics and Materials Science, Uppsala University, Box 530, S-751 21 (Sweden); Rubino, Stefano [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 (Sweden); Eriksson, Olle [Department of Physics and Materials Science, Uppsala University, Box 530, S-751 21 (Sweden); Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 (Sweden)

    2010-05-15

    We briefly review the state-of-the-art electron magnetic chiral dichroism experiments and theory with focus on quantitative measurements of the atom-specific orbital to spin moment ratio m{sub l}/m{sub s}. Our approach of quantitative method, based on reciprocal space mapping of the magnetic signal, is described. We discuss additional symmetry considerations for m{sub l}/m{sub s} measurements, which are present due to dynamical diffraction effects. These lead to a preference for the 3-beam orientation of the sample. Further on, we describe a method of correcting asymmetries present due to imperfect 3-beam orientation-the so-called double-difference correction.

  19. Transmission electron microscopy and diffractometry of materials

    CERN Document Server

    Fultz, Brent

    2001-01-01

    This book teaches graduate students the concepts of trans- mission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materi- als. It emphasizes themes common to both techniques, such as scattering from atoms and the formation and analysis of dif- fraction patterns. It also describes unique aspects of each technique, especially imaging and spectroscopy in the TEM. The textbook thoroughly develops both introductory and ad- vanced-level material, using over 400 accompanying illustra- tions. Problems are provided at the end of each chapter to reinforce key concepts. Simple citatioins of rules are avoi- ded as much as possible, and both practical and theoretical issues are explained in detail. The book can be used as both an introductory and advanced-level graduate text since sec- tions/chapters are sorted according to difficulty and grou- ped for use in quarter and semester courses on TEM and XRD.

  20. Electron magnetic chiral dichroism in CrO{sub 2} thin films using monochromatic probe illumination in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Loukya, B. [International Center for Materials Science, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur PO, Bangalore 560064 (India); Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur PO, Bangalore 560064 (India); Zhang, X.; Gupta, A. [Center for Materials for Information Technology and Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487 (United States); Datta, R., E-mail: ranjan.bapi@gmail.com [International Center for Materials Science, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur PO, Bangalore 560064 (India); Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur PO, Bangalore 560064 (India)

    2012-11-15

    Electron magnetic chiral dichroism (EMCD) has been studied in CrO{sub 2} thin films (with (100) and (110) growth orientations on TiO{sub 2} substrates) using a gun monochromator in an aberration corrected transmission electron microscope operating at 300 kV. Excellent signal-to-noise ratio is obtained at spatial resolution {approx}10 nm using a monochromatic probe as compared to conventional parallel illumination, large area convergent beam electron diffraction and scanning transmission electron microscopy techniques of EMCD. Relatively rapid exposure using mono probe illumination enables collection of EMCD spectra in total of 8-9 min in energy filtered imaging mode for a given Cr L{sub 2,3} energy scan (energy range {approx}35 eV). We compared the EMCD signal obtained by extracting the Cr L{sub 2,3} spectra under three beam diffraction geometry of two different reciprocal vectors (namely g=110 and 200) and found that the g=200 vector enables acquisition of excellent EMCD signal from relatively thicker specimen area due to the associated larger extinction distance. Orbital to spin moment ratio has been calculated using EMCD sum rules for 3d elements and dichroic spectral features associated with CrO{sub 2} are compared and discussed with XMCD theoretical spectra. - Highlights: Black-Right-Pointing-Pointer Electron magnetic circular dichroism (EMCD) of CrO{sub 2} thin film with two different orientations. Black-Right-Pointing-Pointer Improved EMCD signal with Gun monochromator illumination. Black-Right-Pointing-Pointer Improved EMCD signal with higher g vector.

  1. Application of transmission electron tomography for modeling the renal corpuscle.

    Science.gov (United States)

    Cheng, Delfine; Shen, Sylvie; Chen, Xin-Ming; Pollock, Carol; Braet, Filip

    2013-11-01

    Structural alteration to the microanatomical organization of the glomerular filtration barrier results in proteinuria. Conventional transmission electron microscopy is an important diagnostic tool to assess the degree of ultrastructural damage of the corpusclar filtration unit. However, this approach lacks the ability to collect accurate stereological insights in a relative large tissue volume. Transmission electron tomography offers the ability to gather three-dimensional information with relative ease. Therefore, this contribution aims to highlight what electron tomography can bring to the pathologist in this challenging area of diagnostic practice. Kidney tissue was prepared for routine ultrastructural transmission electron microscopy investigation. Three-dimensional data stacks were automatically acquired by tilting semi-thin sections of 270 nm in an angular range of typically -60° to +60° with 1° increment. Subsequently, models of the filtration unit were produced by computer-assisted tracking of structures of interest. This short report illustrates the capability that transmission electron tomography can offer in the fine structure-function assessment of the porous fenestrated glomerular capillary endothelium, the underlying basement membrane and the podocyte filtration slits. Furthermore, this approach allows the generation of morphometric data about size, shape and volume alterations of the kidney's filtration barrier at the nanoscale. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Applications of orientation mapping by scanning and transmission electron microscopy

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    1997-01-01

    The potentials of orientation mapping techniques (in the following referred to as OIM) for studies of thermomechanical processes are analysed. Both transmission electron microscopy (TEM) and scanning electron microscopy (SEM) based OIM techniques are considered. Among the thermomechanical processes...... information is achieved when the results of OIM and these various techniques are combined. Examples hereof are given to illustrate the potentials of OIM techniques. Finally, limitations of TEM and SEM based OIM for specific applications are discussed....

  3. Angularly-selective transmission imaging in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Jason, E-mail: jason.holm@nist.gov; Keller, Robert R.

    2016-08-15

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. - Highlights: • A modular aperture system for STEM-in-SEM imaging is described. • A flexible cantilever sample holder that can maximize camera length is described. • The aperture system and sample holder enable complete acceptance angle control. • Most STEM imaging modes can be implemented without multi-segment detectors.

  4. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In situ Electrical measurements in Transmission Electron Microscopy

    NARCIS (Netherlands)

    Rudneva, M.

    2013-01-01

    In the present thesis the combination of real-time electricalmeasurements on nano-sampleswith simultaneous examination by transmission electron microscope (TEM) is discussed. Application of an electrical current may lead to changes in the samples thus the possibility to correlate such changes with

  6. Formation of Nanoporous Gold Studied by Transmission Electron Backscatter Diffraction

    NARCIS (Netherlands)

    de Jeer, Leo T. H.; Gomes, Diego Ribas; Nijholt, Jorrit E.; van Bremen, Rik; Ocelik, Vaclav; De Hosson, Jeff Th. M.

    2015-01-01

    Transmission electron backscatter diffraction (t-EBSD) was used to investigate the effect of dealloying on the microstructure of 140-nm thin gold foils. Statistical and local comparisons of the microstructure between the nonetched and nanoporous gold foils were made. Analyses of crystallographic

  7. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  8. Three-Dimensional Orientation Mapping in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Liu, Haihua; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    resolution of 200 nanometers (nm). We describe here a nondestructive technique that enables 3D orientation mapping in the transmission electron microscope of mono- and multiphase nanocrystalline materials with a spatial resolution reaching 1 nm. We demonstrate the technique by an experimental study...

  9. Microfluidic chip for high resolution transmission electron microscopy

    DEFF Research Database (Denmark)

    2013-01-01

    A Microfluidic chip (100) for transmission electron microscopy has a monolithic body (101) with a front side (102) and a back side (103). The monolithic body (101) comprises an opening (104) on the back side (103) extending in a vertical direction from the back side (103) to a membrane (107...

  10. In situ nanoindentation in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Andrew M. [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    This dissertation presents the development of the novel mechanical testing technique of in situ nanoindentation in a transmission electron microscope (TEM). This technique makes it possible to simultaneously observe and quantify the mechanical behavior of nano-scale volumes of solids.

  11. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  12. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    microscope, and since its invention by Ernst Ruska, the idea of imaging samples under gaseous atmospheres was envisioned. However, microscopes have traditionally been operated in high vacuum due to sensitive electron sources, sample contamination, and electron scattering off gas molecules resulting in loss...... of resolution. Using suitably clean gases, modified pumping schemes, and short pathways through dense gas regions, these issues are now circumvented. Here we provide an account of best practice using environmental transmission electron microscopy on catalytic systems illustrated using select examples from...

  13. Transmission and Trapping of Cold Electrons in Water Ice

    DEFF Research Database (Denmark)

    Balog, Richard; Cicman, Peter; Field, David

    2011-01-01

    Experiments are reported that show currents of low energy (“cold”) electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, showing negligible apparent trapping. By contrast, both porous amorphous...... ice and compact crystalline ice at 40 K show efficient electron trapping. Ice at intermediate temperatures reveals metastable trapping that decays within a few hundred seconds at 110 K. Our results are the first to demonstrate full transmission of cold electrons in high temperature water ice...

  14. Foucault imaging by using non-dedicated transmission electron microscope

    Science.gov (United States)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  15. Foucault imaging by using non-dedicated transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  16. Quantitative high-resolution transmission electron microscopy of single atoms.

    Science.gov (United States)

    Gamm, Björn; Blank, Holger; Popescu, Radian; Schneider, Reinhard; Beyer, André; Gölzhäuser, Armin; Gerthsen, Dagmar

    2012-02-01

    Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

  17. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 (Japan)

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  18. Transmission electron microscopy of carbon-coated and iron-doped titania nanoparticles

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-02

    We present a study on the properties of iron (Fe)-doped and carbon (C)-coated titania (TiO2) nanoparticles (NPs) which has been compiled by using x-ray diffraction (XRD), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). These TiO2 NPs were prepared by using the flame synthesis method. This method allows the simultaneous C coating and Fe doping of TiO2 NPs. XRD investigations revealed that the phase of the prepared NPs was anatase TiO2. Conventional TEM analysis showed that the average size of the TiO2 NPs was about 65 nm and that the NPs were uniformly coated with the element C. Furthermore, from the x-ray energy dispersive spectrometry analysis, it was found that about 8 at.% Fe was present in the synthesized samples. High-resolution TEM (HRTEM) revealed the graphitized carbon structure of the layer surrounding the prepared TiO2 NPs. HRTEM analysis further revealed that the NPs possessed the crystalline structure of anatase titania. Energy-filtered TEM (EFTEM) analysis showed the C coating and Fe doping of the NPs. The ratio of L3 and L2 peaks for the Ti-L23 and Fe-L23 edges present in the core loss electron energy loss spectroscopy (EELS) revealed a +4 oxidation state for the Ti and a +3 oxidation state for the Fe. These EELS results were further confirmed with XPS analysis. The electronic properties of the samples were investigated by applying Kramers-Kronig analysis to the low-loss EELS spectra acquired from the prepared NPs. The presented results showed that the band gap energy of the TiO2 NPs decreased from an original value of 3.2 eV to about 2.2 eV, which is quite close to the ideal band gap energy of 1.65 eV for photocatalysis semiconductors. The observed decrease in band gap energy of the TiO2 NPs was attributed to the presence of Fe atoms at the lattice sites of the anatase TiO2 lattice. In short, C-coated and Fe-doped TiO2 NPs were synthesized with a rather cost-effective and comparatively easily scalable method. The

  19. Transmission electron microscopy of carbon-coated and iron-doped titania nanoparticles

    Science.gov (United States)

    Anjum, Dalaver H.; Memon, Nasir K.; Ismail, Mohamed; Hedhili, Mohamed N.; Sharif, Usman; Chung, Suk Ho

    2016-09-01

    We present a study on the properties of iron (Fe)-doped and carbon (C)-coated titania (TiO2) nanoparticles (NPs) which has been compiled by using x-ray diffraction (XRD), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). These TiO2 NPs were prepared by using the flame synthesis method. This method allows the simultaneous C coating and Fe doping of TiO2 NPs. XRD investigations revealed that the phase of the prepared NPs was anatase TiO2. Conventional TEM analysis showed that the average size of the TiO2 NPs was about 65 nm and that the NPs were uniformly coated with the element C. Furthermore, from the x-ray energy dispersive spectrometry analysis, it was found that about 8 at.% Fe was present in the synthesized samples. High-resolution TEM (HRTEM) revealed the graphitized carbon structure of the layer surrounding the prepared TiO2 NPs. HRTEM analysis further revealed that the NPs possessed the crystalline structure of anatase titania. Energy-filtered TEM (EFTEM) analysis showed the C coating and Fe doping of the NPs. The ratio of L3 and L2 peaks for the Ti-L23 and Fe-L23 edges present in the core loss electron energy loss spectroscopy (EELS) revealed a +4 oxidation state for the Ti and a +3 oxidation state for the Fe. These EELS results were further confirmed with XPS analysis. The electronic properties of the samples were investigated by applying Kramers-Kronig analysis to the low-loss EELS spectra acquired from the prepared NPs. The presented results showed that the band gap energy of the TiO2 NPs decreased from an original value of 3.2 eV to about 2.2 eV, which is quite close to the ideal band gap energy of 1.65 eV for photocatalysis semiconductors. The observed decrease in band gap energy of the TiO2 NPs was attributed to the presence of Fe atoms at the lattice sites of the anatase TiO2 lattice. In short, C-coated and Fe-doped TiO2 NPs were synthesized with a rather cost-effective and comparatively easily scalable method. The

  20. A piezoelectric goniometer inside a transmission electron microscope goniometer.

    Science.gov (United States)

    Guan, Wei; Lockwood, Aiden; Inkson, Beverley J; Möbus, Günter

    2011-10-01

    Piezoelectric nanoactuators, which can provide extremely stable and reproducible positioning, are rapidly becoming the dominant means for position control in transmission electron microscopy. Here we present a second-generation miniature goniometric nanomanipulation system, which is fully piezo-actuated with ultrafine step size for translation and rotation, programmable, and can be fitted inside a hollowed standard specimen holder for a transmission electron microscope (TEM). The movement range of this miniaturized drive is composed of seven degrees of freedom: three fine translational movements (X, Y, and Z axes), three coarse translational movements along all three axes, and one rotational movement around the X-axis with an integrated angular sensor providing absolute rotation feedback. The new piezoelectric system independently operates as a goniometer inside the TEM goniometer. In situ experiments, such as tomographic tilt without missing wedge and differential tilt between two specimens, are demonstrated.

  1. Image simulations of kinked vortices for transmission electron microscopy

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, G.; Tonomura, A.

    2010-01-01

    We present an improved model of kinked vortices in high-Tc superconductors suitable for the interpretation of Fresnel or holographic observations carried out with a transmission electron microscope. A kinked vortex is composed of two displaced half-vortices, perpendicular to the film plane......, connected by a horizontal flux-line in the plane, resembling a connecting Josephson vortex (JV) segment. Such structures may arise when a magnetic field is applied almost in the plane, and the line tension of the fluxon breaks down under its influence. The existence of kinked vortices was hinted in earlier...... observations of high-Tc superconducting films, where the Fresnel contrast associated with some vortices showed a dumbbell like appearance. Here, we show that under suitable conditions the JV segment may reveal itself in Fresnel imaging or holographic phase mapping in a transmission electron microscope....

  2. Practical aspects of monochromators developed for transmission electron microscopy

    OpenAIRE

    Kimoto, Koji

    2014-01-01

    A few practical aspects of monochromators recently developed for transmission electron microscopy are briefly reviewed. The basic structures and properties of four monochromators, a single Wien filter monochromator, a double Wien filter monochromator, an omega-shaped electrostatic monochromator and an alpha-shaped magnetic monochromator, are outlined. The advantages and side effects of these monochromators in spectroscopy and imaging are pointed out. A few properties of the monochromators in ...

  3. Transmission Electron Microscopy and Diffractometry of Materials (Third Edition)

    OpenAIRE

    Fultz, Brent; Howe, James M.

    2007-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The third edition has been updated to cover important technical developments, including the remarkable recent improvement in resolution of the TEM. This edition is not substantially longer than the second, but all chapters have been updated and revised for clarity. A new chapter on high resolution STEM methods has been added. The book e...

  4. Concurrent in situ ion irradiation transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, K., E-mail: khattar@sandia.gov; Bufford, D.C.; Buller, D.L.

    2014-11-01

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). Initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  5. Scanning transmission electron microscopy: Albert Crewe's vision and beyond.

    Science.gov (United States)

    Krivanek, Ondrej L; Chisholm, Matthew F; Murfitt, Matthew F; Dellby, Niklas

    2012-12-01

    Some four decades were needed to catch up with the vision that Albert Crewe and his group had for the scanning transmission electron microscope (STEM) in the nineteen sixties and seventies: attaining 0.5Å resolution, and identifying single atoms spectroscopically. With these goals now attained, STEM developments are turning toward new directions, such as rapid atomic resolution imaging and exploring atomic bonding and electronic properties of samples at atomic resolution. The accomplishments and the future challenges are reviewed and illustrated with practical examples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Transmission electron microscopy of a model crystalline organic, theophylline

    Science.gov (United States)

    Cattle, J.; S'ari, M.; Hondow, N.; Abellán, P.; Brown, A. P.; Brydson, R. M. D.

    2015-10-01

    We report on the use of transmission electron microscopy (TEM) to analyse the diffraction patterns of the model crystalline organic theophylline to investigate beam damage in relation to changing accelerating voltage, sample temperature and TEM grid support films. We find that samples deposited on graphene film grids have the longest lifetimes when also held at -190 °C and imaged at 200 kV accelerating voltage. Finally, atomic lattice images are obtained in bright field STEM by working close to the estimated critical electron dose for theophylline.

  7. Transmission electron microscopic characterization of hypersensitive human radicular dentin

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiyama, M.; Noiri, Y.; Ozaki, K.; Uchida, A.; Ishikawa, Y.; Ishida, H. (Tokushima Univ. School of Dentistry (Japan))

    1990-06-01

    Transmission electron microscopy (TEM) and x-ray microanalysis (XMA) were used for the study of the ultrastructure of the lumens of dentinal tubules in superficial layers of dentin specimens obtained by use of a new biopsy technique from both hypersensitive and naturally desensitized areas of exposed root surfaces, in vivo. The TEM images showed clearly that the lumens of most of the tubules were occluded with mineral crystals in naturally desensitized areas, but such lumens were empty and surrounded with peritubular and intertubular dentin in hypersensitive areas. Moreover, electron-dense structures that lined peritubular dentin were observed in the empty lumens of dentinal tubules.

  8. Pulsed Power for a Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  9. Electron transmission through a periodically driven graphene magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, R., E-mail: rbiswas.pkc@gmail.com [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Maiti, S. [Ajodhya Hills G.S.A.T High School, Ajodhya, Purulia, West Bengal – 723152 (India); Mukhopadhyay, S. [Purulia Zilla School, Dulmi Nadiha, Purulia, West Bengal – 723102 (India); Sinha, C. [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur – 700032 (India)

    2017-05-10

    Electronic transport through graphene magnetic barriers is studied theoretically in presence of an external time harmonic scalar potential in the framework of non-perturbative Landau–Floquet Formalism. The oscillating field mostly suppresses the transmission for rectangular magnetic barrier structure and exhibits the Fano resonance for multiphoton processes due to the presence of bound state inside the barrier. While, for a pair of delta function barriers of larger separation, the oscillating potential suppresses the usual Fabry–Perot oscillations in the transmission and a new type of asymmetric Fano resonance is noted for smaller separation, occurring due to extended states between the barriers. - Highlights: • Tunnelling of the Dirac Fermions through oscillating pure magnetic barriers is reported for the first time. • The high energy transmission through a graphene magnetic barrier is suppressed by the application of time periodic modulation. • Suppression of the Fabry Perot transmission is noted due to the application of an external time harmonic potential. • Two kinds of the Fano resonances are noted in transmission through a pair of modulated δ-function magnetic barriers.

  10. Tailoring of electron flow current in magnetically insulated transmission lines

    Directory of Open Access Journals (Sweden)

    J. P. Martin

    2009-03-01

    Full Text Available It is desirable to optimize (minimizing both the inductance and electron flow the magnetically insulated vacuum sections of low impedance pulsed-power drivers. The goal of low inductance is understandable from basic efficiency arguments. The goal of low electron flow results from two observations: (1 flowing electrons generally do not deliver energy to (or even reach most loads, and thus constitute a loss mechanism; (2 energetic electrons deposited in a small area can cause anode damage and anode plasma formation. Low inductance and low electron flow are competing goals; an optimized system requires a balance of the two. While magnetically insulated systems are generally forgiving, there are times when optimization is crucial. For example, in large pulsed-power drivers used to energize high energy density physics loads, the electron flow as a fraction of total current is small, but that flow often reaches the anode in relatively small regions. If the anode temperature becomes high enough to desorb gas, the resulting plasma initiates a gap closure process that can impact system performance. Magnetic-pressure driven (z pinches and material equation of state loads behave like a fixed inductor for much of the drive pulse. It is clear that neither fixed gap nor constant-impedance transmission lines are optimal for driving inductive loads. This work shows a technique for developing the optimal impedance profile for the magnetically insulated section of a high-current driver. Particle-in-cell calculations are used to validate the impedance profiles developed in a radial disk magnetically insulated transmission line geometry. The input parameters are the spacing and location of the minimum gap, the effective load inductance, and the desired electron flow profile. The radial electron flow profiles from these simulations are in good agreement with theoretical predictions when driven at relatively high voltage (i.e., V≥2  MV.

  11. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1984-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions and image interpretation in transmission electron mic­ roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek­ tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec­ trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresne...

  12. Precision electron flow measurements in a disk transmission line.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Waylon T.; Pelock, Michael D.; Martin, Jeremy Paul; Jackson, Daniel Peter Jr.; Savage, Mark Edward; Stoltzfus, Brian Scott; Mendel, Clifford Will, Jr.; Pointon, Timothy David

    2008-01-01

    An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.

  13. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  14. Transmission electron microscopy of the preclinical phase of experimental phytophotodermatitis

    Directory of Open Access Journals (Sweden)

    Hiram Larangeira de Almeida Jr

    2008-01-01

    Full Text Available OBJECTIVE: To examine the epidermis in induced phytophotodermatitis using transmission electron microscopy in order to detect histologic changes even before lesions are visible by light microscopy. INTRODUCTION: In the first six hours after the experimental induction of phytophotodermatitis, no changes are detectable by light microscopy. Only after 24 hours can keratinocyte necrosis and epidermal vacuolization be detected histologically, and blisters form by 48 hours. METHODS: The dorsum of four adult rats (Rattus norvegicus was manually epilated. After painting the right half of the rat with the peel juice of Tahiti lemon, they were exposed to sunlight for eight minutes under general anesthesia. The left side was used as the control and exposed to sunlight only. Biopsies were performed immediately after photoinduction and one and two hours later, and the tissue was analyzed by transmission electron microscopy. RESULTS: No histological changes were seen on the control side. Immediately after induction, vacuolization in keratinocytes was observed. After one hour, desmosomal changes were also observed in addition to vacuolization. Keratin filaments were not attached to the desmosomal plaque. Free desmosomes and membrane ruptures were also seen. At two hours after induction, similar changes were found, and granular degeneration of keratin was also observed. DISCUSSION: The interaction of sunlight and psoralens generates a photoproduct that damages keratinocyte proteins, leading to keratinocyte necrosis and blister formation. CONCLUSIONS: Transmission electron microscopy can detect vacuolization, lesions of the membrane, and desmosomes in the first two hours after experimental induction of phytophotodermatitis.

  15. Matrix-mediated biomineralization in marine mollusks: a combined transmission electron microscopy and focused ion beam approach.

    Science.gov (United States)

    Saunders, Martin; Kong, Charlie; Shaw, Jeremy A; Clode, Peta L

    2011-04-01

    The teeth of the marine mollusk Acanthopleura hirtosa are an excellent example of a complex, organic, matrix-mediated biomineral, with the fully mineralized teeth comprising layers of iron oxide and iron oxyhydroxide minerals around a calcium apatite core. To investigate the relationship between the various mineral layers and the organic matrix fibers on which they grew, sections have been prepared from specific features in the teeth at controlled orientations using focused ion beam processing. Compositional and microstructural details of heterophase interfaces, and the fate of the organic matrix fibers within the mineral layers, can then be analyzed by a range of transmission electron microscopy (TEM) techniques. Energy-filtered TEM highlights the interlocking nature of the various mineral phases, while high-angle annular dark-field scanning TEM imaging demonstrates that the organic matrix continues to exist in the fully mineralized teeth. These new insights into the structure of this complex biomaterial are an important step in understanding the relationship between its structural and physical properties and may help explain its high strength and crack-resistance behavior.

  16. Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picher, Matthieu; Mazzucco, Stefano [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 (United States); Blankenship, Steve [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Sharma, Renu, E-mail: renu.sharma@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States)

    2015-03-15

    Here, we present a measurement platform for collecting multiple types of spectroscopy data during high-resolution environmental transmission electron microscopy observations of dynamic processes. Such coupled measurements are made possible by a broadband, high-efficiency, free-space optical system. The critical element of the system is a parabolic mirror, inserted using an independent hollow rod and placed below the sample holder which can focus a light on the sample and/or collect the optical response. We demonstrate the versatility of this optical setup by using it to combine in situ atomic-scale electron microscopy observations with Raman spectroscopy. The Raman data is also used to measure the local temperature of the observed sample area. Other applications include, but are not limited to: cathodo- and photoluminescence spectroscopy, and use of the laser as a local, high-rate heating source. - Highlights: • Broadband, high-efficiency design adaptable to other electron microscopes. • Raman spectroscopy integrated with environmental transmission electron microscopy. • Raman spectra peak frequency shifts enable measurement of local sample temperature. • Multiple types of optical spectroscopy enabled, e.g. cathodoluminescence.

  17. Electron transmission through molecules and molecular layers: Theory and Simulations

    Science.gov (United States)

    Nitzan, Abraham

    2000-03-01

    Several aspects of electron transmission through molecular layers will be discussed. (a) The mechanism of electron tunneling through a narrow water barrier between two Pt(100) metal surfaces was studied by numerical simulations.[1] Assuming that the water configuration is static on the time scale of the electron motion, the tunneling probability show distinct resonance structures below the vacuum barrier. These resonances are shown to be associated with molecular cavities in which the electron is trapped between repulsive oxygen cores. The lifetimes of these resonances are found to be of the order 10 fs or less. (b) The concept of 'tunneling time' is revisited and this time is analyzed for a simple superexchange model of electron transfer.[2] This time is computed also for electron tunneling through water and its relation to the resonance features observed in that process and to their lifetime is discussed.[3] (c) Theoretical models that analyze thermal effects in resonance tunneling are presented.[4] References 1. U. Peskin, A. Edlund, I. Bar-On , M. Galperin and A. Nitzan, Transient resonance structures in electron tunneling through water, J. Chem. Phys. 111, 7558 (1999). 2. A. Nitzan, J. Jortner, J. Wilkie and M. Ratner, Tunneling time for electron transfer reactions, to be published. 3. M. Galperin and A. Nitzan, Tunneling time for electron transfer through water, to be published. 4. D. Segal, A. Nitzan, W. B. Davis, M. R. Wasielewski, and M. A. Ratner, Electron Transfer Rates in Bridged Molecular Systems II: A steady state analysis of coherent tunneling and thermal transitions, J. Phys. Chem., in press.

  18. Time Resolved Phase Transitions via Dynamic Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B W; Armstrong, M R; Blobaum, K J; Browning, N D; Burnham, A K; Campbell, G H; Gee, R; Kim, J S; King, W E; Maiti, A; Piggott, W T; Torralva, B R

    2007-02-22

    The Dynamic Transmission Electron Microscope (DTEM) project is developing an in situ electron microscope with nanometer- and nanosecond-scale resolution for the study of rapid laser-driven processes in materials. We report on the results obtained in a year-long LDRD-supported effort to develop DTEM techniques and results for phase transitions in molecular crystals, reactive multilayer foils, and melting and resolidification of bismuth. We report the first in situ TEM observation of the HMX {beta}-{delta} phase transformation in sub-{micro}m crystals, computational results suggesting the importance of voids and free surfaces in the HMX transformation kinetics, and the first electron diffraction patterns of intermediate states in fast multilayer foil reactions. This project developed techniques which are applicable to many materials systems and will continue to be employed within the larger DTEM effort.

  19. Coupling of Electron Spin Ensembles to Superconducting Transmission Line Resonators

    Science.gov (United States)

    Sears, Adam; Schuster, David; Dicarlo, Leo; Bishop, Lev; Ginossar, Eran; Frunzio, Luigi; Wesenberg, Janus; Ardavan, Arzhang; Briggs, Andrew; Moelmer, Klauss; Morton, John; Schoelkopf, Robert

    2010-03-01

    Recent proposals have suggested using a mesoscopic ensemble of electron spins to create a quantum memory for superconducting qubits in solid state systems[1]. Such ensembles can have large cavity couplings (˜MHz) and should have long coherence times. Here we show the measurement and coupling of electron spins in ruby and diamond to multiplexed superconducting coplanar waveguide (CPW) cavities, as well as broadband spectroscopy of ruby using a CPW transmission line. We discuss the application of these techniques to electron spin resonance at low power, millikelvin temperatures, and over many gigahertz and evaluate the suitability of our materials for quantum computing. [4pt] [1] Wesenberg J et al 2009 Phys. Rev. Lett. 103 070502

  20. In-situ electrochemical transmission electron microscopy for battery research.

    Science.gov (United States)

    Mehdi, B Layla; Gu, Meng; Parent, Lucas R; Xu, Wu; Nasybulin, Eduard N; Chen, Xilin; Unocic, Raymond R; Xu, Pinghong; Welch, David A; Abellan, Patricia; Zhang, Ji-Guang; Liu, Jun; Wang, Chong-Min; Arslan, Ilke; Evans, James; Browning, Nigel D

    2014-04-01

    The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

  1. Optimization of Beam Transmission of PAL-PNF Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kim, S. K.; Kim, E. A. [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2012-05-15

    The PNF (Pohang Neutron Facility) electron Linac is providing converted neutrons and photons from electron beams to users for nuclear physics experiments and high energy gamma-ray exposures. This linac is capable of producing 100 MeV electron beams with a beam current of pulsed 100 mA. The pulse length is 2 {mu}s and the pulse repetition rate is typically 30 Hz. This linac consists of two SLAC-type S-band accelerating columns and the thermionic RF gun. They are powered by one klystron and the matching pulse modulator. The electron beams emitted from the RF gun are bunched as they pass through the alpha magnet and are injected into the accelerating column thereafter. In this paper, we discuss procedures and results of the beam transmission optimization with technical details of the accelerator system. We also briefly discuss the future upgrade plan to obtain short-pulse or electron beams for neutron TOF experiments by adopting a triode type thermionic DC electron gun

  2. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  3. Simulation of scanning transmission electron microscope images on desktop computers

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C., E-mail: christian.dwyer@mcem.monash.edu.au [Monash Centre for Electron Microscopy, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2010-02-15

    Two independent strategies are presented for reducing the computation time of multislice simulations of scanning transmission electron microscope (STEM) images: (1) optimal probe sampling, and (2) the use of desktop graphics processing units. The first strategy is applicable to STEM images generated by elastic and/or inelastic scattering, and requires minimal effort for its implementation. Used together, these two strategies can reduce typical computation times from days to hours, allowing practical simulation of STEM images of general atomic structures on a desktop computer.

  4. Practical aspects of monochromators developed for transmission electron microscopy.

    Science.gov (United States)

    Kimoto, Koji

    2014-10-01

    A few practical aspects of monochromators recently developed for transmission electron microscopy are briefly reviewed. The basic structures and properties of four monochromators, a single Wien filter monochromator, a double Wien filter monochromator, an omega-shaped electrostatic monochromator and an alpha-shaped magnetic monochromator, are outlined. The advantages and side effects of these monochromators in spectroscopy and imaging are pointed out. A few properties of the monochromators in imaging, such as spatial or angular chromaticity, are also discussed. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy.

  5. Transmission electron microscopy investigation of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Andersen, L.G.; Bals, S.; Tendeloo, G. Van

    2001-01-01

    The microstructure of (Bi,Pb)(2)Sr2Ca2CuOx (Bi-2223) tapes has been investigated by means of transmission electron microscopy (TEM) and high-resolution TEM. The emphasis has been placed on: (1) an examination of the grain morphology and size, (2) grain and colony boundary angles, which are formed...... the first annealing. The angles of c-axis tilt grain boundaries are on average 14 degrees and 26 degrees for the fully processed tape and the tape after the first annealing, respectively. The intergrowth content(15%) and distribution are similar in these two tapes. (C) 2001 Elsevier Science B.V. All rights...

  6. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  8. Clean electromigrated nanogaps imaged by transmission electron microscopy.

    Science.gov (United States)

    Strachan, Douglas R; Smith, Deirdre E; Fischbein, Michael D; Johnston, Danvers E; Guiton, Beth S; Drndić, Marija; Bonnell, Dawn A; Johnson, Alan T

    2006-03-01

    Electromigrated nanogaps have shown great promise for use in molecular scale electronics. We have fabricated nanogaps on free-standing transparent SiN(x) membranes which permit the use of transmission electron microscopy (TEM) to image the gaps. The electrodes are formed by extending a recently developed controlled electromigration procedure and yield a nanogap with approximately 5 nm separation clear of any apparent debris. The gaps are stable, on the order of hours as measured by TEM, but over time (months) relax to about 20 nm separation determined by the surface energy of the Au electrodes. A major benefit of electromigrated nanogaps on SiN(x) membranes is that the junction pinches in away from residual metal left from the Au deposition which could act as a parasitic conductance path. This work has implications to the design of clean metallic electrodes for use in nanoscale devices where the precise geometry of the electrode is important.

  9. Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Brisson, Alain R

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

  10. Transmission electron microscopy for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reininghaus, Nies; Schmidt, Vitalij; Hachmann, Wiebke; Heinzmann, Ulrich [Molecular and Surface Physics, Bielefeld University (Germany); Gruss, Stefan; Stiebig, Helmut [Malibu GmbH and Co. KG, Bielefeld (Germany)

    2011-07-01

    Thin-film amorphous and microcrystalline silicon are promising materials for photovoltaics as they have the potential to reduce the solar cell costs. In case of microcrystalline silicon the crystalline volume fraction is related to the efficiency factor of solar cells because it provides information about the microstructure of the material and the defect density. With Transmission Electron Microscopy of cross-sections it is possible to show the microstructure of the cells. However to determine the structure of the bulk it is necessary to analyse the diffraction of the electron beam. For the purpose of imaging diffraction patterns and displaying dark fields a new camera system has been installed in the Phillips CM200. With much higher sensitivity and a larger photoactive area it is possible to take images of the low-intensity diffraction and the dark field patterns.

  11. High current nonlinear transmission line based electron beam driver

    Science.gov (United States)

    Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.

    2017-10-01

    A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).

  12. Annular dark field transmission electron microscopy for protein structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, Philip J.B., E-mail: Philip.Koeck@ki.se

    2016-02-15

    Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a means of recording images of biological specimens with better signal to noise ratio (SNR) than regular bright field images. I investigate whether and how such images could be used to determine the three-dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manufactured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak amplitude and phase objects and test this theory using computer simulations. I also test whether these simulated images can be used to calculate a three-dimensional model of the protein using standard software and discuss problems and possible ways to overcome these. - Highlights: • I present theory and simulations for imaging proteins using annular dark field transmission electron microscopy and investigate its suitability for 3D-reconstruction. • I show that the images are approximately proportional to the square of the projected electrostatic potential within a given passband ). • 3D-reconstructions show errors in the interior of the molecule. More accurate maps might be calculated by reconstruction algorithms that take into account non-linear image formation.

  13. Ultrasoft magnetic films investigated with Lorentz transmission electron microscopy and electron holography

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Chechenin, N.G.; Alsem, D.H.; Vystavel, T.; Kooi, B.J.; Chezan, A.R; Boerma, D.O

    2002-01-01

    As a tribute to the scientific work of Professor Gareth Thomas in the field of structure-property relationships this paper delineates a new possibility of Lorentz transmission electron microscopy (LTEM) to study the magnetic properties of soft magnetic films. We show that in contrast to the

  14. Vibrationally mediated control of single-electron transmission in weakly coupled molecule-metal junctions

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We propose a mechanism which allows one to control the transmission of single electrons through a molecular junction. The principle utilizes the emergence of transmission sidebands when molecular vibrational modes are coupled to the electronic state mediating the transmission. We will show that i....... As an example we perform a density-functional theory analysis of a benzene molecule between two Au(111) contacts and show that exciting a particular vibrational mode can give rise to transmission of a single electron....

  15. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  16. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy.

    Science.gov (United States)

    Erni, Rolf; Browning, Nigel D

    2005-10-01

    With the development of monochromators for (scanning) transmission electron microscopes, valence electron energy-loss spectroscopy (VEELS) is developing into a unique technique to study the band structure and optical properties of nanoscale materials. This article discusses practical aspects of spatially resolved VEELS performed in scanning transmission mode and the alignments necessary to achieve the current optimum performance of approximately 0.15 eV energy resolution with an electron probe size of approximately 1 nm. In particular, a collection of basic concepts concerning the acquisition process, the optimization of the energy resolution, the spatial resolution and the data processing are provided. A brief study of planar defects in a Y(1)Ba(2)Cu(3)O(7-)(delta) high-temperature superconductor illustrates these concepts and shows what kind of information can be accessed by VEELS.

  17. Transmission electron microscopy for the evaluation and optimization of crystal growth

    OpenAIRE

    Stevenson, Hilary P.; Lin, Guowu; Barnes, Christopher O.; Sutkeviciute, Ieva; Krzysiak, Troy; Weiss, Simon C.; Reynolds, Shelley; Wu, Ying; Nagarajan, Veeranagu; Makhov, Alexander M.; Lawrence, Robert; Lamm, Emily; Clark, Lisa; Gardella, Timothy J.; Hogue, Brenda G.

    2016-01-01

    In this article, the potential of transmission electron microscopy to assist in the process of generating well diffracting crystals for conventional crystallography, as well as for free-electron laser and micro-electron diffraction applications, is demonstrated.

  18. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Improved Zernike-type phase contrast for transmission electron microscopy.

    Science.gov (United States)

    Koeck, P J B

    2015-07-01

    Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of π/2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of -π/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only π /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  20. Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review

    Directory of Open Access Journals (Sweden)

    Shu Xia Tao

    2016-12-01

    Full Text Available Secondary electron emission materials are reviewed with the aim of providing guidelines for the future development of novel transmission dynodes. Materials with reflection secondary electron yield higher than three and transmission secondary electron yield higher than one are tabulated for easy reference. Generations of transmission dynodes are listed in the order of the invention time with a special focus on the most recent atomic-layer-deposition synthesized transmission dynodes. Based on the knowledge gained from the survey of secondary election emission materials with high secondary electron yield, an outlook of possible improvements upon the state-of-the-art transmission dynodes is provided.

  1. Development of Drabkin energy filters for J-PARC project

    CERN Document Server

    Yamazaki, D; Soyama, K; Tasaki, S

    2003-01-01

    In the J-PARC project, the high intensity spallation neutron source has been developed. Very intensive pulsed neutron beam will be available from a coupled moderator installed at the spallation source. Wavelengths of neutrons is generally determined by its time-of-flight (TOF) from the source to the detector, but the available precision is limited by the non-zero emission time-width of the moderator system. It follows that high precision experiments cannot be performed with the intensive pulsed neutrons from the coupled moderator. We have been developing Drabkin energy filters, which effectively reduces the emission time-width by the spatial neutron spin resonance. In this paper, firstly, we describe the physics in the Drabkin spin flipper, which is the main part of the Drabkin energy filter, and derive the spin-flip probability by the flipper in the quantum-mechanical manner. Secondly, the properties of the resonance spin flipping are described. Thirdly, sweep mode for the application to pulsed neutrons are ...

  2. Implementing Transmission Electron Backscatter Diffraction for Atom Probe Tomography.

    Science.gov (United States)

    Rice, Katherine P; Chen, Yimeng; Prosa, Ty J; Larson, David J

    2016-06-01

    There are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50° misorientation and trace element segregation to the grain boundary.

  3. A Transmission Electron Microscope Study of Experimentally Shocked Pregraphitic Carbon

    Science.gov (United States)

    Rietmeijer, Frans J. M.

    1995-01-01

    A transmission electron microscope study of experimental shock metamorphism in natural pre-graphitic carbon simulates the response of the most common natural carbons to increased shock pressure. The d-spacings of this carbon are insensitive to the shock pressure and have no apparent diagnostic value, but progressive comminution occurs in response to increased shock pressure up to 59.6 GPa. The function, P = 869.1 x (size(sub minimum )(exp -0.83), describes the relationship between the minimum root-mean-square subgrain size (nm) and shock pressure (GPa). While a subgrain texture of natural pregraphitic carbons carries little information when pre-shock textures are unknown, this texture may go unnoticed as a shock metamorphic feature.

  4. Transmission electron microscope cells for use with liquid samples

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  5. Fabrication and electric measurements of nanostructures inside transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qing, E-mail: qingchen@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Peng, Lian-Mao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

    2011-06-15

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. -- Research highlights: {yields} We review in-situ works using manipulation holder in TEM. {yields} In-situ electric measurements, fabrication and structure modification are focused. {yields} We discuss important issues that should be considered for reliable results. {yields} In-situ TEM is becoming a very powerful tool for many research fields.

  6. Aplanatic imaging systems for the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Heiko, E-mail: mueller@ceos-gmbh.de [Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg (Germany); Massmann, Ingo; Uhlemann, Stephan; Hartel, Peter; Zach, Joachim; Haider, Maximilian [Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg (Germany)

    2011-07-21

    During the last decade aberration correctors have become a well-accepted tool in high-resolution transmission electron microscopy. The available correctors compensate for the spherical aberration C{sub s} of the imaging system. Recently, for instruments with considerably improved information limit also the off-axial aberrations have attracted more attention since these aberrations limit the high-resolution field of view. We have proposed a novel hexapole-type C{sub s}/B{sub 3}-corrector which corrects for the spherical aberration and the off-axial coma of the imaging system. We discuss the assessment and correction of off-axial aberrations and report about the optical performance of the first prototype instrument.

  7. Dynamics of a nanodroplet under a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Leong, Fong Yew, E-mail: leongfy@ihpc.a-star.edu.sg [A-STAR Institute of High Performance Computing, 1 Fusionopolis Way, Connexis, Singapore 138632 (Singapore); Mirsaidov, Utkur M. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Center for BioImaging Sciences, National University of Singapore, Science Drive 4, Singapore 117543 (Singapore); Matsudaira, Paul [Center for BioImaging Sciences, National University of Singapore, Science Drive 4, Singapore 117543 (Singapore); MechanoBiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore); Singapore-MIT Alliance for Research and Technology Center, Science Drive 2, Singapore 117543 (Singapore); Mahadevan, L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA and Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-01-15

    We investigate the cyclical stick-slip motion of water nanodroplets on a hydrophilic substrate viewed with and stimulated by a transmission electron microscope. Using a continuum long wave theory, we show how the electrostatic stress imposed by non-uniform charge distribution causes a pinned convex drop to deform into a toroidal shape, with the shape characterized by the competition between the electrostatic stress and the surface tension of the drop, as well as the charge density distribution which follows a Poisson equation. A horizontal gradient in the charge density creates a lateral driving force, which when sufficiently large, overcomes the pinning induced by surface heterogeneities in the substrate disjoining pressure, causing the drop to slide on the substrate via a cyclical stick-slip motion. Our model predicts step-like dynamics in drop displacement and surface area jumps, qualitatively consistent with experimental observations.

  8. In situ and operando transmission electron microscopy of catalytic materials

    DEFF Research Database (Denmark)

    Crozier, Peter A.; Hansen, Thomas Willum

    2015-01-01

    Catalytic nanomaterials play a major role in chemical conversions and energy transformations. Understanding how materials control and regulate surface reactions is a major objective for fundamental research on heterogeneous catalysts. In situ environmental transmission electron microscopy (ETEM......) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure-reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ...... measurements of gas-phase catalytic products. To overcome this deficiency, operando TEM techniques are being developed that combine atomic characterization with the simultaneous measurement of catalytic products. This article provides a short review of the current status and major developments...

  9. Transmission electron microscope sample holder with optical features

    Science.gov (United States)

    Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  10. Transmission electron microscope calibration methods for critical dimension standards

    Science.gov (United States)

    Orji, Ndubuisi G.; Dixson, Ronald G.; Garcia-Gutierrez, Domingo I.; Bunday, Benjamin D.; Bishop, Michael; Cresswell, Michael W.; Allen, Richard A.; Allgair, John A.

    2016-10-01

    One of the key challenges in critical dimension (CD) metrology is finding suitable dimensional calibration standards. The transmission electron microscope (TEM), which produces lattice-resolved images having scale traceability to the SI (International System of Units) definition of length through an atomic lattice constant, has gained wide usage in different areas of CD calibration. One such area is critical dimension atomic force microscope (CD-AFM) tip width calibration. To properly calibrate CD-AFM tip widths, errors in the calibration process must be quantified. Although the use of TEM for CD-AFM tip width calibration has been around for about a decade, there is still confusion on what should be considered in the uncertainty analysis. We characterized CD-AFM tip-width samples using high-resolution TEM and high angle annular dark field scanning TEM and two CD-AFMs that are implemented as reference measurement systems. The results are used to outline how to develop a rigorous uncertainty estimate for TEM/CD-AFM calibration, and to compare how information from the two electron microscopy modes are applied to practical CD-AFM measurements. The results also represent a separate validation of previous TEM/CD-AFM calibration. Excellent agreement was observed.

  11. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  12. Transmission electron microscopy a textbook for materials science

    CERN Document Server

    Williams, David B

    1996-01-01

    Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi­ of materials by completing the processing-structure-prop­ croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them­ to achieve specific sets of properties; the extraordinary abili­ selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM­ of all of these areas before one can hope to tackle signifi­ instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate­ be use...

  13. Thin dielectric film thickness determination by advanced transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  14. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    Science.gov (United States)

    Levin, Barnaby D. A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M. C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert

    2016-06-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.

  15. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    KAUST Repository

    Zhang, Daliang

    2018-01-18

    High-resolution imaging of electron beam-sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  16. Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil

    Science.gov (United States)

    Chan, Q. H. S.; Han, J.; Zolensky, M.

    2016-01-01

    Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure

  17. Development of Drabkin energy filters for J-PARC project

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Dai; Soyama, Kazuhiko; Ebisawa, Toru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tasaki, Seiji [Kyoto Univ., Kyoto (Japan)

    2003-03-01

    In the J-PARC project, the high intensity spallation neutron source has been developed. Very intensive pulsed neutron beam will be available from a coupled moderator installed at the spallation source. Wavelengths of neutrons is generally determined by its time-of-flight (TOF) from the source to the detector, but the available precision is limited by the non-zero emission time-width of the moderator system. It follows that high precision experiments cannot be performed with the intensive pulsed neutrons from the coupled moderator. We have been developing Drabkin energy filters, which effectively reduces the emission time-width by the spatial neutron spin resonance. In this paper, firstly, we describe the physics in the Drabkin spin flipper, which is the main part of the Drabkin energy filter, and derive the spin-flip probability by the flipper in the quantum-mechanical manner. Secondly, the properties of the resonance spin flipping are described. Thirdly, sweep mode for the application to pulsed neutrons are described and the effects of the field sweeping to the spin-flip probabilities were numerically demonstrated. Suppressions of sub-peaks in the resonance spin flipping by modulated magnetic fields are also demonstrated numerically. We have developed Drabkin flippers with 10 periods of field and carried out performance test of the flipper at JRR-3M. Firstly, field dependency of the spin-flip probability was measured with monochromatic beam ({lambda}=8.8 A, FWHM 2.5%). Secondly, wavelength dependency of the spin-flip probability was measured with chopped beam ({lambda}=8.3 A, FWHM 14.9%). The results were consistent with the expected values by numerical calculations. (author)

  18. Collaborative Research and Development. Delivery Order 0006: Transmission Electron Microscope Image Modeling and Semiconductor Heterointerface Characterization

    National Research Council Canada - National Science Library

    Mahalingam, Krishnamurthy

    2006-01-01

    .... Transmission electron microscope (TEM) characterization studies were performed on a variety of novel III-V semiconductor heterostructures being developed for advanced optoelectronic device applications...

  19. Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)

    2016-12-15

    High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron

  20. Probing electron beam effects with chemoresistive nanosensors during in situ environmental transmission electron microscopy

    Science.gov (United States)

    Steinhauer, S.; Wang, Z.; Zhou, Z.; Krainer, J.; Köck, A.; Nordlund, K.; Djurabekova, F.; Grammatikopoulos, P.; Sowwan, M.

    2017-02-01

    We report in situ and ex situ fabrication approaches to construct p-type (CuO) and n-type (SnO2) metal oxide nanowire devices for operation inside an environmental transmission electron microscope (TEM). By taking advantage of their chemoresistive properties, the nanowire devices were employed as sensitive probes for detecting reactive species induced by the interactions of high-energy electrons with surrounding gas molecules, in particular, for the case of O2 gas pressures up to 20 mbar. In order to rationalize our experimental findings, a computational model based on the particle-in-cell method was implemented to calculate the spatial distributions of scattered electrons and ionized oxygen species in the environmental TEM. Our approach enables the a priori identification and qualitative measurement of undesirable beam effects, paving the way for future developments related to their mitigation.

  1. Transmission electron microscopy analysis of corroded metal waste forms.

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, N. L.

    2005-04-15

    This report documents the results of analyses with transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (ED) of samples of metallic waste form (MWF) materials that had been subjected to various corrosion tests. The objective of the TEM analyses was to characterize the composition and microstructure of surface alteration products which, when combined with other test results, can be used to determine the matrix corrosion mechanism. The examination of test samples generated over several years has resulted in refinements to the TEM sample preparation methods developed to preserve the orientation of surface alteration layers and the underlying base metal. The preservation of microstructural spatial relationships provides valuable insight for determining the matrix corrosion mechanism and for developing models to calculate radionuclide release in repository performance models. The TEM results presented in this report show that oxide layers are formed over the exposed steel and intermetallic phases of the MWF during corrosion in aqueous solutions and humid air at elevated temperatures. An amorphous non-stoichiometric ZrO{sub 2} layer forms at the exposed surfaces of the intermetallic phases, and several nonstoichiometric Fe-O layers form over the steel phases in the MWF. These oxide layers adhere strongly to the underlying metal, and may be overlain by one or more crystalline Fe-O phases that probably precipitated from solution. The layer compositions are consistent with a corrosion mechanism of oxidative dissolution of the steel and intermetallic phases. The layers formed on the steel and intermetallic phases form a continuous layer over the exposed waste form, although vertical splits in the layer and corrosion in pits and crevices were seen in some samples. Additional tests and analyses are needed to verify that these layers passivate the underlying metals and if passivation can break

  2. Extended ptychography in the transmission electron microscope: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Huee, F., E-mail: florian.hue@univ-paris-diderot.fr [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Rodenburg, J.M.; Maiden, A.M. [Department of Electrical and Electronic Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2011-07-15

    The extended-ptychographical iterative engine (e-PIE) is a recently developed powerful phase retrieval algorithm which can be used to measure the phase transfer function of a specimen and overcome conventional lens resolution limits. The major improvement over PIE is the ability to reconstruct simultaneously both the object and illumination functions, robustness to noise and speed of convergence. The technique has proven to be successful at optical and X-ray wavelengths and we describe here experimental results in transmission electron microscopy supported by corresponding simulations. These simulations show the possibilities - even with strong phase objects - and limitations of ptychography; in particular issues arising from poorly-defined probe positions. -- Research highlights: {yields} Ptychography is an alternative technique for solving phase problem in TEM. {yields} The extended-Ptychographical Iterative Engine (e-PIE) is an algorithm which allows solving both the probe and the illuminated object phase. {yields} A topological study demonstrates its capability in TEM. {yields} Simulations show the robustness to noise and capability to retrieve strong phase object but reveal also a high sensitivity to the probe position uncertainty.

  3. TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Tosten, M; Michael Morgan, M

    2008-12-12

    A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similar in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.

  4. Analysis of virus textures in transmission electron microscopy images.

    Science.gov (United States)

    Nanni, Loris; Paci, Michelangelo; Caetano Dos Santos, Florentino Luciano; Brahnam, Sheryl; Hyttinen, Jari

    2014-01-01

    In this paper we propose an ensemble of texture descriptors for analyzing virus textures in transmission electron microscopy images. Specifically, we present several novel multi-quinary (MQ) codings of local binary pattern (LBP) variants: the MQ version of the dense LBP, the MQ version of the rotation invariant co-occurrence among adjacent LBPs, and the MQ version of the LBP histogram Fourier. To reduce computation time as well as to improve performance, a feature selection approach is utilized to select the thresholds used in the MQ approaches. In addition, we propose new variants of descriptors where two histograms, instead of the standard one histogram, are produced for each descriptor. The two histograms (one for edge pixels and the other for non-edge pixels) are calculated for training two different SVMs, whose results are then combined by sum rule. We show that a bag of features approach works well with this problem. Our experiments, using a publicly available dataset of 1500 images with 15 classes and same protocol as in previous works, demonstrate the superiority of our new proposed ensemble of texture descriptors. The MATLAB code of our approach is available at https://www.dei.unipd.it/node/2357.

  5. Improved Hilbert phase contrast for transmission electron microscopy.

    Science.gov (United States)

    Koeck, Philip J B

    2015-07-01

    Hilbert phase contrast has been recognized as a means of recording high resolution images with high contrast using a transmission electron microscope. This imaging mode could be used to image typical phase objects such as unstained biological molecules or cryo sections of biological tissue. According to the original proposal by (Danev et al., 2002) the Hilbert phase plate applies a phase shift of π to approximately half the focal plane (for example the right half excluding the central beam) and an image is recorded at Gaussian focus. After correction for the inbuilt asymmetry of differential phase contrast this image will have an almost perfect contrast transfer function (close to 1) from the lowest spatial frequency up to a maximum resolution determined by the wave length and spherical aberration of the microscope. In this paper I present theory and simulations showing that this maximum spatial frequency can be increased considerably almost without loss of contrast by using a Hilbert phase plate of half the thickness, leading to a phase shift of π/2, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Light and transmission electron microscopy of immature camelus dromedarius oocyte.

    Science.gov (United States)

    Nili, H; Mesbah, F; Kafi, M; Nasr Esfahani, M H

    2004-08-01

    In order to provide a consistent system for laboratory production of embryos, the characteristics of immature camel oocyte must first be described. The objective of this study was to define ultrastructural features of immature camel oocyte. Ovaries were obtained from camels at a local abattoir, and then transported to the laboratory within 2 h. Camelus cumulus oocyte complexes (COCs) were aspirated from 2-6 mm follicles using a 22-gauge needle. Excellent and good quality COCs were selected and prepared for transmission electron microscopy study using a cavity slide. The fine structure of camel oocyte is morphologically similar to that of other mammalian oocytes. However, some minor differences exist between COC of camel and other mammalian species. Different size and shape of membrane-bound vesicles, lipid droplet, mitochondria and cortical granules were distributed throughout the ooplasm. Discrete or in association with endoplasmic reticulum, Golgi complexes were observed in the periphery of the oocytes. The majority of the oocytes were in the germinal vesicle stage.

  7. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  8. Atomic imaging using secondary electrons in a scanning transmission electron microscope: Experimental observations and possible mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Inada, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hitachi High Technologies Corp., Ibaraki (Japan); Su, D. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Egerton, R.F. [University of Alberta, Edmonton (Canada); Konno, M. [Hitachi High Technologies Corp., Ibaraki (Japan); Wu, L.; Ciston, J.; Wall, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Zhu, Y., E-mail: zhu@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-06-15

    We report detailed investigation of high-resolution imaging using secondary electrons (SE) with a sub-nanometer probe in an aberration-corrected transmission electron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. A possible mechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization. -- Research highlights: {yields} Atomic imaging using secondary electrons in an aberration-corrected electron microscope. {yields} High-resolution secondary electron imaging mechanism. {yields} Image contrast quantification and as functions of imaging conditions. {yields} Simultaneous acquisition of atomic images from surface and bulk.

  9. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.; Kabius, Bernd C.

    2015-06-01

    The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarily be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.

  10. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  11. Electron tomography of whole cultured cells using novel transmission electron imaging technique.

    Science.gov (United States)

    Okumura, Taiga; Shoji, Minami; Hisada, Akiko; Ominami, Yusuke; Ito, Sukehiro; Ushiki, Tatsuo; Nakajima, Masato; Ohshima, Takashi

    2018-01-01

    Since a three-dimensional (3D) cellular ultrastructure is significant for biological functions, it has been investigated using various electron microscopic techniques. Although transmission electron microscopy (TEM)-based techniques are traditionally used, cells must be embedded in resin and sliced into ultrathin sections in sample preparation processes. Block-face observation using a scanning electron microscope (SEM) has also been recently applied to 3D observation of cellular components, but this is a destructive inspection and does not allow re-examination. Therefore, we developed electron tomography using a transmission electron imaging technique called Plate-TEM. With Plate-TEM, the cells cultured directly on a scintillator plate are inserted into a conventional SEM equipped with a Plate-TEM observation system, and their internal structures are observed by detecting scintillation light produced by electrons passing through the cells. This technology has the following four advantages. First, the cells cultured on the plate can be observed at electron-microscopic resolution since they remain on the plate. Second, both surface and internal information can be obtained simultaneously by using electron- and photo-detectors, respectively, because a Plate-TEM detector is installed in an SEM. Third, the cells on the scintillator plate can also be inspected using light microscopy because the plate has transparent features. Finally, correlative observation with other techniques, such as conventional TEM, is possible after Plate-TEM observation because Plate-TEM is a non-destructive analysis technique. We also designed a sample stage to tilt the samples for tomography with Plate-TEM, by which 3D organization of cellular structures can be visualized as a whole cell. In the present study, Mm2T cells were investigated using our tomography system, resulting in 3D visualization of cell organelles such as mitochondria, lipid droplets, and microvilli. Correlative observations

  12. Effective object planes for aberration-corrected transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, R., E-mail: ryu@tsinghua.edu.cn [Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lentzen, M. [Institute of Solid State Research and Ernst Ruska Centre, Research Centre Juelich, 52425 Juelich (Germany); Zhu, J. [Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2012-01-15

    In aberration-corrected transmission electron microscopy, the image contrast depends sensitively on the focus value. With the point resolution extended to an information limit of below 0.1 nm, even a focus change of as small as one nanometer could give a significant change in image contrast. Therefore, it is necessary to consider in detail the optimum focus condition in order to take full advantage of aberration-correction. In this study, the thickness dependence of the minimum contrast focus has been investigated by dynamical image simulations for amorphous model structures of carbon, germanium, and tungsten, which were constructed by molecular dynamics simulations. The calculation results show that the minimum contrast focus varies with the object thickness, supporting the use of an effective object plane close to the midplane instead of the exit plane of a sample, as suggested by Bonhomme and Beorchia [J. Phys. D: Appl. Phys. 16, 705 (1983)] and Lentzen [Microscopy and Microanalysis 12, 191 (2006)]. Thus supported particles and wedge-shaped crystals with symmetrical top and bottom surfaces could be imaged at a focus condition independent of the uneven bottom face. Image simulations of crystalline samples as a function of focus and thickness show: for an object thickness of less than 10 nm, the optimum focus condition is matched better if the midplane of the object, instead of the exit plane, is chosen as reference plane. -- Highlights: Black-Right-Pointing-Pointer Stringent focus condition is required for aberration-corrected TEM. Black-Right-Pointing-Pointer Optimum focus should be set with respect to the midplane of a sample. Black-Right-Pointing-Pointer The focus condition could be independent of the lateral position on a wedged sample.

  13. Metal particles in a ceramic matrix--scanning electron microscopy and transmission electron microscopy characterization.

    Science.gov (United States)

    Konopka, K

    2006-09-01

    This paper is concerned with ceramic matrix (Al(2)O(3)) composites with introduced metal particles (Ni, Fe). The composites were obtained via sintering of powders under very high pressure (2.5 GPa). Scanning electron microscopy and transmission electron microscopy were chosen as the tools for the identification and description of the shape, size and distribution of the metal particles. The Al(2)O(3)-Ni composite contained agglomerates of the Ni particles surrounded by ceramic grains and nanometre-size Ni particles located inside the ceramic grains and at the ceramic grain boundaries. In the Al(2)O(3)-Fe composite, the Fe particles were mostly surrounded by ceramic grains. Moreover, holes left by the Fe particles were found. The high pressure used in the fabrication of the composites changed the shape of the metal and ceramic powder grains via plastic deformation.

  14. Bipolar Photothermoelectric Effect Across Energy Filters in Single Nanowires.

    Science.gov (United States)

    Limpert, Steven; Burke, Adam; Chen, I-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-07-12

    The photothermoelectric (PTE) effect uses nonuniform absorption of light to produce a voltage via the Seebeck effect and is of interest for optical sensing and solar-to-electric energy conversion. However, the utility of PTE devices reported to date has been limited by the need to use a tightly focused laser spot to achieve the required, nonuniform illumination and by their dependence upon the Seebeck coefficients of the constituent materials, which exhibit limited tunability and, generally, low values. Here, we use InAs/InP heterostructure nanowires to overcome these limitations: first, we use naturally occurring absorption "hot spots" at wave mode maxima within the nanowire to achieve sharp boundaries between heated and unheated subwavelength regions of high and low absorption, allowing us to use global illumination; second, we employ carrier energy-filtering heterostructures to achieve a high Seebeck coefficient that is tunable by heterostructure design. Using these methods, we demonstrate PTE voltages of hundreds of millivolts at room temperature from a globally illuminated nanowire device. Furthermore, we find PTE currents and voltages that change polarity as a function of the wavelength of illumination due to spatial shifting of subwavelength absorption hot spots. These results indicate the feasibility of designing new types of PTE-based photodetectors, photothermoelectrics, and hot-carrier solar cells using nanowires.

  15. Electronic transmission coefficient for outer-sphere electron transfer reactions in solution: A Landau-Zener formalism

    Science.gov (United States)

    Khan, Shahed U. M.; Zhou, Zheng Yu

    1990-12-01

    The Landau-Zener formulation and literature values of electronic transition matrix were utilized to compute the theoretical values of electronic transmission coefficient of several outer-sphere electron transfer reactions in solution. The slopes of the energy surfaces that are needed for the Landau-Zener equation were obtained using both intermediate neglect of differential overlaps (INDO/2) molecular orbital and classical improved average dipole orientation (IADO) methods. Theoretical results of electronic transmission coefficient of electron transfer reaction obtained using values of slopes from INDO/2-MO (molecular orbital) as well as IADO methods are found in close agreement with the quasiexperimental values of electronic transmission coefficient obtained from experimental data of rate constant. These theoretical values of electronic transmission coefficient, as well as those from experimental values of rate constant are found to be less than unity. These results indicate that outer-sphere electron transfer reactions in solution involving aquo and amine complexes of the transition metal ions studied in this work are nonadiabatic in nature. Theoretical results of electronic transmission coefficient obtained using values of slopes from the classical improved average dipole orientation (IADO) method is found in close agreement with those obtained from the quantum chemical INDO/2-MO method and also with those from experimental values of rate constant and hence justifies the validity of the use of the former.

  16. Annular electron energy-loss spectroscopy in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ruben, Gary [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Bosman, Michel [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); D' Alfonso, Adrian J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Okunishi, Eiji; Kondo, Yukihito [JEOL Ltd., 1-2, Musashino 3-chome Akishima, Tokyo 196-8558 (Japan); Allen, Leslie J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2011-11-15

    We study atomic-resolution annular electron energy-loss spectroscopy (AEELS) in scanning transmission electron microscopy (STEM) imaging with experiments and numerical simulations. In this technique the central part of the bright field disk is blocked by a beam stop, forming an annular entry aperture to the spectrometer. The EELS signal thus arises only from electrons scattered inelastically to angles defined by the aperture. It will be shown that this method is more robust than conventional EELS imaging to variations in specimen thickness and can also provide higher spatial resolution. This raises the possibility of lattice resolution imaging of lighter elements or ionization edges previously considered unsuitable for EELS imaging. -- Highlights: Black-Right-Pointing-Pointer We study annular electron energy-loss spectroscopy (AEELS) in STEM. Black-Right-Pointing-Pointer This is more robust to changes in specimen thickness than conventional EELS. Black-Right-Pointing-Pointer AEELS provides higher spatial resolution than conventional EELS. Black-Right-Pointing-Pointer This raises the possibility of lattice resolution imaging of lighter elements.

  17. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Colby, R. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States); Alsem, D.H. [Hummingbird Scientific, Lacey, WA (United States); Liyu, A.; Kabius, B. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-06-15

    Environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ∼20 mbar achievable with a differentially pumped environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. However, the relationship between the pressure at the sample and the pressure drop across the system is not clear for some geometries. We demonstrate a method for measuring the gas pressure at the sample by measuring the ratio of elastic to inelastic scattering and the defocus of the pair of thin windows. This method requires two energy filtered high-resolution TEM images that can be performed during an ongoing experiment, at the region of interest. The approach is demonstrated to measure greater than atmosphere pressures of N{sub 2} gas using a commercially available gas-flow stage. This technique provides a means to ensure reproducible sample pressures between different experiments, and even between very differently designed gas-flow stages. - Highlights: • Method developed for measuring gas pressure within a gas-flow stage in the TEM. • EFTEM and CTF-fitting used to calculate amount and volume of gas. • Requires only a pair of images without leaving region of interest. • Demonstrated for P > 1 atm with a common commercial gas-flow stage.

  18. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Dehghan, Roya; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2011-01-01

    Reduction of 12wt.%Co/0.5wt.%Re/α-Al2O3 Fischer–Tropsch catalyst has been studied in-situ in an environmental transmission electron microscope. Reduction of Co3O4 to metallic cobalt was observed dynamically at 360 °C under 3.4 mbar H2. Structural and morphological changes were observed by high...... resolution transmission electron microscopy and scanning transmission electron microscopy imaging. The cobalt particles were mainly face centred cubic while some hexagonal close packed particles were also found. Reoxidation of the sample upon cooling to room temperature, still under flowing H2, underlines...

  19. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  20. Transmission of electrons through insulating PET foils: Dependence on charge deposition, tilt angle and incident energy

    Energy Technology Data Exchange (ETDEWEB)

    Keerthisinghe, D., E-mail: darshika.keerthisinghe@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Dassanayake, B.S. [Department of Physics, University of Peradeniya, Peradeniya (Sri Lanka); Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Stolterfoht, N. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin (Germany); Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2016-09-01

    Transmission of electrons through insulating polyethylene terephthalate (PET) nanocapillaries was observed as a function of charge deposition, angular and energy dependence. Two samples with capillary diameters 100 and 200 nm and pore densities 5 × 10{sup 8}/cm{sup 2} and 5 × 10{sup 7}/cm{sup 2}, respectively, were studied for incident electron energies of 300, 500 and 800 eV. Transmission and steady state of the electrons were attained after a time delay during which only a few electron counts were observed. The transmission through the capillaries depended on the tilt angle with both elastic and inelastic electrons going through. The guiding ability of electrons was found to increase with the incident energy in contrast to previous measurements in our laboratory for a similar PET foil.

  1. Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope

    National Research Council Canada - National Science Library

    Albina Y. Borisevich; Andrew R. Lupini; Stephen J. Pennycook

    2006-01-01

    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition...

  2. Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2010-01-01

    The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance of such an instr...

  3. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider

    2017-08-15

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2-x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

  4. Accurate determination of the voltage of a transmission electron micro

    Indian Academy of Sciences (India)

    Unknown

    ted disc of CBED patterns are very sensitive to the lattice parameter, and can therefore be used to estimate changes in the ...... J C 1987 Appl. Phys. Lett. 50 574. Service Manual for Philips EM430T TEM 1987 Electronics. (Netherlands: Philips) 9432 060 09001 422. Spence J C H and Zuo J M 1992 Electron microdiffraction.

  5. Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy

    OpenAIRE

    Hermannsd?rfer, Justus; de Jonge, Niels

    2017-01-01

    Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid c...

  6. Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    The oxidation of nickel particles was studied in situ in an environmental transmission electron microscope in 3.2 mbar of O2 between ambient temperature and 600°C. Several different transmission electron microscopy imaging techniques, electron diffraction and electron energy-loss spectroscopy were...... used to study the evolution of the microstructure and the local chemical composition of the particles during oxidation. Our results suggest that built-in field effects control the initial stages of oxidation, with randomly oriented NiO crystallites and internal voids then forming as a result of outward...

  7. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    Science.gov (United States)

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Low-energy electron transmission through high aspect ratio Al O nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.; Víkor, G.

    2009-01-01

    Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined...... appears to influence significantly only the intensity of the elastic transmission. The present results suggest a more complex nature of low-energy electron transport through insulating nanocapillaries than proposed for positive ions....... with respect to the capillary axis. On the other hand, the intensity of elastically transmitted electrons significantly varies with the alteration of electron energy and tilt angle. In addition, we measured an energy distribution of electrons transmitted both in the straightforward direction and at large tilt...

  9. In SITU Transmission Electron Microscopy on Operating Electrochemical CELLS

    DEFF Research Database (Denmark)

    Gualandris, Fabrizio; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    2016-01-01

    Solid oxide cells (SOC) have the potential of playing a significant role in the future efficient energy system scenario. In order to become widely commercially available, an improved performance and durability of the cells has to be achieved [1]. Conventional scanning and transmission SEM and TEM...... have been often used for ex-situ post mortem characterization of SOFCs and SOECs [2,3]. However, in order to get fundamental insight of the microstructural development of SOFC/SOEC during operation conditions in situ studies are necessary [4]....

  10. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  11. The Design and Construction of a Simple Transmission Electron Microscope for Educational Purposes.

    Science.gov (United States)

    Hearsey, Paul K.

    This document presents a model for a simple transmission electron microscope for educational purposes. This microscope could demonstrate thermonic emission, particle acceleration, electron deflection, and flourescence. It is designed to be used in high school science courses, particularly physics, taking into account the size, weight, complexity…

  12. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure was determined and further confirmed by Rietveld refinements of powder X-ray diffraction. HRTEM gave direct imaging of the channels. © 2013 The Royal Society of Chemistry.

  13. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy

    DEFF Research Database (Denmark)

    Hettler, Simon; Kano, Emi; Dries, Manuel

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techni...

  14. A toolkit for the characterization of CCD cameras for transmission electron microscopy

    NARCIS (Netherlands)

    Vulovic, M.; Rieger, B.; Van Vliet, L.J.; Koster, A.J.; Ravelli, R.B.G.

    2009-01-01

    Charge-coupled devices (CCD) are nowadays commonly utilized in transmission electron microscopy (TEM) for applications in life sciences. Direct access to digitized images has revolutionized the use of electron microscopy, sparking developments such as automated collection of tomographic data, focal

  15. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy

    NARCIS (Netherlands)

    Zecevic, J.; Hermannsdorfer, Justus; Schuh, Tobias; de Jong, Krijn P.; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of

  16. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  17. Simulations of the electron cloud buildup and its influence on the microwave transmission measurement

    Science.gov (United States)

    Haas, Oliver Sebastian; Boine-Frankenheim, Oliver; Petrov, Fedor

    2013-11-01

    An electron cloud density in an accelerator can be measured using the Microwave Transmission (MWT) method. The aim of our study is to evaluate the influence of a realistic, nonuniform electron cloud on the MWT. We conduct electron cloud buildup simulations for beam pipe geometries and bunch parameters resembling roughly the conditions in the CERN SPS. For different microwave waveguide modes the phase shift induced by a known electron cloud density is obtained from three different approaches: 3D Particle-In-Cell (PIC) simulation of the electron response, a 2D eigenvalue solver for waveguide modes assuming a dielectric response function for cold electrons, a perturbative method assuming a sufficiently smooth density profile. While several electron cloud parameters, such as temperature, result in minor errors in the determined density, the transversely inhomogeneous density can introduce a large error in the measured electron density. We show that the perturbative approach is sufficient to describe the phase shift under realistic electron cloud conditions. Depending on the geometry of the beam pipe, the external magnetic field configuration and the used waveguide mode, the electron cloud density can be concentrated at the beam pipe or near the beam pipe center, leading to a severe over- or underestimation of the electron density. Electron cloud distributions are very inhomogeneous, especially in dipoles. These inhomogeneities affect the microwave transmission measurement results. Electron density might be over- or underestimated, depending on setup. This can be quantified with several models, e.g. a perturbative approach.

  18. Incident energy and charge deposition dependences of electron transmission through a microsized tapered glass capillary

    Energy Technology Data Exchange (ETDEWEB)

    Wickramarachchi, S.J. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Ikeda, T. [RIKEN Nishina Center for Accelerator Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Dassanayake, B.S. [Department of Physics, Faculty of Science, University of Peradeniya (Sri Lanka); Keerthisinghe, D.; Tanis, J.A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2016-09-01

    An experimental study of electron transmission and guiding through a tapered glass capillary has been performed. Electrons were transmitted for tilt angles up to ∼6.5° and ∼9.5° (laboratory angles) for incident energies of 500 and 1000 eV, respectively. It is found that elastic and inelastic contributions give rise to distinguishable peaks in the transmitted profile. For 500 eV elastic transmission dominates the profile, while for 1000 eV both elastic and inelastic contributions are present. The transmission for both energies was studied as a function of the charge (time) deposition and found to be strongly dependent. Results suggest fundamental differences between 500 and 1000 eV incident electrons. For 500 eV the transmission slowly increases suggesting charge up of the capillary wall, reaching relative stability with infrequent breakdowns for all angles investigated. For 1000 eV for tilt angles near zero degrees the time dependent profile shows oscillations in the transmission, which never reached a stable condition, while for the larger angle investigated the transmission reached near equilibrium. Inelastic processes dominated the transmission for 1000 eV even at very small tilt angles, but was generally elastic (due to Coulomb deflection) for 500 eV even for the largest tilt angle measured.

  19. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    OpenAIRE

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-01-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called ?big-data? methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient ima...

  20. Robotized semiautomatic motorcycle transmission development. Electronic and software design

    OpenAIRE

    Neghină Mihai; Petruse Radu Emanuil; Olteanu Sebastian; Bondrea Ioan; Lobonț Lucian; Stanciu Gabriel

    2017-01-01

    In this paper, we propose an electrical design (implemented on a PCB board) and an accompanying software design for controlling the automatic gear change. The designs complement the mechanical solutions developed in Part 1. The paper also analyses the issues encountered during the intermediate steps of the development of the electronic module, which is expected to be small and adaptable enough to be installed on a motorcycle without changing its ergonomics. The control software runs on the Ar...

  1. Applications of emerging transmission electron microscopy technology in PCD research and diagnosis.

    Science.gov (United States)

    Shoemark, Amelia

    2017-01-01

    Primary Ciliary Dyskinesia (PCD) is a heterogeneous genetic condition characterized by dysfunction of motile cilia. Patients suffer from chronic infection and inflammation of the upper and lower respiratory tract. Diagnosis of PCD is confirmed by identification of a hallmark defect of ciliary ultrastructure or by identification of biallelic pathogenic mutations in a known PCD gene. Since the first description of PCD in 1976, assessment of ciliary ultrastructure by transmission electron microscopy (TEM) has been central to diagnosis and research. Electron tomography is a technique whereby a series of transmission electron micrographs are collected at different angles and reconstructed into a single 3D model of a specimen. Electron tomography provides improved spatial information and resolution compared to a single micrograph. Research by electron tomography has revealed new insight into ciliary ultrastructure and consequently ciliary function at a molecular and cellular level. Gene discovery studies in PCD have utilized electron tomography to define the structural consequences of variants in cilia genes. Modern transmission electron microscopes capable of electron tomography are increasingly being installed in clinical laboratories. This presents the possibility for the use of tomography technique in a diagnostic setting. This review describes the electron tomography technique, the contribution tomography has made to the understanding of basic cilia structure and function and finally the potential of the technique for use in PCD diagnosis.

  2. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    Science.gov (United States)

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  3. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography.

    Science.gov (United States)

    Jesse, S; Chi, M; Belianinov, A; Beekman, C; Kalinin, S V; Borisevich, A Y; Lupini, A R

    2016-05-23

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called "big-data" methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  4. Measurements of electron cloud density in the CERN Super Proton Synchrotron with the microwave transmission method

    CERN Document Server

    Federmann, S; Mahner, E

    2011-01-01

    The electron cloud effect can pose severe performance limitations in high-energy particle accelerators as the CERN Super Proton Synchrotron (SPS). Mitigation techniques such as vacuum chamber thin film coatings with low secondary electron yields (SEY < 1.3) aim to reduce or even suppress this effect. The microwave transmission method, developed and first applied in 2003 at the SPS, measures the integrated electron cloud density over a long section of an accelerator. This paper summarizes the theory and measurement principle and describes the new SPS microwave transmission setup used to study the electron cloud mitigation of amorphous carbon coated SPS dipole vacuum chambers. Comparative results of carbon coated and bare stainless steel dipole vacuum chambers are given for the beam with nominal LHC 25 ns bunch-to-bunch spacing in the SPS and the electron cloud density is derived.

  5. High-Resolution Transmission Electron Microscopy - and Associated Techniques

    Science.gov (United States)

    Buseck, Peter; Cowley, John; Eyring, Leroy

    1989-02-01

    This book provides an introduction to the fundamental concepts, techniques, and methods used for electron microscopy at high resolution in space, energy, and even in time. It delineates the theory of elastic scattering, which is most useful for spectroscopic and chemical analyses. There are also discussions of the theory and practice of image calculations, and applications of HRTEM to the study of solid surfaces, highly disordered materials, solid state chemistry, mineralogy, semiconductors and metals. Contributors include J. Cowley, J. Spence, P. Buseck, P. Self, and M.A. O'Keefe. Compiled by experts in the fields of geology, physics and chemistry, this comprehensive text will be the standard reference for years to come.

  6. In-Situ Transmission Electron Microscopy on Operating Electrochemical Cells

    DEFF Research Database (Denmark)

    Gualandris, Fabrizio; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    with animage corrector and a differential pumping system.A symmetric cell was prepared by depositing a cell consisting of three thin films on a strontium titanate (STO)single crystal substrate by pulsed laser deposition (PLD). Lanthanum strontium cobaltite La0.6Sr0.4CoO3-δ (LSC)was chosen as electrode....... Comparing the two figures, the cell exposed tooxygen showed structural changes in the LSC thin film in comparison with the sample heated in vacuum. Thesechanges refer to the formation of grains as is confirmed by electron diffraction patterns....... have been often used for ex-situpost mortem characterization of SOFCs and SOECs [2,3]. However, in order to get fundamental insight of themicrostructural development of SOFC/SOEC during operation conditions in-situ studies are necessary [4]. Thedevelopment of advanced TEM chips and holders makes...

  7. Robotized semiautomatic motorcycle transmission development. Electronic and software design

    Directory of Open Access Journals (Sweden)

    Neghină Mihai

    2017-01-01

    Full Text Available In this paper, we propose an electrical design (implemented on a PCB board and an accompanying software design for controlling the automatic gear change. The designs complement the mechanical solutions developed in Part 1. The paper also analyses the issues encountered during the intermediate steps of the development of the electronic module, which is expected to be small and adaptable enough to be installed on a motorcycle without changing its ergonomics. The control software runs on the Arduino Nano board and is built as a state machine with one idle state, five active states that cover different stages of the gear change and one error state for preventing malfunctions in case of an unexpected event. The sketch uses 5,760 bytes (or 18% of program storage space and 706 bytes (or 34% of the dynamic memory.

  8. Proton Transmitting Energy Spectra and Transmission Electron Microscope Examinations of Biological Samples

    Science.gov (United States)

    Tan, Chun-yu; Xia, Yue-yuan; Zhang, Jian-hua; Mu, Yu-guang; Wang, Rui-jin; Liu, Ji-tian; Liu, Xiang-dong; Yu, Zeng-liang

    1999-02-01

    Transmission energy spectra of 530 keV H+ ion penetrating 140 μm thick seed coat of maize and fruit peel of grape with thickness of 100 μm were measured. The result indicates that these thick biological targets, as seen by the penetrating ions, are inhomogeneous, and there are open "channel like" paths along which the incident ions can transmit the targets easily. While most of the incident ions are stopped in the targets, some of the transmitting ions only lose a small fraction of their initial incident energy. The transmission energy spectra show a pure electronic stopping feature. Transmission electron microscope (TEM) micrographes taken from the samples of seed coat of maize and fruit peel of tomato with thickness of 60 μm indicate that 150 keV electron beam from the TEM can penetrate the thick samples to give very good images with clear contrasts.

  9. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  10. Unfolding linac photon spectra and incident electron energies from experimental transmission data, with direct independent validation.

    Science.gov (United States)

    Ali, E S M; McEwen, M R; Rogers, D W O

    2012-11-01

    In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Council Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be ∼3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 ± 0.1, 9.3 ± 0.1, and 19.3 ± 0.2 MeV, respectively. The unfolded spectra for the clinical linac agree with the

  11. Removal of Vesicle Structures From Transmission Electron Microscope Images

    Science.gov (United States)

    Jensen, Katrine Hommelhoff; Sigworth, Fred J.; Brandt, Sami Sebastian

    2016-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2d statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures. PMID:26642456

  12. Cryogenic transmission electron microscopy nanostructural study of shed microparticles.

    Directory of Open Access Journals (Sweden)

    Liron Issman

    Full Text Available Microparticles (MPs are sub-micron membrane vesicles (100-1000 nm shed from normal and pathologic cells due to stimulation or apoptosis. MPs can be found in the peripheral blood circulation of healthy individuals, whereas elevated concentrations are found in pregnancy and in a variety of diseases. Also, MPs participate in physiological processes, e.g., coagulation, inflammation, and angiogenesis. Since their clinical properties are important, we have developed a new methodology based on nano-imaging that provides significant new data on MPs nanostructure, their composition and function. We are among the first to characterize by direct-imaging cryogenic transmitting electron microscopy (cryo-TEM the near-to-native nanostructure of MP systems isolated from different cell types and stimulation procedures. We found that there are no major differences between the MP systems we have studied, as most particles were spherical, with diameters from 200 to 400 nm. However, each MP population is very heterogeneous, showing diverse morphologies. We investigated by cryo-TEM the effects of standard techniques used to isolate and store MPs, and found that either high-g centrifugation of MPs for isolation purposes, or slow freezing to -80 °C for storage introduce morphological artifacts, which can influence MP nanostructure, and thus affect the efficiency of these particles as future diagnostic tools.

  13. Transmission properties of Dirac electrons through Cantor monolayer graphene superlattices

    Directory of Open Access Journals (Sweden)

    R. Rodríguez-González

    2014-01-01

    Full Text Available En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de los electrones de Dirac a través de superredes aperiodicas en grafeno. Consideramos una hoja de grafeno depositada encima de bloques de sustratos de Óxido de Silicio (SiO2 y Carburo de Silicio (SiC, en los cuales aplicamos la serie de Cantor. Calculamos la transmitancia para diferentes parámetros fundamentales tales como: ancho de partida, energía de incidencia, ángulo de incidencia y número de generación de la serie de Cantor. En este caso, la transmitancia como función de la energía presenta rasgos autosimilares al variar el número de generación. También computamos la distribución angular de la transmitancia para energías fijas econtrando un patrón autosimilar entre generaciones. Por último, calculamos los factores de escala para algunos espectros de la transmitancia, los cuales efectivamente muestran escalabilidad.

  14. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument

    Energy Technology Data Exchange (ETDEWEB)

    Geelen, Daniël, E-mail: geelen@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Thete, Aniket [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Schaff, Oliver; Kaiser, Alexander [SPECS GmbH, Voltastrasse 5, D-13355 Berlin (Germany); Molen, Sense Jan van der [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Tromp, Rudolf [IBM T.J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2015-12-15

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0–40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. - Highlights: • We present a new way of performing low energy transmission electron microscopy in an aberration corrected LEEM/PEEM instrument. • We show a proof of principle where we measure transmitted electrons through a suspended graphene monolayer with a preliminary setup. • We present an improved setup design that provides better control of the incident electron beam.

  15. Oral leukoplakia: Transmission electron microscopic correlation with clinical types and light microscopy

    Science.gov (United States)

    Tamgadge, Sandhya Avinash; Ganvir, Sindhu Milind; Hazarey, Vinay Krishnarao; Tamgadge, Avinash

    2012-01-01

    Background: Leukoplakia, is a precancerous lesion that is most commonly encountered in the oral cavity. The grade of dysplasia is presumed to be the most important indicator of malignant potential. There are many promising aspects in advanced methods for the evaluation of oral precancer and cancer. Among these methods, electron microscopic examination predicts the true biologic potential more accurately than conventional histology and has some success in the early detection of potentially malignant lesions. It has been reported in the literature that there is some correlation between clinical, histopathological, and transmission electron microscopic features. Materials and Methods: In this cohort study (prospective research), from the total of 9 subjects, 3 had homogenous leukoplakia, 3 had ulcerative type of oral leukoplakia, and 3 had nodular type of oral leukoplakia. Two patients were selected as control patients. Transmission electron microscopic examination was carried for all the cases and controls. All the findings were correlated with clinical features and light microscopy. Results: Clinically and histologically, mild leukoplakia showed break in basement membrane, which can only be observed under transmission electron microscope (TEM). Additional dysplastic features were observed under transmission electron microscope, which are indicative of neoplastic process. Conclusions: Thus, it is finally concluded that nodular leukoplakia seems to be the most severe clinical type of leukoplakia showing highest risk of malignant transformation. Homogenous leukoplakia might show break in basement membrane under TEM. PMID:23814570

  16. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy

    Science.gov (United States)

    Yuan, Yifei; Amine, Khalil; Lu, Jun; Shahbazian-Yassar, Reza

    2017-01-01

    An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electrochemical reactions is one of the most significant breakthroughs poised to enable radical shift in our knowledge on how materials behave in the electrochemical environment. This review, therefore, summarizes the scientific discoveries enabled by in situ transmission electron microscopy, and specifically emphasizes the applicability of this technique to address the critical challenges in the rechargeable ion battery electrodes, electrolyte and their interfaces. New electrochemical systems such as lithium–oxygen, lithium–sulfur and sodium ion batteries are included, considering the rapidly increasing application of in situ transmission electron microscopy in these areas. A systematic comparison between lithium ion-based electrochemistry and sodium ion-based electrochemistry is also given in terms of their thermodynamic and kinetic differences. The effect of the electron beam on the validity of in situ observation is also covered. This review concludes by providing a renewed perspective for the future directions of in situ transmission electron microscopy in rechargeable ion batteries.

  17. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Z., E-mail: zhongbo.lee@uni-ulm.de; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-10-15

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions.

  18. Choice of operating voltage for a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Egerton, R.F., E-mail: regerton@ualberta.ca

    2014-10-15

    An accelerating voltage of 100–300 kV remains a good choice for the majority of TEM or STEM specimens, avoiding the expense of high-voltage microscopy but providing the possibility of atomic resolution even in the absence of lens-aberration correction. For specimens thicker than a few tens of nm, the image intensity and scattering contrast are likely to be higher than at lower voltage, as is the visibility of ionization edges below 1000 eV (as required for EELS elemental analysis). In thick (>100 nm) specimens, higher voltage ensures less beam broadening and better spatial resolution for STEM imaging and EDX spectroscopy. Low-voltage (e.g. 30 kV) TEM or STEM is attractive for a very thin (e.g. 10 nm) specimen, as it provides higher scattering contrast and fewer problems for valence-excitation EELS. Specimens that are immune to radiolysis suffer knock-on damage at high current densities, and this form of radiation damage can be reduced or avoided by choosing a low accelerating voltage. Low-voltage STEM with an aberration-corrected objective lens (together with a high-angle dark-field detector and/or EELS) offers atomic resolution and elemental identification from very thin specimens. Conventional TEM can provide atomic resolution in low-voltage phase-contrast images but requires correction of chromatic aberration and preferably an electron-beam monochromator. Many non-conducting (e.g. organic) specimens damage easily by radiolysis and radiation damage then determines the TEM image resolution. For bright-field scattering contrast, low kV can provide slightly better dose-limited resolution if the specimen is very thin (a few nm) but considerably better resolution is possible from a thicker specimen, for which higher kV is required. Use of a phase plate in a conventional TEM offers the most dose-efficient way of achieving atomic resolution from beam-sensitive specimens. - Highlights: • 100–300 kV accelerating voltage is suitable for TEM specimens of typical

  19. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  20. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    Science.gov (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  1. Transmission Electron Microscopy of a CMSX-4 Ni-Base Superalloy Produced by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Alireza B. Parsa

    2016-10-01

    Full Text Available In this work, the microstructures of superalloy specimens produced using selective electron beam melting additive manufacturing were characterized. The materials were produced using a CMSX-4 powder. Two selective electron beam melting processing strategies, which result in higher and lower effective cooling rates, are described. Orientation imaging microscopy, scanning transmission electron microscopy and conventional high resolution transmission electron microscopy are used to investigate the microstructures. Our results suggest that selective electron beam melting processing results in near equilibrium microstructures, as far as γ′ volume fractions, the formation of small amounts of TCP phases and the partitioning behavior of the alloy elements are concerned. As expected, higher cooling rates result in smaller dendrite spacings, which are two orders of magnitude smaller than observed during conventional single crystal casting. During processing, columnar grains grow in <100> directions, which are rotated with respect to each other. There are coarse γ/γ′ microstructures in high angle boundary regions. Dislocation networks form low angle boundaries. A striking feature of the as processed selective electron beam melting specimens is their high dislocation density. From a fundamental point of view, this opens new possibilities for the investigation of elementary dislocation processes which accompany solidification.

  2. Simulations of the electron cloud buildup and its influence on the microwave transmission measurement

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Oliver Sebastian, E-mail: o.haas@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Boine-Frankenheim, Oliver [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Schlossgartenstraße 8, 64289 Darmstadt (Germany); Petrov, Fedor [Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Schlossgartenstraße 8, 64289 Darmstadt (Germany)

    2013-11-21

    An electron cloud density in an accelerator can be measured using the Microwave Transmission (MWT) method. The aim of our study is to evaluate the influence of a realistic, nonuniform electron cloud on the MWT. We conduct electron cloud buildup simulations for beam pipe geometries and bunch parameters resembling roughly the conditions in the CERN SPS. For different microwave waveguide modes the phase shift induced by a known electron cloud density is obtained from three different approaches: 3D Particle-In-Cell (PIC) simulation of the electron response, a 2D eigenvalue solver for waveguide modes assuming a dielectric response function for cold electrons, a perturbative method assuming a sufficiently smooth density profile. While several electron cloud parameters, such as temperature, result in minor errors in the determined density, the transversely inhomogeneous density can introduce a large error in the measured electron density. We show that the perturbative approach is sufficient to describe the phase shift under realistic electron cloud conditions. Depending on the geometry of the beam pipe, the external magnetic field configuration and the used waveguide mode, the electron cloud density can be concentrated at the beam pipe or near the beam pipe center, leading to a severe over- or underestimation of the electron density. -- Author-Highlights: •Electron cloud distributions are very inhomogeneous, especially in dipoles. •These inhomogeneities affect the microwave transmission measurement results. •Electron density might be over- or underestimated, depending on setup. •This can be quantified with several models, e.g. a perturbative approach.

  3. Transmission of electrons in a finite superlattice with a Pascal's Triangle profile

    Science.gov (United States)

    Contreras-Solorio, D. A.; Ortiz, Carlos; Saldaña, X.; López-Cruz, E.

    2005-08-01

    We calculate the electronic transmission coefficient as a function of the incident electron energy in a finite semiconductor superlattice where the width of the barriers is modulated by a numerical sequence taken from the Pascal's Triangle. This sequence is formed by the quantity of odd numbers in each of the Triangles rows and has the pattern 1-2-2-4-2-4-4-8- The sequence has the property of self-similarity. Our superlattice is based in AlAs and GaAs. The transmission spectrum is intermediate between that produced by a periodic finite superlattice and that produced by a disordered one. Moreover the self-similarity of the Pascals structure is reflected in a weak similarity in its transmission spectrum.

  4. Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2013-01-01

    We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal structure a...

  5. Structural dynamics of gas-phase molybdenum nanoclusters : A transmission electron microscopy study

    NARCIS (Netherlands)

    Vystavel, T; Koch, SA; Palasantzas, G; De Hosson, JTM

    2005-01-01

    In this paper we study structural aspects of molybdenum clusters by transmission electron microscopy. The deposited clusters with sizes 4 nm or larger show a body-centered crystal (bcc) structure. The clusters are self-assembled from smaller structural units and form cuboids with a typical size of 4

  6. Cryo-transmission electron microscopy of a superstructure of fluid dioleoylphosphatidylcholine (DOPC) membranes

    DEFF Research Database (Denmark)

    Klösgen, B; Helfrich, W

    1997-01-01

    Using cryo-transmission electron microscopy, we have obtained abundant and reproducible evidence for a superstructure of dioleoylphosphatidylcholine (DOPC) bilayers. Dispersions of vesicles were prepared by gentle shaking of a 2% suspension of DOPC in water followed in part by extrusion through a...

  7. Current status and future directions for in situ transmission electron microscopy

    DEFF Research Database (Denmark)

    Taheri, Mitra L.; Stach, Eric A.; Arslan, Ilke

    2016-01-01

    This review article discusses the current and future possibilities for the application of in situ transmission electron microscopy to reveal synthesis pathways and functional mechanisms in complex and nanoscale materials. The findings of a group of scientists, representing academia, government labs...

  8. Solution Hardening in Aluminium-Magnesium Alloys : A Nuclear Magnetic Resonance and Transmission Electron Microscopic Study

    NARCIS (Netherlands)

    Schlagowski, U.; Kanert, O.; Hosson, J.Th.M. De; Boom, G.

    1988-01-01

    Pulsed nuclear magnetic resonance techniques as well as transmission electron microscopy have been applied to study dislocation motion in aluminium magnesium alloys (0.2-1.6 at.% Mg). The spin lattice relaxation rate in the rotating frame of 27Al has been been measured at 77 K as a function of

  9. Quantitative analysis of structural inhomogeneity in nanomaterials using transmission electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Klinger, Miloslav; Polívka, Leoš; Jäger, Aleš; Tyunina, Marina

    2016-01-01

    Roč. 49, Jun (2016), 762-770 ISSN 1600-5767 R&D Projects: GA ČR GBP108/12/G043; GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : transmission electron microscopy * structural inhomogeneity * lattice parameters * image processing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.495, year: 2016

  10. Thermal stability of catalytically grown multi-walled carbon nanotubes observed in transmission electron microscopy

    DEFF Research Database (Denmark)

    Wang, Cheng-Yu; Liu, Chuan-Pu; Boothroyd, Chris

    2009-01-01

    The thermal stability of multi-walled carbon nanotubes (MWCNTs) was assessed in situ by transmission electron microscopy. Upon heating, Ni catalysts in MWC-NTs containing bamboo structures shrank from the tail due to evaporation, leading to additional bamboo formation and tube elongation at 800...

  11. Quantifying the growth of individual graphene layers by in situ environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Kling, Jens; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    The growth dynamics of layered carbon is studied by means of in situ transmission electron microscopy in order to obtain a deeper insight into the growth by chemical vapor deposition, which at present is the technique of choice for growing layered carbon. In situ growth of layered carbon structures...

  12. In situ light spectroscopy in the environmental transmission electron microscope (ETEM)

    DEFF Research Database (Denmark)

    Cavalca, Filippo; Langhammer, C.; Pedersen, Thomas

    2012-01-01

    with several in situ TEM techniques including environmental transmission electron microscopy (ETEM) [3,4], in situ photo activation and localized surface plasmon resonance (LSPR) spectroscopy [5,6]. ETEM is a well-established technique for material analysis. In this work we implement indirect nanoplasmonic...

  13. Precise and unbiased estimation of astigmatism and defocus in transmission electron microscopy

    NARCIS (Netherlands)

    Vulovic, M.; Franken, E.; Ravelli, R.B.G.; Van Vliet, L.J.; Rieger, B.

    2012-01-01

    Defocus and twofold astigmatism are the key parameters governing the contrast transfer function (CTF) in transmission electron microscopy (TEM) of weak phase objects. We present a new algorithm to estimate these aberrations and the associated uncertainties. Tests show very good agreement between

  14. In-situ transmission electron microscopy : on moving dislocations and mobile grain boundaries

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Soer, W.

    This paper delineates the possibilities of utilizing in situ transmission electron microscopy to unravel dislocation-g rain boundary interactions. In situ nanoindentation experiments have been conducted in TEM on ultrafine-grained Al and Al-Mg films with varying Mg contents. The observed propagation

  15. 21 CFR 1311.05 - Standards for technologies for electronic transmission of orders.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Standards for technologies for electronic transmission of orders. 1311.05 Section 1311.05 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF... criterion includes the ability of a third party to verify the origin of the document. (3) Message integrity...

  16. Transmission electron microscopy studies of interfaces in multi-component systems

    NARCIS (Netherlands)

    Mogck, Stefan

    2004-01-01

    In order to understand the bonding between metals and oxides, interfaces were studied with high-resolution transmission electron microscoy, analytical TEM' in-situ experiments down to an atomic scale and first-principles Density Functional Theory (DFT) calculations. It was possible to combine HRTEM

  17. Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticles

    DEFF Research Database (Denmark)

    Madsen, Jacob; Liu, Pei; Wagner, Jakob Birkedal

    2017-01-01

    Strain analysis from high-resolution transmission electron microscopy (HRTEM) images offers a convenient tool for measuring strain in materials at the atomic scale. In this paper we present a theoretical study of the precision and accuracy of surface strain measurements directly from aberration-c...

  18. In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy

    NARCIS (Netherlands)

    Heersche, H.B.; Lientschnig, G.; O'Neill, K.; Van der Zant, H.S.J.; Zandbergen, H.W.

    2007-01-01

    The authors imaged electromigration-induced nanogap formation in situ by transmission electron microscopy. Real-time video recordings show that edge voids form near the cathode side. The polycrystalline gold wires narrow down until a single-grain boundary intersects the constriction along which the

  19. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  20. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  1. Computer Archiving and Image Enhancement of Diagnostic Electron Micrographs Using Scanning Transmission Electron Microscope as Real-Time Digitizer

    Science.gov (United States)

    Okagaki, T.; Jones, M.H.; Clark, B.A.; Pan, T.; Ferro, J.M.; Hsing, R.; Tzou, K.H.

    1984-01-01

    Diagnostic electron micrographs were digitized in real time using a scanning transmission electron microscope (STEM) controlled by a devoted front end processor at a resolution of 1K × 1K × 8. Various methods of image enhancement produced satisfactory results. From our experience, a faster front end processor with a larger memory size and 2K × 2K or 4K × 4K spatial resolution of an image are desirable. In order to facilitate storage and retrieval of an image archive, efficient data compression is necessary. ImagesFig. 2Fig. 3

  2. The importance of transmission electron microscopy analysis of spermatozoa: Diagnostic applications and basic research.

    Science.gov (United States)

    Moretti, Elena; Sutera, Gaetano; Collodel, Giulia

    2016-06-01

    This review is aimed at discussing the role of ultrastructural studies on human spermatozoa and evaluating transmission electron microscopy as a diagnostic tool that can complete andrology protocols. It is clear that morphological sperm defects may explain decreased fertilizing potential and acquire particular value in the field of male infertility. Electron microscopy is the best method to identify systematic or monomorphic and non-systematic or polymorphic sperm defects. The systematic defects are characterized by a particular anomaly that affects the vast majority of spermatozoa in a semen sample, whereas a heterogeneous combination of head and tail defects found in variable percentages are typically non-systematic or polymorphic sperm defects. A correct diagnosis of these specific sperm alterations is important for choosing the male infertility's therapy and for deciding to turn to assisted reproduction techniques. Transmission electron microscopy (TEM) also represents a valuable method to explore the in vitro effects of different compounds (for example drugs with potential spermicidal activity) on the morphology of human spermatozoa. Finally, TEM used in combination with immunohistochemical techniques, integrates structural and functional aspects that provide a wide horizon in the understanding of sperm physiology and pathology. transmission electron microscopy: TEM; World Health Organization: WHO; light microscopy: LM; motile sperm organelle morphology examination: MSOME; intracytoplasmic morphologically selected sperm injection: IMSI; intracytoplasmic sperm injection: ICSI; dysplasia of fibrous sheath: DFS; primary ciliary dyskinesia: PCD; outer dense fibers: ODF; assisted reproduction technologies: ART; scanning electron microscopy: SEM; polyvinylpirrolidone: PVP; tert-butylhydroperoxide: TBHP.

  3. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  4. Note on in situ (scanning) transmission electron microscopy study of liquid samples.

    Science.gov (United States)

    Jiang, Nan

    2017-08-01

    Liquid cell (scanning) transmission electron microscopy has been developed rapidly, using amorphous SiNx membranes as electron transparent windows. The current interpretations of electron beam effects are mainly based on radiolytic processes. In this note, additional effects of the electric field due to electron-beam irradiation are discussed. The electric field can be produced by the charge accumulation due to the emission of secondary and Auger electrons. Besides various beam-induced phenomena, such as nanoparticle precipitation and gas bubble formation and motion, two other effects need to be considered; one is the change of Gibbs free energy of nucleation and the other is the violation of Brownian motion due to ion drifting driven by the electric field. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Weak-beam scanning transmission electron microscopy for quantitative dislocation density measurement in steels.

    Science.gov (United States)

    Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi

    2017-04-01

    To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 1020 neutrons cm-2. The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 1022 m-3) and dislocation density (7.8 × 1013 m m-3) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Characterization of Li-rich layered oxides by using transmission electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Zhao

    2017-07-01

    Full Text Available Lithium-rich layered oxides (LrLOs deliver extremely high specific capacities and are considered to be promising candidates for electric vehicle and smart grid applications. However, the application of LrLOs needs further understanding of the structural complexity and dynamic evolution of monoclinic and rhombohedral phases, in order to overcome the issues including voltage decay, poor rate capability, initial irreversible capacity loss and etc. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, have fueled rapid progress in the understanding of the mechanism of such issues. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, migration of transition metal, and the activation of oxygen of LrLOs are then explored in detail, with a particular focus on the mechanism of voltage decay. Keywords: Lithium-ion battery, Transmission electron microscope, Lithium-rich layered oxide, Cathode material

  7. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Ai Leen, E-mail: alkoh@stanford.edu [Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305 (United States); Sinclair, Robert [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2017-05-15

    In this work, we examine how the imaging electron beam can induce damage in carbon nanotubes (CNTs) at varying oxygen gas pressures and electron dose rates using environmental transmission electron microscopy (ETEM). Our studies show that there is a threshold cumulative electron dose which brings about damage in CNTs in oxygen – through removal of their graphitic walls – which is dependent on O{sub 2} pressure, with a 4–5 fold decrease in total electron dose per decade increase at a lower pressure range (10{sup −6} to 10{sup −5} mbar) and approximately 1.3 –fold decrease per decade increase at a higher pressure range (10{sup −3} to 10{sup 0} mbar). However, at a given pressure, damage in CNTs was found to occur even at the lowest dose rate utilized, suggesting the absence of a lower limit for the latter parameter. This study provides guidelines on the cumulative dose required to damage nanotubes in the 10{sup −7} mbar to 10{sup 0} mbar pressure regimes, and discusses the role of electron dose rate and total electron dose on beam-induced CNT degradation experiments. - Highlights: • The electron beam ionizes gas molecules in ETEM and affects experimental outcomes. • Beam-induced damage in CNTs occurs at varying O{sub 2} pressures and electron dose rates. • There is a threshold cumulative dose to damage CNTs which depends on O{sub 2} pressure. • At a given pressure, CNT damage occurs even at the electron dose rate utilized.

  8. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy.

    Science.gov (United States)

    Hettler, Simon; Kano, Emi; Dries, Manuel; Gerthsen, Dagmar; Pfaffmann, Lukas; Bruns, Michael; Beleggia, Marco; Malac, Marek

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techniques and single-layer graphene were studied. Clean thin films at moderate temperatures show small negative charging while thin films kept at an elevated temperature are stable and not prone to beam-generated charging. The charging is attributed to electron-stimulated desorption (ESD) of chemisorbed water molecules from the thin-film surfaces and an accompanying change of work function. The ESD interpretation is supported by experimental results obtained by electron-energy loss spectroscopy, hole-free phase plate imaging, secondary electron detection and x-ray photoelectron spectroscopy as well as simulations of the electrostatic potential distribution. The described ESD-based model explains previous experimental findings and is of general interest to any phase-related technique in a transmission electron microscope. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Synergy between transmission electron microscopy and powder diffraction: application to modulated structures.

    Science.gov (United States)

    Batuk, Dmitry; Batuk, Maria; Abakumov, Artem M; Hadermann, Joke

    2015-04-01

    The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).

  10. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    Science.gov (United States)

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  11. Applications of aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy to thin oxide films and interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Varela del Arco, Maria [ORNL; Gazquez Alabart, Jaume [ORNL; Lupini, Andrew R [ORNL; Luck, Julia T [ORNL; Torija, Maria [University of Minnesota; Sharma, M [University of Minnesota; Leighton, chris [University of Minnesota; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Murfitt, Matt [Nion Co; Dellby, Niklas [ORNL; Krivanek, Ondrej [ORNL; Pennycook, Stephen J [ORNL

    2010-01-01

    Aberration correction in the scanning transmission electron microscope allows spatial resolutions of the order of one ngstr m to be routinely achieved. When combined with electron energy loss spectroscopy, it is possible to simultaneously map the structure, the chemistry and even the electronic properties of materials in one single experiment. Here we will apply these techniques to the characterization of thin films and interfaces based on complex oxides with the perovskite structure. The relatively large lattice parameter of these materials combined with the fact that most of them have absorption edges within the reach of the spectrometer optics makes these materials ideal for these experiments. We will show how it is possible to map the chemistry of interfaces atomic plane by atomic plane, including light element imaging such as O. Applications to cobaltite and titanate thin films will be described.

  12. Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Makoto, E-mail: kuwahara@esi.nagoya-u.ac.jp; Saitoh, Koh; Tanaka, Nobuo [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Kusunoki, Soichiro; Nambo, Yoshito; Ujihara, Toru; Asano, Hidefumi [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Jin, Xiuguang [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Takeda, Yoshikazu [Aichi Synchrotron Radiation Center, Seto 489-0965 (Japan); Nagoya Science Industry Institute, Nagoya 460-0008 (Japan)

    2014-11-10

    The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 10{sup 7 }A cm{sup −2 }sr{sup −1} for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 10{sup 8 }A cm{sup −2 }sr{sup −1} for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10{sup −5 }rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had a high degeneracy of electron wavepacket of 4 × 10{sup −6}. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect.

  13. Energy-independent total quantum transmission of electrons through nanodevices with correlated disorder

    Science.gov (United States)

    Novotny, M. A.

    2014-10-01

    In nanostructures with no appreciable scattering, electrons propagate ballistically, and hence have energy-independent total quantum transmission. For an incoming electron of energy E, the probability T (E) of transmission is obtained from the solution of the time-independent Schrödinger equation. Ballistic transport hence corresponds to T (E)=1. We show that there is a wide class of nanostructures with correlated disorder that have T (E)=1 for all propagating modes, even though they can have strong scattering. We call these nanostructures quantum dragons. An exact mathematical mapping for quantum transmission valid for a large class of atomic arrangements is presented within the single-band tight-binding model. Quantum transmission through a nanostructure is exactly mapped onto quantum transmission through a one-dimensional chain. The mapping is applied to carbon nanotubes in the armchair and zigzag configurations, Bethe lattices, conjoined Bethe lattices, Bethe lattices with hopping within each ring, and tubes formed from rectangular and orthorhombic lattices. The mapping shows that tuning tight-binding parameters to particular correlated values gives T (E)=1 for all the systems studied. A quantum dragon has the same electrical conductivity as a ballistic nanodevice, namely, in a four-terminal measurement the electrical resistance is zero, while in a two-terminal measurement for the single-channel case, the electrical conductivity is equal to the conductance quantum G0=2e2/h, where h is Planck's constant and e the electron charge. We find T (E)=1 is ubiquitous but occurs only on particular surfaces in the tight-binding parameter space.

  14. Depth sectioning with the aberration-corrected scanning transmission electron microscope

    Science.gov (United States)

    Borisevich, Albina Y.; Lupini, Andrew R.; Pennycook, Stephen J.

    2006-01-01

    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition brings depth resolution at the nanometer scale. Aberration correction therefore opens up the possibility of 3D imaging by optical sectioning. Here we develop a definition for the depth resolution for scanning transmission electron microscope depth sectioning and present initial results from this method. Objects such as catalytic metal clusters and single atoms on various support materials are imaged in three dimensions with a resolution of several nanometers. Effective focal depth is determined by statistical analysis and the contributing factors are discussed. Finally, current challenges and future capabilities available through new instruments are discussed. PMID:16492746

  15. Annular dark-field scanning transmission electron microscopy (ADF-STEM) tomography of polymer systems.

    Science.gov (United States)

    Lu, Kangbo; Sourty, Erwan; Loos, Joachim

    2010-08-01

    We have utilized bright-field conventional transmission electron microscopy tomography and annular dark-field scanning transmission electron microscopy (ADF-STEM) tomography to characterize a well-defined carbon black (CB)-filled polymer nanocomposite with known CB volume concentration. For both imaging methods, contrast can be generated between the CB and the surrounding polymer matrix. The involved contrast mechanisms, in particular for ADF-STEM, will be discussed in detail. The obtained volume reconstructions were analysed and the CB volume concentrations were carefully determined from the reconstructed data. For both imaging modes, the measured CB volume concentrations are substantially different and only quantification based on the ADF-STEM data revealed about the same value as the known CB loading. Moreover, when applying low-convergence angles for imaging ADF-STEM tomography, data can be obtained of micrometre-thick samples.

  16. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials.

    Science.gov (United States)

    Zhang, Lina; Zhang, Haoxu; Zhou, Ruifeng; Chen, Zhuo; Li, Qunqing; Fan, Shoushan; Ge, Guanglu; Liu, Renxiao; Jiang, Kaili

    2011-09-23

    A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.

  17. Improving fabrication and application of Zach phase plates for phase-contrast transmission electron microscopy.

    Science.gov (United States)

    Hettler, Simon; Gamm, Björn; Dries, Manuel; Frindt, Nicole; Schröder, Rasmus R; Gerthsen, Dagmar

    2012-10-01

    Zach phase plates (PPs) are promising devices to enhance phase contrast in transmission electron microscopy. The Zach PP shifts the phase of the zero-order beam by a strongly localized inhomogeneous electrostatic potential in the back focal plane of the objective lens. We present substantial improvements of the Zach PP, which overcome previous limitations. The implementation of a microstructured heating device significantly reduces contamination and charging of the PP structure and extends its lifetime. An improved production process allows fabricating PPs with reduced dimensions resulting in lower cut-on frequencies as revealed by simulations of the electrostatic potential. Phase contrast with inversion of PbSe nanoparticles is demonstrated in a standard transmission electron microscope with LaB6 cathode by applying different voltages.

  18. A nanocrystalline Hilbert phase-plate for phase-contrast transmission electron microscopy.

    Science.gov (United States)

    Dries, M; Hettler, S; Gamm, B; Müller, E; Send, W; Müller, K; Rosenauer, A; Gerthsen, D

    2014-04-01

    Thin-film-based phase-plates are applied to enhance the contrast of weak-phase objects in transmission electron microscopy. In this work, metal-film-based phase-plates are considered to reduce contamination and electrostatic charging, which up to now limit the application of phase-plates fabricated from amorphous C-films. Their crystalline structure requires a model for the simulation of the effect of crystallinity on the phase-plate properties and the image formation process. The model established in this work is verified by experimental results obtained by the application of a textured nanocrystalline Au-film-based Hilbert phase-plate. Based on the model, it is shown that monocrystalline and textured nanocrystalline phase-plate microstructures of appropriate thickness and crystalline orientation can be a promising approach for phase-contrast transmission electron microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Transmission Electron Microscopy Characterization of Early Pre-Transition Oxides Formed on ZIRLO{sup TM}

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hoyeon; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of); Kim, Taeho; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-12-15

    Corrosion of zirconium fuel cladding is known to limit the lifetime and reloading cycles of fuel in nuclear reactors. Oxide layers formed on ZIRLOTM cladding samples, after immersion for 300-hour and 50-day in a simulated primary water chemistry condition (360 .deg. C and 20 MPa), were analyzed by using the scanning transmission electron microscopy (STEM), in-situ transmission electron microscopy (in-situ TEM) with the focused ion beam (FIB) technique, and X-ray diffraction (XRD). Both samples (immersion for 300 hours and 50 days) revealed the presence of the ZrO sub-oxide phase at the metal/oxide interface and columnar grains developed perpendicularly to the metal/oxide interface. Voids and micro-cracks were also detected near the water/oxide interface, while relatively large lateral cracks were found just above the less advanced metal/oxide interface. Equiaxed grains were mainly observed near the water/oxide interface.

  20. Processing and characterization of canine mixed mammary tumor using transmission electron microscopy.

    Science.gov (United States)

    Audrey, Beltrán; Alexis, Debut; Andrea, Vaca; Julio, Ortiz; Freddy, Proaño-Pérez

    2017-11-01

    Canine mammary gland tumors represent the second most frequent type of neoplasm in dogs, being an important problem within veterinary medical field. Canine mixed mammary tumors are the most common; the use of a transmission electron microscope (TEM) can contribute as a tool in its diagnosis by determining the characteristics of cellular components from numerous neoplasms. The aim of this study was to characterize cytologically canine mammary mixed tumor by the use of the TEM. A biopsy collected from an 11 years old bitch Shih-Tzu and analyzed by histopathology was used for ultrastructural analysis. Specimens obtained were double stained using uranyl acetate and lead citrate prior to observation in the TEM. The protocol established to transmission electron microscopy observation allowed the identification of main cellular characteristics of canine mixed mammary tumors; however, it was not possible a detailed visualization of the organelles due to the preservation of the biopsy in formaldehyde. © 2017 Wiley Periodicals, Inc.

  1. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.

    Science.gov (United States)

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-02-21

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the

  2. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy

    OpenAIRE

    Christian Hacker; Jalal Asadi; Christos Pliotas; Sophie Ferguson; Lee Sherry; Phedra Marius; Javier Tello; David Jackson; James Naismith; John Milton Lucocq

    2016-01-01

    Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of m...

  3. Transmission Electron Microscopy of Semiconductor Nanostructures: Analysis of Composition and Strain State

    Science.gov (United States)

    Rosenauer, Andreas

    The present book is organized in the following way. The first part provides the theoretical fundamentals of transmission electron microscopy needed in the second part, which focuses on a description of strain state analysis and on the composition evaluation by lattice fringe analysis techniques. In the third part, we describe the application of these techniques to the investigation of low-dimensional semiconductor heterostructures such as InxGa1-xAs SK layers.

  4. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy

    OpenAIRE

    Shu Tanaka; Hiroyuki Yoshida; Yuto Kawata; Ryusuke Kuwahara; Ryuji Nishi; Masanori Ozaki

    2015-01-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orienta...

  5. Fractal dimension determination of sol-gel powders using transmission electron microscopy images

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Gianina; Crisan, Maria; Zaharescu, Maria; Ionescu, N.I

    2004-09-15

    SiO{sub 2}, TiO{sub 2} and AlO(OH) powders obtained by the sol-gel method were investigated by transmission electron microscopy. The mass-radius relation was used to determine the fractal dimensions from the images. These fractal dimensions were corrected in order to obtain the powder fractal dimensions. The results indicate a good fractal behavior and high fractal dimensions.

  6. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Science.gov (United States)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  7. Characterization nanoparticles-based vaccines and vaccine candidates: a Transmission Electron Microscopy study

    Directory of Open Access Journals (Sweden)

    I. Menéndez I

    2016-05-01

    Full Text Available Transmission Electron Microscopy (TEM is a valuable tool for the biotech industry. This paper summarizes some of the contributions of MET in the characterization of the recombinant antigens are part of vaccines or vaccine candidates obtained in the CIGB. It mentions the use of complementary techniques MET (Negative staining, and immunoelectron that enhance visualization and ultrastructural characterization of the recombinant proteins obtained by Genetic Engineering.

  8. Direct observation of defect structure in protein crystals by atomic force and transmission electron microscopy.

    OpenAIRE

    Devaud, G; Furcinitti, P S; Fleming, J.C.; Lyon, M K; Douglas, K

    1992-01-01

    We have examined the structure of S-layers isolated from Sulfolobus acidocaldarius using atomic force microscopy (AFM) and transmission electron microscopy (TEM). From the AFM images, we were able to directly observe individual dimers of the crystal, defects in the crystal structure, and twin boundaries. We have identified two types of boundaries, one defined by a mirror plane and the other by a glide plane. This work shows that twin boundaries are highly structured regions that are directly ...

  9. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.

    2012-09-04

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Transmission electron microscopy study on silicon nitride/stainless steel bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Poza, P. [Departamento de Ciencia e Ingenieria de los Materiales, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain); Miranzo, P. [Institute of Ceramics and Glass, CSIC, Campus de Cantoblanco, 28049 Madrid (Spain); Osendi, M.I. [Institute of Ceramics and Glass, CSIC, Campus de Cantoblanco, 28049 Madrid (Spain)], E-mail: miosendi@icv.csic.es

    2008-11-28

    The reaction zone of a diffusion bonded Si{sub 3}N{sub 4}/stainlees steel (ss) interface formed at 1100 deg. C was analyzed by transmission electron microscopy and X-ray diffraction (XRD). Besides the formation of various iron silicides, iron nitride and chromium nitride phases detected by XRD, Cr{sub 3}Ni{sub 5}Si{sub 2} crystals were identified at the interface by TEM.

  11. Intensity interferometry experiments in a scanning transmission electron microscope : physics and applications

    OpenAIRE

    Meuret, Sophie

    2015-01-01

    Quantum optics performed at the nanometer scale is an important challenge, especially for quantum emitters characterization. They can be point defects in material (few ang- ströms) or confined structures of a few nanometers. A way to reach this scale is by using cathodoluminescence (CL) performed in a scanning transmission electron microscope (CL- STEM), which has only recently been done [1]. However, when aiming at studying the statistical properties of the light coming out of a CL experimen...

  12. Optimal imaging techniques in the scanning transmission electron microscope: applications to biological macromolecules.

    Science.gov (United States)

    Ohtsuki, M; Crewe, A V

    1980-01-01

    We show applications of the optimal imaging method to stained biological macromolecules. This optimal imaging method involves the following basic procedures: (i) for any given resolution, which is represented by the electron probe size in the scanning transmission electron microscope, a preferred magnification is used; (ii) the micrographs taken at the condition described above are then spatially filtered by using a low-pass filter (nu < 1/2d, in which d is the space between scan lines) to optically reconstruct the final optimal image. It is found that the micrographs obtained by using the optimal imaging method clearly show an improvement in contrast. Images PMID:6933454

  13. Convenient preparation of high-quality specimens for annealing experiments in the transmission electron microscope.

    Science.gov (United States)

    Duchamp, Martial; Xu, Qiang; Dunin-Borkowski, Rafal E

    2014-12-01

    A procedure based on focused ion beam milling and in situ lift-out is introduced for the preparation of high-quality specimens for in situ annealing experiments in the transmission electron microscope. The procedure allows an electron-transparent lamella to be cleaned directly on a heating chip using a low ion energy and back-side milling in order to minimize redeposition and damage. The approach is illustrated through the preparation of an Al-Mn-Fe complex metallic alloy specimen.

  14. Employing NMR Spectroscopy To Evaluate Transmission of Electronic Effects in 4-Substituted Chalcones

    Science.gov (United States)

    Wachter-Jurcsak, Nanette; Zamani, Hossein

    1999-05-01

    Described is an organic synthesis experiment that demonstrates the electronic transmission by substituents. The effect of substitution at the para-position of the styryl ring of 1,3-diphenyl-2-propenones (chalcones) by typical electron-donating or -accepting groups can be observed by proton and carbon-13 NMR spectroscopy. A linear correlation is observed when the differences in chemical shift measurements for H are plotted against the corresponding Hammett substituent constant values. Good correlation between carbon-13 chemical shifts of the alpha carbon are also observed. The syntheses of the 4-substituted chalcones is presented as well as a brief discussion of the theory.

  15. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Andras; Ney, A.; Duchamp, Martial; Ney, V.; Boothroyd, Chris; Galindo, Pedro L.; Kaspar, Tiffany C.; Chambers, Scott A.; Dunin-Borkowski, Rafal

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  16. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Suhyun Kim

    2013-09-01

    Full Text Available Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  17. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM).

    Science.gov (United States)

    LaGrange, Thomas; Campbell, Geoffrey H; Reed, B W; Taheri, Mitra; Pesavento, J Bradley; Kim, Judy S; Browning, Nigel D

    2008-10-01

    Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10nm for single-shot imaging using 15ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions.

  18. Transmission dosimetry with a liquid-filled electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Boellaard, R.; Van Herk, M.; Mijnheer, B.J. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands)

    1995-12-01

    The aim of transmission dosimetry is to correlate transmission dose values with patient dose values. A liquid-filled electronic portal imaging device (EPID) has been developed. After determination of the dose response relationship, i.e. the relation between pixel value and dose rate, for clinical situations it was found that the EPID is applicable for two-dimensional dosimetry with an accuracy of about 1%. The aim of this study was to investigate transmission dose distributions at different phantom-detector distances to predict exit dose distributions from transmission dose images. An extensive set of transmission dose measurements below homogeneous phantoms were performed with the EPID. The influence of several parameters such as field size, phantom thickness, phantom-detector distance and phantom-source distance on the transmission dose and its distribution were investigated. The two-dimensional transmission dose images were separated into two components: a primary dose and a scattered dose distribution. It was found that the scattered dose is maximal at a phantom thickness of about 10 cm. The scattered dose distribution below a homogeneous phantom has a Gaussian shape. The width of the Gaussian is small at small phantom-detector distances and increases for larger phantom-detector distances. The dependence of the scattered dose distribution on the field size at various phantom-detector distances has been used to estimate the dose distribution at the exit site of the phantom. More work is underway to determine the exit dose distributions for clinical situations, including the presence of inhomogeneities.

  19. Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Johnston-Peck, Aaron C., E-mail: aaron.johnston-peck@nist.gov [Materials Measurement Lab, National Institute of Standards Technology, Gaithersburg, MD 20899 (United States); DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David [Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, Gainesville, FL 32611 (United States); Herzing, Andrew A. [Materials Measurement Lab, National Institute of Standards Technology, Gaithersburg, MD 20899 (United States)

    2016-11-15

    Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO{sub 2} indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. - Highlights: • Electron beam interactions introduce oxygen vacancies in CeO{sub 2} nanoparticles. • ADF-STEM and EELS can track the reduction of CeO{sub 2}. • The reduced nanoparticles will oxidize in the microscope environment. • There is no critical dose for the accumulation of detectable damage. • The accumulation of detectable damage is dose rate dependent.

  20. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, L., E-mail: luca.piazza@epfl.ch [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 455 Bolero Drive, Danville, CA 94526 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Barwick, B. [Department of Physics, Trinity College, 300 Summit St., Hartford, CT 06106 (United States); Carbone, Fabrizio [Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), ICMP, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2013-09-23

    Highlights: • We present the implementation of a femtosecond-resolved ultrafast TEM. • This is the first ultrafast TEM based on a thermionic gun geometry. • An additional condenser lens has been used to maximize the electron count. • We achieved a time resolution of about 300 fs and an energy resolution of 1 eV. - Abstract: In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved.

  1. Preparation and Observation of Thick Biological Samples by Scanning Transmission Electron Tomography.

    Science.gov (United States)

    Trépout, Sylvain; Bastin, Philippe; Marco, Sergio

    2017-03-12

    This report describes a protocol for preparing thick biological specimens for further observation using a scanning transmission electron microscope. It also describes an imaging method for studying the 3D structure of thick biological specimens by scanning transmission electron tomography. The sample preparation protocol is based on conventional methods in which the sample is fixed using chemical agents, treated with a heavy atom salt contrasting agent, dehydrated in a series of ethanol baths, and embedded in resin. The specific imaging conditions for observing thick samples by scanning transmission electron microscopy are then described. Sections of the sample are observed using a through-focus method involving the collection of several images at various focal planes. This enables the recovery of in-focus information at various heights throughout the sample. This particular collection pattern is performed at each tilt angle during tomography data collection. A single image is then generated, merging the in-focus information from all the different focal planes. A classic tilt-series dataset is then generated. The advantage of the method is that the tilt-series alignment and reconstruction can be performed using standard tools. The collection of through-focal images allows the reconstruction of a 3D volume that contains all of the structural details of the sample in focus.

  2. Development of electron optical system using annular pupils for scanning transmission electron microscope by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Yasumoto, Tsuchika; Tanaka, Takeo [Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Kawasaki, Tadahiro; Ichihashi, Mikio [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikuta, Takashi [Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan)

    2012-02-01

    Annular pupils for electron optics were produced using a focused ion beam (FIB), enabling an increase in the depth of focus and allowing for aberration-free imaging and separation of the amplitude and phase images in a scanning transmission electron microscope (STEM). Simulations demonstrate that an increased focal depth is advantageous for three-dimensional tomography in the STEM. For a 200 kV electron beam, the focal depth is increased to approximately 100 nm by using an annular pupil with inner and outer semi-angles of 29 and 30 mrad, respectively. Annular pupils were designed with various outer diameters of 40-120 {mu}m and the inner diameter was designed at 80% of the outer diameter. A taper angle varying from 1 Degree-Sign to 20 Degree-Sign was applied to the slits of the annular pupils to suppress the influence of high-energy electron scattering. The fabricated annular pupils were inspected by scanning ion beam microscopy and scanning electron microscopy. These annular pupils were loaded into a STEM and no charge-up effects were observed in the scintillator projection images recorded by a CCD camera.

  3. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent Raman spectra, and electronic transport measurements

    Science.gov (United States)

    Lu, Wanglin; Ma, Xiaomeng; Fei, Zhen; Zhou, Jianguang; Zhang, Zhiyong; Jin, Chuanhong; Zhang, Ze

    2015-07-01

    In this study, we correlated the angular dependence of the Raman response of black phosphorus to its crystallographic orientation by using transmission electron microscopy and Raman spectroscopy. It was found that the intensity of the Ag 2 mode reached a maximum when the polarization direction of the incident light was parallel to the zigzag crystallographic orientation. Notably, it was further confirmed that the zigzag crystallographic direction exhibited superior conductance and carrier mobility. Because of the lattice extension along the armchair direction, an intensification of the anisotropic Raman response was observed. This work provides direct evidence of the correlation between anisotropic properties and crystallographic direction and represents a turning point in the discussion of the angular-dependent electronic properties of black phosphorus.

  4. Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Alloyeau, D., E-mail: alloyeau.damien@gmail.com [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Hsieh, W.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Anderson, E.H.; Hilken, L. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States); Benner, G. [Carl Zeiss NTS GmbH, Oberkochen 73447 (Germany); Meng, X. [Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720-1770 (United States); Chen, F.R. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Kisielowski, C. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States)

    2010-04-15

    Using two levels of electron beam lithography, vapor phase deposition techniques, and FIB etching, we have fabricated an electrostatic Boersch phase plate for contrast enhancement of weak phase objects in a transmission electron microscope. The phase plate has suitable dimensions for the imaging of small biological samples without compromising the high-resolution capabilities of the microscope. A micro-structured electrode allows for phase tuning of the unscattered electron beam, which enables the recording of contrast enhanced in-focus images and in-line holograms. We have demonstrated experimentally that our phase plate improves the contrast of carbon nanotubes while maintaining high-resolution imaging performance, which is demonstrated for the case of an AlGaAs heterostructure. The development opens a new way to study interfaces between soft and hard materials.

  5. Higher-order aberration corrector for an image-forming system in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H., E-mail: hsawada@jeol.co.jp [CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo (Japan); Sasaki, T. [CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo (Japan); Hosokawa, F.; Yuasa, S.; Terao, M.; Kawazoe, M.; Nakamichi, T. [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo (Japan); Kaneyama, T. [CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo (Japan); Kondo, Y. [CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Kimoto, K. [CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Suenaga, K. [CREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Research Center for Advanced Carbon Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 (Japan)

    2010-07-15

    We developed a new electron optical system with three dodecapoles to compensate for spherical aberration and six-fold astigmatism, which generally remains in a two-hexapole type corrector. In this study, we applied the corrector for image-forming system in transmission electron microscope. Compensation for higher-order aberration was demonstrated through a diffractogram tableau using a triple three-fold astigmatism field system, which was then compared with a double hexapole field system. Using this electron optical system, six-fold astigmatism was measured to be less than 0.1 mm at an acceleration voltage of 60 kV, showing that the system successfully compensated for six-fold astigmatism.

  6. Atomistic observations and analyses of lattice defects in transmission electron microscopes

    CERN Document Server

    Abe, H

    2003-01-01

    The transmission electron microscope (TEM) -accelerators was developed. TEM-Accelerator made possible to observe in situ experiments of ion irradiation and implantation. The main results are the experimental proof of new lattice defects by irradiation, the formation process and synthesized conditions of carbon onion by ion implantation, the microstructure and phase transformation conditions of graphite by ion irradiated phase transformation, the irradiation damage formation process by simultaneous irradiation of electron and ion and behavior of fullerene whisker under irradiation. The microstructural evolution of defect clusters in copper irradiated with 240-keV Cu sup + ions and a high resolution electron micrograph of carbon onions synthesized by ion implantation are explained as the examples of recent researches. (S.Y.)

  7. Measuring and Tailoring the Structure of Two-Dimensional Materials by Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Thomsen, Joachim Dahl

    of these sources of scattering is, therefore, important for industrial applications as well as fundamental scientific purposes. Transmission electron microscopy (TEM) is an excellent tool for structural characterisation of 2D materials because of its sub-angstrom resolution, and potential for adding stimuli like...... heat, electrical biasing, and studying the interaction with gas molecules. In this project, TEM has been used to measure the structure and also to physically pattern graphene on the nanoscale. First, the design, fabrication and characterisation of TEM sample carriers for simultaneous in-situ heating......As the critical dimensions of electronic devices decrease in size, the nanoscale structure becomes important for the electronic properties. Two-dimensional (2D) materials, with a thickness down to one atom, are very affected by disorder. Any type of disorder in graphene, including lattice disorder...

  8. Aberration-corrected scanning transmission electron microscopy: the potential for nano- and interface science

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, S.J.; Pantelides, S.T. [Solid State Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Dept. of Physics and Astronomy, Vanderbilt Univ., Nashville, TN (United States); Lupini, A.R.; Wang, L.G. [Solid State Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Kadavanich, A. [Solid State Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Dept. of Chemistry, Vanderbilt Univ., Nashville, TN (United States); McBride, J.R. [Dept. of Chemistry, Vanderbilt Univ., Nashville, TN (United States); Rosenthal, S.J. [Dept. of Physics and Astronomy, Vanderbilt Univ., Nashville, TN (United States); Puetter, R.C.; Yahil, A. [Pixon LLC, Stony Brook, NY (United States); Krivanek, O.L.; Dellby, N.; Nellist, P.D.L. [Nion Co., Kirkland, WA (United States); Duscher, G. [Solid State Div., Oak Ridge National Lab., Oak Ridge, TN (United States); Dept. of Materials Science and Engineering, North Carolina State Univ., Raleigh, NC (United States)

    2003-04-01

    The sub-Aangstroem probe of an aberration-corrected scanning transmission electron microscope will enable imaging and analysis of nanostructures and interfaces with unprecedented resolution and sensitivity. In conjunction with first-principles theory, new insights are anticipated into the atomistic processes of growth and the subtle link between structure and functionality. We present initial results from the aberration-corrected microscopes at Oak Ridge National Laboratory that indicate the kinds of studies that will become feasible in the near future. Examples include (1) the three-dimensional location and identification of individual dopant and impurity atoms in semiconductor interfaces, and their effect on local electronic structure; (2) the accurate reconstruction of surface atomic and electronic structure on nanocrystals, and the effect on optical properties; and (3) the ability to distinguish which configurations of catalyst atoms are active, and why. (orig.)

  9. High-resolution characterization of multiferroic heterojunction using aberration-corrected scanning transmission electron microscopy

    Science.gov (United States)

    Yuan, Zhoushen; Ruan, Jieji; Xie, Lin; Pan, Xiaoqing; Wu, Di; Wang, Peng

    2017-04-01

    Multiferroic tunnel junctions have been considered as potential candidates for nonvolatile memory devices. Understanding the atomic structure at the interface is crucial for optimizing the performances in such oxide electronics. Spatially resolved electron energy loss spectroscopy (EELS) combined with aberration-corrected scanning transmission electron microscopy is employed to measure the compositional profiles across the interfaces of different layers with atomic resolution. Two-dimensional elemental imaging with atomic resolution is demonstrated, and the influences of the interface sharpness, the terminal layer, and cation intermixing are investigated. An asymmetric sublattice intermixing at the Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 interface is observed, which can affect the local Mn valence and coupling. The reduction in the Mn valence at the interface is further studied using EELS near-edge fine structures.

  10. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.; Zawislak, F. C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970 (Brazil); Oliviero, E. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), CNRS-IN2P3-Université Paris-Sud, 91405 Orsay-Campus (France); Fichtner, P. F. P. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970 (Brazil); Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970 (Brazil)

    2016-01-21

    The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems under extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors.

  11. Investigating the use of in situ liquid cell scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nguy, Amanda [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine

  12. Sub-Angstrom Low Voltage Performance of a Monochromated, Aberration-Corrected Transmission Electron Microscope

    Science.gov (United States)

    Bell, David C.; Russo, Christopher J.; Benner, Gerd

    2011-01-01

    Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements, and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Ångstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: 1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; 2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; 3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-angstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science. PMID:20598206

  13. Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M; Boyden, K; Browning, N D; Campbell, G H; Colvin, J D; DeHope, B; Frank, A M; Gibson, D J; Hartemann, F; Kim, J S; King, W E; LaGrange, T B; Pyke, B J; Reed, B W; Shuttlesworth, R M; Stuart, B C; Torralva, B R

    2006-05-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  14. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  15. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  16. A menu of electron probes for optimising information from scanning transmission electron microscopy.

    Science.gov (United States)

    Nguyen, D T; Findlay, S D; Etheridge, J

    2018-01-01

    We assess a selection of electron probes in terms of the spatial resolution with which information can be derived about the structure of a specimen, as opposed to the nominal image resolution. Using Ge [001] as a study case, we investigate the scattering dynamics of these probes and determine their relative merits in terms of two qualitative criteria: interaction volume and interpretability. This analysis provides a 'menu of probes' from which an optimum probe for tackling a given materials science question can be selected. Hollow cone, vortex and spherical wave fronts are considered, from unit cell to Ångstrom size, and for different defocus and specimen orientations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Transmission of electromagnetic waves through a two-layer plasma structure with spatially nonuniform electron density.

    Science.gov (United States)

    Denysenko, I B; Ivko, S; Smolyakov, A; Azarenkov, N A

    2012-11-01

    Transmission of a p-polarized electromagnetic wave through a two-layer plasma structure with spatially nonuniform distributions of electron density in the layers is studied. The case, when the electromagnetic wave is obliquely incident on the structure and is evanescent in both plasma layers, is considered. The conditions for total transparency of the two-layer structure are found for the thin slab case and when the plasma inhomogeneity is weak. It is shown that the transmission coefficient of the p-polarized wave can be about unity, even if the plasma inhomogeneity is large. The effects of plasma inhomogeneity on transparency of the structure are more important if the slabs are thick, comparing with the case of thin layers.

  18. Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Hermannsdörfer, Justus; de Jonge, Niels

    2017-02-05

    Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline.

  19. 3D simulation of electron and ion transmission of GEM-based detectors

    Science.gov (United States)

    Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal

    2017-10-01

    Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.

  20. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy.

    Science.gov (United States)

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    2017-01-01

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.

  1. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy

    National Research Council Canada - National Science Library

    Shawn D Pollard; Joseph A Garlow; Jiawei Yu; Zhen Wang; Yimei Zhu; Hyunsoo Yang

    2017-01-01

    ... with a strong Dzyaloshinskii-Moriya interaction. Here we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy...

  2. Atomic Imaging Using Secondary Electrons in a Scanning Transmission Electron Microscope: Experimental Observations and Possible Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Su, D.; Inada, H.; Egerton, R.F.; Konno, M.; Wua, L.; Ciston, J.; Wall, J.; Zhu, Y.

    2011-11-11

    We report detailed investigation of high-resolution imaging using secondaryelectrons (SE) with a sub-nanometer probe in an aberration-corrected transmissionelectron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. Apossiblemechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization.

  3. In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms. PMID:28122188

  4. Atomic bonding effects in annular dark field scanning transmission electron microscopy. II. Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Odlyzko, Michael L.; Held, Jacob T.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-07-15

    Quantitatively calibrated annular dark field scanning transmission electron microscopy (ADF-STEM) imaging experiments were compared to frozen phonon multislice simulations adapted to include chemical bonding effects. Having carefully matched simulation parameters to experimental conditions, a depth-dependent bonding effect was observed for high-angle ADF-STEM imaging of aluminum nitride. This result is explained by computational predictions, systematically examined in the preceding portion of this study, showing the propagation of the converged STEM beam to be highly sensitive to net interatomic charge transfer. Thus, although uncertainties in experimental conditions and simulation accuracy remain, the computationally predicted experimental bonding effect withstands the experimental testing reported here.

  5. Coalescence dynamics of size-selected gold clusters studied by time-resolved transmission electron microscopy

    Science.gov (United States)

    Liu, J.; Foster, D.; Li, Z. Y.; Wilkinson, N.; Yuan, J.

    2017-09-01

    Coalescence dynamics of size-selected gold (Au) clusters (each with nominal 923 atoms), on amorphous Si3N4 substrate at room temperature, has been studied via time-resolved transmission electron microscopy (TEM). We found that the clusters approached each other in two stages. In the first stage, the drift velocity was independent of the particle separation and could be attributed to beam-induced random motion. In the second stage, the clusters were found to jump into contact with a much higher final averaged speed. This is independent of beam dose rates and is attributed to the van der Waal attraction.

  6. Compositional analysis of GaAs/AlGaAs heterostructures using quantitative scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kauko, H.; Helvoort, A. T. J. van [Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Zheng, C. L.; Glanvill, S. [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Zhu, Y.; Etheridge, J., E-mail: joanne.etheridge@monash.edu [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Department of Materials Engineering, Monash University, VIC 3800 (Australia); Dwyer, C. [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Munshi, A. M.; Fimland, B. O. [Department of Electronics and Telecommunications, Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2013-12-02

    We demonstrate a method for compositional mapping of Al{sub x}Ga{sub 1–x}As heterostructures with high accuracy and unit cell spatial resolution using quantitative high angle annular dark field scanning transmission electron microscopy. The method is low dose relative to spectroscopic methods and insensitive to the effective source size and higher order lens aberrations. We apply the method to study the spatial variation in Al concentration in cross-sectioned GaAs/AlGaAs core-shell nanowires and quantify the concentration in the Al-rich radial band and the AlGaAs shell segments.

  7. Metadislocations in complex metallic alloys: A high-resolution scanning transmission electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Heggen, Marc; Houben, Lothar; Feuerbacher, Michael [Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2011-07-01

    Metadislocations are highly complex defects which involve several hundreds of atoms in their core. We present a microstructural investigation on Metadislocations using aberration-corrected high-resolution scanning transmission electron microscopy. A novel and highly complex deformation mechanism is found which is based on the movement of a metadislocation core mediating strain and separate escort defects. Upon deformation, the escort defects move along with the metadislocation core and locally transform the material structure. This mechanism implies the coordinated movement of hundreds of atoms per elementary step. Although the mechanism is very complex, it can be described by a simple jigsaw-puzzle-like rearrangement of basic structural subunits.

  8. (CryoTransmission Electron Microscopy of Phospholipid Model Membranes Interacting with Amphiphilic and Polyphilic Molecules

    Directory of Open Access Journals (Sweden)

    Annette Meister

    2017-10-01

    Full Text Available Lipid membranes can incorporate amphiphilic or polyphilic molecules leading to specific functionalities and to adaptable properties of the lipid bilayer host. The insertion of guest molecules into membranes frequently induces changes in the shape of the lipid matrix that can be visualized by transmission electron microscopy (TEM techniques. Here, we review the use of stained and vitrified specimens in (cryoTEM to characterize the morphology of amphiphilic and polyphilic molecules upon insertion into phospholipid model membranes. Special emphasis is placed on the impact of novel synthetic amphiphilic and polyphilic bolalipids and polymers on membrane integrity and shape stability.

  9. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Horst, Jennifer C; Bunjes, Heike

    2011-01-01

    Cryogenic transmission electron microscopy (cryo-TEM) has evolved into an indispensable tool for the characterization of colloidal drug delivery systems. It can be applied to study the size, shape and internal structure of nanoparticulate carrier systems as well as the overall colloidal composition...... of the corresponding dispersions. This review gives a short overview over the instrumentation used in cryo-TEM experiments and over the sample preparation procedure. Selected examples of cryo-TEM studies on colloidal drug carrier systems, including liposomes, colloidal lipid emulsions, solid lipid nanoparticles...

  10. Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil; Jørgensen, Peter Stanley

    2013-01-01

    by successful preparation of TEM specimens that maintain the structural integrity of the entire lamella. Feasibility of the TEM alignment procedure is demonstrated, and ideal TEM analyses are illustrated on solid oxide fuel cell and solid oxide electrolysis cell materials. Some potential drawbacks of the TEM......An optimum method is proposed to prepare thin foil transmission electron microscopy (TEM) lamellae of multiphase porous functional ceramics: prefilling the pore space of these materials with an epoxy resin prior to focused ion beam milling. Several advantages of epoxy impregnation are demonstrated...

  11. Transmission electron microscopy studies of YBCO coated conductor deposited using multiple-stage chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, H. [Japan Fine Ceramics Center, Material Research and Development Laboratory, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan)]. E-mail: hisasaki@jfcc.or.jp; Kato, T. [Japan Fine Ceramics Center, Material Research and Development Laboratory, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Sasaki, Y. [Japan Fine Ceramics Center, Material Research and Development Laboratory, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Hirayama, T. [Japan Fine Ceramics Center, Material Research and Development Laboratory, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Kashima, N. [Electric Power Research and Development Center, Chubu Electric Power Co., Inc., 20-1, Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya, Aichi 459-8522 (Japan); Nagaya, S. [Electric Power Research and Development Center, Chubu Electric Power Co., Inc., 20-1, Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya, Aichi 459-8522 (Japan); Izumi, T. [Superconductivity Research Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Shiohara, Y. [Superconductivity Research Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2005-10-01

    A YBCO film was deposited on Hastelloy tape with highly oriented CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} multilayer using multiple-stage chemical vapor deposition. The microstructures of the YBCO coated conductor were examined in detail using transmission electron microscopy. Analysis indicated a YBCO film about 1 {mu}m thick was deposited and consisted mainly of c-axis oriented grains. However, a-axis oriented grains were also observed in the YBCO film, and these a-axis oriented grains grew larger with increasing thickness of the YBCO film.

  12. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, D., E-mail: david.hernandez@uca.es [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Herrera, M.; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 (PTM), 28760 Tres Cantos, Madrid (Spain); Pizarro, J.; Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-07-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  13. Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy.

    Science.gov (United States)

    Akatay, M Cem; Zvinevich, Yury; Baumann, Philipp; Ribeiro, Fabio H; Stach, Eric A

    2014-03-01

    A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

  14. Environmental Transmission Electron Microscopy Study of Diesel Carbon Soot Combustion under Simulated Catalytic-Reaction Conditions.

    Science.gov (United States)

    Mori, Kohsuke; Watanabe, Keitaro; Sato, Takeshi; Yamashita, Hiromi

    2015-05-18

    Environmental transmission electron microscopy (ETEM) is used to monitor the catalytic combustion of diesel carbon soot upon exposure to molecular oxygen at elevated temperatures by using a gas-injection specimen heating holder. The reaction conditions simulated in the ETEM experiments reconstruct real conditions effectively. This study demonstrated for the first time that soot combustion occurs at the soot-catalyst interface for both Ag/CeO2 and Cu/BaO/La2 O3 catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera

    Energy Technology Data Exchange (ETDEWEB)

    Vigouroux, M. P.; Delaye, V.; Bernier, N.; Lafond, D.; Audoit, G.; Bertin, F. [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des martyrs, 38054 GRENOBLE Cedex 9 (France); Cipro, R.; Baron, T.; Martin, M. [Université Grenoble Alpes, F-38000 Grenoble (France); CNRS, LTM, F-38000 Grenoble (France); Rouvière, J. L. [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC, MINATEC Campus, 17 rue des martyrs, 38054 GRENOBLE Cedex 9 (France); Chenevier, B. [Université Grenoble Alpes, F-38000 Grenoble (France); LMGP, CNRS, 3 parvis Louis Néel, 38016 GRENOBLE Cedex 1 (France)

    2014-11-10

    Precession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 × 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 × 10{sup −4} with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region.

  16. Nanotubular Structure on the Ti-29Nb-5Zr Alloy by Scanning Transmission Electron Microscope.

    Science.gov (United States)

    Kim, Eun-Ju; Jeong, Yong-Hoon; Kang, Bo-An; Choe, Han-Cheol

    2015-01-01

    In this study, we reported the observation of highly ordered nanotubular structure on the Ti-29Nb-5Zr alloy in various potentials and electrolytes by field emission scanning electron microscopy and scanning transmission electron microscope. From the X-ray diffraction results and microstructure analysis, Ti-29Nb-5Zr alloy had β phase. The nanotube morphologies of Ti-29Nb-5Zr alloy were transformed from nano-porous structure to nanotube structure as NaF concentration and voltage increased. Nanotube diameter and layer changed with different concentration of NaF in 1 M H3PO4 at the same voltage. From the X-ray photoelectron spectroscopy results, nanotube was formed by Nb, Zr, and Ti oxide. Also, barrier layer of large tube was about 50 nm thickness, small one was 60 nm thickness. The nanotube size and crystallinity on the β Ti alloy was controlled by fluoride concentration, applied potential, anodization time, and tube layer.

  17. Placing single atoms in graphene with a scanning transmission electron microscope

    Science.gov (United States)

    Dyck, Ondrej; Kim, Songkil; Kalinin, Sergei V.; Jesse, Stephen

    2017-09-01

    We employ the sub-atomically focused beam of a scanning transmission electron microscope (STEM) to introduce and controllably manipulate individual dopant atoms in a 2D graphene lattice. The electron beam is used to create defects and subsequently sputter adsorbed source materials into the graphene lattice such that individual vacancy defects are controllably passivated by Si substitutional atoms. We further document that Si point defects may be directed through the lattice via e-beam control or modified (as yet, uncontrollably) to form new defects which can incorporate new atoms into the graphene lattice. These studies demonstrate the potential of STEM for atom-by-atom nanofabrication and fundamental studies of chemical reactions in 2D materials on the atomic level.

  18. In situ synthesis of cobalt nanocrystal hierarchies in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Gnanavel, Thirunavukkarasu; Moebus, Guenter, E-mail: g.moebus@sheffield.ac.uk [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2012-03-15

    We report a versatile electron beam (e-beam) synthesis method for the local fabrication of ferromagnetic nanocrystals 'on demand'. A localized irradiation in a transmission electron microscope (TEM) is used to convert a raw cobalt fluoride material into ferromagnetic metal by means of formation of a short-range ordered distribution of well-defined faceted three-dimensional (3D) cobalt nanocrystals on the carbon substrate. A range of sizes and morphologies can be obtained, depending on the size, intensity, and acceleration voltage of the e-beam and on the initial size/thickness of the 3D raw fluoride materials, with 300 kV acceleration voltage and thermionic LaB{sub 6} emission found most favorable. The nanofabrication of locally quasi-monodispersed, small sized, and well-distributed 3D nanocrystals opens up the possibility to generate particle arrays on demand with desirable magnetic properties.

  19. Atomic bonding effects in annular dark field scanning transmission electron microscopy. I. Computational predictions

    Energy Technology Data Exchange (ETDEWEB)

    Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Himmetoglu, Burak [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 and Materials Department, University of California, Santa Barbara, California 93106 (United States); Cococcioni, Matteo [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 and Theory and Simulations of Materials, National Centre for Computational Design and Discovery of Novel Materials, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-07-15

    Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen in crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.

  20. Imaging Individual Molecules and Atoms by Aberration-Corrected Transmission Electron Microscopy

    Science.gov (United States)

    Sato, Yuta; Suenaga, Kazutomo

    Spherical aberration correctors recently developed for transmission electron microscopes (TEM) and scanning TEM (STEM) have enabled direct imaging of single molecules and atoms at low electron acceleration voltages. Here, we review some recent studies on carbon nanotubes (CNTs) and fullerene nanopeapods using aberration-corrected TEM/STEM operated at 120 kV or lower voltages. Local structures of individual CNTs are visualized in details including various defects such as atomic vacancies and so-called Stone-Wales defects. Atomic-level structures of fullerene molecules inside CNTs are unambiguously visualized. Single atoms of lanthanides and calcium in nanopeapods are identified by using STEM-EELS operated at 60 kV.

  1. Development of a nanoindenter for in-situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stach, Eric A.; Freeman, Tony; Minor, Andrew M.; Owen, Doug K.; Cumings, John; Wall, Mark A.; Chraska, Tomas; Hull, Robert; Morris Jr., J.W.; Zettl, A.; Dahmen, Ulrich

    2001-01-30

    In-situ transmission electron microscopy is an established experimental technique that permits direct observation of the dynamics and mechanisms of dislocation motion and deformation behavior. In this paper, we detail the development of a novel specimen goniometer that allows real time observations of the mechanical response of materials to indentation loads. The technology of the scanning tunneling microscope is adopted to allow nanometer scale positioning of a sharp, conductive diamond tip onto the edge of an electron transparent sample. This allows application of loads to nanometer-scale material volumes couple with simultaneous imaging of the material response. The emphasis in this paper is experimental and descriptive, with particular attention given to sample geometry and other technical requirements. Examples of the deformation of aluminum and titanium carbide as well as the fracture of silicon will be presented.

  2. High-resolution transmission electron microscopy of hexagonal and rhombohedral molybdenum disulfide crystals.

    Science.gov (United States)

    Isshiki, T; Nishio, K; Saijo, H; Shiojiri, M; Yabuuchi, Y; Takahashi, N

    1993-07-01

    Natural (molybdenite) and synthesized molybdenum disulfide crystals have been studied by high-resolution transmission electron microscopy. The image simulation demonstrates that the [0001] and [0110] HRTEM images of hexagonal and rhombohedral MoS2 crystals hardly disclose their stacking sequences, and that the [2110] images can distinguish the Mo and S columns along the incident electron beam and enable one to determine not only the crystal structure but also the fault structure. Observed [0001] images of cleaved molybdenite and synthesized MoS2 crystals, however, reveal the strain field around partial dislocations limiting an extended dislocation. A cross-sectional image of a single molecular (S-Mo-S) layer cleaved from molybdenite has been observed. Synthesized MoS2 flakes which were prepared by grinding have been found to be rhombohedral crystals containing many stacking faults caused by glides between S/S layers.

  3. In situ transmission electron microscopy observations of sublimation in silver nanoparticles.

    Science.gov (United States)

    Asoro, Michael A; Kovar, Desiderio; Ferreira, Paulo J

    2013-09-24

    In situ heating experiments were performed in a transmission electron microscope (TEM) to monitor the thermal stability of silver nanoparticles. The sublimation kinetics from isothermal experiments on individual nanoparticles was used to assess the actual temperatures of the nanoparticles by considering the localized heating from the electron beam. For isolated nanoparticles, beam heating under normal TEM operating conditions was found to increase the temperature by tens of degrees. For nominally isothermal experiments, the observed sublimation temperatures generally decreased with decreasing particle size, in agreement with the predictions from the Kelvin equation. However, sublimation of smaller nanoparticles was often observed to occur in discrete steps, which led to faceting of the nanoparticles. This discrete behavior differs from that predicted by conventional theory as well as from experimental observations in larger nanoparticles where sublimation was continuous. A hypothesis that explains the mechanism for this size-dependent behavior is proposed.

  4. Quantification of carbon contamination under electron beam irradiation in a scanning transmission electron microscope and its suppression by plasma cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, A J V; Walther, T, E-mail: t.walther@sheffield.ac.u [Department of Electronic and Electrical Engineering, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2010-07-01

    We have measured the build-up of carbon surface contamination as a function of time and irradiated area size for various specimens in a JEOL 2010F (scanning) transmission electron microscope, employing both t/{lambda} mapping with our Gatan imaging filter and recording changes in annular dark-field image intensity. It is shown that the total number of carbon atoms deposited per time for a given beam intensity is roughly constant at room temperature for as-received specimens while it is significantly lower for plasma cleaned specimens. This explains why contamination is generally only an issue at the highest magnifications where the contamination regions become smaller and the carbon layers correspondingly thicker. A Fischione plasma cleaner was then used to remove these carbon layers, and the rate of carbon removal has been determined for contamination spots produced in stationary spot mode as well as for extended regions scanned for a minute so that optimal cleaning times can be chosen.

  5. Third generation hybrid drive. Transmission-based integration of power electronics; Dritte Generation Hybridantrieb. Getriebenahe Integration der Leistungselektronik

    Energy Technology Data Exchange (ETDEWEB)

    Schoen, Wolfgang [ZF Friedrichshafen AG, Friedrichshafen (DE). Hybridantriebe (F und E); Lutz, Steffen [BMW AG, Muenchen (Germany); Hensler, Alexander [Technische Univ. Chemnitz (Germany); Munding, Andreas [Liebherr Elektronik GmbH, Lindau (Germany); Thoben, Markus [Infineon Technologies AG, Warstein (Germany); Zeidler, Dietmar [Kemet Electronics GmbH, Landsberg am Lech (Germany)

    2011-06-15

    The power electronics components in today's hybrid vehicles are situated at different places in the vehicle - till now far away from harsh and hot surroundings. In order to develop an integrated solution near the transmission, ZF and BMW launched the research project 'Electric components for active power transmissions' (EfA). On the basis of an eight-speed full hybrid transmission and together with Infineon, Kemet, Liebherr, and the University of Technology of Chemnitz, they are developing a power electronics unit, which facilitates doubling the power density while increasing the operating temperature. The project EfA will be concluded in June 2011. (orig.)

  6. Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Trimby, Patrick W., E-mail: patrick.trimby@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09 Sydney, NSW 2006 (Australia)

    2012-09-15

    In this study, the new technique of transmission Kikuchi diffraction (TKD) in the scanning electron microscope (SEM) has been applied for the first time to enable orientation mapping of bulk, nanostructured metals. The results show how the improved spatial resolution of SEM-TKD, compared to conventional EBSD, enables reliable mapping of truly nanostructured metals and alloys, with mean grain sizes in the 40-200 nm range. The spatial resolution of the technique is significantly below 10 nm, and contrasting examples are shown from both dense (Ni) and lighter (Al-alloy) materials. Despite the burden of preparing thin, electron-transparent samples, orientation mapping using SEM-TKD is likely to become invaluable for routine characterisation of nanocrystalline and, potentially, highly deformed microstructures. -- Highlights: Black-Right-Pointing-Pointer First report of orientation mapping by transmission Kikuchi diffraction in the SEM. Black-Right-Pointing-Pointer The SEM-TKD technique can achieve an effective spatial resolution of 2-4 nm. Black-Right-Pointing-Pointer Nanostructured Ni with a mean grain size of <50 nm has been effectively mapped. Black-Right-Pointing-Pointer Highly deformed Al-alloy, with sub-200 nm grains, has also been characterized. Black-Right-Pointing-Pointer The sample thickness is critical for effective results: ideally 75-200 nm for Al.

  7. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy.

    Science.gov (United States)

    Parent, Lucas R; Bakalis, Evangelos; Ramírez-Hernández, Abelardo; Kammeyer, Jacquelin K; Park, Chiwoo; de Pablo, Juan; Zerbetto, Francesco; Patterson, Joseph P; Gianneschi, Nathan C

    2017-11-29

    Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.

  8. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials.

    Science.gov (United States)

    Agudo Jácome, L; Eggeler, G; Dlouhý, A

    2012-11-01

    Stereo transmission electron microscopy (TEM) provides a 3D impression of the microstructure in a thin TEM foil. It allows to perform depth and TEM foil thickness measurements and to decide whether a microstructural feature lies inside of a thin foil or on its surface. It allows appreciating the true three-dimensional nature of dislocation configurations. In the present study we first review some basic elements of classical stereo TEM. We then show how the method can be extended by working in the scanning transmission electron microscope (STEM) mode of a modern analytical 200 kV TEM equipped with a field emission gun (FEG TEM) and a high angle annular dark field (HAADF) detector. We combine two micrographs of a stereo pair into one anaglyph. When viewed with special colored glasses the anaglyph provides a direct and realistic 3D impression of the microstructure. Three examples are provided which demonstrate the potential of this extended stereo TEM technique: a single crystal Ni-base superalloy, a 9% Chromium tempered martensite ferritic steel and a NiTi shape memory alloy. We consider the effect of camera length, show how foil thicknesses can be measured, and discuss the depth of focus and surface effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Lucas R. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Bakalis, Evangelos [Dipartimento; Ramírez-Hernández, Abelardo [Materials; Institute; Kammeyer, Jacquelin K. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Park, Chiwoo [Department; de Pablo, Juan [Materials; Institute; Zerbetto, Francesco [Dipartimento; Patterson, Joseph P. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Laboratory; Gianneschi, Nathan C. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States

    2017-11-16

    Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.

  10. In situ environmental transmission electron microscope investigation of NiGa nanoparticle synthesis

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Duchstein, Linus Daniel Leonhard; Elkjær, Christian Fink

    2011-01-01

    In an energy system based around decentralized hydrogen production, methanol synthesis under lower pressure conditions could be a way to store hydrogen on location. In the search of catalysts that might open up new process, conditions studies based on density functional theory (DFT) calculations...... detailed Environmental Transmission Electron Microscope (ETEM) investigations of synthesis of NiGa nanoparticles on a thin film support. Samples were prepared by dissolving Ni(NO3)2 and Ga(NO3)3 in a Ni:Ga ratio of 5:3 in millipore water. The solution was subsequently dispersed on transmission electron...... microscope (TEM) sample grids. The sample grid was then mounted in a TEM heating holder and inserted in a FEI Titan ETEM with imaging Cs corrector as well as facilities for in situ gas reactions [3]. The ETEM was operated at 300 kV. The synthesis was performed in situ in a H2 flow of 2 Nml/min at a pressure...

  11. [Corneal epithelial changes of soft contact lens wearers under a transmission electron microscope].

    Science.gov (United States)

    Gu, Hao; Tang, Li

    2015-03-01

    To investigate the difference in corneal epithelium between patients with and without soft contact lens (SCL) wearing, and to analyze corneal epithelial changes of the eyes with long-time SCL wearing. In this cross sectional study, the subjects were divided into two groups: 13 patients of daily SCL wearers and 11 control subjects who had never worn contact lenses. The flap of corneal epithelium was observed by transmission electron microscopy. The corneal epithelial microvillus density was compared between the two groups. Transmission electron micrographs of the control group showed a tight connection between cells, regularly aligned basal cells, and continuous basement membrane. Compared with the control group, SCL wearers showed incomplete basement membrane, swollen epithelial cells, swollen mitochondria, and widened intercellular interstices. The density of corneal epithelium microvilli [(0.071466 +/- 0.015889)/microm2 vs. (0.139851 +/- 0.024171)/micro2] was lower (t = 8.312, P < 0.05). Long-term SCL wearing can induce remarkable changes of corneal epithelial tissue, and the density of corneal epithelial microvilli decreases.

  12. Design of Polymer Networks Involving a Photoinduced Electronic Transmission Circuit toward Artificial Photosynthesis.

    Science.gov (United States)

    Okeyoshi, Kosuke; Kawamura, Ryuzo; Yoshida, Ryo; Osada, Yoshihito

    2016-01-19

    Many strategies have been explored to achieve artificial photosynthesis utilizing mediums such as liposomes and supramolecules. Because the photochemical reaction is composed of multiple functional molecules, the surrounding microenvironment is expected to be rationally integrated as observed during photosynthesis in chloroplasts. In this study, photoinduced electronic transmission surrounding the microenvironment of Ru(bpy)3(2+) in a polymer network was investigated using poly(N-isopropylacrylamide-co-Ru(bpy)3), poly(acrylamide-co-Ru(bpy)3), and Ru(bpy)3-conjugated microtubules. Photoinduced energy conversion was evaluated by investigating the effects of (i) Ru(bpy)3(2+) immobilization, (ii) polymer type, (iii) thermal energy, and (iv) cross-linking. The microenvironment surrounding copolymerized Ru(bpy)3(2+) in poly(N-isopropylacrylamide) suppressed quenching and had a higher radiative process energy than others. This finding is related to the nonradiative process, i.e., photoinduced H2 generation with significantly higher overall quantum efficiency (13%) than for the bulk solution. We envision that useful molecules will be generated by photoinduced electronic transmission in polymer networks, resulting in the development of a wide range of biomimetic functions with applications for a sustainable society.

  13. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy

    KAUST Repository

    Zhu, Yihan

    2017-02-21

    Metal–organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis1, 2, 3. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation4, 5, 6, 7. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  14. Ultrastructural analysis of testicular tissue and sperm by transmission and scanning electron microscopy.

    Science.gov (United States)

    Chemes, Hector E

    2013-01-01

    Transmission electron microscopy (TEM) studies have provided the basis for an in-depth understanding of the cell biology and normal functioning of the testis and male gametes and have opened the way to characterize the functional role played by specific organelles in spermatogenesis and sperm function. The development of the scanning electron microscope (SEM) extended these boundaries to the recognition of cell and organ surface features and the architectural array of cells and tissues. The merging of immunocytochemical and histochemical approaches with electron microscopy has completed a series of technical improvements that integrate structural and functional features to provide a broad understanding of cell biology in health and disease. With these advances the detailed study of the intricate structural and molecular organization as well as the chemical composition of cellular organelles is now possible. Immunocytochemistry is used to identify proteins or other components and localize them in specific cells or organelles with high specificity and sensitivity, and histochemistry can be used to understand their function (i.e., enzyme activity). When these techniques are used in conjunction with electron microscopy their resolving power is further increased to subcellular levels. In the present chapter we will describe in detail various ultrastructural techniques that are now available for basic or translational research in reproductive biology and reproductive medicine. These include TEM, ultrastructural immunocytochemistry, ultrastructural histochemistry, and SEM.

  15. Novel low-dose imaging technique for characterizing atomic structures through scanning transmission electron microscope

    Science.gov (United States)

    Su, Chia-Ping; Syu, Wei-Jhe; Hsiao, Chien-Nan; Lai, Ping-Shan; Chen, Chien-Chun

    2017-08-01

    To investigate dislocations or heterostructures across interfaces is now of great interest to condensed matter and materials scientists. With the advances in aberration-corrected electron optics, the scanning transmission electron microscope has demonstrated its excellent capability of characterizing atomic structures within nanomaterials, and well-resolved atomic-resolution images can be obtained through long-exposure data acquisition. However, the sample drifting, carbon contamination, and radiation damage hinder further analysis, such as deriving three-dimensional (3D) structures from a series of images. In this study, a method for obtaining atomic-resolution images with significantly reduced exposure time was developed, using which an original high-resolution image with approximately one tenth the electron dose can be obtained by combining a fast-scan high-magnification image and a slow-scan low-magnification image. The feasibility of obtaining 3D atomic structures using the proposed approach was demonstrated through multislice simulation. Finally, the feasibility and accuracy of image restoration were experimentally verified. This general method cannot only apply to electron microscopy but also benefit to image radiation-sensitive materials using various light sources.

  16. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Van Aert, S., E-mail: sandra.vanaert@ua.ac.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Verbeeck, J. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Erni, R. [National Center for Electron Microscopy, Ernest Orlando Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 72R0150, Berkeley, CA 94720 (United States); Bals, S. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Luysberg, M. [Institute of Solid State Research and Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Helmholtz Research Center Juelich, 52425 Juelich (Germany); Dyck, D. Van; Tendeloo, G. Van [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-09-15

    A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.

  17. Atomic-Resolution Transmission Electron Microscopic Movies for Study of Organic Molecules, Assemblies, and Reactions: The First 10 Years of Development.

    Science.gov (United States)

    Nakamura, Eiichi

    2017-06-20

    A molecule is a quantum mechanical entity. "Watching motions and reactions of a molecule with our eyes" has therefore been a dream of chemists for a century. This dream has come true with the aid of the movies of atomic-resolution transmission electron microscopic (AR-TEM) molecular images through real-time observation of dynamic motions of single organic molecules (denoted hereafter as single-molecule atomic-resolution real-time (SMART) TEM imaging). Since 2007, we have reported movies of a variety of single organic molecules, organometallic molecules, and their assemblies, which are rotating, stretching, and reacting. Like movies in the theater, the atomic-resolution molecular movies provide us information on the 3-D structures of the molecules and also their time evolution. The success of the SMART-TEM imaging crucially depends on the development of "chemical fishhooks" with which fish (organic molecules) in solution can be captured on a single-walled carbon nanotube (CNT, serving as a "fishing rod"). The captured molecules are connected to a slowly vibrating CNT, and their motions are displayed on a monitor in real time. A "fishing line" connecting the fish and the rod may be a σ-bond, a van der Waals force, or other weak connections. Here, the molecule/CNT system behaves as a coupled oscillator, where the low-frequency anisotropic vibration of the CNT is transmitted to the molecules via the weak chemical connections that act as an energy filter. Interpretation of the observed motions of the molecules at atomic resolution needs us to consider the quantum mechanical nature of electrons as well as bond rotation, letting us deviate from the conventional statistical world of chemistry. What new horizons can we explore? We have so far carried out conformational studies of individual molecules, assigning anti or gauche conformations to each C-C bond in conformers that we saw. We can also determine the structures of van der Waals assemblies of organic molecules

  18. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  19. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes.

    Science.gov (United States)

    Cangiotti, Michela; Battistelli, Michela; Salucci, Sara; Falcieri, Elisabetta; Mattioli, Michele; Giordani, Matteo; Ottaviani, Maria Francesca

    2017-01-01

    Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1fibers.

  20. Projected thickness reconstruction from a single defocused transmission electron microscope image of an amorphous object

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.C.Y., E-mail: amelia.liu@sci.monash.edu.au [School of Physics, Monash University, Victoria 3800 (Australia); Paganin, D.M. [School of Physics, Monash University, Victoria 3800 (Australia); Bourgeois, L. [Monash Centre for Electron Microscopy and Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Nakashima, P.N.H. [Australian Research Council Centre of Excellence for Design in Light Metals and Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2011-07-15

    Single defocused transmission electron microscope phase contrast images are used to reconstruct the projected thickness map of a single-material object. The algorithm is non-iterative and stable, and we extend it to account for the presence of spherical aberration in the objective optics. The technique can reconstruct the projected thickness map of general single-material objects in the strong phase/weak amplitude regime. It is sensitive to any excursions in the projected thickness from the average, and ideal for examining voids and free volume accumulation in amorphous/glassy materials at the nanometer scale. The resolution of the technique depends on the choice of defocus and the thickness of the specimen. In a certain regime, we demonstrate that variations in the transverse projected thickness with a lateral diameter of {approx}0.25nm may be detected. We use our algorithm to quantitatively reconstruct the projected thickness of latex sphere test specimens from single defocused electron micrographs. We demonstrate that the reconstruction has a large tolerance for error in the input parameters. Simulations confirm that the technique is quantitative, and demonstrate that the origin of low-frequency artifacts is an instability due to noise. We show that the autocorrelation of the projected thickness map may be used to measure the size of open structures in the object using both simulation and latex sphere data. -- Highlights: {yields} We reconstruct the projected thickness of a specimen using a phase retrieval technique. {yields} The technique requires a single out-of-focus phase contrast transmission electron micrograph. {yields} We demonstrate this technique is quantitative using simulation and experiment. {yields} We discuss the technique's realm of application and its nominal resolution. {yields} We employ this technique to measure the size of voids in latex sphere test objects.

  1. A Drabkin energy filter for experiments at a spallation neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Parizzi, A. A.; Felcher, G. P.; Klose, F.

    2000-11-21

    We present a new approach for dynamic monochromatization of neutrons suitable for time-of-flight experiments at spallation neutron sources. The method requires polarized neutrons and is based on the Drabkin energy filter. In its initial application, this magnetic resonator device, consisting of a polarizer/analyzer system and a wavelength-dependent spin flipper, was proposed for extracting a narrow bandwidth from a broad bandwidth polarized neutron beam. At a spallation neutron source, wavelength is determined by time-of-flight (TOF) from the source to the detector. However, at each instant a spread of wavelengths is recorded due to the non-zero emission time of the source/moderator system. Particularly, high-intensity moderators for cold neutrons produce long ''tails'' in the intensity/time distribution for all wavelengths, degrading the resolution of the experiments. The Drabkin energy filter can be used to cut the neutron tails for all wavelengths, by drifting the resonance condition in synchronization with the TOF. Calculations show that the method is viable, and that substantial resolution gains are obtained by application to a TOF neutron reflectometer.

  2. Microwave transmission efficiency and simulations of electron plasma in ELTRAP device

    Science.gov (United States)

    Ikram, M.; Mushtaq, A.; Ali, S.

    2017-11-01

    A Thomson backscattering experiment has been performed in a Penning-Malmberg device ELTRAP. To estimate the minimum sensitivity of diagnostics, we have computed the signal to noise ratio and found that the present bunch has a number density of 4.3 × 108 cm-3, which is three orders of magnitude less than the desired density of 1011 cm-3. To increase the signal level from the RF studies to the GHz range, the transmission efficiency from the rectangular waveguide orthogonally coupled to a prototype circular waveguide was experimentally analyzed on a test-bench. It is observed that the lengths of waveguides play an important role in the transmission efficiency and return loss. When the length of the optimum rectangular waveguide (>2 λg = 31 cm) is reduced to 7 cm, due to geometrical constraints of the ELTRAP device, consequently, the transmission efficiency is also reduced and shifts away from the maximum 3 GHz operating frequency. The useful frequency band is then reduced with the increasing length of the prototype circular waveguide (102 cm). Using the electromagnetic Particle-In-Cell simulations involving the electron cyclotron resonance heating (ECRH), we have utilized a magnetic field of 0.1 T resonating with 2.8 GHz RF drive during each time step (1 ps) having the power level of 0.04 V to the middle and to the end of the trap. A more efficient increase in the radial and azimuthal temperature profiles is observed as compared to the axial temperature profile. The reason is the use of ECRH to heat electrons in cyclotron motion, which is completely kinetic and magnetron motion which is almost entirely potential based. The axial motion interchanges in between the kinetic and potential with a slight enhancement in axial motion to maintain the total canonical angular momentum conserved. The temperature profile of the confined electron plasma increases with the variation of densities from 5 × 107 m-3 to 1012 m-3. The major heating effect occurs when the RF power is

  3. Nanoscale Imaging of Whole Cells Using a Liquid Enclosure and a Scanning Transmission Electron Microscope

    Science.gov (United States)

    Peckys, Diana B.; Veith, Gabriel M.; Joy, David C.; de Jonge, Niels

    2009-01-01

    Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM) using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7) were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM) laboratory. PMID:20020038

  4. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope.

    Directory of Open Access Journals (Sweden)

    Diana B Peckys

    2009-12-01

    Full Text Available Nanoscale imaging techniques are needed to investigate cellular function at the level of individual proteins and to study the interaction of nanomaterials with biological systems. We imaged whole fixed cells in liquid state with a scanning transmission electron microscope (STEM using a micrometer-sized liquid enclosure with electron transparent windows providing a wet specimen environment. Wet-STEM images were obtained of fixed E. coli bacteria labeled with gold nanoparticles attached to surface membrane proteins. Mammalian cells (COS7 were incubated with gold-tagged epidermal growth factor and fixed. STEM imaging of these cells resulted in a resolution of 3 nm for the gold nanoparticles. The wet-STEM method has several advantages over conventional imaging techniques. Most important is the capability to image whole fixed cells in a wet environment with nanometer resolution, which can be used, e.g., to map individual protein distributions in/on whole cells. The sample preparation is compatible with that used for fluorescent microscopy on fixed cells for experiments involving nanoparticles. Thirdly, the system is rather simple and involves only minimal new equipment in an electron microscopy (EM laboratory.

  5. Solving the Accelerator-Condenser Coupling Problem in a Nanosecond Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B W; LaGrange, T; Shuttlesworth, R M; Gibson, D J; Campbell, G H; Browning, N D

    2009-12-29

    We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several {micro}m across with an exposure time of 15 ns. This is more than 6 orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in {micro}m-sized areas and could also be used in a non-pulsed system for high-throughput imaging and analytical TEM.

  6. Quantifying Transient States in Materials with the Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, G; LaGrange, T; Kim, J; Reed, B; Browning, N

    2009-09-21

    The Dynamic Transmission Electron Microscope (DTEM) offers a means of capturing rapid evolution in a specimen through in-situ microscopy experiments by allowing 15 ns electron micrograph exposure times. The rapid exposure time is enabled by creating a burst of electrons at the emitter by ultraviolet pulsed laser illumination. This burst arrives a specified time after a second laser initiates the specimen reaction. The timing of the two Q-switched lasers is controlled by high-speed pulse generators with a timing error much less than the pulse duration. Both diffraction and imaging experiments can be performed, just as in a conventional TEM. The brightness of the emitter and the total current control the spatial and temporal resolutions. We have demonstrated 7 nm spatial resolution in single 15 ns pulsed images. These single-pulse imaging experiments have been used to study martensitic transformations, nucleation and crystallization of an amorphous metal, and rapid chemical reactions. Measurements have been performed on these systems that are possible by no other experimental approaches currently available.

  7. Simultaneous measurement of lateral and vertical size of nanoparticles using transmission scanning electron microscopy (TSEM)

    Science.gov (United States)

    Buhr, E.; Bug, M. U.; Bergmann, D.; Cizmar, P.; Frase, C. G.

    2017-03-01

    A scanning electron microscope operated in transmission mode (TSEM) enables both the measurement of the lateral and vertical size (thickness) of nanoparticles. The lateral size is measured with a previously described technique where the particle boundary is determined in the TSEM image. Particle thickness is deduced from the TSEM signal level measured at the centre of the particle, which requires prior knowledge of the expected TSEM signal level. We applied different and well-known Monte-Carlo based simulation tools (Geant4 and MCSEM) to describe the electron diffusion in solid states and to calculate the expected TSEM signals taking into account particle and instrument properties. The simulation results of the different simulation models differ slightly revealing current limits of small-angle and low-energy electron scattering modelling in solid states. Nonetheless, the method allows one to correlate lateral and vertical particle thickness and thus to obtain additional information about the 3D morphology of nanoparticles. We demonstrate the method for silica particles with sizes in the range of about 10 nm-100 nm.

  8. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  9. On the optical stability of high-resolution transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, J., E-mail: ju.barthel@fz-juelich.de [Central Facility for Electron Microscopy (GFE), Aachen University (RWTH), Ahornstr. 55, 52074 Aachen (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Thust, A., E-mail: a.thust@fz-juelich.de [Peter Grünberg Institute (PGI), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2013-11-15

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state. - Highlights: • We investigate the temporal stability of optical aberrations in HRTEM. • We develop a statistical framework for the estimation of optical lifetimes. • We introduce plots showing the success probability for aberration-free work. • Optical lifetimes in sub-Ångström electron microscopy are surprisingly low. • The success of aberration correction depends strongly on the optical stability.

  10. Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate

    KAUST Repository

    Anjum, Dalaver H.

    2010-07-01

    We report a novel method of growing silver nanostructures by cathodic sputtering onto an ionic liquid (IL) and our visualization by transmission cryo-electron microscopy to avoid beam-induced motion of the nanoparticles. By freezing the IL suspension and controlling electron dose, we can assess properties of particle size, morphology, crystallinity, and aggregation in situ and at high detail. We observed round silver nanoparticles with a well-defined diameter of 7.0 ± 1.5 nm that are faceted with crystalline cubic structures and ∼80% of the particles have multiply twinned faults. We also applied cryo-electron tomography to investigate the structure of the nanoparticles and to directly visualize the IL wetting around them. In addition to particles, we observed nanorods that appear to have assembled from individual nanoparticles. Reexamination of the samples after 4-5 days from initial preparation showed significant changes in morphology, and potential mechanisms for this are discussed. © 2010 Materials Research Society.

  11. Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy.

    Science.gov (United States)

    Patterson, Joseph P; Collins, Douglas B; Michaud, Jennifer M; Axson, Jessica L; Sultana, Camile M; Moser, Trevor; Dommer, Abigail C; Conner, Jack; Grassian, Vicki H; Stokes, M Dale; Deane, Grant B; Evans, James E; Burkart, Michael D; Prather, Kimberly A; Gianneschi, Nathan C

    2016-01-27

    The composition and surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface and internal structure often undergo physicochemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of cryogenic transmission electron microscopy where laboratory generated sea spray aerosol particles are flash frozen in their native state with iterative and controlled thermal and/or pressure exposures and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including whole hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets-all of which will have distinct biological, chemical, and physical processes. We anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.

  12. Transmission electron microscopy for the evaluation and optimization of crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Hilary P.; Lin, Guowu; Barnes, Christopher O.; Sutkeviciute, Ieva; Krzysiak, Troy; Weiss, Simon C.; Reynolds, Shelley; Wu, Ying; Nagarajan, Veeranagu; Makhov, Alexander M.; Lawrence, Robert; Lamm, Emily; Clark, Lisa; Gardella, Timothy J.; Hogue, Brenda G.; Ogata, Craig M.; Ahn, Jinwoo; Gronenborn, Angela M.; Conway, James F.; Vilardaga, Jean-Pierre; Cohen, Aina E.; Calero, Guillermo

    2016-04-26

    The crystallization of protein samples remains the most significant challenge in structure determination by X-ray crystallography. Here, the effectiveness of transmission electron microscopy (TEM) analysis to aid in the crystallization of biological macromolecules is demonstrated. It was found that the presence of well ordered lattices with higher order Bragg spots, revealed by Fourier analysis of TEM images, is a good predictor of diffraction-quality crystals. Moreover, the use of TEM allowed (i) comparison of lattice quality among crystals from different conditions in crystallization screens; (ii) the detection of crystal pathologies that could contribute to poor X-ray diffraction, including crystal lattice defects, anisotropic diffraction and crystal contamination by heavy protein aggregates and nanocrystal nuclei; (iii) the qualitative estimation of crystal solvent content to explore the effect of lattice dehydration on diffraction and (iv) the selection of high-quality crystal fragments for microseeding experiments to generate reproducibly larger sized crystals. Applications to X-ray free-electron laser (XFEL) and micro-electron diffraction (microED) experiments are also discussed.

  13. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy, and Live Cell Imaging.

    Science.gov (United States)

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Holzinger, Andreas; Wasteneys, Geoffrey O

    2016-01-01

    Microtubules (MTs) are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labeling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high-pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography.

  14. Anterior lens epithelium in cataract patients with retinitis pigmentosa - scanning and transmission electron microscopy study.

    Science.gov (United States)

    Andjelic, Sofija; Drašlar, Kazimir; Hvala, Anastazija; Hawlina, Marko

    2017-05-01

    In retinitis pigmentosa (RP) patients, relatively minor lens opacity in central part of posterior pole of the lens may cause disproportionate functional symptoms requiring cataract operation. To investigate the possible structural reasons for this opacity development, we studied the structure of the lens epithelium of patients with RP. The anterior lens capsule (aLC: basement membrane and associated lens epithelial cells, LECs) was obtained from cataract surgery and prepared for scanning and transmission electron microscopy (SEM and TEM). Both SEM and TEM show a number of abnormal features in the anterior lens epithelium of cataract patients with RP. The abnormalities appear mainly as holes, thinning and degradation of the epithelium, with the dimensions from cataractous lens. We suggest that the lens epithelium has a role in the development of the cataract in patients with RP. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Joseph P.; Parent, Lucas R.; Cantlon, Joshua; Eickhoff, Holger; Bared, Guido; Evans, James E.; Gianneschi, Nathan C.

    2016-05-03

    Abstract

    Liquid cell transmission electron microscopy (LCTEM) provides a unique insight into the dynamics of nanomaterials in solution. Controlling the addition of multiple solutions to the liquid cell remains a key hurdle in our ability to increase throughput and to study processes dependent on solution mixing including chemical reactions. Here, we report that a piezo dispensing technique allows for mixing of multiple solutions directly within the viewing area. This technique permits deposition of 50 pL droplets of various aqueous solutions onto the liquid cell window, before assembly of the cell in a fully controlled manner. This proof-of-concept study highlights the great potential of picoliter dispensing in combination with LCTEM for observing nanoparticle mixing in the solution phase and the creation of chemical gradients.

  16. Large area strain analysis using scanning transmission electron microscopy across multiple images

    Energy Technology Data Exchange (ETDEWEB)

    Oni, A. A.; Sang, X.; LeBeau, J. M., E-mail: jmlebeau@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Raju, S. V.; Saxena, S. [Center for the Study of Matter under Extreme Conditions, Florida International University, Miami, Florida 33199 (United States); Dumpala, S.; Broderick, S.; Rajan, K. [Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States); Kumar, A.; Sinnott, S. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2015-01-05

    Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.

  17. Midgut ultrastructure of the third instar of Dermatobia hominis (Diptera: Cuterebridae) based on transmission electron microscopy.

    Science.gov (United States)

    Evangelista, L G; Leite, A C R

    2003-03-01

    The midgut ultrastucture of the third-instar of Dermatobia hominis (L., Jr.) was investigated using transmission electron microscopy (TEM). The tubular midgut bears a monolayer of epithelial cells with the plasma membrane showing multiple folding where it adjoins the basement membrane. Septate junctions bound the epithelial cells on each side. These cells have electrolucent cytoplasm containing mitochondria, vacuoles, rough and smooth endoplasmic reticula, lamellar bodies, and a prominent nucleus with dispersed chromatin. The peritrophic matrix is close to elongate microvilli, which are sometimes forked. Regenerative cells, in an undifferentiated state when closest to the basement membrane, are scattered throughout the epithelial cells. A thick basement membrane, surrounded by thick connective tissue including muscle, tracheal tubes, and extracellular matrix is linked to epithelial cells by hemidesmosome-like structures. Entero-endocrine, goblet or cuprophilic cells were not observed.

  18. Web technology for emergency medicine and secure transmission of electronic patient records.

    Science.gov (United States)

    Halamka, J D

    1998-01-01

    The American Heritage dictionary defines the word "web" as "something intricately contrived, especially something that ensnares or entangles." The wealth of medical resources on the World Wide Web is now so extensive, yet disorganized and unmonitored, that such a definition seems fitting. In emergency medicine, for example, a field in which accurate and complete information, including patients' records, is urgently needed, more than 5000 Web pages are available today, whereas fewer than 50 were available in December 1994. Most sites are static Web pages using the Internet to publish textbook material, but new technology is extending the scope of the Internet to include online medical education and secure exchange of clinical information. This article lists some of the best Web sites for use in emergency medicine and then describes a project in which the Web is used for transmission and protection of electronic medical records.

  19. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules.

    Science.gov (United States)

    Stukalov, Oleg; Korenevsky, Anton; Beveridge, Terry J; Dutcher, John R

    2008-09-01

    Bacteria can possess an outermost assembly of polysaccharide molecules, a capsule, which is attached to their cell wall. We have used two complementary, high-resolution microscopy techniques, atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study bacterial capsules of four different gram-negative bacterial strains: Escherichia coli K30, Pseudomonas aeruginosa FRD1, Shewanella oneidensis MR-4, and Geobacter sulfurreducens PCA. TEM analysis of bacterial cells using different preparative techniques (whole-cell mounts, conventional embeddings, and freeze-substitution) revealed capsules for some but not all of the strains. In contrast, the use of AFM allowed the unambiguous identification of the presence of capsules on all strains used in the present study, including those that were shown by TEM to be not encapsulated. In addition, the use of AFM phase imaging allowed the visualization of the bacterial cell within the capsule, with a depth sensitivity that decreased with increasing tapping frequency.

  20. In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory

    KAUST Repository

    Meister, Stefan

    2011-04-26

    Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent switching in PCM devices motivate the need to further study its fundamental properties. However, many investigations treat PCM cells as black boxes; nanostructural changes inside the devices remain hidden. Here, using in situ transmission electron microscopy, we observe real-time nanostructural changes in lateral Ge2Sb2Te5 (GST) PCM bridges during switching. We find that PCM devices with similar resistances can exhibit distinct threshold switching behaviors due to the different initial distribution of nanocrystalline and amorphous domains, explaining variability of switching behaviors of PCM cells in the literature. Our findings show a direct correlation between nanostructure and switching behavior, providing important guidelines in the design and operation of future PCM devices with improved endurance and lower variability. © 2011 American Chemical Society.

  1. Transient optical transmission changes induced by pulsed electron radiation in commercial crown silicate glasses

    Science.gov (United States)

    Volchek, A. O.; Lisitsyn, V. M.; Gusarov, A. I.; Yakovlev, V. Yu.; Arbuzov, V. I.

    2003-09-01

    We report on results of time-resolved induced optical absorption measurements in commercial crown silicate glass K8 (similar to Schott BK7 glass) and its radiation-resistant counterpart K108 under 0.25-MeV pulsed electron radiation. The spectra have been obtained in a wavelength range 280-1100 nm on a time interval 10 ns-1 s after the end of a 20-ns pulse. In contrast to behavior of stable defects, the efficiency of non-stationary color centers' generation in the long-wavelength spectrum range is similar for both standard and radiation-resistant glasses. The characteristic time for transmission recovery in the visible range at room temperature was found to be about 100 μs. Based on the Kramers-Krönig relations we have estimated transient refractive index changes. For the same radiation dose such changes can be two orders of magnitude higher than those observed in stationary conditions.

  2. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater

    Directory of Open Access Journals (Sweden)

    Soejima Koichi

    2011-01-01

    Full Text Available Abstract Unique properties of micro- and nanobubbles (MNBs, such as a high adsorption of impurities on their surface, are difficult to verify because MNBs are too small to observe directly. We thus used a transmission electron microscope (TEM with the freeze-fractured replica method to observe oxygen (O2 MNBs in solutions. MNBs in pure water and in 1% NaCl solutions were spherical or oval. Their size distribution estimated from TEM images close to that of the original solution is measured by light-scattered methods. When we applied this technique to the observation of O2 MNBs formed in the wastewater of a sewage plant, we found the characteristic features of spherical MNBs that adsorbed surrounding impurity particles on their surface. PACS: 68.03.-g, 81.07.-b, 92.40.qc

  3. Preparation of the planarian Schmidtea mediterranea for high-resolution histology and transmission electron microscopy.

    Science.gov (United States)

    Brubacher, John L; Vieira, Ana P; Newmark, Phillip A

    2014-03-01

    The flatworm Schmidtea mediterranea is an emerging model species in fields such as stem cell biology, regeneration and evolutionary biology. Excellent molecular tools have been developed for S. mediterranea, but ultrastructural techniques have received far less attention. Processing specimens for histology and transmission electron microscopy (TEM) is notoriously idiosyncratic for particular species or specimen types. Unfortunately, however, most methods for S. mediterranea described in the literature lack numerous essential details, and those few that do provide them rely on specialized equipment that may not be readily available. Here we present an optimized protocol for ultrastructural preparation of S. mediterranea. The protocol can be completed in 6 d, much of which is 'hands-off' time. To aid with troubleshooting, we also illustrate the major effects of seemingly minor variations in fixative, buffer concentration and dehydration steps. This procedure will be useful for all planarian researchers, particularly those with relatively little experience in tissue processing.

  4. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Jensen, Anker Degn; Hansen, Thomas Willum

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder ...... difference over the TEM grid is less than 5. °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use....... gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature...

  5. Ultrastructural study of polyspermy during early embryo development in pigs, observed by scanning electron microscope and transmission electron microscope.

    Science.gov (United States)

    Xia, P; Wang, Z; Yang, Z; Tan, J; Qin, P

    2001-02-01

    Polyspermy is generally considered a pathological phenomenon in mammals. Incidence of polyspermy in porcine eggs in vivo is extremely high (30-40%) compared with other species, and polyspermy rate in the in vitro fertilized eggs in pigs can reach 65%. It is still unknown whether polyspermy to a certain degree is a physiological condition in pigs, and whether porcine eggs have any capability with which to remove the accessory sperm in the cytoplasm. The objectives in the present study are to observe the ultrastructural changes of accessory sperm during early embryonic development in pigs. A total of 58 normal, early embryos at one-, two, three-, and four-cell and morular stages were collected from gilts and were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface ultrastructure showed that sperm fusion with the zona pellucida was a continuous process during one-, two-, three-, and four-cell and morular stages, as observed by the SEM. Accessory sperm were present in the cytoplasm of cleaved embryos. The sperm heads in the cytoplasm of cleaved embryos did not decondense. TEM revealed the presence of a condensed sperm head within a lysosome (or phagolysosome) in a three-cell embryo. These observations suggest that polyspermy may be a physiological condition in pigs and that early embryos may develop to term if accessory sperm do not interrupt the embryo genome. Furthermore, lysosome activity could be another physiological mechanism for removing accessory sperm in the cytoplasm of fertilized eggs and cleaved embryos after fertilization in pigs.

  6. High precision two-dimensional strain mapping in semiconductor devices using nanobeam electron diffraction in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Frieder H., E-mail: fhbauman@us.ibm.com [IBM Microelectronics Division, 2070 Route 52, Hopewell Junction, New York 12533 (United States)

    2014-06-30

    A classical method used to characterize the strain in modern semiconductor devices is nanobeam diffraction (NBD) in the transmission electron microscope. One challenge for this method lies in the fact that the smaller the beam becomes, the more difficult it becomes to analyze the resulting diffraction spot pattern. We show that a carefully designed fitting algorithm enables us to reduce the sampling area for the diffraction patterns on the camera chip dramatically (∼1/16) compared to traditional settings without significant loss of precision. The resulting lower magnification of the spot pattern permits the presence of an annular dark field detector, which in turn makes the recording of images for drift correction during NBD acquisition possible. Thus, the reduced sampling size allows acquisition of drift corrected NBD 2D strain maps of up to 3000 pixels while maintaining a precision of better than 0.07%. As an example, we show NBD strain maps of a modern field effect transistor (FET) device. A special filtering feature used in the analysis makes it is possible to measure strain in silicon devices even in the presence of other crystalline materials covering the probed area, which is important for the characterization of the next generation of devices (Fin-FETs).

  7. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  8. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: hosokawa@bio-net.co.jp [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)

    2016-08-15

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  9. Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hovden, Robert, E-mail: rmh244@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 148532 (United States); Muller, David A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 148532 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853 (United States)

    2012-12-15

    Mono-atomic-layer membranes such as graphene offer new opportunities for imaging and detecting individual light atoms in transmission electron microscopes (TEM). For such applications where multiple scattering and diffraction effects are weak, we evaluate the detection efficiency and interpretability of single atom images for the most common detector geometries using quantitative quantum mechanical simulations. For well-resolved and atomically-thin specimens, the low angle annular dark field (LAADF) detector can provide a significant increase in signal-to-noise over other common detector geometries including annular bright field and incoherent bright field. This dramatically improves the visibility of organic specimens on atomic-layer membranes. Simulations of Adenosine Triphosphate (ATP) imaged under ideal conditions indicate the minimal dose requirements for elastic imaging by STEM or conventional TEM still exceed previously reported dose limits. -- Highlights: Black-Right-Pointing-Pointer Graphene offers new opportunities for imaging individual light atoms in electron microscopes. Black-Right-Pointing-Pointer For ultrathin materials, a low angle annular dark field detector can provide a SNR comparable to TEM. Black-Right-Pointing-Pointer LAADF dramatically improves the visibility of organic specimens on atomic-layer membranes. Black-Right-Pointing-Pointer Simulations for atomic imaging of ATP nucleotides exceed the molecules' dose limits.

  10. Development of a surface conductivity measurement system for ultrahigh vacuum transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Minoda, H. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Hatano, K.; Yazawa, H. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2009-11-15

    The surface conductivity measurement system using a micro-four-point probe (M4PP) had been developed for the ultrahigh vacuum transmission electron microscope (UHV-TEM). Since the current distribution in the sample crystals during the current voltage measurement by the M4PP is localized within the depth of several micrometers from the surface, the system is sensitive to the surface conductivity, which is related with the surface superstructure. It was installed in the main chamber of the TEM and the surface conductivity can be measured in situ. The surface structures were observed by reflection electron microscopy and diffraction (REM-RHEED). REM-RHEED enables us to observe the surface superstructures and their structure defects such as surface atomic steps and domain boundaries of the surface superstructure. Thus the effects of the defects on the surface conductivity can be investigated. In the present paper we present the surface conductivity measurement system and its application to the Si(111)-{radical}(3)x{radical}(3)-Ag surface prepared on the Si(111) vicinal surfaces. The result clearly showed that the surface conductivity was affected by step configuration.

  11. Dark field imaging of biological macromolecules with the scanning transmission electron microscope

    Science.gov (United States)

    Ohtsuki, Mitsuo; Isaacson, Michael S.; Crewe, A. V.

    1979-01-01

    A scanning transmission electron microscope (STEM) equipped with a field emission gun has been employed for the examination of biological macromolecules at high resolution. The quality of micrographs obtained with the STEM is dependent upon the quality of the substrate used to support biological objects because the image contrast in dark field is proportional to the mass density of the specimen. In order to reduce deleterious effects of the substrates on the image quality, we have developed a method of fabricating substrates consisting of very thin, very clean carbon films supported on very clean fenestrated plastic films. These films are approximately 15 Å thick. Well-known biological macromolecules such as glutamine synthetase and tobacco mosaic virus (both stained) and low-density lipoprotein and ferritin (both unstained were placed on these substrates and examined with the STEM by using various modes of contrast. The micrographs obtained by using the dark field mode of contrast employing an annular detector were free from phase contrast, as expected. Using this contrast mode, we have been able to directly observe (in-focus) 2.5- to 4.4-Å lattice spacings in the ferritin core. The effect of electron radiation damage on the helical structure of tobacco mosaic virus was also examined. Micrographs as well as corresponding optical diffraction patterns obtained with moderately low doses showed very clear helical structure from both sides of the virus. In addition, the (11.5 Å)-1 layer lines indicated the effective resolution attained on these particles. Images PMID:35788

  12. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy.

    Science.gov (United States)

    Hacker, Christian; Asadi, Jalal; Pliotas, Christos; Ferguson, Sophie; Sherry, Lee; Marius, Phedra; Tello, Javier; Jackson, David; Naismith, James; Lucocq, John Milton

    2016-05-04

    Nanoparticles are of increasing importance in biomedicine but quantification is problematic because current methods depend on indirect measurements at low resolution. Here we describe a new high-resolution method for measuring and quantifying nanoparticles in suspension. It involves premixing nanoparticles in a hydrophilic support medium (methylcellulose) before introducing heavy metal stains for visualization in small air-dried droplets by transmission electron microscopy (TEM). The use of methylcellulose avoids artifacts of conventional negative stain-TEM by (1) restricting interactions between the nanoparticles, (2) inhibiting binding to the specimen support films and (3) reducing compression after drying. Methylcellulose embedment provides effective electron imaging of liposomes, nanodiscs and viruses as well as comprehensive visualization of nanoparticle populations in droplets of known size. These qualities facilitate unbiased sampling, rapid size measurement and estimation of nanoparticle numbers by means of ratio counting using a colloidal gold calibrant. Specimen preparation and quantification take minutes and require a few microliters of sample using only basic laboratory equipment and a standard TEM.

  13. Correlative microscopy of Purkinje dendritic spines: a field emission scanning and transmission electron microscopic study.

    Science.gov (United States)

    Castejón, O J; Castellano, A; Arismendi, G; Apkarian, R

    2004-01-01

    Purkinje dendritic spines (Pds) of mouse cerebellar cortex were examined by field emission scanning electron microscopy (FESEM) and by transmission electron microscopy (TEM) using ultrathin sections and freeze-etching replicas, to study their three-dimensional features and intramembrane morphology. FESEM showed unattached mushroom-type, elongated and lanceolate Pds separated by 100-500 nm on the dendritic shaft surface. High resolution FESEM showed 25-50 nm globular subunits at the spine postsynaptic density corresponding to the localization of postsynaptic proteins and/or postsynaptic receptors. TEM images of ultrathin sections showed gem-like, mushroom-shaped, lanceolate and neckless or stubby spines. Freeze etching replicas exposed postsynaptic intramembrane particles that can be correlated with the globular subunits observed at high resolution FESEM. Parallel and climbing fiber endings were observed making asymmetric synaptic contacts with the Pds heads. Simultaneous contacts with the necks and heads were also found. The variety of Pds shapes were interpreted as spine conformational changes related with spine dynamic, and spine plasticity.

  14. Transmission electron microscopy artifacts in characterization of the nanomaterial-cell interactions.

    Science.gov (United States)

    Leung, Yu Hang; Guo, Mu Yao; Ma, Angel P Y; Ng, Alan M C; Djurišić, Aleksandra B; Degger, Natalie; Leung, Frederick C C

    2017-07-01

    We investigated transmission electron microscopy artifacts obtained using standard sample preparation protocols applied to the investigation of Escherichia coli cells exposed to common nanomaterials, such as TiO 2 , Ag, ZnO, and MgO. While the common protocols for some nanomaterials result only in known issues of nanomaterial-independent generation of anomalous deposits due to fixation and staining, for others, there are reactions between the nanomaterial and chemicals used for post-fixation or staining. Only in the case of TiO 2 do we observe only the known issues of nanomaterial-independent generation of anomalous deposits due to exceptional chemical stability of this material. For the other three nanomaterials, different artifacts are observed. For each of those, we identify causes of the observed problems and suggest alternative sample preparation protocols to avoid artifacts arising from the sample preparation, which is essential for correct interpretation of the obtained images and drawing correct conclusions on cell-nanomaterial interactions. Finally, we propose modified sample preparation and characterization protocols for comprehensive and conclusive investigations of nanomaterial-cell interactions using electron microscopy and for obtaining clear and unambiguous revelation whether the nanomaterials studied penetrate the cells or accumulate at the cell membranes. In only the case of MgO and ZnO, the unambiguous presence of Zn and Mg could be observed inside the cells.

  15. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Marta Agati

    2017-02-01

    Full Text Available Scanning transmission electron microscopy (STEM was successfully applied to the analysis of silicon nanowires (SiNWs that were self-assembled during an inductively coupled plasma (ICP process. The ICP-synthesized SiNWs were found to present a Si–SiO2 core–shell structure and length varying from ≈100 nm to 2–3 μm. The shorter SiNWs (maximum length ≈300 nm were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor–liquid–solid (VLS mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs.

  16. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    Science.gov (United States)

    Berkels, Benjamin; Wirth, Benedikt

    2017-09-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.

  17. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy.

    Science.gov (United States)

    Shebanova, Anastasia; Ismagulova, Tatiana; Solovchenko, Alexei; Baulina, Olga; Lobakova, Elena; Ivanova, Alexandra; Moiseenko, Andrey; Shaitan, Konstantin; Polshakov, Vladimir; Nedbal, Ladislav; Gorelova, Olga

    2017-05-01

    Vacuole is a multifunctional compartment central to a large number of functions (storage, catabolism, maintenance of the cell homeostasis) in oxygenic phototrophs including microalgae. Still, microalgal cell vacuole is much less studied than that of higher plants although knowledge of the vacuolar structure and function is essential for understanding physiology of nutrition and stress tolerance of microalgae. Here, we combined the advanced analytical and conventional transmission electron microscopy methods to obtain semi-quantitative, spatially resolved at the subcellular level information on elemental composition of the cell vacuoles in several free-living and symbiotic chlorophytes. We obtained a detailed record of the changes in cell and vacuolar ultrastructure in response to environmental stimuli under diverse conditions. We suggested that the vacuolar inclusions could be divided into responsible for storage of phosphorus (mainly in form of polyphosphate) and those accommodating non-protein nitrogen (presumably polyamine) reserves, respectively.The ultrastructural findings, together with the data on elemental composition of different cell compartments, allowed us to speculate on the role of the vacuolar membrane in the biosynthesis and sequestration of polyphosphate. We also describe the ultrastructural evidence of possible involvement of the tonoplast in the membrane lipid turnover and exchange of energy and metabolites between chloroplasts and mitochondria. These processes might play a significant role in acclimation in different stresses including nitrogen starvation and extremely high level of CO2 and might also be of importance for microalgal biotechnology. Advantages and limitations of application of analytical electron microscopy to biosamples such as microalgal cells are discussed.

  18. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, A.; Duchamp, M.; Boothroyd, C. B.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich (Germany); Ney, A.; Ney, V. [Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität, Altenberger Str. 69, 4040 Linz (Austria); Galindo, P. L. [Departamento de Ingeniería Informática, Universidad de Cádiz, 11510 Cádiz (Spain); Kaspar, T. C.; Chambers, S. A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2013-12-28

    We study planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al{sub 2}O{sub 3}), as well as the Co:ZnO/Al{sub 2}O{sub 3} interface, using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy. Co:ZnO samples that were deposited using pulsed laser deposition and reactive magnetron sputtering are both found to contain extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3–4 Co:ZnO layers next to the Al{sub 2}O{sub 3} substrate. The stacking fault density is in the range of 10{sup 17} cm{sup −3}. We also measure the local lattice distortions around the stacking faults. It is shown that despite the relatively high density of planar defects, lattice distortions, and small compositional variation, the Co:ZnO films retain paramagnetic properties.

  19. Automated detection of synapses in serial section transmission electron microscopy image stacks.

    Directory of Open Access Journals (Sweden)

    Anna Kreshuk

    Full Text Available We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem.

  20. Automated detection of synapses in serial section transmission electron microscopy image stacks.

    Science.gov (United States)

    Kreshuk, Anna; Koethe, Ullrich; Pax, Elizabeth; Bock, Davi D; Hamprecht, Fred A

    2014-01-01

    We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem).

  1. Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.

    Science.gov (United States)

    Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad

    2016-10-01

    Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

  2. Telocytes in pleura: two- and three-dimensional imaging by transmission electron microscopy.

    Science.gov (United States)

    Hinescu, Mihail E; Gherghiceanu, Mihaela; Suciu, Laura; Popescu, Laurentiu M

    2011-02-01

    Information about the ultrastructure of connective (interstitial) cells supporting the pleural mesothelium is scarce. Our aim has been to examine whether telocytes (TCs) are present in pleura, as in epicardium and mesentery. TCs are a distinct type of cell, characterized by specific prolongations named telopodes (Tp). We have used transmission electron microscopy (TEM) and electron tomography (ET) to determine whether ultrastructural diagnostic criteria accepted for TCs are fulfilled by any of the cell subpopulations existing in the sub-mesothelial layer in mouse and human pleura. TCs have been identified with TEM by their characteristic prolongations. Tp appear long and moniliform, because of the alternation of podomeres (thin segments of less than 0.2 μm) and podoms (small dilations accommodating caveolae, mitochondria, and endoplasmic reticulum). Tp ramifications follow a dichotomic pattern and establish specialized cell-to-cell junctional complexes. TCs, via their Tp, seem to form an interstitial network beneath the mesothelium, covering about two-thirds of the abluminal mesothelial layer. ET has revealed complex junctional structures and tight junctions connecting pleural TCs, and small vesicles at this level in Tp. Thus, pleural TCs share significant similarities with TCs described in other serosae. Whether TCs are a (major) player in mesothelial-cell-induced tissue repair remains to be established. Nevertheless, the extremely long thin Tp and complex junctional structures that they form and the release of vesicles (or exosomes) indicate the participation of TCs in long-distance homo- or heterocellular communication.

  3. Demonstration of correlative atomic force and transmission electron microscopy using actin cytoskeleton.

    Science.gov (United States)

    Yamada, Yutaro; Konno, Hiroki; Shimabukuro, Katsuya

    2017-01-01

    In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level.

  4. Transmission electron microscopy of defects and internal fields in GaN structures

    CERN Document Server

    Mokhtari, H

    2001-01-01

    segregation in the defects. In MBE grown GaN/In sub 0 sub . sub 1 Ga sub 0 sub . sub 9 N/GaN SQWs and MQWs, V shaped defects were found to be present in the InGaN regions, which locally reduced the width of the InGaN layers. The main aim of this study was to understand the microstructure of GaN and InGaN/GaN and to examine electric fields around the defects, and across the quantum wells by electron holography. For this reason different types of GaN and InGaN/GaN samples have been prepared and studied. Conventional transmission electron microscopy has been used for structural study of two MBE grown GaN/GaAs samples, grown at room temperature and at 340 deg C. The structure of the samples were found to be hexagonal polycrystalline in an amorphous GaN matrix, and textured hexagonal polycrystalline material respectively. The experimental results indicate that the higher growth temperature results in a more crystalline material with a higher density of bigger grain sizes. Different types of undoped and Si doped Ga...

  5. The core contribution of transmission electron microscopy to functional nanomaterials engineering.

    Science.gov (United States)

    Carenco, Sophie; Moldovan, Simona; Roiban, Lucian; Florea, Ileana; Portehault, David; Vallé, Karine; Belleville, Philippe; Boissière, Cédric; Rozes, Laurence; Mézailles, Nicolas; Drillon, Marc; Sanchez, Clément; Ersen, Ovidiu

    2016-01-21

    Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano)materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.

  6. Analysis of local dislocation densities in cold-rolled alloy 690 using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae-Young; Kim, Sung Woo; Hwang, Seong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Service failure of alloy 690 in NPP has not been reported. However, some research groups reported that primary water stress corrosion cracking (PWSCC) occurred in severely cold-rolled alloy 690. Transgranular craking was also reported in coll-rolled alloy 690 with a banded structure. In order to understand the effect of cold rolling on the cracking of alloy 690, many research groups have focused on the local strain and the cracked carbide induced by cold-rolling, by using electron backscatter diffraction (EBSD). Transmission electron microscopy (TEM) has been widely used to characterize structural materials because this technique has superior spatial resolution and allows for the analysis of crystallographic and chemical information. The aim of the present study is to understand the mechanism of the abnormally high crack growth rate (CGR) in cold-rolled alloy 690 with a banded structure. The local dislocation density was measured by TEM to confirm the effects of local strain on the stress corrosion cracking (SCC) of alloy 690 with a banded structure. The effects of intragranular carbides on the SCC were also evaluated in this study. The local dislocation densities were directly measured using TEM to understand the effect of local strain on the SCC of Ni-based alloy 690 with a banded structure. The dislocation densities in the interior of the grains sharply increased in highly cold-rolled specimens due to intragranular carbide, which acted as a dislocation source.

  7. Scanning transmission electron microscopy: Albert Crewe's vision and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, Ondrej L., E-mail: krivanek@nion.com [Nion Company, 1102 8th Street, Kirkland, WA 98033 (United States); Chisholm, Matthew F. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6069 (United States); Murfitt, Matthew F.; Dellby, Niklas [Nion Company, 1102 8th Street, Kirkland, WA 98033 (United States)

    2012-12-15

    Some four decades were needed to catch up with the vision that Albert Crewe and his group had for the scanning transmission electron microscope (STEM) in the nineteen sixties and seventies: attaining 0.5 A resolution, and identifying single atoms spectroscopically. With these goals now attained, STEM developments are turning toward new directions, such as rapid atomic resolution imaging and exploring atomic bonding and electronic properties of samples at atomic resolution. The accomplishments and the future challenges are reviewed and illustrated with practical examples. -- Highlights: Black-Right-Pointing-Pointer TV-rate STEM imaging of heavy atoms is demonstrated. Black-Right-Pointing-Pointer DNA sequencing by STEM dark field imaging should be possible at a rate of 10{sup 6} bases/s. Black-Right-Pointing-Pointer Individual silicon atom impurities in graphene are imaged atom-by-atom. Black-Right-Pointing-Pointer Single atoms of nitrogen and boron incorporated in graphene are imaged spectroscopically. Black-Right-Pointing-Pointer Bonding of individual atoms can be probed by analyzing the fine structures of their EEL spectra.

  8. Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid.

    Science.gov (United States)

    Ring, Elisabeth A; de Jonge, Niels

    2012-11-01

    Immobilized gold nanoparticles were imaged in a liquid containing water and 50% glycerol with scanning transmission electron microscopy (STEM). The specimen was enclosed in a liquid compartment formed by two silicon microchips with electron transparent windows. A series of images was recorded at video frequency with a spatial resolution of 1.5nm. The nanoparticles detached from their support after imaging them for several seconds at a magnification of 250,000. Their movement was found to be much different than the movement of nanoparticles moving freely in liquid as described by Brownian Motion. The direction of motion was not random-the nanoparticles moved either in a preferred direction, or radially outwards from the center of the image. The displacement of the gold nanoparticles over time was three orders of magnitude smaller than expected on the basis of Brownian Motion. This finding implies that nanoscale objects of flexible structure or freely floating, including nanoparticles and biological objects, can be imaged with nanoscale resolution, as long as they are in close proximity to a solid support structure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. In Situ Transmission Electron Microscopy Characterization and Manipulation of Two-Dimensional Layered Materials beyond Graphene.

    Science.gov (United States)

    Luo, Chen; Wang, Chaolun; Wu, Xing; Zhang, Jian; Chu, Junhao

    2017-09-01

    Two-dimensional (2D) ultra-thin materials beyond graphene with rich physical properties and unique layered structures are promising for applications in electronics, chemistry, energy, and bioscience, etc. The interaction mechanisms among the structures, chemical compositions and physical properties of 2D layered materials are critical for fundamental nanosciences and the practical fabrication of next-generation nanodevices. Transmission electron microscopy (TEM), with its high spatial resolution and versatile external fields, is undoubtedly a powerful tool for the static characterization and dynamic manipulation of nanomaterials and nanodevices at the atomic scale. The rapid development of thin-film and precision microelectromechanical systems (MEMS) techniques allows 2D layered materials and nanodevices to be probed and engineered inside TEM under external stimuli such as thermal, electrical, mechanical, liquid/gas environmental, optical, and magnetic fields at the nanoscale. Such advanced technologies leverage the traditional static TEM characterization into an in situ and interactive manipulation of 2D layered materials without sacrificing the resolution or the high vacuum chamber environment, facilitating exploration of the intrinsic structure-property relationship of 2D layered materials. In this Review, the dynamic properties tailored and observed by the most advanced and unprecedented in situ TEM technology are introduced. The challenges in spatial, time and energy resolution are discussed also. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Transmission electron microscopy investigation of colloids and particles from landfill leachates.

    Science.gov (United States)

    Matura, Marek; Ettler, Vojtech; Klementová, Mariana

    2012-05-01

    Leachates collected at two (active and closed) municipal solid waste (MSW) landfills were examined for colloids and particles by transmission electron microscopy, energy dispersive spectrometry, selected area electron diffraction and for the chemical compositions of the filtrates after the filtration to 0.1 µm and ultrafiltration to 1 kDa (~ 1 nm). Six groups of colloids/particles in the range 5 nm to 5 µm were determined (in decreasing order of abundance): carbonates, phyllosilicates (clay minerals and micas), quartz, Fe-oxides, organics and others (salts, phosphates). Inorganic colloids/particles in leachates from the active landfill predominantly consist of calcite (CaCO(3)) and minor clay minerals and quartz (SiO(2)). The colloids/particles in the leachates from the closed landfill consist of all the observed groups with dominant phyllosilicates. Whereas calcite, Fe-oxides and phosphates can precipitate directly from the leachates, phyllosilicates and quartz are more probably either derived from the waste or formed by erosion of the geological environment of the landfill. Low amounts of organic colloids/particles were observed, indicating the predominance of organic molecules in the 'truly dissolved' fraction (fulvic compounds). Especially newly formed calcite colloids forming particles of 500 nm and stacking in larger aggregates can bind trace inorganic contaminants (metals/metalloids) and immobilize them in landfill environments.

  11. Comparison of nitrogen adsorption and transmission electron microscopy analyses for structural characterization of carbon nanotubes

    Science.gov (United States)

    Abbaslou, Reza Malek; Vosoughi, Vahid; Dalai, Ajay K.

    2017-10-01

    Carbon nanotubes (CNTs) are different from other porous substrates such as activated carbon due to their high external surfaces. This structural feature can lead in some uncertainties in the results of nitrogen adsorption analysis for characterization of CNTs. In this paper, the results of microscopic analyses and nitrogen adsorption method for characterization of carbon nanotubes were compared. Five different types of CNTs with different structures were either synthesized or purchased. The CNT samples were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and N2 adsorption analysis. The comparisons between the results from the microscopic analyses and N2 adsorption showed that the total pore volume and BET surface measurements include the internal and external porosity of CNTs. Therefore, the interpretation of N2 adsorption data required accurate TEM analysis. In addition, the evaluation of pore size distribution curves from all CNT samples in this study and several instances in the literature revealed the presence of a common peak in the range of 2-5 nm. This peak does not explain the inner pore size distribution. The presence of this common peak can be attributed to the strong adsorption of N2 on the junction of touched and crossed nanotubes.

  12. Light and transmission electron microscopy of Cepedea longa (Opalinidae from Fejervarya limnocharis

    Directory of Open Access Journals (Sweden)

    Li Can

    2017-01-01

    Full Text Available Cepedea longa Bezzenberger, 1904, collected from Fejervarya limnocharis (Amphibia, Anura, Ranidae from Honghu Lake, Hubei Province, China in May–July 2016, is described at both light and transmission electron microscope levels. This is the first electron microscopic study of this species. Cepedea longa possesses a developed fibrillar skeletal system, composed of longitudinal fibrillar bands and transversal fibrils as well as numerous thin microfibrils dispersed in the endoplasm, which may play an important role in morphogenesis and offer some resilience to deformations of the cell. Longitudinal microfibrils are polarizing elements of kineties, bordering the somatic kineties on the left side and possibly responsible for kinetosome alignment. Two types of vesicles exist in the somatic cortex: globular endocytotic vesicles and flattened exocytotic vesicles. As to the nuclei of C. longa, a thick microfibrillar layer was observed to attach to the cytoplasmic face of the nuclear envelope. This fact suggests no necessary connection between the presence of this microfibrillar layer and the number of nuclei. In addition, some unknown tightly-packed microtubular structures in the nucleoplasm were observed for the first time in opalinids; neither their nature nor physiological significance is known. A detailed list of all reported Cepedea species is included.

  13. Collagen Fibrils and Proteoglycans of Macular Dystrophy Cornea: Ultrastructure and 3D Transmission Electron Tomography.

    Science.gov (United States)

    Akhtar, Saeed; Alkatan, Hind M; Kirat, Omar; Khan, Adnan A; Almubrad, Turki

    2015-06-01

    We report the ultrastructure and 3D transmission electron tomography of collagen fibrils (CFs), proteoglycans (PGs), and microfibrils within the CF of corneas of patients with macular corneal dystrophy (MCD). Three normal corneas and three MCD corneas from three Saudi patients (aged 25, 31, and 49 years, respectively) were used for this study. The corneas were processed for light and electron microscopy studies. 3D images were composed from a set of 120 ultrastructural images using the program "Composer" and visualized using the program "Visuliser Kai". 3D image analysis of MCD cornea showed a clear organization of PGs around the CF at very high magnification and degeneration of the microfibrils within the CF. Within the MCD cornea, the PG area in the anterior stroma was significantly larger than in the middle and posterior stroma. The PG area in the MCD cornea was significantly larger compared with the PG area in the normal cornea. The CF diameter and inter-fibrillar spacing of the MCD cornea were significantly smaller compared with those of the normal cornea. Ultrastructural 3D imaging showed that the production of unsulfated keratin sulfate (KS) may lead to the degeneration of micro-CFs within the CFs. The effect of the unsulfated KS was higher in the anterior stroma compared with the posterior stroma.

  14. In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Ambrosini, S.; Wagner, Jakob Birkedal; Booth, Tim

    2011-01-01

    Self catalyzed GaAs nanowires grown on Si-treated GaAs substrates were studied with a transmission electron microscope before and after annealing at 600◦C. At room temperature the nanowires have a zincblende structure and are locally characterized by a high density of rotational twins and stackin...... faults. Selected area diffraction patterns and high-resolution transmission electron microscopy images show that nanowires undergo structural modifications upon annealing, suggesting a decrease of defect density following the thermal treatment....

  15. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas; La transmission d`ondes cyclotroniques electroniques: une approche nouvelle pour caracteriser les fonctions de distribution electronique des plasmas chauds de Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Michelot, Y.

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes.

  16. Biological applications and transmission electron microscopy investigation of mesoporous silica nanoparticles

    Science.gov (United States)

    Trewyn, Brian G.

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both HeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the antioxidant dependent release was measured. Finally, the biological interaction of the material was determined along with TEM measurements. An electron microscopy investigation proved that the pore openings of the MSN were indeed blocked by the Fe 3O4 nanoparticles. The biological interaction investigation demonstrated Fe3O4-capped MSN

  17. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  18. Ultra-precise measurement of optical aberrations for sub-Aangstroem transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, J.

    2008-06-15

    Quantitative investigations of material structures on an atomic scale by means of highresolution transmission electron microscopy (HRTEM) impose not only extreme demands on the mechanic and electromagnetic stability of the applied instruments but require also their precise electron-optical adjustment. Today a physical resolution well below one Aangstroem can be achieved with commercially available microscopes on a daily basis. However, the achieved resolution can often not be reliably exploited for the interpretation of the resulting microscopical data due to the presence of so-called higher-order lens aberrations. At the starting time of this work, a sufficiently accurate procedure to measure higher-order aberrations was urgently missing. Since aberration measurement is a mandatory prerequisite for any technique of aberration control enabling quantitative high-resolution microscopy, the goal of this work is to develop such a measurement procedure for the Sub-Aangstroem regime. The measurement procedures developed in the course of this work are based on the numerical evaluation of a series of images taken from an amorphous object under electron-beam illumination with varying tilt. New techniques have been developed for the evaluation of single images as well as for the optimised evaluation of the whole series. These procedures allow microscope users to perform quantitative HRTEM even at a resolution of 0.5 Aangstroem. The precision reached with the newly developed measurement procedures is unprecedented and surpasses existing solutions by at least one order of magnitude in any respect. All the concepts and procedures for aberration measurement developed in this work have been implemented in a software package which satisfies professional demands with respect to robustness, precision, speed and user-friendliness. The new automatic aberrationmeasurement procedures are suitable to establish HRTEM as a quantitative technique for material science investigations in the

  19. A toolkit for the characterization of CCD cameras for transmission electron microscopy.

    Science.gov (United States)

    Vulovic, M; Rieger, B; van Vliet, L J; Koster, A J; Ravelli, R B G

    2010-01-01

    Charge-coupled devices (CCD) are nowadays commonly utilized in transmission electron microscopy (TEM) for applications in life sciences. Direct access to digitized images has revolutionized the use of electron microscopy, sparking developments such as automated collection of tomographic data, focal series, random conical tilt pairs and ultralarge single-particle data sets. Nevertheless, for ultrahigh-resolution work photographic plates are often still preferred. In the ideal case, the quality of the recorded image of a vitrified biological sample would solely be determined by the counting statistics of the limited electron dose the sample can withstand before beam-induced alterations dominate. Unfortunately, the image is degraded by the non-ideal point-spread function of the detector, as a result of a scintillator coupled by fibre optics to a CCD, and the addition of several inherent noise components. Different detector manufacturers provide different types of figures of merit when advertising the quality of their detector. It is hard for most laboratories to verify whether all of the anticipated specifications are met. In this report, a set of algorithms is presented to characterize on-axis slow-scan large-area CCD-based TEM detectors. These tools have been added to a publicly available image-processing toolbox for MATLAB. Three in-house CCD cameras were carefully characterized, yielding, among others, statistics for hot and bad pixels, the modulation transfer function, the conversion factor, the effective gain and the detective quantum efficiency. These statistics will aid data-collection strategy programs and provide prior information for quantitative imaging. The relative performance of the characterized detectors is discussed and a comparison is made with similar detectors that are used in the field of X-ray crystallography.

  20. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    Science.gov (United States)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  1. Enrichment of boron at grain boundaries of platinum-based alloys determined by electron energy loss spectroscopy in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Preussner, Johannes [Fraunhofer Institute for Mechanics of Materials (IWM), Freiburg (Germany); Karlsruhe Institue of Technology, Karlsruhe (DE). Inst. for Reliability of Components and Systems (izbs); Fleischmann, Ernst; Voelkl, Rainer; Glatzel, Uwe [Bayreuth Univ. (Germany). Metals and Alloys

    2010-05-15

    Polycrystalline platinum-based alloys show very good creep properties at high temperatures. Small amounts of boron (less than 1 at.%) considerably increase the creep strength. Transmission electron microscopy measurements were conducted to localize the element boron in the samples. With image electron energy loss spectroscopy spectra were extracted revealing an enrichment of B at grain boundaries. The boron distribution was plotted with the three window method. (orig.)

  2. EMERGENCE OF A LYOTROPIC LAMELLAR PHASE - SURFACTANT-AQUEOUS PHASE CONTACT EXPERIMENTS EXAMINED WITH A CRYO-TRANSMISSION ELECTRON-MICROSCOPE : Surfactant-Aqueous Phase Contact Experiments Examined with a Cryo-Transmission Electron Microscope

    NARCIS (Netherlands)

    Sein, A; van Breemen, J.F.L.; Engberts, J.B.F.N.

    A phase penetration experiment has been conducted, employing a cryo-transmission electron microscope (cryo-TEM). With this technique, the phase transitions and the molecular rearrangement that result from the phase penetration can be studied on almost the molecular level. The technique has been

  3. On the role of the gas environment, electron-dose-rate, and sample on the image resolution in transmission electron microscopy

    DEFF Research Database (Denmark)

    Ek, Martin; Jespersen, Sebastian Pirel Fredsgaard; Damsgaard, Christian Danvad

    2016-01-01

    The introduction of gaseous atmospheres in transmission electron microscopy offers the possibility of studying materials in situ under chemically relevant environments. The presence of a gas environment can degrade the resolution. Surprisingly, this phenomenon has been shown to depend on the elec...

  4. Dislocation imaging for orthopyroxene using an atom-resolved scanning transmission electron microscopy.

    Science.gov (United States)

    Kumamoto, Akihito; Kogure, Toshihiro; Raimbourg, Hugues; Ikuhara, Yuichi

    2014-11-01

    Dislocations, one-dimensional lattice defects, appear as a microscopic phenomenon while they are formed in silicate minerals by macroscopic dynamics of the earth crust such as shear stress. To understand ductile deformation mechanisms of silicates, atomic structures of the dislocations have been examined using transmission electron microscopy (TEM). Among them, it has been proposed that {100} primary slip system of orthopyroxene (Opx) is dissociated into partial dislocations, and a stacking fault with the clinopyroxene (Cpx) structure is formed between the dislocations. This model, however, has not been determined completely due to the complex structures of silicates. Scanning transmission electron microscopy (STEM) has a potential to determine the structure of dislocations with single-atomic column sensitivity, particularly by using high-angle annular dark field (HAADF) and annular bright field (ABF) imaging with a probing aberration corrector.[1] Furthermore, successive analyses from light microscopy to atom-resolved STEM have been achieved by focused ion beam (FIB) sampling techniques.[2] In this study, we examined dislocation arrays at a low-angle grain boundary of ∼1° rotation about the b-axis in natural deformed Opx using a simultaneous acquisition of HAADF/ABF (JEM-ARM200F, JEOL) equipped with 100 mm2 silicon drift detector (SDD) for energy dispersive X-ray spectroscopy (EDS). Figure 1 shows averaged STEM images viewed along the b- axis of Opx extracted from repeating units. HAADF provides the cation-site arrangement, and ABF distinguishes the difference of slightly rotated SiO4 tetrahedron around the a- axis. This is useful to distinguish the change of stacking sequence between the partial dislocations. Two types of stacking faults with Cpx and protopyroxene (Ppx) structures were identified between three partial dislocations. Furthermore, Ca accumulation in M2 (Fe) site around the stacking faults was detected by STEM-EDS. Interestingly, Ca is

  5. Transmission Electron Microscopy-A Textbook for Materials Science, by David B. Williams and C. Barry Carter

    Science.gov (United States)

    Brown, Reviewed By Paul D.

    1999-11-01

    When a new textbook on transmission electron microscopy is published and all of one's colleagues, established research scientists and graduate students alike, immediately go out and buy a copy some even using their own money then that is probably the best recommendation a book can ever get!

  6. 31 CFR 363.18 - Is Public Debt liable if the electronic transmission of my data is intercepted?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Is Public Debt liable if the electronic transmission of my data is intercepted? 363.18 Section 363.18 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE...

  7. Transmission electron microscopy study of Listeria monocytogenes serotype 1/2a cells exposed to sublethal heat stress and carvacrol

    Science.gov (United States)

    The objective of this study was to investigate the morphological changes that occurred in Listeria monocytogenes serotype 1/2a cells as visualized by transmission electron microscopy (TEM) after exposure to sublethal heat stress at 48°C for 60 min and in combination with lethal concentration of carv...

  8. Dislocation dynamics in Al-Mg-Zn alloys : A nuclear magnetic resonance and transmission electron microscopic study

    NARCIS (Netherlands)

    Hosson, J.Th.M. De; Kanert, O.; Schlagowski, U.; Boom, G.

    1988-01-01

    Pulsed nuclear magnetic resonance (NMR) proved to be a complementary new technique for the study of moving dislocations in Al-Mg-Zn alloys. The NMR technique, in combination with transmission electron microscopy (TEM), has been applied to study dislocation motion in Al-0.6 at. % Mg-1 at. % Zn and

  9. 40 CFR Appendix A to Subpart E of... - Interim Transmission Electron Microscopy Analytical Methods-Mandatory and Nonmandatory-and...

    Science.gov (United States)

    2010-07-01

    ...—No structure detected. 16. Operator—A person responsible for the TEM instrumental analysis of the.../mm2 —Structures per square millimeter. 24. TEM—Transmission electron microscope. B. Sampling 1. The... fiber definition. 15. NSD—No structure detected. 16. Operator—A person responsible for the TEM...

  10. In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Quentin; Faes, Antonin; Wagner, Jakob Birkedal

    2010-01-01

    Environmental transmission electron microscopy is used in combination with density functional theory calculations to study the redox stability of a nickel/yttria-stabilized zirconia solid oxide fuel cell anode. The results reveal that the transfer of oxygen from NiO to yttria-stabilized zirconia...

  11. Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images

    NARCIS (Netherlands)

    Gonnissen, J.; De Backer, A.; Den Dekker, A.J.; Martinez, G.T.; Rosenauer, A.; Sijbers, J.; Van Aert, S.

    2014-01-01

    We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage

  12. Imaging heterostructured quantum dots in cultured cells with epifluorescence and transmission electron microscopy

    Science.gov (United States)

    Rivera, Erin M.; Trujillo Provencio, Casilda; Steinbrueck, Andrea; Rastogi, Pawan; Dennis, Allison; Hollingsworth, Jennifer; Serrano, Elba

    2011-03-01

    Quantum dots (QDs) are semiconductor nanocrystals with extensive imaging and diagnostic capabilities, including the potential for single molecule tracking. Commercially available QDs offer distinct advantages over organic fluorophores, such as increased photostability and tunable emission spectra, but their cadmium selenide (CdSe) core raises toxicity concerns. For this reason, replacements for CdSe-based QDs have been sought that can offer equivalent optical properties. The spectral range, brightness and stability of InP QDs may comprise such a solution. To this end, LANL/CINT personnel fabricated moderately thick-shell novel InP QDs that retain brightness and emission over time in an aqueous environment. We are interested in evaluating how the composition and surface properties of these novel QDs affect their entry and sequestration within the cell. Here we use epifluorescence and transmission electron microscopy (TEM) to evaluate the structural properties of cultured Xenopus kidney cells (A6; ATCC) that were exposed either to commercially available CdSe QDs (Qtracker® 565, Invitrogen) or to heterostructured InP QDs (LANL). Epifluorescence imaging permitted assessment of the general morphology of cells labeled with fluorescent molecular probes (Alexa Fluor® ® phalloidin; Hoechst 33342), and the prevalence of QD association with cells. In contrast, TEM offered unique advantages for viewing electron dense QDs at higher resolution with regard to subcellular sequestration and compartmentalization. Preliminary results show that in the absence of targeting moieties, InP QDs (200 nM) can passively enter cells and sequester nonspecifically in cytosolic regions whereas commercially available targeted QDs principally associate with membranous structures within the cell. Supported by: NIH 5R01GM084702.

  13. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  14. Interfacial reactions of glasses for biomedical application by scanning transmission electron microscopy and microanalysis.

    Science.gov (United States)

    Banchet, V; Michel, J; Jallot, E; Wortham, L; Bouthors, S; Laurent-Maquin, D; Balossier, G

    2006-05-01

    Short-term physico-chemical reactions at the interface between bioactive glass particles and biological fluids are studied for three glasses with different bioactive properties; these glasses are in the SiO(2)-Na(2)O-CaO-P(2)O(5)-K(2)O-Al(2)O(3)-MgO system. Our aim is to show the difference between the mechanisms of their surface reactions. The relation between the composition and the bioactive properties of these glasses is also discussed. The elemental analysis is performed at the submicrometer scale by scanning transmission electron microscopy associated with energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. After different immersion times (ranging from 0 to 96 h) of bioactive glass particles in a simulated biological solution, results show the formation of different surface layers at the glass periphery in the case of two bioactive glasses (A9 and BVA). For the third glass (BVH) we do not observe any surface layer formation or any modification of the glass composition. For the two other glasses (A9 and BVA), we observe the presence of different layers: an already observed (Si, O, Al) rich layer at the periphery, a previously demonstrated thin (Si, O) layer formed on top of the (Si, O, Al) layer and a (Ca, P) layer. We determine the different steps of the mechanisms of the surface reactions, which appear to be similar in these glasses, and compare the physico-chemical reactions and kinetics using the different immersion times. The A9 glass permits the observation of all important steps of the surface reactions which lead to bioactivity. This study shows the important relationship between composition and bioactivity which can determine the medical applicability of the glass.

  15. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  16. Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy

    Science.gov (United States)

    Luo, Langli; Liu, Bin; Song, Shidong; Xu, Wu; Zhang, Ji-Guang; Wang, Chongmin

    2017-07-01

    The performances of a Li-O2 battery depend on a complex interplay between the reaction mechanism at the cathode, the chemical structure and the morphology of the reaction products, and their spatial and temporal evolution; all parameters that, in turn, are dependent on the choice of the electrolyte. In an aprotic cell, for example, the discharge product, Li2O2, forms through a combination of solution and surface chemistries that results in the formation of a baffling toroidal morphology. In a solid electrolyte, neither the reaction mechanism at the cathode nor the nature of the reaction product is known. Here we report the full-cycle reaction pathway for Li-O2 batteries and show how this correlates with the morphology of the reaction products. Using aberration-corrected environmental transmission electron microscopy (TEM) under an oxygen environment, we image the product morphology evolution on a carbon nanotube (CNT) cathode of a working solid-state Li-O2 nanobattery and correlate these features with the electrochemical reaction at the electrode. We find that the oxygen-reduction reaction (ORR) on CNTs initially produces LiO2, which subsequently disproportionates into Li2O2 and O2. The release of O2 creates a hollow nanostructure with Li2O outer-shell and Li2O2 inner-shell surfaces. Our findings show that, in general, the way the released O2 is accommodated is linked to lithium-ion diffusion and electron-transport paths across both spatial and temporal scales; in turn, this interplay governs the morphology of the discharging/charging products in Li-O2 cells.

  17. Transition edge sensor system for material analysis using transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K., E-mail: keiichi.tanaka@siint.co.j [SII NanoTechnology Inc., 36-1 Takkenoshita, Oyama-cho, Sunto-gun, Shizuoka 410-1393 (Japan); Odawara, A. [SII NanoTechnology Inc., 36-1 Takkenoshita, Oyama-cho, Sunto-gun, Shizuoka 410-1393 (Japan); Bandou, S. [Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 (Japan); Nagata, A.; Nakayama, S.; Chinone, K.; Yasaka, A. [SII NanoTechnology Inc., 36-1 Takkenoshita, Oyama-cho, Sunto-gun, Shizuoka 410-1393 (Japan); Koike, Y. [Taiyo Nippon Sanso Corp., Ohkubo 10, Tsukuba 300-2611 (Japan); Iijima, S. [Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 (Japan)

    2009-10-15

    We have developed a Transition Edge Sensor (TES) - Energy Dispersive Spectroscopy (EDS) for Transmission Electron Microscope (TEM) based on a dilution refrigerator. The dilution refrigerator was cooled by liquid helium (L-He), which was supplied from an L-He container separated from the dilution refrigerator. We adopted the hybrid magnetic shields combining a permalloy shield and a NbTi/Nb/Cu superconducting shield to operate the TEM-TES system under a magnetic field of 200 mT. The permalloy shield was used to prevent the ambient magnetic field until the NbTi superconducting shield cooled from room temperature (RT) to 2 K. The critical magnetic field was 220 mT for the TES change from a superconducting state to a normal state. The SQUID - current vs. bias current curve, under the condition that the snout was inserted in the TEM, was equal to the curve of the snout that was out of the TEM. The C (0 0 2) planes could be observed at 120 kV under the condition the snout was inserted in the TEM.

  18. Fast and accurate marker-based projective registration method for uncalibrated transmission electron microscope tilt series

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho; Xing Lei [Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847 (United States); Lee, Jeongjin [Department of Digital Media, Catholic University of Korea, Gyeonggi-do, 420-743 (Korea, Republic of); Shin, Yeong Gil [School of Computer Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Lee, Rena, E-mail: leeho@stanford.ed [Department of Radiation Oncology, Ewha Womans University School of Medicine, Seoul, 158-710 (Korea, Republic of)

    2010-06-21

    This paper presents a fast and accurate marker-based automatic registration technique for aligning uncalibrated projections taken from a transmission electron microscope (TEM) with different tilt angles and orientations. Most of the existing TEM image alignment methods estimate the similarity between images using the projection model with least-squares metric and guess alignment parameters by computationally expensive nonlinear optimization schemes. Approaches based on the least-squares metric which is sensitive to outliers may cause misalignment since automatic tracking methods, though reliable, can produce a few incorrect trajectories due to a large number of marker points. To decrease the influence of outliers, we propose a robust similarity measure using the projection model with a Gaussian weighting function. This function is very effective in suppressing outliers that are far from correct trajectories and thus provides a more robust metric. In addition, we suggest a fast search strategy based on the non-gradient Powell's multidimensional optimization scheme to speed up optimization as only meaningful parameters are considered during iterative projection model estimation. Experimental results show that our method brings more accurate alignment with less computational cost compared to conventional automatic alignment methods.

  19. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mølgaard Mortensen, Peter [Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Willum Hansen, Thomas [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Birkedal Wagner, Jakob, E-mail: jakob.wagner@cen.dtu.dk [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Degn Jensen, Anker, E-mail: aj@kt.dtu.dk [Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-05-15

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. - Highlights: • Computational fluid dynamics used for mapping flow and temperature in ETEM setup. • Temperature gradient across TEM grid in furnace based heating holder very small in ETEM. • Conduction from TEM grid and gas in addition to radiation from TEM grid most important. • Pressure drop in ETEM limited to the pressure limiting apertures.

  20. Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Chan, Qing N., E-mail: qing.chan@unsw.edu.au; Zhang, Renlin; Kook, Sanghoon; Hawkes, Evatt R.; Yeoh, Guan H. [UNSW, School of Mechanical and Manufacturing Engineering (Australia); Medwell, Paul R. [The University of Adelaide, Centre for Energy Technology (Australia)

    2016-05-15

    The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.

  1. Reissner's fibre in the rat: a scanning and transmission electron microscope study.

    Science.gov (United States)

    Woollam, D H; Collins, P

    1980-01-01

    The structure and connexions of Reissner's fibre have been studied in the rat by means of scanning and transmission electron microscopy. The fibre was found to arise from a series of filaments, each of which was formed by a structure forming the juxta-aqueductal surface or lining of the subcommissural organ. This structure was termed 'apical spherical protrusion' and was found to be rich in rough endoplasmic reticulum. The fibre was firmly attached at its rostral end to the subcommissural organ, at its middle to the ventral surface of the termination of the aqueduct and finally to the calamus scriptorius of the fourth ventricle. It was held in a state of considerable tension between these three points and attached to it were numerous cilia from the ependymal lining. In sections examined by TEM the fibre appeared to be totally amorphous in structure, with erythrocytes and other debris attached to it. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7440397

  2. Mass mapping of a protein complex with the scanning transmission electron microscope.

    Science.gov (United States)

    Engel, A; Baumeister, W; Saxton, W O

    1982-01-01

    A mass map of the hexagonally packed intermediate layer (HPI-layer), a regular protein monolayer from the cell envelope of Micrococcus radiodurans, has been obtained by scanning transmission electron microscopy. Samples were freeze-dried within the microscope, and low-dose images were recorded in the dark-field mode directly in digital form and processed by correlation averaging. The averaged projection of the unstained structure--i.e., the mass map--thus calculated shows a resolution to 3-nm period and reveals morphological features consistent with those obtained by negative staining. The mass of individual morphological domains was extracted by using variously the mass map itself or an average from a negatively stained HPI layer to define the domain boundaries. Protrusions as small as 1,300 daltons could be measured reproducibly within the unit cell of 655,000 daltons. The method developed opens an avenue to identify molecular species in situ and to correlate topographic information with biochemical data. Images PMID:6955791

  3. Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moeglein, W. A.; Griswold, R.; Mehdi, B. L.; Browning, N. D.; Teuton, J.

    2017-01-03

    In-situ (scanning) transmission electron microscopy (S/TEM) is being developed for numerous applications in the study of nucleation and growth under electrochemical driving forces. For this type of experiment, one of the key parameters is to identify when nucleation initiates. Typically the process of identifying the moment that crystals begin to form is a manual process requiring the user to perform an observation and respond accordingly (adjust focus, magnification, translate the stage etc.). However, as the speed of the cameras being used to perform these observations increases, the ability of a user to “catch” the important initial stage of nucleation decreases (there is more information that is available in the first few milliseconds of the process). Here we show that video shot boundary detection (SBD) can automatically detect frames where a change in the image occurs. We show that this method can be applied to quickly and accurately identify points of change during crystal growth. This technique allows for automated segmentation of a digital stream for further analysis and the assignment of arbitrary time stamps for the initiation of processes that are independent of the user’s ability to observe and react.

  4. Immunohistochemical and transmission electron microscopy study regarding myofibroblasts in fibroinflammatory epulis and giant cell peripheral granuloma.

    Science.gov (United States)

    Filioreanu, Ana Maria; Popescu, Eugenia; Cotrutz, C; Cotrutz, Carmen Elena

    2009-01-01

    Fibroblasts represent the main cellular population in the connective tissue; they have a central role in extracellular matrix (ECM) synthesis, degradation and remodeling. These cells may express a substantial heterogeneity regarding their morphology and functions in pathological conditions and during tissue remodeling. Myofibroblasts are a good example for heterogeneity and phenotypical changes. These cells can be morphologically and immunologically defined by the expression of specific cytoskeleton proteins. Myofibroblasts show cytoplasmic actin microfilaments organized as stress fibers and interconnected by gap or adherens junctions. These cells come also in contact with extracellular matrix by focal contacts. Myofibroblasts play fundamental roles in pathologic conditions, even by activation and proliferation or by deletion. Moreover, these cells seem to be involved in formation and repair of the ECM compounds, proliferation and differentiation of the epithelial, vascular or neurogenic elements. The purpose of the present study is to emphasize the presence and distribution of myofibroblasts in the reactive stromal tissue of granulation tumors in the oral area, fibroinflammatory epulis and giant cells peripheral granuloma, by means of immunocytochemical and transmission electron microscopy studies. Both tumor types shown a common characteristic of the presence of reactive inflammatory stromal tissue and myofibroblasts are a common issue.

  5. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

    2012-01-01

    We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

  6. PRECIPITATES ANALYSIS BY SCANNING ELECTRON AND TRANSMISSION MICROSCOPY IN A BORON STEEL

    Directory of Open Access Journals (Sweden)

    Cássio Aurélio Suski

    2013-12-01

    Full Text Available We studied the carbides precipitation of low carbon steel with boron austenitized at 870°C, 1,050°C and 1,200°C, oil-hardened by scanning electron microscopy (SEM and transmission (TEM. We evaluated the nucleation sites and size of the precipitates, in addition to the microstructure obtained. The precipitates by TEM analysis was performed using the replica and carbon thin films. It was observed the presence of cementite, Fe3 C, and borocarbides, M23(C,B6 at all test conditions. The cementite showed approximately equal sizes in all austenitizing temperatures, which was attributed to solubilization and reprecipitation during cooling tempering. It was observed the presence of borocarbides in all austenitizing temperatures, and at a temperature of 870°C the precipitation was coarser. This size distribution was not attributed to solubilization and coarsening of borocarbides to 870°C and the solubilization and reprecipitation during cooling tempering the other two temperatures. There was also a lesser precipitation in the grain boundary borocarbides to 1,050°C compared to 1,200°C.

  7. Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy.

    Science.gov (United States)

    Zan, Recep; Bangert, Ursel; Ramasse, Quentin; Novoselov, Konstantin S

    2011-03-09

    Distributions and atomic sites of transition metals and gold on suspended graphene were investigated via high-resolution scanning transmission electron microscopy, especially using atomic resolution high angle dark field imaging. All metals, albeit as singular atoms or atom aggregates, reside in the omni-present hydrocarbon surface contamination; they do not form continuous films, but clusters or nanocrystals. No interaction was found between Au atoms and clean single-layer graphene surfaces, i.e., no Au atoms are retained on such surfaces. Au and also Fe atoms do, however, bond to clean few-layer graphene surfaces, where they assume T and B sites, respectively. Cr atoms were found to interact more strongly with clean monolayer graphene, they are possibly incorporated at graphene lattice imperfections and have been observed to catalyze dissociation of C-C bonds. This behavior might explain the observed high frequency of Cr-cluster nucleation, and the usefulness as wetting layer, for depositing electrical contacts on graphene.

  8. UHV transmission electron microscopy on the reconstructed surface of (111) gold. I. General features

    Science.gov (United States)

    Tanishiro, Y.; Kanamori, H.; Takayanagi, K.; Yagi, K.; Honjo, G.

    1981-11-01

    The reconstructed surface structure of (111) gold was studied by ultra-high vacuum transmission electron microscopy and diffraction and the results are described in this series of papers. In part I the observed fringes spaced about 6.3 nm in the images of (111) gold platelets grown on molybdenite, magnesium oxide and graphite are shown to be due to a reconstructed surface structure of unidirectional shrinkage of the surface layer by about 4% along one of the directions on the (111) surface. The shrinkage of the surface layer of the same amount from the bulk lattice was found to take place on gold crystals of different lattice parameters, which were formed by pseudomorphic overgrowth of gold on gold containing various amounts of palladium and indium. Evidence is given for the fact that the shrinkage is not uniform and the observed fringes are not simple interference fringes between the shrunk surface layer and the underlying bulk lattice. At high temperatures the structure first transforms gradually and reversibly to an isotropically shrunk one, and finally the reconstruction disappears above about 900°C.

  9. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    Science.gov (United States)

    Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus

    2016-08-01

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.

  10. Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy.

    Science.gov (United States)

    Rajeswari, Jayaraman; Huang, Ping; Mancini, Giulia Fulvia; Murooka, Yoshie; Latychevskaia, Tatiana; McGrouther, Damien; Cantoni, Marco; Baldini, Edoardo; White, Jonathan Stuart; Magrez, Arnaud; Giamarchi, Thierry; Rønnow, Henrik Moodysson; Carbone, Fabrizio

    2015-11-17

    Magnetic skyrmions are promising candidates as information carriers in logic or storage devices thanks to their robustness, guaranteed by the topological protection, and their nanometric size. Currently, little is known about the influence of parameters such as disorder, defects, or external stimuli on the long-range spatial distribution and temporal evolution of the skyrmion lattice. Here, using a large (7.3 × 7.3 μm(2)) single-crystal nanoslice (150 nm thick) of Cu2OSeO3, we image up to 70,000 skyrmions by means of cryo-Lorentz transmission electron microscopy as a function of the applied magnetic field. The emergence of the skyrmion lattice from the helimagnetic phase is monitored, revealing the existence of a glassy skyrmion phase at the phase transition field, where patches of an octagonally distorted skyrmion lattice are also discovered. In the skyrmion phase, dislocations are shown to cause the emergence and switching between domains with different lattice orientations, and the temporal fluctuation of these domains is filmed. These results demonstrate the importance of direct-space and real-time imaging of skyrmion domains for addressing both their long-range topology and stability.

  11. Transmission electron microscopic observation of body cuticle structures of phoretic and parasitic stages of Parasitaphelenchinae nematodes.

    Directory of Open Access Journals (Sweden)

    Taisuke Ekino

    Full Text Available Using transmission electron microscopy, we examined the body cuticle ultrastructures of phoretic and parasitic stages of the parasitaphelenchid nematodes Bursaphelenchus xylophilus, B. conicaudatus, B. luxuriosae, B. rainulfi; an unidentified Bursaphelenchus species, and an unidentified Parasitaphelenchus species. Nematode body cuticles usually consist of three zones, a cortical zone, a median zone, and a basal zone. The phoretic stages of Bursaphelenchus spp., isolated from the tracheal systems of longhorn beetles or the elytra of bark beetles, have a thick and radially striated basal zone. In contrast, the parasitic stage of Parasitaphelenchus sp., isolated from bark beetle hemocoel, has no radial striations in the basal zone. This difference probably reflects the peculiar ecological characteristics of the phoretic stage. A well-developed basal radially striated zone, composed of very closely linked proteins, is the zone closest to the body wall muscle. Therefore, the striation is necessary for the phoretic species to be able to seek, enter, and depart from host/carrier insects, but is not essential for internal parasites in parasitaphelenchid nematodes. Phylogenetic relationships inferred from near-full-length small subunit ribosomal RNA sequences suggest that the cuticle structures of parasitic species have apomorphic characters, e.g., lack of striation in the basal zone, concurrent with the evolution of insect parasitism from a phoretic life history.

  12. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy

    KAUST Repository

    LAGROW, A.P.

    2017-08-29

    Understanding the oxidation and reduction mechanisms of transition metals, such as nickel (Ni), is important for their use in industrial applications of catalysis. A powerful technique for investigating the redox reactive species is in situ environmental transmission electron microscopy (ETEM), where oxidation and reduction can be tracked in real time. One particular difficulty in understanding the underlying reactions is understanding the underlying morphology of the starting structure in a reaction, in particular the defects contained in the material, and the exposed surface facets. Here-in, we use a colloidal nanoparticle synthesis in a continuous flow reactor to form nanoplates of nickel coated with oleylamine as a capping agent. We utilise an in situ heating procedure at 300 °C in vacuum to remove the oleylamine ligands, and then oxidise the Ni nanoparticles at 25 °C with 2 Pa oxygen, and follow the nanoparticles initial oxidation. After that, the nanoparticles are oxidised at 200 and 300 °C, making the size of the oxide shell increase to ∼4 nm. The oxide shell could be reduced under 2 Pa hydrogen at 500 °C to its initial size of ∼1 nm. High temperature oxidation encouraged the nanoparticles to form pure NiO nanoparticles, which occurred via the Kirkendall effect leading to hollowing and void formation.

  13. Optical and Optoelectronic Property Analysis of Nanomaterials inside Transmission Electron Microscope.

    Science.gov (United States)

    Fernando, Joseph F S; Zhang, Chao; Firestein, Konstantin L; Golberg, Dmitri

    2017-12-01

    In situ transmission electron microscopy (TEM) allows one to investigate nanostructures at high spatial resolution in response to external stimuli, such as heat, electrical current, mechanical force and light. This review exclusively focuses on the optical, optoelectronic and photocatalytic studies inside TEM. With the development of TEMs and specialized TEM holders that include in situ illumination and light collection optics, it is possible to perform optical spectroscopies and diverse optoelectronic experiments inside TEM with simultaneous high resolution imaging of nanostructures. Optical TEM holders combining the capability of a scanning tunneling microscopy probe have enabled nanomaterial bending/stretching and electrical measurements in tandem with illumination. Hence, deep insights into the optoelectronic property versus true structure and its dynamics could be established at the nanometer-range precision thus evaluating the suitability of a nanostructure for advanced light driven technologies. This report highlights systems for in situ illumination of TEM samples and recent research work based on the relevant methods, including nanomaterial cathodoluminescence, photoluminescence, photocatalysis, photodeposition, photoconductivity and piezophototronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New versatile staining reagents for biological transmission electron microscopy that substitute for uranyl acetate.

    Science.gov (United States)

    Nakakoshi, Masamichi; Nishioka, Hideo; Katayama, Eisaku

    2011-12-01

    Aqueous uranyl acetate has been extensively used as a superb staining reagent for transmission electron microscopy of biological materials. However, recent regulation of nuclear fuel material severely restricts its use even for purely scientific purposes. Since uranyl salts are hazardous due to biological toxicity and remaining radioactivity, development of safe and non-radioactive substitutes is greatly anticipated. We examined two lanthanide salts, samarium triacetate and gadolinium triacetate, and found that 1-10% solution of these reagents was safe but still possess excellent capability for staining thin sections of plastic-embedded materials of animal and plant origin. Although post-fixation with osmium tetroxide was essential for high-contrast staining, post-staining with lead citrate could be eliminated if a slow-scan CCD camera is available for observation. These lanthanide salts can also be utilized as good negative-staining reagents to study supramolecular architecture of biological macromolecules. They were not as effective as a fixative of protein assembly, reflecting the non-hazardous nature of the reagents.

  15. Light and transmission electron microscopical changes associated with Leiurus quinqestriatus venom in rabbits

    Directory of Open Access Journals (Sweden)

    Salah H. Afifi

    2016-03-01

    Full Text Available Thirty California female rabbits were obtained from the Animal Care Center, College of Agriculture, South Valley University and acclimated to laboratory conditions for one week. The Leiurus quinquestriatus (LQ venom was collected from mature scorpions by electrical stimulation of the telson. A single dose of crude venom of 0.4 ml/kg (diluted in normal saline with a ratio of 1:1 was injected into a peripheral ear vein. The lungs, brains, hearts, kidneys, were sampled and fixed in 10% formalin from rabbits sacrificed at zero, 30 minutes, 1hr, and 4hrs, post-envenomation (three animals at each sacrifice. Respiratory distress and neurological manifestations were the main clinical signs. Congestion of the lungs was started at one hour postenvenomation. Vascular changes including hyperemia and hemorrhage were also observed till 24 hours post-envenomation. The main histopathological changes of the lungs were edema, hemorrhage, emphysema, and eosinophilic bronchitis. Transmission electron microscopy revealed several eosinophils with abundant granules and breakdown of their membranes suggesting degranulation. The cerebrum showed malacia and edema. Myocardial damage expressed by focal area of myolysis at half-hour post-envenomation and interstitial edema by at 1, and 4 hour post-envenomation was also evident. In conclusion, scorpion venom induced consistent and relevant histopathological changes in all examined organs.

  16. Pore Breathing of Metal-Organic Frameworks by Environmental Transmission Electron Microscopy.

    Science.gov (United States)

    Parent, Lucas R; Pham, C Huy; Patterson, Joseph P; Denny, Michael S; Cohen, Seth M; Gianneschi, Nathan C; Paesani, Francesco

    2017-10-11

    Metal-organic frameworks (MOFs) have emerged as a versatile platform for the rational design of multifunctional materials, combining large specific surface areas with flexible, periodic frameworks that can undergo reversible structural transitions, or "breathing", upon temperature and pressure changes, and through gas adsorption/desorption processes. Although MOF breathing can be inferred from the analysis of adsorption isotherms, direct observation of the structural transitions has been lacking, and the underlying processes of framework reorganization in individual MOF nanocrystals is largely unknown. In this study, we describe the characterization and elucidation of these processes through the combination of in situ environmental transmission electron microscopy (ETEM) and computer simulations. This combined approach enables the direct monitoring of the breathing behavior of individual MIL-53(Cr) nanocrystals upon reversible water adsorption and temperature changes. The ability to characterize structural changes in single nanocrystals and extract lattice level information through in silico correlation provides fundamental insights into the relationship between pore size/shape and host-guest interactions.

  17. X-ray absorption in pillar shaped transmission electron microscopy specimens

    Energy Technology Data Exchange (ETDEWEB)

    Bender, H., E-mail: hugo.bender@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Seidel, F.; Favia, P.; Richard, O. [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Instituut voor Kern- en Stralingsfysica, KU Leuven, 3001 Leuven (Belgium)

    2017-06-15

    Highlights: • Universal curves for X-ray absorption in pillar shaped TEM specimens are derived. • Absorption effects in pillars are a factor 3 less important than in planar specimens. • Medium absorbed X-rays require constant absorption correction across the pillar. • Major absorption for thin layers occurs in the surrounding materials. • Tabulated mass attenuation coefficients predict the absorption well. - Abstract: The dependence of the X-ray absorption on the position in a pillar shaped transmission electron microscopy specimen is modeled for X-ray analysis with single and multiple detector configurations and for different pillar orientations relative to the detectors. Universal curves, applicable to any pillar diameter, are derived for the relative intensities between weak and medium or strongly absorbed X-ray emission. For the configuration as used in 360° X-ray tomography, the absorption correction for weak and medium absorbed X-rays is shown to be nearly constant along the pillar diameter. Absorption effects in pillars are about a factor 3 less important than in planar specimens with thickness equal to the pillar diameter. A practical approach for the absorption correction in pillar shaped samples is proposed and its limitations discussed. The modeled absorption dependences are verified experimentally for pillars with HfO{sub 2} and SiGe stacks.

  18. Source identification of individual soot agglomerates in Arctic air by transmission electron microscopy

    Science.gov (United States)

    Weinbruch, S.; Benker, N.; Kandler, K.; Schütze, K.; Kling, K.; Berlinger, B.; Thomassen, Y.; Drotikova, T.; Kallenborn, R.

    2018-01-01

    Individual soot agglomerates collected at four different locations on the Arctic archipelago Svalbard (Norway) were characterised by transmission electron microscopy and energy-dispersive X-ray microanalysis. For source identification of the ambient soot agglomerates, samples from different local sources (coal burning power plants in Longyearbyen and Barentsburg, diesel and oil burning for power generation in Sveagruva and Ny Ålesund, cruise ship) as well as from other sources which may contribute to Arctic soot concentrations (biomass burning, aircraft emissions, diesel engines) were investigated. Diameter and graphene sheet separation distance of soot primary particles were found to be highly variable within each source and are not suited for source identification. In contrast, concentrations of the minor elements Si, P, K, Ca and Fe showed significant differences which can be used for source attribution. The presence/absence of externally mixed particle groups (fly ashes, tar balls, mercury particles) gives additional hints about the soot sources. Biomass/wood burning, ship emissions and coal burning in Barentsburg can be excluded as major source for ambient soot at Svalbard. The coal power plant in Longyearbyen is most likely a major source of soot in the settlement of Longyearbyen but does not contribute significantly to soot collected at the Global Atmosphere Watch station Zeppelin Mountain near Ny Ålesund. The most probable soot sources at Svalbard are aircraft emissions and diesel exhaust as well as long range transport of coal burning emissions.

  19. Transmission Electron Microscopy (TEM Through Focused ION Beam (FIB from Vitrified Chromium Wastes

    Directory of Open Access Journals (Sweden)

    S. Ballesteros-Elizondo

    2011-08-01

    Full Text Available This study shows how the Focused Ion Beam (FIB has been applied to vitrified materials obtained from chromiumwastes. Due to the issues arising during conventional Ar+ ion milling, it was necessary to thin these samples usingFIB. Difficulties came from the heterogeneous size between chromium spinels and the residual glass phase. The FIBwas applied to obtain thin foils from vitrified materials. These brittle and heterogeneous samples result in specimenswith many perforations and chipping when using conventional thinning below 100 nanometers. Alternatively, FIBallowed thinning in the range of 60 - 80 nanometers from specifically selected areas such as the areas containingspinel crystals Mg(Al,Cr2O4 in order to facilitate the final Transmission Electron Microscopy (TEM observations. Inthis paper, FIB is shown to be a very powerful microtool as a brittle samples preparation method as well as providingan alternative way for performing conventional ceramography and Ar+ ion milling. FIB is a much less destructivemethod with greater observed capacity in the quantity and analysis of microcrystalline phases.

  20. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  1. Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy

    KAUST Repository

    Wang, Hongtao

    2012-01-01

    Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. © 2012 The Royal Society of Chemistry.

  2. Exploring diffusion of ultrasonically consolidated aluminum and copper films through scanning and transmission electron microscopy

    Science.gov (United States)

    Sietins, Jennifer Mueller

    Ultrasonic consolidation (UC) is a promising manufacturing method for metal matrix composite pre-preg tapes or foils that utilizes a layer build-up technique. The process involves three main variables: applied load, oscillation amplitude, and rolling speed. A main advantage of this process is the ability to manufacture multi-material parts at lower processing temperatures compared to other metal matrix composites processes. A major disadvantage, however, is a lack of understanding of diffusion during the ultrasonic consolidation process, which is expected to affect the microstructure, bond quality, and strength within the interface region. The role of diffusion during the low temperature, short duration ultrasonic consolidation process was explored. First, scanning electron microscopy (SEM) x-ray energy dispersive spectroscopy (XEDS) was used to measure concentration profiles of ultrasonically consolidated high purity aluminum and copper through which the interdiffusion coefficients were calculated. It was found that the experimental accelerating voltage had a significant impact on the measurement of the concentration profiles, and associated interdiffusion coefficients, due to the interaction volume interference. The effect of the interaction volume on the concentration profiles was confirmed through Monte Carlo simulations of electron trajectories, and the error due the interaction volume was quantified. The results showed the diffusion distance was too small for accurate measurements with SEM XEDS even at low accelerating voltages. To significantly reduce the error due to the interaction volume, transmission electron microscopy (TEM) samples were prepared using a focused ion beam (FIB) to ensure a uniform thickness. The TEM XEDS concentration profile and images revealed intermetallic phase transformations that occurred during the welding process. TEM images also showed dislocation pile-up located at the subgrain/bulk aluminum interface. This microstructural

  3. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States); Anderson, Thomas J. [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Gout, Delphine [Oak Ridge National Lab, Neutron Scattering Science Division, Oak Ridge, TN (United States); Ubic, Rick [Department of Materials Science and Engineering, Boise State University, 1910 University drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415 (United States)

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  4. Improved near surface heavy impurity detection by a novel charged particle energy filter technique

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, K.; Patnaik, B.K.; Parikh, N.R.; Tateno, H. [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Physics and Astronomy; Hunn, J.D. [Oak Ridge National Lab., TN (United States)

    1994-12-31

    As the typical feature size of silicon integrated circuits, such as in VLSI technology, has become smaller, the surface cleanliness of silicon wafers has become more important. Hence, detection of trace impurities introduced during the processing steps is essential. A novel technique, consisting of a ``Charged Particle Energy Filter (CPEF)`` used in the path of the scattered helium ions in the conventional Rutherford Backscattering geometry, is proposed and its merits and limitations are discussed. In this technique, an electric field is applied across a pair of plates placed before the detector so that backscattered particles of only a selected energy range go through slits to strike the detector. This can be used to filter out particles from the lighter substrate atoms and thus reduce pulse pileup in the region of the impurity signal. The feasibility of this scheme was studied with silicon wafers implanted with 1{times}10{sup 14} and 1{times}10{sup 13} {sup 54}Fe/cm{sup 2} at an energy of 35 keV, and a 0.5 MeV He{sup +} analysis beam. It was found that the backscattered ion signals from the Si atoms can be reduced by more than three orders of magnitude. This suggests the detection limit for contaminants can be improved by at least two orders of magnitude compared to the conventional Rutherford Backscattering technique. This technique can be incorporated in 200--300 kV ion implanters for monitoring of surface contaminants in samples prior to implantation.

  5. Micellar aggregates of saponins from Chenopodium quinoa: characterization by dynamic light scattering and transmission electron microscopy.

    Science.gov (United States)

    Verza, S G; de Resende, P E; Kaiser, S; Quirici, L; Teixeira, H F; Gosmann, G; Ferreira, F; Ortega, G G

    2012-04-01

    Entire seeds of Chenopodium quinoa Willd are a rich protein source and are also well-known for their high saponin content. Due to their amphiphily quinoa saponins are able to form intricate micellar aggregates in aqueous media. In this paper we study the aggregates formed by self-association of these compounds from two quinoa saponin fractions (FQ70 and FQ90) as well as several distinctive nanostructures obtained after their complexation with different ratios of cholesterol (CHOL) and phosphatidylcholine (PC). The FQ70 and FQ90 fractions were obtained by reversed-phase preparative chromatography. The structural features of their resulting aggregates were determined by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Novel nanosized spherical vesicles formed by self-association with mean diameter about 100-200 nm were observed in FQ70 aqueous solutions whereas worm-like micelles an approximate width of 20 nm were detected in FQ90 aqueous solutions. Under experimental conditions similar to those reported for the preparation of Quillaja saponaria ISCOM matrices, tubular and ring-like micelles arose from FQ70:CHOL:PC and FQ90:CHOL:PC formulations, respectively. However, under these conditions no cage-like ISCOM matrices were observed. The saponin composition of FQ70 and FQ90 seems to determine the nanosized structures viewed by TEM. Phytolaccagenic acid, predominant in FQ70 and FQ90 fractions, is accountable for the formation of the nanosized vesicles and tubular structures observed by TEM in the aqueous solutions of both samples. Conversely, ring-like micelles observed in FQ90:CHOL:PC complexes can be attributed to the presence of less polar saponins present in FQ90, in particular those derived from oleanolic acid.

  6. In-situ heating studies of gold nanoparticles in an aberration corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, M J; Gai, P L; Boyes, E D [Department of Physics, University of York, Nanocentre, York, YO10 5DD (United Kingdom); Yoshida, K, E-mail: mw527@york.ac.u [Department of Chemistry, University of York, Nanocentre, York, YO10 5DD (United Kingdom)

    2010-07-01

    Gold nanoparticles have a high catalytic activity for CO oxidation at low temperatures providing they remain less than 5nm in diameter. Their structure and stability and the growth processes that occur during heating have been investigated using Angstrom resolution in-situ double aberration corrected transmission electron microscopy with a JEOL JEM-2200FS. Colloidal Au nanoparticles suspended in water, with mean diameters of 2nm and 5.6nm, have been deposited onto 3.5nm thin carbon supported on holey carbon grids and onto Si{sub 3}N{sub 4} membranes. Dynamic in-situ high resolution AC-TEM images show competitive sintering processes on the different supports. Whilst the 5.6nm particles were observed to be very stable on the carbon, the 2nm particles showed sintering predominantly through particle migration and coalescence, with particle migration occurring as early as {approx}200{sup 0}C, peaking at {approx}500{sup 0}C. In contrast Au nanoparticles on Si{sub 3}N{sub 4} membranes were observed to coalesce at {approx}180{sup 0}C, before Ostwald Ripening became the dominant growth process at higher temperatures. It is believed that atoms and small clusters migrate away from their original particle before becoming trapped on the Si{sub 3}N{sub 4} substrate. These trapped clusters then build up to form the small particles observed, before having sufficient energy to continue to migrate and join another larger particle at {approx}500{sup 0}C.

  7. Targetting the hemozoin synthesis pathway for antimalarial drug and detected by TEM (Transmission electron microscope)

    Science.gov (United States)

    Abbas, Jamilah; Artanti, Nina; Sundowo, Andini; Dewijanti, Indah Dwiatmi; Hanafi, Muhammad; Lisa, Syafrudin, Din

    2017-11-01

    Malaria is a major public health problem mainly due to the development of resistance by the most lethal causative parasite species, the alarming spread of drug resistance and limited number of effective drug available now. Therefore it is important to discover new antimalarial drug. Malaria is caused by a singlecelled parasite from the genus Plasmodium. Plasmodium falciparum parasite infect red blood cells, ingesting and degradation hemoglobin in the acidic food vacuola trough a sequential metabolic process involving multiple proteases. During these process, hemoglobin is utilized as the predominant source of nutrition. Proteolysis of hemoglobin yields amino acid for protein synthesis as well as toxic heme. Massive degradation of hemoglobin generates large amount of toxic heme. Malaria parasite has evolved a distinct mechanism for detoxification of heme through conversion into insoluble crystalline pigment, known as hemozoin (β hematoin). Hemozoin synthesis is an indispensable process for the parasite and is the target for action of several known antimalarial drug. TEM (Transmission Electron Microscope) technology for hemozoin formation in vitro assay was done in this research. Calophyllum aerophyllum Lauterb as medicinal plants was used as a source of antimalarial drug. Acetone extracts of C. lowii showed growth inhibition against parasite P. falciparum with IC50 = 5.2 µg/mL. Whereas from hexane, acetone and methanol fraction of C. aerophyllum showed growth inhibition with IC50 = 0.054, 0.055 and 0.0054 µg/mL respectively. New drug from Calophyllum might have potential compounds that have unique structures and mechanism of action which required to develop new drug for treatment of sensitive and drug resistant strain of malaria.

  8. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study.

    Science.gov (United States)

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2013-11-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin-Rammler-Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a

  9. Transmission electron microscopy of GaN based, doped semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pretorius, A.

    2006-07-01

    This thesis addresses the analysis of GaN based heterostructures with transmission electron microscopy (TEM). Basic properties of the material of interest are introduced in chapter 2. These include the structural and optical properties as well as an introduction to the growth methods used for the samples analysed in this work. In chapter 3 a brief theoretical treatment of TEM is given. As one main topic of this work is the determination of the In concentration in InGaN islands using strain state analysis, a detailed description of the method is given. Chapter 4 describes the results obtained for pyramidal defects present in metalorganic vapour phase epitaxy grown GaN:Mg with high dopant concentration. Based on the experimental results and the well established knowledge that GaN of inverted polarity is present inside the pyramidal defects, a variety of basal plane inversion domain boundary models was set up. From these models, HRTEM images were simulated using the multislice approach, followed by a quantitative comparison to experimentally obtained HRTEM images. Another focus of this work is the analysis of In{sub x}Ga{sub 1-x}N islands grown on GaN presented in chapter 5. Following a literature survey which describes different methods used to obtain In{sub x}Ga{sub 1-x}N islands, the first topic is the distinction of In{sub x}Ga{sub 1-x}N islands and metal droplets, which can form during growth. This is followed by the experimental results of molecular beam epitaxy and metalorganic vapour phase epitaxy grown In{sub x}Ga{sub 1-x}N island and quantum dot samples. (orig.)

  10. Transmission electron microscopy investigations of the CdSe based quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Roventa, E.

    2006-09-22

    In this work, the structural morphology of the active region of the ZnSe laser diode: quaternary CdZnSSe quantum well or CdSe quantum dots embedded in CdSe/ZnSSe superlattices is investigated using Transmission Electron Microscopy. The conventional as well as high resolution imaging studies indicated that the degradation of the ZnSe laser diodes is connected with the formation of extended defects in the optical active region leading to a local strain relaxation of the quantum well. Furthermore the outdiffusion of Cd from the quantum well occurs predominantly where the defects are located. The chemical composition and ordering phenomena in CdSe/ZnSSe supperlattices were also investigated, employing a series of five-fold structures with different spacer layer thickness and a ten-fold structure. The composition in the CdSe/ZnSSe superlattice was determined to a certain extent using different techniques. Generally, the encountered difficulties regarding the accuracy of the obtained values are correlated with the complexity of the investigated system and with the available experimental methods used. Regarding the alignment of the dots, experimental results support a strain driven ordering process, in which the strain fields from buried dots lead to heterogeneous nucleation conditions for the dots in the subsequently deposited layers. An increased ordering with subsequent stacking of the dot layers is was also found. An anisotropy of the lateral alignment of the CdSe dots was also observed in two different left angle 110 right angle zone axes. The similar plan-view images shows that the preferential alignment of the dots does not follow low-index crystallographic directions. However, it is assumed that this is attributed to the anisotropic elastic strain distribution combined with surface diffusion. (orig.)

  11. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    Science.gov (United States)

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a

  12. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  13. Characterisation of nanovoiding in dental porcelain using small angle neutron scattering and transmission electron microscopy.

    Science.gov (United States)

    Lunt, Alexander; Terry, Ann; Ying, Siqi; Baimpas, Nikolaos; Sui, Tan; Kabra, Saurabh; Kelleher, Joe; King, Stephen; Khin, Neo Tee; Korsunsky, Alexander M

    2017-05-01

    Recent studies of the yttria partially stabilised zirconia-porcelain interface have revealed the presence of near-interface porcelain nanovoiding which reduces toughness and leads to component failure. One potential explanation for these nanoscale features is thermal creep which is induced by the combination of the residual stresses at the interface and sintering temperatures applied during manufacture. The present study provides improved understanding of this important phenomenon. Transmission electron microscopy and small angle neutron scattering were applied to a sample which was crept at 750°C and 100MPa (sample C), a second which was exposed to an identical heat treatment schedule in the absence of applied stress (sample H), and a reference sample in the as-machined state (sample A). The complementary insights provided by the two techniques were in good agreement and log-normal void size distributions were found in all samples. The void number density was found to be 1.61μm-2, 25.4μm-2 and 98.6μm-2 in samples A, H and C respectively. The average void diameter in sample A (27.1nm) was found to be more than twice as large as in samples H (10.2nm) and C (11.6nm). The crept data showed the highest skewness parameter (2.35), indicating stress-induced growth of larger voids and void coalescence that has not been previously observed. The improved insight presented in this study can be integrated into existing models of dental prostheses in order to optimise manufacturing routes and thereby reduce the significant detrimental impact of this nanostructural phenomenon. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Mechanobiological Assessment of TMJ Disc Surfaces: Nanoindentation and Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Cassandra M. Juran

    2015-12-01

    Full Text Available Objectives: Temporomandibular disc is a mechanically robust fibrocartilage tissue exhibiting highly elastic compressive, shear, and tensile moduli with structurally dense extracellular matrix that supports functional loading of the joint. The aim of this study was to illustrate structural complexities of the superior and inferior disc surfaces, to demonstrate the robust mechanical ability of the disc as a whole may be due to depth-dependent regional/layered variation, and also to provide characterization data imperative for future tissue engineering efforts focused on restoring function to the joint. Material and Methods: Nanoindentation was used to assess tissue zones in conjunction with detailed Transmission Electron Microscopy to define structural attributes that influence the temporomandibular disc function. Results: The disc architecture adjacent to the superior surface was shown to have three distinct regional segments within the interface layer: 1-a surface peripheral layer; 2-subsurface region; and 3-a layer of helical matrix bundles. The inferior surface displayed an interface layer (20 µm that showed limited cell populations with little depth-dependent structural variation, a stiffer elastic modulus and reduced energy dissipation compared to the superior surface. These data indicate that the primary function of the inferior surface is resistance to compression rather than load distribution during joint motion. Conclusions: These are the first works that demonstrate that the superior central surface of the he temporomandibular disc is structured in depth-dependent isometric layers, each of which provides different mechanical function supporting the bulk tissue’s properties. From a clinical perspective these data have potential to define regions susceptible to fatigue that may translate to diagnostic criteria to better define the stages of dysfunction.

  15. Tandem high-pressure freezing and quick freeze substitution of plant tissues for transmission electron microscopy.

    Science.gov (United States)

    Bobik, Krzysztof; Dunlap, John R; Burch-Smith, Tessa M

    2014-10-13

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but

  16. Transmission electron microscopy of minerals in the martian meteorite Allan Hills 84001

    Science.gov (United States)

    Barber, D. J.; Scott, E. R. D.

    2003-06-01

    We have studied carbonate and associated oxides and glasses in a demountable section of Allan Hills 84001 (ALH 84001) using optical, scanning, and transmission electron microscopy (TEM) to elucidate their origins and the shock history of the rock. Massive, fracture-zone, and fracture-filling carbonates in typical locations were characterized by TEM, X-ray microanalysis, and electron diffraction in a comprehensive study that preserved textural and spatial relationships. Orthopyroxene is highly deformed, fractured, partially comminuted, and essentially unrecovered. Lamellae of diaplectic glass and other features indicate shock pressures >30 GPa. Bridging acicular crystals and foamy glass at contacts of orthopyroxene fragments indicate localized melting and vaporization of orthopyroxene. Carbonate crystals are >5 μm in size, untwinned, and very largely exhibit the R3c calcite structure. Evidence of plastic deformation is generally found mildly only in fracture-zone and fracture-filling carbonates, even adjacent to highly deformed orthopyroxene, and appears to have been caused by low-stress effects including differential shrinkage. High dislocation densities like those observed in moderately shocked calcite are absent. Carbonate contains impact- derived glasses of plagioclase, silica, and orthopyroxene composition indicating brief localized impact heating. Stringers and lenses of orthopyroxene glass in fracture-filling carbonate imply flow of carbonates and crystallization during an impact. Periclase (MgO) occurs in magnesite as 30­50 nm crystals adjacent to voids and negative crystals and as ~1 µm patches of 3 nm crystals showing weak preferred orientation consistent with (111)MgO//(0001)carb, as observed in the thermal decomposition of CaCO3 to CaO. Magnetite crystals that are epitaxially oriented at voids, negative crystals, and microfractures clearly formed in situ. Fully embedded, faceted magnetites are topotactically oriented, in general with (111)mag//(0001

  17. The application of Lorentz transmission electron microscopy to the study of lamellar magnetism in hematite-ilmenite

    DEFF Research Database (Denmark)

    Kasama, Takeshi; Dunin-Borkowski, Rafal E.; Asaka, T

    2009-01-01

    Lorentz transmission electron microscopy has been used to study line-scale exsolution microstructures in ilmenite-hematite, as part of a wider investigation of the lamellar magnetism hypothesis. Pronounced asymmetric contrast is visible in out-of-focus Lorentz images of ilmenite lamellae in hemat......Lorentz transmission electron microscopy has been used to study line-scale exsolution microstructures in ilmenite-hematite, as part of a wider investigation of the lamellar magnetism hypothesis. Pronounced asymmetric contrast is visible in out-of-focus Lorentz images of ilmenite lamellae...... in hematite. The likelihood that lamellar magnetism may be responsible for this contrast is assessed using simulations that incorporate interfacial magnetic moments on the (001) basal planes of hematite and ilmenite. The simulations suggest qualitatively that the asymmetric contrast is magnetic in origin...

  18. Electron Cloud Measurements of Coated and Uncoated Vacuum Chambers in the CERN SPS by Means of the Microwave Transmission Method

    CERN Document Server

    Federmann, S; Mahner, E; Costa Pinto, P; Taborelli, M; Salvant, B; Seebacher, D; Yin Vallgren, C

    2010-01-01

    Electron cloud is a limitation to increasing the beam current in the CERN SPS in the frame of an intensity upgrade of the LHC complex. Coating the vacuum chamber with a thin amorphous carbon layer is expected to reduce the electron cloud build-up. Three SPS MBB magnets have been coated to study the performance of this carbon coating. The microwave transmission method is one possible way to monitor electron cloud and hence to test the effect of the coating. In this paper the evolution of the experimental setup for measurements of the electron cloud using LHC type beams will be described. Due to the low revolution frequency of about 43 kHz serious electromagnetic compatibility problems as well as intermodulation have been found. These effects and their mitigation are described. Finally, we present the measurement results illustrating the possible reduction due to the carbon coating.

  19. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    Science.gov (United States)

    Jääskeläinen, Pentti; Engelhardt, Peter; Hynönen, Ulla; Torkkeli, Mika; Palva, Airi; Serimaa, Ritva

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 Å and 435 Å.

  20. Tracking viral particles in the intestinal contents of the American bullfrog, Lithobates catesbeianus, by Transmission Electron Microscopy

    OpenAIRE

    Antonucci,A.M.; Catroxo,M.H.; Hipolito,M.; Takemoto,R.M.; Melo,N.A.; França,F.M.; Teixeira,P.C.; Ferreira,C.M.

    2014-01-01

    Feces are an important viral agent elimination route for infected carrier animals and in aquatic organisms these pathogenic agents can very rapidly propagate due to the habitation environment. The objective of this work is to track viral particles in the intestinal contents of bullfrogs (Lithobates catesbeianus) from five commercial frog farms in the region of Vale do Paraíba, in the State of São Paulo, Brazil, using negative contrast transmission electron microscopy (TEM). The Coronaviridae,...

  1. Transmission electron microscope studies of the chromium cast iron modified at use of B4C addition

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2010-10-01

    Full Text Available Results of studies of the high alloy chromium cast iron with boron addition in form of the B4C phase powder are presented in this paper.The main field of interest is the identification of phases based on the transmission electron microscope study, occurred in this alloy aftersolidification process. The structure mainly consists of the austenite matrix and M7C3 carbide identified as the Cr7C3 phase.

  2. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    Energy Technology Data Exchange (ETDEWEB)

    Jaeaeskelaeinen, Pentti [Department of Biomedical Engineering and Computational Science, PO Box 2200, FI-02015 Aalto University School of Science and Technology (Finland); Engelhardt, Peter [Haartman Institute, Department of Pathology, PO Box 21, FIN-00014 University of Helsinki (Finland); Hynoenen, Ulla; Palva, Airi [Department of Basic Veterinary Sciences, Division of Microbiology, FIN-00014 University of Helsinki (Finland); Torkkeli, Mika; Serimaa, Ritva, E-mail: ritva.serimaa@helsinki.f [Department of Physics, POB 64, 00014 University of Helsinki (Finland)

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 A and 435 A.

  3. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens.

    Science.gov (United States)

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin

    2017-06-01

    We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn; Zhong, Jun, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)

    2013-12-16

    The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

  5. Mass measurement with the electron microscope. [Application of scanning transmission electron microscopy in molecular weight determinations of fd phage

    Energy Technology Data Exchange (ETDEWEB)

    Wall, J.S.

    1979-01-01

    The use of electron scattering measurements performed in the electron microscope as a means of measurement of particle molecular weight is described. Various potential sources of errors are identified and estimated where possible. Specimen preparation and observation conditions to minimize errors are described. The fd phage is presented as an example of analysis and an illustration of the accuracy obtainable at low dose.

  6. Investigation on cracking mechanism of austenite stainless steel during in situ tension in transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Peng; Hu Hongyan; Liu Yuanyuan [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang Yue [College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Fang, Yuan [Advanced Technology Institute, Technology Center of Baoshan Iron and Steel company, Shanghai 201900 (China); Ren Xuejun [School of Engineering, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Liao Bo [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang Qingxiang, E-mail: qxyang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2011-01-25

    Research highlights: {yields} During the initial stage of loading process, at the crack tip, the dislocations slip from center to around zone and the density of dislocation is increased at local zone. With the increase of load, around center, an oval-shaped dislocation free zone (DFZ) forms. When the displacement keeps constant, the dislocations continue moving. The DFZ become thinner and the nano-cracks initiate gradually, then, propagate abruptly along the direction vertical to the tensile force. {yields} The cracks may propagate in continuous propagation way. The micro-cracks initiate ahead of the main crack firstly, then propagate, grow and connect with the main crack finally, which results in that the main crack propagates too. The initiation direction of micro-crack has a certain angle with the tensile force direction. However, the direction of the main crack propagation is always along the direction vertical to the tensile force. {yields} The cracks may propagate in discontinuous way too. The dislocations pile up inversely in front of the crack tip. The propagation process of crack is that the crack tip is blunt at first. Then, with the increase of load, the new crack tip forms in the blunt crack firstly, then propagates and is blunt again. So back and forth, the cracks propagate forward continuously. - Abstract: Twin-roll strip casting technology is a new one to produce austenite stainless steel strip directly. However, during this process, the cracking occurs usually on the surface of the steel strip. The technique of in situ tension in transmission electron microscope was used to observe and analyze the crack initiation and propagation in austenite stainless steel produced by twin-roll strip casting technology in this work. The results show that the crack initiates in dislocation free-zone firstly and then propagates along the direction vertical to the tensile force. The crack may propagate in continuous propagation way and discontinuous one respectively

  7. Quantifying the Self-Assembly Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Microscopy.

    Science.gov (United States)

    Luo, Binbin; Smith, John W; Ou, Zihao; Chen, Qian

    2017-05-16

    For decades, one of the overarching objectives of self-assembly science has been to define the rules necessary to build functional, artificial materials with rich and adaptive phase behavior from the bottom-up. To this end, the computational and experimental efforts of chemists, physicists, materials scientists, and biologists alike have built a body of knowledge that spans both disciplines and length scales. Indeed, today control of self-assembly is extending even to supramolecular and molecular levels, where crystal engineering and design of porous materials are becoming exciting areas of exploration. Nevertheless, at least at the nanoscale, there are many stones yet to be turned. While recent breakthroughs in nanoparticle (NP) synthesis have amassed a vast library of nanoscale building blocks, NP-NP interactions in situ remain poorly quantified, in large part due to technical and theoretical impediments. While increasingly many applications for self-assembled architectures are being demonstrated, it remains difficult to predict-and therefore engineer-the pathways by which these structures form. Here, we describe how investigations using liquid-phase transmission electron microscopy (TEM) have begun to play a role in pursuing some of these long-standing questions of fundamental and far-reaching interest. Liquid-phase TEM is unique in its ability to resolve the motions and trajectories of single NPs in solution, making it a powerful tool for studying the dynamics of NP self-assembly. Since 2012, liquid-phase TEM has been used to investigate the self-assembly behavior of a variety of simple, metallic NPs. In this Account, however, we focus on our work with anisotropic NPs, which we show to have very different self-assembly behavior, and especially on how analysis methods we and others in the field are developing can be used to convert their motions and trajectories revealed by liquid-phase TEM into quantitative understanding of underlying interactions and dynamics

  8. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2012-09-25

    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  9. Transmission electron microscopy study on defects in arsenic-implanted mercury cadmium tellulide

    Science.gov (United States)

    Kongkajun, Nuntaporn

    Transmission electron microscopy (TEM) was used to study extended defects in arsenic-implanted HgCdTe (MCT). Implantation causes defects produced from ion bombardment. Annealing process is used for electrical activation and removing implantation damage. MCT was grown on (211) CdZnTe substrate by MBE method. Arsenic-doped MCT was implanted at room temperature with dual energies to the doses between 1x1010 to 1x1018 As + cm-3. Post isothermal annealing was performed at 436°C for 20 minutes and 250°C for 24 hr. Perfect and Frank dislocation loops were predominantly formed as the primary defects. The amount of the defects depended on a dosage. Extended defects were observed and the damage depth was beyond the ion projected range of implanted ions. No amorphous phase was found in implanted as-implanted MCT even at very high dose. The high degree of bond ionicity was responsible for defect combination to prevent amorphitization. Inside-outside contrast analysis was used for dislocation-loop nature analysis. The result shows that interstitial and vacancy loops were both found. Thus, mercury vacancies, VHg and interstitials, Hgi which are knocked off by implantation are believed that the number of V Hg and Hgi could condense into form vacancies loops and interstitial loops. Arsenic dopant ions, As"i, could also coalesce into interstitial loops. Further annealing caused a change in the dislocation structure to edge dislocation half loops with Burgers vector of ½ inclined to the surface. The defects in the 250 °C annealed samples showed dislocation half loops, dislocation networks and remaining dislocation loops. By increasing temperature to 436 °C or increasing dose the half loops become more widespread. An explanation for the origin of dislocation formed during annealing could be referred to as ⅓ loops transform to ½ loops. The loops were continued to climb by absorption of point defects. The climb towards the surface would be expected since climb to the surface

  10. Transmission Kikuchi diffraction versus electron back-scattering diffraction: A case study on an electron transparent cross-section of TWIP steel.

    Science.gov (United States)

    Gazder, Azdiar A; Elkhodary, Khalil I; Nancarrow, Mitchell J B; Saleh, Ahmed A

    2017-12-01

    The present case study compares transmission Kikuchi diffraction (TKD) with electron back-scattering diffraction (EBSD) on the same area of an electron transparent cross-section of a twinning induced plasticity steel. While TKD expectedly provides better clarity of internal defect substructures in the band contrast map, EBSD returns orientation data that approaches the quality of the TKD map. This was rationalised by Monte Carlo simulations of the electron energy spreads, which showed that due to the geometry-based compromises associated with adapting a conventional EBSD detector (which is off-axis with respect to the incident electron beam) to TKD, a broadening in the electron energy distribution of the forward-scattered electrons collected on the detector phosphor screen, is unavoidable. In this circumstance, the values of the full-widths at half-maximum of the energy distributions for TKD and EBSD are of the same order. It follows that EBSD on electron transparent cross-sections may be a viable alternative to TKD when: (i) conventional EBSD detectors are adapted to TKD and, (ii) sample microstructures comprise features whose sizes do not mandate the application of TKD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy.

    Science.gov (United States)

    Benzerara, Karim; Menguy, Nicolas; Obst, Martin; Stolarski, Jarosław; Mazur, Maciej; Tylisczak, Tolek; Brown, Gordon E; Meibom, Anders

    2011-07-01

    We have investigated the nanotexture and crystallographic orientation of aragonite in a coral skeleton using synchrotron-based scanning transmission X-ray microscopy (STXM) and transmission electron microscopy (TEM). Polarization-dependent STXM imaging at 40-nm spatial resolution was used to obtain an orientation map of the c-axis of aragonite on a focused ion beam milled ultrathin section of a Porites coral. This imaging showed that one of the basic units of coral skeletons, referred to as the center of calcification (COC), consists of a cluster of 100-nm aragonite globules crystallographically aligned over several micrometers with a fan-like distribution and with the properties of single crystals at the mesoscale. The remainder of the skeleton consists of aragonite single-crystal fibers in crystallographic continuity with the nanoglobules comprising the COC. Our observation provides information on the nm-scale processes that led to biomineral formation in this sample. Importantly, the present study illustrates how the methodology described here, which combines HRTEM and polarization-dependent synchrotron-based STXM imaging, offers an interesting new approach for investigating biomineralizing systems at the nm-scale. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Kazuyoshi, E-mail: kazum@nips.ac.jp [National Institute for Physiological Sciences, Okazaki, Aichi 444-8585 (Japan); Esaki, Masatoshi; Ogura, Teru [Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 (Japan); Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo [Ecotopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2014-11-15

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO{sub 4} post-treatment permitted segmenting the major cellular components.

  13. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, S.; Byrd, J. M.; Billing, M.; Palmer, M.; Sikora, J.; Carlson, B.

    2010-01-02

    A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J.M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M.T.F. Pivi, and K.G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  14. On the contraction and dilation of the plastic support membranes under electron-beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriu, Corneliu (Philadelphia Coll. of Osteopathic Medicine, PA (United States). Physiology/Pharmacology Dept.)

    1991-10-01

    Time relation curves are given for Formvar membrane contraction or collodion membrane dilation under electron-beam irradiation. Also, numerical values are given for the concentration or dilation measured in different zones of the Formvar or collodion support membranes. (author).

  15. Controlled deformation of Si{sub 3}N{sub 4} nanopores using focused electron beam in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Liu Song; Yu Dapeng [Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhao Qing; Li Qingtao; Zhang Hengbin; You Liping; Zhang Jingmin, E-mail: zhaoqing@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871 (China)

    2011-03-18

    The controllable deformation of nanopores was realized by moving a convergent electron beam in a high-resolution transmission electron microscope. Nanostructures with the desired geometries were successfully fabricated from the original nanopores in 100 nm-thick and 260 nm-thick Si{sub 3}N{sub 4} membranes. The formation dynamics is a competition process between the knock-on effect of the high-energy electron beam and surface tension driven shrinkage. This approach can be used to finely tune critical dimensions and deform nanopores to particular desired geometries with single-nanometer precision, which offers substantial opportunities in flexibly fabricating nanostructures for various applications such as nanoelectronics and nanofluidics.

  16. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  17. Fibonacci quasiregular graphene-based superlattices: Quasiperiodicity and its effects on the transmission, transport and electronic structure properties

    Energy Technology Data Exchange (ETDEWEB)

    García-Cervantes, H.; Madrigal-Melchor, J.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I., E-mail: isaac@fisica.uaz.edu.mx

    2015-12-01

    We study the transmission, transport and electronic structure properties of aperiodic Fibonacci monolayer graphene-based structures (AFGBSs). The transfer matrix method has been implemented to obtain the transmittance, linear-regime conductance and electronic structure. In particular, we have studied two types of aperiodic graphene-based structures: (1) electrostatic AFGBSs (EAFGBSs), structures formed with electrostatic potentials, and (2) substrate AFGBSs (SAFGBSs), obtained alternating substrates that can open and non-open, such as SiC and SiO{sub 2}, an energy bandgap on graphene. We have found that the transmission properties can be modulated readily by changing the main parameters of the systems: well and barrier widths, energy and angle of incident electrons and the degree of aperiodicity. In the case of the linear-regime conductance turns out that it diminishes various orders of magnitude increasing the barrier width for SAFGBSs. On the contrary, Klein tunneling sustains the conductance in EAFGBSs. Calculating the electronic structure or miniband-structure formation and its fragmentation we establish a direct connection between the conductance peaks and the opening, closure and degeneration of energy minibands for both EAFGSLs and SAFGSLs.

  18. Electron backscattering on Si(Li) detectors and determination of the transmission curve of a Mini-Orange Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Guerro, Leonardo, E-mail: leonardo.guerro@unicam.it [Division of Physics, School of Science and Technology, University of Camerino, Camerino (Italy); INFN-Sezione di Perugia (Italy); Blasi, Nives [INFN-Sezione di Milano (Italy); Saltarelli, Alessandro [Division of Physics, School of Science and Technology, University of Camerino, Camerino (Italy); INFN-Sezione di Perugia (Italy)

    2014-03-01

    A detailed electron backscattering analysis in Si(Li) detectors was done in order to evaluate the response function of the Mini-Orange Spectrometer. The analysis was performed via Monte Carlo simulations and by measuring the energy and the angular dependencies without and with the insertion of the Mini-Orange Spectrometer in the detection system, combining data taken with a continuous β{sup −} source ({sup 90}Sr) with those from discrete electron transitions of an electron conversion source ({sup 207}Bi). A simple but accurate method is described to determine the transmission function T(E) of the Mini-Orange. - Highlights: • We analyze electron backscattering in Si(Li) detectors. • We evaluate the response function of a Mini-Orange Spectrometer. • We perform Monte Carlo simulations and measure MOS energy and angular dependencies. • Data are taken with a continuous source combined with a discrete conversion source. • An accurate method is described to determine the transmission of a Mini-Orange.

  19. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization.

    Science.gov (United States)

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald

    2013-01-01

    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  20. 200 keV cold field emission source using carbon cone nanotip: Application to scanning transmission electron microscopy.

    Science.gov (United States)

    Mamishin, Shuichi; Kubo, Yudai; Cours, Robin; Monthioux, Marc; Houdellier, Florent

    2017-11-01

    We report the use of a pyrolytic carbon cone nanotip as field emission cathode inside a modern 200 kV dedicated scanning transmission electron microscope. We show an unprecedented improvement in the probe current stability while maintaining all the fundamental properties of a cold field emission source such as a small angular current density together with a high brightness. We have also studied the influence of the low extraction voltage, as enabled by the nanosized apex of the cones, on the electron optics properties of the source that prevent the formation of a virtual beam cross-over of the gun. We have addressed this resolution-limiting issue by coming up with a new electron optical source design. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Application of Tuning Fork Sensors for In-situ Studies of Dynamic Force Interactions Inside Scanning and Transmission Electron Microscopes

    Directory of Open Access Journals (Sweden)

    Jana ANDZANE

    2012-06-01

    Full Text Available Mechanical properties of nanoscale contacts have been probed in-situ by specially developed force sensor based on a quartz tuning fork resonator (TF. Additional control is provided by observation of process in scanning electron microscope (SEM and transmission electron microscope (TEM. A piezoelectric manipulator allows precise positioning of atomic force microscope (AFM probe in contact with another electrode and recording of the TF oscillation amplitude and phase while simultaneously visualizing the contact area in electron microscope. Electrostatic control of interaction between the electrodes is demonstrated during observation of the experiment in SEM. In the TEM system the TF sensor operated in shear force mode: Use of TEM allowed for direct control of separation between electrodes. New opportunities for in situ studies of nanomechanical systems using these instruments are discussed.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1927

  2. Simultaneous Bright-Field and Dark-Field Scanning Transmission Electron Microscopy in Scanning Electron Microscopy: A New Approach for Analyzing Polymer System Morphology

    Science.gov (United States)

    Patel, Binay S.

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-IN-SEM) is a convenient technique for polymer characterization. Utilizing the lower accelerating voltages, larger field of view and, exclusion of post-specimen projection lens in an SEM; STEM-IN-SEM has shown results comparable to transmission electron microscopy (TEM) observation of polymer morphology. Various specimen-holder geometries and detector arrangements have been used for bright field (BF) STEM-IN-SEM imaging. To further the characterization potential of STEM-IN-SEM a new specimen holder has been developed to facilitate simultaneous BF and dark field (DF) STEM-IN-SEM imaging. A new specimen holder and a new microscope configuration were designed for this new imaging technique. BF and DF signals were maximized for optimal STEM-IN-SEM imaging. BF signal intensities were found to be twice as large as DF signal intensities. BF and DF STEM-IN-SEM imaging spatial resolutions are limited to 1.8 nm and approximately 5 nm, respectively. Simultaneous BF & DF STEM-IN-SEM imaging is applicable to both industrial and academic research environments. Examples of commodity and engineering polymer morphology characterization are provided. Results are comparable to TEM observation and may serve as a suitable precursor to STEM characterization of polymer systems. Finally, future developments of various accessories for this technique are discussed.

  3. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    Directory of Open Access Journals (Sweden)

    S. De Santis

    2010-07-01

    Full Text Available A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J. M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M. T. F. Pivi, and K. G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008.PRLTAO0031-900710.1103/PhysRevLett.100.094801]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  4. Electromagnetic metamaterial-inspired band gap and perfect transmission in semiconductor and graphene-based electronic and photonic structures

    Science.gov (United States)

    Mahdy, M. R. C.; Al Sayem, Ayed; Shahriar, Arif; Shawon, Jubayer; Al-Quaderi, Golam Dastegir; Jahangir, Ifat; Matin, M. A.

    2016-04-01

    In this article, at first we propose a unified and compact classification of single negative electromagnetic metamaterial-based perfect transmission unit cells. The classes are named as: type-A, -B and -C unit cells. Then based on the classification, we have extended these ideas in semiconductor and graphene regimes. For type-A: Based on the idea of electromagnetic Spatial Average Single Negative bandgap, novel bandgap structures have been proposed for electron transmission in semiconductor heterostructures. For type-B: with dielectric-graphene-dielectric structure, almost all angle transparency is achieved for both polarizations of electromagnetic wave in the terahertz frequency range instead of the conventional transparency in the microwave frequency range. Finally the application of the gated dielectric-graphene-dielectric has been demonstrated for the modulation and switching purpose.

  5. Impact of derivatization on electron transmission through dithienylethene-based photoswitches in molecular junctions

    NARCIS (Netherlands)

    Van Dyck, Colin; Geskin, Victor; Kronemeijer, Auke J.; de Leeuw, Dago M.; Cornil, Jerome; Cornil, Jérôme

    2013-01-01

    We report a combined Non-Equilibrium Green's Function - Density Functional Theory study of molecular junctions made of photochromic diarylethenes between gold electrodes. The impact of derivatization of the molecule on the transmission spectrum is assessed by introducing: (i) substituents on the

  6. Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing.

    Science.gov (United States)

    Li, Xiaoxu; Chen, Xin; Goldfarb, Gilad; Mateo, Eduardo; Kim, Inwoong; Yaman, Fatih; Li, Guifang

    2008-01-21

    A universal post-compensation scheme for fiber impairments in wavelength-division multiplexing (WDM) systems is proposed based on coherent detection and digital signal processing (DSP). Transmission of 10 x 10 Gbit/s binary-phase-shift-keying (BPSK) signals at a channel spacing of 20 GHz over 800 km dispersion shifted fiber (DSF) has been demonstrated numerically.

  7. Transmission electron microscopy of rabbit liver after high-intensity focused ultrasound ablation combined with ultrasound contrast agents.

    Science.gov (United States)

    Jiang, Ying; Tian, Xue; Luo, Wen; Zhou, Xiaodong

    2007-01-01

    The purpose of this study was to observe sequential changes in rabbit liver under transmission electron microscopy after high-intensity focused ultrasound (HIFU) ablation. Thirty rabbits were randomly divided into 2 groups. The livers of rabbits in group A underwent single HIFU ablation; those in group B were given the ultrasound contrast agent Sonovue 0.2 mL/kg before HIFU exposure. Five rabbits from each of the 2 groups were killed at 0 h, 6 d, and 14 d after HIFU ablation. Tissue samples that included targeted and untargeted tissues were observed under transmission electron microscopy. Electron microscopy showed that most of the cell organs in targeted areas of groups A and B disappeared early after HIFU, but the basic cell structure was seen in group A. On the sixth day after HIFU ablation in the 2 groups, all cells in the targeted areas were disrupted and fibrous bands were detected in the rims of targeted areas. In surrounding areas, cell swelling in group B was more severe than in group A, and a greater number of apoptotic bodies were found in group B. The use of an ultrasound contrast agent can enhance the effects of HIFU ablation on the destruction of cell ultrastructure and can enlarge the region of HIFU ablation; this provides experimental evidence for control of HIFU effects.

  8. The influence of hybrid alumina/titania materials as electron transmission layer in planar high-performance perovskite solar cells

    Science.gov (United States)

    Yuan, Songyang; Xia, Chao; Zhang, Chongzhen; Song, Weidong; Qi, Mingyue; Wang, Rupeng; Zhao, Liangliang; Li, Shuti

    2017-11-01

    As one of main layers in hybrid organic-inorganic perovskite solar cells (PSCs), electron transport materials (ETM) play an important role in getting high photoelectric conversion efficiency (PCE). Here, we investigate Al2O3/TiO2 hybrid materials as electron transmission layer in planar perovskite solar cells. The hybrid Al2O3/TiO2 material is proved to induce a better crystal quality of CH3NH3PbCl3- x I x perovskite layer as confirmed by X-ray diffractometer (XRD). The new-formed compact rough surface of ETM is responsible for the better excited electron transmission and light absorption, thus resulting in the improvement of short-circuit current ( J sc). Meanwhile, the embedded Al2O3 plays a key role in shifting the conduction band edge of ETM, thereby leading to the improvement of photo-voltage. The optimal value is obtained with the test of sequential changing Al2O3/TiO2 concentration ratio. Compared to the device with pure TiO2 as ETM, the devices assembled with Al2O3/TiO2 hybrid ETM showed improvement in J sc (from 13.65 to 18.71 mA/cm2) as well as in V oc (from 0.95 to 1.00 V), which brings about 27.6% enhancement in PCE based on the multifunctional hybrid TiO2/ Al2O3 ETM.

  9. Characterization of the morphological properties of welding fume particles by transmission electron microscopy and digital image analysis.

    Science.gov (United States)

    Farrants, G; Schüler, B; Karlsen, J; Reith, A; Langård, S

    1989-09-01

    The morphological characteristics of welding fume particles have been determined using transmission electron microscopy (TEM) and automatic image analysis (AIA). Two personal samples and one background sample were collected using a new, easy to handle sampling method, during tungsten inert gas (TIG) and manual metal arc (MMA) welding on Inconel in the same shop. The collection method gave samples which were suitable for TEM and AIA. Electron micrographs were taken in a transmission electron microscope and further analyzed using an image analysis unit. Aggregates composed of many individual particles were analyzed both for the parameters of the aggregate and for the parameters of the individual particles by using an algorithm based on a grain boundary reconstruction technique. The morphological parameters allowed the welding fume's particulate matter to be divided into three types - here called small, medium, and large - with a somewhat unclear distinction between medium and large. Medium and large particles occur either as individual particles or as clusters of approximately spherical particles with average diameters of 0.07 and 0.15 microm, respectively. Small particles occur almost exclusively as long chains or lace-like structures of aggregates of particles, often in the range of 5-10 microm. The aggregates have an average projected area of 2.6 x 10-3 microm2 and are composed of several hundred individual particles.

  10. Microreactor for a transmission electron microscope and heating element and method for the manufacture thereof

    NARCIS (Netherlands)

    Creemer, J.F.; Zandbergen, H.W.; Sarro, P.M.

    2006-01-01

    A microreactor for use in a microscope, comprising a first and second cove layer (13) , which cover layers are both at least partly transparent to an electron beam (14) of an electron microscope, and extend next to each other at a mutual distance from each other and between which a chamber (15) is

  11. Transmission electron microscopy of VX2 liver tumors after high-intensity focused ultrasound ablation enhanced with SonoVue.

    Science.gov (United States)

    Li, Qiuyang; Du, Junfeng; Yu, Ming; He, Guangbin; Luo, Wen; Li, Hongling; Zhou, Xiaodong

    2009-01-01

    The purpose of this study was to observe sequential changes in rabbit VX2 liver tumors using transmission electron microscopy after high-intensity focused ultrasound (HIFU) ablation enhanced with the contrast agent SonoVuer (Bracco, Milan, Italy). Thirty New Zealand rabbits with VX2 liver tumors were randomly divided into two groups. The liver tumors of rabbits in Group A underwent single HIFU ablation; those in Group B were given the ultrasound contrast agent SonoVue 0.2 mL/kg before HIFU exposure. Five rabbits from each of the two groups were killed at 0 hours, 6 days, and 14 days after HIFU ablation. Tissue samples that included targeted and untargeted tissue were observed using transmission electron microscopy. Using transmission electron microscopy, it was evident that most of the cellular organs in the targeted areas of tumors in Groups A and B had disappeared early after HIFU, but the basic cell structure was seen in Group A. On the sixth day after HIFU ablation, all cells in the targeted areas were disrupted, and fibrous bands were detected in the rims of targeted areas in both groups. In the surrounding areas, cell swelling in Group B was more severe than in Group A, and a greater number of apoptotic bodies were found in Group B. The use of an ultrasound contrast agent can enhance the effects of HIFU ablation on the destruction of cell ultrastructure and can enlarge the region of HIFU ablation; this provides experimental evidence for the use of contrast agents in controlling the effects of HIFU.

  12. A Freeze-Fracture Transmission Electron Microscopy and Small Angle X-Ray Diffraction Study of the Effects of Albumin, Serum, and Polymers on Clinical Lung Surfactant Microstructure

    OpenAIRE

    Braun, Andreas; Stenger, Patrick C.; Warriner, Heidi E.; Zasadzinski, Joseph A.; Lu, Karen W.; Taeusch, H. William

    2007-01-01

    Freeze-fracture transmission electron microscopy shows significant differences in the bilayer organization and fraction of water within the bilayer aggregates of clinical lung surfactants, which increases from Survanta to Curosurf to Infasurf. Albumin and serum inactivate all three clinical surfactants in vitro; addition of the nonionic polymers polyethylene glycol, dextran, or hyaluronic acid also reduces inactivation in all three. Freeze-fracture transmission electron microscopy shows that ...

  13. Crystallographic analysis of the solid-state dewetting of polycrystalline gold film using automated indexing in a transmission electron microscope

    Directory of Open Access Journals (Sweden)

    S. A. Jang

    2015-12-01

    Full Text Available We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111 texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.

  14. Crystallographic analysis of the solid-state dewetting of polycrystalline gold film using automated indexing in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr [Department of Advanced Materials Science and Engineering, Hanbat National University, 125, Dongseo-daero, Yuseong-gu, Daejeon 305-719 (Korea, Republic of); Thompson, C. V.; Ross, C. A., E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-01

    We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.

  15. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shize [International Center for Quantum Materials, School of Physics, Peking University and Collaborative Innovation Center of Quantum Matter, Beijing (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi, E-mail: xuzhi@iphy.ac.cn, E-mail: xdbai@iphy.ac.cn, E-mail: egwang@pku.edu.cn; Wang, Wenlong; Zhao, Jimin; Bai, Xuedong, E-mail: xuzhi@iphy.ac.cn, E-mail: xdbai@iphy.ac.cn, E-mail: egwang@pku.edu.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Enge, E-mail: xuzhi@iphy.ac.cn, E-mail: xdbai@iphy.ac.cn, E-mail: egwang@pku.edu.cn [International Center for Quantum Materials, School of Physics, Peking University and Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  16. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy.

    Science.gov (United States)

    Hermelink, A; Naumann, D; Piesker, J; Lasch, P; Laue, M; Hermann, P

    2017-04-10

    The morphology and structure of biological nanoparticles, such as viruses, can be efficiently analysed by transmission electron microscopy (TEM). To chemically characterise such nanoparticles in heterogeneous samples at the single particle level, we suggest tip-enhanced Raman spectroscopy (TERS) as a correlative method. Here we describe a TERS-compatible staining procedure for TEM which involves sample pre-scanning by TEM imaging, nanoparticle relocalisation by atomic force microscopy (AFM) followed by spectroscopic characterization of the virus nanoparticles using TERS. First successful correlative measurements are demonstrated on tobacco mosaic virus particles deposited on silicon-based TEM sample supports. In addition, the advantages and problems of this methodology are discussed.

  17. Strain analysis of plasma CVD graphene for roll-to-roll production by scanning transmission electron microscopy and Raman spectroscopy

    Science.gov (United States)

    Kato, Ryuichi; Koga, Yoshinori; Matsuishi, Kiyoto; Hasegawa, Masataka

    2017-03-01

    The establishment of the roll-to-roll CVD is one of the key factors for realizing the commercial application of graphene. The strain in graphene synthesized by high-throughput plasma CVD using two different conditions related to growth rate and tension to the substrate is analyzed by scanning transmission electron microscopy (STEM) and Raman spectroscopy. The compressive strain generated during the growth by the tension to the substrate and the difference in thermal expansion coefficient between the graphene and the copper substrate is observed, which affects electrical conductivity. It was confirmed by STEM observation that no particularly large strain was accumulated at grain boundaries and their surroundings.

  18. Measurement of Local Si-Nanowire Growth Kinetics Using In situ Transmission Electron Microscopy of Heated Cantilevers

    DEFF Research Database (Denmark)

    Kallesøe, Christian; Wen, Cheng-Yen; Mølhave, Kristian

    2010-01-01

    A technique to study nanowire growth processes on locally heated microcantilevers in situ in a transmission electron microscope has been developed. The in situ observations allow the characterization of the nucleation process of silicon wires, as well as the measurement of growth rates...... of individual nanowires and the ability to observe the formation of nanowire bridges between separate cantilevers to form a complete nanowire device. How well the nanowires can be nucleated controllably on typical cantilever sidewalls is examined, and the measurements of nanowire growth rates are used...

  19. Nanostructure size determination in p-type porous silicon by the use of transmission electron diffraction image processing

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Porras, A. [CICIMA and Escuela de Fisica, Universidad de Costa Rica, San Pedro 2060 (Costa Rica)

    2005-06-01

    The structure of p-type porous silicon (PS) has been investigated by the use of transmission electron diffraction (TED) microscopy and image processing. The results suggest the presence of well oriented crystalline phases and polycrystalline phases characterized by random orientation. These phases are believed to be formed by spheres with a mean diameter of 4.3 nm and a standard deviation of 1.3 nm. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. The future is cold: cryo-preparation methods for transmission electron microscopy of cells.

    Science.gov (United States)

    Hurbain, Ilse; Sachse, Martin

    2011-09-01

    Our knowledge of the organization of the cell is linked, to a great extent, to light and electron microscopy. Choosing either photons or electrons for imaging has many consequences on the image obtained, as well as on the experiment required in order to generate the image. One apparent effect on the experimental side is in the sample preparation, which can be quite elaborate for electron microscopy. In recent years, rapid freezing, cryo-preparation and cryo-electron microscopy have been more widely used because they introduce fewer artefacts during preparation when compared with chemical fixation and room temperature processing. In addition, cryo-electron microscopy allows the visualization of the hydrated specimens. In the present review, we give an introduction to the rapid freezing of biological samples and describe the preparation steps. We focus on bulk samples that are too big to be directly viewed under the electron microscope. Furthermore, we discuss the advantages and limitations of freeze substitution and cryo-electron microscopy of vitreous sections and compare their application to the study of bacteria and mammalian cells and to tomography.