WorldWideScience

Sample records for energy-based temperature computation

  1. Automatic calibration system of the temperature instrument display based on computer vision measuring

    Science.gov (United States)

    Li, Zhihong; Li, Jinze; Bao, Changchun; Hou, Guifeng; Liu, Chunxia; Cheng, Fang; Xiao, Nianxin

    2010-07-01

    With the development of computers and the techniques of dealing with pictures and computer optical measurement, various measuring techniques are maturing gradually on the basis of optical picture processing technique and using in practice. On the bases, we make use of the many years' experience and social needs in temperature measurement and computer vision measurement to come up with the completely automatic way of the temperature measurement meter with integration of the computer vision measuring technique. It realizes synchronization collection with theory temperature value, improves calibration efficiency. based on least square fitting principle, integrate data procession and the best optimize theory, rapidly and accurately realizes automation acquisition and calibration of temperature.

  2. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  3. Temperature-based estimation of global solar radiation using soft computing methodologies

    Science.gov (United States)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  4. Wireless-Uplinks-Based Energy-Efficient Scheduling in Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2015-01-01

    Full Text Available Mobile cloud computing (MCC combines cloud computing and mobile internet to improve the computational capabilities of resource-constrained mobile devices (MDs. In MCC, mobile users could not only improve the computational capability of MDs but also save operation consumption by offloading the mobile applications to the cloud. However, MCC faces the problem of energy efficiency because of time-varying channels when the offloading is being executed. In this paper, we address the issue of energy-efficient scheduling for wireless uplink in MCC. By introducing Lyapunov optimization, we first propose a scheduling algorithm that can dynamically choose channel to transmit data based on queue backlog and channel statistics. Then, we show that the proposed scheduling algorithm can make a tradeoff between queue backlog and energy consumption in a channel-aware MCC system. Simulation results show that the proposed scheduling algorithm can reduce the time average energy consumption for offloading compared to the existing algorithm.

  5. The implementation of CP1 computer code in the Honeywell Bull computer in Brazilian Nuclear Energy Commission (CNEN)

    International Nuclear Information System (INIS)

    Couto, R.T.

    1987-01-01

    The implementation of the CP1 computer code in the Honeywell Bull computer in Brazilian Nuclear Energy Comission is presented. CP1 is a computer code used to solve the equations of punctual kinetic with Doppler feed back from the system temperature variation based on the Newton refrigeration equation (E.G.) [pt

  6. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model

    International Nuclear Information System (INIS)

    Chen, Jiaoliao; Xu, Fang; Tan, Dapeng; Shen, Zheng; Zhang, Libin; Ai, Qinglin

    2015-01-01

    Highlights: • A novel control method for the heating greenhouse with SWSHPS is proposed. • CFD is employed to predict the priorities of FCU loops for thermal performance. • EPM is act as an on-line tool to predict the total energy demand of greenhouse. • The CFD–EPM-based method can save energy and improve control accuracy. • The energy savings potential is between 8.7% and 15.1%. - Abstract: As energy heating is one of the main production costs, many efforts have been made to reduce the energy consumption of agricultural greenhouses. Herein, a novel control method of greenhouse heating using computational fluid dynamics (CFD) and energy prediction model (EPM) is proposed for energy savings and system performance. Based on the low-Reynolds number k–ε turbulence principle, a CFD model of heating greenhouse is developed, applying the discrete ordinates model for the radiative heat transfers and porous medium approach for plants considering plants sensible and latent heat exchanges. The CFD simulations have been validated, and used to analyze the greenhouse thermal performance and the priority of fan coil units (FCU) loops under the various heating conditions. According to the heating efficiency and temperature uniformity, the priorities of each FCU loop can be predicted to generate a database with priorities for control system. EPM is built up based on the thermal balance, and used to predict and optimize the energy demand of the greenhouse online. Combined with the priorities of FCU loops from CFD simulations offline, we have developed the CFD–EPM-based heating control system of greenhouse with surface water source heat pumps system (SWSHPS). Compared with conventional multi-zone independent control (CMIC) method, the energy savings potential is between 8.7% and 15.1%, and the control temperature deviation is decreased to between 0.1 °C and 0.6 °C in the investigated greenhouse. These results show the CFD–EPM-based method can improve system

  7. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  8. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    Science.gov (United States)

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  9. Energy Dissipation in Quantum Computers

    OpenAIRE

    Granik, A.; Chapline, G.

    2003-01-01

    A method is described for calculating the heat generated in a quantum computer due to loss of quantum phase information. Amazingly enough, this heat generation can take place at zero temperature. and may explain why it is impossible to extract energy from vacuum fluctuations. Implications for optical computers and quantum cosmology are also briefly discussed.

  10. Computational materials design for energy applications

    Science.gov (United States)

    Ozolins, Vidvuds

    2013-03-01

    General adoption of sustainable energy technologies depends on the discovery and development of new high-performance materials. For instance, waste heat recovery and electricity generation via the solar thermal route require bulk thermoelectrics with a high figure of merit (ZT) and thermal stability at high-temperatures. Energy recovery applications (e.g., regenerative braking) call for the development of rapidly chargeable systems for electrical energy storage, such as electrochemical supercapacitors. Similarly, use of hydrogen as vehicular fuel depends on the ability to store hydrogen at high volumetric and gravimetric densities, as well as on the ability to extract it at ambient temperatures at sufficiently rapid rates. We will discuss how first-principles computational methods based on quantum mechanics and statistical physics can drive the understanding, improvement and prediction of new energy materials. We will cover prediction and experimental verification of new earth-abundant thermoelectrics, transition metal oxides for electrochemical supercapacitors, and kinetics of mass transport in complex metal hydrides. Research has been supported by the US Department of Energy under grant Nos. DE-SC0001342, DE-SC0001054, DE-FG02-07ER46433, and DE-FC36-08GO18136.

  11. Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency

    Science.gov (United States)

    Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark

    2010-04-01

    This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.

  12. Grinding temperature and energy ratio coe cient in MQL grinding of high-temperature nickel-base alloy by using di erent vegetable oils as base oil

    Institute of Scientific and Technical Information of China (English)

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grind-ing temperature, and energy ratio coefficient of MQL grinding were compared among the seven veg-etable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient;(2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient;(3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil;(4) viscosity significantly influences grinding force and grinding tem-perature to a greater extent than fatty acid varieties and contents in vegetable oils;(5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less vis-cous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature;(6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid;and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7%energy ratio coefficient

  13. Reduction of energy consumption peaks in a greenhouse by computer control

    Energy Technology Data Exchange (ETDEWEB)

    Amsen, M.G.; Froesig Nielsen, O.; Jacobsen, L.H. (Danish Research Service for Plant and Soil Science, Research Centre for Horticulture, Department of Horticultural Engineering, Aarslev (DK))

    1990-01-01

    The results of using a computer for environmental control in one greenhouse is in this paper compared with using modified analogue control equipment in another one. Energy consumption peaks can be almost prevented by properly applying the computer control and strategy. Both treatments were based upon negative DIF, i.e. low day and high night minimum set points (14 deg. C/ 22 deg. C) for room temperature. No difference in production time and quality was observed in six different pot plant species. Only Kalanchoe showed significant increase in fresh weight and dry weight. By applying computer control, the lack of flexibility of analogue control can be avoided by applying computer control and a more accurate room temperature control can be obtained. (author).

  14. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  15. Computer-based liquid radioactive waste control with plant emergency and generator temperature monitoring

    International Nuclear Information System (INIS)

    Plotnick, R.J.; Schneider, M.I.; Shaffer, C.E.

    1986-01-01

    At the start of the design of the liquid radwaste control system for a nuclear generating station under construction, several serious problems were detected. The solution incorporated a new approach utilizing a computer and a blend of standard and custom software to replace the existing conventionally instrumented benchboard. The computer-based system, in addition to solving the problems associated with the benchboard design, also provided other enhancements which significantly improved the operability and reliability of the radwaste system. The functionality of the computer-based radwaste control system also enabled additional applications to be added to an expanded multitask version of the radwaste computer: 1) a Nuclear Regulatory Commission (NRC) requirement that all nuclear power plants have an emergency response facility status monitoring system; and 2) the sophisticated temperature monitoring and trending requested by the electric generator manufacturer to continue its warranty commitments. The addition of these tasks to the radwaste computer saved the cost of one or more computers that would be dedicated to these work requirements

  16. A computed room temperature line list for phosphine

    Science.gov (United States)

    Sousa-Silva, Clara; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    An accurate and comprehensive room temperature rotation-vibration transition line list for phosphine (31PH3) is computed using a newly refined potential energy surface and a previously constructed ab initio electric dipole moment surface. Energy levels, Einstein A coefficients and transition intensities are computed using these surfaces and a variational approach to the nuclear motion problem as implemented in the program TROVE. A ro-vibrational spectrum is computed, covering the wavenumber range 0-8000 cm-1. The resulting line list, which is appropriate for temperatures up to 300 K, consists of a total of 137 million transitions between 5.6 million energy levels. Several of the band centres are shifted to better match experimental transition frequencies. The line list is compared to the most recent HITRAN database and other laboratorial sources. Transition wavelengths and intensities are generally found to be in good agreement with the existing experimental data, with particularly close agreement for the rotational spectrum. An analysis of the comparison between the theoretical data created and the existing experimental data is performed, and suggestions for future improvements and assignments to the HITRAN database are made.

  17. Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing.

    Science.gov (United States)

    Ma, Xiao; Lin, Chuang; Zhang, Han; Liu, Jianwei

    2018-06-15

    Mobile edge computing is proposed as a promising computing paradigm to relieve the excessive burden of data centers and mobile networks, which is induced by the rapid growth of Internet of Things (IoT). This work introduces the cloud-assisted multi-cloudlet framework to provision scalable services in cloudlet-based mobile edge computing. Due to the constrained computation resources of cloudlets and limited communication resources of wireless access points (APs), IoT sensors with identical computation offloading decisions interact with each other. To optimize the processing delay and energy consumption of computation tasks, theoretic analysis of the computation offloading decision problem of IoT sensors is presented in this paper. In more detail, the computation offloading decision problem of IoT sensors is formulated as a computation offloading game and the condition of Nash equilibrium is derived by introducing the tool of a potential game. By exploiting the finite improvement property of the game, the Computation Offloading Decision (COD) algorithm is designed to provide decentralized computation offloading strategies for IoT sensors. Simulation results demonstrate that the COD algorithm can significantly reduce the system cost compared with the random-selection algorithm and the cloud-first algorithm. Furthermore, the COD algorithm can scale well with increasing IoT sensors.

  18. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  19. Algorithm Development for Multi-Energy SXR based Electron Temperature Profile Reconstruction

    Science.gov (United States)

    Clayton, D. J.; Tritz, K.; Finkenthal, M.; Kumar, D.; Stutman, D.

    2012-10-01

    New techniques utilizing computational tools such as neural networks and genetic algorithms are being developed to infer plasma electron temperature profiles on fast time scales (> 10 kHz) from multi-energy soft-x-ray (ME-SXR) diagnostics. Traditionally, a two-foil SXR technique, using the ratio of filtered continuum emission measured by two SXR detectors, has been employed on fusion devices as an indirect method of measuring electron temperature. However, these measurements can be susceptible to large errors due to uncertainties in time-evolving impurity density profiles, leading to unreliable temperature measurements. To correct this problem, measurements using ME-SXR diagnostics, which use three or more filtered SXR arrays to distinguish line and continuum emission from various impurities, in conjunction with constraints from spectroscopic diagnostics, can be used to account for unknown or time evolving impurity profiles [K. Tritz et al, Bull. Am. Phys. Soc. Vol. 56, No. 12 (2011), PP9.00067]. On NSTX, ME-SXR diagnostics can be used for fast (10-100 kHz) temperature profile measurements, using a Thomson scattering diagnostic (60 Hz) for periodic normalization. The use of more advanced algorithms, such as neural network processing, can decouple the reconstruction of the temperature profile from spectral modeling.

  20. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003), 10.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013), 10.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S =1 /2 , we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  1. Experimental investigation of the energy and temperature dependence of beryllium self sputtering

    International Nuclear Information System (INIS)

    Korshunov, S.N.; Guseva, M.I.; Stolijarova, V.G.

    1995-01-01

    The low-Z metal beryllium is considered as plasma facing material (PFM) for the ITER. It is expected that operation temperature range of beryllium PFM will be (670 - 1070) K. While experimental Be-sputtering data bases exist for H + , D + and He + -ions, the self-sputtering yields of Be have only been estimated by computer simulation. In this paper we report the experimental results on the energy and temperature dependence of the beryllium self-sputtering yield (S). The energy dependence of S s in the energy range (0.5 - 10.0) keV was measured at 670 K. The self-sputtering yield of Be attains its maximal value at the ion energy of 1.5 keV, being equal to 0.32 ± at./ion. Comparison of the experimental results and theoretical prediction shows a good agreement for energy dependence of S s . The temperature dependence of S s in the temperature range (370-1070)K was obtained for 0.9keV Be + -ions. The value of S s is not changed up to 870 K. It sharply increases at the temperatures above 870 attaining the value of 0.75 at./ion at 1070 K

  2. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  3. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    Science.gov (United States)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  4. Computer based workstation for development of software for high energy physics experiments

    International Nuclear Information System (INIS)

    Ivanchenko, I.M.; Sedykh, Yu.V.

    1987-01-01

    Methodical principles and results of a successful attempt to create on the base of IBM-PC/AT personal computer of effective means for development of programs for high energy physics experiments are analysed. The obtained results permit to combine the best properties and a positive materialized experience accumulated on the existing time sharing collective systems with a high quality of data representation, reliability and convenience of personal computer applications

  5. Exascale for Energy: The Role of Exascale Computing in Energy Security

    International Nuclear Information System (INIS)

    2010-01-01

    How will the United States satisfy energy demand in a tightening global energy marketplace while, at the same time, reducing greenhouse gas emissions? Exascale computing - expected to be available within the next eight to ten years - may play a crucial role in answering that question by enabling a paradigm shift from test-based to science-based design and engineering. Computational modeling of complete power generation systems and engines, based on scientific first principles, will accelerate the improvement of existing energy technologies and the development of new transformational technologies by pre-selecting the designs most likely to be successful for experimental validation, rather than relying on trial and error. The predictive understanding of complex engineered systems made possible by computational modeling will also reduce the construction and operations costs, optimize performance, and improve safety. Exascale computing will make possible fundamentally new approaches to quantifying the uncertainty of safety and performance engineering. This report discusses potential contributions of exa-scale modeling in four areas of energy production and distribution: nuclear power, combustion, the electrical grid, and renewable sources of energy, which include hydrogen fuel, bioenergy conversion, photovoltaic solar energy, and wind turbines.

  6. Using soft-X-ray energy spectrum to measure electronic temperature Te and primary research with computer data processing

    International Nuclear Information System (INIS)

    Wang Jingyao; Zhang Guangyang

    1993-01-01

    The authors reported the application of SCORPIO--2000 Computer detecting system on a nuclear fusion equipment, to measure the energy spectrum of soft X-ray from which the plasma electronic temperature was calculated. The authors processed systematically the data of the energy area of 1-4 Kev soft X-ray. The program edited was mostly made in FORTRAN, but only one SUBSB was made in assembly language. The program worked normally with convincing operation and easy correction of the data. The result obtained from calculation is the same as what was expected and the diagram obtained is the same as the expected one

  7. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  8. Exascale for Energy: The Role of Exascale Computing in Energy Security

    OpenAIRE

    Authors, Various

    2010-01-01

    How will the United States satisfy energy demand in a tightening global energy marketplace while, at the same time, reducing greenhouse gas emissions? Exascale computing -- expected to be available within the next eight to ten years ? may play a crucial role in answering that question by enabling a paradigm shift from test-based to science-based design and engineering. Computational modeling of complete power generation systems and engines, based on scientific first principles, will accelerat...

  9. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  10. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    International Nuclear Information System (INIS)

    Mukaro, R; Taele, B M; Tinarwo, D

    2006-01-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 ± 0.02 eV

  11. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    Energy Technology Data Exchange (ETDEWEB)

    Mukaro, R [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe); Taele, B M [Department of Physics and Electronics, National University of Lesotho, Roma 180 (Lesotho); Tinarwo, D [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe)

    2006-05-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 {+-} 0.02 eV.

  12. A novel cost based model for energy consumption in cloud computing.

    Science.gov (United States)

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  13. Exascale for Energy: The Role of Exascale Computing in Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    2010-07-15

    How will the United States satisfy energy demand in a tightening global energy marketplace while, at the same time, reducing greenhouse gas emissions? Exascale computing -- expected to be available within the next eight to ten years ? may play a crucial role in answering that question by enabling a paradigm shift from test-based to science-based design and engineering. Computational modeling of complete power generation systems and engines, based on scientific first principles, will accelerate the improvement of existing energy technologies and the development of new transformational technologies by pre-selecting the designs most likely to be successful for experimental validation, rather than relying on trial and error. The predictive understanding of complex engineered systems made possible by computational modeling will also reduce the construction and operations costs, optimize performance, and improve safety. Exascale computing will make possible fundamentally new approaches to quantifying the uncertainty of safety and performance engineering. This report discusses potential contributions of exa-scale modeling in four areas of energy production and distribution: nuclear power, combustion, the electrical grid, and renewable sources of energy, which include hydrogen fuel, bioenergy conversion, photovoltaic solar energy, and wind turbines. Examples of current research are taken from projects funded by the U.S. Department of Energy (DOE) Office of Science at universities and national laboratories, with a special focus on research conducted at Lawrence Berkeley National Laboratory.

  14. Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures.

    Science.gov (United States)

    Okamoto, Satoshi; Alvarez, Gonzalo; Dagotto, Elbio; Tohyama, Takami

    2018-04-01

    We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long et al. [Phys. Rev. B 68, 235106 (2003)PRBMDO0163-182910.1103/PhysRevB.68.235106] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based on the microcanonical ensemble, which becomes exact in the thermodynamic limit. To apply the microcanonical ensemble at a fixed temperature, one has to find energy eigenstates with the energy eigenvalue corresponding to the internal energy in the canonical ensemble. Here, we propose to use thermal pure quantum state methods by Sugiura and Shimizu [Phys. Rev. Lett. 111, 010401 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.010401] to obtain the internal energy. After obtaining the energy eigenstates using the Lanczos diagonalization method, dynamical quantities are computed via a continued fraction expansion, a standard procedure for Lanczos-based numerical methods. Using one-dimensional antiferromagnetic Heisenberg chains with S=1/2, we demonstrate that the proposed procedure is reasonably accurate, even for relatively small systems.

  15. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  16. Cloud computing-based energy optimization control framework for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Liang; You, Sixiong; Yan, Bingjie; Du, Xian

    2017-01-01

    Considering the complicated characteristics of traffic flow in city bus route and the nonlinear vehicle dynamics, optimal energy management integrated with clustering and recognition of driving conditions in plug-in hybrid electric bus is still a challenging problem. Motivated by this issue, this paper presents an innovative energy optimization control framework based on the cloud computing for plug-in hybrid electric bus. This framework, which includes offline part and online part, can realize the driving conditions clustering in offline part, and the energy management in online part. In offline part, utilizing the operating data transferred from a bus to the remote monitoring center, K-means algorithm is adopted to cluster the driving conditions, and then Markov probability transfer matrixes are generated to predict the possible operating demand of the bus driver. Next in online part, the current driving condition is real-time identified by a well-trained support vector machine, and Markov chains-based driving behaviors are accordingly selected. With the stochastic inputs, stochastic receding horizon control method is adopted to obtain the optimized energy management of hybrid powertrain. Simulations and hardware-in-loop test are carried out with the real-world city bus route, and the results show that the presented strategy could greatly improve the vehicle fuel economy, and as the traffic flow data feedback increases, the fuel consumption of every plug-in hybrid electric bus running in a specific bus route tends to be a stable minimum. - Highlights: • Cloud computing-based energy optimization control framework is proposed. • Driving cycles are clustered into 6 types by K-means algorithm. • Support vector machine is employed to realize the online recognition of driving condition. • Stochastic receding horizon control-based energy management strategy is designed for plug-in hybrid electric bus. • The proposed framework is verified by simulation and hard

  17. Model-Based Energy Efficiency Optimization of a Low-Temperature Adsorption Dryer

    NARCIS (Netherlands)

    Atuonwu, J.C.; Straten, G. van; Deventer, H.C. van; Boxtel, A.J.B. van

    2011-01-01

    Low-temperature drying is important for heat-sensitive products, but at these temperatures conventional convective dryers have low energy efficiencies. To overcome this challenge, an energy efficiency optimization procedure is applied to a zeolite adsorption dryer subject to product quality. The

  18. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  19. Wireless-Uplinks-Based Energy-Efficient Scheduling in Mobile Cloud Computing

    OpenAIRE

    Xing Liu; Chaowei Yuan; Zhen Yang; Enda Peng

    2015-01-01

    Mobile cloud computing (MCC) combines cloud computing and mobile internet to improve the computational capabilities of resource-constrained mobile devices (MDs). In MCC, mobile users could not only improve the computational capability of MDs but also save operation consumption by offloading the mobile applications to the cloud. However, MCC faces the problem of energy efficiency because of time-varying channels when the offloading is being executed. In this paper, we address the issue of ener...

  20. Computer simulation to predict energy use, greenhouse gas emissions and costs for production of fluid milk using alternative processing methods

    Science.gov (United States)

    Computer simulation is a useful tool for benchmarking the electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature short time (HTST) pasteurization was extended to include models for pr...

  1. Soft computing based on hierarchical evaluation approach and criteria interdependencies for energy decision-making problems: A case study

    International Nuclear Information System (INIS)

    Gitinavard, Hossein; Mousavi, S. Meysam; Vahdani, Behnam

    2017-01-01

    In numerous real-world energy decision problems, decision makers often encounter complex environments, in which existent imprecise data and uncertain information lead us to make an appropriate decision. In this paper, a new soft computing group decision-making approach is introduced based on novel compromise ranking method and interval-valued hesitant fuzzy sets (IVHFSs) for energy decision-making problems under multiple criteria. In the proposed approach, the assessment information is provided by energy experts or decision makers based on interval-valued hesitant fuzzy elements under incomplete criteria weights. In this respect, a new ranking index is presented respecting to interval-valued hesitant fuzzy Hamming distance measure to prioritize energy candidates, and criteria weights are computed based on an extended maximizing deviation method by considering the preferences experts' judgments about the relative importance of each criterion. Also, a decision making trial and evaluation laboratory (DEMATEL) method is extended under an IVHF-environment to compute the interdependencies between and within the selected criteria in the hierarchical structure. Accordingly, to demonstrate the applicability of the presented approach a case study and a practical example are provided regarding to hierarchical structure and criteria interdependencies relations for renewable energy and energy policy selection problems. Hence, the obtained computational results are compared with a fuzzy decision-making method from the recent literature based on some comparison parameters to show the advantages and constraints of the proposed approach. Finally, a sensitivity analysis is prepared to indicate effects of different criteria weights on ranking results to present the robustness or sensitiveness of the proposed soft computing approach versus the relative importance of criteria. - Highlights: • Introducing a novel interval-valued hesitant fuzzy compromise ranking method. • Presenting

  2. Computer Simulation Studies of Ion Channels at High Temperatures

    Science.gov (United States)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  3. Significant decimal digits for energy representation on short-word computers

    International Nuclear Information System (INIS)

    Sartori, E.

    1989-01-01

    The general belief that single precision floating point numbers have always at least seven significant decimal digits on short word computers such as IBM is erroneous. Seven significant digits are required however for representing the energy variable in nuclear cross-section data sets containing sharp p-wave resonances at 0 Kelvin. It is suggested that either the energy variable is stored in double precision or that cross-section resonances are reconstructed to room temperature or higher on short word computers

  4. A PC-based computer program for simulation of containment pressurization

    International Nuclear Information System (INIS)

    Seifaee, F.

    1990-01-01

    This paper reports that a PC-based computer program has been developed to simulate a pressurized water reactor (PWR) containment during various transients. This containment model is capable of determining pressure and temperature history of a PWR containment in the event of a loss of coolant accident, as well as main steam line breaks inside the containment. Conservation of mass and energy equations are applied to the containment model. Development of the program is based on minimization of input specified information and user friendliness. Maximization of calculation efficiency is obtained by superseding the traditional trial and error procedure for determination of the state variables and implementation of an explicit solution for pressure. The program includes simplified models for active heat removal systems. The results are in close agreement between the present model and CONTEMPT-MOD5 computer code for pressure and temperature inside the containment

  5. Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments

    Science.gov (United States)

    Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2012-01-01

    An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range

  6. Energy, mass, model-based displays, and memory recall

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1989-01-01

    The operation of a pressurized water reactor in the context of the conservation laws for energy and mass is discussed. These conservation laws are the basis of the Rankine heat engine cycle. Computer graphic implementation of the heat engine cycle, in terms of temperature-entropy coordinates for water, serves as a model-based display of the plant process. A human user of this display, trained in first principles of the process, may exercise a monitoring strategy based on the conservation laws

  7. Influence of fermentation temperature on the content of fatty acids in low energy milk-based kombucha products

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2011-01-01

    Full Text Available The aim of this study was to investigate the influence of fermentation temperature on the fatty acids content in low energy milk-based products obtained by kombucha inoculums with herbal teas. In this investigation low energy milk-based kombucha products were produced from milk with 0.8% milk fat using 10% (v/v kombucha inoculums cultivated on winter savory, peppermint, stinging nettle and wild thyme. The process of fermentation was conducted at two temperatures: 40°C and 43°C. Fermentation was stopped after the pH value of 4.5 was reached. Duration of the fermentation process was shorter by applying higher fermentation temperature. Fatty acids content was determined by gas chromatography-mass spectrometry. Predominant fatty acids in all obtained products were saturated fatty acids, first of all the monounsaturated ones. The higher temperature resulted in the formation of lower amount of saturated fatty acids in the obtained milk-based kombucha products.

  8. Technologies for decreasing the tap temperature to save energy in steel foundries

    Science.gov (United States)

    Biswas, Siddhartha

    Steel foundries are one of the most energy intensive industries. The increasing concerns over volatile energy cost and carbon dioxide emission have pushed foundries to improve efficiency and hence decrease electrical energy consumption. Statistical analysis of industrial survey data was combined with computational fluid dynamics (CFD) modeling to investigate the best industrial practices and opportunities to improve energy efficiency. Reducing tap temperature was identified as one of the important ways of reducing energy consumption. Steel foundries typically tap at 1650-1800°C (3000-3300°F) which is 100-250°C (150-450°F) higher than the pouring temperature. The steel temperature is elevated to compensate for the temperature loss associated with tapping, holding and transporting the liquid steel from the furnace to the pouring floor. Based on experimental investigations and CFD modeling of heat losses during holding in the ladle for different foundry practices, a spreadsheet calculator has been developed to calculate the optimum tap temperature for the specific foundry practices which will eliminate unnecessary superheating. The calculated results were compared and validated with industrial measurements. Improving the lining refractory is one significant way of reducing heat losses during holding of the steel in ladle. Silica sand linings are being used in steel foundries as an inexpensive and convenient material for short holding times and small volumes. The possibilities of improvements of silica sand linings by the addition of lower density cenospheres (hollow spheres), a byproduct of coal fired power plants, was studied through property measurements and laboratory trials.

  9. Spin-neurons: A possible path to energy-efficient neuromorphic computers

    Energy Technology Data Exchange (ETDEWEB)

    Sharad, Mrigank; Fan, Deliang; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-12-21

    Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices. Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and “thresholding” operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that “spin-neurons” (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.

  10. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  11. Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and its Application to Sparse Coding

    Directory of Open Access Journals (Sweden)

    Sapan eAgarwal

    2016-01-01

    Full Text Available The exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational advantages of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an NxN crossbar, these two kernels are at a minimum O(N more energy efficient than a digital memory-based architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1. These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N reduction in energy for the entire algorithm. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.

  12. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  13. Energy efficient hybrid computing systems using spin devices

    Science.gov (United States)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  14. Building Environment Analysis Based on Temperature and Humidity for Smart Energy Systems

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Won

    2012-10-01

    Full Text Available In this paper, we propose a new HVAC (heating, ventilation, and air conditioning control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  15. Building environment analysis based on temperature and humidity for smart energy systems.

    Science.gov (United States)

    Yun, Jaeseok; Won, Kwang-Ho

    2012-10-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  16. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    International Nuclear Information System (INIS)

    Burger, L.L.

    1993-03-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in underground Hanford waste tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. Several may be in concentrations and quantities great enough to be considered a hazard in that they could undergo rapid and energetic chemical reactions with nitrate and nitrite salts that are present. The tanks also contain many inorganic compounds inert to oxidation. In this report the computed energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature, and the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature that may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated

  17. Computational investigation of the temperature separation in vortex chamber

    International Nuclear Information System (INIS)

    Anish, S.; Setoguchi, T.; Kim, H. D.

    2014-01-01

    The vortex chamber is a mechanical device, without any moving parts that separates compressed gas into a high temperature region and a low temperature region. Functionally vortex chamber is similar to a Ranque-Hilsch vortex tube (RVHT), but it is a simpler and compact structure. The objective of the present study is to investigate computationally the physical reasoning behind the energy separation mechanism inside a vortex chamber. A computational analysis has been performed using three-dimensional compressible Navier Stokes equations. A fully implicit finite volume scheme was used to solve the governing equations. A commercial software ANSYS CFX is used for this purpose. The computational predictions were validated with existing experimental data. The results obtained show that the vortex chamber contains a large free vortex zone and a comparatively smaller forced vortex region. The physical mechanism that causes the heating towards periphery of the vortex chamber is identified as the work done by the viscous force. The cooling at the center may be due to expansion of the flow. The extent of temperature separation greatly depends on the outer diameter of the vortex chamber. A small amount of compression is observed towards the periphery of the vortex chamber when the outer diameter is reduced.

  18. Temperature Effect on Energy Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Duk [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    We provide various estimates of temperature effect for accommodating seasonality in energy demand, particularly natural gas demand. We exploit temperature response and monthly temperature distribution to estimate the temperature effect on natural gas demand. Both local and global smoothed temperature responses are estimated from empirical relationship between hourly temperature and hourly energy consumption data during the sample period (1990 - 1996). Monthly temperature distribution estimates are obtained by kernel density estimation from temperature dispersion within a month. We integrate temperature response and monthly temperature density over all the temperatures in the sample period to estimate temperature effect on energy demand. Then, estimates of temperature effect are compared between global and local smoothing methods. (author). 15 refs., 14 figs., 2 tabs.

  19. Computational and the real energy performance of a single-family residential building in Poland – an attempt to compare: a case study

    Directory of Open Access Journals (Sweden)

    Kowalski Piotr

    2017-01-01

    Full Text Available The paper presents energy use for heating and ventilation (one of the energy performance components determined in three ways. A case of a single family building located near Wroclaw in Poland is analyzed. The first and the second variant are both computational and the third presents actual measured energy consumption. Computational variants are based on the Polish methodology for the EPC (the Energy Performance Certificate. This methodology is based on ‘the Energy Performance of Buildings Directive 2010/31/EU’. Energy use for heating and ventilation is calculated using monthly method presented in EN ISO 13790. In the first computational option standard input data (parameters such as indoor and outdoor air temperature etc. are taken from standards and regulations are implemented. In the second variant this input data are partially taken from measurements. The results of energy use from both computational variants are compared to the actual measured energy consumption. On the basis of this comparison the influence of three factors: solar radiation heat gains, building air tightness and the SCOP of the heat pump on energy use calculations are analyzed. Conclusions aim to point the differences between them and the actual energy consumption.

  20. Application of computational thermodynamics to the determination of thermophysical properties as a function of temperature for multicomponent Al-based alloys

    International Nuclear Information System (INIS)

    Nascimento, Fabiana C.; Paresque, Mara C.C.; Castro, José A. de; Jácome, Paulo A.D.; Garcia, Amauri; Ferreira, Ivaldo L.

    2015-01-01

    Highlights: • A model coupled to a computational thermodynamics software is proposed to compute thermophysical properties. • The model applies to multicomponent alloys and has been validated against experimental results. • Density and specific heat as a function of temperature are computed for Al–Si–Cu alloys. - Abstract: Despite the technological importance of Al–Si–Cu alloys in manufacturing processes involving heat transfer, such as welding, casting and heat treatment, thermophysical properties of this system of alloys are very scarce in the literature. In this paper, a model connected to a computational thermodynamics software is proposed permitting density and specific heats as a function of temperature and enthalpy of transformations to be numerically determined. The model is pre-validated against experimental density as a function of temperature for liquid and solid phases of A319 and 7075 alloys found in the literature and validated against experimental density values for the solid phase of an Al-6 wt%Cu-1 wt%Si alloy determined in the present study. In both cases the numerical predictions are in good agreement with the experimental results. Specific heat and temperatures and heats of transformation are also numerically determined for this ternary Al-based alloy.

  1. Application of computational thermodynamics to the determination of thermophysical properties as a function of temperature for multicomponent Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Fabiana C. [Fluminense Federal University, Graduate Program in Metallurgical Engineering, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil); Paresque, Mara C.C. [Fluminense Federal University, Graduate Program in Mechanical Engineering, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil); Castro, José A. de [Fluminense Federal University, Graduate Program in Metallurgical Engineering, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil); Jácome, Paulo A.D. [Fluminense Federal University, Graduate Program in Mechanical Engineering, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil); Garcia, Amauri, E-mail: amaurig@fem.unicamp.br [University of Campinas – UNICAMP, Department of Manufacturing and Materials Engineering, 13083-860 Campinas, SP (Brazil); Ferreira, Ivaldo L. [Fluminense Federal University, Graduate Program in Mechanical Engineering, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil)

    2015-11-10

    Highlights: • A model coupled to a computational thermodynamics software is proposed to compute thermophysical properties. • The model applies to multicomponent alloys and has been validated against experimental results. • Density and specific heat as a function of temperature are computed for Al–Si–Cu alloys. - Abstract: Despite the technological importance of Al–Si–Cu alloys in manufacturing processes involving heat transfer, such as welding, casting and heat treatment, thermophysical properties of this system of alloys are very scarce in the literature. In this paper, a model connected to a computational thermodynamics software is proposed permitting density and specific heats as a function of temperature and enthalpy of transformations to be numerically determined. The model is pre-validated against experimental density as a function of temperature for liquid and solid phases of A319 and 7075 alloys found in the literature and validated against experimental density values for the solid phase of an Al-6 wt%Cu-1 wt%Si alloy determined in the present study. In both cases the numerical predictions are in good agreement with the experimental results. Specific heat and temperatures and heats of transformation are also numerically determined for this ternary Al-based alloy.

  2. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  3. High Performance Numerical Computing for High Energy Physics: A New Challenge for Big Data Science

    International Nuclear Information System (INIS)

    Pop, Florin

    2014-01-01

    Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities.

  4. METHOD OF CALCULATION OF THE NON-STATIONARY TEMPERATURE FIELD INSIDE OF THERMAL PACKED BED ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2014-04-01

    Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.

  5. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  6. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  7. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  8. Computer-aided engineering in High Energy Physics

    International Nuclear Information System (INIS)

    Bachy, G.; Hauviller, C.; Messerli, R.; Mottier, M.

    1988-01-01

    Computing, standard tool for a long time in the High Energy Physics community, is being slowly introduced at CERN in the mechanical engineering field. The first major application was structural analysis followed by Computer-Aided Design (CAD). Development work is now progressing towards Computer-Aided Engineering around a powerful data base. This paper gives examples of the power of this approach applied to engineering for accelerators and detectors

  9. Improved energy performance of ammonia recycling system using floating condensing temperature control

    International Nuclear Information System (INIS)

    Lu, Wei; Meng, Zhuo; Sun, Yize; Zhong, Qianwen; Zhu, Helei

    2016-01-01

    Highlights: • Thermodynamic models for the compressor and evaporative condenser were developed. • An evaluation index was proposed to determine the optimal set point. • An algorithm was presented to compute the optimal set point. • Strategies for operating ammonia recycling system were proposed. - Abstract: Aiming at reducing the energy-consumption of ammonia recycling system, we presented floating condensing temperature control to maximize the coefficient of performance (COP) of the system. Firstly, thermodynamic models for the compressor and evaporative condenser were developed respectively. Then, an evaluation index and a solution scheme were proposed to determine the optimal set point of condensing temperature and the corresponding compressor speed. It is found that the system COP can be maximized by controlling the compressor speed to adjust the set point based on any given operating conditions. When the wet-bulb temperature is 22 °C, the system COP could be improved by 19.2–27.6% under floating condensing temperature control.

  10. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  11. Versatile microcomputer-based temperature controller

    International Nuclear Information System (INIS)

    Yarberry, V.R.

    1980-09-01

    The wide range of thermal responses required in laboratory and scientific equipment requires a temperature controller with a great deal of flexibility. While a number of analog temperature controllers are commercially available, they have certain limitations, such as inflexible parameter control or insufficient precision. Most lack digital interface capabilities--a necessity when the temperature controller is part of a computer-controlled automatic data acquisition system. We have developed an extremely versatile microcomputer-based temperature controller to fulfill this need in a variety of equipment. The control algorithm used allows optimal tailoring of parameters to control overshoot, response time, and accuracy. This microcomputer-based temperature controller can be used as a standalone instrument (with a teletype used to enter para-meters), or it can be integrated into a data acquisition system

  12. Computed temperature profile in materials exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tso Chin; Choong, Yap Siew; Seon, Chan Kam

    1987-06-01

    Computed temperature profiles are presented for the materials of lead, steel, concrete and water in curved shells, when they are exposed to gamma radiation. The results are based on the usual simplified theory of thermal conduction with an exponential heat source.

  13. DATING: A computer code for determining allowable temperatures for dry storage of spent fuel in inert and nitrogen gases

    International Nuclear Information System (INIS)

    Simonen, E.P.; Gilbert, E.R.

    1988-12-01

    The DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) code can be used to calculate allowable initial temperatures for dry storage of light-water-reactor spent fuel. The calculations are based on the life fraction rule using both measured data and mechanistic equations as reported by Chin et al. (1986). The code is written in FORTRAN and utilizes an efficient numerical integration method for rapid calculations on IBM-compatible personal computers. This report documents the technical basis for the DATING calculations, describes the computational method and code statements, and includes a user's guide with examples. The software for the DATING code is available through the National Energy Software Center operated by Argonne National Laboratory, Argonne, Illinois 60439. 5 refs., 8 figs., 5 tabs

  14. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  15. Computational approaches to energy materials

    CERN Document Server

    Catlow, Richard; Walsh, Aron

    2013-01-01

    The development of materials for clean and efficient energy generation and storage is one of the most rapidly developing, multi-disciplinary areas of contemporary science, driven primarily by concerns over global warming, diminishing fossil-fuel reserves, the need for energy security, and increasing consumer demand for portable electronics. Computational methods are now an integral and indispensable part of the materials characterisation and development process.   Computational Approaches to Energy Materials presents a detailed survey of current computational techniques for the

  16. Temperature distribution of the energy consumed as heat in Canada

    International Nuclear Information System (INIS)

    Puttagunta, V.R.

    1974-10-01

    The amount of energy consumed as heat (excluding thermal generation of electricity) in Canada is estimated from statistical data available on the total consumption of energy for the years 1958 to 2000. Based on some actual plant data and other statistical information this energy consumption is sub-divided into four temperature categories: high (>260 degrees C), intermediate (140-260 degrees C), low (100-140 degrees C), and space heating (<100 degrees C). The results of this analysis show that approximately half of all the energy consumed in Canada has an end use as heat. Less than 10 percent of the energy consumed as heat is in the high temperature category, 12 to 14 percent is in the intermediate temperature range, 21 to 27 percent is in the low temperature range, and 50 to 58 percent is used for space heating. Over 90 percent of the energy consumed as heat in Canada is within the temperature capability of the CANDU-PHW reactor. (author)

  17. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    Science.gov (United States)

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  18. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    Science.gov (United States)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research

  19. Energy and Exergy Based Optimization of Licl-Water Absorption Cooling System

    Directory of Open Access Journals (Sweden)

    Bhargav Pandya

    2017-06-01

    Full Text Available This study presents thermodynamic analysis and optimization of single effect LiCl-H2O absorption cooling system. Thermodynamic models are employed in engineering equation solver to compute the optimum performance parameters. In this study, cut off temperature to operate system has been obtained at various operating temperatures. Analysis depicts that on 3.59 % rise in evaporator temperature, the required cut-off temperature decreased by 12.51%. By realistic comparison between thermodynamic first and second law analysis, optimum generator temperature relative to energy and exergy based prospective has been evaluated. It is found that optimum generator temperature is strong function of evaporator and condenser temperature. Thus, it is feasible to find out optimum generator temperature for various combinations of evaporator and condenser temperatures. Contour plots of optimum generator temperature for several combinations of condenser and absorber temperatures have been also depicted.

  20. Magnetic-fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  1. Magnetic fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  2. The electron trap parameter extraction-based investigation of the relationship between charge trapping and activation energy in IGZO TFTs under positive bias temperature stress

    Science.gov (United States)

    Rhee, Jihyun; Choi, Sungju; Kang, Hara; Kim, Jae-Young; Ko, Daehyun; Ahn, Geumho; Jung, Haesun; Choi, Sung-Jin; Myong Kim, Dong; Kim, Dae Hwan

    2018-02-01

    Experimental extraction of the electron trap parameters which are associated with charge trapping into gate insulators under the positive bias temperature stress (PBTS) is proposed and demonstrated for the first time in amorphous indium-gallium-zinc-oxide thin-film transistors. This was done by combining the PBTS/recovery time-evolution of the experimentally decomposed threshold voltage shift (ΔVT) and the technology computer-aided design (TCAD)-based charge trapping simulation. The extracted parameters were the trap density (NOT) = 2.6 × 1018 cm-3, the trap energy level (ΔET) = 0.6 eV, and the capture cross section (σ0) = 3 × 10-19 cm2. Furthermore, based on the established TCAD framework, the relationship between the electron trap parameters and the activation energy (Ea) is comprehensively investigated. It is found that Ea increases with an increase in σ0, whereas Ea is independent of NOT. In addition, as ΔET increases, Ea decreases in the electron trapping-dominant regime (low ΔET) and increases again in the Poole-Frenkel (PF) emission/hopping-dominant regime (high ΔET). Moreover, our results suggest that the cross-over ΔET point originates from the complicated temperature-dependent competition between the capture rate and the emission rate. The PBTS bias dependence of the relationship between Ea and ΔET suggests that the electric field dependence of the PF emission-based electron hopping is stronger than that of the thermionic field emission-based electron trapping.

  3. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  4. Shadow Replication: An Energy-Aware, Fault-Tolerant Computational Model for Green Cloud Computing

    Directory of Open Access Journals (Sweden)

    Xiaolong Cui

    2014-08-01

    Full Text Available As the demand for cloud computing continues to increase, cloud service providers face the daunting challenge to meet the negotiated SLA agreement, in terms of reliability and timely performance, while achieving cost-effectiveness. This challenge is increasingly compounded by the increasing likelihood of failure in large-scale clouds and the rising impact of energy consumption and CO2 emission on the environment. This paper proposes Shadow Replication, a novel fault-tolerance model for cloud computing, which seamlessly addresses failure at scale, while minimizing energy consumption and reducing its impact on the environment. The basic tenet of the model is to associate a suite of shadow processes to execute concurrently with the main process, but initially at a much reduced execution speed, to overcome failures as they occur. Two computationally-feasible schemes are proposed to achieve Shadow Replication. A performance evaluation framework is developed to analyze these schemes and compare their performance to traditional replication-based fault tolerance methods, focusing on the inherent tradeoff between fault tolerance, the specified SLA and profit maximization. The results show that Shadow Replication leads to significant energy reduction, and is better suited for compute-intensive execution models, where up to 30% more profit increase can be achieved due to reduced energy consumption.

  5. Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Arróyave, Raymundo; Talapatra, Anjana; Johnson, Luke; Singh, Navdeep; Ma, Ji; Karaman, Ibrahim

    2015-11-01

    Over the last decade, considerable interest in the development of High-Temperature Shape Memory Alloys (HTSMAs) for solid-state actuation has increased dramatically as key applications in the aerospace and automotive industry demand actuation temperatures well above those of conventional SMAs. Most of the research to date has focused on establishing the (forward) connections between chemistry, processing, (micro)structure, properties, and performance. Much less work has been dedicated to the development of frameworks capable of addressing the inverse problem of establishing necessary chemistry and processing schedules to achieve specific performance goals. Integrated Computational Materials Engineering (ICME) has emerged as a powerful framework to address this problem, although it has yet to be applied to the development of HTSMAs. In this paper, the contributions of computational thermodynamics and kinetics to ICME of HTSMAs are described. Some representative examples of the use of computational thermodynamics and kinetics to understand the phase stability and microstructural evolution in HTSMAs are discussed. Some very recent efforts at combining both to assist in the design of HTSMAs and limitations to the full implementation of ICME frameworks for HTSMA development are presented.

  6. A computer-based system for environmental impact assessment (EIA) applications to energy power stations in Turkey: CEDINFO

    Energy Technology Data Exchange (ETDEWEB)

    Say, Nuriye Peker; Yuecel, Muzaffer [Cukurova University, Adana (Turkey). Department of Landscape Architecture; Yilmazer, Mehmet [Bogazici University, Kandilli, Istanbul (Turkey). Kandilli Observatory and Earthquake Research Institute

    2007-12-15

    Environmental impact assessment (EIA) is a tool for decision makers to take into account the possible effects of a proposed project on the environment and is also a process for collecting the data related to a project design and project area. Different techniques are used for the EIA process. In recent years, including the design and development of databases, classification systems, computer models and expert systems have been used extensively in impact assessment studies. Knowledge-based systems referred to as expert systems and different computer-based systems are an emerging technology in information processing and are becoming increasingly useful tools in different applications areas including EIA studies. Their use for EIA has been quite limited in developing countries, because of the constraints on resources, particularly in expertise and data. In this study, a knowledge-based software - CEDINFO - developed by authors was introduced. CEDINFO to be used for EIA practices on energy-generating stations was designed based on the legal EIA process in Turkey. According to the EIA Regulation enacted in Turkey in 1993, energy-generating stations (thermal power station, hydraulic station, nuclear station) in different categories require mandatory EIA reports duly approved by The Ministry of Environment and Forestry before their construction. CEDINFO primarily aims to provide educational support for EIA practices and decision-makers on energy-generating stations. (author)

  7. A computer-based system for environmental impact assessment (EIA) applications to energy power stations in Turkey: CEDINFO

    Energy Technology Data Exchange (ETDEWEB)

    Nuriye Peker Say; Muzaffer Yucel; Mehmet Yilmazer [Cukurova University, Adana (Turkey). Department of Landscape Architecture

    2007-12-15

    Environmental impact assessment (EIA) is a tool to enable decision makers to account for the possible effects of a proposed project on the environment and is also a process for collecting the data related to a project design and project area. Different techniques are used for the EIA process. In recent years, including the design and development of databases, classification systems, computer models and expert systems have been used extensively in impact assessment studies. Knowledge-based systems referred to as expert systems and different computer-based systems are an emerging technology in information processing and are becoming increasingly useful tools in different applications areas including EIA studies. Their use for EIA has been quite limited in developing countries, because of the constraints on resources, particularly in expertise and data. In this study, a knowledge-based software CEDINFO developed by authors was introduced. CEDINFO to be used for EIA practices on energy-generating stations was designed based on the legal EIA process in Turkey. According to the EIA Regulation enacted in Turkey in 1993, energy-generating stations (thermal power stations, hydroelectric power stations, nuclear power stations) in different categories require mandatory EIA reports duly approved by The Ministry of Environment and Forestry before their construction. CEDINFO primarily aims to provide educational support for EIA practices and decision-makers on energy-generating stations. 23 refs., 5 figs., 2 tabs.

  8. A computer-based system for environmental impact assessment (EIA) applications to energy power stations in Turkey: CEDINFO

    International Nuclear Information System (INIS)

    Say, Nuriye Peker; Yuecel, Muzaffer; Yilmazer, Mehmet

    2007-01-01

    Environmental impact assessment (EIA) is a tool for decision makers to take into account the possible effects of a proposed project on the environment and is also a process for collecting the data related to a project design and project area. Different techniques are used for the EIA process. In recent years, including the design and development of databases, classification systems, computer models and expert systems have been used extensively in impact assessment studies. Knowledge-based systems referred to as expert systems and different computer-based systems are an emerging technology in information processing and are becoming increasingly useful tools in different applications areas including EIA studies. Their use for EIA has been quite limited in developing countries, because of the constraints on resources, particularly in expertise and data. In this study, a knowledge-based software-CEDINFO-developed by authors was introduced. CEDINFO to be used for EIA practices on energy-generating stations was designed based on the legal EIA process in Turkey. According to the EIA Regulation enacted in Turkey in 1993, energy-generating stations (thermal power station, hydraulic station, nuclear station) in different categories require mandatory EIA reports duly approved by The Ministry of Environment and Forestry before their construction. CEDINFO primarily aims to provide educational support for EIA practices and decision-makers on energy-generating stations

  9. Comparative assessment of computational methods for the determination of solvation free energies in alcohol-based molecules.

    Science.gov (United States)

    Martins, Silvia A; Sousa, Sergio F

    2013-06-05

    The determination of differences in solvation free energies between related drug molecules remains an important challenge in computational drug optimization, when fast and accurate calculation of differences in binding free energy are required. In this study, we have evaluated the performance of five commonly used polarized continuum model (PCM) methodologies in the determination of solvation free energies for 53 typical alcohol and alkane small molecules. In addition, the performance of these PCM methods, of a thermodynamic integration (TI) protocol and of the Poisson-Boltzmann (PB) and generalized Born (GB) methods, were tested in the determination of solvation free energies changes for 28 common alkane-alcohol transformations, by the substitution of an hydrogen atom for a hydroxyl substituent. The results show that the solvation model D (SMD) performs better among the PCM-based approaches in estimating solvation free energies for alcohol molecules, and solvation free energy changes for alkane-alcohol transformations, with an average error below 1 kcal/mol for both quantities. However, for the determination of solvation free energy changes on alkane-alcohol transformation, PB and TI yielded better results. TI was particularly accurate in the treatment of hydroxyl groups additions to aromatic rings (0.53 kcal/mol), a common transformation when optimizing drug-binding in computer-aided drug design. Copyright © 2013 Wiley Periodicals, Inc.

  10. Computational scheme for transient temperature distribution in PWR vessel wall

    International Nuclear Information System (INIS)

    Dedovic, S.; Ristic, P.

    1980-01-01

    Computer code TEMPNES is a part of joint effort made in Gosa Industries in achieving the technique for structural analysis of heavy pressure vessels. Transient heat conduction problems analysis is based on finite element discretization of structures non-linear transient matrix formulation and time integration scheme as developed by Wilson (step-by-step procedure). Convection boundary conditions and the effect of heat generation due to radioactive radiation are both considered. The computation of transient temperature distributions in reactor vessel wall when the water temperature suddenly drops as a consequence of reactor cooling pump failure is presented. The vessel is treated as as axisymmetric body of revolution. The program has two finite time element options a) fixed predetermined increment and; b) an automatically optimized time increment for each step dependent on the rate of change of the nodal temperatures. (author)

  11. Grid Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Avery, Paul

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  12. Dynamic pricing based on a cloud computing framework to support the integration of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Rajeev Thankappan Nair

    2014-12-01

    Full Text Available Integration of renewable energy sources into the electric grid in the domestic sector results in bidirectional energy flow from the supply side of the consumer to the grid. Traditional pricing methods are difficult to implement in such a situation of bidirectional energy flow and they face operational challenges on the application of price-based demand side management programme because of the intermittent characteristics of renewable energy sources. In this study, a dynamic pricing method using real-time data based on a cloud computing framework is proposed to address the aforementioned issues. The case study indicates that the dynamic pricing captures the variation of energy flow in the household. The dynamic renewable factor introduced in the model supports consumer oriented pricing. A new method is presented in this study to determine the appropriate level of photovoltaic (PV penetration in the distribution system based on voltage stability aspect. The load flow study result for the electric grid in Kerala, India, indicates that the overvoltage caused by various PV penetration levels up to 33% is within the voltage limits defined for distribution feeders. The result justifies the selected level of penetration.

  13. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  14. RPM-WEBBSYS: A web-based computer system to apply the rational polynomial method for estimating static formation temperatures of petroleum and geothermal wells

    Science.gov (United States)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J. A.; Quiroz-Ruiz, A.

    2015-12-01

    A Web-Based Computer System (RPM-WEBBSYS) has been developed for the application of the Rational Polynomial Method (RPM) to estimate static formation temperatures (SFT) of geothermal and petroleum wells. The system is also capable to reproduce the full thermal recovery processes occurred during the well completion. RPM-WEBBSYS has been programmed using advances of the information technology to perform more efficiently computations of SFT. RPM-WEBBSYS may be friendly and rapidly executed by using any computing device (e.g., personal computers and portable computing devices such as tablets or smartphones) with Internet access and a web browser. The computer system was validated using bottomhole temperature (BHT) measurements logged in a synthetic heat transfer experiment, where a good matching between predicted and true SFT was achieved. RPM-WEBBSYS was finally applied to BHT logs collected from well drilling and shut-in operations, where the typical problems of the under- and over-estimation of the SFT (exhibited by most of the existing analytical methods) were effectively corrected.

  15. Measured energy savings from using night temperature setback

    International Nuclear Information System (INIS)

    Szydlowski, R.F.; Wrench, L.E.; O'Neill, P.J.

    1993-01-01

    The measured energy savings resulting from using night temperature setback in typical light-construction wooden office buildings was determined. Researchers installed monitoring equipment in a six-building sample of two-story wooden buildings at Fort Devens, Massachusetts. Data obtained during both single-setting and night-setback operating modes were used to develop models of each building's heat consumption as a function of the difference between inside and outside temperature. These models were used to estimate seasonal savings that could be obtained from the use of night-setback thermostat control. The measured savings in heating energy from using night temperature setback for the six Fort Devens buildings ranged from 14% to 25%; the mean savings was 19.2%. Based on an energy cost of $0.65/therm of natural gas, the estimated average cost savings of using automatic setback thermostats in these buildings is $780 per year per building

  16. Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals

    International Nuclear Information System (INIS)

    Warner, D.H.; Curtin, W.A.

    2009-01-01

    The linking of atomistic simulations of stress-driven processes to experimentally observed mechanical behavior via the computation of activation energy barriers is a topic of intense current research. Using dislocation nucleation from a crack tip as the reaction process, long-time multiscale molecular dynamics simulations show that the activation barrier can exhibit significant temperature dependence. Using an analytic model for the nucleation process and computing the relevant material properties (elastic constants and stacking fault energies), the temperature dependence is shown to arise primarily from the temperature dependence of the material parameters for both Al and Ni. After thermally activated emission of the first partial dislocation, there is then a competition between two other thermally activated processes: twinning and full dislocation emission. Because the activation barriers depend on temperature, this transition is more complex than usually envisioned. Simulations in Al reveal that a transition from twinning to full dislocation emission back to twinning occurs with increasing temperature, which is counter to traditional metallurgical wisdom. Temperature-dependent activation energies are thus essential to accurate understanding and prediction of those phenomena that control fracture and deformation in metals at realistic loading rates.

  17. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  18. DETERMINING THE COMPOSITION OF HIGH TEMPERATURE COMBUSTION PRODUCTS OF FOSSIL FUEL BASED ON VARIATIONAL PRINCIPLES AND GEOMETRIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Velibor V Vujović

    2011-01-01

    Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.

  19. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  20. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  1. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    International Nuclear Information System (INIS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Zhang, Weihong; Van Herpen, Alain

    2016-01-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well. (paper)

  2. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  3. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  4. Building Energy Assessment and Computer Simulation Applied to Social Housing in Spain

    Directory of Open Access Journals (Sweden)

    Juan Aranda

    2018-01-01

    Full Text Available The actual energy consumption and simulated energy performance of a building usually differ. This gap widens in social housing, owing to the characteristics of these buildings and the consumption patterns of economically vulnerable households affected by energy poverty. The aim of this work is to characterise the energy poverty of the households that are representative of those residing in social housing, specifically in blocks of apartments in Southern Europe. The main variables that affect energy consumption and costs are analysed, and the models developed for software energy-performance simulations (which are applied to predict energy consumption in social housing are validated against actual energy-consumption values. The results demonstrate that this type of household usually lives in surroundings at a temperature below the average thermal comfort level. We have taken into account that a standard thermal comfort level may lead to significant differences between computer-aided energy building simulation and actual consumption data (which are 40–140% lower than simulated consumption. This fact is of integral importance, as we use computer simulation to predict building energy performance in social housing.

  5. Computational and Experimental Design of Fe-Based Superalloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Fine, Morris E. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautam [Northwestern Univ., Evanston, IL (United States); Asta, Mark D. [Univ. of California, Berkeley, CA (United States); Liu, Chain T. [Auburn Univ., AL (United States); Sun, Zhiqian [Univ. of Tennessee, Knoxville, TN (United States); Huang, Shenyan [Univ. of Tennessee, Knoxville, TN (United States); Teng, Zhenke [Univ. of Tennessee, Knoxville, TN (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States)

    2012-04-13

    Analogous to nickel-based superalloys, Fe-based superalloys, which are strengthened by coherent B2- type precipitates are proposed for elevated-temperature applications. During the period of this project, a series of ferritic superalloys have been designed and fabricated by methods of vacuum-arc melting and vacuum-induction melting. Nano-scale precipitates were characterized by atom-probe tomography, ultrasmall- angle X-ray scattering, and transmission-electron microscopy. A duplex distribution of precipitates was found. It seems that ferritic superalloys are susceptible to brittle fracture. Systematic endeavors have been devoted to understanding and resolving the problem. Factors, such as hot rolling, precipitate volume fractions, alloy compositions, precipitate sizes and inter-particle spacings, and hyperfine cooling precipitates, have been investigated. In order to understand the underlying relationship between the microstructure and creep behavior of ferric alloys at elevated temperatures, in-situ neutron studies have been carried out. Based on the current result, it seems that the major role of β' with a 16%-volume fraction in strengthening ferritic alloys is not load sharing but interactions with dislocations. The oxidation behavior of one ferritic alloy, FBB8 (Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B, weight percent), was studied in dry air. It is found that it possesses superior oxidation resistance at 1,023 and 1,123 K, compared with other creep-resistant ferritic steels [T91 (modified 9Cr-1Mo, weight percent) and P92 (9Cr-1.8W-0.5Mo, weight percent)]. At the same time, the calculation of the interfacial energies between the -iron and B2-type intermetallics (CoAl, FeAl, and NiAl) has been conducted.

  6. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  7. Design of temperature monitoring system based on CAN bus

    Science.gov (United States)

    Zhang, Li

    2017-10-01

    The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.

  8. Novel spintronics devices for memory and logic: prospects and challenges for room temperature all spin computing

    Science.gov (United States)

    Wang, Jian-Ping

    An energy efficient memory and logic device for the post-CMOS era has been the goal of a variety of research fields. The limits of scaling, which we expect to reach by the year 2025, demand that future advances in computational power will not be realized from ever-shrinking device sizes, but rather by innovative designs and new materials and physics. Magnetoresistive based devices have been a promising candidate for future integrated magnetic computation because of its unique non-volatility and functionalities. The application of perpendicular magnetic anisotropy for potential STT-RAM application was demonstrated and later has been intensively investigated by both academia and industry groups, but there is no clear path way how scaling will eventually work for both memory and logic applications. One of main reasons is that there is no demonstrated material stack candidate that could lead to a scaling scheme down to sub 10 nm. Another challenge for the usage of magnetoresistive based devices for logic application is its available switching speed and writing energy. Although a good progress has been made to demonstrate the fast switching of a thermally stable magnetic tunnel junction (MTJ) down to 165 ps, it is still several times slower than its CMOS counterpart. In this talk, I will review the recent progress by my research group and my C-SPIN colleagues, then discuss the opportunities, challenges and some potential path ways for magnetoresitive based devices for memory and logic applications and their integration for room temperature all spin computing system.

  9. A Computational Framework for Efficient Low Temperature Plasma Simulations

    Science.gov (United States)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  10. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  11. Temperature dependence of APD-based PET scanners

    International Nuclear Information System (INIS)

    Keereman, Vincent; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian

    2013-01-01

    Purpose: Solid state detectors such as avalanche photodiodes (APDs) are increasingly being used in PET detectors. One of the disadvantages of APDs is the strong decrease of their gain factor with increasing ambient temperature. The light yield of most scintillation crystals also decreases when ambient temperature is increased. Both effects lead to considerable temperature dependence of the performance of APD-based PET scanners. In this paper, the authors propose a model for this dependence and the performance of the LabPET8 APD-based small animal PET scanner is evaluated at different temperatures.Methods: The model proposes that the effect of increasing temperature on the energy histogram of an APD-based PET scanner is a compression of the histogram along the energy axis. The energy histogram of the LabPET system was acquired at 21 °C and 25 °C to verify the validity of this model. Using the proposed model, the effect of temperature on system sensitivity was simulated for different detector temperature coefficients and temperatures. Subsequently, the effect of short term and long term temperature changes on the peak sensitivity of the LabPET system was measured. The axial sensitivity profile was measured at 21 °C and 24 °C following the NEMA NU 4-2008 standard. System spatial resolution was also evaluated. Furthermore, scatter fraction, count losses and random coincidences were evaluated at different temperatures. Image quality was also investigated.Results: As predicted by the model, the photopeak energy at 25 °C is lower than at 21 °C with a shift of approximately 6% per °C. Simulations showed that this results in an approximately linear decrease of sensitivity when temperature is increased from 21 °C to 24 °C and energy thresholds are constant. Experimental evaluation of the peak sensitivity at different temperatures showed a strong linear correlation for short term (2.32 kcps/MBq/°C = 12%/°C, R = −0.95) and long term (1.92 kcps/MBq/°C = 10%/

  12. Particle energy and Hawking temperature

    International Nuclear Information System (INIS)

    Ding Chikun; Wang Mengjie; Jing Jiliang

    2009-01-01

    Some authors have recently found that the tunneling approach gives a different Hawking temperature for a Schwarzschild black hole in a different coordinate system. In this Letter, we find that to work out the Hawking temperature in a different coordinate system by the tunneling approach, we must use the correct definition of the energy of the radiating particles. By using a new definition of the particle energy, we obtain the correct Hawking temperature for a Schwarzschild black hole in two dynamic coordinate systems, the Kruskal-Szekers and dynamic Lemaitre coordinate systems.

  13. Energy Consumption Management of Virtual Cloud Computing Platform

    Science.gov (United States)

    Li, Lin

    2017-11-01

    For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.

  14. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  15. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  16. Is there a temperature? conceptual challenges at high energy, acceleration and complexity

    CERN Document Server

    Sándor Biró, Tamás

    2011-01-01

    Physical bodies can be hot or cold, moving or standing,simple or complex. In all such cases one assumes that their respective temperature is a well defined attribute.  What if, however, the ordinary measurement of temperature by direct body contact is not possible?  One conjectures its value, and yes, its very existence, by reasoning based on basic principles of thermodynamics. Is There a Temperature?  Conceptual Challenges at High Energy, Acceleration and Complexity, by Dr. Tamás Sándor Bíró, begins by asking the questions “Do we understand and can we explain in a unified framework the temperature of distant radiation sources, including event horizons, and that of the quark matter produced in high energy accelerator experiments? Or the astounding fluctuations on financial markets?” The book reviews the concept of temperature from its beginnings through the evolution of classical thermodynamics and atomic statistical physics through contemporary models of high energy particle matter.  Based on the...

  17. Computational fluid dynamics simulation of indoor climate in low energy buildings: Computational set up

    Directory of Open Access Journals (Sweden)

    Risberg Daniel

    2017-01-01

    Full Text Available In this paper CFD was used for simulation of the indoor climate in a part of a low energy building. The focus of the work was on investigating the computational set up, such as grid size and boundary conditions in order to solve the indoor climate problems in an accurate way. Future work is to model a complete building, with reasonable calculation time and accuracy. A limited number of grid elements and knowledge of boundary settings are therefore essential. An accurate grid edge size of around 0.1 m was enough to predict the climate according to a grid independency study. Different turbulence models were compared with only small differences in the indoor air velocities and temperatures. The models show that radiation between building surfaces has a large impact on the temperature field inside the building, with the largest differences at the floor level. Simplifying the simulations by modelling the radiator as a surface in the outer wall of the room is appropriate for the calculations. The overall indoor climate is finally compared between three different cases for the outdoor air temperature. The results show a good indoor climate for a low energy building all around the year.

  18. Ambient Temperature Based Thermal Aware Energy Efficient ROM Design on FPGA

    DEFF Research Database (Denmark)

    Saini, Rishita; Bansal, Neha; Bansal, Meenakshi

    2015-01-01

    Thermal aware design is currently gaining importance in VLSI research domain. In this work, we are going to design thermal aware energy efficient ROM on Virtex-5 FPGA. Ambient Temperature, airflow, and heat sink profile play a significant role in thermal aware hardware design life cycle. Ambient...

  19. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  20. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  1. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Franglin [Univ. of South Carolina, Columbia, SC (United States); Sholl, David [Georgia Inst. of Technology, Atlanta, GA (United States); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Iyer, Ratnasabapathy [Claflin Univ., Orangeburg, SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2015-01-22

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  2. Novel Methods of Tritium Sequestration: High Temperature Gettering and Separation Membrane Materials Discovery for Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2015-01-01

    This project is aimed at addressing critical issues related to tritium sequestration in next generation nuclear energy systems. A technical hurdle to the use of high temperature heat from the exhaust produced in the next generation nuclear processes in commercial applications such as nuclear hydrogen production is the trace level of tritium present in the exhaust gas streams. This presents a significant challenge since the removal of tritium from the high temperature gas stream must be accomplished at elevated temperatures in order to subsequently make use of this heat in downstream processing. One aspect of the current project is to extend the techniques and knowledge base for metal hydride materials being developed for the ''hydrogen economy'' based on low temperature absorption/desorption of hydrogen to develop materials with adequate thermal stability and an affinity for hydrogen at elevated temperatures. The second focus area of this project is to evaluate high temperature proton conducting materials as hydrogen isotope separation membranes. Both computational and experimental approaches will be applied to enhance the knowledge base of hydrogen interactions with metal and metal oxide materials. The common theme between both branches of research is the emphasis on both composition and microstructure influence on the performance of sequestration materials.

  3. Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on a zeta function technique

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2007-01-01

    We derive rigorously explicit formulae of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by a zeta regularization method. We study both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with the Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy changes from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity go to infinity, and we find that these results agree with the usual integration prescription adopted by other authors

  4. Energy-Efficient FPGA-Based Parallel Quasi-Stochastic Computing

    Directory of Open Access Journals (Sweden)

    Ramu Seva

    2017-11-01

    Full Text Available The high performance of FPGA (Field Programmable Gate Array in image processing applications is justified by its flexible reconfigurability, its inherent parallel nature and the availability of a large amount of internal memories. Lately, the Stochastic Computing (SC paradigm has been found to be significantly advantageous in certain application domains including image processing because of its lower hardware complexity and power consumption. However, its viability is deemed to be limited due to its serial bitstream processing and excessive run-time requirement for convergence. To address these issues, a novel approach is proposed in this work where an energy-efficient implementation of SC is accomplished by introducing fast-converging Quasi-Stochastic Number Generators (QSNGs and parallel stochastic bitstream processing, which are well suited to leverage FPGA’s reconfigurability and abundant internal memory resources. The proposed approach has been tested on the Virtex-4 FPGA, and results have been compared with the serial and parallel implementations of conventional stochastic computation using the well-known SC edge detection and multiplication circuits. Results prove that by using this approach, execution time, as well as the power consumption are decreased by a factor of 3.5 and 4.5 for the edge detection circuit and multiplication circuit, respectively.

  5. The research and application of green computer room environmental monitoring system based on internet of things technology

    Science.gov (United States)

    Wei, Wang; Chongchao, Pan; Yikai, Liang; Gang, Li

    2017-11-01

    With the rapid development of information technology, the scale of data center increases quickly, and the energy consumption of computer room also increases rapidly, among which, energy consumption of air conditioning cooling makes up a large proportion. How to apply new technology to reduce the energy consumption of the computer room becomes an important topic of energy saving in the current research. This paper study internet of things technology, and design a kind of green computer room environmental monitoring system. In the system, we can get the real-time environment data from the application of wireless sensor network technology, which will be showed in a creative way of three-dimensional effect. In the environment monitor, we can get the computer room assets view, temperature cloud view, humidity cloud view, microenvironment view and so on. Thus according to the condition of the microenvironment, we can adjust the air volume, temperature and humidity parameters of the air conditioning for the individual equipment cabinet to realize the precise air conditioning refrigeration. And this can reduce the energy consumption of air conditioning, as a result, the overall energy consumption of the green computer room will reduce greatly. At the same time, we apply this project in the computer center of Weihai, and after a year of test and running, we find that it took a good energy saving effect, which fully verified the effectiveness of this project on the energy conservation of the computer room.

  6. Computational design for a wide-angle cermet-based solar selective absorber for high temperature applications

    International Nuclear Information System (INIS)

    Sakurai, Atsushi; Tanikawa, Hiroya; Yamada, Makoto

    2014-01-01

    The purpose of this study is to computationally design a wide-angle cermet-based solar selective absorber for high temperature applications by using a characteristic matrix method and a genetic algorithm. The present study investigates a solar selective absorber with tungsten–silica (W–SiO 2 ) cermet. Multilayer structures of 1, 2, 3, and 4 layers and a wide range of metal volume fractions are optimized. The predicted radiative properties show good solar performance, i.e., thermal emittances, especially beyond 2 μm, are quite low, in contrast, solar absorptance levels are successfully high with wide angular range, so that solar photons are effectively absorbed and infrared radiative heat loss can be decreased. -- Highlights: • Electromagnetic simulation of radiative properties by characteristic matrix method. • Optimization for multilayered W–SiO 2 cermet-based absorber by a Genetic Algorithm. • We propose a successfully high solar performance of solar selective absorber

  7. Grid computing in high-energy physics

    International Nuclear Information System (INIS)

    Bischof, R.; Kuhn, D.; Kneringer, E.

    2003-01-01

    Full text: The future high energy physics experiments are characterized by an enormous amount of data delivered by the large detectors presently under construction e.g. at the Large Hadron Collider and by a large number of scientists (several thousands) requiring simultaneous access to the resulting experimental data. Since it seems unrealistic to provide the necessary computing and storage resources at one single place, (e.g. CERN), the concept of grid computing i.e. the use of distributed resources, will be chosen. The DataGrid project (under the leadership of CERN) develops, based on the Globus toolkit, the software necessary for computation and analysis of shared large-scale databases in a grid structure. The high energy physics group Innsbruck participates with several resources in the DataGrid test bed. In this presentation our experience as grid users and resource provider is summarized. In cooperation with the local IT-center (ZID) we installed a flexible grid system which uses PCs (at the moment 162) in student's labs during nights, weekends and holidays, which is especially used to compare different systems (local resource managers, other grid software e.g. from the Nordugrid project) and to supply a test bed for the future Austrian Grid (AGrid). (author)

  8. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing.

    Science.gov (United States)

    Lin, Yu-Hsiu; Hu, Yu-Chen

    2018-04-27

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved

  9. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing

    Science.gov (United States)

    Hu, Yu-Chen

    2018-01-01

    The emergence of smart Internet of Things (IoT) devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR) schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO)-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power consumption is achieved

  10. Residential Consumer-Centric Demand-Side Management Based on Energy Disaggregation-Piloting Constrained Swarm Intelligence: Towards Edge Computing

    Directory of Open Access Journals (Sweden)

    Yu-Hsiu Lin

    2018-04-01

    Full Text Available The emergence of smart Internet of Things (IoT devices has highly favored the realization of smart homes in a down-stream sector of a smart grid. The underlying objective of Demand Response (DR schemes is to actively engage customers to modify their energy consumption on domestic appliances in response to pricing signals. Domestic appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption intelligently. Besides, to residential customers for DR implementation, maintaining a balance between energy consumption cost and users’ comfort satisfaction is a challenge. Hence, in this paper, a constrained Particle Swarm Optimization (PSO-based residential consumer-centric load-scheduling method is proposed. The method can be further featured with edge computing. In contrast with cloud computing, edge computing—a method of optimizing cloud computing technologies by driving computing capabilities at the IoT edge of the Internet as one of the emerging trends in engineering technology—addresses bandwidth-intensive contents and latency-sensitive applications required among sensors and central data centers through data analytics at or near the source of data. A non-intrusive load-monitoring technique proposed previously is utilized to automatic determination of physical characteristics of power-intensive home appliances from users’ life patterns. The swarm intelligence, constrained PSO, is used to minimize the energy consumption cost while considering users’ comfort satisfaction for DR implementation. The residential consumer-centric load-scheduling method proposed in this paper is evaluated under real-time pricing with inclining block rates and is demonstrated in a case study. The experimentation reported in this paper shows the proposed residential consumer-centric load-scheduling method can re-shape loads by home appliances in response to DR signals. Moreover, a phenomenal reduction in peak power

  11. STATIC{sub T}EMP: a useful computer code for calculating static formation temperatures in geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo, E. [Universidad Nacional Autonoma de Mexico, Centro de Investigacion en Energia, Temixco (Mexico); Garcia, A.; Santoyo, S. [Unidad Geotermia, Inst. de Investigaciones Electricas, Temixco (Mexico); Espinosa, G. [Universidad Autonoma Metropolitana, Co. Vicentina (Mexico); Hernandez, I. [ITESM, Centro de Sistemas de Manufactura, Monterrey (Mexico)

    2000-07-01

    The development and application of the computer code STATIC{sub T}EMP, a useful tool for calculating static formation temperatures from actual bottomhole temperature data logged in geothermal wells is described. STATIC{sub T}EMP is based on five analytical methods which are the most frequently used in the geothermal industry. Conductive and convective heat flow models (radial, spherical/radial and cylindrical/radial) were selected. The computer code is a useful tool that can be reliably used in situ to determine static formation temperatures before or during the completion stages of geothermal wells (drilling and cementing). Shut-in time and bottomhole temperature measurements logged during well completion activities are required as input data. Output results can include up to seven computations of the static formation temperature by each wellbore temperature data set analysed. STATIC{sub T}EMP was written in Fortran-77 Microsoft language for MS-DOS environment using structured programming techniques. It runs on most IBM compatible personal computers. The source code and its computational architecture as well as the input and output files are described in detail. Validation and application examples on the use of this computer code with wellbore temperature data (obtained from specialised literature) and with actual bottomhole temperature data (taken from completion operations of some geothermal wells) are also presented. (Author)

  12. Computer Architecture for Energy Efficient SFQ

    Science.gov (United States)

    2014-08-27

    IBM Corporation (T.J. Watson Research Laboratory) 1101 Kitchawan Road Yorktown Heights, NY 10598 -0000 2 ABSTRACT Number of Papers published in peer...accomplished during this ARO-sponsored project at IBM Research to identify and model an energy efficient SFQ-based computer architecture. The... IBM Windsor Blue (WB), illustrated schematically in Figure 2. The basic building block of WB is a "tile" comprised of a 64-bit arithmetic logic unit

  13. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    Science.gov (United States)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  14. Short-term forecasts of district heating load and outdoor temperature by use of on-line connected computers; Korttidsprognoser foer fjaerrvaermelast och utetemperatur med on-linekopplade datorer

    Energy Technology Data Exchange (ETDEWEB)

    Malmstroem, B; Ernfors, P; Nilsson, Daniel; Vallgren, H [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Energiteknik

    1996-10-01

    In this report the available methods for forecasting weather and district heating load have been studied. A forecast method based on neural networks has been tested against the more common statistical methods. The accuracy of the weather forecasts from the SMHI (Swedish Meteorological and Hydrological Institute) has been estimated. In connection with these tests, the possibilities of improving the forecasts by using on-line connected computers has been analysed. The most important results from the study are: Energy company staff generally look upon the forecasting of district heating load as a problem of such a magnitude that computer support is needed. At the companies where computer calculated forecasts are in use, their accuracy is regarded as quite satisfactory; The interest in computer produced load forecasts among energy company staff is increasing; At present, a sufficient number of commercial suppliers of weather forecasts as well as load forecasts is available to fulfill the needs of energy companies; Forecasts based on neural networks did not attain any precision improvement in comparison to more traditional statistical methods. There may though be other types of neural networks, not tested in this study, that are possibly capable of improving the forecast precision; Forecasts of outdoor temperature and district heating load can be significantly improved through the use of on-line-connected computers supplied with instantaneous measurements of temperature and load. This study shows that a general reduction of the load prediction errors by approximately 15% is attainable. For short time horizons (less than 5 hours), more extensive load prediction error reductions can be reached. For the 1-hour time horizon, the possible reduction amounts to up to 50%. 21 refs, 4 figs, 7 appendices

  15. Convolutional networks for fast, energy-efficient neuromorphic computing.

    Science.gov (United States)

    Esser, Steven K; Merolla, Paul A; Arthur, John V; Cassidy, Andrew S; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J; McKinstry, Jeffrey L; Melano, Timothy; Barch, Davis R; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D; Modha, Dharmendra S

    2016-10-11

    Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.

  16. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  17. The use of symbolic computation in radiative, energy, and neutron transport calculations

    Science.gov (United States)

    Frankel, J. I.

    This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research.

  18. Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flapper, Joris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Klaas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry – including four dairy processes – cheese, fluid milk, butter, and milk powder.

  19. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  20. Soft computing in green and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Iowa Bioeconomy Inst.; US Department of Energy, Ames, IA (United States). Ames Lab; Kalogirou, Soteris [Cyprus Univ. of Technology, Limassol (Cyprus). Dept. of Mechanical Engineering and Materials Sciences and Engineering; Khaitan, Siddhartha Kumar (eds.) [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Electrical Engineering and Computer Engineering

    2011-07-01

    Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful. (orig.)

  1. The application of AFS in the high energy physics computing system

    International Nuclear Information System (INIS)

    Xu Dong; Yan Xiaofei; Chen Yaodong; Chen Gang; Yu Chuansong

    2010-01-01

    With the development of high energy physics, physics experiments are producing large amount of data. The workload of data analysis is very large, and the analysis work needs to be finished by many scientists together. So, the computing system must provide more secure user manage function and higher level of data-sharing ability. The article introduces a solution based on AFS in the high energy physics computing system, which not only make user management safer, but also make data-sharing easier. (authors)

  2. Energy Doubler cryoloop temperature monitor system

    International Nuclear Information System (INIS)

    Pucci, G.; Howard, D.

    1981-10-01

    The Cryoloop Temperature Monitor System is a fully electronic system designed to monitor temperature at key points in the Energy Doubler cryoloop system. It is used for cryoloop diagnostics, temperature studies, and cooldown valve control

  3. Mass and energy balance of the carbonization of babassu nutshell as affected by temperature

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2014-03-01

    Full Text Available The objective of this work was to evaluate the carbonization yield of babassu nutshell as affected by final temperature, as well as the energy losses involved in the process. Three layers constituting the babassu nut, that is, the epicarp, mesocarp and endocarp, were used together. The material was carbonized, considering the following final temperatures: 450, 550, 650, 750, and 850ºC. The following were evaluated: energy and charcoal yields, pyroligneous liquid, non-condensable gases, and fixed carbon. The use of babassu nutshell can be highly feasible for charcoal production. The yield of charcoal from babassu nutshell carbonization was higher than that reported in the literature for Eucalyptus wood carbonization, considering the final temperature of 450ºC. Charcoal and energy yields decreased more sharply at lower temperatures, with a tendency to stabilize at higher temperatures. The energy yields obtained can be considered satisfactory, with losses between 45 and 52% (based on higher heating value and between 43 and 49% (based on lower heating value at temperatures ranging from 450 to 850ºC, respectively. Yields in fixed carbon and pyroligneous liquid are not affected by the final carbonization temperature.

  4. Computing with memory for energy-efficient robust systems

    CERN Document Server

    Paul, Somnath

    2013-01-01

    This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime.  The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are de

  5. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization.

    Science.gov (United States)

    Fang, Yuling; Chen, Qingkui; Xiong, Neal N; Zhao, Deyu; Wang, Jingjuan

    2017-08-04

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes' diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services.

  6. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  7. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  8. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Science.gov (United States)

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  9. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Directory of Open Access Journals (Sweden)

    David Bednar

    2015-11-01

    Full Text Available There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  10. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  11. Convolutional networks for fast, energy-efficient neuromorphic computing

    Science.gov (United States)

    Esser, Steven K.; Merolla, Paul A.; Arthur, John V.; Cassidy, Andrew S.; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J.; McKinstry, Jeffrey L.; Melano, Timothy; Barch, Davis R.; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D.; Modha, Dharmendra S.

    2016-01-01

    Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware’s underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer. PMID:27651489

  12. High and very high temperature reactor research for multipurpose energy applications

    International Nuclear Information System (INIS)

    Hittner, Dominique; Bogusch, Edgar; Fuetterer, Michael; Groot, Sander de; Ruer, Jacques

    2011-01-01

    Ten years ago, the European High Temperature Reactor (HTR) Technology Network (HTR-TN) launched a programme for developing HTR Technology, which expanded so far through 4 successive Euratom Framework Programmes. Many projects have been performed - in particular the RAPHAEL project in the 6th Euratom Framework Programme and presently ARCHER in the 7th - in line with the Network strategy that identified cogeneration of process heat and power as the main specific mission of HTR. HTR can indeed address the growing energy needs of industry presently fully relying on fossil fuel combustion with a CO 2 -lean generation technology, thanks to its high operating temperature and to its unique flexibility obtained from its large thermal inertia and its low power. Relying on the legacy of the former European leadership in HTR technology, this programme has addressed specific developments required for industrial process heat applications and for increasing HTR performances (higher temperatures and fuel burn-up). Decisive achievements have been obtained concerning fuel manufacturing and irradiation behaviour, key components and their materials, safety, computer code validation and specific HTR waste (fuel and graphite) management. Key experiments have been performed or are still ongoing: irradiation of graphite, fuel and vessel materials and the corresponding post-irradiation examinations, safety tests and isotopic analyses; thermal-hydraulic tests of an Intermediate Heat Exchanger mock-up in helium; air ingress experiments for a block type core, etc. Through Euratom participation in the Generation IV International Forum (GIF), these achievements contribute to international cooperation. HTR-TN strategy has been recently integrated by the 'Sustainable Nuclear Energy Technology Platform' (SNE-TP) as one of the 3 'pillars' of its global nuclear strategy. It is also in line with the orientations and the timing of the 'Strategic Energy Technology Plan (SET-Plan)' for the development

  13. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    Science.gov (United States)

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures

  14. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    International Nuclear Information System (INIS)

    Burger, L.L.

    1995-10-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N 2 O in place of N 2 are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly

  15. Calculation of reaction energies and adiabatic temperatures for waste tank reactions

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.

    1995-10-01

    Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N{sub 2}O in place of N{sub 2} are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly.

  16. On the energy benefit of compute-and-forward on the hexagonal lattice

    NARCIS (Netherlands)

    Ren, Zhijie; Goseling, Jasper; Weber, Jos; Gastpar, Michael; Skoric, B.; Ignatenko, T.

    2014-01-01

    We study the energy benefit of applying compute-and-forward on a wireless hexagonal lattice network with multiple unicast sessions with a specific session placement. Two compute-and-forward based transmission schemes are proposed, which allow the relays to exploit both the broadcast and

  17. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle

    International Nuclear Information System (INIS)

    He Yizhu; Ding Hanlin; Liu Liufa; Shin, Keesam

    2006-01-01

    The morphology, topology and kinetics of normal grain growth in two-dimension were studied by computer simulation using a cellular automata (Canada) model based on the lowest energy principle. The thermodynamic energy that follows Maxwell-Boltzmann statistics has been introduced into this model for the calculation of energy change. The transition that can reduce the system energy to the lowest level is chosen to occur when there is more than one possible transition direction. The simulation results show that the kinetics of normal grain growth follows the Burke equation with the growth exponent m = 2. The analysis of topology further indicates that normal grain growth can be simulated fairly well by the present CA model. The vanishing of grains with different number of sides is discussed in the simulation

  18. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...

  19. DC-based smart PV-powered home energy management system based on voltage matching and RF module

    Science.gov (United States)

    Hasan, W. Z. W.

    2017-01-01

    The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances’ consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances’ energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11–123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results. PMID:28934271

  20. DC-based smart PV-powered home energy management system based on voltage matching and RF module.

    Directory of Open Access Journals (Sweden)

    Ahmad H Sabry

    Full Text Available The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances' consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances' energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11-123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results.

  1. DC-based smart PV-powered home energy management system based on voltage matching and RF module.

    Science.gov (United States)

    Sabry, Ahmad H; Hasan, W Z W; Ab Kadir, Mza; Radzi, M A M; Shafie, S

    2017-01-01

    The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances' consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances' energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11-123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results.

  2. Differential calorimeter and temperature controller for stored energy measurements in irradiated alkali halides

    International Nuclear Information System (INIS)

    Delgado Martinez, L.

    1977-01-01

    The design and performance of a simple temperature-controlled differential calorimeter are presented. This system allows to measure radiation-induced stored energy in insulators, above room temperature with a differential thermal analysis method. With platelets of KC1 single crystals, the base lines obtained for T 2 T 1 (with T 2 : irradiated sample temperature and T 1 : reference sample temperature) show a smooth drift less of 0,2 degree centigree in the interval from 25 to 400 degree centigree. The discrepancy between two consecutive base lines is less than ± 0,02 degree centigree which implies a calorimeter sensitivity of about ±0,004 cal/g. This sensitivity allows to measure stored energy release in samples with a color center concentration low enough to be directly measured with a spectrophotometer so that a search for correlations among the features of the stored energy spectrum and the color center annealing can be made. (Author) 13 refs

  3. Large scale computing in the Energy Research Programs

    International Nuclear Information System (INIS)

    1991-05-01

    The Energy Research Supercomputer Users Group (ERSUG) comprises all investigators using resources of the Department of Energy Office of Energy Research supercomputers. At the December 1989 meeting held at Florida State University (FSU), the ERSUG executive committee determined that the continuing rapid advances in computational sciences and computer technology demanded a reassessment of the role computational science should play in meeting DOE's commitments. Initial studies were to be performed for four subdivisions: (1) Basic Energy Sciences (BES) and Applied Mathematical Sciences (AMS), (2) Fusion Energy, (3) High Energy and Nuclear Physics, and (4) Health and Environmental Research. The first two subgroups produced formal subreports that provided a basis for several sections of this report. Additional information provided in the AMS/BES is included as Appendix C in an abridged form that eliminates most duplication. Additionally, each member of the executive committee was asked to contribute area-specific assessments; these assessments are included in the next section. In the following sections, brief assessments are given for specific areas, a conceptual model is proposed that the entire computational effort for energy research is best viewed as one giant nation-wide computer, and then specific recommendations are made for the appropriate evolution of the system

  4. Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Juan Pardo

    2013-09-01

    Full Text Available The small medium large system (SMLsystem is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH for participation in the Solar Decathlon 2013 competition. Several technologies have been integrated to reduce power consumption. One of these is a forecasting system based on artificial neural networks (ANNs, which is able to predict indoor temperature in the near future using captured data by a complex monitoring system as the input. A study of the impact on forecasting performance of different covariate combinations is presented in this paper. Additionally, a comparison of ANNs with the standard statistical forecasting methods is shown. The research in this paper has been focused on forecasting the indoor temperature of a house, as it is directly related to HVAC—heating, ventilation and air conditioning—system consumption. HVAC systems at the SMLsystem house represent 53:89% of the overall power consumption. The energy used to maintain temperature was measured to be 30%–38:9% of the energy needed to lower it. Hence, these forecasting measures allow the house to adapt itself to future temperature conditions by using home automation in an energy-efficient manner. Experimental results show a high forecasting accuracy and therefore, they might be used to efficiently control an HVAC system.

  5. Complexity vs energy: theory of computation and theoretical physics

    International Nuclear Information System (INIS)

    Manin, Y I

    2014-01-01

    This paper is a survey based upon the talk at the satellite QQQ conference to ECM6, 3Quantum: Algebra Geometry Information, Tallinn, July 2012. It is dedicated to the analogy between the notions of complexity in theoretical computer science and energy in physics. This analogy is not metaphorical: I describe three precise mathematical contexts, suggested recently, in which mathematics related to (un)computability is inspired by and to a degree reproduces formalisms of statistical physics and quantum field theory.

  6. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    Science.gov (United States)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  7. Could one make a diamond-based quantum computer?

    International Nuclear Information System (INIS)

    Stoneham, A Marshall; Harker, A H; Morley, Gavin W

    2009-01-01

    We assess routes to a diamond-based quantum computer, where we specifically look towards scalable devices, with at least 10 linked quantum gates. Such a computer should satisfy the deVincenzo rules and might be used at convenient temperatures. The specific examples that we examine are based on the optical control of electron spins. For some such devices, nuclear spins give additional advantages. Since there have already been demonstrations of basic initialization and readout, our emphasis is on routes to two-qubit quantum gate operations and the linking of perhaps 10-20 such gates. We analyse the dopant properties necessary, especially centres containing N and P, and give results using simple scoping calculations for the key interactions determining gate performance. Our conclusions are cautiously optimistic: it may be possible to develop a useful quantum information processor that works above cryogenic temperatures.

  8. Fly ash particles spheroidization using low temperature plasma energy

    OpenAIRE

    Shekhovtsov, V. V.; Volokitin, O. G.; Vitske, Rudolf Evaldovich; Kondratyuk, Alexey Alekseevich

    2016-01-01

    The paper presents the investigations on producing spherical particles 65-110 [mu]m in size using the energy of low temperature plasma (LTP). These particles are based on flow ash produced by the thermal power plant in Seversk, Tomsk region, Russia. The obtained spherical particles have no defects and are characterized by a smooth exterior surface. The test bench is designed to produce these particles. With due regard for plasma temperature field distribution, it is shown that the transition ...

  9. Paper-Based and Computer-Based Concept Mappings: The Effects on Computer Achievement, Computer Anxiety and Computer Attitude

    Science.gov (United States)

    Erdogan, Yavuz

    2009-01-01

    The purpose of this paper is to compare the effects of paper-based and computer-based concept mappings on computer hardware achievement, computer anxiety and computer attitude of the eight grade secondary school students. The students were randomly allocated to three groups and were given instruction on computer hardware. The teaching methods used…

  10. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Ford, Rufus; Pietruschka, Dirk; Sipilä, Kari

    participants being VTT Technical Research Centre of Finland (VTT), Technical University of Denmark (DTU), Norwegian University of Science and Technology (NTNU), Stuttgart Technology University of Applied Sciences (HFT) and SSE Enterprise in United Kingdom. The demonstration cases described in the report......This report titled “Case studies and demonstrations” is the subtask D report of the IEA DHC|CHP Annex TS1 project “Low Temperature District Heating for Future Energy Systems” carried out between 2013 and 2016. The project was led by Fraunhofer Institute for Building Physics (IBP) with the other...... include examples on low temperature district heating systems, solar heating in a district heating system, heat pump based heat supply and energy storages for both peak load management and for seasonal heat storage. Some demonstrations have been implemented while others are at planning phase...

  11. Computation of the temperatures of a fluid flowing through a pipe from temperature measurements on the pipe's outer surface

    International Nuclear Information System (INIS)

    Sauer, G.

    1999-01-01

    A method for computing the temperatures of a fluid flowing through a pipe on the basis of temperatures recorded at the pipe's outer surface is presented. The heat conduction in the pipe wall is described by one-dimensional heat conduction elements. Heat transfer between fluid, pipe and surrounding is allowed for. The equation system resulting from the standard finite element discretization is reformulated to enable the computation of temperature events preceding the recorded temperature in time. It is shown that the method can be used to identify the actual fluid temperature from temperature data obtained only at the outer surface of the pipe. The temperatures in the pipe wall are computed with good accuracy even in the case of a severe thermal shock. (orig.) [de

  12. Contempt-LT: a computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Wheat, L.L.; Wagner, R.J.; Niederauer, G.F.; Obenchain, C.F.

    1975-06-01

    CONTEMPT-LT is a digital computer program, written in FORTRAN IV, developed to describe the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided to describe fan cooler and cooling spray engineered safety systems. Up to four compartments can be modeled with CONTEMPT-LT, and any compartment except the reactor system may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. CONTEMPT-LT can be used to model all current boiling water reactor pressure suppression systems, including containments with either vertical or horizontal vent systems. CONTEMPT-LT can also be used to model pressurized water reactor dry containments, subatmospheric containments, and dual volume containments with an annulus region, and can be used to describe containment responses in experimental containment systems. The program user defines which compartments are used, specifies input mass and energy additions, defines heat structure and leakage systems, and describes the time advancement and output control. CONTEMPT-LT source decks are available in double precision extended-binary-coded-decimal-interchange-code (EBCDIC) versions. Sample problems have been run on the IBM360/75 computer. (U.S.)

  13. An energy efficient and high speed architecture for convolution computing based on binary resistive random access memory

    Science.gov (United States)

    Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.

  14. A Pedestrian Approach to Indoor Temperature Distribution Prediction of a Passive Solar Energy Efficient House

    Directory of Open Access Journals (Sweden)

    Golden Makaka

    2015-01-01

    Full Text Available With the increase in energy consumption by buildings in keeping the indoor environment within the comfort levels and the ever increase of energy price there is need to design buildings that require minimal energy to keep the indoor environment within the comfort levels. There is need to predict the indoor temperature during the design stage. In this paper a statistical indoor temperature prediction model was developed. A passive solar house was constructed; thermal behaviour was simulated using ECOTECT and DOE computer software. The thermal behaviour of the house was monitored for a year. The indoor temperature was observed to be in the comfort level for 85% of the total time monitored. The simulation results were compared with the measured results and those from the prediction model. The statistical prediction model was found to agree (95% with the measured results. Simulation results were observed to agree (96% with the statistical prediction model. Modeled indoor temperature was most sensitive to the outdoor temperatures variations. The daily mean peak ones were found to be more pronounced in summer (5% than in winter (4%. The developed model can be used to predict the instantaneous indoor temperature for a specific house design.

  15. Energy efficient distributed computing systems

    CERN Document Server

    Lee, Young-Choon

    2012-01-01

    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns. Electricity consumption in the US doubled from 2000 to 2005.  From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems.  These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to 'greener' distributed computing systems.  This book brings together a group of outsta

  16. The Optimal Price Ratio of Typical Energy Sources in Beijing Based on the Computable General Equilibrium Model

    Directory of Open Access Journals (Sweden)

    Yongxiu He

    2014-04-01

    Full Text Available In Beijing, China, the rational consumption of energy is affected by the insufficient linkage mechanism of the energy pricing system, the unreasonable price ratio and other issues. This paper combines the characteristics of Beijing’s energy market, putting forward the society-economy equilibrium indicator R maximization taking into consideration the mitigation cost to determine a reasonable price ratio range. Based on the computable general equilibrium (CGE model, and dividing four kinds of energy sources into three groups, the impact of price fluctuations of electricity and natural gas on the Gross Domestic Product (GDP, Consumer Price Index (CPI, energy consumption and CO2 and SO2 emissions can be simulated for various scenarios. On this basis, the integrated effects of electricity and natural gas price shocks on the Beijing economy and environment can be calculated. The results show that relative to the coal prices, the electricity and natural gas prices in Beijing are currently below reasonable levels; the solution to these unreasonable energy price ratios should begin by improving the energy pricing mechanism, through means such as the establishment of a sound dynamic adjustment mechanism between regulated prices and market prices. This provides a new idea for exploring the rationality of energy price ratios in imperfect competitive energy markets.

  17. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-08-27

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field ({approx}10 T) and at low temperature {approx}1 K .

  18. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-01-01

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field (∼10 T) and at low temperature ∼1 K

  19. Room temperature chemical synthesis of highly oriented PbSe nanotubes based on negative free energy of formation

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) (India); Ladhe, R.D.; Salunkhe, D.B.; Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001 (MS) (India); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K.S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India)

    2011-10-13

    Highlights: > Simple, inexpensive and room temperature chemical synthesis route. > Highly oriented PbSe nanotubes from Cd(OH){sub 2} nanowires through lead hydroxination. > The process was template free without the use of any capping agent. > Reaction kinetics was accomplished due to more negative free energy of formation. > The ion exchange mechanism due to difference in the solubility products. - Abstract: The sacrificial template free chemical synthesis of PbSe nanotubes at room temperature has been performed by lead hydroxination from cadmium hydroxide nanowires. This process was based on the ion exchange reaction to replace Cd{sup 2+} with Pb{sup 2+} ions from hydroxyl group followed by replacement of hydroxyl group with selenium ions. The reaction kinetics was accomplished due to more negative free energy of formation and thus the difference in the solubility products. The formed nanotubes were inclusive of Pb and Se with proper inter-chemical bonds with preferred orientations having diameter in tens of nanometer. These nanotubes can have future applications in electronic, optoelectronics and photovoltaic's as well.

  20. Room temperature chemical synthesis of highly oriented PbSe nanotubes based on negative free energy of formation

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Ladhe, R.D.; Salunkhe, D.B.; Baviskar, P.K.; Gupta, V.; Chand, S.

    2011-01-01

    Highlights: → Simple, inexpensive and room temperature chemical synthesis route. → Highly oriented PbSe nanotubes from Cd(OH) 2 nanowires through lead hydroxination. → The process was template free without the use of any capping agent. → Reaction kinetics was accomplished due to more negative free energy of formation. → The ion exchange mechanism due to difference in the solubility products. - Abstract: The sacrificial template free chemical synthesis of PbSe nanotubes at room temperature has been performed by lead hydroxination from cadmium hydroxide nanowires. This process was based on the ion exchange reaction to replace Cd 2+ with Pb 2+ ions from hydroxyl group followed by replacement of hydroxyl group with selenium ions. The reaction kinetics was accomplished due to more negative free energy of formation and thus the difference in the solubility products. The formed nanotubes were inclusive of Pb and Se with proper inter-chemical bonds with preferred orientations having diameter in tens of nanometer. These nanotubes can have future applications in electronic, optoelectronics and photovoltaic's as well.

  1. A directory of computer software applications: energy. Report for 1974--1976

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-04-01

    The computer programs or the computer program documentation cited in this directory have been developed for a variety of applications in the field of energy. The cited computer software includes applications in solar energy, petroleum resources, batteries, electrohydrodynamic generators, magnetohydrodynamic generators, natural gas, nuclear fission, nuclear fusion, hydroelectric power production, and geothermal energy. The computer software cited has been used for simulation and modeling, calculations of future energy requirements, calculations of energy conservation measures, and computations of economic considerations of energy systems

  2. Ion composition and temperature in the topside ionosphere.

    Science.gov (United States)

    Brace, L. H.; Dunham, G. S.; Mayr, H. G.

    1967-01-01

    Particle and energy continuity equations derived and solved by computer method ion composition and plasma temperature measured by Explorer XXII PARTICLE and energy continuity equations derived and solved by computer method for ion composition and plasma temperature measured by Explorer XXII

  3. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  4. CHEP95: Computing in high energy physics. Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    These proceedings cover the technical papers on computation in High Energy Physics, including computer codes, computer devices, control systems, simulations, data acquisition systems. New approaches on computer architectures are also discussed

  5. COMPUTATIONAL MODELS USED FOR MINIMIZING THE NEGATIVE IMPACT OF ENERGY ON THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Oprea D.

    2012-04-01

    Full Text Available Optimizing energy system is a problem that is extensively studied for many years by scientists. This problem can be studied from different views and using different computer programs. The work is characterized by one of the following calculation methods used in Europe for modelling, power system optimization. This method shall be based on reduce action of energy system on environment. Computer program used and characterized in this article is GEMIS.

  6. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  7. Bringing together high energy physicist and computer scientist

    International Nuclear Information System (INIS)

    Bock, R.K.

    1989-01-01

    The Oxford Conference on Computing in High Energy Physics approached the physics and computing issues with the question, ''Can computer science help?'' always in mind. This summary is a personal recollection of what I considered to be the highlights of the conference: the parts which contributed to my own learning experience. It can be used as a general introduction to the following papers, or as a brief overview of the current states of computer science within high energy physics. (orig.)

  8. High temperature energy harvesters utilizing ALN/3C-SiC composite diaphragms

    Science.gov (United States)

    Lai, Yun-Ju; Li, Wei-Chang; Felmetsger, Valery V.; Senesky, Debbie G.; Pisano, Albert P.

    2014-06-01

    Microelectromechanical systems (MEMS) energy harvesting devices aiming at powering wireless sensor systems for structural health monitoring in harsh environments are presented. For harsh environment wireless sensor systems, sensor modules are required to operate at elevated temperatures (> 250°C) with capabilities to resist harsh chemical conditions, thereby the use of battery-based power sources becomes challenging and not economically efficient if considering the required maintenance efforts. To address this issue, energy harvesting technology is proposed to replace batteries and provide a sustainable power source for the sensor systems towards autonomous harsh environment wireless sensor networks. In particular, this work demonstrates a micromachined aluminum nitride/cubic silicon carbide (AlN/3C-SiC) composite diaphragm energy harvester, which enables high temperature energy harvesting from ambient pulsed pressure sources. The fabricated device yields an output power density of 87 μW/cm2 under 1.48-psi pressure pulses at 1 kHz while connected to a 14.6-kΩ load resistor. The effects of pulse profile on output voltage have been studied, showing that the output voltage can be maximized by optimizing the diaphragm resonance frequency based on specific pulse characteristics. In addition, temperature dependence of the diaphragm resonance frequency over the range of 20°C to 600°C has been investigated and the device operation at temperatures as high as 600°C has been verified.

  9. Analytical model based on cohesive energy to indicate the edge and corner effects on melting temperature of metallic nanoparticles

    International Nuclear Information System (INIS)

    Shidpour, Reza; Hamid, Delavari H.; Vossoughi, M.

    2010-01-01

    Graphical abstract: The effect of edge and corner atoms of nanoparticle (solid line) cause melting temperature drops more compared to considering them as same as only surface atoms (dash line). This reduction is significant especially when the size of nanoparticle is below 10 nm. - Abstract: An analytical model based on cohesive energy has been conducted to study the effects of edge, corner, and inward surface relaxation as varying parameters on melting temperature of nanoparticles. It is shown that taking into account the edge and corner (EC) atoms of nanoparticle, causes to drop melting temperature more, when compared to consider them the same as only surface atoms. This reduction is significant especially when the size of nanoparticle is below 10 nm. The results are supported by available experimental results of tin, lead and gold melting temperature (T m ). Finally, it is shown that inward relaxation increases melting temperature slightly.

  10. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...

  11. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  12. Energy expenditure in adolescents playing new generation computer games.

    Science.gov (United States)

    Graves, Lee; Stratton, Gareth; Ridgers, N D; Cable, N T

    2008-07-01

    To compare the energy expenditure of adolescents when playing sedentary and new generation active computer games. Cross sectional comparison of four computer games. Setting Research laboratories. Six boys and five girls aged 13-15 years. Participants were fitted with a monitoring device validated to predict energy expenditure. They played four computer games for 15 minutes each. One of the games was sedentary (XBOX 360) and the other three were active (Wii Sports). Predicted energy expenditure, compared using repeated measures analysis of variance. Mean (standard deviation) predicted energy expenditure when playing Wii Sports bowling (190.6 (22.2) kl/kg/min), tennis (202.5 (31.5) kl/kg/min), and boxing (198.1 (33.9) kl/kg/min) was significantly greater than when playing sedentary games (125.5 (13.7) kl/kg/min) (Pgames. Playing new generation active computer games uses significantly more energy than playing sedentary computer games but not as much energy as playing the sport itself. The energy used when playing active Wii Sports games was not of high enough intensity to contribute towards the recommended daily amount of exercise in children.

  13. Photon propagators at finite temperature

    International Nuclear Information System (INIS)

    Yee, J.H.

    1982-07-01

    We have used the real time formalism to compute the one-loop finite temperature corrections to the photon self energies in spinor and scalar QED. We show that, for a real photon, only the transverse components develop the temperature-dependent masses, while, for an external static electromagnetic field applied to the finite temperature system, only the static electric field is screened by thermal fluctuations. After showing how to compute systematically the imaginary parts of the finite temperature Green functions, we have attempted to give a microscopic interpretation of the imaginary parts of the self energies. (author)

  14. Low temperature desalination using solar collectors augmented by thermal energy storage

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand

    2012-01-01

    Highlights: ► A new low temperature desalination process using solar collectors was investigated. ► A thermal energy storage tank (TES) was included for continuous process operation. ► Solar collector area and TES volumes were optimized by theoretical simulations. ► Economic analysis for the entire process was compared with and without TES tank. ► Energy and emission payback periods for the solar collector system were reported. -- Abstract: A low temperature desalination process capable of producing 100 L/d freshwater was designed to utilize solar energy harvested from flat plate solar collectors. Since solar insolation is intermittent, a thermal energy storage system was incorporated to run the desalination process round the clock. The requirements for solar collector area as well as thermal energy storage volume were estimated based on the variations in solar insolation. Results from this theoretical study confirm that thermal energy storage is a useful component of the system for conserving thermal energy to meet the energy demand when direct solar energy resource is not available. Thermodynamic advantages of the low temperature desalination using thermal energy storage, as well as energy and environmental emissions payback period of the system powered by flat plate solar collectors are presented. It has been determined that a solar collector area of 18 m 2 with a thermal energy storage volume of 3 m 3 is adequate to produce 100 L/d of freshwater round the clock considering fluctuations in the weather conditions. An economic analysis on the desalination system with thermal energy storage is also presented.

  15. Computer-controlled system for plasma ion energy auto-analyzer

    International Nuclear Information System (INIS)

    Wu Xianqiu; Chen Junfang; Jiang Zhenmei; Zhong Qinghua; Xiong Yuying; Wu Kaihua

    2003-01-01

    A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by LabVIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provide important parameters of plasma process techniques based on semiconductor devices and microelectronics

  16. CAISSE (Computer Aided Information System on Solar Energy) technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Cantelon, P E; Beinhauer, F W

    1979-01-01

    The Computer Aided Information System on Solar Energy (CAISSE) was developed to provide the general public with information on solar energy and its potential uses and costs for domestic consumption. CAISSE is an interactive computing system which illustrates solar heating concepts through the use of 35 mm slides, text displays on a screen and a printed report. The user communicates with the computer by responding to questions about his home and heating requirements through a touch sensitive screen. The CAISSE system contains a solar heating simulation model which calculates the heating load capable of being supplied by a solar heating system and uses this information to illustrate installation costs, fuel savings and a 20 year life-cycle analysis of cost and benefits. The system contains several sets of radiation and weather data for Canada and USA. The selection of one of four collector models is based upon the requirements input during the computer session. Optimistic and pessimistic fuel cost forecasts are made for oil, natural gas, electricity, or propane; and the forecasted fuel cost is made the basis of the life cycle cost evaluation for the solar heating application chosen. This manual is organized so that each section describes one major aspect of the use of solar energy systems to provide energy for domestic consumption. The sources of data and technical information and the method of incorporating them into the CAISSE display system are described in the same order as the computer processing. Each section concludes with a list of future developments that could be included to make CAISSE outputs more regionally specific and more useful to designers. 19 refs., 1 tab.

  17. Hot nuclei, limiting temperatures and excitation energies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-09-01

    Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei

  18. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  19. Cloud computing for energy management in smart grid - an application survey

    International Nuclear Information System (INIS)

    Naveen, P; Ing, Wong Kiing; Danquah, Michael Kobina; Sidhu, Amandeep S; Abu-Siada, Ahmed

    2016-01-01

    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid. (paper)

  20. Computation of temperature-dependent legendre moments of a double-differential elastic cross section

    International Nuclear Information System (INIS)

    Arbanas, G.; Dunn, M.E.; Larson, N.M.; Leal, L.C.; Williams, M.L.; Becker, B.; Dagan, R.

    2011-01-01

    A general expression for temperature-dependent Legendre moments of a double-differential elastic scattering cross section was derived by Ouisloumen and Sanchez [Nucl. Sci. Eng. 107, 189-200 (1991)]. Attempts to compute this expression are hindered by the three-fold nested integral, limiting their practical application to just the zeroth Legendre moment of an isotropic scattering. It is shown that the two innermost integrals could be evaluated analytically to all orders of Legendre moments, and for anisotropic scattering, by a recursive application of the integration by parts method. For this method to work, the anisotropic angular distribution in the center of mass is expressed as an expansion in Legendre polynomials. The first several Legendre moments of elastic scattering of neutrons on 238 U are computed at T=1000 K at incoming energy 6.5 eV for isotropic scattering in the center of mass frame. Legendre moments of the anisotropic angular distribution given via Blatt-Biedenharn coefficients are computed at 1 keV. The results are in agreement with those computed by the Monte Carlo method. (author)

  1. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Science.gov (United States)

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  2. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  3. On the possibility of non-invasive multilayer temperature estimation using soft-computing methods.

    Science.gov (United States)

    Teixeira, C A; Pereira, W C A; Ruano, A E; Ruano, M Graça

    2010-01-01

    This work reports original results on the possibility of non-invasive temperature estimation (NITE) in a multilayered phantom by applying soft-computing methods. The existence of reliable non-invasive temperature estimator models would improve the security and efficacy of thermal therapies. These points would lead to a broader acceptance of this kind of therapies. Several approaches based on medical imaging technologies were proposed, magnetic resonance imaging (MRI) being appointed as the only one to achieve the acceptable temperature resolutions for hyperthermia purposes. However, MRI intrinsic characteristics (e.g., high instrumentation cost) lead us to use backscattered ultrasound (BSU). Among the different BSU features, temporal echo-shifts have received a major attention. These shifts are due to changes of speed-of-sound and expansion of the medium. The originality of this work involves two aspects: the estimator model itself is original (based on soft-computing methods) and the application to temperature estimation in a three-layer phantom is also not reported in literature. In this work a three-layer (non-homogeneous) phantom was developed. The two external layers were composed of (in % of weight): 86.5% degassed water, 11% glycerin and 2.5% agar-agar. The intermediate layer was obtained by adding graphite powder in the amount of 2% of the water weight to the above composition. The phantom was developed to have attenuation and speed-of-sound similar to in vivo muscle, according to the literature. BSU signals were collected and cumulative temporal echo-shifts computed. These shifts and the past temperature values were then considered as possible estimators inputs. A soft-computing methodology was applied to look for appropriate multilayered temperature estimators. The methodology involves radial-basis functions neural networks (RBFNN) with structure optimized by the multi-objective genetic algorithm (MOGA). In this work 40 operating conditions were

  4. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  5. Determining Balıkesir’s Energy Potential Using a Regression Analysis Computer Program

    Directory of Open Access Journals (Sweden)

    Bedri Yüksel

    2014-01-01

    Full Text Available Solar power and wind energy are used concurrently during specific periods, while at other times only the more efficient is used, and hybrid systems make this possible. When establishing a hybrid system, the extent to which these two energy sources support each other needs to be taken into account. This paper is a study of the effects of wind speed, insolation levels, and the meteorological parameters of temperature and humidity on the energy potential in Balıkesir, in the Marmara region of Turkey. The relationship between the parameters was studied using a multiple linear regression method. Using a designed-for-purpose computer program, two different regression equations were derived, with wind speed being the dependent variable in the first and insolation levels in the second. The regression equations yielded accurate results. The computer program allowed for the rapid calculation of different acceptance rates. The results of the statistical analysis proved the reliability of the equations. An estimate of identified meteorological parameters and unknown parameters could be produced with a specified precision by using the regression analysis method. The regression equations also worked for the evaluation of energy potential.

  6. Dipolon theory of energy gap parameters at finite temperature and transition temperatures Tc and T* in high-temperature superconductors

    International Nuclear Information System (INIS)

    Sharma, R.R.

    2006-01-01

    First temperature dependent regular and pseudo-energy gap parameters and regular and pseudo-transition temperatures arising from the same physical origin have been calculated in the strong coupling formalism. Temperature dependent many-body field-theoretic techniques have been developed, as an extension of our previous zero-temperature formalism, to derive temperature dependent general expressions for the renormalized energy gap parameter Δ(k->,ω), the gap renormalization parameter Z(k->,ω) and energy band renormalization parameter χ(k->,ω) for momentum k-> and frequency ω making use of dipolon propagator and electron Green's function taking into account explicitly the dressed dipolons as mediators of superconductivity, the screened Coulomb repulsion and nonrigid electron energy bands considering retardation and damping effects and electron-hole asymmetry. The theory takes into account all necessary and important correlations. Our self-consistent calculations utilize the previously symmetry predicted two energy gap parameters for superconducting cuprates, one being antisymmetric (''as'') with respect to the exchange of the k x and k y components of vector k-> and the other being symmetric (''s'') with respect to the exchange of k x and k y . Our present temperature dependent self-consistent solutions of the real and imaginary parts of the Δ(k->,ω), Z(k->,ω) and χ(k->,ω) confirm the existence of these two (different) solutions and conclude that the antisymmetric solution of the gap parameter corresponds to the observed regular (''reg'') superconducting energy gap whereas the symmetric solution corresponds to the observed pseudo-(''pse-'') energy gap. Explicit temperature dependent self-consistent calculations have been performed here for Bi 2 Sr 2 CaCu 2 O 8+δ as well as Bi 2 Sr 2 CaCu 2 O 8 giving temperature dependent energy gap parameters and corresponding transition temperatures. The calculated results are consistent with the available experimental

  7. The significance of temperature dependence on the piezoelectric energy harvesting by using a phononic crystal

    Science.gov (United States)

    Aly, Arafa H.; Nagaty, Ahmed; Khalifa, Zaki; Mehaney, Ahmed

    2018-05-01

    In this study, an acoustic energy harvester based on a two-dimensional phononic crystal has been constructed. The present structure consists of silicon cylinders in the air background with a polyvinylidene fluoride cylinder as a defect to confine the acoustic energy. The presented energy harvester depends on the piezoelectric effect (using the piezoelectric material polyvinylidene fluoride) that converts the confined acoustic energy to electric energy. The maximum output voltage obtained equals 170 mV. Moreover, the results revealed that the output voltage can be increased with increasing temperature. In addition, the effects of the load resistance and the geometry of the piezoelectric material on the output voltage have been studied theoretically. Based on these results, all previous studies about energy harvesting in phononic structures must take temperature effects into account.

  8. Intelligent computing for sustainable energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kang [Queen' s Univ. Belfast (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Li, Shaoyuan; Li, Dewei [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Niu, Qun (eds.) [Shanghai Univ. (China). School of Mechatronic Engineering and Automation

    2013-07-01

    Fast track conference proceedings. State of the art research. Up to date results. This book constitutes the refereed proceedings of the Second International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2012, held in Shanghai, China, in September 2012. The 60 full papers presented were carefully reviewed and selected from numerous submissions and present theories and methodologies as well as the emerging applications of intelligent computing in sustainable energy and environment.

  9. Energy distribution extraction of negative charges responsible for positive bias temperature instability

    International Nuclear Information System (INIS)

    Ren Shang-Qing; Yang Hong; Wang Wen-Wu; Tang Bo; Tang Zhao-Yun; Wang Xiao-Lei; Xu Hao; Luo Wei-Chun; Zhao Chao; Yan Jiang; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    A new method is proposed to extract the energy distribution of negative charges, which results from electron trapping by traps in the gate stack of nMOSFET during positive bias temperature instability (PBTI) stress based on the recovery measurement. In our case, the extracted energy distribution of negative charges shows an obvious dependence on energy, and the energy level of the largest energy density of negative charges is 0.01 eV above the conduction band of silicon. The charge energy distribution below that energy level shows strong dependence on the stress voltage. (paper)

  10. Energy and indoor temperature consequences of adative thermal comfort standards

    NARCIS (Netherlands)

    Centnerova, L.; Hensen, J.L.M.

    2001-01-01

    The intent of the presented study was to quantify the implications for energy demand of indoor temperature requirements based on a proposed adaptive thermal comfort standard (7) relative to a more traditional thermal comfort approach. The study focuses on a typical office situation in a moderate

  11. Computation of classical triton burnup with high plasma temperature and current

    International Nuclear Information System (INIS)

    Batistoni, P.

    1990-09-01

    For comparison with experiment, the expected production of 14-MeV neutrons from the burnup of tritons produced in the d(d,t)p reaction must be computed. An effort was undertaken to compare in detail the computer codes used for this purpose at TFTR and JET. The calculation of the confined fraction of tritons by the different codes agrees to within a few percent. The high electron temperature in the experiments has raised the critical energy of the tritons that are slowing down to near or above the peak of the D-T reactivity, making the ion drag terms more important. When the different codes use the same slowing down formulas, the calculated burnup was within 6% for a case where orbit effects are expected to be small. Then results from codes with and without the effects of finite radial orbit excursions were compared for two test cases. For medium to high current discharges the finite radius effects are only of order 10%. A new version of the TFTR burnup code using an implicit Fokker-Planck solution was written to include the effects of energy diffusion and charge exchange. These effects change the time-integrated yields by only a few percent, but can significantly affect the instantaneous rates in time. Significant populations of hot ions can affect the fusion reactivity, and this effect was also studied. In particular, the d(d,p)t rate can be 10%--15% less than the d(d, 3 He)n rate which is usually used as a direct monitor of the triton source. Finally, a finite particle confinement time for the thermalized tritons can increase the apparent ''burn-up'' either if there is a high thermal deuteron temperature or if there exists a significant beam deuteron density

  12. Evolutionary Based Solutions for Green Computing

    CERN Document Server

    Kołodziej, Joanna; Li, Juan; Zomaya, Albert

    2013-01-01

    Today’s highly parameterized large-scale distributed computing systems may be composed  of a large number of various components (computers, databases, etc) and must provide a wide range of services. The users of such systems, located at different (geographical or managerial) network cluster may have a limited access to the system’s services and resources, and different, often conflicting, expectations and requirements. Moreover, the information and data processed in such dynamic environments may be incomplete, imprecise, fragmentary, and overloading. All of the above mentioned issues require some intelligent scalable methodologies for the management of the whole complex structure, which unfortunately may increase the energy consumption of such systems.   This book in its eight chapters, addresses the fundamental issues related to the energy usage and the optimal low-cost system design in high performance ``green computing’’ systems. The recent evolutionary and general metaheuristic-based solutions ...

  13. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  14. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  15. CONTEMPT-LT/028: a computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hargroves, D.W.; Metcalfe, L.J.; Wheat, L.L.; Niederauer, G.F.; Obenchain, C.F.

    1979-03-01

    CONTEMPT-LT is a digital computer program, written in FORTRAN IV, developed to describe the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided to describe fan cooler and cooling spray engineered safety systems. An annular fan model is also provided to model pressure control in the annular region of dual containment systems. Up to four compartments can be modeled with CONTEMPT-LT, and any compartment except the reactor system may have both a liquid pool region and an air--vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different

  16. [Personal computer-based computer monitoring system of the anesthesiologist (2-year experience in development and use)].

    Science.gov (United States)

    Buniatian, A A; Sablin, I N; Flerov, E V; Mierbekov, E M; Broĭtman, O G; Shevchenko, V V; Shitikov, I I

    1995-01-01

    Creation of computer monitoring systems (CMS) for operating rooms is one of the most important spheres of personal computer employment in anesthesiology. The authors developed a PC RS/AT-based CMS and effectively used it for more than 2 years. This system permits comprehensive monitoring in cardiosurgical operations by real time processing the values of arterial and central venous pressure, pressure in the pulmonary artery, bioelectrical activity of the brain, and two temperature values. Use of this CMS helped appreciably improve patients' safety during surgery. The possibility to assess brain function by computer monitoring the EEF simultaneously with central hemodynamics and body temperature permit the anesthesiologist to objectively assess the depth of anesthesia and to diagnose cerebral hypoxia. Automated anesthesiological chart issued by the CMS after surgery reliably reflects the patient's status and the measures taken by the anesthesiologist.

  17. Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.

    Science.gov (United States)

    Williams, Daniel R; Tang, Yinshan

    2013-05-07

    Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

  18. Summary of workshop on high temperature materials based on Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy jointly sponsored the Workshop on High Temperature Materials Based on Laves Phases in conjunction with the Tenth Annual Conference on Fossil Energy Materials held at the Radisson Summit Hill Hotel in Knoxville, Tennessee on May 14-16, 1996. The objective of this workshop was to review the current status and to address critical issues in the development of new-generation high-temperature structural materials based on Laves phases. The one-day workshop included two sessions of overview presentations and a session of discussion on critical scientific and technological issues. The Laves phases represent an abundant class of intermetallic alloys with possible high-temperature structural applications. Laves phases form at or near the AB{sub 2} composition, and there are over 360 binary Laves phases. The ability of these alloys to dissolve considerable amounts of ternary alloying additions provides over 900 combined binary and ternary Laves phases. Many Laves phases have unique properties which make them attractive for high-temperature structural use. At half their homologous temperature, they retain >0.85 of their ambient yield strength, which is higher than all other intermetallics. Many of the Laves phases also have high melting temperatures, excellent creep properties, reasonably low densities, and for alloys containing Cr, Al, Si or Be, good oxidation resistance. Despite these useful properties, the tendency for low-temperature brittleness has limited the potential application of this large class of alloys.

  19. Using the PSCPCSP computer software for optimization of the composition of industrial alloys and development of new high-temperature nickel-base alloys

    Science.gov (United States)

    Rtishchev, V. V.

    1995-11-01

    Using computer programs some foreign firms have developed new deformable and castable high-temperature nickel-base alloys such as IN, Rene, Mar-M, Udimet, TRW, TM, TMS, TUT, with equiaxial, columnar, and single-crystal structures for manufacturing functional and nozzle blades and other parts of the hot duct of transport and stationary gas-turbine installations (GTI). Similar investigations have been carried out in Russia. This paper presents examples of the use of the PSCPCSP computer software for a quantitative analysis of structural und phase characteristics and properties of industrial alloys with change (within the grade range) in the concentrations of the alloying elements for optimizing the composition of the alloys and regimes of their heat treatment.

  20. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  1. Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime

    International Nuclear Information System (INIS)

    Castro-Palacio, Juan Carlos; Nagy, Tibor; Meuwly, Markus; Bemish, Raymond J.

    2014-01-01

    Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O( 3 P) and NO( 2 Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO 2 molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO 2 in the ground state is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO 2 geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20 000 K), the rate coefficient for the “O1O2+N” channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general

  2. Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime.

    Science.gov (United States)

    Castro-Palacio, Juan Carlos; Nagy, Tibor; Bemish, Raymond J; Meuwly, Markus

    2014-10-28

    Reactions involving N and O atoms dominate the energetics of the reactive air flow around spacecraft when reentering the atmosphere in the hypersonic flight regime. For this reason, the thermal rate coefficients for reactive processes involving O((3)P) and NO((2)Π) are relevant over a wide range of temperatures. For this purpose, a potential energy surface (PES) for the ground state of the NO2 molecule is constructed based on high-level ab initio calculations. These ab initio energies are represented using the reproducible kernel Hilbert space method and Legendre polynomials. The global PES of NO2 in the ground state is constructed by smoothly connecting the surfaces of the grids of various channels around the equilibrium NO2 geometry by a distance-dependent weighting function. The rate coefficients were calculated using Monte Carlo integration. The results indicate that at high temperatures only the lowest A-symmetry PES is relevant. At the highest temperatures investigated (20,000 K), the rate coefficient for the "O1O2+N" channel becomes comparable (to within a factor of around three) to the rate coefficient of the oxygen exchange reaction. A state resolved analysis shows that the smaller the vibrational quantum number of NO in the reactants, the higher the relative translational energy required to open it and conversely with higher vibrational quantum number, less translational energy is required. This is in accordance with Polanyi's rules. However, the oxygen exchange channel (NO2+O1) is accessible at any collision energy. Finally, this work introduces an efficient computational protocol for the investigation of three-atom collisions in general.

  3. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge

  4. Optimisation of the energy efficiency of bread-baking ovens using a combined experimental and computational approach

    International Nuclear Information System (INIS)

    Khatir, Zinedine; Paton, Joe; Thompson, Harvey; Kapur, Nik; Toropov, Vassili

    2013-01-01

    Highlights: ► A scientific framework for optimising oven operating conditions is presented. ► Experiments measuring local convective heat transfer coefficient are undertaken. ► An energy efficiency model is developed with experimentally calibrated CFD analysis. ► Designing ovens with optimum heat transfer coefficients reduces energy use. ► Results demonstrate a strong case to design and manufacture energy optimised ovens. - Abstract: Changing legislation and rising energy costs are bringing the need for efficient baking processes into much sharper focus. High-speed air impingement bread-baking ovens are complex systems using air flow to transfer heat to the product. In this paper, computational fluid dynamics (CFD) is combined with experimental analysis to develop a rigorous scientific framework for the rapid generation of forced convection oven designs. A design parameterisation of a three-dimensional generic oven model is carried out for a wide range of oven sizes and flow conditions to optimise desirable features such as temperature uniformity throughout the oven, energy efficiency and manufacturability. Coupled with the computational model, a series of experiments measuring the local convective heat transfer coefficient (h c ) are undertaken. The facility used for the heat transfer experiments is representative of a scaled-down production oven where the air temperature and velocity as well as important physical constraints such as nozzle dimensions and nozzle-to-surface distance can be varied. An efficient energy model is developed using a CFD analysis calibrated using experimentally determined inputs. Results from a range of oven designs are presented together with ensuing energy usage and savings

  5. An energy-based body temperature threshold between torpor and normothermia for small mammals.

    Science.gov (United States)

    Willis, Craig K R

    2007-01-01

    Field studies of use of torpor by heterothermic endotherms suffer from the lack of a standardized threshold differentiating torpid body temperatures (T(b)) from normothermic T(b)'s. This threshold can be more readily observed if metabolic rate (MR) is measured in the laboratory. I digitized figures from the literature that depicted simultaneous traces of MR and T(b) from 32 respirometry runs for 14 mammal species. For each graph, I quantified the T(b) measured when MR first began to drop at the onset of torpor (T(b-onset)). I used a general linear model to quantify the effect of ambient temperature (T(a)) and body mass (BM) on T(b-onset). For species lighter than 70 g, the model was highly significant and was described by the equation Tb-onset=(0.055+/-0.014)BM+(0.071+/-0.031)Ta+(31.823+/-0.740). To be conservative, I recommend use of these model parameters minus 1 standard error, which modifies the equation to Tb-onset-1 SE=(0.041)BM+(0.040)Ta+31.083. This approach provides a standardized threshold for differentiating torpor from normothermia that is based on use of energy, the actual currency of interest for studies of torpor in the wild. Few laboratory studies have presented the time-course data required to quantify T(b-onset), so more data are needed to validate this relationship.

  6. Cross-correlating CMB temperature fluctuations with high-energy γ-ray from Dark-Matter annihilation

    International Nuclear Information System (INIS)

    Pieri, L.

    2013-01-01

    In this paper we compute the Integrated Sachs-Wolfe effect due to the presence of dark-matter structures on cosmological scale. We cross-correlate the CMB temperature fluctuations with the extragalactic high-energy γ-ray flux map obtained with FERMI-LAT. We find a null signal consistent with the theory and conclude that the presence of halos and subhalos at galactic and extragalactic scale, if not excluded, will be hardly discoverable.

  7. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    Science.gov (United States)

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  8. A novel dual energy method for enhanced quantitative computed tomography

    Science.gov (United States)

    Emami, A.; Ghadiri, H.; Rahmim, A.; Ay, M. R.

    2018-01-01

    Accurate assessment of bone mineral density (BMD) is critically important in clinical practice, and conveniently enabled via quantitative computed tomography (QCT). Meanwhile, dual-energy QCT (DEQCT) enables enhanced detection of small changes in BMD relative to single-energy QCT (SEQCT). In the present study, we aimed to investigate the accuracy of QCT methods, with particular emphasis on a new dual-energy approach, in comparison to single-energy and conventional dual-energy techniques. We used a sinogram-based analytical CT simulator to model the complete chain of CT data acquisitions, and assessed performance of SEQCT and different DEQCT techniques in quantification of BMD. We demonstrate a 120% reduction in error when using a proposed dual-energy Simultaneous Equation by Constrained Least-squares method, enabling more accurate bone mineral measurements.

  9. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  10. SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Pedro Yuste

    2013-09-01

    Full Text Available The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I–V for EH, based on I–V hardware tracking. I–V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time—days, weeks, months or years—using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach.

  11. Temperatures of fragment kinetic energy spectra

    International Nuclear Information System (INIS)

    Bauer, W.

    1995-01-01

    Multifragmentation reactions without large compression in the initial state (proton-induced reactions, reverse kinematics, projectile fragmentation) are examined, and it is verified quantitatively that the high temperatures obtained from fragment kinetic energy spectra and lower temperatures obtained from observables such as level population or isotope ratios can be understood in a common framework

  12. Magnetic fusion energy and computers: the role of computing in magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1979-10-01

    This report examines the role of computing in the Department of Energy magnetic confinement fusion program. The present status of the MFECC and its associated network is described. The third part of this report examines the role of computer models in the main elements of the fusion program and discusses their dependence on the most advanced scientific computers. A review of requirements at the National MFE Computer Center was conducted in the spring of 1976. The results of this review led to the procurement of the CRAY 1, the most advanced scientific computer available, in the spring of 1978. The utilization of this computer in the MFE program has been very successful and is also described in the third part of the report. A new study of computer requirements for the MFE program was conducted during the spring of 1979 and the results of this analysis are presented in the forth part of this report

  13. A New Equation Relating the Viscosity Arrhenius Temperature and the Activation Energy for Some Newtonian Classical Solvents

    Directory of Open Access Journals (Sweden)

    Aymen Messaâdi

    2015-01-01

    Full Text Available In transport phenomena, precise knowledge or estimation of fluids properties is necessary, for mass flow and heat transfer computations. Viscosity is one of the important properties which are affected by pressure and temperature. In the present work, based on statistical techniques for nonlinear regression analysis and correlation tests, we propose a novel equation modeling the relationship between the two parameters of viscosity Arrhenius-type equation, such as the energy (Ea and the preexponential factor (As. Then, we introduce a third parameter, the Arrhenius temperature (TA, to enrich the model and the discussion. Empirical validations using 75 data sets of viscosity of pure solvents studied at different temperature ranges are provided from previous works in the literature and give excellent statistical correlations, thus allowing us to rewrite the Arrhenius equation using a single parameter instead of two. In addition, the suggested model is very beneficial for engineering data since it would permit estimating the missing parameter value, if a well-established estimate of the other parameter is readily available.

  14. Computing Temperatures in Optically Thick Protoplanetary Disks

    Science.gov (United States)

    Capuder, Lawrence F.. Jr.

    2011-01-01

    We worked with a Monte Carlo radiative transfer code to simulate the transfer of energy through protoplanetary disks, where planet formation occurs. The code tracks photons from the star into the disk, through scattering, absorption and re-emission, until they escape to infinity. High optical depths in the disk interior dominate the computation time because it takes the photon packet many interactions to get out of the region. High optical depths also receive few photons and therefore do not have well-estimated temperatures. We applied a modified random walk (MRW) approximation for treating high optical depths and to speed up the Monte Carlo calculations. The MRW is implemented by calculating the average number of interactions the photon packet will undergo in diffusing within a single cell of the spatial grid and then updating the packet position, packet frequencies, and local radiation absorption rate appropriately. The MRW approximation was then tested for accuracy and speed compared to the original code. We determined that MRW provides accurate answers to Monte Carlo Radiative transfer simulations. The speed gained from using MRW is shown to be proportional to the disk mass.

  15. Analysis of temperature difference on the total of energy expenditure during static bicycle exercise

    Science.gov (United States)

    Sugiono

    2016-04-01

    How to manage energy expenditure for cyclist is very crucial part to achieve a good performance. As the tropical situation, the differences of temperature level might be contributed in energy expenditure and durability. The aim of the paper is to estimate and to analysis the configuration of energy expenditure for static cycling activity based on heart rate value in room with air conditioning (AC)/no AC treatment. The research is started with study literatures of climate factors, temperature impact on human body, and definition of energy expenditure. The next step is design the experiment for 5 participants in 2 difference models for 26.80C - 74% relative humidity (room no AC) and 23,80C - 54.8% relative humidity (room with AC). The participants’ heart rate and blood pressure are measured in rest condition and in cycling condition to know the impact of difference temperature in energy expenditure profile. According to the experiment results, the reducing of the temperature has significantly impact on the decreasing of energy expenditure at average 0.3 Kcal/minute for all 5 performers. Finally, the research shows that climate condition (temperature and relative humidity) are very important factors to manage and to reach a higher performance of cycling sport.

  16. On the Design of Energy-Efficient Location Tracking Mechanism in Location-Aware Computing

    Directory of Open Access Journals (Sweden)

    MoonBae Song

    2005-01-01

    Full Text Available The battery, in contrast to other hardware, is not governed by Moore's Law. In location-aware computing, power is a very limited resource. As a consequence, recently, a number of promising techniques in various layers have been proposed to reduce the energy consumption. The paper considers the problem of minimizing the energy used to track the location of mobile user over a wireless link in mobile computing. Energy-efficient location update protocol can be done by reducing the number of location update messages as possible and switching off as long as possible. This can be achieved by the concept of mobility-awareness we propose. For this purpose, this paper proposes a novel mobility model, called state-based mobility model (SMM to provide more generalized framework for both describing the mobility and updating location information of complexly moving objects. We also introduce the state-based location update protocol (SLUP based on this mobility model. An extensive experiment on various synthetic datasets shows that the proposed method improves the energy efficiency by 2 ∼ 3 times with the additional 10% of imprecision cost.

  17. Energy and temperature fluctuations in the single electron box

    International Nuclear Information System (INIS)

    Berg, Tineke L van den; Brange, Fredrik; Samuelsson, Peter

    2015-01-01

    In mesoscopic and nanoscale systems at low temperatures, charge carriers are typically not in thermal equilibrium with the surrounding lattice. The resulting, non-equilibrium dynamics of electrons has only begun to be explored. Experimentally the time-dependence of the electron temperature (deviating from the lattice temperature) has been investigated in small metallic islands. Motivated by these experiments, we investigate theoretically the electronic energy and temperature fluctuations in a metallic island in the Coulomb blockade regime, tunnel coupled to an electronic reservoir, i.e. a single electron box. We show that electronic quantum tunnelling between the island and the reservoir, in the absence of any net charge or energy transport, induces fluctuations of the island electron temperature. The full distribution of the energy transfer as well as the island temperature is derived within the framework of full counting statistics. In particular, the low-frequency temperature fluctuations are analysed, fully accounting for charging effects and non-zero reservoir temperature. The experimental requirements for measuring the predicted temperature fluctuations are discussed. (paper)

  18. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili

    2014-06-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  19. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili; Wang, Rui; Wu, Xiaozhi; Gan, Liyong; Wei, Qunyi

    2014-01-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  20. 2-D Low Energy Electron Beam Profile Measurement Based on Computer Tomography Algorithm with Multi-Wire Scanner

    CERN Document Server

    Yu, Nengjie; Li Qing Feng; Tang, Chuan-Xiang; Zheng, Shuxin

    2005-01-01

    A new method for low energy electron beam profile measurement is advanced, which presents a full 2-D beam profile distribution other than the traditional 2-D beam profile distribution given by 1-D vertical and horizontal beam profiles. The method is based on the CT (Computer Tomography) algorithm. Multi-sets of data about the 1-D beam profile projections are attained by rotating the multi-wire scanner. Then a 2-D beam profile is reconstructed from these projections with CT algorithm. The principle of this method is presented. The simulation and the experiment results are compared and analyzed in detail.

  1. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  2. Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Rejo Jeice

    2013-09-01

    Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure  iiifurther decreases due to the application  of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.

  3. Low Temperature District Heating for Future Energy Systems

    DEFF Research Database (Denmark)

    Schmidt, Dietrich; Kallert, Anna; Blesl, Markus

    2017-01-01

    of the building stock. Low temperature district heating (LTDH) can contribute significantly to a more efficient use of energy resources as well as better integration of renewable energy (e.g. geothermal or solar heat), and surplus heat (e.g. industrial waste heat) into the heating sector. LTDH offers prospects......The building sector is responsible for more than one third of the final energy consumption of societies and produces the largest amount of greenhouse gas emissions of all sectors. This is due to the utilisation of combustion processes of mainly fossil fuels to satisfy the heating demand...... for both the demand side (community building structure) and the supply side (network properties or energy sources). Especially in connection with buildings that demand only low temperatures for space heating. The utilisation of lower temperatures reduces losses in pipelines and can increase the overall...

  4. Microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments

  5. A thermal analysis computer programme package for the estimation of KANUPP coolant channel flows and outlet header temperature distribution

    International Nuclear Information System (INIS)

    Siddiqui, M.S.

    1992-06-01

    COFTAN is a computer code for actual estimation of flows and temperatures in the coolant channels of a pressure tube heavy water reactor. The code is being used for Candu type reactor with coolant flowing 208 channels. The simulation model first performs the detailed calculation of flux and power distribution based on two groups diffusion theory treatment on a three dimensional mesh and then channel powers, resulting from the summation of eleven bundle powers in each of the 208 channels, are employed to make actual estimation of coolant flows using channel powers and channel outlet temperature monitored by digital computers. The code by using the design flows in individual channels and applying a correction factor based on control room monitored flows in eight selected channels, can also provide a reserve computational tool of estimating individual channel outlet temperatures, thus providing an alternate arrangements for checking Rads performance. 42 figs. (Orig./A.B.)

  6. Energy Efficiency in Computing (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    As manufacturers improve the silicon process, truly low energy computing is becoming a reality - both in servers and in the consumer space. This series of lectures covers a broad spectrum of aspects related to energy efficient computing - from circuits to datacentres. We will discuss common trade-offs and basic components, such as processors, memory and accelerators. We will also touch on the fundamentals of modern datacenter design and operation. Lecturer's short bio: Andrzej Nowak has 10 years of experience in computing technologies, primarily from CERN openlab and Intel. At CERN, he managed a research lab collaborating with Intel and was part of the openlab Chief Technology Office. Andrzej also worked closely and initiated projects with the private sector (e.g. HP and Google), as well as international research institutes, such as EPFL. Currently, Andrzej acts as a consultant on technology and innovation with TIK Services (http://tik.services), and runs a peer-to-peer lending start-up. NB! All Academic L...

  7. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    Energy Technology Data Exchange (ETDEWEB)

    Ghrayeb, S. Z. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., 230 Reber Building, Univ. Park, PA 16802 (United States); Ouisloumen, M. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Ougouag, A. M. [Idaho National Laboratory, MS-3860, PO Box 1625, Idaho Falls, ID 83415 (United States); Ivanov, K. N.

    2012-07-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied. (authors)

  8. Improvement of the performance of Mg-based alloy electrodes at ambient temperatures

    International Nuclear Information System (INIS)

    Liu, H.K.; Chen, J.; Sun, L.; Bradhurst, D.H.; Dou, S.X.

    1998-01-01

    Full text: Rechargeable batteries are finding increased application in modern communications, computers, and electric vehicles. The Nickel-Metal Hydride (Ni-MH) battery has the best comprehensive properties. It is known that the important step to increase the energy density of Ni-MH battery is to improve the negative (metal hydride) electrode properties. Of all the hydrogen storage alloys studied previously, (the best know alloys are LaNi 5 , Mg 2 Ni, Ti 2 Ni , TiNi and Zr 2 Ni), the intermetallic compound Mg 2 Ni has the highest theoretical hydrogen storage capacity. The Mg 2 Ni-based hydrogen storage alloy is a promising material for increasing the negative electrode capacity of Ni-MH batteries because this alloy is superior to the LaNi 5 -system or the Zr-based alloys in materials cost and hydrogen absorption capacity. A serious disadvantage, however, is that the reactions of most magnesium based alloys with hydrogen require relatively high temperature (>300 deg C) and pressure (up to 10 atm) due to the slowness of the hydriding/dehydriding reactions. In this paper it is shown that with a combination of modifications to the alloy composition and methods of electrode preparation, magnesium-based alloys can be made into electrodes which will not only be useful at ambient temperatures but will have a useful cycle life and extremely high capacity

  9. Creating Very True Quantum Algorithms for Quantum Energy Based Computing

    Science.gov (United States)

    Nagata, Koji; Nakamura, Tadao; Geurdes, Han; Batle, Josep; Abdalla, Soliman; Farouk, Ahmed; Diep, Do Ngoc

    2018-04-01

    An interpretation of quantum mechanics is discussed. It is assumed that quantum is energy. An algorithm by means of the energy interpretation is discussed. An algorithm, based on the energy interpretation, for fast determining a homogeneous linear function f( x) := s. x = s 1 x 1 + s 2 x 2 + ⋯ + s N x N is proposed. Here x = ( x 1, … , x N ), x j ∈ R and the coefficients s = ( s 1, … , s N ), s j ∈ N. Given the interpolation values (f(1), f(2),...,f(N))=ěc {y}, the unknown coefficients s = (s1(ěc {y}),\\dots , sN(ěc {y})) of the linear function shall be determined, simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of N. Our method is based on the generalized Bernstein-Vazirani algorithm to qudit systems. Next, by using M parallel quantum systems, M homogeneous linear functions are determined, simultaneously. The speed of obtaining the set of M homogeneous linear functions is shown to outperform the classical case by a factor of N × M.

  10. Microstructure-based multiscale modeling of elevated temperature deformation in aluminum alloys

    International Nuclear Information System (INIS)

    Krajewski, Paul E.; Hector, Louis G.; Du Ningning; Bower, Allan F.

    2010-01-01

    A multiscale model for predicting elevated temperature deformation in Al-Mg alloys is presented. Constitutive models are generated from a theoretical methodology and used to investigate the effects of grain size on formability. Flow data are computed with a polycrystalline, microstructure-based model which accounts for grain boundary sliding, stress-induced diffusion, and dislocation creep. Favorable agreement is found between the computed flow data and elevated temperature tensile measurements. A creep constitutive model is then fit to the computed flow data and used in finite-element simulations of two simple gas pressure forming processes, where favorable results are observed. These results are fully consistent with gas pressure forming experiments, and suggest a greater role for constitutive models, derived largely from theoretical methodologies, in the design of Al alloys with enhanced elevated temperature formability. The methodology detailed herein provides a framework for incorporation of results from atomistic-scale models of dislocation creep and diffusion.

  11. KEYNOTE: Simulation, computation, and the Global Nuclear Energy Partnership

    Science.gov (United States)

    Reis, Victor, Dr.

    2006-01-01

    Dr. Victor Reis delivered the keynote talk at the closing session of the conference. The talk was forward looking and focused on the importance of advanced computing for large-scale nuclear energy goals such as Global Nuclear Energy Partnership (GNEP). Dr. Reis discussed the important connections of GNEP to the Scientific Discovery through Advanced Computing (SciDAC) program and the SciDAC research portfolio. In the context of GNEP, Dr. Reis talked about possible fuel leasing configurations, strategies for their implementation, and typical fuel cycle flow sheets. A major portion of the talk addressed lessons learnt from ‘Science Based Stockpile Stewardship’ and the Accelerated Strategic Computing Initiative (ASCI) initiative and how they can provide guidance for advancing GNEP and SciDAC goals. Dr. Reis’s colorful and informative presentation included international proverbs, quotes and comments, in tune with the international flavor that is part of the GNEP philosophy and plan. He concluded with a positive and motivating outlook for peaceful nuclear energy and its potential to solve global problems. An interview with Dr. Reis, addressing some of the above issues, is the cover story of Issue 2 of the SciDAC Review and available at http://www.scidacreview.org This summary of Dr. Reis’s PowerPoint presentation was prepared by Institute of Physics Publishing, the complete PowerPoint version of Dr. Reis’s talk at SciDAC 2006 is given as a multimedia attachment to this summary.

  12. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    Science.gov (United States)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  13. Computer based systems for fast reactor core temperature monitoring and protection

    International Nuclear Information System (INIS)

    Wall, D.N.

    1991-01-01

    Self testing fail safe trip systems and guardlines have been developed using dynamic logic as a basis for temperature monitoring and temperature protection in the UK. The guardline and trip system have been tested in passive operation on a number of reactors and a pulse coded logic guardline is currently in use on the DIDO test reactor. Acoustic boiling noise and ultrasonic systems have been developed in the UK as diverse alternatives to using thermocouples for temperature monitoring and measurement. These systems have the advantage that they make remote monitoring possible but they rely on complex signal processing to achieve their output. The means of incorporating such systems within the self testing trip system architecture are explored and it is apparent that such systems, particularly that based on ultrasonics has great potential for development. There remain a number of problems requiring detailed investigation in particular the verification of the signal processing electronics and trip software. It is considered that these problems while difficult are far from insurmountable and this work should result in the production of protection and monitoring systems suitable for deployment on the fast reactor. 6 figs

  14. Experimental and computational prediction of glass transition temperature of drugs.

    Science.gov (United States)

    Alzghoul, Ahmad; Alhalaweh, Amjad; Mahlin, Denny; Bergström, Christel A S

    2014-12-22

    Glass transition temperature (Tg) is an important inherent property of an amorphous solid material which is usually determined experimentally. In this study, the relation between Tg and melting temperature (Tm) was evaluated using a data set of 71 structurally diverse druglike compounds. Further, in silico models for prediction of Tg were developed based on calculated molecular descriptors and linear (multilinear regression, partial least-squares, principal component regression) and nonlinear (neural network, support vector regression) modeling techniques. The models based on Tm predicted Tg with an RMSE of 19.5 K for the test set. Among the five computational models developed herein the support vector regression gave the best result with RMSE of 18.7 K for the test set using only four chemical descriptors. Hence, two different models that predict Tg of drug-like molecules with high accuracy were developed. If Tm is available, a simple linear regression can be used to predict Tg. However, the results also suggest that support vector regression and calculated molecular descriptors can predict Tg with equal accuracy, already before compound synthesis.

  15. Modelling and experimental study of low temperature energy storage reactor using cementitious material

    International Nuclear Information System (INIS)

    Ndiaye, Khadim; Ginestet, Stéphane; Cyr, Martin

    2017-01-01

    Highlights: • Numerical study of a thermochemical reactor using a cementitious material for TES. • Development and test of an original prototype based on this original material. • Comparison of the experimental and numerical results. • Energy balance of the experimental setup (charging and discharging phases). - Abstract: Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Most adsorbent materials are capable of storing heat, in a large range of temperature. Ettringite, the main product of the hydration of sulfoaluminate binders, has the advantage of high energy storage density at low temperature, around 60 °C. The objective of this study is, first, to predict the behaviour of the ettringite based material in a thermochemical reactor during the heat storage process, by heat storage modelling, and then to perform experimental validation by tests on a prototype. A model based on the energy and mass balance in the cementitious material was developed and simulated in MatLab software, and was able to predict the spatiotemporal behaviour of the storage system. This helped to build a thermochemical reactor prototype for heat storage tests in both the charging and discharging phases. Thus experimental tests validated the numerical model and served as proof of concept.

  16. Molecular architectures based on π-conjugated block copolymers for global quantum computation

    International Nuclear Information System (INIS)

    Mujica Martinez, C A; Arce, J C; Reina, J H; Thorwart, M

    2009-01-01

    We propose a molecular setup for the physical implementation of a barrier global quantum computation scheme based on the electron-doped π-conjugated copolymer architecture of nine blocks PPP-PDA-PPP-PA-(CCH-acene)-PA-PPP-PDA-PPP (where each block is an oligomer). The physical carriers of information are electrons coupled through the Coulomb interaction, and the building block of the computing architecture is composed by three adjacent qubit systems in a quasi-linear arrangement, each of them allowing qubit storage, but with the central qubit exhibiting a third accessible state of electronic energy far away from that of the qubits' transition energy. The third state is reached from one of the computational states by means of an on-resonance coherent laser field, and acts as a barrier mechanism for the direct control of qubit entanglement. Initial estimations of the spontaneous emission decay rates associated to the energy level structure allow us to compute a damping rate of order 10 -7 s, which suggest a not so strong coupling to the environment. Our results offer an all-optical, scalable, proposal for global quantum computing based on semiconducting π-conjugated polymers.

  17. Molecular architectures based on pi-conjugated block copolymers for global quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Mujica Martinez, C A; Arce, J C [Universidad del Valle, Departamento de QuImica, A. A. 25360, Cali (Colombia); Reina, J H [Universidad del Valle, Departamento de Fisica, A. A. 25360, Cali (Colombia); Thorwart, M, E-mail: camujica@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u, E-mail: jularce@univalle.edu.c [Institut fuer Theoretische Physik IV, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany)

    2009-05-01

    We propose a molecular setup for the physical implementation of a barrier global quantum computation scheme based on the electron-doped pi-conjugated copolymer architecture of nine blocks PPP-PDA-PPP-PA-(CCH-acene)-PA-PPP-PDA-PPP (where each block is an oligomer). The physical carriers of information are electrons coupled through the Coulomb interaction, and the building block of the computing architecture is composed by three adjacent qubit systems in a quasi-linear arrangement, each of them allowing qubit storage, but with the central qubit exhibiting a third accessible state of electronic energy far away from that of the qubits' transition energy. The third state is reached from one of the computational states by means of an on-resonance coherent laser field, and acts as a barrier mechanism for the direct control of qubit entanglement. Initial estimations of the spontaneous emission decay rates associated to the energy level structure allow us to compute a damping rate of order 10{sup -7} s, which suggest a not so strong coupling to the environment. Our results offer an all-optical, scalable, proposal for global quantum computing based on semiconducting pi-conjugated polymers.

  18. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.

    Science.gov (United States)

    Klimchitskaya, G L; Mostepanenko, V M

    2017-07-12

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  19. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2017-07-01

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO2 and Al2O3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO2, Al2O3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  20. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  1. Dynamic Voltage Frequency Scaling Simulator for Real Workflows Energy-Aware Management in Green Cloud Computing.

    Science.gov (United States)

    Cotes-Ruiz, Iván Tomás; Prado, Rocío P; García-Galán, Sebastián; Muñoz-Expósito, José Enrique; Ruiz-Reyes, Nicolás

    2017-01-01

    Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS). The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique.

  2. Dynamic Voltage Frequency Scaling Simulator for Real Workflows Energy-Aware Management in Green Cloud Computing.

    Directory of Open Access Journals (Sweden)

    Iván Tomás Cotes-Ruiz

    Full Text Available Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS. The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique.

  3. Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hong-Ru; Chen, Lie-Wen; Li, Bao-An

    2007-01-01

    Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence of the symmetry energy E sym (ρ,T) and symmetry free energy F sym (ρ,T) for hot, isospin asymmetric nuclear matter. It is shown that the symmetry energy E sym (ρ,T) generally decreases with increasing temperature while the symmetry free energy F sym (ρ,T) exhibits opposite temperature dependence. The decrement of the symmetry energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite small around the saturation density of nuclear matter. While at very low densities, they differ significantly from each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from the isotopic scaling analysis of intermediate mass fragments (IMF's) in heavy-ion collisions, the resulting density and temperature dependent symmetry energy E sym (ρ,T) is then used to estimate the average freeze-out density of the IMF's

  4. Computation and measurement of air temperature distribution of an industrial melt blowing die

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2014-01-01

    Full Text Available The air flow field of the dual slot die on an HDF-6D melt blowing non-woven equipment is computed numerically. A temperature measurement system is built to measure air temperatures. The computation results tally with the measured results proving the correctness of the computation. The results have great valuable significance in the actual melt blowing production.

  5. Low-Cost Bio-Based Carbon Fibers for High Temperature Processing

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Ryan Michael [GrafTech International, Brooklyn Heights, OH (United States); Naskar, Amit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-03

    GrafTech International Holdings Inc. (GTI), under Award No. DE-EE0005779, worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. High-temperature carbon fiber based insulation is used in energy intensive industries, such as metal heat treating and ceramic and semiconductor material production. Insulation plays a critical role in achieving high thermal and process efficiency, which is directly related to energy usage, cost, and product competitiveness. Current high temperature insulation is made with petroleum based carbon fibers, and one goal of this protect was to develop and demonstrate an alternative lignin (biomass) based carbon fiber that would achieve lower cost, CO2 emissions, and energy consumption and result in insulation that met or exceeded the thermal efficiency of current commercial insulation. In addition, other products were targeted to be evaluated with LBCF. As the project was designed to proceed in stages, the initial focus of this work was to demonstrate lab-scale LBCF from at least 4 different lignin precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash level of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria. In addition, the ash level for the 4 carbonized lignin samples was below 500 ppm. Processing as-received lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial

  6. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    Science.gov (United States)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  7. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    Science.gov (United States)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  8. Simple prescription for computing the interparticle potential energy for D-dimensional gravity systems

    International Nuclear Information System (INIS)

    Accioly, Antonio; Helayël-Neto, José; Barone, F E; Herdy, Wallace

    2015-01-01

    A straightforward prescription for computing the D-dimensional potential energy of gravitational models, which is strongly based on the Feynman path integral, is built up. Using this method, the static potential energy for the interaction of two masses is found in the context of D-dimensional higher-derivative gravity models, and its behavior is analyzed afterwards in both ultraviolet and infrared regimes. As a consequence, two new gravity systems in which the potential energy is finite at the origin, respectively, in D = 5 and D = 6, are found. Since the aforementioned prescription is equivalent to that based on the marriage between quantum mechanics (to leading order, i.e., in the first Born approximation) and the nonrelativistic limit of quantum field theory, and bearing in mind that the latter relies basically on the calculation of the nonrelativistic Feynman amplitude (M NR ), a trivial expression for computing M NR is obtained from our prescription as an added bonus. (paper)

  9. Knee temperatures measured in vivo after arthroscopic ACL reconstruction followed by cryotherapy with gel-packs or computer controlled heat extraction.

    Science.gov (United States)

    Rashkovska, Aleksandra; Trobec, Roman; Avbelj, Viktor; Veselko, Matjaž

    2014-09-01

    To obtain in vivo data about intra- and extra-articular knee temperatures to assess the effectiveness of two cryotherapeutic methods-conventional cooling with gel-packs and computer controlled cryotherapy following anterior cruciate ligament (ACL) reconstructive surgery. Twenty patients were arbitrarily assigned for cryotherapy after ACL reconstruction: 8 patients with frozen gel-packs and 12 patients with computer controlled cryotherapy with constant temperatures of the cooling liquid in the knee pads. The treatment was performed for 12 h. Temperatures were measured with two thermo sensors in catheters placed intraarticularly and subcutaneously, four sensors on the skin and one sensor under protective bandage, every second for 16 h after surgery. In the first 2 h of treatment, there were no significant differences (n.s.) between the groups in temperatures in the intracondylar notch. After 4 h of cryotherapy, the temperatures were significantly lower on the skin (24.6 ± 2.8 and 31.4 ± 1.3 °C, p cryotherapy group compared to the gel-pack group. The cooling effect of the arthroscopy irrigation fluid on the knee temperature is evident in the first 2 h of treatment. The energy extraction is significantly more effective and controllable by computer controlled cryotherapy than with frozen gel-packs. Prospective comparative study, Level II.

  10. A data acquisition computer for high energy physics applications DAFNE:- hardware manual

    International Nuclear Information System (INIS)

    Barlow, J.; Seller, P.; De-An, W.

    1983-07-01

    A high performance stand alone computer system based on the Motorola 68000 micro processor has been built at the Rutherford Appleton Laboratory. Although the design was strongly influenced by the requirement to provide a compact data acquisition computer for the high energy physics environment, the system is sufficiently general to find applications in a wider area. It provides colour graphics and tape and disc storage together with access to CAMAC systems. This report is the hardware manual of the data acquisition computer, DAFNE (Data Acquisition For Nuclear Experiments), and as such contains a full description of the hardware structure of the computer system. (author)

  11. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  12. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  13. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  14. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  15. Finite temperature effects on the X-ray absorption spectra of energy related materials

    Science.gov (United States)

    Pascal, Tod; Prendergast, David

    2014-03-01

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.

  16. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  17. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Science.gov (United States)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  18. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

    Science.gov (United States)

    Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.

    2018-05-01

    One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.

  19. Petascale supercomputing to accelerate the design of high-temperature alloys

    Science.gov (United States)

    Shin, Dongwon; Lee, Sangkeun; Shyam, Amit; Haynes, J. Allen

    2017-12-01

    Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ‧-Al2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviour of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. The approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.

  20. Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2013-01-01

    In this study, hybrid renewable energy based hydrogen and electricity production and storage systems are conceptually modeled and analyzed in detail through energy, exergy and sustainability approaches. Several subsystems, namely hybrid geothermal energy-wind turbine-solar photovoltaic (PV) panel, inverter, electrolyzer, hydrogen storage system, Proton Exchange Membrane Fuel Cell (PEMFC), battery and loading system are considered. Also, a case study, based on hybrid wind–solar renewable energy system, is conducted and its results are presented. In addition, the dead state temperatures are considered as 0 °C, 10 °C, 20 °C and 30 °C, while the environment temperature is 30 °C. The maximum efficiencies of the wind turbine, solar PV panel, electrolyzer, PEMFC are calculated as 26.15%, 9.06%, 53.55%, and 33.06% through energy analysis, and 71.70%, 9.74%, 53.60%, and 33.02% through exergy analysis, respectively. Also, the overall exergy efficiency, ranging from 5.838% to 5.865%, is directly proportional to the dead state temperature and becomes higher than the corresponding energy efficiency of 3.44% for the entire system. -- Highlights: ► Developing a three-hybrid renewable energy (geothermal–wind–solar)-based system. ► Undertaking a parametric study at various dead state temperatures. ► Investigating the effect of dead state temperatures on exergy efficiency

  1. Dynamical calculation of nuclear temperature

    International Nuclear Information System (INIS)

    Zheng Yuming

    1998-01-01

    A new dynamical approach for measuring the temperature of a Hamiltonian dynamical system in the microcanonical ensemble of thermodynamics is presented. It shows that under the hypothesis of ergodicity the temperature can be computed as a time average of a function on the energy surface. This method not only yields an efficient computational approach for determining the temperature, but also provides an intrinsic link between dynamical system theory and the statistical mechanics of Hamiltonian system

  2. Energy Storage of Polyarylene Ether Nitriles at High Temperature

    Science.gov (United States)

    Tang, Xiaohe; You, Yong; Mao, Hua; Li, Kui; Wei, Renbo; Liu, Xiaobo

    2018-03-01

    Polyarylene ether nitrile (PEN) was synthesized and used as film capacitors for energy storage at high temperature. Scanning electron microscopy observation indicated that the films of PEN have pinholes at nanoscales which restricted the energy storage properties of the material. The pinhole shadowing effect through which the energy storage properties of PEN were effectively improved to be 2.3 J/cm3 was observed by using the overlapped film of PEN. The high glass transition temperature (T g) of PEN was as high as 216 °C and PEN film showed stable dielectric constant, breakdown strength and energy storage density before the T g. The PEN films will be a potential candidate as high performance electronic storage materials used at high temperature.

  3. Computational prediction of the effective temperature in the lying area of pig pens

    DEFF Research Database (Denmark)

    Bjerg, Bjarne; Rong, Li; Zhang, Guoqiang

    2018-01-01

    Using solid floor instead of drained or slatted floor in the lying areas of pig pens has distinct advantages in relation to animal welfare, odour abatement and ammonia emission, energy consumption and reduced building costs. However, pig producers often opt out of providing a solid floor due......, individually contribute to the combined effect of the thermal condition raising pigs are exposed to. Computational Fluid Dynamics (CFD) simulations were conducted to estimate the relevant parameters and, finally, the ET. Furthermore, the developed ET equation was implemented in the CFD model as a Custom Field...... Function to calculate the distribution of ET in the animal occupied zone. It was assumed that a traditional diffuse ceiling air inlet would deliver the required airflow rate as long as the outdoor temperature was below 10. °C. At higher outdoor temperature, a ceiling-jet inlet above each pen was opened...

  4. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Science.gov (United States)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  5. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin, E-mail: ganzhiyin@126.com

    2017-06-15

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  6. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  7. Energy Monitoring System Berbasis Web

    Directory of Open Access Journals (Sweden)

    Novan Zulkarnain

    2013-12-01

    Full Text Available Government through the Ministry of Energy and Mineral Resources (ESDM encourages the energy savings at whole buildings in Indonesia. Energy Monitoring System (EMS is a web-based solution to monitor energy usage in a building. The research methods used are the analysis, prototype design and testing. EMSconsists of hardware which consists of electrical sensors, temperature-humidity sensor, and a computer. Data on EMS are designed using Modbus protocol, stored in MySQL database application, and displayed on charts through Dashboard on LED TV using PHP programming.

  8. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    International Nuclear Information System (INIS)

    Mølgaard Mortensen, Peter; Willum Hansen, Thomas; Birkedal Wagner, Jakob; Degn Jensen, Anker

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. - Highlights: • Computational fluid dynamics used for mapping flow and temperature in ETEM setup. • Temperature gradient across TEM grid in furnace based heating holder very small in ETEM. • Conduction from TEM grid and gas in addition to radiation from TEM grid most important. • Pressure drop in ETEM limited to the pressure limiting apertures

  9. Parallel computing for event reconstruction in high-energy physics

    International Nuclear Information System (INIS)

    Wolbers, S.

    1993-01-01

    Parallel computing has been recognized as a solution to large computing problems. In High Energy Physics offline event reconstruction of detector data is a very large computing problem that has been solved with parallel computing techniques. A review of the parallel programming package CPS (Cooperative Processes Software) developed and used at Fermilab for offline reconstruction of Terabytes of data requiring the delivery of hundreds of Vax-Years per experiment is given. The Fermilab UNIX farms, consisting of 180 Silicon Graphics workstations and 144 IBM RS6000 workstations, are used to provide the computing power for the experiments. Fermilab has had a long history of providing production parallel computing starting with the ACP (Advanced Computer Project) Farms in 1986. The Fermilab UNIX Farms have been in production for over 2 years with 24 hour/day service to experimental user groups. Additional tools for management, control and monitoring these large systems will be described. Possible future directions for parallel computing in High Energy Physics will be given

  10. 3WCC Temperature Integration in a Gasoline-HEV Optimal Energy Management Strategy

    Directory of Open Access Journals (Sweden)

    Pierre Michel

    2014-02-01

    Full Text Available For a gasoline-hybrid electric vehicle (HEV, the energy management strategy (EMS is the computation of the distribution between electric and gasoline propulsion. Until recently, the EMS objective was to minimize fuel consumption. However, decreasing fuel consumption does not directly minimize the pollutant emissions, and the 3-way catalytic converter (3WCC must be taken into account. This paper proposes to consider the pollutant emissions in the EMS, by minimizing, with the Pontryagin minimum principle, a tradeoff between pollution and fuel consumption. The integration of the 3WCC temperature in the EMS is discussed and finally a simplification is proposed.

  11. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    International Nuclear Information System (INIS)

    Hekkenberg, M.; Moll, H.C.; Uiterkamp, A.J.M. Schoot

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect future energy demand. This paper critically analyzes these implicit or explicit assumptions and their possible effect on the studies' outcomes. First we analyze the interaction between the socio-economic structure and the temperature dependence pattern (TDP) of energy demand. We find that socio-economic changes may alter the TDP in various ways. Next we investigate how current studies manage these dynamics in socio-economic structure. We find that many studies systematically misrepresent the possible effect of socio-economic changes on the TDP of energy demand. Finally, we assess the consequences of these misrepresentations in an energy demand model based on temperature dependence and climate scenarios. Our model results indicate that expected socio-economic dynamics generally lead to an underestimation of future energy demand in models that misrepresent such dynamics. We conclude that future energy demand models should improve the incorporation of socio-economic dynamics. We propose dynamically modeling several key parameters and using direct meteorological data instead of degree days. (author)

  12. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  13. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy

    International Nuclear Information System (INIS)

    Akrami, Ehsan; Chitsaz, Ata; Nami, Hossein; Mahmoudi, S.M.S.

    2017-01-01

    In this paper, a geothermal based multi-generation energy system, including organic Rankine cycle, domestic water heater, absorption refrigeration cycle and proton exchange membrane electrolyzer, is developed to generate electricity, heating, cooling and hydrogen. For this purpose, energetic, exergetic and exergoeconomic analysis are undertaken upon proposed system. Also, the effects of some important variables, i.e. geothermal water temperature, turbine inlet temperature and pressure, generator temperature, geothermal water mass flow rate and electrolyzer current density on the several parameters such as energy and exergy efficiencies of the proposed system, heating and cooling load, net electrical output power, hydrogen production, unit cost of each system products and total unit cost of the products are investigated. For specified conditions, the results show that energy and exergy efficiencies of the proposed multi-generation system are calculated about 34.98% and 49.17%, respectively. The highest and lowest total unit cost of the products estimated approximately 23.18 and 22.73 $/GJ, respectively, by considering that geothermal water temperature increases from 185 °C to 215 °C. - Highlights: • A multigeneration energy system based on geothermal energy is developed. • The energetic, exergetic and exergoeconomic analysis are undertaken upon proposed system. • The influences of several significant parameters are investigated. • The energy and exergy efficiencies of the entire system are calculated around 34.98% and 49.17%.

  14. Analytic computation of average energy of neutrons inducing fission

    International Nuclear Information System (INIS)

    Clark, Alexander Rich

    2016-01-01

    The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.

  15. Development of decay energy spectroscopy using low temperature detectors.

    Science.gov (United States)

    Jang, Y S; Kim, G B; Kim, K J; Kim, M S; Lee, H J; Lee, J S; Lee, K B; Lee, M K; Lee, S J; Ri, H C; Yoon, W S; Yuryev, Y N; Kim, Y H

    2012-09-01

    We have developed a high-resolution detection technique for measuring the energy and activity of alpha decay events using low-temperature detectors. A small amount of source material containing alpha-emitting radionuclides was enclosed in a 4π metal absorber. The energy of the alpha particles as well as that of the recoiled nuclides, low-energy electrons, and low-energy x-rays and γ-rays was converted into thermal energy of the gold absorber. A metallic magnetic calorimeter serving as a fast and sensitive thermometer was thermally attached to the metal absorber. In the present report, experimental demonstrations of Q spectroscopy were made with a new meander-type magnetic calorimeter. The thermal connection between the temperature sensor and the absorber was established with annealed gold wires. Each alpha decay event in the absorber resulted in a temperature increase of the absorber and the temperature sensor. Using the spectrum measured for a drop of (226)Ra solution in a 4π gold absorber, all of the alpha emitters in the sample were identified with a demonstration of good detector linearity. The resolution of the (226)Ra spectrum showed a 3.3 keV FWHM at its Q value together with an expected gamma escape peak at the energy shifted by its γ-ray energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Computational design of RNAs with complex energy landscapes.

    Science.gov (United States)

    Höner zu Siederdissen, Christian; Hammer, Stefan; Abfalter, Ingrid; Hofacker, Ivo L; Flamm, Christoph; Stadler, Peter F

    2013-12-01

    RNA has become an integral building material in synthetic biology. Dominated by their secondary structures, which can be computed efficiently, RNA molecules are amenable not only to in vitro and in vivo selection, but also to rational, computation-based design. While the inverse folding problem of constructing an RNA sequence with a prescribed ground-state structure has received considerable attention for nearly two decades, there have been few efforts to design RNAs that can switch between distinct prescribed conformations. We introduce a user-friendly tool for designing RNA sequences that fold into multiple target structures. The underlying algorithm makes use of a combination of graph coloring and heuristic local optimization to find sequences whose energy landscapes are dominated by the prescribed conformations. A flexible interface allows the specification of a wide range of design goals. We demonstrate that bi- and tri-stable "switches" can be designed easily with moderate computational effort for the vast majority of compatible combinations of desired target structures. RNAdesign is freely available under the GPL-v3 license. Copyright © 2013 Wiley Periodicals, Inc.

  17. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  18. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  19. Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures

    Science.gov (United States)

    Li, Qi; Liu, Feihua; Yang, Tiannan; Gadinski, Matthew R.; Zhang, Guangzu; Chen, Long-Qing; Wang, Qing

    2016-01-01

    The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge–discharge efficiency at elevated temperatures. At 150 °C and 200 MV m−1, an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge–discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present. PMID:27551101

  20. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  1. Enhancing Low-Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using Elevated Temperatures

    KAUST Repository

    Zhang, Fang

    2015-02-13

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA. A thermally regenerative ammonia battery (TRAB) is a new approach for converting low-grade thermal energy into electricity by using an ammonia electrolyte and copper electrodes. TRAB operation at 72°C produced a power density of 236±8 Wm-2, with a linear decrease in power to 95±5 Wm-2 at 23°C. The improved power at higher temperatures was due to reduced electrode overpotentials and more favorable thermodynamics for the anode reaction (copper oxidation). The energy density varied with temperature and discharge rates, with a maximum of 650 Whm-3 at a discharge energy efficiency of 54% and a temperature of 37°C. The energy efficiency calculated with chemical process simulation software indicated a Carnot-based efficiency of up to 13% and an overall thermal energy recovery of 0.5%. It should be possible to substantially improve these energy recoveries through optimization of electrolyte concentrations and by using improved ion-selective membranes and energy recovery systems such as heat exchangers.

  2. Comprehensive optimisation of China’s energy prices, taxes and subsidy policies based on the dynamic computable general equilibrium model

    International Nuclear Information System (INIS)

    He, Y.X.; Liu, Y.Y.; Du, M.; Zhang, J.X.; Pang, Y.X.

    2015-01-01

    Highlights: • Energy policy is defined as a complication of energy price, tax and subsidy policies. • The maximisation of total social benefit is the optimised objective. • A more rational carbon tax ranges from 10 to 20 Yuan/ton under the current situation. • The optimal coefficient pricing is more conducive to maximise total social benefit. - Abstract: Under the condition of increasingly serious environmental pollution, rational energy policy plays an important role in the practical significance of energy conservation and emission reduction. This paper defines energy policies as the compilation of energy prices, taxes and subsidy policies. Moreover, it establishes the optimisation model of China’s energy policy based on the dynamic computable general equilibrium model, which maximises the total social benefit, in order to explore the comprehensive influences of a carbon tax, the sales pricing mechanism and the renewable energy fund policy. The results show that when the change rates of gross domestic product and consumer price index are ±2%, ±5% and the renewable energy supply structure ratio is 7%, the more reasonable carbon tax ranges from 10 to 20 Yuan/ton, and the optimal coefficient pricing mechanism is more conducive to the objective of maximising the total social benefit. From the perspective of optimising the overall energy policies, if the upper limit of change rate in consumer price index is 2.2%, the existing renewable energy fund should be improved

  3. Computation of Phase Equilibrium and Phase Envelopes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp

    formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...

  4. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    International Nuclear Information System (INIS)

    Attarian Shandiz, M.; Gauvin, R.

    2014-01-01

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  5. Energy-efficient computing and networking. Revised selected papers

    Energy Technology Data Exchange (ETDEWEB)

    Hatziargyriou, Nikos; Dimeas, Aris [Ethnikon Metsovion Polytechneion, Athens (Greece); Weidlich, Anke (eds.) [SAP Research Center, Karlsruhe (Germany); Tomtsi, Thomai

    2011-07-01

    This book constitutes the postproceedings of the First International Conference on Energy-Efficient Computing and Networking, E-Energy, held in Passau, Germany in April 2010. The 23 revised papers presented were carefully reviewed and selected for inclusion in the post-proceedings. The papers are organized in topical sections on energy market and algorithms, ICT technology for the energy market, implementation of smart grid and smart home technology, microgrids and energy management, and energy efficiency through distributed energy management and buildings. (orig.)

  6. Temperature dependence of interband recombination energy in symmetric (In,Ga)N spherical quantum dot-quantum well

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE, 267 Quartier complémentaire Ennahda 1, Rabat (Morocco); Jorio, Anouar [LPS, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)

    2014-01-01

    Within the framework of effective-mass approximation and finite parabolic potential barrier, single particle and ground-state interband recombination energies in Core|well|shell based on GaN|(In,Ga)N|GaN spherical QDQW are investigated as a function of the inner and the outer radii. The temperature dependency of effective-mass, band-gap energy and potential barrier is taken into account. Particle eigenvalue and band-gap energy competing effects are speculated to explain our numerical results which show that the interband recombination energy increases when the temperature increases. The results we obtained are in quite good agreement with the findings.

  7. Temperature dependence of interband recombination energy in symmetric (In,Ga)N spherical quantum dot-quantum well

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar

    2014-01-01

    Within the framework of effective-mass approximation and finite parabolic potential barrier, single particle and ground-state interband recombination energies in Core|well|shell based on GaN|(In,Ga)N|GaN spherical QDQW are investigated as a function of the inner and the outer radii. The temperature dependency of effective-mass, band-gap energy and potential barrier is taken into account. Particle eigenvalue and band-gap energy competing effects are speculated to explain our numerical results which show that the interband recombination energy increases when the temperature increases. The results we obtained are in quite good agreement with the findings

  8. Exploring the Environment/Energy Pareto Optimal Front of an Office Room Using Computational Fluid Dynamics-Based Interactive Optimization Method

    Directory of Open Access Journals (Sweden)

    Kangji Li

    2017-02-01

    Full Text Available This paper is concerned with the development of a high-resolution and control-friendly optimization framework in enclosed environments that helps improve thermal comfort, indoor air quality (IAQ, and energy costs of heating, ventilation and air conditioning (HVAC system simultaneously. A computational fluid dynamics (CFD-based optimization method which couples algorithms implemented in Matlab with CFD simulation is proposed. The key part of this method is a data interactive mechanism which efficiently passes parameters between CFD simulations and optimization functions. A two-person office room is modeled for the numerical optimization. The multi-objective evolutionary algorithm—non-dominated-and-crowding Sorting Genetic Algorithm II (NSGA-II—is realized to explore the environment/energy Pareto front of the enclosed space. Performance analysis will demonstrate the effectiveness of the presented optimization method.

  9. An Energy Efficient Neuromorphic Computing System Using Real Time Sensing Method

    DEFF Research Database (Denmark)

    Farkhani, Hooman; Tohidi, Mohammad; Farkhani, Sadaf

    2017-01-01

    In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect leads to extra stimulation time. This leads to extra...... energy consumption and delay of such NCSs. In this paper, a new real-time sensing (RTS) circuit is proposed to track the MTJ state and terminate stimulation phase immediately after MTJ switching. This leads to significant degradation in energy consumption and delay of NCS. The simulation results using...... a 65-nm CMOS technology and a 40-nm MTJ technology confirm that the energy consumption of a RTS-based NCS is improved by 50% in comparison with a typical NCS. Moreover, utilizing RTS circuit improves the overall speed of an NCS by 2.75x....

  10. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Mathiesen, Brian Vad; Möller, Bernd

    2010-01-01

    Aalborg Municipality, Denmark, wishes to investigate the possibilities of becoming independent of fossil fuels. This article describes a scenario for supplying Aalborg Municipality’s energy needs through a combination of low-temperature geothermal heat, wind power and biomass. Of particular focus...... in the scenario is how low-temperature geothermal heat may be utilised in district heating (DH) systems. The analyses show that it is possible to cover Aalborg Municipality’s energy needs through the use of locally available sources in combination with significant electricity savings, heat savings, reductions...... in industrial fuel use and savings and fuel-substitutions in the transport sector. With biomass resources being finite, the two marginal energy resources in Aalborg are geothermal heat and wind power. If geothermal heat is utilised more, wind power may be limited and vice versa. The system still relies...

  11. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  12. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  13. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  14. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures.

    Science.gov (United States)

    Bishop, Kevin P; Roy, Pierre-Nicholas

    2018-03-14

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  15. Network computing infrastructure to share tools and data in global nuclear energy partnership

    International Nuclear Information System (INIS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    2010-01-01

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer - Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP. (author)

  16. Availability-based computer management of a cold thermal storage system

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Ferrano, F.J.

    1990-01-01

    This paper reports on work to develop an availability-based, on-line expert system to manage a thermal energy storage air-conditioning system. The management system is designed to be used by mechanical engineers in the field of air-conditioning control and maintenance. Specifically, the expert system permits the user to easily monitor the second law of thermodynamics operating efficiencies of the major components and the system as a whole in addition to the daily scheduled operating parameters of a cold thermal storage system. Through the use of computer-generated and continually updated screen display pages, the user is permitted interaction with the expert system. The knowledge-based system is developed with a commercially available expert system shell that is resident in a personal computer. In the case studied, 130 various analog and binary inputs/outputs are used. The knowledge base for the thermal energy storage expert system included nine different display pages that are continually updated, 25 rules, three tasks, and three loops

  17. A New Energy-Based Method for 3-D Finite-Element Nonlinear Flux Linkage computation of Electrical Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....

  18. Bayesian Multi-Energy Computed Tomography reconstruction approaches based on decomposition models

    International Nuclear Information System (INIS)

    Cai, Caifang

    2013-01-01

    Multi-Energy Computed Tomography (MECT) makes it possible to get multiple fractions of basis materials without segmentation. In medical application, one is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical MECT measurements are usually obtained with polychromatic X-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam poly-chromaticity fail to estimate the correct decomposition fractions and result in Beam-Hardening Artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log pre-processing and the water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on non-linear forward models counting the beam poly-chromaticity show great potential for giving accurate fraction images.This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint Maximum A Posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a non-quadratic cost function. To solve it, the use of a monotone Conjugate Gradient (CG) algorithm with suboptimal descent steps is proposed.The performances of the proposed approach are analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  19. A microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments. (orig.)

  20. Development of strategies for saving energy by temperature reduction in warm forging processes

    Science.gov (United States)

    Varela, Sonia; Santos, Maite; Vadillo, Leire; Idoyaga, Zuriñe; Valbuena, Óscar

    2016-10-01

    This paper is associated to the European policy of increasing efficiency in raw material and energy usage. This policy becomes even more important in sectors consuming high amount of resources, like hot forging industry, where material costs sums up to 50% of component price and energy ones are continuously raising. The warm forging shows a clear potential of raw material reduction (near-net-shape components) and also of energy saving (forging temperature under 1000°C). However and due to the increment of the energy costs, new solutions are required by the forging sector in order to reduce the temperature below 900°C. The reported research is based on several approaches to reduce the forging temperature applied to a flanged shaft of the automotive sector as demonstration case. The developed investigations have included several aspects: raw material, process parameters, tools and dies behavior during forging process and also metallographic evaluation of the forged parts. This paper summarizes analysis of the ductility and the admissible forces of the flanged shaft material Ck45 in as-supplied state (as-rolled) and also in two additional heat treated states. Hot compression and tensile tests using a GLEEBLE 3800C Thermo mechanical simulator have been performed pursuing this target. In the same way, a coupled numerical model based on Finite Element Method (FEM) has been developed to predict the material flow, the forging loads and the stresses on the tools at lower temperature with the new heat treatments of the raw material. In order to validate the previous development, experimental trials at 850 °C and 750 °C were carried out in a mechanical press and the results were very promising.

  1. Energy-1: a computer code for thermohydraulic analysis of a LMBFR rod bundles, in a mixed convection regime

    International Nuclear Information System (INIS)

    Braz Filho, F.A.

    1987-01-01

    A code was set up in which velocity, temperature and pressure distributions are calculated, using the porous body model, for a rod bundle where mixed convection regime plays an important role. Results show satisfactory agreement with experimental data, as well as a reduction in computational time when compared to ENERGY-III code. (author) [pt

  2. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  3. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  4. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply.......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...

  5. A Two-Tier Energy-Aware Resource Management for Virtualized Cloud Computing System

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-01-01

    Full Text Available The economic costs caused by electric power take the most significant part in total cost of data center; thus energy conservation is an important issue in cloud computing system. One well-known technique to reduce the energy consumption is the consolidation of Virtual Machines (VMs. However, it may lose some performance points on energy saving and the Quality of Service (QoS for dynamic workloads. Fortunately, Dynamic Frequency and Voltage Scaling (DVFS is an efficient technique to save energy in dynamic environment. In this paper, combined with the DVFS technology, we propose a cooperative two-tier energy-aware management method including local DVFS control and global VM deployment. The DVFS controller adjusts the frequencies of homogenous processors in each server at run-time based on the practical energy prediction. On the other hand, Global Scheduler assigns VMs onto the designate servers based on the cooperation with the local DVFS controller. The final evaluation results demonstrate the effectiveness of our two-tier method in energy saving.

  6. A combined cycle utilizing LNG and low-temperature solar energy

    International Nuclear Information System (INIS)

    Rao, Wen-Ji; Zhao, Liang-Ju; Liu, Chao; Zhang, Mo-Geng

    2013-01-01

    This paper has proposed a combined cycle, in which low-temperature solar energy and cold energy of liquefied natural gas (LNG) can be effectively utilized together. Comparative analysis based on a same net work output between the proposed combined cycle and separated solar ORC and LNG vapor system has been done. The results show that, for the combined cycle, a decrease of nearly 82.2% on the area of solar collector is obtained and the area of heat exchanger decreases by 31.7%. Moreover, exergy efficiency is higher than both two separated systems. This work has also dealt with the thermodynamic analyses for the proposed cycle. The results show that R143a followed by propane and propene emerges as most suitable fluid. Moreover, with a regenerator added in the cycle, performance improvement is obtained for the reduction on area of solar collector and increase on system efficiency and exergy efficiency. -- Highlights: • A combined cycle utilizing low-temperature solar energy and LNG together is proposed. • Five objection functions are used to decide the best working fluids. • Cycle with a regenerator has good performance

  7. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    International Nuclear Information System (INIS)

    Emin, D.

    1984-01-01

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (approx.1/N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments

  8. HMX based enhanced energy LOVA gun propellant

    Energy Technology Data Exchange (ETDEWEB)

    Sanghavi, R.R. [High Energy Materials Research Laboratory, Pune 411021 (India)]. E-mail: sanghavirr@yahoo.co.uk; Kamale, P.J. [High Energy Materials Research Laboratory, Pune 411021 (India); Shaikh, M.A.R. [High Energy Materials Research Laboratory, Pune 411021 (India); Shelar, S.D. [High Energy Materials Research Laboratory, Pune 411021 (India); Kumar, K. Sunil [High Energy Materials Research Laboratory, Pune 411021 (India); Singh, Amarjit [High Energy Materials Research Laboratory, Pune 411021 (India)

    2007-05-08

    Efforts to develop gun propellants with low vulnerability have recently been focused on enhancing the energy with a further improvement in its sensitivity characteristics. These propellants not only prevent catastrophic disasters due to unplanned initiation of currently used gun propellants (based on nitrate esters) but also realize enhanced energy levels to increase the muzzle velocity of the projectiles. Now, in order to replace nitroglycerine, which is highly sensitive to friction and impact, nitramines meet the requirements as they offer superior energy due to positive heat of formation, typical stoichiometry with higher decomposition temperatures and also owing to negative oxygen balance are less sensitive than stoichiometrically balanced NG. RDX has been widely reported for use in LOVA propellant. In this paper we have made an effort to present the work on scantily reported nitramine HMX based LOVA gun propellant while incorporating energetic plasticizer glycidyl azide polymer to enhance the energy level. HMX is known to be thermally stable at higher temperature than RDX and also proved to be less vulnerable to small scale shaped charge jet attack as its decomposition temperature is 270 deg. C. HMX also offers improved impulse due to its superior heat of formation (+17 kcal/mol) as compared to RDX (+14 kcal/mol). It has also been reported that a break point will not appear until 35,000 psi for propellant comprising of 5 {mu}m HMX. Since no work has been reported in open literature regarding replacement of RDX by HMX, the present studies were carried out.

  9. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    Directory of Open Access Journals (Sweden)

    Sonia Yassa

    2013-01-01

    Full Text Available We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  10. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    Science.gov (United States)

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  11. Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Yeom, E-mail: kimky@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang 411-712 (Korea, Republic of); Yun, Tae Sup, E-mail: taesup@yonsei.ac.kr [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Kwang Pil, E-mail: bamtol97@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang 411-712 (Korea, Republic of)

    2013-08-15

    When cement-based materials are exposed to the high temperatures induced by fire, which can rapidly cause temperatures of over 1000 °C, the changes in pore structure and density prevail. In the present study, mortar specimens were subjected to a series of increasing temperatures to explore the temperature-dependent evolution of internal pore structure. High-performance X-ray computed tomography (CT) was used to observe the evolution of temperature-induced discontinuities at the sub-millimeter level. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to investigate the cause of physical changes in the heated mortar specimens. Results exhibit the changes in pore structure caused by elevated temperatures, and thermally induced fractures. We discuss the progressive formation of thermally induced fracture networks, which is a prerequisite for spalling failure of cement-based materials by fire, based on visual observations of the 3D internal structures revealed by X-ray CT.

  12. Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography

    International Nuclear Information System (INIS)

    Kim, Kwang Yeom; Yun, Tae Sup; Park, Kwang Pil

    2013-01-01

    When cement-based materials are exposed to the high temperatures induced by fire, which can rapidly cause temperatures of over 1000 °C, the changes in pore structure and density prevail. In the present study, mortar specimens were subjected to a series of increasing temperatures to explore the temperature-dependent evolution of internal pore structure. High-performance X-ray computed tomography (CT) was used to observe the evolution of temperature-induced discontinuities at the sub-millimeter level. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to investigate the cause of physical changes in the heated mortar specimens. Results exhibit the changes in pore structure caused by elevated temperatures, and thermally induced fractures. We discuss the progressive formation of thermally induced fracture networks, which is a prerequisite for spalling failure of cement-based materials by fire, based on visual observations of the 3D internal structures revealed by X-ray CT

  13. Estimating radiative feedbacks from stochastic fluctuations in surface temperature and energy imbalance

    Science.gov (United States)

    Proistosescu, C.; Donohoe, A.; Armour, K.; Roe, G.; Stuecker, M. F.; Bitz, C. M.

    2017-12-01

    Joint observations of global surface temperature and energy imbalance provide for a unique opportunity to empirically constrain radiative feedbacks. However, the satellite record of Earth's radiative imbalance is relatively short and dominated by stochastic fluctuations. Estimates of radiative feedbacks obtained by regressing energy imbalance against surface temperature depend strongly on sampling choices and on assumptions about whether the stochastic fluctuations are primarily forced by atmospheric or oceanic variability (e.g. Murphy and Forster 2010, Dessler 2011, Spencer and Braswell 2011, Forster 2016). We develop a framework around a stochastic energy balance model that allows us to parse the different contributions of atmospheric and oceanic forcing based on their differing impacts on the covariance structure - or lagged regression - of temperature and radiative imbalance. We validate the framework in a hierarchy of general circulation models: the impact of atmospheric forcing is examined in unforced control simulations of fixed sea-surface temperature and slab ocean model versions; the impact of oceanic forcing is examined in coupled simulations with prescribed ENSO variability. With the impact of atmospheric and oceanic forcing constrained, we are able to predict the relationship between temperature and radiative imbalance in a fully coupled control simulation, finding that both forcing sources are needed to explain the structure of the lagged-regression. We further model the dependence of feedback estimates on sampling interval by considering the effects of a finite equilibration time for the atmosphere, and issues of smoothing and aliasing. Finally, we develop a method to fit the stochastic model to the short timeseries of temperature and radiative imbalance by performing a Bayesian inference based on a modified version of the spectral Whittle likelihood. We are thus able to place realistic joint uncertainty estimates on both stochastic forcing and

  14. Asymmetric energy flow in liquid alkylbenzenes: A computational study

    International Nuclear Information System (INIS)

    Leitner, David M.; Pandey, Hari Datt

    2015-01-01

    Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes

  15. Capability-based computer systems

    CERN Document Server

    Levy, Henry M

    2014-01-01

    Capability-Based Computer Systems focuses on computer programs and their capabilities. The text first elaborates capability- and object-based system concepts, including capability-based systems, object-based approach, and summary. The book then describes early descriptor architectures and explains the Burroughs B5000, Rice University Computer, and Basic Language Machine. The text also focuses on early capability architectures. Dennis and Van Horn's Supervisor; CAL-TSS System; MIT PDP-1 Timesharing System; and Chicago Magic Number Machine are discussed. The book then describes Plessey System 25

  16. A rule-based computer control system for PBX-M neutral beams

    International Nuclear Information System (INIS)

    Frank, K.T.; Kozub, T.A.; Kugel, H.W.

    1987-01-01

    The Princeton Beta Experiment (PBX) neutral beams have been routinely operated under automatic computer control. A major upgrade of the computer configuration was undertaken to coincide with the PBX machine modification. The primary tasks included in the computer control system are data acquisition, waveform reduction, automatic control and data storage. The portion of the system which will remain intact is the rule-based approach to automatic control. Increased computational and storage capability will allow the expansion of the knowledge base previously used. The hardware configuration supported by the PBX Neutral Beam (XNB) software includes a dedicated Microvax with five CAMAC crates and four process controllers. The control algorithms are rule-based and goal-driven. The automatic control system raises ion source electrical parameters to selected energy goals and maintains these levels until new goals are requested or faults are detected

  17. Temperature effects on future energy demand in Sub-Saharan Africa

    Science.gov (United States)

    Shivakumar, Abhishek

    2016-04-01

    Climate change is projected to adversely impact different parts of the world to varying extents. Preliminary studies show that Sub-Saharan Africa is particularly vulnerable to climate change impacts, including changes to precipitation levels and temperatures. This work will analyse the effect of changes in temperature on critical systems such as energy supply and demand. Factors that determine energy demand include income, population, temperature (represented by cooling and heating degree days), and household structures. With many countries in Sub-Saharan Africa projected to experience rapid growth in both income and population levels, this study aims to quantify the amplified effects of these factors - coupled with temperature changes - on energy demand. The temperature effects will be studied across a range of scenarios for each of the factors mentioned above, and identify which of the factors is likely to have the most significant impact on energy demand in Sub-Saharan Africa. Results of this study can help set priorities for decision-makers to enhance the climate resilience of critical infrastructure in Sub-Saharan Africa.

  18. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Science.gov (United States)

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  19. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-03-01

    Full Text Available Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  20. Energy Use and Power Levels in New Monitors and Personal Computers; TOPICAL

    International Nuclear Information System (INIS)

    Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay; Nordman, Bruce; Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan G.

    2002-01-01

    Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can use to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC

  1. Parallel Computing:. Some Activities in High Energy Physics

    Science.gov (United States)

    Willers, Ian

    This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.

  2. Computed tomography in severe protein energy malnutrition.

    OpenAIRE

    Househam, K C; de Villiers, J F

    1987-01-01

    Computed tomography of the brain was performed on eight children aged 1 to 4 years with severe protein energy malnutrition. Clinical features typical of kwashiorkor were present in all the children studied. Severe cerebral atrophy or brain shrinkage according to standard radiological criteria was present in every case. The findings of this study suggest considerable cerebral insult associated with severe protein energy malnutrition.

  3. Estimating Wet Bulb Globe Temperature Using Standard Meteorological Measurements

    International Nuclear Information System (INIS)

    Hunter, C.H.

    1999-01-01

    The heat stress management program at the Department of Energy''s Savannah River Site (SRS) requires implementation of protective controls on outdoor work based on observed values of wet bulb globe temperature (WBGT). To ensure continued compliance with heat stress program requirements, a computer algorithm was developed which calculates an estimate of WBGT using standard meteorological measurements. In addition, scripts were developed to generate a calculation every 15 minutes and post the results to an Intranet web site

  4. Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands

    NARCIS (Netherlands)

    Wesselink, Maxim; Liu, Wen; Koornneef, Joris; van den Broek, Machteld

    2018-01-01

    High temperature aquifer thermal energy storage (HT-ATES) can contribute to the integration of renewable energy sources in the energy system, the replacement of fossil fuel-based heat supply and the utilization of surplus heat from industrial sources. However, there is limited understanding on the

  5. Computational estimation of decline in sweating in the elderly from measured body temperatures and sweating for passive heat exposure

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Nomura, Tomoki; Laakso, Ilkka

    2012-01-01

    Several studies reported the difference in heat tolerance between younger and older adults, which may be attributable to the decline in the sweating rate. One of the studies suggested a hypothesis that the dominant factor causing the decline in sweating was the decline in thermal sensitivity due to a weaker signal from the periphery to the regulatory centres. However, no quantitative investigation of the skin temperature threshold for activating the sweating has been conducted in previous studies. In this study, we developed a computational code to simulate the time evolution of the temperature variation and sweating in realistic human models under heat exposure, in part by comparing the computational results with measured data from younger and older adults. Based on our computational results, the difference in the threshold temperatures for activating the thermophysiological response, especially for sweating, is examined between older and younger adults. The threshold for activating sweating in older individuals was found to be about 1.5 °C higher than that in younger individuals. However, our computation did not suggest that it was possible to evaluate the central alteration with ageing by comparing the computation with the measurements for passive heat exposure, since the sweating rate is marginally affected by core temperature elevation at least for the scenarios considered here. The computational technique developed herein is useful for understanding the thermophysiological response of older individuals from measured data. (note)

  6. Computer-based control of nuclear power information systems at international level

    International Nuclear Information System (INIS)

    Boniface, Ekechukwu; Okonkwo, Obi

    2011-01-01

    In most highly industrialized countries of the world information plays major role in anti-nuclear campaign. Information and discussions on nuclear power need critical and objective analysis before the structured information presentation to the public to avoid bias anti-nuclear information on one side and neglect of great risk in nuclear power. This research is developing a computer-based information system for the control of nuclear power at international level. The system is to provide easy and fast information highways for the followings: (1) Low Regulatory dose and activity limit as level of high danger for individuals and public. (2) Provision of relevant technical or scientific education among the information carriers in the nuclear power countries. The research is on fact oriented investigation about radioactivity. It also deals with fact oriented education about nuclear accidents and safety. A standard procedure for dissemination of latest findings using technical and scientific experts in nuclear technology is developed. The information highway clearly analyzes the factual information about radiation risk and nuclear energy. Radiation cannot be removed from our environment. The necessity of radiation utilizations defines nuclear energy as two-edge sword. It is therefore, possible to use computer-based information system in projecting and dissemination of expert knowledge about nuclear technology positively and also to use it in directing the public on the safety and control of the nuclear energy. The computer-based information highway for nuclear energy technology is to assist in scientific research and technological development at international level. (author)

  7. Room temperature linelists for CO2 asymmetric isotopologues with ab initio computed intensities

    Science.gov (United States)

    Zak, Emil J.; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergei A.; Perevalov, Valery I.

    2017-12-01

    The present paper reports room temperature line lists for six asymmetric isotopologues of carbon dioxide: 16O12C18O (628), 16O12C17O (627), 16O13C18O (638),16O13C17O (637), 17O12C18O (728) and 17O13C18O (738), covering the range 0-8000 cm-1. Variational rotation-vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). A theoretical procedure for quantifying sensitivity of line intensities to minor distortions of the PES/DMS renders our theoretical model as critically evaluated. Several recent high quality measurements and theoretical approaches are discussed to provide a benchmark of our results against the most accurate available data. Indeed, the thesis of transferability of accuracy among different isotopologues with the use of mass-independent PES is supported by several examples. Thereby, we conclude that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian, constructed from the latest experiments. This study completes the list of relevant isotopologues of carbon dioxide; these line lists are available to remote sensing studies and inclusion in databases.

  8. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography

    International Nuclear Information System (INIS)

    Zhang, Shiping; Shen, Guoqing; An, Liansuo; Niu, Yuguang

    2015-01-01

    Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler

  9. High-resolution temperature-based optimization for hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Kok, H P; Haaren, P M A van; Kamer, J B Van de; Wiersma, J; Dijk, J D P Van; Crezee, J

    2005-01-01

    In regional hyperthermia, optimization techniques are valuable in order to obtain amplitude/phase settings for the applicators to achieve maximal tumour heating without toxicity to normal tissue. We implemented a temperature-based optimization technique and maximized tumour temperature with constraints on normal tissue temperature to prevent hot spots. E-field distributions are the primary input for the optimization method. Due to computer limitations we are restricted to a resolution of 1 x 1 x 1 cm 3 for E-field calculations, too low for reliable treatment planning. A major problem is the fact that hot spots at low-resolution (LR) do not always correspond to hot spots at high-resolution (HR), and vice versa. Thus, HR temperature-based optimization is necessary for adequate treatment planning and satisfactory results cannot be obtained with LR strategies. To obtain HR power density (PD) distributions from LR E-field calculations, a quasi-static zooming technique has been developed earlier at the UMC Utrecht. However, quasi-static zooming does not preserve phase information and therefore it does not provide the HR E-field information required for direct HR optimization. We combined quasi-static zooming with the optimization method to obtain a millimetre resolution temperature-based optimization strategy. First we performed a LR (1 cm) optimization and used the obtained settings to calculate the HR (2 mm) PD and corresponding HR temperature distribution. Next, we performed a HR optimization using an estimation of the new HR temperature distribution based on previous calculations. This estimation is based on the assumption that the HR and LR temperature distributions, though strongly different, respond in a similar way to amplitude/phase steering. To verify the newly obtained settings, we calculate the corresponding HR temperature distribution. This method was applied to several clinical situations and found to work very well. Deviations of this estimation method for

  10. Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    OpenAIRE

    Buyya, Rajkumar; Beloglazov, Anton; Abawajy, Jemal

    2010-01-01

    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational cos...

  11. Exploitation of low-temperature energy sources from cogeneration gas engines

    International Nuclear Information System (INIS)

    Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D.

    2016-01-01

    This paper describes an original and innovative technical solution for exploiting low-temperature energy sources from cogeneration gas reciprocating engines installed within district heating systems. This solution is suitable for those systems in which the heat is generated by the use of reciprocating engines powered by gaseous fuel for combined heat and power production. This new technical solution utilizes low-temperature energy sources from a reciprocating gas engine which is used for a combined production of heat and power. During the operation of the cogeneration system low-temperature heat is released, which can be raised to as much as 85 °C with the use of a high-temperature heat-pump, thus enabling a high-temperature regime for heating commercial buildings, district heating or in industrial processes. In order to demonstrate the efficiency of utilizing low-temperature heat sources in the cogeneration system, an economic calculation is included which proves the effectiveness and rationality of integrating high-temperature heat-pumps into new or existing systems for combined heat and power production with reciprocating gas engines. - Highlights: • The use of low-temperature waste heat from the CHP is described. • Total energy efficiency of the CHP can be increased to more than 103.3%. • Low-temperature heat is exploited with high-temperature heat pump. • High-temperature heat pump allows temperature rise to up to 85 °C. • Exploitation of low-temperature waste heat increases the economics of the CHP.

  12. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  13. Aiding Design of Wave Energy Converters via Computational Simulations

    Science.gov (United States)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  14. Task Classification Based Energy-Aware Consolidation in Clouds

    Directory of Open Access Journals (Sweden)

    HeeSeok Choi

    2016-01-01

    Full Text Available We consider a cloud data center, in which the service provider supplies virtual machines (VMs on hosts or physical machines (PMs to its subscribers for computation in an on-demand fashion. For the cloud data center, we propose a task consolidation algorithm based on task classification (i.e., computation-intensive and data-intensive and resource utilization (e.g., CPU and RAM. Furthermore, we design a VM consolidation algorithm to balance task execution time and energy consumption without violating a predefined service level agreement (SLA. Unlike the existing research on VM consolidation or scheduling that applies none or single threshold schemes, we focus on a double threshold (upper and lower scheme, which is used for VM consolidation. More specifically, when a host operates with resource utilization below the lower threshold, all the VMs on the host will be scheduled to be migrated to other hosts and then the host will be powered down, while when a host operates with resource utilization above the upper threshold, a VM will be migrated to avoid using 100% of resource utilization. Based on experimental performance evaluations with real-world traces, we prove that our task classification based energy-aware consolidation algorithm (TCEA achieves a significant energy reduction without incurring predefined SLA violations.

  15. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  16. Temperature, Humidity and Energy Consumption Forecasting in the Poultry Hall Using Artificial Neural Networknetwork

    Directory of Open Access Journals (Sweden)

    N Gholamrezaei

    2017-10-01

    Full Text Available Introduction Energy consumption management is one of the most important issues in poultry halls management. Considering the situation of poultry as one of the largest and most developed industries, it is needed to control growing condition based on world standards. The neural networks as one of the intelligent methods are applied in a lot of fields such as classification, pattern recognition, prediction and modeling of processes. To detect and classify several agricultural crops, a research was conducted based on texture and color feature. The highest classification accuracy for vegetables, grains and fruits with using artificial neural network were 80%, 86% and 70%. In this research, the ability to Multilayer Perceptron (MLP Neural Network in predicting energy consumption, temperature and humidity in different coordinate placement of electronic control unit sensors in the poultry house environment was examined. Materials and Methods The experiments were conducted in a poultry unit (3000 pieces that is located in Fars province, Marvdasht city, Ramjerd town, with dimensions of 32 meters long, 7 meters wide and 2.2 meters height. To determine the appropriate placement of the sensor, 60 different points in terms of length, width and height in poultry were selected. Initially, the data was divided into two datasets. 80 percent of total data as a training set and 20 percent of total data as a test set. From180 observations, 144 data were used to train network and 36 data were used to test the process. There are several criteria for evaluating predictive models that they are mainly based according to the difference between the predicted outputs and actual outputs. To evaluate the performance of the model, two statistical indexes, mean squared error (MSE and the coefficient of determination (R² were used. Results and Discussions In this study, to train artificial neural network for predicting the temperature, humidity and energy consumption, the

  17. Energy Efficient FPGA based Hardware Accelerators for Financial Applications

    DEFF Research Database (Denmark)

    Kenn Toft, Jakob; Nannarelli, Alberto

    2014-01-01

    Field Programmable Gate Arrays (FPGAs) based accelerators are very suitable to implement application-specific processors using uncommon operations or number systems. In this work, we design FPGA-based accelerators for two financial computations with different characteristics and we compare...... the accelerator performance and energy consumption to a software execution of the application. The experimental results show that significant speed-up and energy savings, can be obtained for large data sets by using the accelerator at expenses of a longer development time....

  18. Preliminary Performance Evaluation of MEMS-based Piezoelectric Energy Harvesters in Extended Temperature Range

    DEFF Research Database (Denmark)

    Xu, R.; Borregaard, L.M.; Lei, A.

    2012-01-01

    In this work a batch of MEMS-based vibration energy harvesters consisting of a silicon/PZT thick film ntilever with integrated proof mass is characterized. The purpose of a vibration energy harvester is to convert low grade vibrations to useful electrical power. Optimally, the natural frequency...

  19. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  20. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  1. ZIVIS: A City Computing Platform Based on Volunteer Computing

    International Nuclear Information System (INIS)

    Antoli, B.; Castejon, F.; Giner, A.; Losilla, G.; Reynolds, J. M.; Rivero, A.; Sangiao, S.; Serrano, F.; Tarancon, A.; Valles, R.; Velasco, J. L.

    2007-01-01

    Abstract Volunteer computing has come up as a new form of distributed computing. Unlike other computing paradigms like Grids, which use to be based on complex architectures, volunteer computing has demonstrated a great ability to integrate dispersed, heterogeneous computing resources with ease. This article presents ZIVIS, a project which aims to deploy a city-wide computing platform in Zaragoza (Spain). ZIVIS is based on BOINC (Berkeley Open Infrastructure for Network Computing), a popular open source framework to deploy volunteer and desktop grid computing systems. A scientific code which simulates the trajectories of particles moving inside a stellarator fusion device, has been chosen as the pilot application of the project. In this paper we describe the approach followed to port the code to the BOINC framework as well as some novel techniques, based on standard Grid protocols, we have used to access the output data present in the BOINC server from a remote visualizer. (Author)

  2. An improvement of the base bleed unit on base drag reduction and heat energy addition as well as mass addition

    International Nuclear Information System (INIS)

    Xue, Xiaochun; Yu, Yonggang

    2016-01-01

    Highlights: • A 2D axisymmetric Navier-Stokes equation for a multi-component reactive system is solved. • The coupling of the internal and wake flow field with secondary combustion is calculated. • Detailed data with combined effects of boattailing and post-combustion are obtained. • The mechanism of heat energy addition and thermodynamics performances is investigated. - Abstract: Numerical simulations are carried out to investigate the base drag and energy characteristics of a base-bleed projectile with and without containing the effect of a post-combustion process for a boattailed afterbody in a supersonic flow, and then to analyze the key factor of drag reduction and pressure decreasing of base bleed projectile. Detailed chemistry models for H_2−CO combustion have been incorporated into a Navier-Stokes computer code and applied to flow field simulation in the base region of a base-bleed projectile. Detailed numerical results for the flow patterns and heat energy addition as well as mass addition for different conditions are presented and compared with existing experimental data. The results shows that, the post-combustion contributes to energy addition and base drag reduction up to 78% on account of that the heat energy released from the post-combustion using fuel-rich reaction products as the fuel in the wake region is much higher than for the corresponding cold bleed and hot bleed cases. In addition, the temperature distribution regularities are changed under post-combustion effect, presenting that the peak appears in a couple of recirculation regions. The fuel-rich bleed gas flows into the shear layer along the crack between these two recirculation regions and then those can readily burn when mixing with the freestream, thus causing component changes of H_2 and CO in the base flowfield.

  3. Agent-based modeling of the energy network for hybrid cars

    International Nuclear Information System (INIS)

    Gonzalez de Durana, José María; Barambones, Oscar; Kremers, Enrique; Varga, Liz

    2015-01-01

    Highlights: • An approach to represent and calculate multicarrier energy networks has been developed. • It provides a modeling method based on agents, for multicarrier energy networks. • It allows the system representation on a single sheet. • Energy flows circulating in the system can be observed dynamically during simulation. • The method is technology independent. - Abstract: Studies in complex energy networks devoted to the modeling of electrical power grids, were extended in previous work, where a computational multi-layered ontology, implemented using agent-based methods, was adopted. This structure is compatible with recently introduced Multiplex Networks which using Multi-linear Algebra generalize some of classical results for single-layer networks, to multilayer networks in steady state. Static results do not assist overly in understanding dynamic networks in which the values of the variables in the nodes and edges can change suddenly, driven by events, and even where new nodes or edges may appear or disappear, also because of other events. To address this gap, a computational agent-based model is developed to extend the multi-layer and multiplex approaches. In order to demonstrate the benefits of a dynamical extension, a model of the energy network in a hybrid car is presented as a case study

  4. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  5. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  6. High-ion temperature experiments with negative-ion-based NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Tsumori, K.; Ikeda, K.; Oka, Y.; Osakabe, M.; Nagaoka, K.; Goto, M.; Miyazawa, J.; Masuzaki, S.; Ashikawa, N.; Yokoyama, M.; Narihara, K.; Yamada, I.; Kubo, S.; Shimozuma, T.; Inagaki, S.; Tanaka, K.; Peterson, B.J.; Ida, K.; Kaneko, O.; Komori, A.; Murakami, S.

    2005-01-01

    High-Z plasmas have been produced with Ar- and/or Ne-gas fuelling to increase the ion temperature in the LHD plasmas heated with the high-energy negative-ion-based NBI. Although the electron heating is dominant in the high-energy NBI heating, the direct ion heating power is much enhanced effectively in low-density plasmas due to both an increase in the beam absorption (ionisation) power and a reduction of the ion density in the high-Z plasmas. Intensive Ne- and/or Ar-glow discharge cleaning works well to suppress dilution of the high-Z plasmas with the wall-absorbed hydrogen. As a result, the ion temperature increases with an increase in the ion heating power normalized by the ion density, and reaches 10 keV. An increase in the ion temperature is also observed with an addition of the centrally focused ECRH to the low-density and high-Z NBI plasma, suggesting improvement of the ion transport. The results obtained in the high-Z plasma experiments with the high-energy NBI heating indicate that an increase in the direct ion heating power and improvement of the ion transport are essential to the ion temperature rise, and that a high-ion temperature would be obtained as well in hydrogen plasmas with low-energy positive-NBI heating which is planed in near future in LHD. (author)

  7. SAGA GIS based processing of spatial high resolution temperature data

    International Nuclear Information System (INIS)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen; Zaksek, Klemen

    2013-01-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  8. Heavy quark free energies for three quark systems at finite temperature

    International Nuclear Information System (INIS)

    Huebner, Kay; Karsch, Frithjof; Kaczmarek, Olaf; Vogt, Oliver

    2008-01-01

    We study the free energy of static three quark systems in singlet, octet, decuplet, and average color channels in the quenched approximation and in 2-flavor QCD at finite temperature. We show that in the high temperature phase singlet and decuplet free energies of three quark systems are well described by the sum of the free energies of three diquark systems plus self-energy contributions of the three quarks. In the confining low temperature phase we find evidence for a Y-shaped flux tube in SU(3) pure gauge theory, which is less evident in 2-flavor QCD due to the onset of string breaking. We also compare the short distance behavior of octet and decuplet free energies to the free energies of single static quarks in the corresponding color representations.

  9. Cloud computing platform for real-time measurement and verification of energy performance

    International Nuclear Information System (INIS)

    Ke, Ming-Tsun; Yeh, Chia-Hung; Su, Cheng-Jie

    2017-01-01

    -time and long-term energy performances can be obtained. By tracking fluctuations in energy performance, real-time monitoring or correction of the operating performance of equipment or system can help to maintain good energy performance. Thus, real-time energy management can be accomplished based on the above attributes. In addition, the cloud computing platform developed in this research can improve our national M&V level. Specifically, it helps government in promoting energy efficiency programs and the development of energy service industries.

  10. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set includes both...... substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 kJ/mol. Subsequent......Predicting binding affinities for receptor-ligand complexes is still one of the challenging processes in computational structure-based ligand design. Many computational methods have been developed to achieve this goal, such as docking and scoring methods, the linear interaction energy (LIE) method...

  11. FLATT - a computer programme for calculating flow and temperature transients in nuclear fuels

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Koranne, S.M.

    1976-01-01

    FLATT is a computer code written in Fortran language for BESM-6 computer. The code calculates the flow transients in the coolant circuit of a nuclear reactor, caused by pump failure, and the consequent temperature transients in the fuel, clad, and the coolant. In addition any desired flow transient can be fed into the programme and the resulting temperature transients can be calculated. A case study is also presented. (author)

  12. Energy and Heat Fluctuations in a Temperature Quench

    Energy Technology Data Exchange (ETDEWEB)

    Zannetti, M.; Corberi, F. [Dipartimento di Fisica “E. Caianiello”, and CNISM, Unità di Salerno, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Italy); Gonnella, G. [Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Piscitelli, A., E-mail: mrc.zannetti@gmail.com, E-mail: corberi@sa.infn.it, E-mail: gonnella@ba.infn.it, E-mail: antps@hotmial.it [Division of Physical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 (Singapore)

    2014-10-15

    Fluctuations of energy and heat are investigated during the relaxation following the instantaneous temperature quench of an extended system. Results are obtained analytically for the Gaussian model and for the large N model quenched below the critical temperature T{sub c}. The main finding is that fluctuations exceeding a critical threshold do condense. Though driven by a mechanism similar to that of Bose—Einstein condensation, this phenomenon is an out-of-equilibrium feature produced by the breaking of energy equipartition occurring in the transient regime. The dynamical nature of the transition is illustrated by phase diagrams extending in the time direction. (general)

  13. Energy- and cost-efficient lattice-QCD computations using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Matthias

    2014-07-01

    Quarks and gluons are the building blocks of all hadronic matter, like protons and neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a theory under test by large scale experiments like the Large Hadron Collider (LHC) at CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI. However, perturbative methods can only be applied to QCD for high energies. Studies from first principles are possible via a discretization onto an Euclidean space-time grid. This discretization of QCD is called Lattice QCD (LQCD) and is the only ab-initio option outside of the high-energy regime. LQCD is extremely compute and memory intensive. In particular, it is by definition always bandwidth limited. Thus - despite the complexity of LQCD applications - it led to the development of several specialized compute platforms and influenced the development of others. However, in recent years General-Purpose computation on Graphics Processing Units (GPGPU) came up as a new means for parallel computing. Contrary to machines traditionally used for LQCD, graphics processing units (GPUs) are a massmarket product. This promises advantages in both the pace at which higher-performing hardware becomes available and its price. CL2QCD is an OpenCL based implementation of LQCD using Wilson fermions that was developed within this thesis. It operates on GPUs by all major vendors as well as on central processing units (CPUs). On the AMD Radeon HD 7970 it provides the fastest double-precision D kernel for a single GPU, achieving 120GFLOPS. D - the most compute intensive kernel in LQCD simulations - is commonly used to compare LQCD platforms. This performance is enabled by an in-depth analysis of optimization techniques for bandwidth-limited codes on GPUs. Further, analysis of the communication between GPU and CPU, as well as between multiple GPUs, enables high-performance Krylov space solvers and linear scaling to multiple GPUs within a single system. LQCD

  14. Energy- and cost-efficient lattice-QCD computations using graphics processing units

    International Nuclear Information System (INIS)

    Bach, Matthias

    2014-01-01

    Quarks and gluons are the building blocks of all hadronic matter, like protons and neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a theory under test by large scale experiments like the Large Hadron Collider (LHC) at CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI. However, perturbative methods can only be applied to QCD for high energies. Studies from first principles are possible via a discretization onto an Euclidean space-time grid. This discretization of QCD is called Lattice QCD (LQCD) and is the only ab-initio option outside of the high-energy regime. LQCD is extremely compute and memory intensive. In particular, it is by definition always bandwidth limited. Thus - despite the complexity of LQCD applications - it led to the development of several specialized compute platforms and influenced the development of others. However, in recent years General-Purpose computation on Graphics Processing Units (GPGPU) came up as a new means for parallel computing. Contrary to machines traditionally used for LQCD, graphics processing units (GPUs) are a massmarket product. This promises advantages in both the pace at which higher-performing hardware becomes available and its price. CL2QCD is an OpenCL based implementation of LQCD using Wilson fermions that was developed within this thesis. It operates on GPUs by all major vendors as well as on central processing units (CPUs). On the AMD Radeon HD 7970 it provides the fastest double-precision D kernel for a single GPU, achieving 120GFLOPS. D - the most compute intensive kernel in LQCD simulations - is commonly used to compare LQCD platforms. This performance is enabled by an in-depth analysis of optimization techniques for bandwidth-limited codes on GPUs. Further, analysis of the communication between GPU and CPU, as well as between multiple GPUs, enables high-performance Krylov space solvers and linear scaling to multiple GPUs within a single system. LQCD

  15. Clean Energy Use for Cloud Computing Federation Workloads

    Directory of Open Access Journals (Sweden)

    Yahav Biran

    2017-08-01

    Full Text Available Cloud providers seek to maximize their market share. Traditionally, they deploy datacenters with sufficient capacity to accommodate their entire computing demand while maintaining geographical affinity to its customers. Achieving these goals by a single cloud provider is increasingly unrealistic from a cost of ownership perspective. Moreover, the carbon emissions from underutilized datacenters place an increasing demand on electricity and is a growing factor in the cost of cloud provider datacenters. Cloud-based systems may be classified into two categories: serving systems and analytical systems. We studied two primary workload types, on-demand video streaming as a serving system and MapReduce jobs as an analytical systems and suggested two unique energy mix usage for processing that workloads. The recognition that on-demand video streaming now constitutes the bulk portion of traffic to Internet consumers provides a path to mitigate rising energy demand. On-demand video is usually served through Content Delivery Networks (CDN, often scheduled in backend and edge datacenters. This publication describes a CDN deployment solution that utilizes green energy to supply on-demand streaming workload. A cross-cloud provider collaboration will allow cloud providers to both operate near their customers and reduce operational costs, primarily by lowering the datacenter deployments per provider ratio. Our approach optimizes cross-datacenters deployment. Specifically, we model an optimized CDN-edge instance allocation system that maximizes, under a set of realistic constraints, green energy utilization. The architecture of this cross-cloud coordinator service is based on Ubernetes, an open source container cluster manager that is a federation of Kubernetes clusters. It is shown how, under reasonable constraints, it can reduce the projected datacenter’s carbon emissions growth by 22% from the currently reported consumption. We also suggest operating

  16. Groebner bases for finite-temperature quantum computing and their complexity

    International Nuclear Information System (INIS)

    Crompton, P. R.

    2011-01-01

    Following the recent approach of using order domains to construct Groebner bases from general projective varieties, we examine the parity and time-reversal arguments relating to the Wightman axioms of quantum field theory and propose that the definition of associativity in these axioms should be introduced a posteriori to the cluster property in order to generalize the anyon conjecture for quantum computing to indefinite metrics. We then show that this modification, which we define via ideal quotients, does not admit a faithful representation of the Braid group, because the generalized twisted inner automorphisms that we use to reintroduce associativity are only parity invariant for the prime spectra of the exterior algebra. We then use a coordinate prescription for the quantum deformations of toric varieties to show how a faithful representation of the Braid group can be reconstructed and argue that for a degree reverse lexicographic (monomial) ordered Groebner basis, the complexity class of this problem is bounded quantum polynomial.

  17. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  18. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  19. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  20. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  1. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tang, Yihuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, and their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.

  2. Computer technology: its potential for industrial energy conservation. A technology applications manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Today, computer technology is within the reach of practically any industrial corporation regardless of product size. This manual highlights a few of the many applications of computers in the process industry and provides the technical reader with a basic understanding of computer technology, terminology, and the interactions among the various elements of a process computer system. The manual has been organized to separate process applications and economics from computer technology. Chapter 1 introduces the present status of process computer technology and describes the four major applications - monitoring, analysis, control, and optimization. The basic components of a process computer system also are defined. Energy-saving applications in the four major categories defined in Chapter 1 are discussed in Chapter 2. The economics of process computer systems is the topic of Chapter 3, where the historical trend of process computer system costs is presented. Evaluating a process for the possible implementation of a computer system requires a basic understanding of computer technology as well as familiarity with the potential applications; Chapter 4 provides enough technical information for an evaluation. Computer and associated peripheral costs and the logical sequence of steps in the development of a microprocessor-based process control system are covered in Chapter 5.

  3. Advanced computer-based training

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H D; Martin, H D

    1987-05-01

    The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment.

  4. Advanced computer-based training

    International Nuclear Information System (INIS)

    Fischer, H.D.; Martin, H.D.

    1987-01-01

    The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment. (orig.) [de

  5. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu [Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California 95817 (United States); Kent, Michael S.; Wisner, Erik R. [Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California 95616 (United States); Johnson, Lynelle R.; Stern, Joshua A. [Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California 95616 (United States); Qi, Lihong [Department of Public Health Sciences, University of California Davis, Davis, California 95616 (United States); Fujita, Yukio [Department of Radiation Oncology, Tokai University, Isehara, Kanagawa 259-1193 (Japan); Boone, John M. [Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817 (United States)

    2016-07-15

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t

  6. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model.

    Science.gov (United States)

    Yamamoto, Tokihiro; Kent, Michael S; Wisner, Erik R; Johnson, Lynelle R; Stern, Joshua A; Qi, Lihong; Fujita, Yukio; Boone, John M

    2016-07-01

    Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t-test. The mean TRE

  7. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    International Nuclear Information System (INIS)

    Yamamoto, Tokihiro; Kent, Michael S.; Wisner, Erik R.; Johnson, Lynelle R.; Stern, Joshua A.; Qi, Lihong; Fujita, Yukio; Boone, John M.

    2016-01-01

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t

  8. Computations of finite temperature QCD with the pseudofermion method

    International Nuclear Information System (INIS)

    Fucito, F.; Solomon, S.

    1985-01-01

    The authors discuss the phase diagram of finite temperature QCD as it is obtained including the effects of dynamical quarks by the pseudofermion method. They compare their results with the results obtained by other groups and comment on the actual state of the art for these kind of computations

  9. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Anderson, M.C.; Kustas, W.P.

    2013-01-01

    The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time-differential temperature...... agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the Danish Hydrological ObsErvatory (HOBE) in western Denmark, indicating realistic patterns based on land use....

  10. Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2017-06-01

    Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.

  11. Analysis of a computational benchmark for a high-temperature reactor using SCALE

    International Nuclear Information System (INIS)

    Goluoglu, S.

    2006-01-01

    Several proposed advanced reactor concepts require methods to address effects of double heterogeneity. In doubly heterogeneous systems, heterogeneous fuel particles in a moderator matrix form the fuel region of the fuel element and thus constitute the first level of heterogeneity. Fuel elements themselves are also heterogeneous with fuel and moderator or reflector regions, forming the second level of heterogeneity. The fuel elements may also form regular or irregular lattices. A five-phase computational benchmark for a high-temperature reactor (HTR) fuelled with uranium or reactor-grade plutonium has been defined by the Organization for Economic Cooperation and Development, Nuclear Energy Agency (OECD NEA), Nuclear Science Committee, Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles. This paper summarizes the analysis results using the latest SCALE code system (to be released in CY 2006 as SCALE 5.1). (authors)

  12. Temperature dependence of energy-transducing functions and inhibitor sensitivity in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Schuurmans, J.J.; Veerman, E.C.I.; Francke, J.A.; Torres-Pereira, J.M.G.; Kraayenhof, R.

    1984-01-01

    A comparative analysis of the temperature dependence of energy-transducing reactions in spinach (Spinacia oleracea) chloroplasts and their sensitivity for uncouplers and energy-transfer inhibitors at different temperatures is presented. Arrhenius plots reveal two groups of transitions, around 19/sup 0/C and around 12/sup 0/C. Activities that show transitions around 19/sup 0/C include linear electron flow from water to ferricyanide, its coupled photophosphorylation, the dark-release of the fluorescent probe atebrin, and the slow component of the 515 nm (carotenoid) absorbance decay after a flash. The transitions around 12/sup 0/C are observed with pyocyanine-mediated cyclic photophosphorylation, light- and dithioerythritol-activated ATP hydrolysis, the dark-release of protons, and the fast 515 nm decay component. It is suggested that both groups of temperature transitions are determined by proton displacements in different domains of the exposed thylakoid membranes. The effects of various uncouplers and an energy-transfer inhibitor are temperature dependent. Some uncouplers also show a different relative inhibition of proton uptake and ATP synthesis at lower temperatures. The efficiency of energy transduction (ATP/e/sub 3/) varied with temperature and was optimal around 10/sup 0/C.

  13. Computer supervision of the core outlet sodium temperatures of FBTR

    International Nuclear Information System (INIS)

    Boopathy, C.

    1976-01-01

    Safety monitoring of the fast breeder test reactor at Kalpakkam (India) is achieved by a CDPS-on-line dual computer system which is dedicated to plant supervision. The on-line subsystem scans and supervises all the 170 core thermocouple signals every second. Organisation of the reactor core instruments, supervision of mean sodium outlet temperature and mean temperature drop across the core, detection of plugging of a fuel assembly are explained. (A.K.)

  14. Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Dale, Michael; Barnhart, Charles J.

    2013-01-01

    In this paper we expand the work of Brandt and Dale (2011) on ERRs (energy return ratios) such as EROI (energy return on investment). This paper describes a “bottom-up” mathematical formulation which uses matrix-based computations adapted from the LCA (life cycle assessment) literature. The framework allows multiple energy pathways and flexible inclusion of non-energy sectors. This framework is then used to define a variety of ERRs that measure the amount of energy supplied by an energy extraction and processing pathway compared to the amount of energy consumed in producing the energy. ERRs that were previously defined in the literature are cast in our framework for calculation and comparison. For illustration, our framework is applied to include oil production and processing and generation of electricity from PV (photovoltaic) systems. Results show that ERR values will decline as system boundaries expand to include more processes. NERs (net energy return ratios) tend to be lower than GERs (gross energy return ratios). External energy return ratios (such as net external energy return, or NEER (net external energy ratio)) tend to be higher than their equivalent total energy return ratios. - Highlights: • An improved bottom-up mathematical method for computing net energy return metrics is developed. • Our methodology allows arbitrary numbers of interacting processes acting as an energy system. • Our methodology allows much more specific and rigorous definition of energy return ratios such as EROI or NER

  15. Algal-Based Renewable Energy for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fritsen, Christian [Desert Research Institute, Las Vegas, NV (United States)

    2017-03-31

    To help in the overall evaluation of the potential for growing algal biomass in high productivity systems, we conducted a study that evaluated water from geothermal sources and cultivated mixed consortia from hot springs in Nevada, we evaluated their growth at moderately high varying temperatures and then evaluated potential manipulations that could possibly increase their biomass and oleaginous production. Studies were conducted at scales ranging from the laboratory benchtop to raceways in field settings. Mixed consortia were readily grown at all scales and growth could be maintained in Nevada year round. Moderate productivities were attained even during the shoulder seasons- where temperature control was maintained by hot water and seasonally cold temperatures when there was still plentiful solar radiation. The results enhance the prospects for economic feasibility of developing algal based industries in areas with geothermal energy or even other large alternative sources of heat that are not being used for other purposes. The public may benefit from such development as a means for economic development as well as development of industries for alternative energy and products that do not rely on fossil fuels.

  16. HEPLIB '91: International users meeting on the support and environments of high energy physics computing

    International Nuclear Information System (INIS)

    Johnstad, H.

    1991-01-01

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, data base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards

  17. Quark self-energy beyond the mean field at finite temperature

    International Nuclear Information System (INIS)

    Zhuang, P.

    1995-01-01

    The Nambu--Jona-Lasinio model, an effective low-energy model of QCD, is extended to the next to the leading order in the 1/N c expansion at finite temperature and density. The contributions to the quark self-energy and the constituent quark mass from the meson dressing are considered in a perturbative approach about the mean field. In particular, the temperature dependence of the quark mass is shown numerically at zero chemical potential. The correction to the quark mass from the meson dressing amounts to 20% compared to the result of the leading order at low temperature, and rapidly approaches zero at high temperature

  18. Energy Efficiency in Computing (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    We will start the second day of our energy efficient computing series with a brief discussion of software and the impact it has on energy consumption. A second major point of this lecture will be the current state of research and a few future technologies, ranging from mainstream (e.g. the Internet of Things) to exotic. Lecturer's short bio: Andrzej Nowak has 10 years of experience in computing technologies, primarily from CERN openlab and Intel. At CERN, he managed a research lab collaborating with Intel and was part of the openlab Chief Technology Office. Andrzej also worked closely and initiated projects with the private sector (e.g. HP and Google), as well as international research institutes, such as EPFL. Currently, Andrzej acts as a consultant on technology and innovation with TIK Services (http://tik.services), and runs a peer-to-peer lending start-up. NB! All Academic Lectures are recorded. No webcast! Because of a problem of the recording equipment, this lecture will be repeated for recording pu...

  19. Integration of body temperature into the analysis of energy expenditure in the mouse.

    Science.gov (United States)

    Abreu-Vieira, Gustavo; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L

    2015-06-01

    We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. The effect of environmental temperature (4-33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3 (-/y) , lipodystrophic) was measured using continuous monitoring. Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts of energy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-induced thermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matched that calculated from the energy expenditure using Fourier's law of heat conduction. Mice defended a higher body temperature during physical activity. The cost of the warmer body temperature during the active phase is 4-16% of total daily energy expenditure. Parameters measured in diet-induced obese and Brs3 (-/y) mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in mice is via physiological mechanisms. At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  20. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    OpenAIRE

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type t...

  1. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown

  2. Efficient Scheduling of Scientific Workflows with Energy Reduction Using Novel Discrete Particle Swarm Optimization and Dynamic Voltage Scaling for Computational Grids

    Directory of Open Access Journals (Sweden)

    M. Christobel

    2015-01-01

    Full Text Available One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO algorithm based on the particle’s best position (pbDPSO and global best position (gbDPSO is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF and First Come First Serve (FCFS algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER and Dynamic Voltage Scaling (DVS were used in the proposed DPSO algorithm.

  3. Efficient Scheduling of Scientific Workflows with Energy Reduction Using Novel Discrete Particle Swarm Optimization and Dynamic Voltage Scaling for Computational Grids

    Science.gov (United States)

    Christobel, M.; Tamil Selvi, S.; Benedict, Shajulin

    2015-01-01

    One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO) algorithm based on the particle's best position (pbDPSO) and global best position (gbDPSO) is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF) and First Come First Serve (FCFS) algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER) and Dynamic Voltage Scaling (DVS) were used in the proposed DPSO algorithm. PMID:26075296

  4. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Patrick [Oregon State Univ., Corvallis, OR (United States)

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  5. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  6. Thermodynamics of the living organisms. Allometric relationship between the total metabolic energy, chemical energy and body temperature in mammals

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    The study present relationship between the total metabolic energy (ETME(c), J) derived as a function of body chemical energy (Gchem, J) and absolute temperature (Tb, K) in mammals: ETME(c) =Gchem (Tb/Tn). In formula the temperature Tn =2.73K appears normalization temperature. The calculated total metabolic energy ETME(c) differs negligible from the total metabolic energy ETME(J), received as a product between the basal metabolic rate (Pm, J/s) and the lifespan (Tls, s) of mammals: ETME = Pm×Tls. The physical nature and biological mean of the normalization temperature (Tn, K) is unclear. It is made the hypothesis that the kTn energy (where k= 1.3806×10-23 J/K -Boltzmann constant) presents energy of excitation states (modes) in biomolecules and body structures that could be in equilibrium with chemical energy accumulated in body. This means that the accumulated chemical energy allows trough all body molecules and structures to propagate excitations states with kTn energy with wavelength in the rage of width of biological membranes. The accumulated in biomolecules chemical energy maintains spread of the excited states through biomolecules without loss of energy.

  7. A computational study of inviscid hypersonic flows using energy relaxation method

    International Nuclear Information System (INIS)

    Nagdewe, Suryakant; Kim, H. D.; Shevare, G. R.

    2008-01-01

    Reasonable analysis of hypersonic flows requires a thermodynamic non-equilibrium model to properly simulate strong shock waves or high pressure and temperature states in the flow field. The energy relaxation method (ERM) has been used to model such a non-equilibrium effect which is generally expressed as a hyperbolic system of equations with a stiff relaxation source term. Relaxation time that is multiplied with source terms is responsible for nonequilibrium in the system. In the present study, a numerical analysis has been carried out with varying values of relaxation time for several hypersonic flows with AUSM (advection upstream splitting method) as a numerical scheme. Vibration modes of thermodynamic nonequilibrium effects are considered. The results obtained showed that, as the relaxation time reduces to zero, the solution marches toward equilibrium, while it shows non-equilibrium effects, as the relaxation time increases. The present computations predicted the experiment results of hypersonic flows with good accuracy. The work carried out suggests that the present energy relaxation method can be robust for analysis of hypersonic flows

  8. Realization of the Energy Saving of the Environmental Examination Device Temperature Control System in Consideration of Temperature Characteristics

    Science.gov (United States)

    Onogaki, Hitoshi; Yokoyama, Shuichi

    The temperature control of the environmental examination device has loss of the energy consumption to cool it while warming it. This paper proposed a tempareture control system method with energy saving for the enviromental examination device without using cooling in consideration of temperature characteristics.

  9. Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes

    International Nuclear Information System (INIS)

    Hebert, Alain; Coste, Mireille

    2002-01-01

    As part of the self-shielding model used in the APOLLO2 lattice code, probability tables are required to compute self-shielded cross sections for coarse energy groups (typically with 99 or 172 groups). This paper describes the replacement of the multiband tables (typically with 51 subgroups) with moment-based tables in release 2.5 of APOLLO2. An improved Ribon method is proposed to compute moment-based probability tables, allowing important savings in CPU resources while maintaining the accuracy of the self-shielding algorithm. Finally, a validation is presented where the absorption rates obtained with each of these techniques are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to the Rowland's benchmark and to three assembly production cases, are also presented

  10. Ground temperature estimation through an energy balance method

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X. [Manitoba Univ., Winnipeg, MB (Canada); Naterer, G.F. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada)

    2007-07-01

    A joint research project by the University of Manitoba and the University of Ontario Institute of Technology (UOIT) is currently examining ground thermal responses to heat conduction within power transmission line towers. The aim of the study is to develop thermal protection alternatives for the freezing and thawing conditions that typically lead to the tilting and heaving of tower foundations. The analysis presented in this paper focused on the temperatures of areas undisturbed by tower foundations. The ground was approximated as a semi-infinite homogenous system with a sinusoidal variation of ground temperature and constant thermophysical properties. Solar radiation and air temperature data were used to develop the sinusoidal profiles. The far-field temperature was modeled using a 1-D transient heat conduction equation. Geothermal gradients were neglected. The energy balance method was used for boundary conditions at the ground surface. Energy components included heat conduction through the ground; heat convection due to wind; net radiative heat transfer; and latent heat transfer due to evaporation. Newton's law of cooling was used to model the convective heat transfer. The model was used to predict ground temperature under varying conditions. Monthly variations of temperature at 2 meters depth were calculated using different evaporation fractions. The model was also used to estimate summer ground temperature at a site in Manitoba. Air temperature, wind velocity and solar radiation data were used. It was suggested that further research is needed to consider the effects of freezing, thawing, and winter snow cover. 2 refs., 1 tab., 2 figs.

  11. Tunable nanoelectromechanical resonator for logic computations

    KAUST Repository

    Kazmi, Syed N R; Hafiz, Md Abdullah Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been remarkable interest in nanomechanical computing elements that can potentially lead to a new era in computation due to their re-configurability, high integration density, and high switching speed. Here we present a nanomechanical device capable of dynamically performing logic operations (NOR, NOT, XNOR, XOR, and AND). The concept is based on the active tuning of the resonance frequency of a doubly-clamped nanoelectromechanical beam resonator through electro-thermal actuation. The performance of this re-configurable logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations. The proposed device can potentially achieve switching rate in μs, switching energy in nJ, and an integration density up to 10 per cm. The practical realization of this re-configurable device paves the way for nano-element-based mechanical computing.

  12. Tunable nanoelectromechanical resonator for logic computations

    KAUST Repository

    Kazmi, Syed N R

    2017-02-14

    There has been remarkable interest in nanomechanical computing elements that can potentially lead to a new era in computation due to their re-configurability, high integration density, and high switching speed. Here we present a nanomechanical device capable of dynamically performing logic operations (NOR, NOT, XNOR, XOR, and AND). The concept is based on the active tuning of the resonance frequency of a doubly-clamped nanoelectromechanical beam resonator through electro-thermal actuation. The performance of this re-configurable logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations. The proposed device can potentially achieve switching rate in μs, switching energy in nJ, and an integration density up to 10 per cm. The practical realization of this re-configurable device paves the way for nano-element-based mechanical computing.

  13. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    Science.gov (United States)

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  14. Interplay between geometry and temperature in the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Alexej

    2010-06-23

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  15. Interplay between geometry and temperature in the Casimir effect

    International Nuclear Information System (INIS)

    Weber, Alexej

    2010-01-01

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  16. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  17. Many-core computing for space-based stereoscopic imaging

    Science.gov (United States)

    McCall, Paul; Torres, Gildo; LeGrand, Keith; Adjouadi, Malek; Liu, Chen; Darling, Jacob; Pernicka, Henry

    The potential benefits of using parallel computing in real-time visual-based satellite proximity operations missions are investigated. Improvements in performance and relative navigation solutions over single thread systems can be achieved through multi- and many-core computing. Stochastic relative orbit determination methods benefit from the higher measurement frequencies, allowing them to more accurately determine the associated statistical properties of the relative orbital elements. More accurate orbit determination can lead to reduced fuel consumption and extended mission capabilities and duration. Inherent to the process of stereoscopic image processing is the difficulty of loading, managing, parsing, and evaluating large amounts of data efficiently, which may result in delays or highly time consuming processes for single (or few) processor systems or platforms. In this research we utilize the Single-Chip Cloud Computer (SCC), a fully programmable 48-core experimental processor, created by Intel Labs as a platform for many-core software research, provided with a high-speed on-chip network for sharing information along with advanced power management technologies and support for message-passing. The results from utilizing the SCC platform for the stereoscopic image processing application are presented in the form of Performance, Power, Energy, and Energy-Delay-Product (EDP) metrics. Also, a comparison between the SCC results and those obtained from executing the same application on a commercial PC are presented, showing the potential benefits of utilizing the SCC in particular, and any many-core platforms in general for real-time processing of visual-based satellite proximity operations missions.

  18. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2015-01-01

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  19. High-Temperature Thermal Energy Storage for electrification and district heating

    DEFF Research Database (Denmark)

    Pedersen, A. Schrøder; Engelbrecht, K.; Soprani, S.

    stability upon thermal cycling. The most promising material consists of basalt, diabase, and magnetite, whereas the less suited rocks contain larger proportions of quartz and mica. An HT-TES system, containing 1.5 m3 of rock pieces, was constructed. The rock bed was heated to 600 ˚C using an electric heater......The present work describes development of a High Temperature Thermal Energy Storage (HT-TES) system based on rock bed technology. A selection of rocks was investigated by thermal analysis in the range 20-800 ˚C. Subsequently, a shortlist was defined primarily based on mechanical and chemical...... to simulate thermal charging from wind energy. After complete heating of the rock bed it was left fully charged for hours to simulate actual storage conditions. Subsequently the bed discharging was performed by leading cold air through the rock bed whereby the air was heated and led to an exhaust. The results...

  20. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  1. Computer-based multi-channel analyzer based on internet

    International Nuclear Information System (INIS)

    Zhou Xinzhi; Ning Jiaoxian

    2001-01-01

    Combined the technology of Internet with computer-based multi-channel analyzer, a new kind of computer-based multi-channel analyzer system which is based on browser is presented. Its framework and principle as well as its implementation are discussed

  2. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  3. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  4. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  5. The interaction of C60 on Si(111 7x7 studied by Supersonic Molecular Beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes.

    Directory of Open Access Journals (Sweden)

    Lucrezia eAversa

    2015-06-01

    Full Text Available Buckminsterfullerene (C60 is a molecule fully formed of carbon that can be used, owing to its electronic and mechanical properties, as clean precursor for the growth of carbon-based materials, ranging from -conjugated systems (graphenes to synthesized species, e.g. carbides such as silicon carbide (SiC. To this goal, C60 cage rupture is the main physical process that triggers material growth. Cage breaking can be obtained either thermally by heating up the substrate to high temperatures (630°C, after C60 physisorption, or kinetically by using Supersonic Molecular Beam Epitaxy (SuMBE techniques. In this work, aiming at demonstrating the growth of SiC thin films by C60 supersonic beams, we present the experimental investigation of C60 impacts on Si(111 7x7 kept at 500°C for translational kinetic energies ranging from 18 to 30 eV. The attained kinetically activated synthesis of SiC submonolayer films is probed by in-situ surface electron spectroscopies (XPS and UPS. Furthermore, in these experimental conditions the C60-Si(111 7×7 collision has been studied by computer simulations based on a tight-binding approximation to Density Functional Theory, DFT. Our theoretical and experimental findings point towards a kinetically driven growth of SiC on Si, where C60 precursor kinetic energy plays a crucial role, while temperature is relevant only after cage rupture to enhance Si and carbon reactivity. In particular, we observe a counterintuitive effect in which for low kinetic energy (below 22 eV, C60 bounces back without breaking more effectively at high temperature due to energy transfer from excited phonons. At higher kinetic energy (22 < K < 30 eV, for which cage rupture occurs, temperature enhances reactivity without playing a major role in the cage break. These results are in good agreement with ab-initio molecular dynamics simulations. SuMBE is thus a technique able to drive materials growth at low temperature regime.

  6. State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)

    2015-07-15

    In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.

  7. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Processes of energy recovery / energy valorization at low temperature levels. State of the art. Extended abstract

    International Nuclear Information System (INIS)

    Manificat, A.; Megret, O.

    2012-09-01

    This study aims to realize a state of art of the processes of energy recovery at low level of temperature and their valorizations. The information provided will target particularly the thermal systems of waste and biomass treatment. After reminding the adequate context of development with these solutions and define the scope of the current work, the study begins with the definition of different concepts such as low-grade heat (fatal energy) and exergy, and also the presentation of the fiscal environment as well as the economic and regulatory situation, with information about the TGAP, prices of energy and energy efficiency. The second chapter focuses on the different sources of energy at low temperature level that can be recoverable in order to assess their potentials and their characteristics. The Determination of the temperature range of these energy sources will be put in relation with the needs and demands of users from different industrial sectors. The third part of the study is a review of various technologies for energy recovery and valorization at low temperature. It is useful to distinguish different types of heat exchangers interesting to implement. Moreover, innovative processes allow us to consider new perspectives other than a direct use of heat recovered. For example, we can take into account systems for producing electricity (ORC cycle, hot air engines, thermoelectric conversion), or cold generation (sorption refrigeration machine, Thermo-ejector refrigeration machine) or techniques for energy storage with PCM (Phase Change Material). The last chapter deals to the achievement of four study cases written in the form of sheet and aimed at assess the applicability of the processes previously considered, concerning the field of waste. (authors)

  9. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Jacopo Biasetti

    2017-10-01

    Full Text Available Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid–solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  10. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study.

    Science.gov (United States)

    Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio

    2017-01-01

    Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  11. Programmed temperature control of capsule in irradiation test with personal computer at JMTR

    International Nuclear Information System (INIS)

    Saito, H.; Uramoto, T.; Fukushima, M.; Obata, M.; Suzuki, S.; Nakazaki, C.; Tanaka, I.

    1992-01-01

    The capsule irradiation facility is one of various equipments employed at the Japan Materials Testing Reactor (JMTR). The capsule facility has been used in irradiation tests of both nuclear fuels and materials. The capsule to be irradiated consists of the specimen, the outer tube and inner tube with a annular space between them. The temperature of the specimen is controlled by varying the degree of pressure (below the atmospheric pressure) of He gas in the annular space (vacuum-controlled). Beside this, in another system the temperature of the specimen is controlled with electric heaters mounted around the specimen (heater-controlled). The use of personal computer in the capsule facility has led to the development of a versatile temperature control system at the JMTR. Features of this newly-developed temperature control system lie in the following: the temperature control mode for a operation period can be preset prior to the operation; and the vacuum-controlled irradiation facility can be used in cooperation with the heater-controlled. The introduction of personal computer has brought in automatic heat-up and cool-down operations of the capsule, setting aside the hand-operated jobs which had been conducted by the operators. As a result of this, the various requirements seeking a higher accuracy and efficiency in the irradiation can be met by fully exploiting the capabilities incorporated into the facility which allow the cyclic or delicate changes in the temperature. This paper deals with a capsule temperature control system with personal computer. (author)

  12. The calculation of surface free energy based on embedded atom method for solid nickel

    International Nuclear Information System (INIS)

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  13. Computational methods for high-energy source shielding

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.

    1983-01-01

    The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given

  14. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  15. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  16. Experimental high energy physics and modern computer architectures

    International Nuclear Information System (INIS)

    Hoek, J.

    1988-06-01

    The paper examines how experimental High Energy Physics can use modern computer architectures efficiently. In this connection parallel and vector architectures are investigated, and the types available at the moment for general use are discussed. A separate section briefly describes some architectures that are either a combination of both, or exemplify other architectures. In an appendix some directions in which computing seems to be developing in the USA are mentioned. (author)

  17. Thermoelectric energy harvesting from small ambient temperature transients

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Andre

    2012-07-01

    Wireless sensor networks (WSNs) represent a key technology, used, for instance, in structural health monitoring, building automation systems, or traffic surveillance. Supplying power to a network of spatially distributed sensor nodes, especially at remote locations, is a large challenge: power grids are reliable but costly to install, whereas batteries provide a high flexibility in the installation but have a limited lifetime. This dilemma can be overcome by micro energy harvesting which offers both: reliability and flexibility. Micro energy harvesters are able to convert low grade ambient energy into useful electrical energy and thus provide power for wireless sensor networks or other electronic devices - in-situ, off-grid, and with an almost unlimited lifetime. Thermal energy is an omnipresent source of ambient energy: The day-night-cycle of the sun causes a temperature variation in the ambient air as well as arbitrary solids (soil, building walls, etc.). Unlike the air, solids have a large thermal inertia which dampens the temperature variation. This physical process leads to a temperature difference {Delta}T = T{sub air} - T{sub solid} between air and solid that can be converted directly into electrical energy by a thermoelectric generator (TEG). Thermal and electrical interfaces are necessary to connect the TEG to the thermal energy source (T{sub air}, T{sub solid}) and the electrical load (WSN). Reliable operation of the WSN may only be ensured if the harvester provides sufficient electrical energy, i.e. operates at its maximum power point. The goal of this thesis is to study, design, and test thermoelectric harvesters generating electrical energy from small ambient temperature transients in order to self-sufficiently power a WSN. Current research into thermoelectric energy harvesting, especially analytical modeling and application in the field are treated insufficiently. Therefore, a time-dependent analytical model of the harvester's output power is set

  18. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  19. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard

    2014-05-02

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

  20. Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition

    International Nuclear Information System (INIS)

    Park, Young Sung; Jeong, Ji Hwan; Ahn, Byoung Ha

    2014-01-01

    Highlights: • New heat pump control method was developed. • Experimental investigation on performance of heat pump with various control method. • New control method appeared to improve the stability of indoor air temperature. • New control method appeared to have a potential to reduce power consumption. - Abstract: The control systems of conventional heat pumps have an input of refrigerant temperature at the evaporator outlet to maintain superheat at proper level. In order to develop a control method that can be used to achieve better indoor thermal comfort and energy efficiency at a low cooling load condition than the current control method, a new method of the evaporation pressure control based on the evaporator outlet pressure reading (EPCP) was developed. The changes in the stability of indoor air temperature and power consumption were measured while changing the compressor frequency in accordance with the new control method. Compared with the evaporation pressure control based on the evaporator outlet temperature reading, the EPCP control method appeared to improve the stability of room air temperature or occupant thermal comfort significantly

  1. Analytic properties of finite-temperature self-energies

    International Nuclear Information System (INIS)

    Weldon, H. Arthur

    2002-01-01

    The analytic properties in the energy variable k 0 of finite-temperature self-energies are investigated. A typical branch cut results from n particles being emitted into the heat bath and n ' being absorbed from the heat bath. There are three main results: First, in addition to the branch points at which the cuts terminate, there are also branch points attached to the cuts along their length. Second, branch points at k 0 =±k are ubiquitous and for massive particles they are essential singularities. Third, in a perturbative expansion using free particle propagators or in a resummed expansion in which the propagator pole occurs at a real energy, the self-energy will have a branch point at the pole location

  2. Room temperature phosphorimetric determination of cyanide based on triplet state energy transfer

    International Nuclear Information System (INIS)

    Fernandez-Argueelles, Maria Teresa; Costa-Fernandez, Jose M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2003-01-01

    The determination of cyanide ions in water samples by room temperature phosphorescence (RTP) detection is described. The method is based on the measurement of the RTP emission of α-bromonaphthalene (BrN). The principle of the RTP cyanide determination involves the energy transfer (ET) from the BrN phosphor molecule insensitive to the presence of cyanide (acting as a donor) to a cyanide-sensitive dye (acceptor). The RTP emission spectrum of BrN overlaps significantly with the absorption spectrum of the complex formed between copper and Cadion 2B, giving rise to a non-radiative ET from the phosphor molecules to the metal complex. The sensing of cyanide ions is based on the displacement by cyanide of the copper ions from its complex with Cadion 2B (the free chelating molecule presents a low absorbance in the region of maximum emission of the BrN phosphor). An increase in the concentration of cyanide causes a decrease on the concentration of the Cadion 2B-copper complex (acceptor) with the subsequent decrease of the absorbance in the overlapping region with the RTP spectra, resulting in higher RTP emission signals measured. Both, RTP intensities and triplet lifetimes of the BrN increased with the increase of the cyanide concentration. The calibration graphs were linear up to a concentration of 500 mg l -1 cyanide and a precision of ±2 and ±0.5% for five replicates of 50 μg l -1 of cyanide has been obtained when measuring intensities and triplet lifetimes values, respectively. A detection limit of 3 μg l -1 of cyanide was achieved under optimal reaction conditions and pH 11. The use of phosphorescence measurements (low background noise signals) resulted in an important improvement on the sensitivity of the cyanide detection higher than eight times as compared to the molecular absorption spectrophotometric method for cyanide detection based on the use of Cadion 2B-copper as cyanide-indicator. Interference studies were performed with cations and anions present in

  3. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  4. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  5. Low temperature thermal energy storage: a state-of-the-art survey

    Energy Technology Data Exchange (ETDEWEB)

    Baylin, F.

    1979-07-01

    The preliminary version of an analysis of activities in research, development, and demonstration of low temperature thermal energy storage (TES) technologies having applications in renewable energy systems is presented. Three major categories of thermal storage devices are considered: sensible heat; phase change materials (PCM); and reversible thermochemical reactions. Both short-term and annual thermal energy storage technologies based on prinicples of sensible heat are discussed. Storage media considered are water, earth, and rocks. Annual storage technologies include solar ponds, aquifers, and large tanks or beds of water, earth, or rocks. PCM storage devices considered employ salt hydrates and organic compounds. The sole application of reversible chemical reactions outlined is for the chemical heat pump. All program processes from basic research through commercialization efforts are investigated. Nongovernment-funded industrial programs and foreign efforts are outlined as well. Data describing low temperature TES activities are presented also as project descriptions. Projects for all these programs are grouped into seven categories: short-term sensible heat storage; annual sensible heat storage; PCM storage; heat transfer and exchange; industrial waste heat recovery and storage; reversible chemical reaction storage; and models, economic analyses, and support studies. Summary information about yearly funding and brief descriptions of project goals and accomplishments are included.

  6. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  7. The use of symbolic computation in radiative, energy, and neutron transport calculations. Technical report, 15 August 1992--14 August 1994

    International Nuclear Information System (INIS)

    Frankel, J.I.

    1995-01-01

    This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research

  8. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure.

    Directory of Open Access Journals (Sweden)

    Lonneke Bahler

    Full Text Available Physiological colonic 18F-fluorodeoxyglucose (18F-FDG uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT. Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake.In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid.The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature.Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.

  9. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    Science.gov (United States)

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  10. Kinetic Energy of a Trapped Fermi Gas at Finite Temperature

    Science.gov (United States)

    Grela, Jacek; Majumdar, Satya N.; Schehr, Grégory

    2017-09-01

    We study the statistics of the kinetic (or, equivalently, potential) energy for N noninteracting fermions in a 1 d harmonic trap of frequency ω at finite temperature T . Remarkably, we find an exact solution for the full distribution of the kinetic energy, at any temperature T and for any N , using a nontrivial mapping to an integrable Calogero-Moser-Sutherland model. As a function of temperature T and for large N , we identify (i) a quantum regime, for T ˜ℏω , where quantum fluctuations dominate and (ii) a thermal regime, for T ˜N ℏω , governed by thermal fluctuations. We show how the mean and the variance as well as the large deviation function associated with the distribution of the kinetic energy cross over from the quantum to the thermal regime as T increases.

  11. Optimization of Steady Wall Temperature for Disturbance Control

    OpenAIRE

    Pralits, Jan; Ardeshir, Hanifi

    2003-01-01

    We present a theory for computing the optimal steady wall temperature distribution to suppress the growth of convectively unstable disturbances in compressible boundary layer flows on flat plates. A gradient based iterative procedure is used to minimize an objective function measuring the disturbance kinetic energy. The gradient of interest is obtained from the solution of the adjoint of the boundary layer and parabolized stability equations, which are derived using a Lagrange multiplier tech...

  12. The Role of Energy Reservoirs in Distributed Computing: Manufacturing, Implementing, and Optimizing Energy Storage in Energy-Autonomous Sensor Nodes

    Science.gov (United States)

    Cowell, Martin Andrew

    The world already hosts more internet connected devices than people, and that ratio is only increasing. These devices seamlessly integrate with peoples lives to collect rich data and give immediate feedback about complex systems from business, health care, transportation, and security. As every aspect of global economies integrate distributed computing into their industrial systems and these systems benefit from rich datasets. Managing the power demands of these distributed computers will be paramount to ensure the continued operation of these networks, and is elegantly addressed by including local energy harvesting and storage on a per-node basis. By replacing non-rechargeable batteries with energy harvesting, wireless sensor nodes will increase their lifetimes by an order of magnitude. This work investigates the coupling of high power energy storage with energy harvesting technologies to power wireless sensor nodes; with sections covering device manufacturing, system integration, and mathematical modeling. First we consider the energy storage mechanism of supercapacitors and batteries, and identify favorable characteristics in both reservoir types. We then discuss experimental methods used to manufacture high power supercapacitors in our labs. We go on to detail the integration of our fabricated devices with collaborating labs to create functional sensor node demonstrations. With the practical knowledge gained through in-lab manufacturing and system integration, we build mathematical models to aid in device and system design. First, we model the mechanism of energy storage in porous graphene supercapacitors to aid in component architecture optimization. We then model the operation of entire sensor nodes for the purpose of optimally sizing the energy harvesting and energy reservoir components. In consideration of deploying these sensor nodes in real-world environments, we model the operation of our energy harvesting and power management systems subject to

  13. Influence of Energy and Temperature in Cluster Coalescence Induced by Deposition

    Directory of Open Access Journals (Sweden)

    J. C. Jiménez-Sáez

    2012-01-01

    Full Text Available Coalescence induced by deposition of different Cu clusters on an epitaxial Co cluster supported on a Cu(001 substrate is studied by constant-temperature molecular dynamics simulations. The degree of epitaxy of the final system increases with increasing separation between the centres of mass of the projectile and target clusters during the collision. Structure, roughness, and epitaxial order of the supported cluster also influence the degree of epitaxy. The effect of energy and temperature is determinant on the epitaxial condition of the coalesced cluster, especially both factors modify the generation, growth and interaction among grains. A higher temperature favours the epitaxial growth for low impact parameters. A higher energy contributes to the epitaxial coalescence for any initial separation between the projectile and target clusters. The influence of projectile energy is notably greater than the influence of temperature since higher energies allow greater and instantaneous atomic reorganizations, so that the number of arisen grains just after the collision becomes smaller. The appearance of grain boundary dislocations is, therefore, a decisive factor in the epitaxial growth of the coalesced cluster.

  14. Large Scale Computing and Storage Requirements for High Energy Physics

    International Nuclear Information System (INIS)

    Gerber, Richard A.; Wasserman, Harvey

    2010-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  15. Survey of Energy Computing in the Smart Grid Domain

    OpenAIRE

    Rajesh Kumar; Arun Agarwala

    2013-01-01

    Resource optimization, with advance computing tools, improves the efficient use of energy resources. The renewable energy resources are instantaneous and needs to be conserve at the same time. To optimize real time process, the complex design, includes plan of resources and control for effective utilization. The advances in information communication technology tools enables data formatting and analysis results in optimization of use the renewable resources for sustainable energy solution on s...

  16. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  17. Operating Wireless Sensor Nodes without Energy Storage: Experimental Results with Transient Computing

    Directory of Open Access Journals (Sweden)

    Faisal Ahmed

    2016-12-01

    Full Text Available Energy harvesting is increasingly used for powering wireless sensor network nodes. Recently, it has been suggested to combine it with the concept of transient computing whereby the wireless sensor nodes operate without energy storage capabilities. This new combined approach brings benefits, for instance ultra-low power nodes and reduced maintenance, but also raises new challenges, foremost dealing with nodes that may be left without power for various time periods. Although transient computing has been demonstrated on microcontrollers, reports on experiments with wireless sensor nodes are still scarce in the literature. In this paper, we describe our experiments with solar, thermal, and RF energy harvesting sources that are used to power sensor nodes (including wireless ones without energy storage, but with transient computing capabilities. The results show that the selected solar and thermal energy sources can operate both the wired and wireless nodes without energy storage, whereas in our specific implementation, the developed RF energy source can only be used for the selected nodes without wireless connectivity.

  18. Energy Aware Computing in Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Olsen, Anders Brødløs; Fitzek, Frank H. P.; Koch, Peter

    2005-01-01

    In this work the idea of cooperation is applied to wireless communication systems. It is generally accepted that energy consumption is a significant design constraint for mobile handheld systems. We propose a novel method of cooperative task computing by distributing tasks among terminals over...... the unreliable wireless link. Principles of multi–processor energy aware task scheduling are used exploiting performance scalable technologies such as Dynamic Voltage Scaling (DVS). We introduce a novel mechanism referred to as D2VS and here it is shown by means of simulation that savings of 40% can be achieved....

  19. ARAC: a computer-based emergency dose-assessment service

    International Nuclear Information System (INIS)

    Sullivan, T.J.

    1990-01-01

    Over the past 15 years, the Lawrence Livermore National Laboratory's Atmospheric Release Advisory Capability (ARAC) has developed and evolved a computer-based, real-time, radiological-dose-assessment service for the United States Departments of Energy and Defense. This service is built on the integrated components of real-time computer-acquired meteorological data, extensive computer databases, numerical atmospheric-dispersion models, graphical displays, and operational-assessment-staff expertise. The focus of ARAC is the off-site problem where regional meteorology and topography are dominant influences on transport and dispersion. Through application to numerous radiological accidents/releases on scales from small accidental ventings to the Chernobyl reactor disaster, ARAC has developed methods to provide emergency dose assessments from the local to the hemispheric scale. As the power of computers has evolved inversely with respect to cost and size, ARAC has expanded its service and reduced the response time from hours to minutes for an accident within the United States. Concurrently the quality of the assessments has improved as more advanced models have been developed and incorporated into the ARAC system. Over the past six years, the number of directly connected facilities has increased from 6 to 73. All major U.S. Federal agencies now have access to ARAC via the Department of Energy. This assures a level of consistency as well as experience. ARAC maintains its real-time skills by participation in approximately 150 exercises per year; ARAC also continuously validates its modeling systems by application to all available tracer experiments and data sets

  20. MCPLOTS: a particle physics resource based on volunteer computing

    CERN Document Server

    Karneyeu, A; Prestel, S; Skands, P Z

    2014-01-01

    The mcplots.cern.ch web site (MCPLOTS) provides a simple online repository of plots made with high-energy-physics event generators, comparing them to a wide variety of experimental data. The repository is based on the HEPDATA online database of experimental results and on the RIVET Monte Carlo analysis tool. The repository is continually updated and relies on computing power donated by volunteers, via the LHC@HOME platform.

  1. Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model

    Directory of Open Access Journals (Sweden)

    Tian Wu

    2014-11-01

    Full Text Available This paper presents a model for the projection of Chinese vehicle stocks and road vehicle energy demand through 2050 based on low-, medium-, and high-growth scenarios. To derive a gross-domestic product (GDP-dependent Gompertz function, Chinese GDP is estimated using a recursive dynamic Computable General Equilibrium (CGE model. The Gompertz function is estimated using historical data on vehicle development trends in North America, Pacific Rim and Europe to overcome the problem of insufficient long-running data on Chinese vehicle ownership. Results indicate that the number of projected vehicle stocks for 2050 is 300, 455 and 463 million for low-, medium-, and high-growth scenarios respectively. Furthermore, the growth in China’s vehicle stock will increase beyond the inflection point of Gompertz curve by 2020, but will not reach saturation point during the period 2014–2050. Of major road vehicle categories, cars are the largest energy consumers, followed by trucks and buses. Growth in Chinese vehicle demand is primarily determined by per capita GDP. Vehicle saturation levels solely influence the shape of the Gompertz curve and population growth weakly affects vehicle demand. Projected total energy consumption of road vehicles in 2050 is 380, 575 and 586 million tonnes of oil equivalent for each scenario.

  2. Rh-Based Mixed Alcohol Synthesis Catalysts: Characterization and Computational Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Karl O.; Glezakou, Vassiliki Alexandra; Rousseau, Roger J.; Engelhard, Mark H.; Varga, Tamas; Colby, Robert J.; Jaffe, John E.; Li, Xiaohong S.; Mei, Donghai; Windisch, Charles F.; Kathmann, Shawn M.; Lemmon, Teresa L.; Gray, Michel J.; Hart, Todd R.; Thompson, Becky L.; Gerber, Mark A.

    2013-08-01

    The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330°C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab

  3. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  4. A review of residential computer oriented energy control systems

    Energy Technology Data Exchange (ETDEWEB)

    North, Greg

    2000-07-01

    The purpose of this report is to bring together as much information on Residential Computer Oriented Energy Control Systems as possible within a single document. This report identifies the main elements of the system and is intended to provide many technical options for the design and implementation of various energy related services.

  5. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  6. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles

    International Nuclear Information System (INIS)

    Miranda, Á.G.; Chen, T.S.; Hong, C.W.

    2013-01-01

    Traditional compressed-refrigerant air conditioning systems consume substantial energy that may reduce the driving performance and cruising mileage of electric vehicles considerably. It is crucial to design a new climate control system, using a direct energy conversion principle, to further aid in the commercialization of modern electric vehicles. A solid state air conditioner model consisting on TECs (thermoelectric chips) as the load, DSSCs (dye sensitized solar cells) as the renewable energy source and high power LiBs (lithium-ion batteries) as an energy storage device are considered for a personal mobility vehicle. The power management between the main power net and the solid state air conditioner interface is designed with an outer proportional-integral controller and an inner passivity based current controller with a loss included model for perfect tracking. This model is intended to comprise thermal and electrical elements which can be tunable for performance benchmarking and optimization of a solid state air conditioning system. Dynamic performance simulations of the solid-state air conditioner are performed, alongside guidelines for feasibility. - Highlights: • Alternative model extraction for dye sensitized solar cells. • Improved and computationally fast model for the cabin air temperature dynamics. • Euler–Lagrange loss included modeling of a buck converter. • Loss-included passivity based inner loop current control. • The thermoelectric chip air conditioner is tested in simulated cooling/heating scenarios

  7. New Challenges for Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Santoro, Alberto

    2003-01-01

    In view of the new scientific programs established for the LHC (Large Hadron Collider) era, the way to face the technological challenges in computing was develop a new concept of GRID computing. We show some examples and, in particular, a proposal for high energy physicists in countries like Brazil. Due to the big amount of data and the need of close collaboration it will be impossible to work in research centers and universities very far from Fermilab or CERN unless a GRID architecture is built. An important effort is being made by the international community to up to date their computing infrastructure and networks

  8. Comparison of Low-temperature District Heating Concepts in a Long-Term Energy System Perspective

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Østergaard, Dorte Skaarup; Yang, Xiaochen

    2017-01-01

    renewable energy systems. This study compares three alternative concepts for DH temperature level: Low temperature (55/25 °C), Ultra-low temperature with electric boosting (45/25 °C), and Ultra-low temperature with heat pump boosting (35/20 °C) taking into account the grid losses, production efficiencies......District heating (DH) systems are important components in an energy efficient heat supply. With increasing amounts of renewable energy, the foundation for DH is changing and the approach to its planning will have to change. Reduced temperatures of DH are proposed as a solution to adapt it to future...... and building requirements. The scenarios are modelled and analysed in the analysis tool EnergyPLAN and compared on primary energy supply and socioeconomic costs. The results show that the low temperature solution (55/25°C) has the lowest costs, reducing the total costs by about 100 M€/year in 2050....

  9. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  10. A ground-up approach to High Throughput Cloud Computing in High-Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00245123; Ganis, Gerardo; Bagnasco, Stefano

    The thesis explores various practical approaches in making existing High Throughput computing applications common in High Energy Physics work on cloud-provided resources, as well as opening the possibility for running new applications. The work is divided into two parts: firstly we describe the work done at the computing facility hosted by INFN Torino to entirely convert former Grid resources into cloud ones, eventually running Grid use cases on top along with many others in a more flexible way. Integration and conversion problems are duly described. The second part covers the development of solutions for automatizing the orchestration of cloud workers based on the load of a batch queue and the development of HEP applications based on ROOT's PROOF that can adapt at runtime to a changing number of workers.

  11. A New Hybrid Bathroom System Based on Energy Saving Concept

    Directory of Open Access Journals (Sweden)

    Cui Bo-wen

    2016-01-01

    Full Text Available Based on the characteristics of hot water supply in bathroom, this article proposes a new hybrid energy hot water supply system. The programmable logic controller(PLC as the master controller was adopted in this system, which could automatically detect and storage main thermal physical of the system, such as temperature, water level, solar radiation intensity, power consumption and so on. The active thermal utilization technology of solar energy, air-source heat pump technology, solar energy intensive natural ventilation technology and low temperature hot water floor radiant heating technology were organically integrated in this system, which has the advantages of energy conservation and environment protection, high automation, safe and reliable operation, etc. At the same time, it can make good use of electric power cost between on-peak and off-peak, and promote the optimal allocation of power resources and reduce the cost, which can achieve the goal of intelligent control and energy saving.

  12. Importance of the Reorganization Energy Barrier in Computational Design of Porphyrin-Based Solar Cells with Cobalt-Based Redox Mediators

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël; Jónsson, Elvar Örn; Jacobsen, Karsten Wedel

    2015-01-01

    , and this limits the achievable efficiency. Here we show that the large driving force is a direct consequence of the large reorganization energy of the dye regeneration reaction. The reorganization energies for charge transfer between a simple zinc porphyrin dye and two popular cobalt-based redox mediators......The shift from iodide-based redox mediators in dye-sensitized solar cells toward octahedral cobalt complexes has led to a significant increase in the efficiency. However, due to the nature of this type of complexes the driving force required for the regeneration of the dye is very high...... to identify already known highperformance dyes in addition to a number of even better candidates. Our analysis shows that the large internal reorganization energy of the Co-based redox mediators is an obstacle for achieving higher efficiencies....

  13. Metal nanoparticle film-based room temperature Coulomb transistor.

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  14. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    Science.gov (United States)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  15. Discovering Unique, Low-Energy Transition States Using Evolutionary Molecular Memetic Computing

    DEFF Research Database (Denmark)

    Ellabaan, Mostafa M Hashim; Ong, Y.S.; Handoko, S.D.

    2013-01-01

    In the last few decades, identification of transition states has experienced significant growth in research interests from various scientific communities. As per the transition states theory, reaction paths and landscape analysis as well as many thermodynamic properties of biochemical systems can...... be accurately identified through the transition states. Transition states describe the paths of molecular systems in transiting across stable states. In this article, we present the discovery of unique, low-energy transition states and showcase the efficacy of their identification using the memetic computing...... paradigm under a Molecular Memetic Computing (MMC) framework. In essence, the MMC is equipped with the tree-based representation of non-cyclic molecules and the covalent-bond-driven evolutionary operators, in addition to the typical backbone of memetic algorithms. Herein, we employ genetic algorithm...

  16. Performance of low-temperature district heating for low-energy houses

    DEFF Research Database (Denmark)

    Brand, Marek; Dalla Rosa, Alessandro; Svendsen, Svend

    2010-01-01

    A Low Energy District Heating (LEDH) network supplying district heating water with temperature 50°C was built in Lærkehaven-Lystrup, Denmark, as a part of the ongoing “Energy Technology Development and Demonstration Programme” [EUDP, 2008] focused on “CO2-reduction in low energy buildings and com...

  17. Junction Temperature Aware Energy Efficient Router Design on FPGA

    DEFF Research Database (Denmark)

    Thind, Vandana; Sharma, Shivani; Minwer, M H

    2015-01-01

    Energy, Power and efficiency are very much related to each other. To make any system efficient, Power consumed by it must be minimized or we can say that power dissipation should be less. In our research we tried to make a energy efficient router design on FPGA by varying junction temperature...

  18. Thermal energy storage based on cementitious materials: A review

    Directory of Open Access Journals (Sweden)

    Khadim Ndiaye

    2018-01-01

    Full Text Available Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Many heat storage materials can be used in the building sector in order to avoid the phase shift between solar radiation and thermal energy demand. However, the use of storage material in the building sector is hampered by problems of investment cost, space requirements, mechanical performance, material stability, and high storage temperature. Cementitious material is increasingly being used as a heat storage material thanks to its low price, mechanical performance and low storage temperature (generally lower than 100 °C. In addition, cementitious materials for heat storage have the prominent advantage of being easy to incorporate into the building landscape as self-supporting structures or even supporting structures (walls, floor, etc.. Concrete solutions for thermal energy storage are usually based on sensible heat transfer and thermal inertia. Phase Change Materials (PCM incorporated in concrete wall have been widely investigated in the aim of improving building energy performance. Cementitious material with high ettringite content stores heat by a combination of physical (adsorption and chemical (chemical reaction processes usable in both the short (daily, weekly and long (seasonal term. Ettringite materials have the advantage of high energy storage density at low temperature (around 60 °C. The encouraging experimental results in the literature on heat storage using cementitious materials suggest that they could be attractive in a number of applications. This paper summarizes the investigation and analysis of the available thermal energy storage systems using cementitious materials for use in various applications.

  19. Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems

    International Nuclear Information System (INIS)

    Shumaev, V. V.

    2016-01-01

    The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures T > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state.

  20. Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    Energy Technology Data Exchange (ETDEWEB)

    Shorgin, Sergey Ya.; Pechinkin, Alexander V. [Institute of Informatics Problems, Russian Academy of Sciences (Russian Federation); Samouylov, Konstantin E.; Gaidamaka, Yuliya V.; Gudkova, Irina A.; Sopin, Eduard S. [Telecommunication Systems Department, Peoples’ Friendship University of Russia (Russian Federation)

    2015-03-10

    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. For better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures.

  1. Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    International Nuclear Information System (INIS)

    Shorgin, Sergey Ya.; Pechinkin, Alexander V.; Samouylov, Konstantin E.; Gaidamaka, Yuliya V.; Gudkova, Irina A.; Sopin, Eduard S.

    2015-01-01

    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. For better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures

  2. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure

    Science.gov (United States)

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Purpose Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. Methods In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,—transversum,—descendens and sigmoid). Results The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Conclusion Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss. PMID:28464031

  3. Symbolic computation and its application to high energy physics

    International Nuclear Information System (INIS)

    Hearn, A.C.

    1981-01-01

    It is clear that we are in the middle of an electronic revolution whose effect will be as profound as the industrial revolution. The continuing advances in computing technology will provide us with devices which will make present day computers appear primitive. In this environment, the algebraic and other non-mumerical capabilities of such devices will become increasingly important. These lectures will review the present state of the field of algebraic computation and its potential for problem solving in high energy physics and related areas. We shall begin with a brief description of the available systems and examine the data objects which they consider. As an example of the facilities which these systems can offer, we shall then consider the problem of analytic integration, since this is so fundamental to many of the calculational techniques used by high energy physicists. Finally, we shall study the implications which the current developments in hardware technology hold for scientific problem solving. (orig.)

  4. MCPLOTS: a particle physics resource based on volunteer computing

    International Nuclear Information System (INIS)

    Karneyeu, A.; Mijovic, L.; Prestel, S.; Skands, P.Z.

    2014-01-01

    The mcplots.cern.ch web site (mcplots) provides a simple online repository of plots made with high-energy-physics event generators, comparing them to a wide variety of experimental data. The repository is based on the hepdata online database of experimental results and on the rivet Monte Carlo analysis tool. The repository is continually updated and relies on computing power donated by volunteers, via the lhc rate at home 2.0 platform. (orig.)

  5. MCPLOTS. A particle physics resource based on volunteer computing

    Energy Technology Data Exchange (ETDEWEB)

    Karneyeu, A. [Joint Inst. for Nuclear Research, Moscow (Russian Federation); Mijovic, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Irfu/SPP, CEA-Saclay, Gif-sur-Yvette (France); Prestel, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lund Univ. (Sweden). Dept. of Astronomy and Theoretical Physics; Skands, P.Z. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2013-07-15

    The mcplots.cern.ch web site (MCPLOTS) provides a simple online repository of plots made with high-energy-physics event generators, comparing them to a wide variety of experimental data. The repository is based on the HEPDATA online database of experimental results and on the RIVET Monte Carlo analysis tool. The repository is continually updated and relies on computing power donated by volunteers, via the LHC rate at HOME 2.0 platform.

  6. MCPLOTS. A particle physics resource based on volunteer computing

    International Nuclear Information System (INIS)

    Karneyeu, A.; Mijovic, L.; Prestel, S.

    2013-07-01

    The mcplots.cern.ch web site (MCPLOTS) provides a simple online repository of plots made with high-energy-physics event generators, comparing them to a wide variety of experimental data. The repository is based on the HEPDATA online database of experimental results and on the RIVET Monte Carlo analysis tool. The repository is continually updated and relies on computing power donated by volunteers, via the LHC rate at HOME 2.0 platform.

  7. Computer usage and national energy consumption: Results from a field-metering study

    Energy Technology Data Exchange (ETDEWEB)

    Desroches, Louis-Benoit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Fuchs, Heidi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Greenblatt, Jeffery [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Pratt, Stacy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Claybaugh, Erin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Beraki, Bereket [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Nagaraju, Mythri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division; Young, Scott [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis & Environmental Impacts Dept., Environmental Energy Technologies Division

    2014-12-01

    The electricity consumption of miscellaneous electronic loads (MELs) in the home has grown in recent years, and is expected to continue rising. Consumer electronics, in particular, are characterized by swift technological innovation, with varying impacts on energy use. Desktop and laptop computers make up a significant share of MELs electricity consumption, but their national energy use is difficult to estimate, given uncertainties around shifting user behavior. This report analyzes usage data from 64 computers (45 desktop, 11 laptop, and 8 unknown) collected in 2012 as part of a larger field monitoring effort of 880 households in the San Francisco Bay Area, and compares our results to recent values from the literature. We find that desktop computers are used for an average of 7.3 hours per day (median = 4.2 h/d), while laptops are used for a mean 4.8 hours per day (median = 2.1 h/d). The results for laptops are likely underestimated since they can be charged in other, unmetered outlets. Average unit annual energy consumption (AEC) for desktops is estimated to be 194 kWh/yr (median = 125 kWh/yr), and for laptops 75 kWh/yr (median = 31 kWh/yr). We estimate national annual energy consumption for desktop computers to be 20 TWh. National annual energy use for laptops is estimated to be 11 TWh, markedly higher than previous estimates, likely reflective of laptops drawing more power in On mode in addition to greater market penetration. This result for laptops, however, carries relatively higher uncertainty compared to desktops. Different study methodologies and definitions, changing usage patterns, and uncertainty about how consumers use computers must be considered when interpreting our results with respect to existing analyses. Finally, as energy consumption in On mode is predominant, we outline several energy savings opportunities: improved power management (defaulting to low-power modes after periods of inactivity as well as power scaling), matching the rated power

  8. Knowledge-based computer security advisor

    International Nuclear Information System (INIS)

    Hunteman, W.J.; Squire, M.B.

    1991-01-01

    The rapid expansion of computer security information and technology has included little support to help the security officer identify the safeguards needed to comply with a policy and to secure a computing system. This paper reports that Los Alamos is developing a knowledge-based computer security system to provide expert knowledge to the security officer. This system includes a model for expressing the complex requirements in computer security policy statements. The model is part of an expert system that allows a security officer to describe a computer system and then determine compliance with the policy. The model contains a generic representation that contains network relationships among the policy concepts to support inferencing based on information represented in the generic policy description

  9. Phase transformation based pyroelectric waste heat energy harvesting with improved practicality

    International Nuclear Information System (INIS)

    Jo, Hwan Ryul; Lynch, Christopher S

    2016-01-01

    In 2014, almost 60% of thermal energy produced in the United States was lost to the environment as waste heat. Ferroelectric based pyroelectric devices can be used to convert some of this waste heat into usable electrical energy using the Olsen cycle, an ideal thermodynamic cycle, but there are a number of barriers to its realization in a practical device. This study uses the Olsen cycle to benchmark a less efficient thermodynamic cycle that is more easily implemented in devices. The ferroelectric pyroelectric material used was (Pb 0.97 La 0.02 )(Zr 0.55 Sn 0.32 Ti 0.13 )O 3 ceramic, a ferroelectric material that undergoes a temperature driven phase transformation. A net energy density of 0.27 J cm −3 per cycle was obtained from the ferroelectric material using the modified cycle with a temperature change between 25°C and 180°C. This is 15.5% of the Olsen cycle result with the same temperature range and 1–8 MV m −1 applied electric field range. The power density was estimated to 13.5 mW cm −3 with given experimental conditions. A model is presented that quantitatively describes the effect of several parameters on output energy density and can be used to design ferroelectric based pyroelectric energy converters. The model indicates that optimization of material geometry and heating conditions can increase the output power by an order or magnitude. (paper)

  10. Evaluation of reinitialization-free nonvolatile computer systems for energy-harvesting Internet of things applications

    Science.gov (United States)

    Onizawa, Naoya; Tamakoshi, Akira; Hanyu, Takahiro

    2017-08-01

    In this paper, reinitialization-free nonvolatile computer systems are designed and evaluated for energy-harvesting Internet of things (IoT) applications. In energy-harvesting applications, as power supplies generated from renewable power sources cause frequent power failures, data processed need to be backed up when power failures occur. Unless data are safely backed up before power supplies diminish, reinitialization processes are required when power supplies are recovered, which results in low energy efficiencies and slow operations. Using nonvolatile devices in processors and memories can realize a faster backup than a conventional volatile computer system, leading to a higher energy efficiency. To evaluate the energy efficiency upon frequent power failures, typical computer systems including processors and memories are designed using 90 nm CMOS or CMOS/magnetic tunnel junction (MTJ) technologies. Nonvolatile ARM Cortex-M0 processors with 4 kB MRAMs are evaluated using a typical computing benchmark program, Dhrystone, which shows a few order-of-magnitude reductions in energy in comparison with a volatile processor with SRAM.

  11. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  12. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  13. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  14. Science panel to study mega-computers to assess potential energy contributions

    CERN Multimedia

    Jones, D

    2003-01-01

    "Energy Department advisers plan to examine high-end computing in the coming year and assess how computing power could be used to further DOE's basic research agenda on combustion, fusion and other topics" (1 page).

  15. Hanford general employee training: Computer-based training instructor's manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Computer-Based Training portion of the Hanford General Employee Training course is designed to be used in a classroom setting with a live instructor. Future references to this course'' refer only to the computer-based portion of the whole. This course covers the basic Safety, Security, and Quality issues that pertain to all employees of Westinghouse Hanford Company. The topics that are covered were taken from the recommendations and requirements for General Employee Training as set forth by the Institute of Nuclear Power Operations (INPO) in INPO 87-004, Guidelines for General Employee Training, applicable US Department of Energy orders, and Westinghouse Hanford Company procedures and policy. Besides presenting fundamental concepts, this course also contains information on resources that are available to assist students. It does this using Interactive Videodisk technology, which combines computer-generated text and graphics with audio and video provided by a videodisk player.

  16. An Energy Integrated Dispatching Strategy of Multi- energy Based on Energy Internet

    Science.gov (United States)

    Jin, Weixia; Han, Jun

    2018-01-01

    Energy internet is a new way of energy use. Energy internet achieves energy efficiency and low cost by scheduling a variety of different forms of energy. Particle Swarm Optimization (PSO) is an advanced algorithm with few parameters, high computational precision and fast convergence speed. By improving the parameters ω, c1 and c2, PSO can improve the convergence speed and calculation accuracy. The objective of optimizing model is lowest cost of fuel, which can meet the load of electricity, heat and cold after all the renewable energy is received. Due to the different energy structure and price in different regions, the optimization strategy needs to be determined according to the algorithm and model.

  17. Carbon nanotube computer.

    Science.gov (United States)

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  18. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  19. An IPMI-based slow control system for the PANDA compute node

    Energy Technology Data Exchange (ETDEWEB)

    Galuska, Martin; Gessler, Thomas; Kuehn, Wolfgang; Lang, Johannes; Lange, Jens Soeren; Liang, Yutie; Liu, Ming; Spruck, Bjoern; Wang, Qiang [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen (Germany); Collaboration: PANDA-Collaboration

    2011-07-01

    Reaction rate of 10-20 MHz from antiproton-proton-collisions are expected for the PANDA experiment at FAIR, leading to a raw data output rate of up to 200 GB/s. A sophisticated data acquisition system is needed in order to select physically relevant events online. A network of FPGA-based Compute Nodes will be used for this purpose. An AdvancedTCA shelf provides the infrastructure for up to 14 Compute Nodes. A Shelf Manager supervises the system health and regulates power distribution and temperature. It relies on a local controller on each Compute Node to relay sensor readings, provide power requirements etc. This makes remote management of the entire system possible. An IPM Controller based on an Atmel microcontroller was designed for this purpose, and a prototype was produced. The necessary firmware is being developed to allow interaction with the components of the Compute Node and the Shelf Manager conform to the AdvancedTCA specification. A set of basic mandatory functions was implemented that can be extended easily. An improved version of the controller is in development. An overview of the intended functions of the controller and a status report will be given.

  20. Hydrostatic pressure and temperature effects of an exciton-donor complex in quantum dots

    International Nuclear Information System (INIS)

    Xie Wenfang

    2012-01-01

    Using the matrix diagonalization method and the compact density-matrix approach, we studied the combined effects of hydrostatic pressure and temperature on the electronic and optical properties of an exciton-donor complex in a disc-shaped quantum dot. We have calculated the binding energy and the oscillator strength of the intersubband transition from the ground state into the first excited state as a function of the dot radius. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index have been examined. We find that the ground state binding energy and the oscillator strength are strongly affected by the quantum dot radius, hydrostatic pressure and temperature. The results also show that the linear, third-order nonlinear and total absorption coefficients and refractive index changes strongly depend on temperature and hydrostatic pressure.