WorldWideScience

Sample records for energy universe simulation

  1. High Energy Ion Bombardment Simulation Facility at the University of Pittsburgh

    International Nuclear Information System (INIS)

    McGruer, J.N.; Choyke, W.J.; Doyle, N.J.; Spitznagel, J.A.

    1975-01-01

    The High Energy Ion Bombardment Simulation (HEIBS) Facility located at the University of Pittsburgh is now operational. The E-22 tandem accelerator of the Nuclear Physics Laboratory, fitted with a UNIS source, provides the heavy high energy ions. An auxiliary Van de Graaff accelerator is used for the simultaneous production of He ions. Special features of the simulation laboratory are reported

  2. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    Science.gov (United States)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  3. Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields

    Science.gov (United States)

    Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J. G.; Gottlöber, S.

    2018-04-01

    We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen-Zatsepin-Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory.

  4. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  5. Dark energy and universal antigravitation

    International Nuclear Information System (INIS)

    Chernin, A D

    2008-01-01

    Universal antigravitation, a new physical phenomenon discovered astronomically at distances of 5 to 8 billion light years, manifests itself as cosmic repulsion that acts between distant galaxies and overcomes their gravitational attraction, resulting in the accelerating expansion of the Universe. The source of the antigravitation is not galaxies or any other bodies of nature but a previously unknown form of mass/energy that has been termed dark energy. Dark energy accounts for 70 to 80% of the total mass and energy of the Universe and, in macroscopic terms, is a kind of continuous medium that fills the entire space of the Universe and is characterized by positive density and negative pressure. With its physical nature and microscopic structure unknown, dark energy is among the most critical challenges fundamental science faces in the twenty-first century. (physics of our days)

  6. Water Energy Simulation Toolset

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-17

    The Water-Energy Simulation Toolset (WEST) is an interactive simulation model that helps visualize impacts of different stakeholders on water quantity and quality of a watershed. The case study is applied for the Snake River Basin with the fictional name Cutthroat River Basin. There are four groups of stakeholders of interest: hydropower, agriculture, flood control, and environmental protection. Currently, the quality component depicts nitrogen-nitrate contaminant. Users can easily interact with the model by changing certain inputs (climate change, fertilizer inputs, etc.) to observe the change over the entire system. Users can also change certain parameters to test their management policy.

  7. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  8. Universal extensions to simulate specifications

    NARCIS (Netherlands)

    Hesselink, Wim H.

    A previous paper introduced eternity variables as an alternative to the prophecy variables of Abadi and Lamport and proved the formalism to be semantically complete: every simulation F. K -> L that preserves quiescence contains a composition of a history extension, an extension with eternity

  9. Cosmicflows Constrained Local UniversE Simulations

    Science.gov (United States)

    Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Courtois, Helene M.; Steinmetz, Matthias; Tully, R. Brent; Pomarède, Daniel; Carlesi, Edoardo

    2016-01-01

    This paper combines observational data sets and cosmological simulations to generate realistic numerical replicas of the nearby Universe. The latter are excellent laboratories for studies of the non-linear process of structure formation in our neighbourhood. With measurements of radial peculiar velocities in the local Universe (cosmicflows-2) and a newly developed technique, we produce Constrained Local UniversE Simulations (CLUES). To assess the quality of these constrained simulations, we compare them with random simulations as well as with local observations. The cosmic variance, defined as the mean one-sigma scatter of cell-to-cell comparison between two fields, is significantly smaller for the constrained simulations than for the random simulations. Within the inner part of the box where most of the constraints are, the scatter is smaller by a factor of 2 to 3 on a 5 h-1 Mpc scale with respect to that found for random simulations. This one-sigma scatter obtained when comparing the simulated and the observation-reconstructed velocity fields is only 104 ± 4 km s-1, I.e. the linear theory threshold. These two results demonstrate that these simulations are in agreement with each other and with the observations of our neighbourhood. For the first time, simulations constrained with observational radial peculiar velocities resemble the local Universe up to a distance of 150 h-1 Mpc on a scale of a few tens of megaparsecs. When focusing on the inner part of the box, the resemblance with our cosmic neighbourhood extends to a few megaparsecs (<5 h-1 Mpc). The simulations provide a proper large-scale environment for studies of the formation of nearby objects.

  10. MCdevelop - a universal framework for Stochastic Simulations

    Science.gov (United States)

    Slawinska, M.; Jadach, S.

    2011-03-01

    We present MCdevelop, a universal computer framework for developing and exploiting the wide class of Stochastic Simulations (SS) software. This powerful universal SS software development tool has been derived from a series of scientific projects for precision calculations in high energy physics (HEP), which feature a wide range of functionality in the SS software needed for advanced precision Quantum Field Theory calculations for the past LEP experiments and for the ongoing LHC experiments at CERN, Geneva. MCdevelop is a "spin-off" product of HEP to be exploited in other areas, while it will still serve to develop new SS software for HEP experiments. Typically SS involve independent generation of large sets of random "events", often requiring considerable CPU power. Since SS jobs usually do not share memory it makes them easy to parallelize. The efficient development, testing and running in parallel SS software requires a convenient framework to develop software source code, deploy and monitor batch jobs, merge and analyse results from multiple parallel jobs, even before the production runs are terminated. Throughout the years of development of stochastic simulations for HEP, a sophisticated framework featuring all the above mentioned functionality has been implemented. MCdevelop represents its latest version, written mostly in C++ (GNU compiler gcc). It uses Autotools to build binaries (optionally managed within the KDevelop 3.5.3 Integrated Development Environment (IDE)). It uses the open-source ROOT package for histogramming, graphics and the mechanism of persistency for the C++ objects. MCdevelop helps to run multiple parallel jobs on any computer cluster with NQS-type batch system. Program summaryProgram title:MCdevelop Catalogue identifier: AEHW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http

  11. The Expanding Universe: Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, Don [Fermilab; Nord, Brian [Fermilab

    2014-09-01

    In 1998, observations of distant supernovae led physicists that not only was the universe expanding, but the expansion was speeding up. In this article, we describe the evidence for an expanding universe and describe what physicists and cosmologists have learned in the intervening years. The target audience for this article is high school physics teachers and college physics professors at teaching institutions.

  12. Simulating the universe on an intercontinental grid

    NARCIS (Netherlands)

    Portegies Zwart, S.; Ishiyama, T.; Groen, D.; Nitadori, K.; Makino, J.; de Laat, C.; McMillan, S.; Hiraki, K.; Harfst, S.; Grosso, P.

    2010-01-01

    The computational requirements of simulating a sector of the universe led an international team of researchers to try concurrent processing on two supercomputers half a world apart. Data traveled nearly 27,000 km in 0.277 second, crisscrossing two oceans to go from Amsterdam to Tokyo and back.

  13. A universal simulator for ecological models

    DEFF Research Database (Denmark)

    Holst, Niels

    2013-01-01

    Software design is an often neglected issue in ecological models, even though bad software design often becomes a hindrance for re-using, sharing and even grasping an ecological model. In this paper, the methodology of agile software design was applied to the domain of ecological models. Thus...... the principles for a universal design of ecological models were arrived at. To exemplify this design, the open-source software Universal Simulator was constructed using C++ and XML and is provided as a resource for inspiration....

  14. Compactified cosmological simulations of the infinite universe

    Science.gov (United States)

    Rácz, Gábor; Szapudi, István; Csabai, István; Dobos, László

    2018-06-01

    We present a novel N-body simulation method that compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to follow the evolution of the large-scale structure. Our approach eliminates the need for periodic boundary conditions, a mere numerical convenience which is not supported by observation and which modifies the law of force on large scales in an unrealistic fashion. We demonstrate that our method outclasses standard simulations executed on workstation-scale hardware in dynamic range, it is balanced in following a comparable number of high and low k modes and, its fundamental geometry and topology match observations. Our approach is also capable of simulating an expanding, infinite universe in static coordinates with Newtonian dynamics. The price of these achievements is that most of the simulated volume has smoothly varying mass and spatial resolution, an approximation that carries different systematics than periodic simulations. Our initial implementation of the method is called StePS which stands for Stereographically projected cosmological simulations. It uses stereographic projection for space compactification and naive O(N^2) force calculation which is nevertheless faster to arrive at a correlation function of the same quality than any standard (tree or P3M) algorithm with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence our code can function as a high-speed prediction tool for modern large-scale surveys. To learn about the limits of the respective methods, we compare StePS with GADGET-2 running matching initial conditions.

  15. Compactified Cosmological Simulations of the Infinite Universe

    Science.gov (United States)

    Rácz, Gábor; Szapudi, István; Csabai, István; Dobos, László

    2018-03-01

    We present a novel N-body simulation method that compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to follow the evolution of the large-scale structure. Our approach eliminates the need for periodic boundary conditions, a mere numerical convenience which is not supported by observation and which modifies the law of force on large scales in an unrealistic fashion. We demonstrate that our method outclasses standard simulations executed on workstation-scale hardware in dynamic range, it is balanced in following a comparable number of high and low k modes and, its fundamental geometry and topology match observations. Our approach is also capable of simulating an expanding, infinite universe in static coordinates with Newtonian dynamics. The price of these achievements is that most of the simulated volume has smoothly varying mass and spatial resolution, an approximation that carries different systematics than periodic simulations. Our initial implementation of the method is called StePS which stands for Stereographically Projected Cosmological Simulations. It uses stereographic projection for space compactification and naive O(N^2) force calculation which is nevertheless faster to arrive at a correlation function of the same quality than any standard (tree or P3M) algorithm with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence our code can function as a high-speed prediction tool for modern large-scale surveys. To learn about the limits of the respective methods, we compare StePS with GADGET-2 running matching initial conditions.

  16. Black Hole Universe Model and Dark Energy

    Science.gov (United States)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  17. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  18. Duke University High Energy Physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1993-03-01

    The research program of the Duke High Energy Physics Group is described in this Progress Report and a separate Proposal containing their plans for 1994. These two documents are supplemented by compilations of selected publications, thesis abstracts, and the curriculum vitae of the eleven Ph.D. physicists who are carrying out this research program. This Progress Report contains a review of the research which has been done over the first half (1992 and 1993 to date) of the current three-year DOE grant, plus some earlier research to establish a broader perspective of the research interests. High energy physics research at Duke has three components. The first, Task A, is based upon experiments carried out at Fermilab's Tevatron Collider. The group is finishing the analysis of data from their first collider experiment (E735), a study of inclusive particle production from bar p p collisions at √ bar s = 1.8 TeV. The second component of the research, Task B, deals primarily with heavy flavor physics. The third part of the research program, Task D, deals with preparation for research at the SSC. The authors have been active in the development of tracking detectors for the SSC since 1989, and are now concentrating on the design and construction of straw tube drift chambers for the solenoid detector

  19. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  20. Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  1. Physical Characterization of Florida International University Simulants

    Energy Technology Data Exchange (ETDEWEB)

    HANSEN, ERICHK.

    2004-08-19

    Florida International University shipped Laponite, clay (bentonite and kaolin blend), and Quality Assurance Requirements Document AZ-101 simulants to the Savannah River Technology Center for physical characterization and to report the results. The objectives of the task were to measure the physical properties of the fluids provided by FIU and to report the results. The physical properties were measured using the approved River Protection Project Waste Treatment Plant characterization procedure [Ref. 1]. This task was conducted in response to the work outlined in CCN066794 [Ref. 2], authored by Gary Smith and William Graves of RPP-WTP.

  2. Generation of a bubble universe using a negative energy bath

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Yeom, Dong-han

    2011-01-01

    This paper suggests a model for a bubble universe using buildable false vacuum bubbles. We study the causal structures of collapsing false vacuum bubbles using double-null simulations. False vacuum bubbles violate the null energy condition and emit negative energy along the outgoing direction through semi-classical effects. If there are a few collapsing false vacuum bubbles and they emit negative energy to a certain region, then the region can be approximated by a negative energy bath, which means that the region is homogeneously filled by negative energy. If a false vacuum bubble is generated in the negative energy bath and the tension of the bubble effectively becomes negative in the bath, then the bubble can expand and form an inflating bubble universe. This scenario uses a set of assumptions different from those in previous studies because it does not require tunneling to unbuildable bubbles.

  3. The Mars Simulation Laboratory, University of Aarhus

    Science.gov (United States)

    Merrison, J. P.; Field, D.; Finster, K.; Lomstein, B. Aa.; Nørnberg, P.; Ramsing, N. B.; Uggerhøj, E.

    2001-08-01

    Present day Mars presents an extremely hostile environment to organic material. The average temperature is low (-50C), the atmospheric pressure is also low (7mbar) and there is little water over most of the planet. Chemically the surface is extremely oxidising and no signs of organic material have been detected. There is also a strong component of ultra violet radiation in the Martian sun light, lethal to most organisms. At Aarhus University we have constructed a Mars simulation environment which reproduces the physical, chemical and mineralogical conditions on Mars. It is hoped to set limits on where organic matter (or even life) might exist on Mars, for example at some depth under the surface, beneath the polar ice or within rocks. It is also possible to adjust the conditions in the simulation to investigate the most extreme environments in which organisms can be preserved or still function.

  4. Workplace Energy Conservation at Michigan State University

    Science.gov (United States)

    Allen, Summer; Marquart-Pyatt, Sandra T.

    2018-01-01

    Purpose: This research contributes to the literature on workplace energy conservation by examining the predictors of individual employee behaviors and policy support in a university. The purpose of this research is to better understand what factors influence energy conservation behaviors in this setting to inform programs and interventions.…

  5. Update on DOE's Nuclear Energy University Program

    International Nuclear Information System (INIS)

    Lambregts, Marsha J.

    2009-01-01

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R and D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R and D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R and D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  6. Fusion the energy of the universe

    CERN Document Server

    McCracken, Garry

    2012-01-01

    Fusion: The Energy of the Universe, 2e is an essential reference providing basic principles of fusion energy from its history to the issues and realities progressing from the present day energy crisis. The book provides detailed developments and applications for researchers entering the field of fusion energy research. This second edition includes the latest results from the National Ignition Facility at the Lawrence Radiation Laboratory at Livermore, CA, and the progress on the International Thermonuclear Experimental Reactor (ITER) tokamak programme at Caderache, France.

  7. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  8. University of Arizona Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Joseph [Univ. of Arizona, Tucson, AZ (United States); Muralidharan, Krishna [Univ. of Arizona, Tucson, AZ (United States)

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  9. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  10. Renewable energy education at the University level

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, S.C. [Asian Institute of Technology, Pathumthani (Thailand). Energy Program

    2001-03-01

    The rapid growth in global enrolment of students for higher education observed in recent decades is expected to continue in the early next century. However, the role of the universities and their approach to education may undergo substantial transformation in the future. The Internet is expected to play a significant role in university-level education in general and renewable energy education (REE) in particular. Currently, REE at different universities is characterized by a lack of uniformity in terms of duration, coursework, emphasis on research, etc. There is a need to establish guidelines and standards regarding academic programs and to establish a system of accreditation, preferably global, of REE in different academic disciplines and departments. (author)

  11. Origin of the universe and high energy

    International Nuclear Information System (INIS)

    Montoya Z, M.

    1994-01-01

    In this book it is briefly exposed what it is done in the world in relation with the high energy physics. Also, it is presented a brief historical description of the earth evolution, the universe and physics in general. This book counts with eight chapters. The first chapter deals with the relationship of man with science. The second chapter speaks about the origin of universe. The third chapter comments about the stars and galaxies formation. The fourth chapter treats how the scientists and researchers continue to studying the subnuclear world. The fifth chapter deals with subjects and models of nuclear physics. In the sixth chapter it is described the function of the particles accelerator. The seventh chapter comments about the multidisciplinary aspects of the research of elementary particles. Finally, the eighth chapter deals with the advances of high energy physics in the andean region of Latin America. (author)

  12. Dark Energy Found Stifling Growth in Universe

    Science.gov (United States)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its

  13. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  14. Supernovae, dark energy and the accelerating universe

    CERN Multimedia

    Perlmutter, Saul

    1999-01-01

    Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.

  15. Universal standard for the smart energy home

    International Nuclear Information System (INIS)

    Hatler, M.

    2009-01-01

    Smart metering systems are now being installed in countries throughout the world. This article discussed technologies designed to connect in-home electrical devices such as thermostats, energy displays, and computers to the electricity grid. The smart-grid connected devices will form part of the home area network (HAN) designed to provide consumers with real time control of their energy use. Many governments are now mandating the use of HAN interfaces, and members of the energy industry are developing global standards for HANs. Within 5 years, it is estimated that over 126 million smart meters will be installed in households worldwide. Using HANs, consumers will be able to shift their usage away from peak energy usage times that are more expensive. Studies have demonstrated that the use of dynamic pricing options can result in a 50 per cent load reduction during critical peak periods. A universal standard and certification process is currently underway to prevent HAN market fragmentation and to ensure plug-and-play interoperability among HAN devices. It was concluded that the smart energy home will present large market opportunities for software developers, investors, and manufacturers. 1 fig

  16. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  17. Molecular dynamics simulations and free energy profile of ...

    Indian Academy of Sciences (India)

    aDepartment of Chemical Engineering, bDepartment of Chemistry, Amirkabir University of Technology,. 15875-4413 ... Lipid bilayers; Paracetamol; free energy; molecular dynamics simulation; membrane. 1. ..... bilayer is less favourable due to the hydrophobic nature .... Orsi M and Essex J W 2010 Soft Matter 6 3797. 54.

  18. Imprints of dark energy on the structuring of the universe

    International Nuclear Information System (INIS)

    Bouillot, V.

    2012-01-01

    This thesis is dedicated to the research of specific imprints of Dark Energy in both linear and non-linear gravitational collapse processes through theoretical and numerical developments. Indeed, many aspects of cosmology has been tackled: first, to study the influence of various complex Dark Energy models on the halo clustering, we develop in a covariant formalism the usual linear cosmological perturbation theory. It gives an extent of the classical Sasaki-Mukhanov equations to scalar fields coupled with multiple cosmological fluids. The result is the description of the evolution of linear perturbations of complex Dark Energy models with a minimal number of degrees of freedom. In the last decade, the number and quality of cosmological observations on the matter distribution in the Universe as well on the velocity fields have increased exponentially. In particular, recent measurements show the existence of abnormally high velocity fields with respect to the linear theory in ΛCDM. The explanation of this cosmic flow excess at intermediate scales is the main contribution of this thesis: reinterpreting the anomalous cosmic flow (Watkins et al.) measured at scales ∼ 50 Mpc/h as a rare event realization in linear theory, we propose a new cosmological probe. This probe uses the scale of convergence of the measured cosmic flow with the theoretical one. We develop the sensibility on this new cosmological probe in three competitive Dark Energy models. Those results, based on analytical methods, are compared with measures issued from state-of-the-art numerical simulations we are deeply involved in. Then, starting from those numerical simulations, we investigate the dynamical origin of such a cosmic flow: we prove this movement to be due to an asymmetry of the three-dimensional matter distribution at higher scales (∼ 80 Mpc/h). This asymmetry is shown by introducing an original estimator of the matter field, which quantify the deviation from symmetry of a given field

  19. Energy Consumption Forecasting for University Sector Buildings

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2017-10-01

    Full Text Available Reliable energy forecasting helps managers to prepare future budgets for their buildings. Therefore, a simple, easier, less time consuming and reliable forecasting model which could be used for different types of buildings is desired. In this paper, we have presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type. A single mathematical equation for forecasting daily electricity usage of university buildings has been developed using the Multiple Regression (MR technique. Data of two such buildings, located at the Southwark Campus of London South Bank University in London, have been used for this study. The predicted test results of MR model are examined and judged against real electricity consumption data of both buildings for year 2011. The results demonstrate that out of six explanatory variables, three variables; surrounding temperature, weekday index and building type have significant influence on buildings energy consumption. The results of this model are associated with a Normalized Root Mean Square Error (NRMSE of 12% for the administrative building and 13% for the academic building. Finally, some limitations of this study have also been discussed.

  20. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  1. The highest energies in the Universe

    International Nuclear Information System (INIS)

    Rebel, H.

    2006-01-01

    There are not many issues of fundamental importance which have induced so many problems for astrophysicists like the question of the origin of cosmic rays. This radiation from the outer space has an energy density comparable with that of the visible starlight or of the microwave background radiation. It is an important feature of our environment with many interesting aspects. A most conspicuous feature is that the energy spectrum of cosmic rays seems to have no natural end, though resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the so-called Greisen-Zatsepin-Kuz’min cutoff at about EGZK = 5 × 10"1"9 eV. In fact the highest particle energies ever observed on the Earth, stem from observations of Ultrahigh Energy Cosmic Rays (E > 3 × 10"1"9 eV). But the present observations by the AGASA and HiRes Collaborations, partly a matter of debate, are origin of a number of puzzling questions, where these particles are coming from, by which gigantic acceleration mechanism they could gain such tremendous energies and how they have been able to propagate to our Earth. These questions imply serious problems of the understanding of our Universe. There are several approaches to clarify the mysteries of the highest energies and to base the observations on larger statistical accuracy. The Pierre Auger Observatory, being in installation in the Pampa Amarilla in the Province Mendoza in Argentina, is a hybrid detector, combining a large array of water Cerenkov detectors (registering charged particles generated in giant extended air showers) with measurements of the fluorescence light produced during the air shower development. This contribution will illustrate the astrophysical motivation and the current status of the experimental efforts, and sketch the ideas about the origin of these particles.

  2. Building energy demand aggregation and simulation tools

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Heller, Alfred; Rode, Carsten

    2015-01-01

    to neighbourhoods and cities. Buildings occupy a key place in the development of smart cities as they represent an important potential to integrate smart energy solutions. Building energy consumption affects significantly the performance of the entire energy network. Therefore, a realistic estimation...... of the aggregated building energy use will not only ensure security of supply but also enhance the stabilization of national energy balances. In this study, the aggregation of building energy demand was investigated for a real case in Sønderborg, Denmark. Sixteen single-family houses -mainly built in the 1960s......- were examined, all connected to the regional district heating network. The aggregation of building energy demands was carried out according to typologies, being represented by archetype buildings. These houses were modelled with dynamic energy simulation software and with a simplified simulation tool...

  3. Interacting agegraphic dark energy models in non-flat universe

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    A so-called 'agegraphic dark energy' was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate w D =-1 crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. k=0, all previous results of agegraphic dark energy in flat universe are restored.

  4. University of Utah, Energy Commercialization Center

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James [Univ. of Utah, Salt Lake City, UT (United States)

    2014-01-17

    During the Energy Commercialization Center’s (ECC) three years in operation, the only thing constant was change. The world of commercialization and cleantech evolved significantly during the time the ECC was formed and operating, including: the availability of cleantech funding lessoned, the growth of incubators and accelerators skyrocketed, the State of Utah created an office dedicated to energy development, the University of Utah was both praised and criticized for its success in commercialization, and the Federal government temporarily shut down. During the three-year grant there were three principle investigators on the grant, as well as three directors for the University’s Commercialization Office. Change can be hard for an organization,but as we instruct the companies we support, “Fail fast and fail often, because it is the fastest path to success.” Although there were some unanticipated challenges along the way, the local ecosystem is stronger because of the ECC’s efforts. Perhaps the greatest lesson learned was the importance of aligned incentives between key stakeholders in the commercialization process and the need for resources at the company and individual entrepreneur levels. The universities have systems and incentives to commercialize technologies, but creating value and companies generally rest with the individuals and entrepreneurs. Unfortunately the ECC was unable to create a viable mechanism to transfer the commercialization process that successfully aligned incentives and achieve a more effective ecosystem within the Rocky Mountain West. However, the ECC was successful in adding value to the individual ecosystems, and connecting national resources to regional and local needs. Regarding the ECC’s effectiveness in developing a cleantech commercialization ecosystem, initial inroads and relationships were established with key stakeholders. However, incentives, perceived or real competition, differences in commercialization processes, and

  5. Green energy and hydrogen research at University of Waterloo

    International Nuclear Information System (INIS)

    Fowler, M.

    2006-01-01

    This paper summarises Green Energy and Hydrogen Research at the University of Waterloo in Canada. Green energy includes solar, wind, bio fuels, hydrogen economy and conventional energy sources with carbon dioxide sequestration

  6. The role of simulation in designing for universal access

    DEFF Research Database (Denmark)

    Keates, Simeon; Looms, Peter

    2014-01-01

    the difficulty of finding and recruiting suitable participants. Simulation aids offer a potentially cost-effective replacement or complement to participatory design. This paper examines a number of the issues associated with the use of simulation aids when designing for Universal Access. It concludes...

  7. Energy simulation in building design

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1992-01-01

    Design decision support related to building energy consumption and / or indoor climate, should be based on an integral approach of environment, building, heating, ventilating and airconditioning (HVAC) system and occupants. The tools to achieve this are now available in the form of computer

  8. University of Kentucky Center for Applied Energy Research

    Science.gov (United States)

    University of Kentucky Center for Applied Energy Research Search Help Research Our Expertise University of Kentucky Center for Applied Energy Research | An Equal Opportunity University All Rights Remediation Power Generation CAER TechFacts CAER Factsheets CAER Affiliations Research Contacts Publications

  9. Dual-energy mammography: simulation studies

    International Nuclear Information System (INIS)

    Bliznakova, K; Kolitsi, Z; Pallikarakis, N

    2006-01-01

    This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images

  10. USE Efficiency -- Universities and Students for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, Daniela

    2010-09-15

    Universities and Student for Energy Efficiency is a European Project within the Intelligent Energy Programme. It intends to create a common stream for energy efficiency systems in university buildings. Universities and students are proposed as shining examples for energy efficiency solutions and behaviour. The Project involves 10 countries and has the aim to improve energy efficiency in university buildings. Students are the main actors of the project together with professors and technicians. To act on students means to act on direct future market players in diffusion of public opinions. A strong communication action supports the succeeding of the action.

  11. Simulation of tendon energy storage in pedaling

    DEFF Research Database (Denmark)

    Rasmussen, John; Damsgaard, Michael; Christensen, Søren Tørholm

    2001-01-01

    The role of elastic energy stored in tendons during pedaling is investigated by means of numerical simulation using the AnyBody body modeling system. The loss of metabolic energy due to tendon elasticity is computed and compared to the mechanical work involved in the process. The AnyBody simulati...

  12. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    In order to promote adoption of smart grid with the general public it is necessary to be able to visualize the benefits of a smart home. Software tools that model the effects can help significantly with this. However, only little work has been done in the area of simulating and visualizing...... the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...... as well as appliances and other electrical components used in the modeled homes....

  13. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  14. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  15. Visualizing Energy on Target: Molecular Dynamics Simulations

    Science.gov (United States)

    2017-12-01

    ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target

  16. Fusion: The Energy of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J [Ecole Polytechnique Federale de Lausanne (Switzerland)

    2006-05-15

    This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the 'nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the

  17. Fusion: The Energy of the Universe

    International Nuclear Information System (INIS)

    Lister, J

    2006-01-01

    This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the 'nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the authors call 'false

  18. Ultrahigh energy nuclei propagation in a structured, magnetized universe

    International Nuclear Information System (INIS)

    Armengaud, Eric; Sigl, Guenter; Miniati, Francesco

    2005-01-01

    We compare the propagation of iron and proton nuclei above 10 19 eV in a structured Universe with source and magnetic field distributions obtained from a large-scale structure simulation and source densities ∼10 -5 Mpc -3 . All relevant cosmic ray interactions are taken into account, including photo-disintegration and propagation of secondary products. Iron injection predicts spectral shapes different from proton injection which disagree with existing data below ≅30 EeV. Injection of light nuclei or protons must therefore contribute at these energies. However, at higher energies, existing data are consistent with injection of pure iron with spectral indices between ∼2 and ∼2.4. This allows a significant recovery of the spectrum above ≅100 EeV, especially in the case of large deflections. Significant autocorrelation and anisotropy, and considerable cosmic variance are also predicted in this energy range. The mean atomic mass fluctuates considerably between different scenarios. At energies below 60 EeV, if the observed A > or approx. 35, magnetic fields must have a negligible effect on propagation. At the highest energies the observed flux will be dominated by only a few sources whose location may be determined by next generation experiments to within 10-20 deg. even if extra-galactic magnetic fields are important

  19. Philosophy Iceberg of the Universe Consciousness Energy (The Theory of the Universe Consciousness Energy Expression

    Directory of Open Access Journals (Sweden)

    Georgii Chuzhyk

    2017-02-01

    Full Text Available We offer an evolutionary and alternative solution to the problem of the Universe. The theory involves the formation of the Universe by means of all the sequences of energies and energy of consciousness with gradual structural wrapping by energy shells recording and accumulating them; formation of the core dispatch centers performing energetic and informational communication with a single rhythm among all space objects that form civilizations. We outline a way of human consciousness formation. The theory explains how the first objectively appeared sparks of human consciousness energy were evolving, accumulating and being recorded, formed the Earth’s noosphere in its core dispatch center. The consciousness energy structure has not yet been discovered and that inhibits the science, which is wary of those who define it as a stream of multi-super large reflection objectively reflecting the highest degree of manifestation of civilization collective creativity, named by John Wheeler as a substance of the information — “It from Bit.” Core dispatching centers of all cosmic objects consciousness energies such as the Earth are combined into the Universe core dispatcher center of which called the Cosmic Consciousness. Many hundreds of billions of years the Cosmic Consciousness absorbed and only recorded the sequences, experience of which ended strictly following the laws of nature, formed a unique quality — for each new sequence by its energetic and informational signal it can highlight, express from its archive the evolution of similar Roadmap, which had been already passed by a similar sequence. The Cosmic Consciousness indirectly provides the most important thing in the Universe — not interfering, it retains all its evolutionary integrity and harmony. All of them constantly and continuously follow and check it through bioinformational communication, without deviation move toward their goal. Life of the Earth civilization is also moving

  20. Covariant generalized holographic dark energy and accelerating universe

    Science.gov (United States)

    Nojiri, Shin'ichi; Odintsov, S. D.

    2017-08-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F( R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy.

  1. Classifying the future of universes with dark energy

    International Nuclear Information System (INIS)

    Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi

    2005-01-01

    We classify the future of the universe for general cosmological models including matter and dark energy. If the equation of state of dark energy is less then -1, the age of the universe becomes finite. We compute the rest of the age of the universe for such universe models. The behaviour of the future growth of matter density perturbation is also studied. We find that the collapse of the spherical overdensity region is greatly changed if the equation of state of dark energy is less than -1

  2. universal specific energy curve for para- bolic open channels

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    UNIVERSAL SPECIFIC ENERGY CURVE FOR PARA-. BOLIC OPEN CHANNELS. K.O. Aiyesimoju. Department of Civil Engineering. University of Lagos. Lagos, Nigeria. ABSTRACT. From the general relationship between specific energy and flow depth for all open channels, the specific relationship for parabolic open ...

  3. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  4. University of Maryland Energy Research Center |

    Science.gov (United States)

    breakthroughs into commercial, clean energy solutions. The Clark School Celebrates Women's History Month The Clark School is featuring our female engineering faculty members throughout March. UMD Researchers

  5. BLAST: Building energy simulation in Hong Kong

    Science.gov (United States)

    Fong, Sai-Keung

    1999-11-01

    The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was

  6. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  7. Building a universal nuclear energy density functional

    International Nuclear Information System (INIS)

    Bertsch, G F

    2007-01-01

    This talk describes a new project in SciDAC II in the area of low-energy nuclear physics. The motivation and goals of the SciDAC are presented as well as an outline of the theoretical and computational methodology that will be employed. An important motivation is to have more accurate and reliable predictions of nuclear properties including their binding energies and low-energy reaction rates. The theoretical basis is provided by density functional theory, which the only available theory that can be systematically applied to all nuclei. However, other methodologies based on wave function methods are needed to refine the functionals and to make applications to dynamic processes

  8. DNA - A Thermal Energy System Simulator

    DEFF Research Database (Denmark)

    2008-01-01

    DNA is a general energy system simulator for both steady-state and dynamic simulation. The program includes a * component model library * thermodynamic state models for fluids and solid fuels and * standard numerical solvers for differential and algebraic equation systems and is free and portable...... (open source, open use, standard FORTRAN77). DNA is text-based using whichever editor, you like best. It has been integerated with the emacs editor. This is usually available on unix-like systems. for windows we recommend the Installation instructions for windows: First install emacs and then run...... the DNA installer...

  9. High energy universe – Satellite missions

    Indian Academy of Sciences (India)

    hydrogen and helium are fully ionized. Heavier ... one solar mass is completely converted into energy in one second, say by thermonuclear fusion. ... The big puzzle, however, is the production of a nonthermal spectrum from an explosion.

  10. arXiv Averaged Energy Conditions and Bouncing Universes

    CERN Document Server

    Giovannini, Massimo

    2017-11-16

    The dynamics of bouncing universes is characterized by violating certain coordinate-invariant restrictions on the total energy-momentum tensor, customarily referred to as energy conditions. Although there could be epochs in which the null energy condition is locally violated, it may perhaps be enforced in an averaged sense. Explicit examples of this possibility are investigated in different frameworks.

  11. Simulation of Spheromak Evolution and Energy Confinement

    International Nuclear Information System (INIS)

    Cohen, B; Hooper, E; Cohen, R; Hill, D; McLean, H; Wood, R; Woodruff, S; Sovinec, C; Cone, G

    2004-01-01

    Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the geometry of the experiment (plasma gun and flux conserver), the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations are providing a better understanding of the dominant physics in SSPX, including when the flux surfaces close and the mechanisms limiting the efficiency of electrostatic drive

  12. Simulation of Spheromak Evolution and Energy Confinement

    International Nuclear Information System (INIS)

    Cohen, B.; Hooper, E.; Cohen, R.; Hill, D.; McLean, H.; Wood, R.; Woodruff, S.

    2004-01-01

    Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The dimensional, simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the geometry of the experiment (plasma gun and flux conserver), the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations are providing a better understanding of the dominant physics in SSPX, including when the flux surfaces close and the mechanisms limiting the efficiency of electrostatic drive

  13. Simulation approach towards energy flexible manufacturing systems

    CERN Document Server

    Beier, Jan

    2017-01-01

    This authored monograph provides in-depth analysis and methods for aligning electricity demand of manufacturing systems to VRE supply. The book broaches both long-term system changes and real-time manufacturing execution and control, and the author presents a concept with different options for improved energy flexibility including battery, compressed air and embodied energy storage. The reader will also find a detailed application procedure as well as an implementation into a simulation prototype software. The book concludes with two case studies. The target audience primarily comprises research experts in the field of green manufacturing systems. .

  14. Simulation of the Energy Saver refrigeration system

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Nicholls, J.E.; Mulholland, G.T.

    1981-10-01

    The helium refrigeration for the Energy Saver is supplied by a Central Helium Liquefier and 24 Satellite Refrigerators installed over a 1-1/4 square mile area. An interactive, software simulator has been developed to calculate the refrigeration available from the cryogenic system over a wide range of operating conditions. The refrigeration system simulator incorporates models of the components which have been developed to quantitatively describe changes in system performance. The simulator output is presented in a real-time display which has been used to search for the optimal operating conditions of the Satellite-Central system, to examine the effect of an extended range of operating parameters and to identify equipment modifications which would improve the system performance

  15. Methodology for Validating Building Energy Analysis Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Wortman, D.; O' Doherty, B.; Burch, J.

    2008-04-01

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  16. Informing the Financing of Universal Energy Access

    DEFF Research Database (Denmark)

    Bazilian, Morgan; Nussbaumer, Patrick; Gualberti, Giorgio

    distribution sectors in developing countries. We build on the methodology used to quantify the flows of investment in the climate change area. This methodology relies on national gross fixed capital formation, overseas development assistance, and foreign direct investment. These high-level and aggregated......, for the poorest countries, one can conclude that the current flows are considerably short (at least five times) of what will be required to provide a basic level of access to clean, modern energy services to the “energy poor”....

  17. The Use of Simulation Business Games in University Education

    Directory of Open Access Journals (Sweden)

    Z. Birknerova

    2010-11-01

    Full Text Available Rapid and deep changes in economics and business environment along with the dynamic development of computer art and communication technologies represent the main factors identifying the development in the area of simulation business games. These games may be considered a strange, content-determined group of simulation games. The description of their content specialties, basic elements, and possibilities of their use are the essence of our report. In the conclusion we present a short research carried out at the Faculty of Management of the University of Prešov in Prešov where we made an investigation of the students´ opinions on the use of business games in the university educational process.

  18. A simulation of laser energy absorption by nanowired surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F., E-mail: miguel.vasconcelos@usp.br, E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Escola de Artes, Ciências e Humanidades

    2017-07-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  19. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  20. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider

  1. Indiana University High Energy Physics, Task A

    Energy Technology Data Exchange (ETDEWEB)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  2. High Energy Physics at Tufts University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Gary R. [Tufts Univ., Medford, MA (United States); Oliver, William P. [Tufts Univ., Medford, MA (United States); Napier, Austin [Tufts Univ., Medford, MA (United States); Gallagher, Hugh R. [Tufts Univ., Medford, MA (United States)

    2012-07-18

    In this Final Report, we the researchers of the high energy physics group at Tufts University summarize our works and achievements in three frontier areas of elementary particle physics: (i) Neutrino physics at the Intensity Frontier, (ii) Collider physics at the Energy Frontier, and (iii) Theory investigations of spin structure and quark-gluon dynamics of nucleons using quantum chromodynamics. With our Neutrino research we completed, or else brought to a useful state, the following: Data-taking, physics simulations, physics analysis, physics reporting, explorations of matter effects, and detector component fabrication. We conducted our work as participants in the MINOS, NOvA, and LBNE neutrino oscillation experiments and in the MINERvA neutrino scattering experiment. With our Collider research we completed or else brought to a useful state: Data-taking, development of muon system geometry and tracking codes, software validation and maintenance, physics simulations, physics analysis, searches for new particles, and study of top-quark and B-quark systems. We conducted these activities as participants in the ATLAS proton-proton collider experiment at CERN and in the CDF proton-antiproton collider experiment at Fermilab. In our Theory research we developed QCD-based models, applications of spin phenomenology to fundamental systems, fitting of models to data, presenting and reporting of new concepts and formalisms. The overarching objectives of our research work have always been: 1) to test and clarify the predictions of the Standard Model of elementary particle physics, and 2) to discover new phenomena which may point the way to a more unified theoretical framework.

  3. Theoretical high energy physics research at the University of Chicago

    International Nuclear Information System (INIS)

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1990-09-01

    This report discusses research being done at the University of Chicago in High Energy Physics. Some topic covered are: CP violation; intermediate vector bosons; string models; supersymmetry; and rare decay of kaons

  4. Dark Energy and the Fate of the Universe

    Science.gov (United States)

    Linde, A.

    2002-12-01

    The present stage of acceleration of the universe may continue forever. However, we have found a broad class of theories of dark energy that lead to a global collapse of the universe 10-30 billion years from now. I will discuss the possibility to find our destiny using cosmological observations.

  5. Covariant generalized holographic dark energy and accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya (Japan); Odintsov, S.D. [ICREA, Barcelona (Spain); Institute of Space Sciences (IEEC-CSIC), Barcelona (Spain); National Research Tomsk State University, Tomsk (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2017-08-15

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  6. Covariant generalized holographic dark energy and accelerating universe

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, S.D.

    2017-01-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  7. 9. university discussion meeting on energy

    International Nuclear Information System (INIS)

    1988-01-01

    Eight conference papers are presented which discussed the following topics: 1. Energy and environment - conflict or harmony; 2. A common electricity market within the European Community - from the point of view of the German electricity industry; 3. Radioactive waste in nuclear engineering; 4. Effects of electric and magnetic fields on humans; 5. Classroom ventilation; 6. The polluted atmosphere - potential effects on the global climate; 7. Environment-centered marketing, a challenge to a household appliances supplier; 8. High-temperature superconductors - perspectives for application. (UA) [de

  8. Constrained Local UniversE Simulations: a Local Group factory

    Science.gov (United States)

    Carlesi, Edoardo; Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan; Yepes, Gustavo; Libeskind, Noam I.; Pilipenko, Sergey V.; Knebe, Alexander; Courtois, Hélène; Tully, R. Brent; Steinmetz, Matthias

    2016-05-01

    Near-field cosmology is practised by studying the Local Group (LG) and its neighbourhood. This paper describes a framework for simulating the `near field' on the computer. Assuming the Λ cold dark matter (ΛCDM) model as a prior and applying the Bayesian tools of the Wiener filter and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the ΛCDMscenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of haloes must obey specific isolation, mass and separation criteria. At the second level, the orbital angular momentum and energy are constrained, and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations, 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG `factory' enables the construction of a large ensemble of simulated LGs. Suitable candidates for high-resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG.

  9. Measurement and analysis of leakage neutron energy spectra around the Kinki University Reactor, UTR-KINKI

    CERN Document Server

    Ogawa, Y; Sagawa, H; Tsujimoto, T

    2002-01-01

    The highly sensitive cylindrical multi-moderator type neutron spectrometer was constructed for measurement of low level environmental neutrons. This neutron spectrometer was applied for the determination of leakage neutron energy spectra around the Kinki University Reactor. The analysis of the leakage neutron energy spectra was performed by MCNP Monte Carlo code. From the obtained results, the agreement between the MCNP predictions and the experimentally determined values is fairly good, which indicates the MCNP model is correctly simulating the UTR-KINKI.

  10. Financial Energy Conservation Projects at Independent Colleges and Universities.

    Science.gov (United States)

    Morrell, L. R.

    1981-01-01

    Factors affecting financial decisions for energy conservation projects at independent colleges and universities and methods that may be used when making a financial investment decision are examined, along with sources of funding for the projects. Projects that result in the conservation of energy resources might, in a time of extreme shortages,…

  11. Participation in High Energy Physics at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [Univ. of Chicago, IL (United States). Enrico Fermi Inst.

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  12. Building a Universal Nuclear Energy Density Functional

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe A. [Michigan State Univ., East Lansing, MI (United States); Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  13. Acceleration of the universe dark energy or modified

    International Nuclear Information System (INIS)

    Cardenas, Rolando; Leyva, Yoelsy

    2007-01-01

    We present a composite model of dark energy, motivated in string and quantum field theory considerations. Then we speak on gravity theories in which the gravity Lagrangian is modified, resulting in a modification of General Relativity. We outline a methodology allowing a mapping between these two theories, i. e., both dark energy models and modified gravity can give the same cosmological dynamics. We apply aforementioned methodology to obtain the mapping composite dark energy-modified gravity for a particular case. Cosmic expansion history takes into account very large scales, the homogeneous Universe, and can not discriminate between above two theories. However, cosmic growth history takes into consideration intermediate cluster and galactic scales, the inhomogeneous Universe, and there might be the clue to discriminate whether the current acceleration of the Universe is because it is filled with a new fluid having repulsive gravity (dark energy) or it is just that gravity gets weaker and long scales (modified gravity). (Author)

  14. Scalable Quantum Simulation of Molecular Energies

    Directory of Open Access Journals (Sweden)

    P. J. J. O’Malley

    2016-07-01

    Full Text Available We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.

  15. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  16. Potential reduction of energy consumption in public university library

    Science.gov (United States)

    Noranai, Z.; Azman, ADF

    2017-09-01

    Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.

  17. Simulations of structure formation in interacting dark energy cosmologies

    International Nuclear Information System (INIS)

    Baldi, M.

    2009-01-01

    The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.

  18. A universal preconditioner for simulating condensed phase materials

    Energy Technology Data Exchange (ETDEWEB)

    Packwood, David; Ortner, Christoph, E-mail: c.ortner@warwick.ac.uk [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Kermode, James, E-mail: j.r.kermode@warwick.ac.uk [Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Mones, Letif [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Bernstein, Noam [Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375 (United States); Woolley, John [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gould, Nicholas [Scientific Computing Department, STFC-Rutherford Appleton Laboratory Chilton, Oxfordshire OX11 0QX (United Kingdom); Csányi, Gábor, E-mail: gc121@cam.ac.uk [Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2016-04-28

    We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.

  19. Simulation of diesel engine energy conversion processes

    Directory of Open Access Journals (Sweden)

    А. С. Афанасьев

    2016-12-01

    Full Text Available In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed.The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.

  20. Campus Energy Approach, REopt Overview, and Solar for Universities

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Geet, Otto D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This presentation gives an overview of the climate neutral research campus framework for reducing energy use and meeting net zero electricity on research campuses. It gives an overview of REopt and the REopt Lite web tool, which can be used to evaluate cost optimal sizes of behind the meter PV and storage. It includes solar PV installation trends at universities and case studies for projects implemented on university campuses.

  1. Sequestration of vacuum energy and the end of the universe.

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2015-03-13

    Recently, we proposed a mechanism for sequestering the standard model vacuum energy that predicts that the Universe will collapse. Here we present a simple mechanism for bringing about this collapse, employing a scalar field whose potential is linear and becomes negative, providing the negative energy density required to end the expansion. The slope of the potential is chosen to allow for the expansion to last until the current Hubble time, about 10^{10} years, to accommodate our Universe. Crucially, this choice is technically natural due to a shift symmetry. Moreover, vacuum energy sequestering selects radiatively stable initial conditions for the collapse, which guarantee that immediately before the turnaround the Universe is dominated by the linear potential which drives an epoch of accelerated expansion for at least an e fold. Thus, a single, technically natural choice for the slope ensures that the collapse is imminent and is preceded by the current stage of cosmic acceleration, giving a new answer to the "why now?"

  2. Modeling and Simulation of Energy Recovery from a Photovoltaic ...

    African Journals Online (AJOL)

    Modeling and Simulation of Energy Recovery from a Photovoltaic Solar cell. ... Photovoltaic (PV) solar cell which converts solar energy directly into electrical energy is one of ... model of the solar panel which could represent the real systems.

  3. University of Central Florida / Deep Space Industries Asteroid Regolith Simulants

    Science.gov (United States)

    Britt, Daniel; Covey, Steven D.; Schultz, Cody

    2017-10-01

    Introduction: The University of Central Florida (UCF), in partnership with Deep Space Industries (DSI) are working under a NASA Phase 2 SBIR contract to develop and produce a family of asteroid regolith simulants for use in research, engineering, and mission operations testing. We base simulant formulas on the mineralogy, particle size, and physical characteristics of CI, CR, CM, C2, CV, and L-Chondrite meteorites. The advantage in simulating meteorites is that the vast majority of meteoritic materials are common rock forming minerals that are available in commercial quantities. While formulas are guided by the meteorites our approach is one of constrained maximization under the limitations of safety, cost, source materials, and ease of handling. In all cases our goal is to deliver a safe, high fidelity analog at moderate cost.Source Materials, Safety, and Biohazards: A critical factor in any useful simulant is to minimize handling risks for biohazards or toxicity. All the terrestrial materials proposed for these simulants were reviewed for potential toxicity. Of particular interest is the organic component of volatile rich carbonaceous chondrites which contain polycyclic aromatic hydrocarbons (PAHs), some of which are known carcinogens and mutagens. Our research suggests that we can maintain rough chemical fidelity by substituting much safer sub-bituminous coal as our organic analog. A second safety consideration is the choice of serpentine group materials. While most serpentine polymorphs are quite safe we avoid fibrous chrysotile because of its asbestos content. Terrestrial materials identified as inputs for our simulants are common rock forming minerals that are available in commercial quantities. These include olivine, pyroxene, plagioclase feldspar, smectite, serpentine, saponite, pyrite, and magnetite in amounts that are appropriate for each type. For CI's and CR’s, their olivines tend to be Fo100 which is rare on Earth. We have substituted Fo90 olivine

  4. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  5. Efficient universal quantum channel simulation in IBM's cloud quantum computer

    Science.gov (United States)

    Wei, Shi-Jie; Xin, Tao; Long, Gui-Lu

    2018-07-01

    The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

  6. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  7. Discrete kinetic models from funneled energy landscape simulations.

    Directory of Open Access Journals (Sweden)

    Nicholas P Schafer

    Full Text Available A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK. In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an "inside-out", nucleation-propagation like character.

  8. Quasar Formation and Energy Emission in Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2012-07-01

    Full Text Available Formation and energy emission of quasars are investigated in accord with the black hole universe, a new cosmological model recently developed by Zhang. According to this new cosmological model, the universe originated from a star-like black hole and grew through a supermassive black hole to the present universe by accreting ambient matter and merging with other black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe have been fully ex- plained in Paper I and II. This study as Paper III explains how a quasar forms, ignites and releases energy as an amount of that emitted by dozens of galaxies. A main sequence star, after its fuel supply runs out, will, in terms of its mass, form a dwarf, a neutron star, or a black hole. A normal galaxy, after its most stars have run out of their fuels and formed dwarfs, neutron stars, and black holes, will eventually shrink its size and collapse towards the center by gravity to form a supermassive black hole with billions of solar masses. This collapse leads to that extremely hot stellar black holes merge each other and further into the massive black hole at the center and meantime release a huge amount of radiation energy that can be as great as that of a quasar. Therefore, when the stellar black holes of a galaxy collapse and merge into a supermassive black hole, the galaxy is activated and a quasar is born. In the black hole universe, the observed dis- tant quasars powered by supermassive black holes can be understood as donuts from the mother universe. They were actually formed in the mother universe and then swallowed into our universe. The nearby galaxies are still very young and thus quiet at the present time. They will be activated and further evolve into quasars after billions of years. At that time, they will enter the universe formed by the currently observed distant quasars as similar to the distant quasars entered our universe

  9. The Louisiana State University waste-to-energy incinerator

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  10. An energy literacy strategy from the University of Calgary for the entire energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C.; Heffernan, B.; Jenden, J.; Lloyd, E.R.; Toor, J.; Williams, J.E., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada)

    2014-07-01

    The public at large needs to have a better understanding of the entire energy sector in order to put the benefits and drawbacks of nuclear power into proper perspective.University science departments can and should play a more significant role in educating the public about various aspects of nuclear power, and energy in general. This paper discusses how the University of Calgary is launching initiatives to help teach the public about energy issues. These initiatives include a course for non-technical students on energy, a similar course for people within the energy industry without a technical background, and an extensive online encyclopedia to support these courses. (author)

  11. An energy literacy strategy from the University of Calgary for the entire energy sector

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Heffernan, B.; Jenden, J.; Lloyd, E.R.; Toor, J.; Williams, J.E.

    2014-01-01

    The public at large needs to have a better understanding of the entire energy sector in order to put the benefits and drawbacks of nuclear power into proper perspective.University science departments can and should play a more significant role in educating the public about various aspects of nuclear power, and energy in general. This paper discusses how the University of Calgary is launching initiatives to help teach the public about energy issues. These initiatives include a course for non-technical students on energy, a similar course for people within the energy industry without a technical background, and an extensive online encyclopedia to support these courses. (author)

  12. First-Year University Chemistry Textbooks' Misrepresentation of Gibbs Energy

    Science.gov (United States)

    Quilez, Juan

    2012-01-01

    This study analyzes the misrepresentation of Gibbs energy by college chemistry textbooks. The article reports the way first-year university chemistry textbooks handle the concepts of spontaneity and equilibrium. Problems with terminology are found; confusion arises in the meaning given to [delta]G, [delta][subscript r]G, [delta]G[degrees], and…

  13. Theoretical high energy physics research at the University of Chicago

    International Nuclear Information System (INIS)

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1989-12-01

    This report contains brief discussions on theoretical High Energy Physics research done by the researchers at University of Chicago. Some topics covered are: lepton production; kaon decay; Higgs boson production; electric dipole moment of the neutron; string models; supersymmetry; and cosmic ray shower

  14. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Science.gov (United States)

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  15. Intrinsic Changes: Energy Saving Behaviour among Resident University Students

    Science.gov (United States)

    Black, Rosemary; Davidson, Penny; Retra, Karen

    2010-01-01

    This paper presents the results of a study that explored the effectiveness of three intervention strategies in facilitating energy saving behaviour among resident undergraduate university students. In contrast to a dominant practice of motivating with rewards or competition this study sought to appeal to students' intrinsic motivations. An…

  16. Analysis of Detailed Energy Audits and Energy Use Measures of University Buildings

    Directory of Open Access Journals (Sweden)

    Kęstutis Valančius

    2011-12-01

    Full Text Available The paper explains the results of a detailed energy audit of the buildings of Vilnius Gediminas Technical University. Energy audits were performed with reference to the international scientific project. The article presents the methodology and results of detailed measurements of energy balance characteristics.Article in Lithuanian

  17. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  18. Simulation Environment Based on the Universal Verification Methodology

    CERN Document Server

    AUTHOR|(SzGeCERN)697338

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC desi...

  19. Dark Matter and Super Symmetry: Exploring and Explaining the Universe with Simulations at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, Oliver [Fermilab

    2016-07-10

    The Large Hadron Collider (LHC) at CERN in Geneva, Switzerland, is one of the largest machines on this planet. It is built to smash protons into each other at unprecedented energies to reveal the fundamental constituents of our universe. The 4 detectors at the LHC record multi-petabyte datasets every year. The scientific analysis of this data requires equally large simulation datasets of the collisions based on the theory of particle physics, the Standard Model. The goal is to verify the validity of the Standard Model or of theories that extend the Model like the concepts of Supersymmetry and an explanation of Dark Matter. I will give an overview of the nature of simulations needed to discover new particles like the Higgs boson in 2012, and review the different areas where simulations are indispensable: from the actual recording of the collisions to the extraction of scientific results to the conceptual design of improvements to the LHC and its experiments.

  20. Dark energy and the accelerating universe: progress, problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2012-07-01

    Full text: A large number of recent observational data strongly suggest that we live in a flat, accelerating Universe composed by nearly 1/3 of matter (baryonic + dark) and 2/3 of an exotic component with large negative pressure, usually named Dark Energy. The basic set of experiments includes: observations from SNe Ia, CMB anisotropies, baryon acoustic oscillations (BAO) and X-ray data from galaxy clusters. Within the general relativity, the simplest explanation for dark energy is the cosmological constant associated with the zero-point energy density of all quantum fields present in the Universe. However, all estimates for its value are many orders-of-magnitude too large. Many alternative ideas include more exotic candidates for dark energy among them an extremely light scalar field. However, some possible explanations for the present accelerating stage also invokes gravitational physics beyond general relativity. In this way, several observations using satellites and ground-based telescopes are in operation or being planned to test whether dark energy is the cosmological constant or something more exotic, as well as to decide whether or not the standard general relativity can explain cosmic acceleration. In the current view, dark energy is an interesting example of new physics, and, certainly, its possible existence is one of the most profound mysteries of modern physics. In this talk we present a simplified picture of the main results and discuss briefly the difficulties underlying the dark energy paradigm and some of its possible alternatives. (author)

  1. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  2. The Louisiana State University waste-to-energy incinerator

    International Nuclear Information System (INIS)

    1994-01-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building

  3. Universality of spectator fragmentation at relativistic bombarding energies

    International Nuclear Information System (INIS)

    Schuettauf, A.; Woerner, A.

    1996-06-01

    Multi-fragment decays of 129 Xe, 197 Au, and 238 U projectiles in collisions with Be, C, Al, Cu, In, Au, and U targets at energies between E/A=400 MeV and 1000 MeV have been studied with the ALADIN forward-spectrometer at SIS. By adding an array of 84 Si-CsI(Tl) telescopes the solid-angle coverage of the setup was extended to θ lab =16 . This permitted the complete detection of fragments from the projectile-spectator source. The dominant feature of the systematic set of data is the Z bound universality that is obeyed by the fragment multiplicities and correlations. These observables are invariant with respect to the entrance channel if plotted as a function of Z bound , where Z bound is the sum of the atomic numbers Z i of all projectile fragments with Z i ≥2. No significant dependence on the bombarding energy nor on the target mass is observed. The dependence of the fragment multiplicity on the projectile mass follows a linear scaling law. The reasons for and the limits of the observed universality of spectator fragmentation are explored within the realm of the available data and with model studies. It is found that the universal properties should persist up to much higher bombarding energies than explored in this work and that they are consistent with universal features exhibited by the intranuclear cascade and statistical multifragmentation models. (orig.)

  4. Status of the low energy neutron source at Indiana University

    International Nuclear Information System (INIS)

    Baxter, D.V.; Cameron, J.M.; Derenchuk, V.P.; Lavelle, C.M.; Leuschner, M.B.; Lone, M.A.; Meyer, H.O.; Rinckel, T.; Snow, W.M.

    2005-01-01

    The National Science Foundation has recently approved funding for LENS (the low energy neutron source) at Indiana University and construction of this facility has begun. LENS represents a new paradigm for economically introducing neutron scattering into a university or industrial setting. In this design, neutrons are produced in a long-pulse (1 ms) mode through (p,n) reactions on a water-cooled Be target and the target is tightly coupled to a cryogenic moderator with a water reflector. This design gives a facility suitable for materials research, the development of new neutron instrumentation, and the education of new neutron scientists

  5. Nustar: Bringing the High-Energy Universe into Focus

    Science.gov (United States)

    Fineberg, Larry

    2016-01-01

    This is a presentation to students at the University of Florida in the Small Satellite Design Club. The subject matter is the NuSTAR mission and covers topics about the spacecraft itself and the launch campaign. NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high-energy X-ray mission. Studies the hottest, densest, most energetic phenomena in the Universe. Purpose is to search for black holes, map the remnants of stellar explosions, and study the most extreme active galaxies.

  6. On Dark Energy and Matter of the Expanding Universe

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2009-04-01

    Full Text Available At present the expanding universe is observed to be dominated by the not fully under- stood concepts of dark energy and matter, in a conceived almost flat Euclidian geometry. As one of the possible efforts to understand the global behaviour of the expanding uni- verse, the present paper attempts to explain these concepts in terms of the pressure force and gravity of a spherical photon gas cloud of zero point energy, in a flat geometry. A difficult point of the conventional theory concerns the frequency distribution of the zero point energy oscillations which leads to the unacceptable result of an infinite total en- ergy per unit volume. A modification of this distribution is therefore proposed which results in finite energy density. A corresponding equilibrium state is investigated, as well as small dynamic deviations from it, to form a basis for a model of the expanding universe. Provided that the crucial points of the present approach hold true, the model satisfies the requirements of cosmic linear dimensions, results in an estimated accelera- tion of the expansion being of the order of the observed one, presents a possible solution of the coincidence problem of dark energy and matter, and provides one of the possible explanations of the observed excess of high-energy electrons and positrons in recent balloon and satellite experiments.

  7. Role of energy conservation and vacuum energy in the evolution of the universe

    CSIR Research Space (South Africa)

    Greben, JM

    2010-06-01

    Full Text Available accommodates the notion of dark energy and proposes a possible explanation for dark matter. It leads to a dual description of the universe, which is reminiscent of the dual theory proposed by Milne in 1937. On the one hand one can describe the universe in terms...

  8. Design and Control of Full Scale Wave Energy Simulator System

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Hansen, Anders Hedegaard; Hansen, Rico Hjerm

    2012-01-01

    For wave energy to become feasible it is a requirement that the efficiency and reliability of the power take-off (PTO) systems are significantly improved. The cost of installing and testing PTO-systems at sea are however very high, and the focus of the current paper is therefore on the design...... of a full scale wave simulator for testing PTO-systems for point absorbers. The main challenge is here to design a system, which mimics the behavior of a wave when interacting with a given PTO-system. The paper includes a description of the developed system, located at Aalborg University......, and the considerations behind the design. Based on the description a model of the system is presented, which, along with a description of the wave theory applied, makes the foundation for the control strategy. The objective of the control strategy is to emulate not only the wave behavior, but also the dynamic wave...

  9. University of Louisville Research and Energy Independence Program

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra K. [Univ. of Louisville, KY (United States)

    2016-02-16

    The development of domestic, environmentally friendly and sustainable sources of energy and liquid fuel is a critical need for the United States (US). Kentucky (KY) is rich in natural energy and agricultural resources that could provide sustainable energy for the state and for the nation. New technology is needed to capture, store, and distribute this sustainable energy in KY. Development of KY’s sustainable energy resources will create economic benefit for the citizens of KY and can serve as a model for other states in the US. Existing technologies for solar energy collection and storage are practical for regions with high and consistent solar intensity, such as the southwest US. Solar energy is plentiful in KY, but is less intense and less regular. As such, novel innovative technology is needed to capture, store, and distribute this energy. KY also has plentiful biomass resources that can be converted to renewable fuels. In addition, the state offers low energy rates, which are conducive for any type of manufacturing industry. A manufacturing R&D center at the University of Louisville (UofL) can help attract high-tech manufacturing industries to the city of Louisville and the state of KY.

  10. An Energy Oriented Model and Simulator for Wireless Sensor etworks

    African Journals Online (AJOL)

    Nafiisah

    Wireless Sensor Network, Energy Modeling, Simulation, Energy. Efficiency ..... xMBCR: This scheme is based on the MBCR strategy, but improves the battery ... Moreover WSNs require large scale deployment (smart dusts) in remote and.

  11. The perceived value of using BIM for energy simulation

    Science.gov (United States)

    Lewis, Anderson M.

    Building Information Modeling (BIM) is becoming an increasingly important tool in the Architectural, Engineering & Construction (AEC) industries. Some of the benefits associated with BIM include but are not limited to cost and time savings through greater trade and design coordination, and more accurate estimating take-offs. BIM is a virtual 3D, parametric design software that allows users to store information of a model within and can be used as a communication platform between project stakeholders. Likewise, energy simulation is an integral tool for predicting and optimizing a building's performance during design. Creating energy models and running energy simulations can be a time consuming activity due to the large number of parameters and assumptions that must be addressed to achieve reasonably accurate results. However, leveraging information imbedded within Building Information Models (BIMs) has the potential to increase accuracy and reduce the amount of time required to run energy simulations and can facilitate continuous energy simulations throughout the design process, thus optimizing building performance. Although some literature exists on how design stakeholders perceive the benefits associated with leveraging BIM for energy simulation, little is known about how perceptions associated with leveraging BIM for energy simulation differ between various green design stakeholder user groups. Through an e-survey instrument, this study seeks to determine how perceptions of using BIMs to inform energy simulation differ among distinct design stakeholder groups, which include BIM-only users, energy simulation-only users and BIM and energy simulation users. Additionally, this study seeks to determine what design stakeholders perceive as the main barriers and benefits of implementing BIM-based energy simulation. Results from this study suggest that little to no correlation exists between green design stakeholders' perceptions of the value associated with using

  12. The Transient High Energy Sky and Early Universe Surveyor

    Science.gov (United States)

    O'Brien, P. T.

    2016-04-01

    The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next

  13. Implementation in free software of the PWR type university nucleo electric simulator (SU-PWR)

    International Nuclear Information System (INIS)

    Valle H, J.; Hidago H, F.; Morales S, J.B.

    2007-01-01

    Presently work is shown like was carried out the implementation of the University Simulator of Nucleo-electric type PWR (SU-PWR). The implementation of the simulator was carried out in a free software simulation platform, as it is Scilab, what offers big advantages that go from the free use and without cost of the product, until the codes modification so much of the system like of the program with the purpose of to improve it or to adapt it to future routines and/or more advanced graphic interfaces. The SU-PWR shows the general behavior of a PWR nuclear plant (Pressurized Water Reactor) describing the dynamics of the plant from the generation process of thermal energy in the nuclear fuel, going by the process of energy transport toward the coolant of the primary circuit the one which in turn transfers this energy to the vapor generators of the secondary circuit where the vapor is expanded by means of turbines that in turn move the electric generator producing in this way the electricity. The pressurizer that is indispensable for the process is also modeled. Each one of these stages were implemented in scicos that is the Scilab tool specialized in the simulation. The simulation was carried out by means of modules that contain the differential equation that mathematically models each stage or equipment of the PWR plant. The result is a series of modules that based on certain entrances and characteristic of the system they generate exits that in turn are the entrance to other module. Because the SU-PWR is an experimental project in early phase, it is even work and modifications to carry out, for what the models that are presented in this work can vary a little the being integrated to the whole system to simulate, but however they already show clearly the operation and the conformation of the plant. (Author)

  14. The teaching of high energy physics in British universities

    International Nuclear Information System (INIS)

    Barlow, R.

    1992-01-01

    An analysis is given of a survey of the teaching of high energy physics in British universities. The subject changes quickly, and there is a continual conflict between new and old material. Different courses may deal with this in different ways. To find out what is actually being taught to students, details were obtained from all 50 university physics departments in the United Kingdom (UK) by means of a questionnaire. This covered the course structure - whether it was optional or compulsory or contained both elements - the number of lectures given, and the topics covered in the syllabus. The replies give a comprehensive picture of the state of undergraduate teaching of high energy physics in the UK. (Author)

  15. Supergravity, Dark Energy and the Fate of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2002-09-27

    We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M-theory with non-compact internal spaces. Masses of ultra-light scalars in these models are quantized in units of the Hubble constant: m{sup 2} = nH{sup 2}. If dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N = 8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N = 1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t = O(10{sup 10}) years. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.

  16. Phantom energy accretion onto black holes in a cyclic universe

    International Nuclear Information System (INIS)

    Sun Chengyi

    2008-01-01

    Black holes pose a serious problem in cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by phantom energy prior to turnaround before they can create any problems. In this paper, using the mechanism of phantom accretion onto black holes, we find that black holes do not disappear before phantom turnaround. But the remanent black holes will not cause any problems due to Hawking evaporation.

  17. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    Science.gov (United States)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  18. University of Arizona High Energy Physics Program at the Cosmic Frontier 2014-2016

    Energy Technology Data Exchange (ETDEWEB)

    abate, alex [Univ. of Arizona, Tucson, AZ (United States); cheu, elliott [Univ. of Arizona, Tucson, AZ (United States)

    2016-10-24

    This is the final technical report from the University of Arizona High Energy Physics program at the Cosmic Frontier covering the period 2014-2016. The work aims to advance the understanding of dark energy using the Large Synoptic Survey Telescope (LSST). Progress on the engineering design of the power supplies for the LSST camera is discussed. A variety of contributions to photometric redshift measurement uncertainties were studied. The effect of the intergalactic medium on the photometric redshift of very distant galaxies was evaluated. Computer code was developed realizing the full chain of calculations needed to accurately and efficiently run large-scale simulations.

  19. University of Arizona High Energy Physics Program at the Cosmic Frontier 2014-2016

    International Nuclear Information System (INIS)

    Abate, Alex; Cheu, Elliott

    2016-01-01

    This is the final technical report from the University of Arizona High Energy Physics program at the Cosmic Frontier covering the period 2014-2016. The work aims to advance the understanding of dark energy using the Large Synoptic Survey Telescope (LSST). Progress on the engineering design of the power supplies for the LSST camera is discussed. A variety of contributions to photometric redshift measurement uncertainties were studied. The effect of the intergalactic medium on the photometric redshift of very distant galaxies was evaluated. Computer code was developed realizing the full chain of calculations needed to accurately and efficiently run large-scale simulations.

  20. Simulation environment based on the Universal Verification Methodology

    International Nuclear Information System (INIS)

    Fiergolski, A.

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC design; (2) the C3PD 180 nm HV-CMOS active sensor ASIC design; (3) the FPGA-based DAQ system of the CLICpix chip. This paper, based on the experience from the above projects, introduces briefly UVM and presents a set of tips and advices applicable at different stages of the verification process-cycle.

  1. High energy physics program at Texas A ampersand M University

    International Nuclear Information System (INIS)

    1992-12-01

    The Texas A ampersand M experimental high energy physics program has been supported since its inception by DOE Contract DE-AS05-81ER40039. During that period we established a viable experimental program at a university which before this time had no program in high energy physics. In 1990, the experimental program was augmented with a program in particle theory. In the accompanying final report, we outline the research work accomplished during the final year of this contract and the program being proposed for consideration by the Department of Energy for future grant support. Some of the particular areas covered are: Collider detector at Fermilab program; the TAMU MACRO program; SSC R ampersand D program; SSC experimental program; and theoretical physics program

  2. The impact of dark energy on galaxy formation. What does the future of our Universe hold?

    Science.gov (United States)

    Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total co-moving density of stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.

  3. Dark energy: a quantum fossil from the inflationary universe?

    International Nuclear Information System (INIS)

    Sola, Joan

    2008-01-01

    The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term, Λ, whose variation follows a power law of the redshift

  4. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  5. Modeling and Simulation of Smart Energy Systems

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2015-01-01

    At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimize the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change (IPCC, 2007a). At a national level, for most countries, ...... are presented on individual technologies and complete energy system strategies, which outline how it is possible to reach a 100% renewable energy system in the coming decades.......At a global level, it is essential that the world transfers from fossil fuels to renewable energy resources to minimize the implications of climate change, which has been clearly demonstrated by the Intergovernmental Panel on Climate Change (IPCC, 2007a). At a national level, for most countries......, the transition to renewable energy will improve energy security of supply, create new jobs, enhance trade, and consequently grow the national economy. However, even with such promising consequences, renewable energy only provided approximately 13% of the world's energy in 2007 (International Energy Agency, 2009a...

  6. How to implement and organize the universal access to energy.

    Energy Technology Data Exchange (ETDEWEB)

    Perez, S.; Clerc, M.

    2007-07-01

    In a world where energy is going to become a rare and strategic commodity for developed countries, it is becoming extremely important to implement and organise universal access to energy for those populations of developing countries who lack it. This is a fundamental issue if we want to avoid the large migrations, tensions and conflicts that will most definitely occur in a world where some have everything and others nothing. In the field of access to energy, as in many others relating to development, financial problems could be reduced, for example by publi-private partnership. In fact, the amounts spent on aid and assisting with the conesquences of a lack of energy are much greater than the amounts necessary to take energy to those without it. This is a political problem, one of organisation and governance at an international level. As representatives of society, and having observed in the field - in the very midst of these populations - the sometimes disastrous consequences of decisions taken without these factors, we have drawn up this plan of action and these proposals in which companies have a key role to play. (auth)

  7. Dynamic modeling, simulation and control of energy generation

    CERN Document Server

    Vepa, Ranjan

    2013-01-01

    This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli

  8. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  9. [Medium energy physics at Syracuse University: Technical progress report

    International Nuclear Information System (INIS)

    Souder, P.A.

    1986-01-01

    The primary focus of research has been an experiment at the MIT-Bates Linear Accelerator Center to measure the spin-dependence of elastic scattering of electrons from carbon. The Syracuse University Medium Energy Physics Group is also part of a collaboration which will measure the tensor polarization of deuterons scattered by electrons. Finally, analysis has been completed for an experiment at LAMPF in which the first observation of the exotic ion μ + e - e - was made. 17 refs., 18 figs., 2 tabs

  10. Cognitive Simulation Driven Domestic Heating Energy Management

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.

    2016-01-01

    Energy management for domestic heating is a non trivial research challenge, especially given the dynamics associated to indoor and outdoor air temperatures, required comfortable temperature set points over time, parameters of the heating source and system, and energy loss rate and capacity of a

  11. GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport

    International Nuclear Information System (INIS)

    Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.

    2006-01-01

    A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)

  12. High Energy Physics at the University of Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Tony M. [University of Illinois; Thaler, Jon J. [University of Illinois

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  13. GEANT4 simulations for low energy proton computerized tomography

    International Nuclear Information System (INIS)

    Milhoretto, Edney; Schelin, Hugo R.; Setti, Joao A.P.; Denyak, Valery; Paschuk, Sergei A.; Evseev, Ivan G.; Assis, Joaquim T. de; Yevseyeva, O.; Lopes, Ricardo T.; Vinagre Filho, Ubirajara M.

    2010-01-01

    This work presents the recent results of computer simulations for the low energy proton beam tomographic scanner installed at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to adjust the parameters of previous simulation within the first experimental results and to understand some specific effects that affected the form of the final proton energy spectra. To do this, the energy and angular spread of the initial proton beam were added, and the virtual phantom geometry was specified more accurately in relation to the real one. As a result, a more realistic view on the measurements was achieved.

  14. GEANT4 simulations for low energy proton computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, Edney [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil); Schelin, Hugo R. [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil)], E-mail: schelin@utfpr.edu.br; Setti, Joao A.P.; Denyak, Valery; Paschuk, Sergei A. [Federal University of Technology-Parana, UTFPR, Av. Sete de Setembro 3165, Curitiba-PR (Brazil); Evseev, Ivan G.; Assis, Joaquim T. de; Yevseyeva, O. [Polytechnic Institute/UERJ, Rua Alberto Rangel s/n, N. Friburgo, RJ, Brazil 28630-050 (Brazil); Lopes, Ricardo T. [Nuclear Instr. Lab./COPPE/UFRJ, Av. Horacio Macedo 2030, Rio de Janeiro-RJ (Brazil); Vinagre Filho, Ubirajara M. [Institute of Nuclear Engineering-IEN/CNEN, Rua Helio de Almeida 75, Rio de Janeiro-RJ (Brazil)

    2010-04-15

    This work presents the recent results of computer simulations for the low energy proton beam tomographic scanner installed at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to adjust the parameters of previous simulation within the first experimental results and to understand some specific effects that affected the form of the final proton energy spectra. To do this, the energy and angular spread of the initial proton beam were added, and the virtual phantom geometry was specified more accurately in relation to the real one. As a result, a more realistic view on the measurements was achieved.

  15. Continuous energy Neutron Transport Monte Carlo Simulator Project: Decomposition of the neutron energy spectrum by target nuclei tagging

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares; Leite, Sergio Q. Bogado, E-mail: sbogado@ibest.com.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work a Monte Carlo simulator with continuous energy is used. This simulator distinguishes itself by using the sum of three probability distributions to represent the neutron spectrum. Two distributions have known shape, but have varying population of neutrons in time, and these are the fission neutron spectrum (for high energy neutrons) and the Maxwell-Boltzmann distribution (for thermal neutrons). The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. It is common practice in neutron transport calculations, e.g. multi-group transport, to consider that the neutrons only lose energy with each scattering reaction and then to use a thermal group with a Maxwellian distribution. Such an approximation is valid due to the fact that for fast neutrons up-scattering occurrence is irrelevant, being only appreciable at low energies, i.e. in the thermal energy region, in which it can be regarded as a Maxwell-Boltzmann distribution for thermal equilibrium. In this work the possible neutron-matter interactions are simulated with exception of the up-scattering of neutrons. In order to preserve the thermal spectrum, neutrons are selected stochastically as being part of the thermal population and have an energy attributed to them taken from a Maxwellian distribution. It is then shown how this procedure can emulate the up-scattering effect by the increase in the neutron population kinetic energy. Since the simulator uses tags to identify the reactions it is possible not only to plot the distributions by neutron energy, but also by the type of interaction with matter and with the identification of the target nuclei involved in the process. This work contains some preliminary results obtained from a Monte Carlo simulator for neutron transport that is being developed at Federal University of Rio Grande do Sul. (author)

  16. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    potential of the energy saving in the society it is very important to address the decisive involvement of the end-users. The human behaviour is the factor that affects the most the energy use in low-energy buildings and should be included in energy simulations. The results can then be linked to programs...... the implementation of C02 neutral communities. A link between a dynamic energy simulation program for buildings and a simulation program for district heating networks is demonstrated. The results of the investigation give an example of how to analyze a community and make recommendations for applying the low...... in a cost-effective way in areas with linear heat densities down to 0.20 MWh/(m.year). Even in cases where the user behaviour is not optimal, the system is able to deliver heat to each customer. The low-energy district heating concept could be strategic for reaching ambitious energy and climate targets...

  17. Energy related design decisions deserve simulation approach

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1994-01-01

    Building energy consumption and indoor climate result from complex dynamic thermal interactions between outdoor environment, building structure, environmental control systems, and occupants. This reality is too complicated to be casted in simple expressions, rules or graphs. After a general overview

  18. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...

  19. The Transient High Energy Sky and Early Universe Surveyor (THESEUS)

    Science.gov (United States)

    Amati, Lorenzo; O'Brien, Paul T.; Götz, Diego

    2016-07-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept under development by a large international collaboration aimed at exploiting gamma-ray bursts for investigating the early Universe. The main scientific objectives of THESEUS include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 9-10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.6m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to unveil and study the population of soft and sub-energetic GRBs, and, more in general, to perform monitoring and survey of the X-ray sky with unprecedented sensitivity.

  20. Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Wainwright, Carroll L.; Aguirre, Anthony [SCIPP and Department of Physics, University of California, 1156 High St., Santa Cruz, CA, 95064 (United States); Johnson, Matthew C. [Department of Physics and Astronomy, York University, 4700 Keele St., Toronto, On, M3J 1P3 Canada (Canada); Peiris, Hiranya V., E-mail: cwainwri@ucsc.edu, E-mail: mjohnson@perimeterinstitute.ca, E-mail: aguirre@scipp.ucsc.edu, E-mail: h.peiris@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower St., London, WC1E 6BT U.K. (United Kingdom)

    2014-10-01

    Observing the relics of collisions between bubble universes would provide direct evidence for the existence of an eternally inflating Multiverse; the non-observation of such events can also provide important constraints on inflationary physics. Realizing these prospects requires quantitative predictions for observables from the properties of the possible scalar field Lagrangians underlying eternal inflation. Building on previous work, we establish this connection in detail. We perform a fully relativistic numerical study of the phenomenology of bubble collisions in models with a single scalar field, computing the comoving curvature perturbation produced in a wide variety of models. We also construct a set of analytic predictions, allowing us to identify the phenomenologically relevant properties of the scalar field Lagrangian. The agreement between the analytic predictions and numerics in the relevant regions is excellent, and allows us to generalize our results beyond the models we adopt for the numerical studies. Specifically, the signature is completely determined by the spatial profile of the colliding bubble just before the collision, and the de Sitter invariant distance between the bubble centers. The analytic and numerical results support a power-law fit with an index 1< κ ∼< 2. For collisions between identical bubbles, we establish a lower-bound on the observed amplitude of collisions that is set by the present energy density in curvature.

  1. Energy Dependent Streaming in Lattice Boltzmann Simulations

    Czech Academy of Sciences Publication Activity Database

    Pavlo, Pavol; Vahala, G.; Vahala, L.

    2001-01-01

    Roč. 46, č. 8 (2001), s. 241 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/43rd./. Long Beach, CA, 29.10.2001-02.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann Simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University

    Directory of Open Access Journals (Sweden)

    Rizzoni Giorgio

    2015-01-01

    Full Text Available The aim of this paper is to document 15 years of hybrid electric vehicle energy management research at The Ohio State University Center for Automotive Research (OSUCAR. Hybrid Electric Vehicle (HEV technology encompasses many diverse aspects. In this paper we focus exclusively on the evolution of supervisory control strategies for on-board energy management in HEV. We present a series of control algorithms that have been developed in simulation and implemented in prototype vehicles for charge-sustaining HEVs at OSU-CAR. These solutions span from fuzzy-logic control algorithms to more sophisticated model-based optimal control methods. Finally, methods developed for plug-in HEVs energy management are also discussed

  3. Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.

  4. Verifying the Simulation Hypothesis via Infinite Nested Universe Simulacrum Loops

    Science.gov (United States)

    Sharma, Vikrant

    2017-01-01

    The simulation hypothesis proposes that local reality exists as a simulacrum within a hypothetical computer's dimension. More specifically, Bostrom's trilemma proposes that the number of simulations an advanced 'posthuman' civilization could produce makes the proposition very likely. In this paper a hypothetical method to verify the simulation hypothesis is discussed using infinite regression applied to a new type of infinite loop. Assign dimension n to any computer in our present reality, where dimension signifies the hierarchical level in nested simulations our reality exists in. A computer simulating known reality would be dimension (n-1), and likewise a computer simulating an artificial reality, such as a video game, would be dimension (n +1). In this method, among others, four key assumptions are made about the nature of the original computer dimension n. Summations show that regressing such a reality infinitely will create convergence, implying that the verification of whether local reality is a grand simulation is feasible to detect with adequate compute capability. The action of reaching said convergence point halts the simulation of local reality. Sensitivities to the four assumptions and implications are discussed.

  5. Total reflection coefficients of low-energy photons presented as universal functions

    Directory of Open Access Journals (Sweden)

    Ljubenov Vladan

    2010-01-01

    Full Text Available The possibility of expressing the total particle and energy reflection coefficients of low-energy photons in the form of universal functions valid for different shielding materials is investigated in this paper. The analysis is based on the results of Monte Carlo simulations of photon reflection by using MCNP, FOTELP, and PENELOPE codes. The normal incidence of the narrow monoenergetic photon beam of the unit intensity and of initial energies from 20 keV up to 100 keV is considered, and particle and energy reflection coefficients from the plane homogenous targets of water, aluminum, and iron are determined and compared. The representations of albedo coefficients on the initial photon energy, on the probability of large-angle photon scattering, and on the mean number of photon scatterings are examined. It is found out that only the rescaled albedo coefficients dependent on the mean number of photon scatterings have the form of universal functions and these functions are determined by applying the least square method.

  6. CFD simulation of energy sources in EAF

    Directory of Open Access Journals (Sweden)

    Ekrem Büyükkaya

    2017-10-01

    Full Text Available Modeling of energy production and heat transfer by carbon combustion and electrical arc is performed using Fluent computational fluid dynamic (CFD software in this manuscript. The heat energy generated by carbon burning and electric arc radiation during combustion of the scrap in the EAO has been examined in detail. For this reason, modeling studies have utilized the combustion reactions of carbon particles and electromagnetically emitted radiation. Firstly, particle surface and gas reactions are investigated in terms of injected carbon burning. The result of the chemical reaction at the burner outlet is about 3000 K of the core temperature during combustion. It has been determined that the temperature which acts on the slag is 2200 K. The radiation temperature was found to be highest in the area under the electrodes and fell to 1850 K in the area where the melt was poured. Under steady operating conditions, it was seen that electric energy was absorbed by about 5.5% of the electrodes. As a result of this study, CFD software can be used to model combustion and radiation and energy generation and heat transfer for an electric arc furnace at the design study.

  7. Simulation of the human energy system / Cornelis Petrus Botha

    OpenAIRE

    Botha, Cornelis Petrus

    2002-01-01

    Preface - Biotechnology is generally accepted to be the next economical wave of the future. In order to attain the many benefits associated with this growing industry simulation modelling techniques have to be implemented successfully. One of the simulations that ne' ed to be performed is that of the human energy system. Pharmaceutical companies are currently pouring vast amounts of capital into research regarding simulation of bodily processes. Their aim is to develop cure...

  8. Thermal Condensate Structure and Cosmological Energy Density of the Universe

    Directory of Open Access Journals (Sweden)

    Antonio Capolupo

    2016-01-01

    Full Text Available The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.

  9. Integration of Building energy and energy supply simulations for low-energy district heating supply to energy-efficient buildings

    DEFF Research Database (Denmark)

    Dalla Rosa, Alessandro

    2012-01-01

    The future will demand implementation of C02 neutral communities, the consequences being a far more complex design of the whole energy system, since the future energy infrastructures will be dynamic and climate responsive systems. Software able to work with such level of complexity is at present...... a missing link in the development. In this paper is demonstrated how a link between a dynamic Building Simulation Programme (BSP) and a simulation program for District Heating (DH) networks can give important information during the design phase. By using a BSP it is possible to analyze the influence...... of the human behaviour regarding the building and link the results to the simulation program for DH networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand...

  10. Simulation as a tool to develop guidelines for the design of portable library in the campus of Mansoura university

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ahmed Nabih; Farag, M.A.; Samann Osama, Mina Michael; El Aishy, Alaa Shams [Department of Architectural Engineering, University of Mansoura (Egypt)

    2010-07-01

    In recent years, due to population growth, the numbers of enrolled students in Mansoura University, Egypt, has significantly increased, leading to a lack of library space. As a solution to this issue, the aim of this paper is to present the design procedures for building a portable library. The process consists of conducting a feasibility study, then identifying the most relevant parameters and using a software to create an energy efficient structure. A case study was conducted in Mansoura University on a portable library measuring 6.60mx9.90mx4.20m; simulations were carried out with the Ecotect simulation software. Results showed that the proposed methodology was successful in designing a portable library and that it allowed a reduction in energy consumption of 40% compared to the baseline case. This paper provided design guidelines for the construction of portable libraries through the use of transient building performance.

  11. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    Science.gov (United States)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  12. TRNSYS coupled with previs for simulation and sizing of solar water heating system: University Campus as case study

    International Nuclear Information System (INIS)

    Dkiouak, R.; Ahachad, M.

    2006-01-01

    A solar plant for hot-water production was investigated by the dynamic simulation code TRNSYS coupled with PREVIS code. Typical daily university campus consumption for a 240 students was considered. The hot-water demand temperature (45 degree centigrade) is controlled by a conventional fuel auxiliary heater and a tempering valve. The fluids circulate by pumps activated by electricity. Annual energy performance, in terms of solar fraction, was calculated for Tangier.(Author)

  13. Dark energy, antimatter gravity and geometry of the Universe

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2010-01-01

    This article is based on two hypotheses. The first one is the existence of the gravitational repulsion between particles and antiparticles. Consequently, virtual particle-antiparticle pairs in the quantum vacuum might be considered as gravitational dipoles. The second hypothesis is that the Universe has geometry of a four-dimensional hyper-spherical shell with thickness equal to the Compton wavelength of a pion, which is a simple generalization of the usual geometry of a 3-hypersphere. It is striking that these two hypotheses lead to a simple relation for the gravitational mass density of the vacuum, which is in very good agreement with the observed dark energy density. It might be a sign that QCD fields provide the largest contribution to the gravitational mass of the physical vacuum; contrary to the prediction of the Standard Model that QCD contribution is much smaller than some other contributions.

  14. Simulation of pulsed accidental energy release in a reactor core

    International Nuclear Information System (INIS)

    Ryshanskii, V.A.; Ivanov, A.G.; Uskov, A.A.

    1995-01-01

    At the present time the strength of the load-bearing members of VVER and fast reactors during a hypothetical accident is ordinarily investigated in model experiments [1]. A power burst during an accident is simulated by a nonnuclear exothermal reaction in water, which simulates the coolant and fills the model. The problem is to make the correct choice of the simulator of the accidental energy burst as an effective (i.e., sufficiently high working capacity) source of dangerous loads, corresponding to the conditions of an accident. What factors and parameters determine the energy release? The answers to these questions are contradictory

  15. Research in High Energy Physics at Duke University

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [PI; Goshaw, Al [Co-PI; Kruse, Mark [Co-PI; Oh, Seog [Co-PI; Scholberg, Kate [Co-PI; Walter, Chris [Co-PI

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water- lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  16. Research in High Energy Physics at Duke University

    Energy Technology Data Exchange (ETDEWEB)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the {mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  17. Indiana University High Energy Physics Group, Task C

    International Nuclear Information System (INIS)

    Heinz, R.M.; Mufson, S.L.; Musser, J.

    1991-01-01

    The Indiana University High Energy Physics Group, Task C has been actively involved in the MACRO experiment at Gran Sasso and the SSC experiment L during the current contract year. MACRO is a large US-Italian Monopole, Astrophysics, and Cosmic Ray Observatory being built under the Gran Sasso Mountain outside of Rome. Indiana University is in charge of organizing the United States software effort. We have built a state-of-the-art two-meter spectrophotometer for the MACRO liquid scintillator. We are in charge of ERP, the Event Reconstruction Processor online trigger processor for muons and stellar collapse. We are designing an air Cerenkov array to be placed on top of the Gran Sasso. Our other activity involves participation in the SSC experiment L. As long-standing members of L we have done proposal writing and have worked on important L planning and organization matters. We are now doing development work on the L Central Tracker straw drift tubes, including gas optimization, readout, and Monte Carlos. 12 refs., 20 figs., 1 tab

  18. Indiana University High Energy Physics Group, Task C

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, R.M.; Mufson, S.L.; Musser, J.

    1991-01-01

    The Indiana University High Energy Physics Group, Task C has been actively involved in the MACRO experiment at Gran Sasso and the SSC experiment L during the current contract year. MACRO is a large US-Italian Monopole, Astrophysics, and Cosmic Ray Observatory being built under the Gran Sasso Mountain outside of Rome. Indiana University is in charge of organizing the United States software effort. We have built a state-of-the-art two-meter spectrophotometer for the MACRO liquid scintillator. We are in charge of ERP, the Event Reconstruction Processor online trigger processor for muons and stellar collapse. We are designing an air Cerenkov array to be placed on top of the Gran Sasso. Our other activity involves participation in the SSC experiment L. As long-standing members of L we have done proposal writing and have worked on important L planning and organization matters. We are now doing development work on the L Central Tracker straw drift tubes, including gas optimization, readout, and Monte Carlos. 12 refs., 20 figs., 1 tab.

  19. Sustainability Assessment: Energy Efficiency in Buildings at a Community University

    Directory of Open Access Journals (Sweden)

    Stephane Louise Bocasanta

    2017-10-01

    Full Text Available This research aims to analyze the degree of sustainability of a building in a community university (object of analysis, as regards its energy efficiency. Therefore, it seeks out to contribute to the literature, provide a basis for the application of SICOGEA system in other buildings and contribute to the consolidation of an effective and consistent environmental management system. The research can be classified, as to its technical procedures, as a case study. As to its objectives it is descriptive, with a qualitative approach. The literature on environmental management and sustainability assessment of buildings was used to support the research. As to the results found, the overall University sustainability rate was 48%, which can be classified as regular, that is, it aims to deal with the legislation only. Therefore, it is believed that the institution can make improvements to achieve a more efficient index. By taking into consideration the deficit items, the following is suggested: to introduce sustainable procurement; to strive for stamps and certifications; to avoid environmental fines and indemnity; and to implement environmental auditing. However, it is clarified that these are suggestions that should be taken into consideration along with financial matters and within the institution planning questions. The analysis of financial sustainability was considered good and, ideally, it will go on.

  20. The Use of Simulation Business Games in University Education

    OpenAIRE

    Z. Birknerova

    2010-01-01

    Rapid and deep changes in economics and business environment along with the dynamic development of computer art and communication technologies represent the main factors identifying the development in the area of simulation business games. These games may be considered a strange, content-determined group of simulation games. The description of their content specialties, basic elements, and possibilities of their use are the essence of our report. In the conclusion we present a short research ...

  1. Energy conservation in molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren; Heilmann, Ole; Dyre, J. C.

    2012-01-01

    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...

  2. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  3. QM/MM free energy simulations: recent progress and challenges

    Science.gov (United States)

    Lu, Xiya; Fang, Dong; Ito, Shingo; Okamoto, Yuko; Ovchinnikov, Victor

    2016-01-01

    Due to the higher computational cost relative to pure molecular mechanical (MM) simulations, hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations particularly require a careful consideration of balancing computational cost and accuracy. Here we review several recent developments in free energy methods most relevant to QM/MM simulations and discuss several topics motivated by these developments using simple but informative examples that involve processes in water. For chemical reactions, we highlight the value of invoking enhanced sampling technique (e.g., replica-exchange) in umbrella sampling calculations and the value of including collective environmental variables (e.g., hydration level) in metadynamics simulations; we also illustrate the sensitivity of string calculations, especially free energy along the path, to various parameters in the computation. Alchemical free energy simulations with a specific thermodynamic cycle are used to probe the effect of including the first solvation shell into the QM region when computing solvation free energies. For cases where high-level QM/MM potential functions are needed, we analyze two different approaches: the QM/MM-MFEP method of Yang and co-workers and perturbative correction to low-level QM/MM free energy results. For the examples analyzed here, both approaches seem productive although care needs to be exercised when analyzing the perturbative corrections. PMID:27563170

  4. Howard University Energy Expert Systems Institute Summer Program (EESI)

    Science.gov (United States)

    Momoh, James A.; Chuku, Arunsi; Abban, Joseph

    1996-01-01

    Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.

  5. Establishment of a National Wind Energy Center at University of Houston

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Su Su [Univ. of Houston, TX (United States)

    2016-10-31

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturing technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design

  6. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2010-01-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  7. RELAP/SCDAPSIM Reactor System Simulator Development and Training for University and Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hohorst, J.K.; Allison, C.M. [Innovative Systems Software, 1242 South Woodruff Avenue, Idaho Falls, Idaho 83404 (United States)

    2010-07-01

    The RELAP/SCDAPSIM code, designed to predict the behaviour of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology development program called SDTP (SCDAP Development and Training Program). SDTP involves more than 60 organizations in 28 countries. One of the important applications of the code is for simulator training of university faculty and students, reactor analysts, and reactor operations and technical support staff. Examples of RELAP/SCDAPSIM-based system thermal hydraulic and severe accident simulator packages include the SAFSIM simulator developed by NECSA for the SAFARI research reactor in South Africa, university-developed simulators at the University of Mexico and Shanghai Jiao Tong University in China, and commercial VISA and RELSIM packages used for analyst and reactor operations staff training. This paper will briefly describe the different packages/facilities. (authors)

  8. A universal postprocessing toolkit for accelerator simulation and data analysis

    International Nuclear Information System (INIS)

    Borland, M.

    1998-01-01

    The Self-Describing Data Sets (SDDS) toolkit comprises about 70 generally-applicable programs sharing a common data protocol. At the Advanced Photon Source (APS), SDDS performs the vast majority of operational data collection and processing, most data display functions, and many control functions. In addition, a number of accelerator simulation codes use SDDS for all post-processing and data display. This has three principle advantages: first, simulation codes need not provide customized post-processing tools, thus simplifying development and maintenance. Second, users can enhance code capabilities without changing the code itself, by adding SDDS-based pre- and post-processing. Third, multiple codes can be used together more easily, by employing SDDS for data transfer and adaptation. Given its broad applicability, the SDDS file protocol is surprisingly simple, making it quite easy for simulations to generate SDDS-compliant data. This paper discusses the philosophy behind SDDS, contrasting it with some recent trends, and outlines the capabilities of the toolkit. The paper also gives examples of using SDDS for accelerator simulation

  9. Energy requirements during sponge cake baking: Experimental and simulated approach

    International Nuclear Information System (INIS)

    Ureta, M. Micaela; Goñi, Sandro M.; Salvadori, Viviana O.; Olivera, Daniela F.

    2017-01-01

    Highlights: • Sponge cake energy consumption during baking was studied. • High oven temperature and forced convection mode favours oven energy savings. • Forced convection produced higher weight loss thus a higher product energy demand. • Product energy demand was satisfactorily estimated by the baking model applied. • The greatest energy efficiency corresponded to the forced convection mode. - Abstract: Baking is a high energy demanding process, which requires special attention in order to know and improve its efficiency. In this work, energy consumption associated to sponge cake baking is investigated. A wide range of operative conditions (two ovens, three convection modes, three oven temperatures) were compared. Experimental oven energy consumption was estimated taking into account the heating resistances power and a usage factor. Product energy demand was estimated from both experimental and modeling approaches considering sensible and latent heat. Oven energy consumption results showed that high oven temperature and forced convection mode favours energy savings. Regarding product energy demand, forced convection produced faster and higher weight loss inducing a higher energy demand. Besides, this parameter was satisfactorily estimated by the baking model applied, with an average error between experimental and simulated values in a range of 8.0–10.1%. Finally, the energy efficiency results indicated that it increased linearly with the effective oven temperature and that the greatest efficiency corresponded to the forced convection mode.

  10. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  11. Simulation and energy analysis of distributed electric heating system

    Science.gov (United States)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  12. NEAMS-Funded University Research in Support of TREAT Modeling and Simulation, FY15

    Energy Technology Data Exchange (ETDEWEB)

    Dehart, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mausolff, Zander [Univ. of Florida, Gainesville, FL (United States); Goluoglu, Sedat [Univ. of Florida, Gainesville, FL (United States); Prince, Zach [Texas A & M Univ., College Station, TX (United States); Ragusa, Jean [Texas A & M Univ., College Station, TX (United States); Haugen, Carl [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ellis, Matt [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Forget, Benoit [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Smith, Kord [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Alberti, Anthony [Oregon State Univ., Corvallis, OR (United States); Palmer, Todd [Oregon State Univ., Corvallis, OR (United States)

    2015-09-01

    This report summarizes university research activities performed in support of TREAT modeling and simulation research. It is a compilation of annual research reports from four universities: University of Florida, Texas A&M University, Massachusetts Institute of Technology and Oregon State University. The general research topics are, respectively, (1) 3-D time-dependent transport with TDKENO/KENO-VI, (2) implementation of the Improved Quasi-Static method in Rattlesnake/MOOSE for time-dependent radiation transport approximations, (3) improved treatment of neutron physics representations within TREAT using OpenMC, and (4) steady state modeling of the minimum critical core of the Transient Reactor Test Facility (TREAT).

  13. NEAMS-Funded University Research in Support of TREAT Modeling and Simulation, FY15

    International Nuclear Information System (INIS)

    Dehart, Mark; Mausolff, Zander; Goluoglu, Sedat; Prince, Zach; Ragusa, Jean; Haugen, Carl; Ellis, Matt; Forget, Benoit; Smith, Kord; Alberti, Anthony; Palmer, Todd

    2015-01-01

    This report summarizes university research activities performed in support of TREAT modeling and simulation research. It is a compilation of annual research reports from four universities: University of Florida, Texas A&M University, Massachusetts Institute of Technology and Oregon State University. The general research topics are, respectively, (1) 3-D time-dependent transport with TDKENO/KENO-VI, (2) implementation of the Improved Quasi-Static method in Rattlesnake/MOOSE for time-dependent radiation transport approximations, (3) improved treatment of neutron physics representations within TREAT using OpenMC, and (4) steady state modeling of the minimum critical core of the Transient Reactor Test Facility (TREAT).

  14. EVALUATION OF ENERGY PERFORMANCE USING DOE-2 ENERGY SIMULATION PROGRAM IN SINGAPORE

    Directory of Open Access Journals (Sweden)

    Po Seng Kian

    2000-01-01

    Full Text Available Recently, due to worldwide energy cost rising significantly, there has been an essential need to minimize the energy consumption. This global warning address many countries including Singapore realizing the important of energy efficiency in industries and buildings. This paper deals with analyzing the energy consumption of an 11-storey commercial building in Singapore using DOE-2 Energy Simulation Program. A study is made on the benefits derived from modifying the building envelope, space system setting, air-conditioning plant, and lighting. This encompasses a description of its quantitative impact on cooling load, energy consumption and energy saving achieved as compared with the original building. Following this, a life cycle costing is done to determine the economic benefits attained from this modification. This study shows that some alternative solutions can be achieved using energy simulation program to conserve the energy consumption.

  15. Energy saving and solar energy use in the University of Valencia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Amo, J.L.; Tena, F.; Martinez-Lozano, J.A.; Utrillas, M.P. [Universitat de Valencia (Spain). Grupo de Radiacion Solar

    2004-04-01

    Recent years have seen increasing public interest in issues related to energy saving and concern for the environment. It is important to highlight the work of public institutions in this respect. This was the motive that led the University of Valencia to finance a pilot project with the objective of studying useful initiatives for optimising energy consumption in accordance with the institution's needs as well as the incorporation of innovative and more efficient technologies. The approach was to consider various aspects ranging from the analysis of the current energy consumption and the state of the installations, through the substitution of some energy inefficient components, to the study of the possible installation of a photovoltaic solar powered electricity generation station connected to the network. Also purely technical questions on economic efficiency should not be forgotten as this could lead to a reduction in energy consumption and the optimisation of the current energy consuming equipment, since generally, it is this question that limits the possible energy saving actions. (author)

  16. Simulation-based Investigations of Electrostatic Beam Energy Analysers

    CERN Document Server

    Pahl, Hannes

    2015-01-01

    An energy analyser is needed to measure the beam energy profile behind the REX-EBIS at ISOLDE. The device should be able to operate with an accuracy of 1 V at voltages up to 30 kV. In order to find a working concept for an electrostatic energy analyser different designs were evaluated with simulations. A spherical device and its design issues are presented. The potential deformation effects of grids at high voltages and their influence on the energy resolution were investigated. First tests were made with a grid-free ring electrode device and show promising results.

  17. Invariance and universality in social agent-based simulations

    Science.gov (United States)

    Cioffi-Revilla, Claudio

    2002-01-01

    Agent-based simulation models have a promising future in the social sciences, from political science to anthropology, economics, and sociology. To realize their full scientific potential, however, these models must address a set of key problems, such as the number of interacting agents and their geometry, network topology, time calibration, phenomenological calibration, structural stability, power laws, and other substantive and methodological issues. This paper discusses and highlights these problems and outlines some solutions. PMID:12011412

  18. Dark energy and bouncing universe from k-fields

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin U

    2009-09-11

    In this thesis we consider some cosmological implications of k-fields, which are general scalar fields with non-canonical kinetic terms in the action. Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the universe. These scenarios avoid the need for fine-tuned initial conditions (the ''coincidence problem'') because of the attractor-like dynamics of the k-essence field {phi}. We carry out a comprehensive study of attractor-like cosmological solutions (''trackers'') involving a k-essence scalar field {phi} and another matter component. The result of this study is a complete classification of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K({phi})L(X). Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. In the context of k-essence cosmology, the superluminal epoch does not lead to causality violations. We discuss the implications of superluminal signal propagation for possible causality violations in Lorentz-invariant field theories. Another application of k-fields was made in the new ekpyrotic scenario that attempts to solve the big-bang singularity problem by involving violation of the null energy condition in a model which combines the ekpyrotic/cyclic scenario with the ghost condensate theory and the curvation mechanism of production of adiabatic perturbations of metric. The Lagrangian of this theory, as well as of the ghost condensate model, contains a term with higher derivatives, which was added to the theory to stabilize its vacuum state. We find that this term may affect the dynamics of the cosmological evolution. Moreover, after a proper quantization, this term results in the existence of a new ghost field with negative energy, which leads to a catastrophic vacuum instability. We explain

  19. Dark energy and bouncing universe from k-fields

    International Nuclear Information System (INIS)

    Kang, Jin U

    2009-01-01

    In this thesis we consider some cosmological implications of k-fields, which are general scalar fields with non-canonical kinetic terms in the action. Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the universe. These scenarios avoid the need for fine-tuned initial conditions (the ''coincidence problem'') because of the attractor-like dynamics of the k-essence field φ. We carry out a comprehensive study of attractor-like cosmological solutions (''trackers'') involving a k-essence scalar field φ and another matter component. The result of this study is a complete classification of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K(φ)L(X). Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. In the context of k-essence cosmology, the superluminal epoch does not lead to causality violations. We discuss the implications of superluminal signal propagation for possible causality violations in Lorentz-invariant field theories. Another application of k-fields was made in the new ekpyrotic scenario that attempts to solve the big-bang singularity problem by involving violation of the null energy condition in a model which combines the ekpyrotic/cyclic scenario with the ghost condensate theory and the curvation mechanism of production of adiabatic perturbations of metric. The Lagrangian of this theory, as well as of the ghost condensate model, contains a term with higher derivatives, which was added to the theory to stabilize its vacuum state. We find that this term may affect the dynamics of the cosmological evolution. Moreover, after a proper quantization, this term results in the existence of a new ghost field with negative energy, which leads to a catastrophic vacuum instability. We explain why one cannot treat this dangerous term as a

  20. Vacuum Energy and Inflation: 4. An Inflationary Universe

    Science.gov (United States)

    Huggins, Elisha

    2013-01-01

    This is the fourth paper in a series of four. The first paper in the series, "Vacuum Energy and Inflation: 1. A Liter of Vacuum Energy" [EJ1024183] discusses an example of vacuum energy. Vacuum energy is explained as an energy with a negative pressure whose energy density remains constant in an expanding space. Paper 2, "Vacuum…

  1. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  2. Ion trap simulations of quantum fields in an expanding universe.

    Science.gov (United States)

    Alsing, Paul M; Dowling, Jonathan P; Milburn, G J

    2005-06-10

    We propose an experiment in which the phonon excitation of ion(s) in a trap, with a trap frequency exponentially modulated at rate kappa, exhibits a thermal spectrum with an "Unruh" temperature given by k(B)T=Planck kappa. We discuss the similarities of this experiment to the response of detectors in a de Sitter universe and the usual Unruh effect for uniformly accelerated detectors. We demonstrate a new Unruh effect for detectors that respond to antinormally ordered moments using the ion's first blue sideband transition.

  3. Fourth Energy Symposium of the University of St. Gall - Proceedings

    International Nuclear Information System (INIS)

    2006-01-01

    These comprehensive proceedings contain the presentations made at the fourth energy symposium held in Baden, Switzerland by the University of St. Gall, Switzerland. The theme of the conference was Swiss legislation on electricity market liberalisation and its influence on the future general conditions placed on the electricity supply industry in Switzerland. The first presentation, made by Walter Steinmann, director of the Swiss Federal Office of Energy, presented an overview of the new legislation and the developments to be noted in the international area. In a review of future developments, Steinmann explained the legal framework and basics of the new legislation and their influence on decisions to be made in various areas including power generation and distribution as well as those concerning international power deals. The regulatory organs being set up were discussed, as well as the question of whether smaller utilities should co-operate or merge with others. The second contribution, presented by Michael Merker, took a look at the legal aspects of the remuneration for renewable energy that is fed into the public mains. Merker discussed and compared the legal frameworks for renewable energy in the European Union and in Switzerland, including production goals, quotas and certificate models. For Switzerland, the proposed remuneration system was discussed. The third contribution, presented by Werner Graber, focussed on the use of the electricity grid and power distribution systems. Their value, their costs and the price for their use formed the framework of the presentation. Reference was made to the various articles in the new Swiss legislation that pertain to such aspects. Many of these points are discussed in detail. The next contribution, presented by Wolfgang Urbantschitsch, described the role played by the state power regulator E-Control in Austria and the relationships between the various players to be found in the Austrian power market. Also, a power

  4. Interacting polytropic gas model of phantom dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.; Fehri, J.

    2009-01-01

    By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for an even polytropic index by choosing K>Ba (3)/(n) , one can obtain ω Λ eff <-1, which corresponds to a universe dominated by phantom dark energy. (orig.)

  5. Dark Energy Studies with LSST Image Simulations, Final Report

    International Nuclear Information System (INIS)

    Peterson, John Russell

    2016-01-01

    This grant funded the development and dissemination of the Photon Simulator (PhoSim) for the purpose of studying dark energy at high precision with the upcoming Large Synoptic Survey Telescope (LSST) astronomical survey. The work was in collaboration with the LSST Dark Energy Science Collaboration (DESC). Several detailed physics improvements were made in the optics, atmosphere, and sensor, a number of validation studies were performed, and a significant number of usability features were implemented. Future work in DESC will use PhoSim as the image simulation tool for data challenges used by the analysis groups.

  6. High-energy physics at Tufts University. Final report

    International Nuclear Information System (INIS)

    1982-01-01

    This Final Report summarizes research accomplished at Tufts University in High Energy Physics during the period 1957 to 1982, with emphasis on the period since 1979 when next previous such summary report was submitted. Activities and publications up to 31 December 1982 and not earlier reported are listed. Principal accomplishments during the past six years include: measurement of the near equality of the charmed D 0 and D +- lifetimes; determination of important features of nu/sub μ/ cross sections on nucleons, of majority quark momentum distributions, of charmed #betta#/sub c/ + production and decay of quark and di-quark fragmentation, and of Z 0 left-handed couplings to u- and d-quarks; the second observation of the upsilon particle; the hadronic production of the J/psi particle via the chi charmonium state; observation of virtual-photon shadowing in deep-inelastic muon scattering; and observation of evidence for two new scalar meson states. In theoretical work, a detailed understanding of the nature of optimal representations of amplitudes and observables in scattering processes has been achieved

  7. BOOK REVIEW: Fusion: The Energy of the Universe

    Science.gov (United States)

    Lister, J.

    2006-05-01

    This book outlines the quest for fusion energy. It is presented in a form which is accessible to the interested layman, but which is precise and detailed for the specialist as well. The book contains 12 detailed chapters which cover the whole of the intended subject matter with copious illustrations and a balance between science and the scientific and political context. In addition, the book presents a useful glossary and a brief set of references for further non-specialist reading. Chapters 1 to 3 treat the underlying physics of nuclear energy and of the reactions in the sun and in the stars in considerable detail, including the creation of the matter in the universe. Chapter 4 presents the fusion reactions which can be harnessed on earth, and poses the fundamental problems of realising fusion energy as a source for our use, explaining the background to the Lawson criterion on the required quality of energy confinement, which 50 years later remains our fundamental milestone. Chapter 5 presents the basis for magnetic confinement, introducing some early attempts as well as some straightforward difficulties and treating linear and circular devices. The origins of the stellarator and of the tokamak are described. Chapter 6 is not essential to the mission of usefully harnessing fusion energy, but nonetheless explains to the layman the difference between fusion and fission in weapons, which should help the readers understand the differences as sources of peaceful energy as well, since this popular confusion remains a problem when proposing fusion with the `nuclear' label. Chapter 7 returns to energy sources with laser fusion, or inertial confinement fusion, which constitutes both military and civil research, depending on the country. The chapter provides a broad overview of the progress right up to today's hopes for fast ignition. The difficulty of harnessing fusion energy by magnetic or inertial confinement has created a breeding ground for what the authors call `false

  8. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Science.gov (United States)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  9. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tomoaki, E-mail: t-nishi@hosei.ac.jp

    2016-03-15

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of {sup 16}O({sup 4}He, {sup 4}He){sup 16}O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  10. Simulation-based optimization of sustainable national energy systems

    International Nuclear Information System (INIS)

    Batas Bjelić, Ilija; Rajaković, Nikola

    2015-01-01

    The goals of the EU2030 energy policy should be achieved cost-effectively by employing the optimal mix of supply and demand side technical measures, including energy efficiency, renewable energy and structural measures. In this paper, the achievement of these goals is modeled by introducing an innovative method of soft-linking of EnergyPLAN with the generic optimization program (GenOpt). This soft-link enables simulation-based optimization, guided with the chosen optimization algorithm, rather than manual adjustments of the decision vectors. In order to obtain EnergyPLAN simulations within the optimization loop of GenOpt, the decision vectors should be chosen and explained in GenOpt for scenarios created in EnergyPLAN. The result of the optimization loop is an optimal national energy master plan (as a case study, energy policy in Serbia was taken), followed with sensitivity analysis of the exogenous assumptions and with focus on the contribution of the smart electricity grid to the achievement of EU2030 goals. It is shown that the increase in the policy-induced total costs of less than 3% is not significant. This general method could be further improved and used worldwide in the optimal planning of sustainable national energy systems. - Highlights: • Innovative method of soft-linking of EnergyPLAN with GenOpt has been introduced. • Optimal national energy master plan has been developed (the case study for Serbia). • Sensitivity analysis on the exogenous world energy and emission price development outlook. • Focus on the contribution of smart energy systems to the EU2030 goals. • Innovative soft-linking methodology could be further improved and used worldwide.

  11. Building Performance Simulation tools for planning of energy efficiency retrofits

    DEFF Research Database (Denmark)

    Mondrup, Thomas Fænø; Karlshøj, Jan; Vestergaard, Flemming

    2014-01-01

    Designing energy efficiency retrofits for existing buildings will bring environmental, economic, social, and health benefits. However, selecting specific retrofit strategies is complex and requires careful planning. In this study, we describe a methodology for adopting Building Performance...... to energy efficiency retrofits in social housing. To generate energy savings, we focus on optimizing the building envelope. We evaluate alternative building envelope actions using procedural solar radiation and daylight simulations. In addition, we identify the digital information flow and the information...... Simulation (BPS) tools as energy and environmentally conscious decision-making aids. The methodology has been developed to screen buildings for potential improvements and to support the development of retrofit strategies. We present a case study of a Danish renovation project, implementing BPS approaches...

  12. Contrasting the capabilities of building energy performance simulation programs

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, Drury B. [US Department of Energy, Washington, DC (United States); Hand, Jon W. [University of Strathclyde, Glasgow, Scotland (United Kingdom). Energy Systems Research Unit; Kummert, Michael [University of Wisconsin-Madison (United States). Solar Energy Laboratory; Griffith, Brent T. [National Renewable Energy Laboratory, Golden, CO (United States)

    2008-04-15

    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability. (author)

  13. Fast Learning for Immersive Engagement in Energy Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-25

    The fast computation which is critical for immersive engagement with and learning from energy simulations would be furthered by developing a general method for creating rapidly computed simplified versions of NREL's computation-intensive energy simulations. Created using machine learning techniques, these 'reduced form' simulations can provide statistically sound estimates of the results of the full simulations at a fraction of the computational cost with response times - typically less than one minute of wall-clock time - suitable for real-time human-in-the-loop design and analysis. Additionally, uncertainty quantification techniques can document the accuracy of the approximate models and their domain of validity. Approximation methods are applicable to a wide range of computational models, including supply-chain models, electric power grid simulations, and building models. These reduced-form representations cannot replace or re-implement existing simulations, but instead supplement them by enabling rapid scenario design and quality assurance for large sets of simulations. We present an overview of the framework and methods we have implemented for developing these reduced-form representations.

  14. The magnetic universe through vector potential SPMHD simulations

    Science.gov (United States)

    Stasyszyn, F. A.

    2017-10-01

    The use of Smoothed Particle Magneto Hydrodynamics (SPMHD) is getting nowadays more and more common in Astrophysics. From galaxy clusters to neutron starts, there are multiple applications already existing in the literature. I will review some of the common methods used and highlight the successful approach of using vector potentials to describe the evolution of the magnetic fields. The latter have some interesting advantages, and their results challenge previous findings, being the magnetic divergence problem naturally vanished. We select a few examples to discuss some areas of interest. First, we show some Galaxy Clusters from the MUSIC project. These cosmological simulations are done with the usual sub-grid recipes, as radiative cooling and star formation, being the first ones obtained with an SPH code in a self consistent way. This demonstrates the robustness of the new method in a variety of astrophysical scenarios.

  15. Energy Feedback from X-ray Binaries in the Early Universe

    Science.gov (United States)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  16. The energy audit process for universities accommodation in Malaysia: a preliminary study

    Science.gov (United States)

    Dzulkefli Muhammad, Hilmi

    2017-05-01

    The increase of energy consumption in the Malaysian Universities has raised national concerns due to the fact that its consumption increase government fiscal budget and at the same time contributes negative impacts towards the environment. The purpose of this research is to focus on the process of energy audit conducted in the Malaysian universities and to identify the significant practice that can improve energy consumption of the selected universities. The significant criteria in energy audit may be found by comparing the energy implementation process of selected Malaysian universities through the investigation of energy consumption behavior and the number of electrical appliances, equipment, machinery and buildings activities that have an impact on energy consumption that can improve energy-efficiency in building. The Energy Efficiency Index (EEI) will be used as an indicator and combined with the suggested application of HOMER software to obtain solution and possible improvement of energy consumption during energy audit implementation. A document analysis approach will also be obtained in order to identify the best practice through the selected energy documentations. The result of this research may be used as a guideline for other universities that consume high energy in order to help improving the implementation of energy audit process in their universities.

  17. Simulation of embedded systems for energy consumption estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, S.

    2009-07-01

    Technology developments in semiconductor fabrication along with a rapid expansion of the market for portable devices, such as PDAs and mobile phones, make the energy consumption of embedded systems a major problem. Indeed the need to provide an increasing number of computational intensive applications and at the same time to maximize the battery life of portable devices can be seen as incompatible trends. System simulation is a flexible and convenient method for analyzinging and exploring the performance of a system or sub-system. At the same time, the increasing use of computational intensive applications strengthens the need to maximize the battery life of portable devices. As a consequence, the simulation of embedded systems for energy consumption estimation is becoming essential in order to study and explore the influence of system design choices on the system energy consumption. The original publications presented in the second part of this thesis propose several frameworks for evaluating the effects of particular system and software architectures on the system energy consumption. From a software point of view Java and C based applications are studied, and from a hardware perspective systems using general purpose processor and heterogeneous platforms with dedicated hardware accelerators are analyzed. Papers 1 and 2 present a framework for estimating the energy consumption of an embedded Java Virtual Machine and show how an accurate energy consumption model of Java opcodes can be obtained. Paper 3 evaluates the cost-effectiveness of Forward Error Correction algorithms in terms of energy consumption and demonstrates that a substantial energy saving is achievable in a DVB-H receiver when a FEC algorithm is used for file downloading scenarios. Paper 4 and 5 present the simulation of heterogeneous platforms and point out the drawback of different mechanisms used to synchronize a hardware accelerator used as a peripheral device. Paper 6 shows that the use of a multi

  18. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    Science.gov (United States)

    Baylin-Stern, Adam C.

    This paper demonstrates how an U.S. application of CIMS, a technologically explicit and behaviourally realistic energy-economy simulation model which includes macro-economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) and autonomous energy efficiency index (AEEI) parameters. The ability of economies to reduce greenhouse gas emissions depends on the potential for households and industry to decrease overall energy usage, and move from higher to lower emissions fuels. Energy economists commonly refer to ESUB estimates to understand the degree of responsiveness of various sectors of an economy, and use estimates to inform computable general equilibrium models used to study climate policies. Using CIMS, I have generated a set of future, 'pseudo-data' based on a series of simulations in which I vary energy and capital input prices over a wide range. I then used this data set to estimate the parameters for transcendental logarithmic production functions using regression techniques. From the production function parameter estimates, I calculated an array of elasticity of substitution values between input pairs. Additionally, this paper demonstrates how CIMS can be used to calculate price-independent changes in energy-efficiency in the form of the AEEI, by comparing energy consumption between technologically frozen and 'business as usual' simulations. The paper concludes with some ideas for model and methodological improvement, and how these might figure into future work in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog; autonomous energy efficiency index; rebound effect; fuel switching.

  19. Merging Energy Policy Decision Support, Education, and Communication: The 'World Energy' Simulation Role-Playing Game

    Science.gov (United States)

    Rooney-varga, J. N.; Franck, T.; Jones, A.; Sterman, J.; Sawin, E.

    2013-12-01

    To meet international goals for climate change mitigation and adaptation, as well as energy access and equity, there is an urgent need to explore and define energy policy paths forward. Despite this need, students, citizens, and decision-makers often hold deeply flawed mental models of the energy and climate systems. Here we describe a simulation role-playing game, World Energy, that provides an immersive learning experience in which participants can create their own path forward for global energy policy and learn about the impact of their policy choices on carbon dioxide emissions, temperature rise, energy supply mix, energy prices, and energy demand. The game puts players in the decision-making roles of advisors to the United Nations Sustainable Energy for All Initiative (drawn from international leaders from industry, governments, intergovernmental organizations, and citizens groups) and, using a state-of-the-art decision-support simulator, asks them to negotiate a plan for global energy policy. We use the En-ROADS (Energy Rapid Overview and Decision Support) simulator, which runs on a laptop computer in <0.1 sec. En-ROADS enables users to specify many factors, including R&D-driven cost reductions in fossil fuel-based, renewable, or carbon-neutral energy technologies; taxes and subsidies for different energy sources; performance standards and energy efficiency; emissions prices; policies to address other greenhouse gas emissions (e.g., methane, nitrous oxide, chlorofluorocarbons, etc.); and assumptions about GDP and population. In World Energy, participants must balance climate change mitigation goals with equity, prices and access to energy, and the political feasibility of policies. Initial results indicate participants gain insights into the dynamics of the energy and climate systems and greater understanding of the potential impacts policies.

  20. Non-universal spectra of ultra-high energy cosmic ray primaries and secondaries in a structured universe

    International Nuclear Information System (INIS)

    Sigl, Guenter

    2007-01-01

    Analytical calculations of extra-galactic cosmic ray spectra above ∼ 10 17 eV are often performed assuming continuous source distributions, giving rise to spectra that depend little on the propagation mode, be it rectilinear or diffusive. We perform trajectory simulations for proton primaries in the probably more realistic case of discrete sources with a density of ∼ 10 -5 Mpc -3 . We find two considerable non-universal effects that depend on source distributions and magnetic fields: First, the primary extra-galactic cosmic ray flux can become strongly suppressed below a few 10 18 eV due to partial confinement in magnetic fields surrounding sources. Second, the secondary photon to primary cosmic ray flux ratio between ≅ 3 x 10 18 eV and ≅ 10 20 eV decreases with decreasing source density and increasing magnetization. As a consequence, in acceleration scenarios for the origin of highest energy cosmic rays the fraction of secondary photons may be difficult to detect even for experiments such as Pierre Auger. The cosmogenic neutrino flux does not significantly depend on source density and magnetization. (author)

  1. Teaching simulator for divulgation of the nuclear energy

    International Nuclear Information System (INIS)

    Ortega B, M.G.; Gutierrez F, R.

    2003-01-01

    To solicitude of the authorities of the 'Universum' sciences museum of the UNAM, it develops a highly interactive computational system, to provide of information to the population in general about basic principles, uses and benefits of the nuclear energy. The objective is to achieve a better understanding and acceptance of the nuclear technology in our country. The system allows the visualization and simulation of nuclear processes as well as of its applications. The system is divided in three levels: basic, intermediate and simulation. In the basic level multimedia information is included on diverse basic concepts of the nuclear energy. The intermediate level includes the description and operation of some systems of the Laguna Verde nuclear power plant (CNLV). Finally the simulation level contains representative scenarios that the user can control by means of virtual control panels of the main systems of the CNLV. Inside the system a part of interactive games is included with the purpose that the user remembers with more easiness all the concepts and advantages of the nuclear energy mentioned during the previous levels. The system contributes, by means of the development of multimedia computational tools and of simulation, to the popularization of the use and applications of the nuclear energy in Mexico. (Author)

  2. MALAYSIAN WEATHER DATA (TRY) FOR ENERGY SIMULATIONS IN BUILDINGS

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2001-01-01

    Detailed energy simulations for buildings in Malaysia have become possible after the recent construction of a Malaysian TRY (Test Reference Year) based on 21 years of hourly weather data from Subang Meteorological Station. The climatic parameters contained in the TRY are dry bulb temperature, wet...

  3. BRUS2. An energy system simulator for long term planning

    DEFF Research Database (Denmark)

    Skytte, K.; Skjerk Christensen, P.

    1999-01-01

    BRUS2 is a technical-economic bottom-up scenario model. The objective of BRUS2 is to provide decision-makers with information on consequences of given trends of parameters of society like population growth and productivity, and of political goals, e.g., energy saving initiatives. BRUS2 simulates ...

  4. Testing simulation and structural models with applications to energy demand

    Science.gov (United States)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  5. A New Model to Simulate Energy Performance of VRF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

    2014-03-30

    This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real

  6. Realistic electricity market simulator for energy and economic studies

    International Nuclear Information System (INIS)

    Bernal-Agustin, Jose L.; Contreras, Javier; Conejo, Antonio J.; Martin-Flores, Raul

    2007-01-01

    Electricity market simulators have become a useful tool to train engineers in the power industry. With the maturing of electricity markets throughout the world, there is a need for sophisticated software tools that can replicate the actual behavior of power markets. In most of these markets, power producers/consumers submit production/demand bids and the Market Operator clears the market producing a single price per hour. What makes markets different from each other are the bidding rules and the clearing algorithms to balance the market. This paper presents a realistic simulator of the day-ahead electricity market of mainland Spain. All the rules that govern this market are modeled. This simulator can be used either to train employees by power companies or to teach electricity markets courses in universities. To illustrate the tool, several realistic case studies are presented and discussed. (author)

  7. Simulation of vacancy migration energy in Cu under high strain

    International Nuclear Information System (INIS)

    Sato, K.; Yoshiie, T.; Satoh, Y.; Xu, Q.; Kiritani, M.

    2003-01-01

    The activation energy for the migration of vacancies in Cu under high strain was calculated by computer simulation using static methods. The migration energy of vacancies was 0.98 eV in the absence of deformation. It varied with the migration direction and stress direction because the distance between a vacancy and its neighboring atoms changes by deformation. For example, the migration energy for the shortest migration distance was reduced to 9.6 and 39.4% of its initial value by 10% compression and 20% elongation, respectively, while that for the longest migration distance was raised to 171.7 by 20% elongation. If many vacancies are created during high-speed deformation, the lowering of migration energy enables vacancies to escape to sinks such as surfaces, even during the shorter deformation period. The critical strain rate above which the strain rate dependence of vacancy accumulation ceases to exist increases with the lowering of vacancy migration energy

  8. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...

  9. Simulation of off-energy electron background in DELPHI

    CERN Document Server

    Falk, E; Von Holtey, Georg

    1997-01-01

    Monte Carlo simulations of off-energy electron background in the DELPHI luminometer STIC are reported. The study simulates the running conditions at 68 GeV with and without bunch trains. The electrostatic separators, which create the vertical separation bumps for the the bunch trains, cause a high concentration of background in the vertical plane. The simulations are compared to LEP data taken under similar running conditions. A comparison between the simulated running conditions at 68 GeV and those of the new LEP2 beam optics at 80.5 GeV is made. Moreover, the study investigates background components entering STIC elsewhere that through the front of the detector, and a significant portion is found to enter either from the back or from below. Possible improvements of the background situation are also discussed.

  10. Study on low-energy sputtering near the threshold energy by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    C. Yan

    2012-09-01

    Full Text Available Using molecular dynamics simulation, we have studied the low-energy sputtering at the energies near the sputtering threshold. Different projectile-target combinations of noble metal atoms (Cu, Ag, Au, Ni, Pd, and Pt are simulated in the range of incident energy from 0.1 to 200 eV. It is found that the threshold energies for sputtering are different for the cases of M1 < M2 and M1 ≥ M2, where M1 and M2 are atomic mass of projectile and target atoms, respectively. The sputtering yields are found to have a linear dependence on the reduced incident energy, but the dependence behaviors are different for the both cases. The two new formulas are suggested to describe the energy dependences of the both cases by fitting the simulation results with the determined threshold energies. With the study on the energy dependences of sticking probabilities and traces of the projectiles and recoils, we propose two different mechanisms to describe the sputtering behavior of low-energy atoms near the threshold energy for the cases of M1 < M2 and M1 ≥ M2, respectively.

  11. Simulated galaxy interactions as probes of merger spectral energy distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Brassington, Nicola, E-mail: llanz@ipac.caltech.edu [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)

    2014-04-10

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.

  12. Expansion in Number of Parameters - Simulation of Energy and Indoor Climate in Combination with LCA

    DEFF Research Database (Denmark)

    Otovic, Aleksander; Jensen, Lotte Bjerregaard; Negendahl, Kristoffer

    The Technical University of Denmark has been carrying out research in the energy balance of buildings in relation to indoor climate for decades. The last two decades have seen a major role played by research in the field of Integrated Energy Design (IED) focusing on the earliest design phases. Th......-esteemed architectural offices in Scandinavia. The development of the real-time LCA-indoor climate- energy balance tool was funded by Nordic Built.......The Technical University of Denmark has been carrying out research in the energy balance of buildings in relation to indoor climate for decades. The last two decades have seen a major role played by research in the field of Integrated Energy Design (IED) focusing on the earliest design phases...... and engineering consultancies in Scandinavia have invested in software and interdisciplinary design teams to carry out Integrated Energy Design (IED). Legislation has been altered and simulations of indoor climate and energy balance are now required to obtain building permits. IED has been rolled out extensively...

  13. Assignment of Side-Chain Conformation Using Adiabatic Energy Mapping, Free Energy Perturbation, and Molecular Dynamic Simulations

    DEFF Research Database (Denmark)

    Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl

    1999-01-01

    adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...

  14. Scenario simulation based assessment of subsurface energy storage

    Science.gov (United States)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  15. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    Science.gov (United States)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  16. Using the building energy simulation test (BESTEST) to evaluate CHENATH, the Nationwide House Energy Rating Scheme Simulation Engine

    Energy Technology Data Exchange (ETDEWEB)

    Delsante, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Highett, VIC (Australia). Div. of Building Construction and Engineering

    1995-12-31

    The Nationwide House Energy Rating Scheme (NatHERS) uses a simulation program as its reference tool to evaluate the energy demand of buildings. The Commonwealth Scientific Industrial Research Organisation (CSIRO) developed software called CHENATH, is a significantly enhanced version of the CHEETAH simulation program. As part of the NatHERS development process, it was considered important to subject CHENATH to further testing. Two separate evaluation projects were undertaken. This paper describes one of these projects. CHENATH was compared with a reference set of eight internationally recognized simulation programs using the BESTEST methodology. Annual heating and cooling energy requirements were compared for a specified set of variations on a simple double-glazed building. Annual incident and transmitted solar radiation was also compared, for which CHENATH agreed very well with the reference set. It also agreed well for heating energy, but tended to over-predict cooling energy. This is largely because it controls an environmental temperature rather than the required air temperature. For the same reason CHENATH over-predicted heating and cooling demands. No major discrepancies were found that would suggest bugs in the program. (author). 4 tabs., 10 figs., 4 refs.

  17. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  18. An Energy Consumption Study for a Malaysian University

    OpenAIRE

    Fu E. Tang

    2012-01-01

    The increase in energy demand has raised concerns over adverse impacts on the environment from energy generation. It is important to understand the status of energy consumption for institutions such as Curtin Sarawak to ensure the sustainability of energy usage, and also to reduce its costs. In this study, a preliminary audit framework was developed and was conducted around the Malaysian campus to obtain information such as the number and specifications of electrical appl...

  19. Energy deposition by a 106Ru/106Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    International Nuclear Information System (INIS)

    Fuss, M.C.; Munoz, A.; Oller, J.C.; Blanco, F.; Williart, A.; Limao-Vieira, P.; Borge, M.J.G.; Tengblad, O.; Huerga, C.; Tellez, M.; Garcia, G.

    2011-01-01

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic 106 Ru/ 106 Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: → We present the Monte Carlo code LEPTS, a low-energy particle track simulation. → Carefully selected input data from 10 keV to 1 eV. → Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  20. Numerical simulations of energy transfer in two collisionless interpenetrating plasmas

    Directory of Open Access Journals (Sweden)

    Davis S.

    2013-11-01

    Full Text Available Ion stream instabilities are essential for collisionless shock formation as seen in astrophysics. Weakly relativistic shocks are considered as candidates for sources of high energy cosmic rays. Laboratory experiments may provide a better understanding of this phenomenon. High intensity short pulse laser systems are opening possibilities for efficient ion acceleration to high energies. Their collision with a secondary target could be used for collisionless shock formation. In this paper, using particle-in-cell simulations we are studying interaction of a sub-relativistic, laser created proton beam with a secondary gas target. We show that the ion bunch initiates strong electron heating accompanied by the Weibel-like filamentation and ion energy losses. The energy repartition between ions, electrons and magnetic fields are investigated. This yields insight on the processes occurring in the interstellar medium (ISM and gamma-ray burst afterglows.

  1. Simulation of Solar Energy Use in Livelihood of Buildings

    Science.gov (United States)

    Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2017-11-01

    Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.

  2. University Research in Support of TREAT Modeling and Simulation, FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Idaho National Laboratory is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under the Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. In support of this research, INL is working with four universities to explore advanced solution methods that will complement or augment capabilities in MAMMOTH. This report consists of a collection of year end summaries of research from the universities performed in support of TREAT modeling and simulation. This research was led by Prof. Sedat Goluoglu at the University of Florida, Profs. Jim Morel and Jean Ragusa at Texas A&M University, Profs. Benoit Forget and Kord Smith at Massachusetts Institute of Technology, Prof. Leslie Kerby of Idaho State University and Prof. Barry Ganapol of University of Arizona. A significant number of students were supported at various levels though the projects and, for some, also as interns at INL.

  3. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI......). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...

  4. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University

    Directory of Open Access Journals (Sweden)

    Joshua O. Okeniyi

    2018-04-01

    Full Text Available This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT. Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management, Learning analytics, Nigerian university, Education data mining

  5. Energy flux simulation in heterogeneous cropland - a two year study

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Biernath, Christian; Heinlein, Florian; Priesack, Eckart

    2016-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere [Stainforth et al. 2005]. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial heterogeneity of soil and land use types are high, e.g. in Central Europe. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N [Biernath et al. 2013] . The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N to an analytical footprint model [Mauder & Foken 2011] . The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). The approach accounts for the temporarily and spatially

  6. FESetup: Automating Setup for Alchemical Free Energy Simulations.

    Science.gov (United States)

    Loeffler, Hannes H; Michel, Julien; Woods, Christopher

    2015-12-28

    FESetup is a new pipeline tool which can be used flexibly within larger workflows. The tool aims to support fast and easy setup of alchemical free energy simulations for molecular simulation packages such as AMBER, GROMACS, Sire, or NAMD. Post-processing methods like MM-PBSA and LIE can be set up as well. Ligands are automatically parametrized with AM1-BCC, and atom mappings for a single topology description are computed with a maximum common substructure search (MCSS) algorithm. An abstract molecular dynamics (MD) engine can be used for equilibration prior to free energy setup or standalone. Currently, all modern AMBER force fields are supported. Ease of use, robustness of the code, and automation where it is feasible are the main development goals. The project follows an open development model, and we welcome contributions.

  7. Simulation of energy- efficient building prototype using different insulating materials

    Science.gov (United States)

    Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed

    2018-05-01

    The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.

  8. DNA – A General Energy System Simulation Tool

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Houbak, Niels

    2005-01-01

    The paper reviews the development of the energy system simulation tool DNA (Dynamic Network Analysis). DNA has been developed since 1989 to be able to handle models of any kind of energy system based on the control volume approach, usually systems of lumped parameter components. DNA has proven...... to be a useful tool in the analysis and optimization of several types of thermal systems: Steam turbines, gas turbines, fuels cells, gasification, refrigeration and heat pumps for both conventional fossil fuels and different types of biomass. DNA is applicable for models of both steady state and dynamic...... operation. The program decides at runtime to apply the DAE solver if the system contains differential equations. This makes it easy to extend an existing steady state model to simulate dynamic operation of the plant. The use of the program is illustrated by examples of gas turbine models. The paper also...

  9. Draught risk index tool for building energy simulations

    DEFF Research Database (Denmark)

    Vorre, Mette Havgaard; Jensen, Rasmus Lund; Nielsen, Peter V.

    2014-01-01

    Flow elements combined with a building energy simulation tool can be used to indicate areas and periods when there is a risk of draught in a room. The study tests this concept by making a tool for post-processing of data from building energy simulations. The objective is to show indications...... of draught risk during a whole year, giving building designers a tool for the design stage of a building. The tool uses simple one-at-a-time calculations of flow elements and assesses the uncertainty of the result by counting the number of overlapping flow elements. The calculation time is low, making...... it usable in the early design stage to optimise the building layout. The tool provides an overview of the general draught pattern over a period, e.g. a whole year, and of how often there is a draught risk....

  10. Strategic energy planning: Modelling and simulating energy market behaviours using system thinking and systems dynamics principles

    International Nuclear Information System (INIS)

    Papageorgiou, George Nathaniel

    2005-01-01

    In the face of limited energy reserves and the global warming phenomenon, Europe is undergoing a transition from rapidly depleting fossil fuels to renewable unconventional energy sources. During this transition period, energy shortfalls will occur and energy prices will be increasing in an oscillating manner. As a result of the turbulence and dynamicity that will accompany the transition period, energy analysts need new appropriate methods, techniques and tools in order to develop forecasts for the behaviour of energy markets, which would assist in the long term strategic energy planning and policy analysis. This paper reviews energy market behaviour as related to policy formation, and from a dynamic point of view through the use of ''systems thinking'' and ''system dynamics'' principles, provides a framework for modelling the energy production and consumption process in relation to their environment. Thereby, effective energy planning can be developed via computerised simulation using policy experimentation. In a demonstration model depicted in this paper, it is shown that disasters due to attractive policies can be avoided by using simple computer simulation. (Author)

  11. Energy conversion of orbital motions in gravitational waves: Simulation and test of the Seaspoon wave energy converter

    International Nuclear Information System (INIS)

    Di Fresco, L.; Traverso, A.

    2014-01-01

    Highlights: • We investigate an innovative wave energy converter. • We study a robust technology derived from wind power sector. • We increased the performance of a drag type rotor exploiting the motion of ocean waves and a simple flat plate component. • We proved the working principle with a numerical model first and with experimental test in wave flume later. • We aim to obtain a robust large energy harvester able to operate in mild energy sea and with an extended operating range. - Abstract: The conversion of ocean wave power into sustainable electrical power represents a major opportunity to Nations endowed with such a kind of resource. At the present time the most of the technological innovations aiming at converting such resources are at early stage of development, with only a handful of devices close to be at the commercial demonstration stage. The Seaspoon device, thought as a large energy harvester, catches the kinetic energy of ocean waves with promising conversion efficiency, and robust technology, according to specific “wave-motion climate”. University of Genoa aims to develop a prototype to be deployed in medium average energy content seas (i.e. Mediterranean or Eastern Asia seas). This paper presents the first simulation and experimental results carried out on a reduced scale proof-of-concept model tested in the laboratory wave flume

  12. Simulating the universe(s) III: observables for the full bubble collision spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew C. [Department of Physics and Astronomy, York University, Toronto, On, M3J 1P3 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Wainwright, Carroll L.; Aguirre, Anthony [SCIPP and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States); Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-07-14

    This is the third paper in a series establishing a quantitative relation between inflationary scalar field potential landscapes and the relic perturbations left by the collision between bubbles produced during eternal inflation. We introduce a new method for computing cosmological observables from numerical relativity simulations of bubble collisions in one space and one time dimension. This method tiles comoving hypersurfaces with locally-perturbed Friedmann-Robertson-Walker coordinate patches. The method extends previous work, which was limited to the spacetime region just inside the future light cone of the collision, and allows us to explore the full bubble-collision spacetime. We validate our new methods against previous work, and present a full set of predictions for the comoving curvature perturbation and local negative spatial curvature produced by identical and non-identical bubble collisions, in single scalar field models of eternal inflation. In both collision types, there is a non-zero contribution to the spatial curvature and cosmic microwave background quadrupole. Some collisions between non-identical bubbles excite wall modes, giving extra structure to the predicted temperature anisotropies. We comment on the implications of our results for future observational searches. For non-identical bubble collisions, we also find that the surfaces of constant field can readjust in the presence of a collision to produce spatially infinite sections that become nearly homogeneous deep into the region affected by the collision. Contrary to previous assumptions, this is true even in the bubble into which the domain wall is accelerating.

  13. Interacting dark energy and the expansion of the universe

    CERN Document Server

    Silbergleit, Alexander S

    2017-01-01

    This book presents a high-level study of cosmology with interacting dark energy and no additional fields. It is known that dark energy is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. The present text studies the cosmological implications of this circumstance by analyzing cosmological models in which the dark energy density interacts with matter and thus changes with the time. The book also includes a translation of a seminal article about the remarkable life and work of E.B. Gliner, the first person to suggest the concept of dark energy in 1965.

  14. Micro energy harvesting from ambient motion : modeling, simulation and design

    Energy Technology Data Exchange (ETDEWEB)

    Blystad, Lars-Cyril

    2012-07-01

    Vibration energy harvesting is the process of converting available ambient kinetic energy into useful electrical energy. It can be done on large scale with e.g. a wind-driven turbine. This thesis deals with small scale energy harvesters that are suitable for fabrication in Micro electromechanical Systems (MEMS) technologies. Such MEMS energy harvesters have the potential to supply power for micro power devices. Modeling, simulation and design of MEMS vibration energy harvesters are the foci of this thesis. Transduction mechanisms that are covered are electrostatic and piezoelectric. Electric equivalent circuits are obtained for the use in electromechanical simulations with the circuit simulator SPICE. The feasibility of simulating both narrow- and broadband vibrations, to model different external driving forces, in a standard circuit simulator is demonstrated. Comparisons of the har- vesters performance for different excitations are presented. A selection of passive and active power conditioning circuits is investigated and their performances compared. The active nonlinear switching conversion circuitry performs better than simple passive circuitry, especially when mechanical end stops are in effect. The active switching circuits give higher electromechanical damping, and thus can be driven at higher acceleration amplitudes before end stops are engaged. Mechanical end stops have to be present in all MEMS vibrational energy harvesters. Either due to space limitations, reliability issues, Simliberate introduction of nonlinearities or a combination of these. ulations in the thesis include mechanical end stops and thus include the corresponding nonlinearities introduced in the system. When the mechanical end stops are hit by the proof mass during high-amplitude vibrations, nonlinear effects such as saturation and jumps are present. The end stops increase the effective bandwidth at large acceleration amplitudes. End stops limit the output power for sinusoidal

  15. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    Science.gov (United States)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  16. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  17. Conference on energy research at historically black universities

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A conference was convened to present and discuss significant research and development in Historically Black Institutions (current and past); areas that show potential for inter-institutional collaboration and the sharing of facilities; existing capabilities to sustain funded research activities and future potential for expansion and enhancement; and appropriate arrangements for maximum interaction with industry and government agencies. Papers were presented at small group meetings in various energy research areas, and abstracts of the projects or programs are presented. The Solar Energy small group provided contributions in the areas of photovoltaics, biomass, solar thermal, and wind. Research reported on by the Fossil Fuel small group comprises efforts in the areas of fluidized bed combustion of coal, coal liquefaction, and oil shale pyrolysis. Five research programs reported on by the Conservation Research small group involve a summer workshop for high school students on energy conservation; use of industrial waste heat for a greenhouse; solar energy and energy conservation research and demonstration; energy efficiency and management; and a conservation program targeted at developing a model for educating low income families. The Environment Impact groups (2) presented contributions on physical and chemical impacts and biological monitors and impacts. The Policy Research group presented four papers on a careful analysis of the Equity issues; one on a model for examining the economic issue in looking at the interaction between energy technology and the state of the economy; and a second paper examined the institutional constraints on environmental oriented energy policy. Six additional abstracts by invited participants are presented. (MCW)

  18. CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Bruderer, Claudio; Chang, Chihway; Refregier, Alexandre; Amara, Adam; Bergé, Joel; Gamper, Lukas, E-mail: claudio.bruderer@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2016-01-20

    Image simulations are becoming increasingly important in understanding the measurement process of the shapes of galaxies for weak lensing and the associated systematic effects. For this purpose we present the first implementation of the Monte Carlo Control Loops (MCCL), a coherent framework for studying systematic effects in weak lensing. It allows us to model and calibrate the shear measurement process using image simulations from the Ultra Fast Image Generator (UFig) and the image analysis software SExtractor. We apply this framework to a subset of the data taken during the Science Verification period (SV) of the Dark Energy Survey (DES). We calibrate the UFig simulations to be statistically consistent with one of the SV images, which covers ∼0.5 square degrees. We then perform tolerance analyses by perturbing six simulation parameters and study their impact on the shear measurement at the one-point level. This allows us to determine the relative importance of different parameters. For spatially constant systematic errors and point-spread function, the calibration of the simulation reaches the weak lensing precision needed for the DES SV survey area. Furthermore, we find a sensitivity of the shear measurement to the intrinsic ellipticity distribution, and an interplay between the magnitude-size and the pixel value diagnostics in constraining the noise model. This work is the first application of the MCCL framework to data and shows how it can be used to methodically study the impact of systematics on the cosmic shear measurement.

  19. A Simulation-Based LED Design Project in Photonics Instruction Based on Industry-University Collaboration

    Science.gov (United States)

    Chang, S. -H.; Chen, M. -L.; Kuo, Y. -K.; Shen, Y. -C.

    2011-01-01

    In response to the growing industrial demand for light-emitting diode (LED) design professionals, based on industry-university collaboration in Taiwan, this paper develops a novel instructional approach: a simulation-based learning course with peer assessment to develop students' professional skills in LED design as required by industry as well as…

  20. Improving Resilience and Self-Esteem among University Students with Entrepreneurship Simulation Board Game

    Science.gov (United States)

    Prihadi, Kususanto; Cheow, Damien Z. Y.; Yong, Jonathan H. E.; Sundrasagran, Megaanesh

    2018-01-01

    This study aims to evaluate the effect of the frequency of playing a board game that simulates entrepreneurial experience called "Traders" on the university students' resilience and self-esteem. Traders Board Game (TBG) was developed in 2015 with an aim to improve several entrepreneurship skills among young adults, and resilience being…

  1. Virtual Property Manager: Providing a Simulated Learning Environment in a New University Program of Study

    Directory of Open Access Journals (Sweden)

    Andrew Carswell

    2007-08-01

    Full Text Available This paper relates the experience that students have while accessing Virtual Property Manager (VPM, a Web-based simulation learning tool designed to introduce students to a new discipline being offered at the university – Residential Property Management. The VPM simulation was designed in part to develop student interest in the new program. Results indicate that this simple simulation device did make a notable impact on student interest. Additionally, student acceptance and self-reported impact differed significantly based upon the delivery context. Adding a competitive reward element to the simulation experience improved student's evaluation of the software and self-reported interest in the field. Results indicate that educational simulation evaluation, acceptance, and performance may often be substantially influenced by the delivery context, rather than simply the program itself. Developers may do well to focus "outside the box" of program content to promote audience-specific delivery environments.

  2. Universality in low energy three-body systems

    International Nuclear Information System (INIS)

    Amorim, A.E.A.; Tomio, L; Frederico, T.

    1997-01-01

    The renormalizability of the quantum theory of non-relativistic three-body system with zero range interaction, warranties that all the low-energy three-body properties are well defined and the low-energy two-body and only one three-body physical information are known. Considering this observation, we have shown that the conditions for the occurrence of Efimov states can be easily reached with any model of short range potential where the three-body ground state and the corresponding binding energy of the subsystems are kept fixed. This approach was applied to the recently discovered halo nuclei. (author)

  3. Smart campus: Data on energy consumption in an ICT-driven university

    Directory of Open Access Journals (Sweden)

    Segun I. Popoola

    2018-02-01

    Full Text Available In this data article, we present a comprehensive dataset on electrical energy consumption in a university that is practically driven by Information and Communication Technologies (ICTs. The total amount of electricity consumed at Covenant University, Ota, Nigeria was measured, monitored, and recorded on daily basis for a period of 12 consecutive months (January–December, 2016. Energy readings were observed from the digital energy meter (EDMI Mk10E located at the distribution substation that supplies electricity to the university community. The complete energy data are clearly presented in tables and graphs for relevant utility and potential reuse. Also, descriptive first-order statistical analyses of the energy data are provided in this data article. For each month, the histogram distribution and time series plot of the monthly energy consumption data are analyzed to show insightful trends of energy consumption in the university. Furthermore, data on the significant differences in the means of daily energy consumption are made available as obtained from one-way Analysis of Variance (ANOVA and multiple comparison post-hoc tests. The information provided in this data article will foster research development in the areas of energy efficiency, planning, policy formulation, and management towards the realization of smart campuses. Keywords: Smart campus, Energy consumption, Energy efficiency, Load forecasting, Energy management

  4. Stanford University: The Building Energy Retrofit Programs. Green Revolving Funds in Action: Case Study Series

    Science.gov (United States)

    Flynn, Emily

    2011-01-01

    Stanford University's Energy Retrofit Program was created in 1993 to target resource reduction and conservation focused projects on campus. Fahmida Ahmed, Associate Director of the Department of Sustainability and Energy Management, says that Stanford has been investing in sustainability and energy-efficiency since the late 1970s, longer than many…

  5. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Shahidehpour, Mohammad [Illinois Inst. of Technology, Chicago, IL (United States)

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision

  6. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    Science.gov (United States)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students

  7. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Science.gov (United States)

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  8. SIMULATIONS OF THE AGS MMPS STORING ENERGY IN CAPACITOR BANKS

    Energy Technology Data Exchange (ETDEWEB)

    MARNERIS,I.; BADEA, V.S.; BONATI, R.; ROSER, T.; SANDBERG, J.

    2007-06-25

    The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old, made by Siemens and it is not clear if companies will be manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operations. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented along with the control system of the power section. The switching elements will be IGCT's made by ABB. The simulation program used is called PSIM version 6.1. The average power from the local power authority into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

  9. SIMULATIONS OF THE AGS MMPS STORING ENERGY IN CAPACITOR BANKS

    International Nuclear Information System (INIS)

    MARNERIS, I.; BADEA, V.S.; BONATI, R.; ROSER, T.; SANDBERG, J.

    2007-01-01

    The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old, made by Siemens and it is not clear if companies will be manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operations. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented along with the control system of the power section. The switching elements will be IGCT's made by ABB. The simulation program used is called PSIM version 6.1. The average power from the local power authority into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented

  10. Casimir energy density for spherical universes in n-dimensional spacetime

    International Nuclear Information System (INIS)

    Oezcan, Mustafa

    2006-01-01

    We consider the Casimir effect for the massless conformal scalar field in an n-dimensional, closed, static universe. We calculate the renormalized vacuum energy density using the covariant point-splitting method, the mode-sum regularization and the renormalized vacuum energy with the zeta-function regularization. We observe that all odd spacetime dimensions give us the zero renormalized vacuum energy density. For even spacetime dimensions the renormalized vacuum energy density oscillates in sign. The result agrees with three regularization techniques. The Casimir energy density for spherical universes in n-dimensional spacetime is regarded as interesting both to understand the correspondence between the sign of the effect and the dimension of manifold in topology and as a key to confirming the Casimir energy for half spherical universes (manifold with boundary) in n-dimensional spacetime

  11. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  12. Energy Efficiency and Universal Design in Home Renovations - A Comparative Review.

    Science.gov (United States)

    Kapedani, Ermal; Herssens, Jasmien; Verbeeck, Griet

    2016-01-01

    Policy and societal objectives indicate a large need for housing renovations that both accommodate lifelong living and significantly increase energy efficiency. However, these two areas of research are not yet examined in conjunction and this paper hypothesizes this as a missed opportunity to create better renovation concepts. The paper outlines a comparative review on research in Energy Efficiency and Universal Design in order to find the similarities and differences in both depth and breadth of knowledge. Scientific literature in the two fields reveals a disparate depth of knowledge in areas of theory, research approach, and degree of implementation in society. Universal Design and Energy Efficiency are part of a trajectory of expanding scope towards greater sustainability and, although social urgency has been a driver of the research intensity and approach in both fields, in energy efficiency there is an engineering, problem solving approach while Universal Design has a more sociological, user-focused one. These different approaches are reflected in the way home owners in Energy Efficiency research are viewed as consumers and decision makers whose drivers are studied, while Universal Design treats home owners as informants in the design process and studies their needs. There is an inherent difficulty in directly merging Universal Design and Energy Efficiency at a conceptual level because Energy Efficiency is understood as a set of measures, i.e. a product, while Universal Design is part of a (design) process. The conceptual difference is apparent in their implementation as well. Internationally energy efficiency in housing has been largely imposed through legislation, while legislation directly mandating Universal Design is either non-existent or it has an explicit focus on accessibility. However, Energy Efficiency and Universal Design can be complementary concepts and, even though it is more complex than expected, the combination offers possibilities to advance

  13. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo

    2012-01-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations

  14. Final Technical Report for "High Energy Physics at The University of Iowa"

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, Usha; Meurice, Yannick; Nachtman, Jane; Onel, Yasar; Reno, Mary

    2013-07-31

    Particle Physics explores the very fundamental building blocks of our universe: the nature of forces, of space and time. By exploring very energetic collisions of sub-nuclear particles with sophisticated detectors at the colliding beam accelerators (as well as others), experimental particle physicists have established the current theory known as the Standard Model (SM), one of the several theoretical postulates to explain our everyday world. It explains all phenomena known up to a very small fraction of a second after the Big Bang to a high precision; the Higgs boson, discovered recently, was the last of the particle predicted by the SM. However, many other phenomena, like existence of dark energy, dark matter, absence of anti-matter, the parameters in the SM, neutrino masses etc. are not explained by the SM. So, in order to find out what lies beyond the SM, i.e., what conditions at the earliest fractions of the first second of the universe gave rise to the SM, we constructed the Large Hadron Collider (LHC) at CERN after the Tevatron collider at Fermi National Accelerator Laboratory. Each of these projects helped us push the boundary further with new insights as we explore a yet higher energy regime. The experiments are extremely complex, and as we push the boundaries of our existing knowledge, it also requires pushing the boundaries of our technical knowhow. So, not only do we pursue humankind’s most basic intellectual pursuit of knowledge, we help develop technology that benefits today’s highly technical society. Our trained Ph.D. students become experts at fast computing, manipulation of large data volumes and databases, developing cloud computing, fast electronics, advanced detector developments, and complex interfaces in several of these areas. Many of the Particle physics Ph.D.s build their careers at various technology and computing facilities, even financial institutions use some of their skills of simulation and statistical prowess. Additionally, last

  15. Indiana University High Energy Physics Group, Task C

    International Nuclear Information System (INIS)

    Bower, C.; Heinz, R.; Mufson, S.; Musser, J.

    1993-01-01

    The Indiana University Task C group is participating in the experiments GEM at the SSC and MACRO at the Gran Sasso. After an introduction to GEM in paragraph II, a detailed report is presented on the work done during the current contract period on the design of the outer region of the GEM Central Tracker. The Central Tracker Monte Carlo, which was the other significant GEM activity by the group, is included. In paragraph III is introduced MACRO and a brief status report is given. Muon Astronomy analysis done using MACRO data is also presented

  16. Energy Optimization in Dyehouse | Jeetah | University of Mauritius ...

    African Journals Online (AJOL)

    ... that the initial investment on the paint, whose shell life is 2 years, would be recuperated by the 11th month. The positive net present value (2411 MUR) and high internal rate of return (80%) obtained suggested that the project should go ahead. Keywords: Insulation paint, steam consumption, energy optimization, dyehouse ...

  17. Characteristics of University Students Who Mix Alcohol and Energy Drinks

    Science.gov (United States)

    Bonar, Erin E.; Green, Michaela R.; Ashrafioun, Lisham

    2017-01-01

    Objective: Research has identified correlates (e.g., drug use, risky sex, smoking) of using alcohol mixed with energy drinks (AMEDs). Few studies have investigated common mental health-related concerns (e.g., depression, sleep). Participants: Alcohol-using college students (n = 380 never used AMEDs, n = 180 used AMEDs) were recruited in the study…

  18. Introducing IT-Based environmental simulation courses at Slovak technical universities

    NARCIS (Netherlands)

    Hensen, J.L.M.; Hraska, J.; Mallory-Hill, S.M.; Rabenseifer, F.; Maldonado, E.; Yannas, Y.

    1998-01-01

    Since the 1995/96 academic year, four Slovak universities (Slovak Technical University Bratislava, Technical University Kosice, Slovak Agricultural University Nitra and Technical University Zvolen) in cooperation with two EU universities (University of Strathclyde Glasgow and Eindhoven University of

  19. Driving the Energy Transition at Maastricht University? Analysing the Transformative Potential of the Student-Driven and Staff-Supported Maastricht University Green Office

    NARCIS (Netherlands)

    Spira, Felix; Baker-Shelley, Alex

    2014-01-01

    Strategies on how to improve energy efficiency at universities as part of the global energy transition are barely understood. This study aims to contribute to this body of knowledge, by investigating the energy efficiency transition at Maastricht University. Using the Multi-Level Perspective of

  20. A simulation of low energy channeling of protons in silicon

    International Nuclear Information System (INIS)

    Sabin, J.R.

    1994-01-01

    The authors present early results from the CHANNEL code, which simulates the passage of ionized projectiles through bulk solids. CHANNEL solves the classical equations of motion for the projectile using the force obtained from the gradient of the quantum mechanically derived coulombic potential of the solid (determined via a full potential augmented plane wave FLAPW calculation on the bulk) and a quantum mechanical energy dissipation term, the stopping power, as determined from the local electron density, using the method of Echenique, Nieminen, and Ritchie. The code then generates the trajectory of the ionic projectile for a given initial velocity and a given incident position on the unit cell face. For each incident projectile velocity, the authors generate trajectories for incidence distributed over the channel face. The distribution of ranges generates an implantation profile. In this paper, they report ion (proton) implantation profiles for low energy protons with initial velocity along the (100) and (110) channel directions of diamond structured Silicon

  1. Macroscopic/microscopic simulation of nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-01-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation

  2. MCB. A continuous energy Monte Carlo burnup simulation code

    International Nuclear Information System (INIS)

    Cetnar, J.; Wallenius, J.; Gudowski, W.

    1999-01-01

    A code for integrated simulation of neutrinos and burnup based upon continuous energy Monte Carlo techniques and transmutation trajectory analysis has been developed. Being especially well suited for studies of nuclear waste transmutation systems, the code is an extension of the well validated MCNP transport program of Los Alamos National Laboratory. Among the advantages of the code (named MCB) is a fully integrated data treatment combined with a time-stepping routine that automatically corrects for burnup dependent changes in reaction rates, neutron multiplication, material composition and self-shielding. Fission product yields are treated as continuous functions of incident neutron energy, using a non-equilibrium thermodynamical model of the fission process. In the present paper a brief description of the code and applied methods are given. (author)

  3. Design, modeling, simulation and evaluation of a distributed energy system

    Science.gov (United States)

    Cultura, Ambrosio B., II

    This dissertation presents the design, modeling, simulation and evaluation of distributed energy resources (DER) consisting of photovoltaics (PV), wind turbines, batteries, a PEM fuel cell and supercapacitors. The distributed energy resources installed at UMass Lowell consist of the following: 2.5kW PV, 44kWhr lead acid batteries and 1500W, 500W & 300W wind turbines, which were installed before year 2000. Recently added to that are the following: 10.56 kW PV array, 2.4 kW wind turbine, 29 kWhr Lead acid batteries, a 1.2 kW PEM fuel cell and 4-140F supercapacitors. Each newly added energy resource has been designed, modeled, simulated and evaluated before its integration into the existing PV/Wind grid-connected system. The Mathematical and Simulink model of each system was derived and validated by comparing the simulated and experimental results. The Simulated results of energy generated from a 10.56kW PV system are in good agreement with the experimental results. A detailed electrical model of a 2.4kW wind turbine system equipped with a permanent magnet generator, diode rectifier, boost converter and inverter is presented. The analysis of the results demonstrates the effectiveness of the constructed simulink model, and can be used to predict the performance of the wind turbine. It was observed that a PEM fuel cell has a very fast response to load changes. Moreover, the model has validated the actual operation of the PEM fuel cell, showing that the simulated results in Matlab Simulink are consistent with the experimental results. The equivalent mathematical equation, derived from an electrical model of the supercapacitor, is used to simulate its voltage response. The model is completely capable of simulating its voltage behavior, and can predict the charge time and discharge time of voltages on the supercapacitor. The bi-directional dc-dc converter was designed in order to connect the 48V battery bank storage to the 24V battery bank storage. This connection was

  4. Simulating a singularity-free universe outside the problem boundary in poisson

    International Nuclear Information System (INIS)

    Halbach, K.; Schlueter, R.

    1992-01-01

    An exact analytical solution developed from the Dirichlet problem exterior to a circle is employed in the magnetostatics code POISSON to provide a boundary condition option which simulates a singularity-free universe external to the problem domain. Problems with domains of large unequal extents in perpendicular directions are treated by first conformally mapping the exterior of an ellipse onto the exterior of the unit circle. Problems exhibiting symmetry in one or two planes are modeled using a semi or quarter, respectively, in conjunction with the singularity-free rest-of-universe boundary condition

  5. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    Science.gov (United States)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  6. High energy physics at Tufts University. Progress report

    International Nuclear Information System (INIS)

    1976-09-01

    In the past year the Bubble Chamber Group has been involved in a wide range of activities in experimental high energy physics. Beam momenta varying from 2.9 to 300 GeV/c; bubble chambers including the FNAL 30-inch, BNL 80-inch, ANL 12-foot and FNAL 15-foot; targets which include hydrogen, deuterium, hydrogen with downstream plate, and deuterium with downstream spark chambers; beam particles including K - , anti p and p--one is still waiting for neutrinos--were used. A search was made for exotic particles and charmed particles, continued to study strange baryons and mesons, probed the dimensions of the ''fireball,'' and studied multiplicities and correlations in high energy collisions. The following progress in each of the activities which have taken place is summarized. A list of publications is included

  7. Cold Climate Foundation Retrofit Energy Savings: The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, L. F.; Steigauf, B.

    2013-04-01

    A split simulation whole building energy/3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  8. Cold Climate Foundation Retrofit Energy Savings. The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Steigauf, Brianna [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2013-04-01

    A split simulation whole building energy / 3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

  9. Experimental High Energy Physics Brandeis University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Blocker, Craig A. [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Bensinger, James [Brandeis Univ., Waltham, MA (United States); Sciolla, Gabriella [Brandeis Univ., Waltham, MA (United States); Wellenstein, Hermann [Brandeis Univ., Waltham, MA (United States)

    2013-07-26

    During the past three years, the Brandeis experimental particle physics group was comprised of four faculty (Bensinger, Blocker, Sciolla, and Wellenstein), one research scientist, one post doc, and ten graduate students. The group focused on the ATLAS experiment at LHC. In 2011, the LHC delivered 5/fb-1 of pp colliding beam data at a center-of-mass energy of 7 TeV. In 2012, the center-of-mass energy was increased to 8 TeV, and 20/fb-1 were delivered. The Brandeis group focused on two aspects of the ATLAS experiment $-$ the muon detection system and physics analysis. Since data taking began at the LHC in 2009, our group actively worked on ATLAS physics analysis, with an emphasis on exploiting the new energy regime of the LHC to search for indications of physics beyond the Standard Model. The topics investigated were Z' → ll, Higgs → ZZ* -. 4l, lepton flavor violation, muon compositeness, left-right symmetric theories, and a search for Higgs → ee. The Brandeis group has for many years been a leader in the endcap muon system, making important contributions to every aspect of its design and production. During the past three years, the group continued to work on commissioning the muon detector and alignment system, development of alignment software, and installation of remaining chambers.

  10. Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications

    Science.gov (United States)

    Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.

    2008-12-01

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Smart campus: Data on energy consumption in an ICT-driven university.

    Science.gov (United States)

    Popoola, Segun I; Atayero, Aderemi A; Okanlawon, Theresa T; Omopariola, Benson I; Takpor, Olusegun A

    2018-02-01

    In this data article, we present a comprehensive dataset on electrical energy consumption in a university that is practically driven by Information and Communication Technologies (ICTs). The total amount of electricity consumed at Covenant University, Ota, Nigeria was measured, monitored, and recorded on daily basis for a period of 12 consecutive months (January-December, 2016). Energy readings were observed from the digital energy meter (EDMI Mk10E) located at the distribution substation that supplies electricity to the university community. The complete energy data are clearly presented in tables and graphs for relevant utility and potential reuse. Also, descriptive first-order statistical analyses of the energy data are provided in this data article. For each month, the histogram distribution and time series plot of the monthly energy consumption data are analyzed to show insightful trends of energy consumption in the university. Furthermore, data on the significant differences in the means of daily energy consumption are made available as obtained from one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests. The information provided in this data article will foster research development in the areas of energy efficiency, planning, policy formulation, and management towards the realization of smart campuses.

  12. Simple energy auditing of male and female campus International Islamic University, Islamabad

    International Nuclear Information System (INIS)

    Anam, S.; Irum, S.; Tahira, S.; Anjuman, S.

    2011-01-01

    Natural resources are an important source of national wealth around the world play an important role in the development of a nation. Due to limited amount of nonrenewable energy sources it is important to conserve natural resources so that they will be available for future generations. Energy audit is a tool to conserve energy. A simple energy audit was conducted at male and female campus of International Islamic university Islamabad. The data has been collected through w alk through survey . Total electricity consumption was determined by calculating the watts of existing electrical appliances in the campuses and than calculate saving potential by replacing three parameters computers, large tube lights and air conditions by energy efficient appliances. The results shows that by replacing current electrical appliances installed in the buildings about 26.5 % of energy would be saved. The university is still under construction it is suggested that in new buildings energy efficient appliance should be installed. (author)

  13. A Simulation Framework for Optimal Energy Storage Sizing

    Directory of Open Access Journals (Sweden)

    Carlos Suazo-Martínez

    2014-05-01

    Full Text Available Despite the increasing interest in Energy Storage Systems (ESS, quantification of their technical and economical benefits remains a challenge. To assess the use of ESS, a simulation approach for ESS optimal sizing is presented. The algorithm is based on an adapted Unit Commitment, including ESS operational constraints, and the use of high performance computing (HPC. Multiple short-term simulations are carried out within a multiple year horizon. Evaluation is performed for Chile's Northern Interconnected Power System (SING. The authors show that a single year evaluation could lead to sub-optimal results when evaluating optimal ESS size. Hence, it is advisable to perform long-term evaluations of ESS. Additionally, the importance of detailed simulation for adequate assessment of ESS contributions and to fully capture storage value is also discussed. Furthermore, the robustness of the optimal sizing approach is evaluated by means of a sensitivity analyses. The results suggest that regulatory frameworks should recognize multiple value streams from storage in order to encourage greater ESS integration.

  14. Three-dimensional simulation of large-scale structure in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Centrella, J.; Melott, A.L.

    1983-09-15

    High and low density cloud-in-cell models were used to simulate the nonlinear growth of adiabatic perturbations in collisionless matter to demonstrate the development of a cellular structure in the universe. Account was taken of a short wvelength cutoff in collisionless matter, with a focus on resolving filaments and low density pancakes. The calculations were performed with a Friedmann-Robertson-Walker model, and the gravitational potential of dark matter was obtained through solution of the Poisson equation. The simulation began with z between 100-1000, and initial particle velocities were set at zero. Spherically symmetric voids were observed to form, then colide and interact. Sufficient particles were employed to avoid depletion during nonlinear collapse. No galaxies formed during the epoch studied, which has implications for the significance of dark, baryonic matter in the present universe.

  15. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

    Science.gov (United States)

    Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.

    2018-05-01

    One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.

  16. Discretization of space and time: mass-energy relation, accelerating expansion of the Universe, Hubble constant

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the gravitational potential energy that at large distance coincides with the Newtonian. In very precise circumstances it coincides with the relativistic mass-energy relation: this shows that the Universe is a black hole in which all bodies are subjected to an acceleration toward the border of the Universe itself. Since the Universe is a black hole with a fixed radius, we can obtain the density of the Unive...

  17. High energy physics program at Texas A&M University

    Science.gov (United States)

    1990-10-01

    The Texas A&M high energy physics program has achieved significant mile-stones in each of its research initiatives. We are participating in two major operating experiments, CDF and MACRO; the development of two new detector technologies, liquid scintillating fiber calorimetry and knife-edge chambers; and two SSC detector proposals, SDC and TEXAS/EMPACT. We have developed prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry in TEXAS/EMPACT. A new element in this program is the inclusion of a theoretical high energy physics research program being carried out by D. Nanopoulos and C. Pope. D. Nanopoulos has succeeded in building a string-derived model that unifies all known interactions: flipped SU(5), which is the leading candidate for a TOE. The impact of this work on string phenomenology certainly has far reaching consequences. C. Pope is currently working on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two- dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity, and W-string theory. The following report presents details of the accomplishments of the Texas A&M program over the past year and the proposed plan of research for the coming year.

  18. High energy physics program at Texas A ampersand M University

    International Nuclear Information System (INIS)

    1990-10-01

    The Texas A ampersand M high energy physics program has achieved significant mile-stones in each of its research initiatives. We are participating in two major operating experiments, CDF and MACRO; the development of two new detector technologies, liquid scintillating fiber calorimetry and knife-edge chambers; and two SSC detector proposals, SDC and TEXAS/EMPACT. We have developed prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry in TEXAS/EMPACT. A new element in this program is the inclusion of a theoretical high energy physics research program being carried out by D. Nanopoulos and C. Pope. D. Nanopoulos has succeeded in building a string-derived model that unifies all known interactions: flipped SU(5), which is the leading candidate for a TOE. The impact of this work on string phenomenology certainly has far reaching consequences. C. Pope is currently working on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two- dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity, and W-string theory. The following report presents details of the accomplishments of the Texas A ampersand M program over the past year and the proposed plan of research for the coming year

  19. High Energy Physics Program at Texas A and M University

    International Nuclear Information System (INIS)

    1992-11-01

    The high energy physics program has continued its experimental activities over. In CDF, the Texas A ampersand M group has led an effort to design an upgrade for the silicon vertex detector, and is currently working with the rest of the collaboration on the next major data taking run. In MACRO, work was done on the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. This work is nearing completion, and the system is expected to be up and running on the detector by summer 1993. Work was done within the SDC group to develop gas microstrip chambers for use in precision tracking at the SSC, and in the GEM group, toward the development of a suitable forward calorimeter design. The theoretical high energy physics program has continued the study of a very successful string-derived model that unifies all known interactions: flipped SU(5), which is the leading candidate for a TOE. Work has also continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory

  20. Smart campus: Data on energy generation costs from distributed generation systems of electrical energy in a Nigerian University.

    Science.gov (United States)

    Okeniyi, Joshua O; Atayero, Aderemi A; Popoola, Segun I; Okeniyi, Elizabeth T; Alalade, Gbenga M

    2018-04-01

    This data article presents comparisons of energy generation costs from gas-fired turbine and diesel-powered systems of distributed generation type of electrical energy in Covenant University, Ota, Nigeria, a smart university campus driven by Information and Communication Technologies (ICT). Cumulative monthly data of the energy generation costs, for consumption in the institution, from the two modes electric power, which was produced at locations closed to the community consuming the energy, were recorded for the period spanning January to December 2017. By these, energy generation costs from the turbine system proceed from the gas-firing whereas the generation cost data from the diesel-powered generator also include data on maintenance cost for this mode of electrical power generation. These energy generation cost data that were presented in tables and graphs employ descriptive probability distribution and goodness-of-fit tests of statistical significance as the methods for the data detailing and comparisons. Information details from this data of energy generation costs are useful for furthering research developments and aiding energy stakeholders and decision-makers in the formulation of policies on energy generation modes, economic valuation in terms of costing and management for attaining energy-efficient/smart educational environment.

  1. Galaxy clusters in simulations of the local Universe: a matter of constraints

    Science.gov (United States)

    Sorce, Jenny G.; Tempel, Elmo

    2018-06-01

    To study the full formation and evolution history of galaxy clusters and their population, high-resolution simulations of the latter are flourishing. However, comparing observed clusters to the simulated ones on a one-to-one basis to refine the models and theories down to the details is non-trivial. The large variety of clusters limits the comparisons between observed and numerical clusters. Simulations resembling the local Universe down to the cluster scales permit pushing the limit. Simulated and observed clusters can be matched on a one-to-one basis for direct comparisons provided that clusters are well reproduced besides being in the proper large-scale environment. Comparing random and local Universe-like simulations obtained with differently grouped observational catalogues of peculiar velocities, this paper shows that the grouping scheme used to remove non-linear motions in the catalogues that constrain the simulations affects the quality of the numerical clusters. With a less aggressive grouping scheme - galaxies still falling on to clusters are preserved - combined with a bias minimization scheme, the mass of the dark matter haloes, simulacra for five local clusters - Virgo, Centaurus, Coma, Hydra, and Perseus - is increased by 39 per cent closing the gap with observational mass estimates. Simulacra are found on average in 89 per cent of the simulations, an increase of 5 per cent with respect to the previous grouping scheme. The only exception is Perseus. Since the Perseus-Pisces region is not well covered by the used peculiar velocity catalogue, the latest release lets us foresee a better simulacrum for Perseus in a near future.

  2. Simulation of Energy Savings in Automotive Coatings Processes

    Science.gov (United States)

    Gerini Romagnoli, Marco

    Recently, the automakers have become more and more aware of the environmental and economic impact of their manufacturing processes. The paint shop is the largest energy user in a vehicle manufacturing plant, and one way to reduce costs and energy usage is the optimization of this area. This project aims at providing a tool to model and simulate a paint shop, in order to run and analyze some scenarios and case studies, helping to take strategic decisions. Analytical computations and real data were merged to build a tool that can be used by FCA for their Sterling Heights plant. Convection and conduction heat losses were modeled for the dip processes and the ovens. Thermal balances were used to compute the consumptions of booths, decks and ovens, while pump and fan energy consumptions were modeled for each sub-process. The user acts on a calendar, scheduling a year of production, and the model predicts the energy consumption of the paint shop. Five scenarios were run to test different conditions and the influence of scheduling on the energy consumption. Two different sets of production schedules have been evaluated, the first one fulfilling the production requirement in one shift of 10 hours, at high rate, the second one using two 7-hour-long shifts at medium production rate. It was found that the unit cost was minimized in the warmest months of spring and fall, and system shutdown was a crucial factor to reduce energy consumption. A fifth hypothetical scenario was run, with a 4 month continuous production and an 8 month total shutdown, which reduced the energy consumption to a half of the best realistic scenario. When the plant was run in a two-shifts configuration, the cost to coat a vehicle was found to be 29 with weekend shutdown, and 39 without. In the one-shift configuration, the cost was slightly higher, but the difference was less than 5%. While the fifth scenario showed a consistent reduction of the unit cost, inventory and logistic expenses deriving from the

  3. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  4. Urban simulation evaluation with study case of the Singapore Management University, Singapore

    Science.gov (United States)

    Seanders, O.

    2018-01-01

    This paper reports and discusses about the urban simulation evaluation with a study case, The Singapore Managemant University (SMU), the first major university to be located in the city centre. It is located in Bras Basah District, with some controversy on the geographical establishment, the physical realization of the University in the original plan required some demolishes, urban historical building, a public park and in the end will impact the lose of some certain qualities of the urban space. From this case we can see that the urban design and cultural heritage principles could come into conflicts with the more practical concerns of space constraints and transportation efficiency. This SMU case reflect the problem of the developing countries that have to decide between conservation of buildings and green spaces and space demands. In this case, for Singapore, it marks a progress in the step of greater community involvement in the planning process.

  5. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    Science.gov (United States)

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  6. Building a universal nuclear energy density functional (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Nazarewicz, Witold [Univ. of Tennessee, Knoxville, TN (United States)

    2012-07-01

    The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  7. Co-simulation of building energy simulation and computational fluid dynamics for whole-building heat, air and moisture engineering

    NARCIS (Netherlands)

    Mirsadeghi, M.

    2011-01-01

    Building performance simulation (BPS) is widely applied to analyse heat, air and moisture (HAM) related issues in the indoor environment such as energy consumption, thermal comfort, condensation and mould growth. The uncertainty associated with such simulations can be high, and incorrect simulation

  8. COURSE : a new industry led consortium to focus and accelerate energy resources research at Alberta University

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.J. [Imperial Oil Resources Ltd., Calgary, AB (Canada); Bailey, R. [Alberta Oil Sands Technology and Research Authority, Edmonton, AB (Canada); Kirk, M. [Calgary Univ., AB (Canada); Luhning, R.W. [Petroleum Recovery Inst., Calgary, AB (Canada); Kratochvil, R. [Alberta Univ., Edmonton, AB (Canada)

    2000-06-01

    This paper described a new initiative entitled COURSE (Coordination of University Research for Synergy and Effectiveness) which has been created through the collaboration of the energy industry, universities and the Alberta government to promote research in the field of energy resources. Calls for research proposals went out in June 1999 and January 2000. The selected projects will be funded by the Alberta Ministry of Innovation and Science through the Alberta Oil Sands Technology and Research Authority (AOSTRA). The major objectives of COURSE are to increase and align fundamental breakthrough university research with the industry needs, and to provide results that exceed what would be achieved by one university alone. An agreement has been reached whereby the universities own the technology and are the exclusive license agents of the research.

  9. High energy physics program at Texas A and M University

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Texas A M experimental high energy physics program continued to reach significant milestones in each of its research initiatives during the course of the past year. We are participating in two major operating experiments, CDF and MACRO. In CDF, the Texas A M group has spearheaded the test beam program to recalibrate the Forward Hadron Calorimeter for the upcoming CDF data run, as well as contributing to the ongoing analysis work on jets and b-quarks. In MACRO, we have assisted in the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. The construction of the first six supermodules of the detector has been completed and all six are currently taking data with streamer chambers while four have the completed scintillator counter system up and running. We have built and tested prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry at the SSC. The microstrip chamber is a new technology for precision track chambers that offers the performance required for future hadron colliders. The theoretical high energy physics program has continued to develop during the past funding cycle. We have continued the study of their very successful string-derived model that unifies all known interactions; flipped SU(5), which is the leading candidate for a TOE. Work has continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory.

  10. High energy physics program at Texas A and M University

    International Nuclear Information System (INIS)

    1991-10-01

    The Texas A ampersand M experimental high energy physics program continued to reach significant milestones in each of its research initiatives during the course of the past year. We are participating in two major operating experiments, CDF and MACRO. In CDF, the Texas A ampersand M group has spearheaded the test beam program to recalibrate the Forward Hadron Calorimeter for the upcoming CDF data run, as well as contributing to the ongoing analysis work on jets and b-quarks. In MACRO, we have assisted in the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. The construction of the first six supermodules of the detector has been completed and all six are currently taking data with streamer chambers while four have the completed scintillator counter system up and running. We have built and tested prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry at the SSC. The microstrip chamber is a new technology for precision track chambers that offers the performance required for future hadron colliders. The theoretical high energy physics program has continued to develop during the past funding cycle. We have continued the study of their very successful string-derived model that unifies all known interactions; flipped SU(5), which is the leading candidate for a TOE. Work has continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory

  11. Achieving a Net Zero Energy Retrofit: Lessons from the University of Hawaii at Manoa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The University of Hawaii at Manoa (UHM) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.

  12. Energy efficient lighting in the residences of staff of the University of ...

    African Journals Online (AJOL)

    CFL) as an energy-efficient lighting system. The results of the study show that even though academics in the university have received information about the use of CFLs as a way of saving energy, very few show interest in their use. It is inferred ...

  13. An Exploration Algorithm for Stochastic Simulators Driven by Energy Gradients

    Directory of Open Access Journals (Sweden)

    Anastasia S. Georgiou

    2017-06-01

    Full Text Available In recent work, we have illustrated the construction of an exploration geometry on free energy surfaces: the adaptive computer-assisted discovery of an approximate low-dimensional manifold on which the effective dynamics of the system evolves. Constructing such an exploration geometry involves geometry-biased sampling (through both appropriately-initialized unbiased molecular dynamics and through restraining potentials and, machine learning techniques to organize the intrinsic geometry of the data resulting from the sampling (in particular, diffusion maps, possibly enhanced through the appropriate Mahalanobis-type metric. In this contribution, we detail a method for exploring the conformational space of a stochastic gradient system whose effective free energy surface depends on a smaller number of degrees of freedom than the dimension of the phase space. Our approach comprises two steps. First, we study the local geometry of the free energy landscape using diffusion maps on samples computed through stochastic dynamics. This allows us to automatically identify the relevant coarse variables. Next, we use the information garnered in the previous step to construct a new set of initial conditions for subsequent trajectories. These initial conditions are computed so as to explore the accessible conformational space more efficiently than by continuing the previous, unbiased simulations. We showcase this method on a representative test system.

  14. Simulation of energy use in buildings with multiple micro generators

    International Nuclear Information System (INIS)

    Karmacharya, S.; Putrus, G.; Underwood, C.P.; Mahkamov, K.; McDonald, S.; Alexakis, A.

    2014-01-01

    This paper focuses on the detailed modelling of micro combined heat and power (mCHP) modules and their interaction with other renewable micro generators in domestic applications based on an integrated modular modelling approach. The simulation model has been developed using Matlab/Simulink and incorporates a Stirling engine mCHP module embedded in a lumped-parameter domestic energy model, together with contributions from micro wind and photovoltaic modules. The Stirling cycle component model is based on experimental identification of a domestic-scale system which includes start up and shut down characteristics. The integrated model is used to explore the interactions between the various energy supply technologies and results are presented showing the most favourable operating conditions that can be used to inform the design of advanced energy control strategies in building. The integrated model offers an improvement on previous models of this kind in that a fully-dynamic approach is adopted for the equipment and plant enabling fast changing load events such as switching on/off domestic loads and hot water, to be accurately captured at a minimum interval of 1 min. The model is applied to two typical 3- and 4-bedroom UK house types equipped with a mCHP module and two other renewable energy technologies for a whole year. Results of the two cases show that the electrical contribution of a Stirling engine type mCHP heavily depends on the thermal demand of the building and that up to 19% of the locally-generated electricity is exported whilst meeting a similar percentage of the overall annual electricity demand. Results also show that the increased number of switching of mCHP module has an impact on seasonal module efficiency and overall fuel utilisation. The results demonstrate the need for the analysis of equipment design and optimal sizing of thermal and electrical energy storage. -- Highlights: • Dynamic modelling of a building along with its space heating and hot

  15. Pharmacy practice simulations: performance of senior pharmacy students at a University in southern Brazil

    Directory of Open Access Journals (Sweden)

    Galato D

    2011-09-01

    Full Text Available Objective: A simulation process known as objective structured clinical examination (OSCE was applied to assess pharmacy practice performed by senior pharmacy students.Methods: A cross-sectional study was conducted based on documentary analysis of performance evaluation records of pharmacy practice simulations that occurred between 2005 and 2009. These simulations were related to the process of self-medication and dispensing, and were performed with the use of patients simulated. The simulations were filmed to facilitate the evaluation process. It presents the OSCE educational experience performed by pharmacy trainees of the University of Southern Santa Catarina and experienced by two evaluators. The student general performance was analyzed, and the criteria for pharmacy practice assessment often identified trainees in difficulty.Results: The results of 291 simulations showed that students have an average yield performance of 70.0%. Several difficulties were encountered, such as the lack of information about the selected/prescribed treatment regimen (65.1%; inadequate communication style (21.9%; lack of identification of patients’ needs (7.7% and inappropriate drug selection for self-medication (5.3%.Conclusions: These data show that there is a need for reorientation of clinical pharmacy students because they need to improve their communication skills, and have a deeper knowledge of medicines and health problems in order to properly orient their patients.

  16. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  17. Dark matter, dark energy, gravitational lensing and the formation of structure in the universe

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2003-01-01

    The large-scale structure of the universe and its statistical properties can reveal many aspects of the physics of the early universe as well as of its matter content during the cosmic history. Numerous observations, based to a large extent on large-scale structure data, have given us a concordant picture of the energy and matter content in the universe. In view of these results the existence of dark matter has been firmly established although it still evades attempts at direct detection. An even more challenging puzzle is, however, yet to be explained. Indeed the model suggested by the observations is only viable with the presence of a 'dark energy', an ethereal energy associated with the cosmological vacuum, that would represent about two-thirds of the total energy density of the universe. Although strongly indicated by observations, the existence of this component is nonetheless very uncomfortable from a high-energy physics point of view. Its interpretation is a matter of far reaching debates. Indeed, the phenomenological manifestation of this component can be viewed as a geometrical property of large-scale gravity, or as the energy associated with the quantum field vacuum, or else as the manifestation of a new sort of cosmic fluid that would fill space and remain unclustered. Low redshift detailed examinations of the geometrical or clustering properties of the universe should in all cases help clarify the true nature of the dark energy. We present methods that can be used in the future for exploring the low redshift physical properties of the universe. Particular emphasis will be placed on the use of large-scale structure surveys and more specifically on weak lensing surveys that promise to be extremely powerful in exploring the large-scale mass distribution in the universe

  18. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  19. Building A Universal Nuclear Energy Density Functional (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Furnstahl, Dick [The Ohio State Univ., Columbus, OH (United States); Horoi, Mihai [Central Michigan Univ., Mount Pleasant, MI (United States); Lusk, Rusty [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, Witek [Univ. of Tennessee, Knoxville, TN (United States); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vary, James [Iowa State Univ., Ames, IA (United States)

    2012-09-30

    During the period of Dec. 1 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

  20. Energy demand hourly simulations and energy saving strategies in greenhouses for the Mediterranean climate

    Science.gov (United States)

    Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.

    2017-01-01

    This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.

  1. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  2. Modeling and Simulation of a Wave Energy Converter INWAVE

    Directory of Open Access Journals (Sweden)

    Seung Kwan Song

    2017-01-01

    Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.

  3. Solar power for energy sustainability and environmental friendliness of Curtin University Sarawak

    Science.gov (United States)

    Palanichamy, C.; Goh, Alvin

    2016-03-01

    The demand on electrical energy is rapidly increasing. Everything around us requires electrical energy either during its production or usage stage. Sustainability has become the main concern nowadays as the availability of fossil fuels is limited. As renewable energy is the path-way to energy sustainability and environmental friendly environment, this paper proposes a solar power system for Curtin University Sarawak to reduce its electricity consumption and greenhouse gas emissions. The proposed 208 kW solar system saves an energy consumption of more than 380,000 kWh per year, and a CO2 offset by 285 Tons per year

  4. Solar power for energy sustainability and environmental friendliness of Curtin University Sarawak

    International Nuclear Information System (INIS)

    Palanichamy, C; Goh, Alvin

    2016-01-01

    The demand on electrical energy is rapidly increasing. Everything around us requires electrical energy either during its production or usage stage. Sustainability has become the main concern nowadays as the availability of fossil fuels is limited. As renewable energy is the path-way to energy sustainability and environmental friendly environment, this paper proposes a solar power system for Curtin University Sarawak to reduce its electricity consumption and greenhouse gas emissions. The proposed 208 kW solar system saves an energy consumption of more than 380,000 kWh per year, and a CO 2 offset by 285 Tons per year (paper)

  5. Modeling energy market dynamics using discrete event system simulation

    International Nuclear Information System (INIS)

    Gutierrez-Alcaraz, G.; Sheble, G.B.

    2009-01-01

    This paper proposes the use of Discrete Event System Simulation to study the interactions among fuel and electricity markets and consumers, and the decision-making processes of fuel companies (FUELCOs), generation companies (GENCOs), and consumers in a simple artificial energy market. In reality, since markets can reach a stable equilibrium or fail, it is important to observe how they behave in a dynamic framework. We consider a Nash-Cournot model in which marketers are depicted as Nash-Cournot players that determine supply to meet end-use consumption. Detailed engineering considerations such as transportation network flows are omitted, because the focus is upon the selection and use of appropriate market models to provide answers to policy questions. (author)

  6. Theoretical Simulations of Materials for Nuclear Energy Applications

    International Nuclear Information System (INIS)

    Abrikosov, A.; Ponomareva, A.V.; Nikonov, A.Y.; Barannikova, S.A.; Dmitriev, A.I.

    2014-01-01

    We have demonstrated that state-of-the art theoretical calculations have a capability to predict thermodynamic and mechanical properties of materials with very high accuracy, comparable to the experimental accuracy. Considering Fe-Cr alloys, we have investigated the effect of multicomponent alloying on their phase stability, and we have shown that alloying elements Ni, Mn, and Mo, present in RPV steels, reduce the stability of low-Cr steels against binodal, as well as spinodal decomposition. Considering Zr-Nb alloys, we have demonstrated a possibility of obtaining their elastic moduli from ab initio electronic structure calculations. We argue that theoretical simulations represent valuable tool for a design of new materials for nuclear energy applications

  7. Simulated Energy Usage for a Novel 6 DOF Articulated Robot

    International Nuclear Information System (INIS)

    Shaik, A A; Tlale, N; Bright, G

    2014-01-01

    The serial robot architecture is widespread in modern day manufacturing, and over the last few decades the technology has matured and settled to its current state. One drawback from the architecture however is the location of motors and gearboxes which are either at the joint it controls or close by. A novel hybrid 6 DOF robot was designed to move all the actuators to the robot base, and to control the desired axis through a set of connected links and gears, while maintaining the same workspace and dexterity. This would reduce the inertia of the movable part of the robot and some of the moment arms on the 3 axes required for translation of the 3 DOF spherical wrist. Doing so would decrease the energy requirements when compared to a 6 DOF serial robot. This paper focuses on the mathematical modelling and simulation of the novel hybrid machine design and compares it to an equivalent serial robot

  8. Nonstationary signals phase-energy approach-theory and simulations

    CERN Document Server

    Klein, R; Braun, S; 10.1006/mssp.2001.1398

    2001-01-01

    Modern time-frequency methods are intended to deal with a variety of nonstationary signals. One specific class, prevalent in the area of rotating machines, is that of harmonic signals of varying frequencies and amplitude. This paper presents a new adaptive phase-energy (APE) approach for time-frequency representation of varying harmonic signals. It is based on the concept of phase (frequency) paths and the instantaneous power spectral density (PSD). It is this path which represents the dynamic behaviour of the system generating the observed signal. The proposed method utilises dynamic filters based on an extended Nyquist theorem, enabling extraction of signal components with optimal signal-to-noise ratio. The APE detects the most energetic harmonic components (frequency paths) in the analysed signal. Tests on simulated signals show the superiority of the APE in resolution and resolving power as compared to STFT and wavelets wave- packet decomposition. The dynamic filters also enable the reconstruction of the ...

  9. India's energy security: A sample of business, government, civil society, and university perspectives

    International Nuclear Information System (INIS)

    Bambawale, Malavika Jain; Sovacool, Benjamin K.

    2011-01-01

    This article explores the concept of energy security perceived and understood by a sample of government, business, civil society, and university stakeholders in India. Based on a literature review, the authors hypothesize what energy experts suggest energy security is for India. The article then tests these hypotheses through the use of a survey completed by 172 Indian respondents. The article begins by describing its methodology before summarizing the results of the literature review to distill seven working hypotheses related to energy security in India. These hypotheses relate to (1) security of energy supply, (2) equitable access to energy services, (3) research and development of new energy technologies, (4) energy efficiency and conservation, (5) self-sufficiency and trade in energy fuels, (6) nuclear power, and (7) the energy-water nexus. It then tests these hypotheses with our survey instrument before concluding with implications for energy policy in India and beyond. - Research highlights: → We measured the concept of energy security for India through a survey that tested the importance of 16 dimensions. → For our sample of respondents from India, as hypothesized, security of fossil fuel supply, R and D in new technologies, centralized energy systems, and the availability of clean water emerged as important dimensions. → Equitable access to energy and low energy intensity did not emerge as important dimensions of energy security for our sample even though we hypothesized them to be so.

  10. India's energy security: A sample of business, government, civil society, and university perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Bambawale, Malavika Jain, E-mail: sppmjb@nus.edu.s [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore); Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2011-03-15

    This article explores the concept of energy security perceived and understood by a sample of government, business, civil society, and university stakeholders in India. Based on a literature review, the authors hypothesize what energy experts suggest energy security is for India. The article then tests these hypotheses through the use of a survey completed by 172 Indian respondents. The article begins by describing its methodology before summarizing the results of the literature review to distill seven working hypotheses related to energy security in India. These hypotheses relate to (1) security of energy supply, (2) equitable access to energy services, (3) research and development of new energy technologies, (4) energy efficiency and conservation, (5) self-sufficiency and trade in energy fuels, (6) nuclear power, and (7) the energy-water nexus. It then tests these hypotheses with our survey instrument before concluding with implications for energy policy in India and beyond. - Research highlights: {yields} We measured the concept of energy security for India through a survey that tested the importance of 16 dimensions. {yields} For our sample of respondents from India, as hypothesized, security of fossil fuel supply, R and D in new technologies, centralized energy systems, and the availability of clean water emerged as important dimensions. {yields} Equitable access to energy and low energy intensity did not emerge as important dimensions of energy security for our sample even though we hypothesized them to be so.

  11. Simulation and analysis of the energy consumption of elevator systems; Simulation und Analyse des Energiebedarfs von Aufzugssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Pletschen, Ingo; Rohr, Stephan [ThyssenKrupp Aufzugswerke GmbH, Neuhausen a.d.F. (Germany); Kennel, Ralph [Technische Univ. Muenchen (Germany)

    2011-07-01

    Elevator systems would be in principal a good example for a perpetuum mobile. While lifting loads and persons electrical energy is converted into potential energy and reconverted later. In practice these conversions are however lossy. So the aim for high energy efficiency is to minimize these losses. However, as a travel of an elevator consists in main parts of acceleration and deceleration, the exclusive consideration of the efficiency during constant speed is not sufficient. Thus a simulation environment is introduced which reliably determines the elevators' energy consumption. The simulation is validated at an elevator afterwards the different influences on the energy consumption of elevators are analyzed. (orig.)

  12. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    Science.gov (United States)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  13. Universality and Realistic Extensions to the Semi-Analytic Simulation Principle in GNSS Signal Processing

    Directory of Open Access Journals (Sweden)

    O. Jakubov

    2012-06-01

    Full Text Available Semi-analytic simulation principle in GNSS signal processing bypasses the bit-true operations at high sampling frequency. Instead, signals at the output branches of the integrate&dump blocks are successfully modeled, thus making extensive Monte Carlo simulations feasible. Methods for simulations of code and carrier tracking loops with BPSK, BOC signals have been introduced in the literature. Matlab toolboxes were designed and published. In this paper, we further extend the applicability of the approach. Firstly, we describe any GNSS signal as a special instance of linear multi-dimensional modulation. Thereby, we state universal framework for classification of differently modulated signals. Using such description, we derive the semi-analytic models generally. Secondly, we extend the model for realistic scenarios including delay in the feed back, slowly fading multipath effects, finite bandwidth, phase noise, and a combination of these. Finally, a discussion on connection of this semi-analytic model and position-velocity-time estimator is delivered, as well as comparison of theoretical and simulated characteristics, produced by a prototype simulator developed at CTU in Prague.

  14. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  15. Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Don Shirey

    2008-02-28

    EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper

  16. Solar energy system performance evaluation: Seasonal report for Elcam Tempe Arizona State University, Tempe, Arizona

    Science.gov (United States)

    1980-01-01

    The solar system, Elcam-Tempe, was designed by Elcam Incorporated, Santa Barbara, California, to supply commercial domestic hot water heating systems to the Agriculture Department residence at Arizona State University. The building is a single story residence located at the agriculture experiment farm of the Arizona State University. The energy system's four modes of operation are described. Electrical energy savings at the site was a net of 5.54 million Btu after the 0.17 million Btu of operating energy required to operate collector loop circulating pump were subtracted. The energy savings due to solar was less than the system's potential. On an average, twice as much hot water could have been used with significant solar energy contribution. The system corrosion and deposits caused by using dissimilar metals in the collector loop was the only problem noted with the Elcam-Tempe system.

  17. LOW-ENERGY NUCLEAR PHYSICS NATIONAL HPC INITIATIVE: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)

    Energy Technology Data Exchange (ETDEWEB)

    Bulgac, A

    2013-03-27

    This document is a summary of the physics research carried out by the University of Washington centered group. Attached are reports for the previous years as well as the full exit report of the entire UNEDF collaboration.

  18. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    Science.gov (United States)

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  19. Looking for the invisible universe - Black matter, black energy, black holes

    International Nuclear Information System (INIS)

    Elbaz, David

    2016-01-01

    As the discovery of the expansion of the universe and of black holes put the study of cosmology into question again because it now refers to invisible things such as black holes, black energy and black matter, the author proposes an other view on the universe within such a context. He first discusses these three enigmas of black matter, black energy and black holes. In a second part, he addresses, discusses and comments five illusions: the Uranian illusion (questions of the existence of an anti-world, of black matter temperature), the Mercurian illusion (quantum gravity, the string theory), the Martian illusion (a patchwork universe, the illusion of the infinite), the cosmic Maya (the John Wheeler's cup, the holographic universe), and the narcissistic illusion

  20. [Innovative education: simulation-based training at the Institute of Health Sciences, Semmelweis University, Hungary].

    Science.gov (United States)

    Csóka, Mária; Deutsch, Tibor

    2011-01-02

    In Hungary, the Institute of Health Sciences at Semmelweis University was the first institution to introduce patient simulation-based practical training of non-physician professionals. Before introducing this novel educational methodology, students could only practice particular examinations and interventions on demonstration tools. Using the simulator they can also follow and analyze the effects of the interventions that have been made. The high fidelity, adult Human Patients Emergency Care Simulator (HPS-ECS, Medical Education Technologies Incorporation, Sarasota, Florida, USA) is particularly suitable for acquiring skills related to the management of various emergency situations. The 180 cm and 34 kg mannequin which can operate in lying and sitting positions has both respiration and circulation which can be examined the same way as in a living person. It is capable to produce several physical and clinical signs such as respiration with chest movement, electric cardiac activity, palpable pulse, and measurable blood pressure. In addition, it can also exhibit blinking, swelling of the tongue and whole-body trembling while intestinal, cardiac and pulmonary sounds can equally be examined. The high fidelity simulator allows various interventions including monitoring, oxygen therapy, bladder catheterization, gastric tube insertion, injection, infusion and transfusion therapy to be practiced as part of complex patient management. Diagnostic instruments such as ECG recorder, sphygmomanometer, pulse-oxymeter can be attached to the simulator which can also respond to different medical interventions such as intubation, defibrillation, pacing, liquid supplementing, and blood transfusion. The mannequin's physiological response can be followed up and monitored over time to assess whether the selected intervention has been proven adequate to achieve the desired outcome. Authors provide a short overview of the possible applications of clinical simulation for education and

  1. Simulation mechanisms of low energy nuclear reaction using super flow energy external fields

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.; ); Ratis, Yu.I.

    2005-01-01

    Full text: The review of possible stimulation mechanisms of the LENR (low energy nuclear reactions) is represented. We have concluded that transamination of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle and based on its different enhancement mechanisms of reaction rates are responsible for these processes. The excitation nd ionization of atom may play role as trigger for LERN. Investigation of this phenomenon requires knowledge of different branches if science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor re-productivity of experimental data in due ti the fact LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical re-productivity principle should be reconsidered for LENR experiments. Poor re-productivity and unexpected results do not means that the experiment is wrong. Our main conclusion: LENR may be understand in terms of the modern theory without any violation of the basic physics. 2) Weak and electromagnetic interactions may show the strong influence of the surrounding conditions on the nuclear processes. 3) Universal resonance synchronization principle is a key issue to make a bridge between various scales of interactions and it is responsible for self-organization of hierarchical systems independent of substances, fields and interactions. We bring some arguments in favor of the mechanism - order based on order - declared by Schroedinger in fundamental problem of contemporary science. 4) The universal resonance synchronization principle became a fruitful interdisciplinary science of general laws of self-organized processes in different branches of physics because it is consequence of the energy conservation law and resonance

  2. Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world’s first combined wave and wind energy platform. The floating energy...

  3. New holographic scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Fehri, J. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-02-08

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  4. New holographic scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Fehri, J.

    2010-01-01

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  5. Energy Consumption and Greenhouse Gas Emission Evaluation Scenarios of Mea Fah Luang University

    Directory of Open Access Journals (Sweden)

    Laingoen Onn

    2016-01-01

    Full Text Available In Thailand, quantity of the educational institutes building shared one fourth of commercial building. Among the energy consumption and conservation in the building in Thailand are mostly study in typical office and resident building. Mea Fah Luang University (MFU was selected to represent the educational institutes building where located in the northern part of Thailand. The average temperature in the northern is lower than other parts of Thailand. This study was firstly collected the data about quantity and behaviour of energy consumption in MFU based on the energy audit handbook. Although MFU is located in the northern of Thailand. The highest energy consumption is in the part of air condition. When the energy efficiency appliances and energy conservation building are implemented, the cost of energy will be saved around 15,867,960 Baht. Furthermore, the greenhouse gas emission is also reduced about 72.01 kg CO2, equivalent/m2/year.

  6. Evolution of the distribution of baryons in a simulated Local Group Universe

    Science.gov (United States)

    Peirani, S.

    2012-12-01

    Using hydrodynamical zoom simulations in the standard ΛCDM cosmology, we have investigated the evolution of the distribution of baryons (gas and stars) in a local group-type universe. We found that physical mechanisms able to drive the gas out of the virial radius at high redshifts (such as AGN) will have a stronger impact on the deficit of baryons in the mass budget of Milky Way type-galaxies at present times than those that expel the gas in the longer, late phases of galaxy formation.

  7. SIMULATIONS IN TECHNOLOGICAL ENVIRONMENTS AS A TOOL FOR TRAINING IN TRANSVERSAL COMPETENCES FOR UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Mercè Gisbert Cervera

    2010-02-01

    Full Text Available This paper consists of a reflection on how the technological environments can play a key role in the current Higher Education scene. This reflection observes the structural configuration and the key agents of the educational process. The content is developed firstly locating the student in the University of the 21st century; the methodological renovation is analyzed from two perspectives: the development of the technologies and the new role of teacher and student in this new scene; finally the simulations in technological environments are proposed as a valuable strategy to give response to the formative needs of the student in the current society.

  8. Experience with simulation education at the University of the Third Age at JFM CU in Martin

    Directory of Open Access Journals (Sweden)

    Mária Zanovitová

    2016-07-01

    Full Text Available Background: Considering current demographic trends in society, education of seniors has become real needs and a challenge for the field of education and training institutions. Universities of the Third Age (UTA represent one option for senior education allowing them to study various fields at university level. Within UTA studies, the seniors are interested in studying mainly the issues of health and disease, aging and the social and legal issues. Seniors represent a group of students with specific educational needs. In teaching them it is therefore important to choose teaching methods that take account of developmental changes of the period, contain elements of clearness, and provide the space for communication and activity with the use of previous experiences of seniors. In the framework of elderly education at the UTA at Jessenius Faculty of Medicine in Martin (JFM CU the simulation methods are also used that bring elements of clarity and attractiveness into the teaching and serve to bridge theoretical education and practical training. Objective: The aim of the study was to determine the UTA senior students’ views on the use of simulation models and simulations in education and to find out what is their satisfaction with the training in the Simulation Center at JFM CU in Martin. Methods: Questionnaire of own construction was used to gather empirical data. The study involved 30 senior students of the third year of studies in the program “Elderly Care”, out of which 25 were women and 5 men. The average age of respondents was 67.3 years (SD 5.6. Results: Within education and training in Simulation Center, the seniors most positively evaluated preparedness, presentation and interpretation of the lecturer (4.96 and the way in which information were administered (4.76. They had the opportunity of hands-on work with the simulation models and practical training of their skills and such experience was evaluated as excellent (4.70. Seniors also

  9. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    International Nuclear Information System (INIS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Oak Ridge National Laboratory; Zhang, Y.; Oak Ridge National Laboratory

    2017-01-01

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E_d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E_d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  10. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Aldering, G.; Kim, A. G.; Nugent, P. [E. O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); D' Andrea, C. B.; Nichol, R. C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Finley, D. A.; Marriner, J.; Reis, R. R. R. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Jarvis, M. J. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Mukherjee, P.; Parkinson, D. [Department of Physics and Astronomy, Pevensey 2 Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); and others

    2012-07-10

    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg{sup 2} search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05

  11. SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY

    International Nuclear Information System (INIS)

    Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T.; Kessler, R.; Frieman, J. A.; Aldering, G.; Kim, A. G.; Nugent, P.; D'Andrea, C. B.; Nichol, R. C.; Finley, D. A.; Marriner, J.; Reis, R. R. R.; Jarvis, M. J.; Mukherjee, P.; Parkinson, D.; Sako, M.

    2012-01-01

    We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg 2 search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 < z < 1.2 and (2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.

  12. Energy Choices and Climate Change: A New Interactive Feature on Windows to the Universe

    Science.gov (United States)

    Gardiner, L. S.; Russell, R. M.; Ward, D.; Johnson, R. M.; Henderson, S.; Foster, S. Q.

    2009-12-01

    We have developed a new, self-paced online module to foster understanding of how choices made about energy production and energy use affect greenhouse gas emissions and climate change. The module, entitled “Energy Choices and Climate Change” is available on Windows to the Universe (www.windows.ucar.edu), an extensive educational Web site used by over 20 million people each year. “Energy Choices and Climate Change” provides a new way to look at issues related to energy and climate change, emphasizing the climate implications of the choices we make. “Energy Choices and Climate Change” allows users to explore two different scenarios through which they make decisions about energy production or use. In the “Ruler of the World” scenario, the user is given the authority to make decisions about the mix of energy sources that will be used worldwide with the aim of reducing emissions while meeting global energy demand and monitoring costs and societal implications. In “The Joules Family” scenario, the user makes decisions about how to change the way a hypothetical family of four uses energy at home and for transportation with the aim of reducing the family’s carbon emissions and fossil fuel use while keeping costs less than long-term savings. While this module is intended for a general public audience, an associated teacher’s guide provides support for secondary educators using the module with students. Windows to the Universe is a project of the University Corporation for Atmospheric Research Office of Education and Outreach. Funding for the Energy Choices and Climate Change online module was provided by the National Center for Atmospheric Research.

  13. Expansive learning in the university setting: the case for simulated clinical experience.

    Science.gov (United States)

    Haigh, Jacquelyn

    2007-03-01

    This paper argues that simulated practice in the university setting is not just a second best to learning in the clinical area but one which offers the potential for deliberation and deep learning [Eraut, M., 2000. Non-formal learning, implicit learning and tacit knowledge in professional work. Journal of Educational Psychology, 70, 113-136]. The context of student learning in an undergraduate midwifery programme is analysed using human activity theory [Engeström, Y., 2001. Expansive learning at work: toward an activity theoretical reconceptualization. Journal of Education and Work, 14, 133-156]. The advantages of this approach to student learning as opposed to situated learning theory and the concept of legitimate peripheral participation [Lave, J., Wenger, E., 1991. Situated Learning: Legitimate Peripheral Participation. Cambridge University Press, New York] are discussed. An activity system changes as a result of contradictions and tensions between what it purports to produce and the views of stakeholders (multi-voicedness) as well as its historical context (Historicity of activity). A focus group with students highlights their expressed need for more simulated practice experience. The views of midwifery lecturers are sought as an alternative voice on this tension in the current programme. Qualitative differences in types of simulated experience are explored and concerns about resources are raised in the analysis. Discussion considers the value of well planned simulations in encouraging the expression of tacit understanding through a group deliberative learning process [Eraut, M., 2000. Non-formal learning, implicit learning and tacit knowledge in professional work. Journal of Educational Psychology, 70, 113-136].

  14. Universal Generating Function Based Probabilistic Production Simulation Approach Considering Wind Speed Correlation

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-11-01

    Full Text Available Due to the volatile and correlated nature of wind speed, a high share of wind power penetration poses challenges to power system production simulation. Existing power system probabilistic production simulation approaches are in short of considering the time-varying characteristics of wind power and load, as well as the correlation between wind speeds at the same time, which brings about some problems in planning and analysis for the power system with high wind power penetration. Based on universal generating function (UGF, this paper proposes a novel probabilistic production simulation approach considering wind speed correlation. UGF is utilized to develop the chronological models of wind power that characterizes wind speed correlation simultaneously, as well as the chronological models of conventional generation sources and load. The supply and demand are matched chronologically to not only obtain generation schedules, but also reliability indices both at each simulation interval and the whole period. The proposed approach has been tested on the improved IEEE-RTS 79 test system and is compared with the Monte Carlo approach and the sequence operation theory approach. The results verified the proposed approach with the merits of computation simplicity and accuracy.

  15. Grand Valley State University Checks Out Energy Savings at New Mary Idema Pew Library

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  16. University energy management improvement on basis of standards and digital technologies

    Directory of Open Access Journals (Sweden)

    Novikova Olga

    2018-01-01

    Full Text Available Nowadays to implement the energy management system it is important to fulfill not only the legal requirements but also to follow the set of recommendations prepared by international and national management standards. The purpose of this article is to prepare the concept and methodology for the optimization and improvement of the energy management system (EMS for Universities with implementation of legal requirements and recommendations from international and national management standards with the help of digital technologies. During the research the systematic analysis, complex approach, logical sampling and analogy were used. It is shown that this process should be done with the help of the process-based approach, in accordance with ISO 9001, and energy management ISO 50001. The authors developed the structure of the basic standard of energy management: "Guidelines for the energy management system". It is proved that the involvement of the technical senior students in the project of EMS improvement allows to expand their competencies for new technics and technologies. Cloud service Bitrix24 was chosen for IT-support of the project. During the study, a list of characteristics was used as a basis for creating a query to the technology department of the university. DBMS Microsoft Access was chosen for its creation. In addition, the possible results of initiating a single database containing all the information needed for accounting and control of energy supply were listed. Moreover, the possibility of automated energy management system implementation and its results were considered. The required actions described in this research can be implemented in any University, that will extend energy management to any University worldwide.

  17. Task A, High energy physics program experiment and theory: Task B, High energy physics program numerical simulation

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses progress in experimental and theoretical High Energy Physics at Florida State University. Fixed target experiments, collider experiments, computing, networking, VAX upgrade, SSC preparation, detector development, and particle theory are some of the areas covered

  18. Correlates of University Students’ Soft and Energy Drink Consumption According to Gender and Residency

    Science.gov (United States)

    Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2015-01-01

    This study assessed personal and environmental correlates of Belgian university students’ soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students’ beverage choices. PMID:26258790

  19. Prevalence, side effects and awareness about energy drinks among the female university students in Saudi Arabia.

    Science.gov (United States)

    Rahamathulla, Mohamudha Parveen

    2017-01-01

    To evaluate the consumption, prevalence, side effects and awareness of energy drinks among female university students in Saudi Arabia. A quantitative research design was implied with sample size of 358 female students, recruited from Prince Sattam bin Abdulaziz University. The data, gathered through self-administered questionnaire, was analyzed through SPSS version 20.0 with p value energy drink consumers. The reasons for increased consumption of energy drinks mainly include giving company to friends (59.4%), better performance in exams (41.2%), and better concentration in studies (39.4%). The most common side effect was headache (32.3%), and the least was identified as allergy (2%). Only 39.4% and 29.9% of students acquired awareness regarding the harmful effects of energy drink consumption during pregnancy and breast feeding respectively. A significant proportion of female students at Prince Sattam bin Abdulaziz have reported to consume energy drinks regularly with several adverse effects. The government of Saudi Arabia should take serious initiatives towards organizing effective awareness programs specifically in universities and colleges to control the consumption of energy drinks and educate on the adverse effects.

  20. Developing a discrete event simulation model for university student shuttle buses

    Science.gov (United States)

    Zulkepli, Jafri; Khalid, Ruzelan; Nawawi, Mohd Kamal Mohd; Hamid, Muhammad Hafizan

    2017-11-01

    Providing shuttle buses for university students to attend their classes is crucial, especially when their number is large and the distances between their classes and residential halls are far. These factors, in addition to the non-optimal current bus services, typically require the students to wait longer which eventually opens a space for them to complain. To considerably reduce the waiting time, providing the optimal number of buses to transport them from location to location and the effective route schedules to fulfil the students' demand at relevant time ranges are thus important. The optimal bus number and schedules are to be determined and tested using a flexible decision platform. This paper thus models the current services of student shuttle buses in a university using a Discrete Event Simulation approach. The model can flexibly simulate whatever changes configured to the current system and report its effects to the performance measures. How the model was conceptualized and formulated for future system configurations are the main interest of this paper.

  1. Design and Implementation of Geothermal Energy Systems at West Chester University

    Energy Technology Data Exchange (ETDEWEB)

    Cuprak, Greg [West Chester Univ. of Pennsylvania, PA (United States)

    2016-11-02

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

  2. Design and Implementation of Geothermal Energy Systems at West Chester University

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, James [West Chester Univ., West Chester (PA)

    2016-08-05

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

  3. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  4. DOD Future Energy Resources. Proceedings of Workshops Held at the National Defense University

    National Research Council Canada - National Science Library

    2003-01-01

    .... In response to concerns about U.S. and global depletion of cheap petroleum resources and the particular impact of this on future DOD energy resource needs, a series of workshops were held during 2002 and 2003 at National Defense University...

  5. Barriers to Energy Efficiency and the Uptake of Green Revolving Funds in Canadian Universities

    Science.gov (United States)

    Maiorano, John; Savan, Beth

    2015-01-01

    Purpose: The purpose of this paper is to investigate the barriers to the implementation of energy efficiency projects in Canadian universities, including access to capital, bounded rationality, hidden costs, imperfect information, risk and split incentives. Methods to address these barriers are investigated, including evaluating the efficacy of…

  6. Model of a multiverse providing the dark energy of our universe

    Science.gov (United States)

    Rebhan, E.

    2017-09-01

    It is shown that the dark energy presently observed in our universe can be regarded as the energy of a scalar field driving an inflation-like expansion of a multiverse with ours being a subuniverse among other parallel universes. A simple model of this multiverse is elaborated: Assuming closed space geometry, the origin of the multiverse can be explained by quantum tunneling from nothing; subuniverses are supposed to emerge from local fluctuations of separate inflation fields. The standard concept of tunneling from nothing is extended to the effect that in addition to an inflationary scalar field, matter is also generated, and that the tunneling leads to an (unstable) equilibrium state. The cosmological principle is assumed to pertain from the origin of the multiverse until the first subuniverses emerge. With increasing age of the multiverse, its spatial curvature decays exponentially so fast that, due to sharing the same space, the flatness problem of our universe resolves by itself. The dark energy density imprinted by the multiverse on our universe is time-dependent, but such that the ratio w = ϱ/(c2p) of its mass density and pressure (times c2) is time-independent and assumes a value - 1 + 𝜖 with arbitrary 𝜖 > 0. 𝜖 can be chosen so small, that the dark energy model of this paper can be fitted to the current observational data as well as the cosmological constant model.

  7. The role of dark energy in the evolution of the universe

    CSIR Research Space (South Africa)

    Greben, JM

    2012-10-01

    Full Text Available - expanding universe. In lowest order this expansion remains linear in the presence of matter and radiation, so that the proportions of dark energy and matter are not fixed strongly by the supernovae data and must be deduced from other astronomical data. One...

  8. Theoretical high energy physics research at the University of Chicago, Task A

    International Nuclear Information System (INIS)

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1992-04-01

    This report discusses research conducted at the University of Chicago in theoretical high energy physics. Some of the areas included in this report are: cp violation and cabibbo-kobayashi-maskawa matrix; radiative corrections and electroweak observables; heavy quark symmetry; heavy meson spectroscopy; hadronic string theory; composite models of quarks and leptons; and pedagogical effects

  9. The National Energy Policy Institute (NEPI) at The University of Tulsa (F INAL REPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Blais, Roger [Univ. of Tulsa, OK (United States)

    2013-10-31

    NEPI, a non-profit organization located at The University of Tulsa (TU), was established to develop and disseminate national energy policy recommendations. Research under this grant covered a wide variety of projects, including research into the future of nuclear power, oil market pricing, and the feasibility of biofuels.

  10. SIMULATION OF THE SYSTEMS WITH RENEWABLE ENERGY SOURCES USING HOMER SOFTWARE

    Directory of Open Access Journals (Sweden)

    FIRINCĂ S.D.

    2015-12-01

    Full Text Available This paper simulates by using the Homer software, distributed energy systems with capacity below 1 MW. Among the renewable energy sources are used wind and solar energy. For photovoltaic panels, we are considering two situations: fixed panels, oriented at 45 ° and panels with tracking system with two axis. Simulation results contain information regarding operation hours of the system throughout the year, energy produced from the renewable energy sources, energy consumption for the load, and excess of electrical energy. The Homer software also allows an economic analysis of these systems.

  11. Bio-Energy during Finals: Stress Reduction for a University Community.

    Science.gov (United States)

    Running, Alice; Hildreth, Laura

    2016-01-01

    To re-examine the effectiveness of a bio-energy intervention on self-reported stress for a convenience sample of university students during dead week, a quasi-experimental, single-group pretest-posttest design was used. Thirty-three students participated, serving as their own controls. After participants had consented, a 15-min Healing Touch intervention followed enrollment. Self-reported stress was significantly reduced after the bio-energy (Healing Touch) intervention. Bio-energy therapy has shown to be beneficial in reducing stress for students during dead week, the week before final examinations. Further research is needed.

  12. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    Science.gov (United States)

    Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.

  13. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models

    International Nuclear Information System (INIS)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A.

    2003-01-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  14. Pilgrim dark energy with apparent and event horizons in non-flat universe

    International Nuclear Information System (INIS)

    Sharif, M.; Jawad, Abdul

    2013-01-01

    Pilgrim dark energy is an interesting proposal which is based on the conjecture that phantom-like dark energy with strong enough repulsive force can prevent the formation of a black hole. We investigate this conjecture by assuming the apparent and event horizons in non-flat universe and we develop different cosmological parameters. We construct the corresponding equation of state parameter, which indicates that its present values lie in the phantom era of the universe for different ranges of μ (pilgrim dark energy parameter) as well as ξ 2 (interacting parameter). It is interesting to mention here that the pilgrim dark energy with event horizon yields a phantom region for all cases of ξ 2 with μ Λ - ω' Λ plane and explore the thawing as well as freezing region and ΛCDM limit for these models. The statefinders plane is also constructed, which shows the correspondence with different models such as quintessence and phantom dark energy, ΛCDM and Chaplygin gas. Finally, we investigate the validity of the generalized second law of thermodynamics with event horizon in a flat as well as non-flat universe. (orig.)

  15. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, October-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    The Johns Hopkins University Applied Physics Laboratory is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 December 1980. The Energy Quarterly Report is divided into five sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains a report on institutional problems for small-scale hydroelectric power development in the southeastern states and a list of documents published by APL in the hydroelectric program and in the geothermal program, above. The third section, Seismotectonic Investigations, contains an article on work on the geologic structure of the Danbury Quadrangle that is supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC) and an in-house supported study on a new method for assessing earthquakes in intraplate regions. The fourth section, Energy Conversion and Storage Techniques, contains four articles. The first is an evaluation of the Einstein refrigerator, supported by independent IR and D funds. The second concerns fly-wheel technology development at APL supported by the Department of Energy, Division of Energy Storage (DOE/STOR). The third is a report on APL energy conservation efforts at its own buildings, and the fourth is an article on liquefied natural gas (LNG) safety evaluation, supported by the National Academy of Sciences. The fifth section explores the value of establishing an Energy Research Institute at The Johns Hopkins University.

  16. National autonomous university of Mexico RELAP/SCDAPSIM-based plant simulation and training applications to the Laguna Verde NPP

    International Nuclear Information System (INIS)

    Chavez-Mercado, C.; Hohorst, J.K.; Allison, C.M.

    2004-01-01

    The RELAP/SCDAPSIM code, designed to predict the behavior of reactor systems during normal and accident conditions, is being developed by Innovative Systems Software as part of the International SCDAP Development and Training Program (SDTP). This code is being used as the simulator engine for the National Autonomous University of Mexico's Simulation and Training Facility located at the Campus Morelos in Jiutepec, Mexico. This paper describes the RELAP/SCDAPSIM code, the Simulation and Training facility at the National Autonomous University of Mexico, and the application of the training system to the Laguna Verde Nuclear Power Plant located in the Mexican state of Veracruz. (author)

  17. A Possible Interpretation of Dark Energy and Matter of the Expanding Universe

    International Nuclear Information System (INIS)

    Lehnert, B.

    2009-01-01

    At present the expanding universe is observed to be dominated by the not fully understood concepts of dark energy and matter, in a conceived almost flat Euclidian geometry. As one of the possible efforts to understand its global behaviour, the present paper attempts to explain these concepts in terms of the pressure force and gravity of a spherical photon gas cloud of zero point energy, in flat geometry. A difficult point concerns the frequency distribution of the zero point energy oscillations which leads to the unacceptable result of an infinite total energy. A modification of this distribution is therefore proposed which results in finite energy density. A corresponding equilibrium is investigated, as well as small dynamic deviations from it, to form a basis for a model of the expanding universe. Provided that the crucial points of the present approach hold true, the model satisfies the requirements of cosmic linear dimensions, results in an estimated acceleration of the expansion being of the order of the observed one, presents a possible solution of the coincidence problem of dark energy and matter, and provides one of the possible explanations of the observed excess of high-energy electrons and positrons in recent balloon and satellite experiments.

  18. Axion-like particles: possible hints and constraints from the high-energy Universe

    International Nuclear Information System (INIS)

    Brun, Pierre

    2013-01-01

    The high-energy Universe is potentially a great laboratory for searching new light bosons such as axion-like particles (ALPs). Cosmic sources are indeed the scene of violent phenomena that involve strong magnetic field and/or very long baselines, where the effects of the mixing of photons with ALPs could lead to observable effects. Two examples are archetypal of this fact, that are the Universe opacity to gamma-rays and the imprints of astrophysical magnetic turbulence in the energy spectra of high-energy sources. In the first case, hints for the existence of ALPs can be proposed whereas the second one is used to put constraints on the ALP mass and coupling to photons

  19. Combining a building simulation with energy systems analysis to assess the benefits of natural ventilation

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2013-01-01

    a thermal air flow simulation program - Into the energy systems analysis model. Descriptions of the energy systems in two geographical locations, i.e. Mexico and Denmark, are set up as inputs. Then, the assessment is done by calculating the energy impacts as well as environmental benefits in the energy...

  20. Energy-Water Microgrid Case Study at the University of Arizona's BioSphere 2

    Science.gov (United States)

    Daw, J.; Macknick, J.; Kandt, A.; Giraldez, J.

    2016-12-01

    Microgrids can provide reliable and cost-effective energy services in a variety of conditions and locations. To date, there has been minimal effort invested in developing energy-water microgrids that demonstrate the feasibility and leverage the synergies associated with designing and operating renewable energy and water systems in a coordinated framework. Water and wastewater treatment equipment can be operated in ways to provide ancillary services to the electrical grid and renewable energy can be utilized to power water-related infrastructure, but the potential for co-managed systems has not yet been quantified or fully characterized. Co-management and optimization of energy and water resources could lead to improved reliability and economic operating conditions. Energy-water microgrids could be a promising solution to improve energy and water resource management for islands, rural communities, distributed generation, Defense operations, and many parts of the world lacking critical infrastructure.The National Renewable Energy Laboratory (NREL) and the University of Arizona have been jointly researching energy-water microgrid opportunities through an effort at the university's BioSphere 2 (B2) Earth systems science research facility. B2 is an ideal case study for an energy-water microgrid test site, given its size, its unique mission and operations, the existence and criticality of water and energy infrastructure, and its ability to operate connected-to or disconnected-from the local electrical grid. Moreover, the B2 is a premier facility for undertaking agricultural research, providing an excellent opportunity to evaluate connections and tradeoffs in the food-energy-water nexus. The research effort at B2 identified the technical potential and associated benefits of an energy-water microgrid through the evaluation of energy ancillary services and peak load reductions and quantified the potential for B2 water-related loads to be utilized and modified to provide

  1. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Entingh, Daniel J.

    1980-03-01

    The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/DGE), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigation, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission, reports on a neotectonic investigation in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy/Division of Central Solar Technology (DOE/CST), and the second on an analysis of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va. This work is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division.

  2. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 30 June 1980. The Energy Quarterly Report is divided into three sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Energy Conversion and Storage Techniques, contains three articles. The first is on data analysis of OTEC core unit condenser tests, and is supported by the Department of Energy/Division of Central Solar Technology (DOE/CST). The second is on the current status of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va., and is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division. The third is on utilization of landfill methane and is supported by Argonne National Laboratory.

  3. Entropy in the Present and Early Universe: New Small Parameters and Dark Energy Problem

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2010-04-01

    Full Text Available It is demonstrated that entropy and its density play a significant role in solving the problem of the vacuum energy density (cosmological constant of the Universe and hence the dark energy problem. Taking this in mind, two most popular models for dark energy—Holographic Dark Energy Model and Agegraphic Dark Energy Model—are analysed. It is shown that the fundamental quantities in the first of these models may be expressed in terms of a new small dimensionless parameter that is naturally occurring in High Energy Gravitational Thermodynamics and Gravitational Holography (UV-limit. On this basis, the possibility of a new approach to the problem of Quantum Gravity is discussed. Besides, the results obtained on the uncertainty relation of the pair “cosmological constant–volume of space-time”, where the cosmological constant is a dynamic quantity, are reconsidered and generalized up to the Generalized Uncertainty Relation.

  4. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations.

    Science.gov (United States)

    Serçinoglu, Onur; Ozbek, Pemra

    2018-05-25

    Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.

  5. Fiscal 1999 research report. Simulation analysis on petroleum substituting energy; 1999 nendo sekiyu daitai energy keiryo bunseki chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on simulation analysis on petroleum substituting energy. The simulation model for analyzing social and energy supply and demand structures comprehensively was established by improving the China and Korea models developed in fiscal 1998 through a use of input-output tables. In simulation of the China model, the reference case showed that a primary energy demand in 2030 reaches 3.3 times as much as that in 1997 (2.9 times in CO{sub 2}), resulting in serious energy and environment problems. Reduction of primary energy and CO{sub 2} is possible by promotion of energy saving and introduction of a carbon tax. In simulation of the Korea model, the reference case showed that CO{sub 2} emission in 2030 reaches 2.2 times as much as that in 1997, showing an annual increase rate of 2.4%. The annual increase rate can be reduced by introducing a carbon tax. The simulation model for automobile energy was also established for major countries in Asia. Automobile energy consumption increases with diffusion of automobiles until 2030 gradually. In particular, the consumption in China reaches that in Japan in 2010. (NEDO)

  6. Universal shape characteristics for the mesoscopic star-shaped polymer via dissipative particle dynamics simulations

    Science.gov (United States)

    Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.

    2018-05-01

    In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.

  7. Constraint methods that accelerate free-energy simulations of biomolecules.

    Science.gov (United States)

    Perez, Alberto; MacCallum, Justin L; Coutsias, Evangelos A; Dill, Ken A

    2015-12-28

    Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives about biological mechanisms. The power of atomistic simulations is that these are physics-based methods that satisfy Boltzmann's law, so they can be used to compute populations, dynamics, and mechanisms. But physical simulations are computationally intensive and do not scale well to the sizes of many important biomolecules. One way to speed up physical simulations is by coarse-graining the potential function. Another way is to harness structural knowledge, often by imposing spring-like restraints. But harnessing external knowledge in physical simulations is problematic because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here, we review recent principled methods for imposing restraints to speed up physics-based molecular simulations that promise to scale to larger biomolecules and motions.

  8. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    Science.gov (United States)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  9. Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.

    Science.gov (United States)

    Guinan, Edward Francis

    2018-01-01

    Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.

  10. Why No Dark Energy, No Big Bang, But A Likely Fractal Universe?

    Science.gov (United States)

    Mitra, Abhas

    Recently, it has been shown that the "Big Bang Model" (BBM) actually corresponds to zero pressure and zero temperature (Mitra, Astr. Sp. Sc., 333, 351, 2011). Thus BBM cannot explain the observed universe having radiation and pressure. Consequently, the very idea of a "Dark Energy" resulting from the attempt of explaining the observed universe by BBM gets invalidated. Also, the fact that the BBM badly violates the principle of energy conservation independently suggests that it is physically unacceptable (Mitra, Gen. Rel. Grav. 42, 443 2010). To confirm this, we consider the transformation of vacuum de-Sitter metric from comoving coordinates to original Schwarzschild coordinates. Since the proper space-time volume must remain invariant for all such coordinate transformations, it is found cosmological constant Λ = 0; implying no dark energy. It is pointed out that, recent observations have (actually) shown that observed universe has a fractal structure upto largest observed scale with D˜2.2. Thus the universe is likely to be infinite hierarchial fractal rather than any smooth distribution of matter presumed by BBM. It is pointed out that the observed microwave background radiation may be explained as superposition of gravitationally red-shifted quiescent thermal radiation from the photosphere of the so-called black hole candidates.

  11. Cosmic acceleration in a dust only universe via energy-momentum powered gravity

    Science.gov (United States)

    Akarsu, Özgür; Katırcı, Nihan; Kumar, Suresh

    2018-01-01

    We propose a modified theory of gravitation constructed by the addition of the term f (Tμ νTμ ν) to the Einstein-Hilbert action, and elaborate a particular case f (Tμ νTμ ν)=α (Tμ νTμ ν)η, where α and η are real constants, dubbed energy-momentum powered gravity (EMPG). We search for viable cosmologies arising from EMPG, especially in the context of the late-time accelerated expansion of the Universe. We investigate the ranges of the EMPG parameters (α ,η ) on theoretical as well as observational grounds leading to the late-time acceleration of the Universe with pressureless matter only, while keeping the successes of standard general relativity at early times. We find that η =0 corresponds to the Λ CDM model, whereas η ≠0 leads to a w CDM -type model. However, the underlying physics of the EMPG model is entirely different in the sense that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the pressureless matter is not conserved, namely, in general it does not dilute as ρ ∝a-3 with the expansion of the Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28 Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to that in the Λ CDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe the complete history of the Universe including the inflationary era.

  12. Quantum Simulations of Low Temperature High Energy Density Matter

    National Research Council Canada - National Science Library

    Voth, Gregory

    2004-01-01

    .... Using classical molecular dynamics simulations to evaluate these equilibrium properties would predict qualitatively incorrect results for low temperature solid hydrogen, because of the highly quantum...

  13. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman [HEP Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Bingham, Derek; Bergner, Steven [Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC (Canada); Lawrence, Earl [CCS-6, CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Higdon, David [Social and Decision Analytics Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Arlington, VA 22203 (United States); Pope, Adrian; Finkel, Hal [ALCF Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.

  14. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    International Nuclear Information System (INIS)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman; Bingham, Derek; Bergner, Steven; Lawrence, Earl; Higdon, David; Pope, Adrian; Finkel, Hal

    2016-01-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy

  15. Implementing Occupant Behaviour in the Simulation of Building Energy Performance and Energy Flexibility: Development of Co-Simulation Framework and Case Study

    DEFF Research Database (Denmark)

    Li, Rongling; Wei, Feng; Zhao, Yang

    2017-01-01

    Occupant behaviour has a substantial impact on the prediction of building energy performance. To capture this impact, co-simulation is considered an effective approach. It is still a new method in need of more development. In this study, a co-simulation framework is established to couple Energy......Plus with Java via Functional Mock-up Interface (FMI) using the EnergyPlusToFMU software package. This method is applied to a case study of a single occupant office with control of lighting, plug load and thermostat. Two control scenarios are studied. These are occupancy and occupant behaviour based control (OC...

  16. Accelerated Expansion of the Universe: Dark Energy or modifications to the theory of gravity to Einstein?

    International Nuclear Information System (INIS)

    Quiros, I.

    2008-01-01

    Full text: An overview of the state of the art in modern astrophysics and cosmology is given, emphasizing the 'Dark Energy Problem', one of the fundamental problems of theoretical physics at present. In particular is analyzed the possibility that the universe could be a three-dimensional membrane embedded in a higher dimensional space. These models known as 'brane worlds' can explain the present accelerated expansion of the Universe as dissipation due to gravity at cosmological scales extra or limit space infrared (IR). However there are many other problems to solve, including the problem of 'ghost' modes that are inevitable in any IR modification of gravity. (author)

  17. Universal block diagram based modeling and simulation schemes for fractional-order control systems.

    Science.gov (United States)

    Bai, Lu; Xue, Dingyü

    2017-05-08

    Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Methods of Thrust Allocation in a DP Simulation System of Maritime University of Szczecin

    Directory of Open Access Journals (Sweden)

    Zalewski Paweł

    2016-12-01

    Full Text Available Vessels conducting dynamic positioning (DP operations are usually equipped with thruster configurations that enable generation of resultant force and moment in any direction. These configurations are deliberately redundant in order to reduce the consequences of thruster failures and increase the safety. On such vessels a thrust allocation system must be used to distribute the control actions determined by the DP controller among the thrusters. The optimal allocation of thrusters′ settings in DP systems is a problem that can be solved by several convex optimization methods depending on criteria and constraints used. The paper presents linear programming (LP and quadratic programming (QP methods adopted in DP control model which is being developed in Maritime University of Szczecin for ship simulation purposes.

  19. Simulation of ultra-high energy photon propagation with PRESHOWER 2.0

    Science.gov (United States)

    Homola, P.; Engel, R.; Pysz, A.; Wilczyński, H.

    2013-05-01

    In this paper we describe a new release of the PRESHOWER program, a tool for Monte Carlo simulation of propagation of ultra-high energy photons in the magnetic field of the Earth. The PRESHOWER program is designed to calculate magnetic pair production and bremsstrahlung and should be used together with other programs to simulate extensive air showers induced by photons. The main new features of the PRESHOWER code include a much faster algorithm applied in the procedures of simulating the processes of gamma conversion and bremsstrahlung, update of the geomagnetic field model, and a minor correction. The new simulation procedure increases the flexibility of the code so that it can also be applied to other magnetic field configurations such as, for example, encountered in the vicinity of the sun or neutron stars. Program summaryProgram title: PRESHOWER 2.0 Catalog identifier: ADWG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3968 No. of bytes in distributed program, including test data, etc.: 37198 Distribution format: tar.gz Programming language: C, FORTRAN 77. Computer: Intel-Pentium based PC. Operating system: Linux or Unix. RAM:probability of the process expected to occur. The new algorithm reduces significantly the number of tracking steps and speeds up the execution of the program. The geomagnetic field model has been updated to IGRF-11, allowing for interpolations up to the year 2015. Numerical Recipes procedures to calculate modified Bessel functions have been replaced with an open source CERN routine DBSKA. One minor bug has been fixed. Restrictions: Gamma conversion into particles other than an electron pair is not considered. Spatial structure of the cascade is neglected. Additional comments

  20. Energy efficient process planning based on numerical simulations

    OpenAIRE

    Neugebauer, Reimund; Hochmuth, C.; Schmidt, G.; Dix, M.

    2011-01-01

    The main goal of energy-efficient manufacturing is to generate products with maximum value-added at minimum energy consumption. To this end, in metal cutting processes, it is necessary to reduce the specific cutting energy while, at the same time, precision requirements have to be ensured. Precision is critical in metal cutting processes because they often constitute the final stages of metalworking chains. This paper presents a method for the planning of energy-efficient machining processes ...

  1. Building Performance Simulation for Sustainable Energy Use in Buildings

    NARCIS (Netherlands)

    Hensen, J.L.M.

    2010-01-01

    This paper aims to provide a general view of the background and current state of building performance simulation, which has the potential to deliver, directly or indirectly, substantial benefits to building stakeholders and to the environment. However the building simulation community faces many

  2. USP university students social representations and views on nuclear power as energy option

    International Nuclear Information System (INIS)

    Farias, Luciana A.; Favaro, Deborah I.T.

    2011-01-01

    The Nuclear Energy Research Institute (IPEN) is located on the campus of the University of Sao Paulo and has long been publishing nuclear science projects in order to improve public opinion and disseminate nuclear energy issues. However, few studies have investigated the perception of university students concerning nuclear energy. This study questioned whether the location of a nuclear research facility, as well as promotion of scientific projects, can positively influence student opinion when the nuclear research reactor is on campus and used purely for research purposes. This study further investigated the students' understanding of the terms 'nuclear energy' as well as their perception of the social issues involved. Free evocations of words were produced and collected starting from the stimulative inductor 'Nuclear Energy'. In this test, the interviewees are asked to associate five words and answer a questionnaire. A total of 124 students were interviewed for this study: 62 from the Chemistry, Pharmacy, Environmental Chemistry, Chemical Engineering and Nutrition Departments, 29 from the Oceanography Department and 33 from the Economics, Business Administration and Accounting Department. A total of 78% of the interviewed students answered that they had basic or average knowledge of nuclear energy, 46% claimed to have no knowledge of IPEN and the remainder students have answered that IPEN's activities were aimed at research in energy and production of radiopharmaceuticals, which shows little knowledge of the activities of the Institute. However, these students indicated Nuclear Energy as a strong for the diversification of energy sources. It should be noted that this study was undertaken before the nuclear accident caused by the 2011 Japan tsunami and earthquake. (author)

  3. A Universal Educational and Research Stand to Simulate Electrical Drive Loading

    Directory of Open Access Journals (Sweden)

    V. S. Grishin

    2016-01-01

    Full Text Available Universal educational and research stand was developed for analyzing an electrical drive’s behavior with different load disturbance effects. Major components of the stand are two electrical drives with rigidly coupled shafts. As a result, first electrical drive (loader has a capability to imitate effects of different loading types to another one (trial drive.Control software for the stand is developed. It allows us to combine a variety of loading types and change parameters of current loading such as joint moment, damping, additional inertia, and external torque. Also there is a capability to imitate effects of elasticity and backlash of mechanical transmissions. The paper considers the main challenge of creating the given system, i.e. discretization with a variable step. Some methods to decrease its negative effects on system stability are suggested.The given system allows to change loading parameters more rapidly and in a wider range as compared to a system with real mechanical outfit.These stands are currently used for laboratory classes within the course “Electrical robotic drives” at SM7 department in Bauman Moscow State Technical University. Also the system of interdepended stands for semi-realistic simulation of manipulation systems is under development.

  4. Managing Quality Assurance in Higher Education: The Case of the University of Energy and Natural Resources, Ghana

    Science.gov (United States)

    Anane, George Kwadwo; Addaney, Michael

    2016-01-01

    The paper discusses quality assurance in the University of Energy and Natural Resources in Ghana. The University is a public funded institution established by an act of parliament; Act 830, 2011. As a newly established public funded University, quality assurance plays a central role in satisfying the requirements of stakeholders on the supply and…

  5. Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator

    Energy Technology Data Exchange (ETDEWEB)

    Mitryk, Shawn J; Wand, Vinzenz; Mueller, Guido, E-mail: smitryk@phys.ufl.ed, E-mail: mueller@phys.ufl.ed [Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440 (United States)

    2010-04-21

    Laser Interferometer Space Antenna (LISA) is a cooperative NASA/ESA mission proposed to directly measure gravitational waves (GW) in the frequency range from 30 muHz to 1 Hz with an optimal strain sensitivity of 10{sup -21}/sq root(Hz) at 3 mHz. LISA will utilize a modified Michelson interferometer to measure length changes of 40 pm/sq root(Hz) between drag-free proof masses located on three separate spacecraft (SC) separated by a distance of 5 Gm. The University of Florida has developed a hardware-in-the-loop simulator of the LISA constellation to verify the laser noise cancellation technique known as time-delay interferometry (TDI). We replicate the frequency stabilization of the laser on the local SC and the phase-locking of the lasers on the far SC. The laser photodetector beatnotes are electronically delayed, Doppler shifted and applied with a mock GW signal to simulate the laser link between the SC. The beatnotes are also measured with a LISA-like phasemeter and the data are used to extract the laser phase and residual phase-lock loop noise in post-processing through TDI. This uncovers the GW modulation signal buried under the laser noise. The results are then compared to the requirements defined by the LISA science collaboration.

  6. Wear promoted in the apical third of simulated canals after instrumentation with protaper universal system

    Directory of Open Access Journals (Sweden)

    Kathrein Tapia da Silva

    2009-10-01

    Full Text Available OBJECTIVE: This study evaluated the wear in the apical third of simulate canals after preparation with ProTaper Universal Rotary System. MATERIAL AND METHODS: 24 sets of instruments were used in 24 simulated canals in transparent epoxy resin blocks with degree of curvature of either 20°or 40°. The canals were photographed preoperatively and after preparation of the apical stop with ProTaper F3, F4 and F5 instruments. The initial and final images were exported to Adobe Photoshop® software and superimposed to detect the root canal wall differences (in mm between them, in two points located 1 (A and 5 (B mm from the point where the working length was established. Data were subjected to analysis of variance to verify the existence of interaction among the factors: canal curvature, instrument size and curve location. Significant level was set at 5%. RESULTS: Regardless of the location and the canal curvature, F4 and F5 instruments produced the greatest wear (p<0.05. CONCLUSIONS: There was a deviation from the original pathway towards the outside of the root curvature in both analyzed points. All instruments produced canal transportation, but the F4 and F5 instruments produced more than the other instruments, and should thus be used with care in curved canals.

  7. Building Model for the University of Mosul Computer Network Using OPNET Simulator

    Directory of Open Access Journals (Sweden)

    Modhar Modhar A. Hammoudi

    2013-04-01

    Full Text Available This paper aims at establishing a model in OPNET (Optimized Network Engineering Tool simulator for the University of Mosul computer network. The proposed network model was made up of two routers (Cisco 2600, core switch (Cisco6509, two servers, ip 32 cloud and 37 VLANs. These VLANs were connected to the core switch using fiber optic cables (1000BaseX. Three applications were added to test the network model. These applications were FTP (File Transfer Protocol, HTTP (Hyper Text Transfer Protocol and VoIP (Voice over Internet Protocol. The results showed that the proposed model had a positive efficiency on designing and managing the targeted network and can be used to view the data flow in it. Also, the simulation results showed that the maximum number of VoIP service users could be raised upto 5000 users when working under IP Telephony. This means that the ability to utilize VoIP service in this network can be maintained and is better when subjected to IP telephony scheme.

  8. Ethernet TCP/IP based building energy management system in a university campus in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Jomoah, Ibrahim M. [Department of Industrial Engineering, King Abdulaziz University Jeddah-21589 (Saudi Arabia); Kumar, R. Sreerama; Abdel-Shafi, Nabil Yassien [Saudi Electricity Company Chair for DSM and EE, Vice Presidency for Projects, King Abdulaziz University Jeddah 21589 (Saudi Arabia); Al-Abdulaziz, Abdulaziz Uthman M.; Obaid, Ramzy R. [Department of Electrical and Computer Engineering, King Abdulaziz University Jeddah-21589 (Saudi Arabia)

    2013-07-01

    This paper investigates the effectiveness of the Building Energy Management System (BMS) installed in the typical buildings in the main campus of King Abdulaziz University, Jeddah, in Saudi Arabia. As the domestic electricity and hence the oil consumption in Saudi Arabia is increasing at a very alarming rate compared to the other countries in the world, it is of paramount importance to resort to urgent measures in various industrial, commercial and residential sectors in the country to implement energy conservation measures. The major electrical load in the buildings in the University corresponds to air-handling units and lighting. If the Hajj period, during which millions of pilgrims visit Holy Makah, coincides with the summer, the electricity demand in the country further increases. Considering these issues, the university has taken initiatives to minimize energy consumption in the campuses through the various energy conservation measures. Towards this end, BMS is installed in a few of the typical classrooms and office buildings utilizing the existing campus Ethernet TCP/IP. The data analysis is performed over the period from April to September as it is the peak load period due to summer season. The effectiveness of the BMS in the minimization of the energy consumption in these buildings is established by comparing the results of data analysis with BMS against those before the installation of BMS over the peak period. The investigations reveal that appreciable saving in energy consumption can be achieved with the installation of BMS, the magnitude being dependent upon factors such as building characteristics, type of building, its utilization and period of use.

  9. Energy drinks consumption practices among medical students of a Private sector University of Karachi, Pakistan.

    Science.gov (United States)

    Usman, Asma; Bhombal, Swaleha Tariq; Jawaid, Ambreen; Zaki, Samar

    2015-09-01

    Consumption of energy drinks has become popular among students and athletes over the past few years. To explore the phenomenon, a cross-sectional survey was conducted through a self-administered pilot-tested questionnaire. Frequency of energy drinks consumption was found to be 121(52%) in a sample of 233 medical students. Red bull was the most common brand consumed 101(43%). The major reasons reported for its usage were to gain/replenish energy by 36(15.4%), and studying for examination by 34(14.6%). Television was reported as the major source of information 153(66%) followed by friends 113(48%). There was a high frequency of energy drinks' consumption among medical students of a private university. There is a strong need to create awareness regarding these drinks, especially among adolescents and teenagers.

  10. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    Science.gov (United States)

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  11. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  12. Science Hall of Atomic Energy in Research Reactor Institute, Kyoto University

    International Nuclear Information System (INIS)

    Hayashi, Takeo

    1979-01-01

    The Science Hall of Atomic Energy was built as a subsidiary facility of the Research Reactor Institute, Kyoto University. The purpose of this facility is to accept outside demands concerning the application of the research reactor. The building is a two story building, and has the floor area of 901.47 m 2 . There are an exhibition room, a library, and a big lecture room. In the exhibition room, models of the Kyoto University Research Reactor and the Kyoto University Critical Assembly are placed. Various pictures concerning the application of the reactor are on the wall. In the library, people from outside of the Institute can use various books on science. Books for boys and girls are also stocked and used for public use. At the lecture room, various kinds of meeting can be held. (Kato, T.)

  13. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 September 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/RA), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigations, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission (NRC), reports on neotectonic investigations of the Manhattan Prong. The fourth section, Energy Conversion and Storage Techniques, contains three articles. The first is an evaluation of the Einstein refrigerator, supported by independent IR&D funds. The second concerns OTEC pilot plant performance calculations, supported by the Department of Energy/Division of Central Solar Technology (DOE/CST). The third, describing a study of landfill methane recovery, is supported by the National Park Service.

  14. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional

    Science.gov (United States)

    Ganandran, G. S. B.; Mahlia, T. M. I.; Ong, Hwai Chyuan; Rismanchi, B.; Chong, W. T.

    2014-01-01

    This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment. PMID:25133258

  15. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional

    Directory of Open Access Journals (Sweden)

    G. S. B. Ganandran

    2014-01-01

    Full Text Available This paper reports the result of an investigation on the potential energy saving of the lighting systems at selected buildings of the Universiti Tenaga Nasional. The scope of this project includes evaluation of the lighting system in the Library, Admin Building, College of Engineering, College of Information Technology, Apartments, and COE Food court of the university. The main objectives of this project are to design the proper retrofit scenario and to calculate the potential electricity saving, the payback period, and the potential environmental benefits. In this survey the policy for retrofitting the old lighting system with the new energy saving LEDs starts with 10% for the first year and continues constantly for 10 years until all the lighting systems have been replaced. The result of the life cycle analysis reveals that after four years, the selected buildings will bring profit for the investment.

  16. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  17. CURRENT SHEET ENERGETICS, FLARE EMISSIONS, AND ENERGY PARTITION IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Reeves, Katharine K.; Linker, Jon A.; Mikic, Zoran; Forbes, Terry G.

    2010-01-01

    We investigate coronal energy flow during a simulated coronal mass ejection (CME). We model the CME in the context of the global corona using a 2.5D numerical MHD code in spherical coordinates that includes coronal heating, thermal conduction, and radiative cooling in the energy equation. The simulation domain extends from 1 to 20 R s . To our knowledge, this is the first attempt to apply detailed energy diagnostics in a flare/CME simulation when these important terms are considered in the context of the MHD equations. We find that the energy conservation properties of the code are quite good, conserving energy to within 4% for the entire simulation (more than 6 days of real time). We examine the energy release in the current sheet as the eruption takes place, and find, as expected, that the Poynting flux is the dominant carrier of energy into the current sheet. However, there is a significant flow of energy out of the sides of the current sheet into the upstream region due to thermal conduction along field lines and viscous drag. This energy outflow is spatially partitioned into three separate components, namely, the energy flux flowing out the sides of the current sheet, the energy flowing out the lower tip of the current sheet, and the energy flowing out the upper tip of the current sheet. The energy flow through the lower tip of the current sheet is the energy available for heating of the flare loops. We examine the simulated flare emissions and energetics due to the modeled CME and find reasonable agreement with flare loop morphologies and energy partitioning in observed solar eruptions. The simulation also provides an explanation for coronal dimming during eruptions and predicts that the structures surrounding the current sheet are visible in X-ray observations.

  18. Investigation of current university research concerning energy conversion and conservation in small single-family dwellings

    Science.gov (United States)

    Grossman, G. R.; Roberts, A. S., Jr.

    1975-01-01

    An investigation was made of university research concerning energy conversion and conservation techniques which may be applied in small single-family residences. Information was accumulated through published papers, progress reports, telephone conversations, and personal interviews. A synopsis of each pertinent investigation is given. Finally, a discussion of the synopses is presented and recommendations are made concerning the applicability of concepts for the design and construction of NASA-Langley Research Center's proposed Technology Utilization House in Hampton, Virginia.

  19. The Institute for Sustained Performance, Energy, and Resilience, University of North Carolina, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Robert [Univ. of North Carolina, Chapel Hill, NC (United States)

    2018-01-20

    This is the final report for the UNC component of the SciDAD Institute for Sustained Performance, Energy, and Resilience. In this report, we describe activities on the SUPER project at RENCI at the University of North Carolina at Chapel Hill. While we focus particularly on UNC, we touch on project-wide activities as well as, on interactions with, and impacts on, other projects.

  20. Vertically and Horizontally Mounted Wind Mills : Wind Energy Production in Tampere University of Applied Sciences

    OpenAIRE

    Evdokimova, Ekaterina

    2013-01-01

    The purpose of this thesis was to gather information about vertical and horizontal wind mills and to complete a research on wind power production by wind mills which were installed in Tampere University of Applied Sciences. The horizontally mounted wind mill Windspot 3.5 and vertically mounted wind mill Cypress were installed in summer 2011 but they started functioning and supplying energy only during 2012. In the theoretical part of this thesis wind speed and wind power production is dis...

  1. Final report. U.S. Department of Energy University Reactor Sharing Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, John A

    2003-01-21

    Activities supported at the MIT Nuclear Reactor Laboratory under the U.S. DOE University Reactor Sharing Program are reported for Grant DE FG02-95NE38121 (September 16, 1995 through May 31, 2002). These activities fell under four subcategories: support for research at thesis and post-doctoral levels, support for college-level laboratory exercises, support for reactor tours/lectures on nuclear energy, and support for science fair participants.

  2. Multi-Scale Simulation of High Energy Density Ionic Liquids

    National Research Council Canada - National Science Library

    Voth, Gregory A

    2007-01-01

    The focus of this AFOSR project was the molecular dynamics (MD) simulation of ionic liquid structure, dynamics, and interfacial properties, as well as multi-scale descriptions of these novel liquids (e.g...

  3. Soft computing simulation tools for nuclear energy systems

    International Nuclear Information System (INIS)

    Kannan Balasubramanian, S.

    2012-01-01

    This chapter deals with simulation, a very powerful tool in designing, constructing and operating nuclear power generating facilities. There are very different types of power plants, and the examples mentioned in this chapter originate from experience with water cooled and water moderated thermal reactors, based on fission of uranium-235. Nevertheless, the methodological achievements in simulation mentioned below can definitely be used not only for this particular type of nuclear power generating reactor. Simulation means: investigation of processes in the time domain. We can calculate the characteristics and properties of different systems, e.g. we can design a bridge over a river, but if we calculate how it would respond to a thunderstorm with high winds, its movement can or can not evolve after a certain time into destructive oscillation - this type of calculations are called simulation

  4. Effects of Resolution on the Simulation of Boundary-layer Clouds and the Partition of Kinetic Energy to Subgrid Scales

    Directory of Open Access Journals (Sweden)

    Anning Cheng

    2010-02-01

    Full Text Available Seven boundary-layer cloud cases are simulated with UCLA-LES (The University of California, Los Angeles – large eddy simulation model with different horizontal and vertical gridspacing to investigate how the results depend on gridspacing. Some variables are more sensitive to horizontal gridspacing, while others are more sensitive to vertical gridspacing, and still others are sensitive to both horizontal and vertical gridspacings with similar or opposite trends. For cloud-related variables having the opposite dependence on horizontal and vertical gridspacings, changing the gridspacing proportionally in both directions gives the appearance of convergence. In this study, we mainly discuss the impact of subgrid-scale (SGS kinetic energy (KE on the simulations with coarsening of horizontal and vertical gridspacings. A running-mean operator is used to separate the KE of the high-resolution benchmark simulations into that of resolved scales of coarse-resolution simulations and that of SGSs. The diagnosed SGS KE is compared with that parameterized by the Smagorinsky-Lilly SGS scheme at various gridspacings. It is found that the parameterized SGS KE for the coarse-resolution simulations is usually underestimated but the resolved KE is unrealistically large, compared to benchmark simulations. However, the sum of resolved and SGS KEs is about the same for simulations with various gridspacings. The partitioning of SGS and resolved heat and moisture transports is consistent with that of SGS and resolved KE, which means that the parameterized transports are underestimated but resolved-scale transports are overestimated. On the whole, energy shifts to large-scales as the horizontal gridspacing becomes coarse, hence the size of clouds and the resolved circulation increase, the clouds become more stratiform-like with an increase in cloud fraction, cloud liquid-water path and surface precipitation; when coarse vertical gridspacing is used, cloud sizes do not

  5. Simulation of the Effects of Occupant Behaviour on Indoor Climate and Energy Consumption

    DEFF Research Database (Denmark)

    Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn

    2007-01-01

    In this study the influence of occupant behaviour on energy consumption were investigated in simulations of a single room occupied by one person. The simulated occupant could manipulate six controls, such as turning on or off the heat and adjusting clothing. All control actions were carried out...... indoor environment close to neutral when he/she had the possibility to manipulate the controls. The energy consumption was similar within each behavioural mode regardless of the PMV limits. However, the energy consumption in the energy consuming behavioural mode was up to 330 % higher than in the energy...

  6. Probing dark energy models with extreme pairwise velocities of galaxy clusters from the DEUS-FUR simulations

    Science.gov (United States)

    Bouillot, Vincent R.; Alimi, Jean-Michel; Corasaniti, Pier-Stefano; Rasera, Yann

    2015-06-01

    Observations of colliding galaxy clusters with high relative velocity probe the tail of the halo pairwise velocity distribution with the potential of providing a powerful test of cosmology. As an example it has been argued that the discovery of the Bullet Cluster challenges standard Λ cold dark matter (ΛCDM) model predictions. Halo catalogues from N-body simulations have been used to estimate the probability of Bullet-like clusters. However, due to simulation volume effects previous studies had to rely on a Gaussian extrapolation of the pairwise velocity distribution to high velocities. Here, we perform a detail analysis using the halo catalogues from the Dark Energy Universe Simulation Full Universe Runs (DEUS-FUR), which enables us to resolve the high-velocity tail of the distribution and study its dependence on the halo mass definition, redshift and cosmology. Building upon these results, we estimate the probability of Bullet-like systems in the framework of Extreme Value Statistics. We show that the tail of extreme pairwise velocities significantly deviates from that of a Gaussian, moreover it carries an imprint of the underlying cosmology. We find the Bullet Cluster probability to be two orders of magnitude larger than previous estimates, thus easing the tension with the ΛCDM model. Finally, the comparison of the inferred probabilities for the different DEUS-FUR cosmologies suggests that observations of extreme interacting clusters can provide constraints on dark energy models complementary to standard cosmological tests.

  7. Vibrational energy flow in the villin headpiece subdomain: Master equation simulations

    International Nuclear Information System (INIS)

    Leitner, David M.; Buchenberg, Sebastian; Brettel, Paul; Stock, Gerhard

    2015-01-01

    We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water

  8. Vibrational energy flow in the villin headpiece subdomain: Master equation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, David M., E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States); Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Buchenberg, Sebastian; Brettel, Paul [Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany); Stock, Gerhard, E-mail: dml@unr.edu, E-mail: stock@physik.uni-freiburg.de [Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg (Germany); Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg (Germany)

    2015-02-21

    We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.

  9. Universe

    CERN Document Server

    2009-01-01

    The Universe, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  10. Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach

    Science.gov (United States)

    Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer

    2016-11-01

    This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.

  11. Building Energy Assessment and Computer Simulation Applied to Social Housing in Spain

    Directory of Open Access Journals (Sweden)

    Juan Aranda

    2018-01-01

    Full Text Available The actual energy consumption and simulated energy performance of a building usually differ. This gap widens in social housing, owing to the characteristics of these buildings and the consumption patterns of economically vulnerable households affected by energy poverty. The aim of this work is to characterise the energy poverty of the households that are representative of those residing in social housing, specifically in blocks of apartments in Southern Europe. The main variables that affect energy consumption and costs are analysed, and the models developed for software energy-performance simulations (which are applied to predict energy consumption in social housing are validated against actual energy-consumption values. The results demonstrate that this type of household usually lives in surroundings at a temperature below the average thermal comfort level. We have taken into account that a standard thermal comfort level may lead to significant differences between computer-aided energy building simulation and actual consumption data (which are 40–140% lower than simulated consumption. This fact is of integral importance, as we use computer simulation to predict building energy performance in social housing.

  12. Final Report: An Undergraduate Minor in Wind Energy at Iowa State University

    Energy Technology Data Exchange (ETDEWEB)

    James McCalley

    2012-11-14

    This report describes an undergraduate minor program in wind energy that has been developed at Iowa State University. The minor program targets engineering and meteorology students and was developed to provide interested students with focused technical expertise in wind energy science and engineering, to increase their employability and ultimate effectiveness in this growing industry. The report describes the requirements of the minor program and courses that fulfill those requirements. Five new courses directly addressing wind energy have been developed. Topical descriptions for these five courses are provided in this report. Six industry experts in various aspects of wind energy science and engineering reviewed the wind energy minor program and provided detailed comments on the program structure, the content of the courses, and the employability in the wind energy industry of students who complete the program. The general consensus is that the program is well structured, the course content is highly relevant, and students who complete it will be highly employable in the wind energy industry. The detailed comments of the reviewers are included in the report.

  13. SLC summer 2011 university - What energy model for Europe in 2030? Proceedings

    International Nuclear Information System (INIS)

    2011-09-01

    This document brings together the available presentations given at the summer 2011 university of the SLC (save the climate) organization on the topics of the energy model for Europe in 2030. Ten presentations (slides) are compiled in this document and deal with: 1 - The Negatep (France) scenario - extrapolation to Europe (Pierre Bacher, Claude Acket, Gerard Pierre); 2 - Renewable energies, potentialities and constraints (Jean-Louis BAL); 3 - Biomass availability for energy valorizations at the 2050 sights (Henry-Herve Bichat); 4 - Nuclear risk and nuclear safety control (Marie-Pierre Comets, ASN); 5 - The new horizons of nuclear energy (S. David, CNRS/IN2P3, IPN Orsay); 6 - A sustainable low carbon economy? EU Energy Policy in making... 2020... 2050... (Marc Deffrennes, DG ENERGY D2 Euratom Nuclear Energy); 7 - CO 2 capture and sequestration techniques (B. Durand); 8 - Climate change and its timelines (Sylvie Joussaume, CNRS, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE); 9 - The Europe of electricity and the strategic role of grids (Andre Merlin, CIGRE); 10 - How to reduce to 50% the electricity share of nuclear origin? (Herve Nifenecker)

  14. Discrete event simulations for glycolysis pathway and energy balance

    NARCIS (Netherlands)

    Zwieten, van D.A.J.; Rooda, J.E.; Armbruster, H.D.; Nagy, J.D.

    2010-01-01

    In this report, the biological network of the glycolysis pathway has been modeled using discrete event models (DEMs). The most important feature of this pathway is that energy is released. To create a stable steady-state system an energy molecule equilibrating enzyme and metabolic reactions have

  15. Simulation of ultra-high energy photon propagation in the geomagnetic field

    Science.gov (United States)

    Homola, P.; Góra, D.; Heck, D.; Klages, H.; PeĶala, J.; Risse, M.; Wilczyńska, B.; Wilczyński, H.

    2005-12-01

    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. UHE photons can initiate particle cascades in the geomagnetic field, which leads to significant changes in the subsequent atmospheric shower development. We present a Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented. Catalogue identifier:ADWG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG Program obtainable: CPC Program Library, Quen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested:Intel-Pentium based PC Operating system:Linux, DEC-Unix Programming language used:C, FORTRAN 77 Memory required to execute with typical data:Recipes, http://www.nr.com]. Nature of the physical problem:Simulation of a cascade of particles initiated by UHE photon passing through the geomagnetic field above the Earth's atmosphere. Method of solution: The primary photon is tracked until its conversion into ee pair or until it reaches the upper atmosphere. If conversion occurred each individual particle in the resultant preshower is checked for either bremsstrahlung radiation (electrons) or

  16. An innovative simulation tool for waste to energy generation opportunities

    Directory of Open Access Journals (Sweden)

    Bilal Abderezzak

    2017-03-01

    Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.

  17. Observation of universality for high pT distribution at LHC energies

    Science.gov (United States)

    Tabassam, U.; Ali, Y.; Ullah, S.; Ajaz, M.; Ali, Q.; Suleymanov, M.; Bhatti, A. S.; Suleymanov, R.

    We have studied the distributions of the yield of primary charged particles produced in the asymmetric p-Pb collisions at sNN = 5.02TeV for the three pseudorapidity regions: 0.3 Heavy ion jet interaction generator (HIJING) and Ultra relativistic quantum molecular dynamics (UrQMD) models are used to produce simulated data and the results are compared with the CMS and ATLAS data. The comparison of models and data shows the existence of high pT area with boundary values that depend upon pseudorapidity (η). At high pT values, the behavior of the distributions shows some universality, which does not depend upon the models. The reason of the universality could be the string dynamics for the parton hadronization at high pT values.

  18. US Department of Energy Nuclear Energy University program in robotics for advanced reactors: Program plan, FY 1987-1991

    International Nuclear Information System (INIS)

    Mann, R.C.; Gonzalez, R.C.; Tulenko, J.S.; Tesar, D.; Wehe, D.K.

    1987-07-01

    The US Department of Energy has provided support to four universities and the Oak Ridge National Laboratory in order to pursue research leading to the development and deployment of an advanced robotic system capable of performing tasks that are hazardous to humans, that generate significant occupational radiation exposure, and/or whose execution times can be reduced if performed by an automated system. The goal is to develop a generation of advanced robotic systems capable of performing surveillance, maintenance, and repair tasks in nuclear facilities and other hazardous environments. This goal will be achieved through a team effort among the Universities of Florida, Michigan, Tennessee, Texas, and the Oak Ridge National Laboratory, and their industrial partners, Combustion Engineering, Martin Marietta Baltimore Aerospace, Odetics, Remotec, and Telerobotics International. Each of the universities and ORNL have ongoing activities and corresponding facilities in areas of R and D related to robotics. This program is designed to take full advantage of these existing resources at the participating institutions

  19. Sustainable energy for all. Technical report of task force 1 in support of the objective to achieve universal access to modern energy services by 2030

    Energy Technology Data Exchange (ETDEWEB)

    Birol, Fatih [International Energy Agency, Paris (France); Brew-Hammond, Abeeku [University of Science and Technology (Ghana

    2012-04-15

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force One which is dedicated to the objective of achieving universal access to modern energy services by 2030. The report shows that universal energy access can be realized by 2030 with strong, focused actions set within a coordinated framework.

  20. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    Science.gov (United States)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  1. Experimental parameterization of an energy function for the simulation of unfolded proteins

    DEFF Research Database (Denmark)

    Norgaard, A.B.; Ferkinghoff-Borg, Jesper; Lindorff-Larsen, K.

    2008-01-01

    The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and e...... and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.......The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle...

  2. Analytical simulation of the cantilever-type energy harvester

    Directory of Open Access Journals (Sweden)

    Jie Mei

    2016-01-01

    Full Text Available This article describes an analytical model of the cantilever-type energy harvester based on Euler–Bernoulli’s beam theory. Starting from the Hamiltonian form of total energy equation, the bending mode shapes and electromechanical dynamic equations are derived. By solving the constitutive electromechanical dynamic equation, the frequency transfer function of output voltage and power can be obtained. Through a case study of a unimorph piezoelectric energy harvester, this analytical modeling method has been validated by the finite element method.

  3. Universality, maximum radiation, and absorption in high-energy collisions of black holes with spin.

    Science.gov (United States)

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans

    2013-07-26

    We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

  4. Guide to energy R and D programs for universities and other research groups

    International Nuclear Information System (INIS)

    1984-06-01

    The purpose of this guide to provide researchers in universities and other research institutions with summary-level information on the various research and development programs supported by the Department. Collectively, DOE programs support a wide range of research activities - from studies on the fundamental nature of matter and energy to exploratory and advanced research on the development of new technical approaches leading to new energy technologies. The guide summarizes, in one source, basic information on DOE's energy research and development and related programs, interests and needs. It supplies information on current Federal and DOE grant and contract policies and procedures and lists the names of DOE staff, by program area, from whom additional information may be obtained

  5. Final Report for Research in High Energy Physics (University of Hawaii)

    Energy Technology Data Exchange (ETDEWEB)

    Browder, Thomas E.

    2013-08-31

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  6. A simulation for energy dissipation in nuclear reactions

    International Nuclear Information System (INIS)

    Mshelia, E.D.; Ngadda, Y.H.

    1989-01-01

    A model for energy dissipation is presented which demonstrates energy transfer from a collective degree of freedom, represented by free motion, into intrinsic modes, represented by four coupled oscillators. The quantum mechanical probability amplitude for internal excitation is expressed as a multiple integral of a product of translational and intrinsic wavefunctions and exactly solved analytically. Its numerical values as a function of quantities of physical interest have been calculated, represented graphically and discussed. The results show that the probability distributions are peaked. (author)

  7. Simulation of Energy Consumption and Emissions from Rail Traffic

    DEFF Research Database (Denmark)

    Lindgreen, Erik Bjørn Grønning; Sorenson, Spencer C

    . The calculation procedure is evaluated with respect to resolution of operation conditions, and then evaluated by comparison with experimental data for a variety of passenger and goods trains. The results indicate that the energy consumption from modeling approach is valid to better that 10% for known operating...... characteristics. Emissions are calculated from the energy consumption using average fuel based emissions factors and electrical production emissions factors....

  8. Converting campus waste into renewable energy – A case study for the University of Cincinnati

    International Nuclear Information System (INIS)

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C.

    2015-01-01

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m 3 natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO 2 -eq per year, respectively

  9. Converting campus waste into renewable energy – A case study for the University of Cincinnati

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C., E-mail: mcavoydm@ucmail.uc.edu

    2015-05-15

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.

  10. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings

    International Nuclear Information System (INIS)

    2010-09-01

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO 2 problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  11. IMPLEMENTATION APPROACHES DURING SIMULATION OF ENERGY PROCESSES FOR A DYNAMICALLY POSITIONED SHIP

    Directory of Open Access Journals (Sweden)

    V.V. Budashko

    2015-12-01

    Full Text Available Purpose. Creation of a mathematical model of the ship's power plant (SPP combined propulsion complexes (CPC that takes into account the behavior of all objects, including the ship itself, the transfer of power from the medium speed diesel generators on the propellers, which will allow to take into account the hydrodynamic properties of the vessel and their impact on the energy processes in SPP CPC. Methodology. The analysis of energy processes in the SPP CPC in different operating conditions resulted in creation of a strategy for constructing mathematical models of SPP CPC. This strategy is based on the implementation on the vector plane resulting power characteristics of SPP vectors disturbances, leading to the deviation of the hydrodynamic characteristics of the ship during operation dynamic positioning. The result allowed to consider not only the features of setting PID-governors of frequency converters of electric thrusters but the automatic voltage regulators of medium speed diesel generators as well. Results. Within the research work a software package Ships_CPC in MatLab/Simulink was developed under the state budget project «Concepts, technologies and ways of improving ship power plants combined propulsion complexes» at the Department of Electromechanics and Electrical Engineering of Odessa National Maritime Academy. Originality. This complex represents a set of functional blocks of the components SPP CPC, built on the principle of «input-output». The simulation results demonstrate the ability to use software package Ships_CPC to study the effect of various settings on the energy regulators of processes SPP CPC, which can develop and integrate the different strategies of automatic voltage regulators. Practical value. Since software complex Ships_CPC was developed under Open system technology, it can reorganize, re-tune and integrate in processes of any difficulties with further completion in the form of a universal structure.

  12. Test of the universal rise of hadronic total cross sections at super-high energies

    International Nuclear Information System (INIS)

    Ishida, Muneyuki; Igi, Keiji

    2007-01-01

    The increase of the total cross sections at very high energies described by log 2 (s/s 0 ) appears to be confirmed. In the analysis of the COMPETE collaboration in the Particle Data Group (2006), the Blog 2 (s/s 0 ) was assumed to extend the universal rise of all the total hadronic cross sections to reduce the number of adjustable parameters. We test if the assumption on the universality of B is justified, through investigation of the values of B for π ± p(K ± p) and pp,pp scatterings. We search for the simultaneous best fit to the σ tot and ρ ratios, using a constraint from the FESR of the P' type for π -+ p scatterings and constraints that are free from the unphysical regions for the pp, pp and K ± p scatterings. By including rich information of the low-energy scattering data owing to the use of FESR, the errors of the B parameters decrease especially for πp. The resulting value of B pp is consistent with B πp within two standard deviations, which appears to support the universality hypothesis. (orig.)

  13. An example of a DOE [Department of Energy]/university partnership: South Carolina Pilot Center

    International Nuclear Information System (INIS)

    Albenesius, E.L.

    1990-01-01

    A consortium of educational institutions in South Carolina proposed to the U.S. Department of Energy (DOE) in July 1989 a working partnership for mutual improvement of technical capability in the environmental restoration and waste management fields. The institutions forming the consortium are Clemson University, the University of South Carolina, the Medical University of South Carolina, and South Carolina State College. A major component of the partnership is applied research closely coupled with the problems and issues of the Savannah River site regarding demonstration of waste management processes and concepts of disposal and disposal site closure. A primary benefit to DOE from this partnership is expected to be improved public perception of the actions being taken by DOE to protect the public, particularly in areas of environmental restoration and waste management. It is evident at the Savannah River site that this is a key factor in successfully achieving the site's mission. The strength of the interest of the South Carolina institutions in developing initiatives in waste management forecasts a healthy long-term prospect for the partnership. The State of South Carolina has established a hazardous waste research fund of approximately $650 thousand annually for research by the partnership universities to seek better ways to maintain a healthy environment and to reduce, dispose of, or store waste products safely

  14. A Simulation Technique for Three-Dimensional Mechanical Systems Using Universal Software Systems of Analysis

    Directory of Open Access Journals (Sweden)

    V. A. Trudonoshin

    2015-01-01

    Full Text Available The article proposes a technique to develop mathematical models (MM of elements of the three-dimensional (3D mechanical systems for universal simulation software systems that allow us automatically generate the MM of a system based on MM elements and their connections. The technique is based on the MM of 3 D body. Linear and angular velocities are used as the main phase variables (unknown in the MM of the system, linear and angular movements are used as the additional ones, the latter being defined by the normalized quaternions that have computational advantages over turning angles.The paper has considered equations of dynamics, formulas of transition from the global coordinate system to the local one and vice versa. A spherical movable joint is presented as an example of the interaction element between the bodies. The paper shows the MM equivalent circuits of a body and a spherical joint. Such a representation, as the equivalent circuit, automatically enables us to obtain topological equations of the system. Various options to build equations of the joint and advices for their practical use are given.

  15. Assessment and simulation tools for sustainable energy systems theory and applications

    CERN Document Server

    Cavallaro, Fausto

    2013-01-01

    This book covers both simulations using markal model and linear programming (LP) and methods and applications of multi-criteria, fuzzy-sets, algorithm genetics and neural nets (artificial intelligence) to energy systems.

  16. Simulation of soft hadron hadron collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Werner, K.

    1987-01-01

    An event generator to simulate ultrarelativistic hadron hadron collisions is proposed. It is based on the following main assumptions: the process can be divided into two independent steps, string formation and string fragmentation; strings are formed as a consequence of color exchange between a quark of the projectile and a quark of the target; the fragmentation of strings is the same as in e + e - annihilation or in lepton nucleon scattering. 11 refs., 4 figs

  17. Universal scaling relations for the energies of many-electron Hooke atoms

    Science.gov (United States)

    Odriazola, A.; Solanpää, J.; Kylänpää, I.; González, A.; Räsänen, E.

    2017-04-01

    A three-dimensional harmonic oscillator consisting of N ≥2 Coulomb-interacting charged particles, often called a (many-electron) Hooke atom, is a popular model in computational physics for, e.g., semiconductor quantum dots and ultracold ions. Starting from Thomas-Fermi theory, we show that the ground-state energy of such a system satisfies a nontrivial relation: Eg s=ω N4 /3fg s(β N1 /2) , where ω is the oscillator strength, β is the ratio between Coulomb and oscillator characteristic energies, and fg s is a universal function. We perform extensive numerical calculations to verify the applicability of the relation. In addition, we show that the chemical potentials and addition energies also satisfy approximate scaling relations. In all cases, analytic expressions for the universal functions are provided. The results have predictive power in estimating the key ground-state properties of the system in the large-N limit, and can be used in the development of approximative methods in electronic structure theory.

  18. Starting the universe: Stable violation of the null energy condition and non-standard cosmologies

    International Nuclear Information System (INIS)

    Creminelli, P.; Luty, M.A.; Nicolis, A.; Senatore, L.

    2006-06-01

    We present a consistent effective theory that violates the null energy condition (NEC) without developing any instabilities or other pathological features. The model is the ghost condensate with the global shift symmetry softly broken by a potential. We show that this system can drive a cosmological expansion with H-dot > 0. Demanding the absence of instabilities in this model requires H-dot or approx. H 2 . We then construct a general low-energy effective theory that describes scalar fluctuations about an arbitrary FRW background, and argue that the qualitative features found in our model are very general for stable systems that violate the NEC. Violating the NEC allows dramatically non- standard cosmological histories. To illustrate this, we construct an explicit model in which the expansion of our universe originates from an asymptotically flat state in the past, smoothing out the big-bang singularity within control of a low- energy effective theory. This gives an interesting alternative to standard inflation for solving the horizon problem. We also construct models in which the present acceleration has w < -1; a periodic ever-expanding universe; and a model with a smooth 'bounce' connecting a contracting and expanding phase. (author)

  19. Numerical simulation of energy efficiency measures: control and operational strategies

    International Nuclear Information System (INIS)

    Ardehali, M. M.

    2006-01-01

    The inherent limitation in performance of building envelop components and heating ventilating and air conditioning (HVAC) equipment necessitates the examination of operational strategies for improvement in energy-efficient operation of buildings. Due to the ease of installation and increasing availability of electronic controllers, operational strategies that could be programmed are of particular interest. The Iowa Energy Center in the US has taken the initiative to conduct the necessary assessment of current HVAC technology and the commonly-used operational strategies for commercial and industrial buildings, as applied to the midwestern part of the country, with weather and energy cost data for Des Moines, Iowa. The first part of this study focused on the energy consumption and cost effectiveness of HVAC systems. The objectives of the second part is concerned with examination of various operational strategies, namely, night purge (NP), fan optimum start and stop (OSS), condenser water reset (CWR), and chilled water reset (CHWR) applied to order and newer-type commercial office buildings. The indoor air quality requirement are met and the latest applicable energy rates from local utility companies are used. The results show that, in general, NP is not an effective strategy in buildings with low thermal mass storage, OSS reduced fan energy, and CWR and CHWR could be effective and require chillers with multi-stage unloading characteristics. The most operationally efficient strategies are the combination of OSS, CWR, and CHWR for the older-type building, and OSS for the newer-type building. Economically, the most effective is the OSS strategy for the older-type building and the CHWR strategy for the newer-type building.(Author)

  20. Studies of Degree and Postgraduate related to nuclear energy in the Polytechnic University of Valencia

    International Nuclear Information System (INIS)

    Escriva, A.; Munoz-Cobo, J. L.

    2008-01-01

    The postgraduate education in Nuclear engineering in Spain has always been of high quality generating specialists that have been incorporated as professionals of the different areas of the nuclear energy sector. these areas go from the technological, developing high quality engineering works, to the management, running departments and even companies, going through the research, the same in the research centers as in the university. This education, that has gone through different phases with an important variation of alumnae number depending on the situation of the nuclear sector, is nowadays in a moment of change derived from the European convergence process (Bologna) whose final situation is not still defined. This article includes the description of the studies given in two of the Spanish universities with more tradition in nuclear education, including the graduate and post-graduate studies. (Author)

  1. Dark cosmos in search of our universe's missing mass and energy

    CERN Document Server

    Hooper, Dan

    2007-01-01

    Everyone knows that there are things no one can see, for example, the air you're breathing or a black hole, to be more exotic. But not everyone knows that what we can see makes up only 5 percent of the Universe. The rest is totally invisible to us. The invisible stuff comes in two varieties—dark matter and dark energy. One holds the Universe together while the other tears it apart. What these forces really are has been a mystery for as long as anyone has suspected they were there, but the latest discoveries of experimental physics have brought us closer to that knowledge. Particle physicist Dan Hooper takes his readers, with wit, grace, and a keen knack for explaining the toughest ideas science has to offer, on a quest few would ever have expected: to discover what makes up our dark cosmos.

  2. Low-energy universality and scaling of van der Waals forces

    International Nuclear Information System (INIS)

    Calle Cordon, A.; Ruiz Arriola, E.

    2010-01-01

    At long distances, interactions between neutral ground-state atoms can be described by the van der Waals potential. In the ultracold regime, atom-atom scattering is dominated by s-waves phase shifts given by an effective range expansion in terms of the scattering length α 0 and the effective range r 0 . We show that while the scattering length cannot be predicted for these potentials, the effective range is given by the universal low-energy theorem r 0 =A+B/α 0 +C/α 0 2 , where A, B, and C depend on the dispersion coefficients C n and the reduced diatom mass. We confront this formula to about 100 determinations of r 0 and α 0 and show why the result is dominated by the leading dispersion coefficient C 6 . Universality and scaling extend much beyond naive dimensional analysis estimates.

  3. Power in the loop real time simulation platform for renewable energy generation

    Science.gov (United States)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  4. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    Science.gov (United States)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  5. SimProp: a simulation code for ultra high energy cosmic ray propagation

    International Nuclear Information System (INIS)

    Aloisio, R.; Grillo, A.F.; Boncioli, D.; Petrera, S.; Salamida, F.

    2012-01-01

    A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented

  6. Investigating energy deposition within cell populations using Monte Carlo simulations.

    Science.gov (United States)

    Oliver, Patricia A K; Thomson, Rowan M

    2018-06-27

    In this work, we develop multicellular models of healthy and cancerous human soft tissues, which are used to investigate energy deposition in subcellular targets, quantify the microdosimetric spread in a population of cells, and determine how these results depend on model details. Monte Carlo (MC) tissue models combining varying levels of detail on different length scales are developed: microscopically-detailed regions of interest (>1500 explicitly-modelled cells) are embedded in bulk tissue phantoms irradiated by photons (20 keV to 1.25 MeV). Specific energy (z; energy imparted per unit mass) is scored in nuclei and cytoplasm compartments using the EGSnrc user-code egs_chamber; specific energy mean, <z>, standard deviation, σz, and distribution, f(z,D), are calculated for a variety of macroscopic doses, D. MC-calculated f(z,D) are compared with normal distributions having the same mean and standard deviation. For mGy doses, there is considerable variation in energy deposition (microdosimetric spread) throughout a cell population: e.g., for 30 keV photons irradiating melanoma with 7.5 μm cell radius and 3 μm nuclear radius, σz/<z> for nuclear targets is 170%, and the fraction of nuclei receiving no energy deposition, fz=0, is 0.31 for a dose of 10 mGy. If cobalt-60 photons are considered instead, then σz/<z> decreases to 84%, and fz=0 decreases to 0.036. These results correspond to randomly arranged cells with cell/nucleus sizes randomly sampled from a normal distribution with a standard deviation of 1 μm. If cells are arranged in a hexagonal lattice and cell/nucleus sizes are uniform throughout the population, then σz/<z> decreases to 106% and 68% for 30 keV and cobalt-60,respectively; fz=0

  7. Vector theory of gravity: Universe without black holes and solution of dark energy problem

    Science.gov (United States)

    Svidzinsky, Anatoly A.

    2017-12-01

    We propose an alternative theory of gravity which assumes that background geometry of the Universe is fixed four dimensional Euclidean space and gravity is a vector field A k in this space which breaks the Euclidean symmetry. Direction of A k gives the time coordinate, while perpendicular directions are spatial coordinates. Vector gravitational field is coupled to matter universally and minimally through the equivalent metric f ik which is a functional of A k . We show that such assumptions yield a unique theory of gravity, it is free of black holes and, to the best of our knowledge, passes all available tests. For cosmology our theory predicts the same evolution of the Universe as general relativity with cosmological constant and zero spatial curvature. However, the present theory provides explanation of the dark energy as energy of longitudinal gravitational field induced by the Universe expansion and yields, with no free parameters, the value of {{{Ω }}}{{Λ }}=2/3≈ 0.67 which is consistent with the recent Planck result {{{Ω }}}{{Λ }}=0.686+/- 0.02. Such close agreement with cosmological data indicates that gravity has a vector, rather than tensor, origin. We demonstrate that gravitational wave signals measured by LIGO are compatible with vector gravity. They are produced by orbital inspiral of massive neutron stars which can exist in the present theory. We also quantize gravitational field and show that quantum vector gravity is equivalent to QED. Vector gravity can be tested by making more accurate measurement of the time delay of radar signal traveling near the Sun; by improving accuracy of the light deflection experiments; or by measuring propagation direction of gravitational waves relative to laser interferometer arms. Resolving the supermassive object at the center of our Galaxy with VLBA could provide another test of gravity and also shed light on the nature of dark matter.

  8. Water and Energy Consumption at King Abdullah University of Science and Technology

    KAUST Repository

    Wiche Latorre, Pia Alexandra

    2012-05-01

    Saudi Arabia is the greatest exporter of oil in the world and also the country with greatest desalination capacity. It is considered a rich country but not a developed one. Because water is scarce while energy is abundant, it becomes important to evaluate the environmental performance of populations in Saudi Arabia with regards to these two aspects. King Abdullah University of Science and Technology (KAUST) is a gated community in Saudi Arabia with high living standards where water and energy are free of cost (no constraint over use). Four environmental sustainability indicators were used to determine the environmental performance of KAUST in comparison to other countries. It was found that per capita, KAUST is between the five greatest water and energy consumers in the world. Important factors to this result are the fact that KAUST is still under construction, that the peak capacity for permanent residents has not yet been reached and that there is little control over the water and energy systems at KAUST. It was concluded that KAUST should reduce its water and energy consumption per capita. To this means, some proposed solutions were to have wide-spread awareness-raising campaigns to all people working and living in KAUST, and to improve control over air conditioning control systems.

  9. Static Universe model existing due to the matter-dark energy coupling

    International Nuclear Information System (INIS)

    Cabo Bizet, A.; Cabo Montes de Oca, A.

    2007-08-01

    The work investigates a static, isotropic and almost homogeneous Universe containing a real scalar field modeling the Dark-Energy (quintaessence) interacting with pressureless matter. It is argued that the interaction between matter and the Dark Energy, is essential for the very existence of the considered solution. Assuming the possibility that Dark-Energy can be furnished by the Dilaton (a scalar field reflecting the condensation of string states with zero angular momentum) we fix the value of scalar field at the origin to the Planck scale. It became possible to fix the ratio of the amount of Dark Energy to matter energy, in the currently estimated value (0.7)/0.3 and also the observed magnitude of the Hubble constant. The small value of the mass for the scalar field chosen for fixing the above ratio and Hubble effect strength, results to be of the order of 10 -29 cm -1 , a small value which seems to be compatible with the zero mass of the Dilaton in the lowest approximations. (author)

  10. A framework for simulation and control of hybrid energy networks

    NARCIS (Netherlands)

    Geysen, D.; Booij, P.S.; Warmer, C.

    2014-01-01

    For the built environment it is envisaged that in the next decades the total annual energy demand, both thermal and electric, could be covered by renewable sources generated within the built environment. An increasing number of thermoelectric elements, such as heat pumps and thermal storage, will

  11. Simulation of indoor environment in low energy housing

    DEFF Research Database (Denmark)

    Vagiannis, Georgios; Knudsen, Henrik N.; Toftum, Jørn

    2012-01-01

    was selected and sensitivity analyses were conducted for the importance of occupancy, ventilation, window opening, and heat recovery efficiency. In particular occupancy and venting played significant roles for the indoor environment and energy consumption. It was also shown that with passive measures, but also...

  12. Aiding Design of Wave Energy Converters via Computational Simulations

    Science.gov (United States)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  13. Achieving informed decision-making for net zero energy buildings design using building performance simulation tools

    NARCIS (Netherlands)

    Attia, S.G.; Gratia, E.; De Herde, A.; Hensen, J.L.M.

    2013-01-01

    Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the

  14. Environmental Systems Simulations for Carbon, Energy, Nitrogen, Water, and Watersheds: Design Principles and Pilot Testing

    NARCIS (Netherlands)

    Lant, C.; Pérez Lapena, B.; Xiong, W.; Kraft, S.; Kowalchuk, R.; Blair, M.

    2016-01-01

    Guided by the Next Generation Science Standards and elements of problem-based learning, four human-environment systems simulations are described in brief—carbon, energy, water, and watershed—and a fifth simulation on nitrogen is described in more depth. These science, technology, engineering, and

  15. Dynamic Evaluation of the Energy Efficiency of Environments in Brazilian University Classrooms Using DEA

    Directory of Open Access Journals (Sweden)

    Samuel de Alencar Bezerra

    2017-12-01

    Full Text Available This paper presents an experience applied to a public university campus using Data Envelopment Analysis (DEA to evaluate and improve the energy efficiency of the indoor spaces of the buildings within the limits of the Federal University of Piauí, considering the lighting (installed power and luminous flux and air conditioning (absorbed electric power and cooling capacity input/output variables. Using Brazilian energy efficiency evaluation methods, a comparison was made between DEA and Brazilian standards, with the goal of examining DEA’s performance and feasibility in efficiency improvement. The results revealed that all of the analyzed university classrooms were inefficient, which is coherent with the classification obtained by applying Brazilian standards; the calculated efficiency scores for these rooms varied from 0.7182 to 0.8477, a 0.7848 average. The DEA model, while operating in lighting and air conditioning systems, achieved a reduction of installed power of 43.5% and 22.7%, respectively, totaling a decrease of 25.6%, being able to maintain the standard characteristics of the systems mentioned. According to the DEA models, it was found that the generated targets effectively improved the efficiency of lighting and air-conditioning systems, reducing excessive inputs such as air conditioners’ consumption and increasing deficient outputs such as luminous flux. It is possible to expand this successful application in the layout of the building in the whole campus area to concept small smart city projects; both have been achieved in the public buildings of the administrative body. Results from this paper revealed DEA’s potential in assessing and optimizing the energy efficiency of buildings, improving their sustainability indexes, acting as a tool to support decision-making and benchmarking.

  16. Two-dimensional simulation of the gravitational system dynamics and formation of the large-scale structure of the universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.

    1980-01-01

    The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)

  17. Conference: Probing the warped side of our Universe with gravitational waves and computer simulations | 16 September | Uni Dufour

    CERN Multimedia

    2016-01-01

    Probing the warped side of our Universe with gravitational waves and computer simulations, by Kip Thorne, recipient of the Tomalla Prize for Gravity 2016.   "Probing the warped side of our Universe with gravitational waves and computer simulations" Uni Dufour - Auditorium U300 Friday, 16 September at 6 p.m.   Kip Thorne. (Photo: ©Jon Rou) Abstract: A half century ago, John Wheeler challenged his students and colleagues to explore Geometrodynamics: the nonlinear dynamics of curved spacetime. How does the curvature of spacetime behave when roiled in a storm, like a storm at sea with crashing waves. We tried to explore this, and failed. Success eluded us until two new tools became available: computer simulations, and gravitational wave observations. Thorne will describe what these have begun to teach us, and he will offer a vision for the future of Geometrodynamics.

  18. A novel method for energy harvesting simulation based on scenario generation

    Science.gov (United States)

    Wang, Zhe; Li, Taoshen; Xiao, Nan; Ye, Jin; Wu, Min

    2018-06-01

    Energy harvesting network (EHN) is a new form of computer networks. It converts ambient energy into usable electric energy and supply the electrical energy as a primary or secondary power source to the communication devices. However, most of the EHN uses the analytical probability distribution function to describe the energy harvesting process, which cannot accurately identify the actual situation for the lack of authenticity. We propose an EHN simulation method based on scenario generation in this paper. Firstly, instead of setting a probability distribution in advance, it uses optimal scenario reduction technology to generate representative scenarios in single period based on the historical data of the harvested energy. Secondly, it uses homogeneous simulated annealing algorithm to generate optimal daily energy harvesting scenario sequences to get a more accurate simulation of the random characteristics of the energy harvesting network. Then taking the actual wind power data as an example, the accuracy and stability of the method are verified by comparing with the real data. Finally, we cite an instance to optimize the network throughput, which indicate the feasibility and effectiveness of the method we proposed from the optimal solution and data analysis in energy harvesting simulation.

  19. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    Science.gov (United States)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  1. User's manual for computer code SOLTES-1 (simulator of large thermal energy systems)

    International Nuclear Information System (INIS)

    Fewell, M.E.; Grandjean, N.R.; Dunn, J.C.; Edenburn, M.W.

    1978-09-01

    SOLTES simulates the steady-state response of thermal energy systems to time-varying data such as weather and loads. Thermal energy system models of both simple and complex systems can easily be modularly constructed from a library of routines. These routines mathematically model solar collectors, pumps, switches, thermal energy storage, thermal boilers, auxiliary boilers, heat exchangers, extraction turbines, extraction turbine/generators, condensers, regenerative heaters, air conditioners, heating and cooling of buildings, process vapor, etc.; SOLTES also allows user-supplied routines. The analyst need only specify fluid names to obtain readout of property data for heat-transfer fluids and constants that characterize power-cycle working fluids from a fluid property data bank. A load management capability allows SOLTES to simulate total energy systems that simultaneously follow heat and power loads and demands. Generalized energy accounting is available, and values for system performance parameters may be automatically determined by SOLTES. Because of its modularity and flexibility, SOLTES can be used to simulate a wide variety of thermal energy systems such as solar power/total energy, fossil fuel power plants/total energy, nuclear power plants/total energy, solar energy heating and cooling, geothermal energy, and solar hot water heaters

  2. Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations.

    Science.gov (United States)

    König, Gerhard; Brooks, Bernard R

    2015-05-01

    Free energy simulations are an important tool in the arsenal of computational biophysics, allowing the calculation of thermodynamic properties of binding or enzymatic reactions. This paper introduces methods to increase the accuracy and precision of free energy calculations by calculating the free energy costs of constraints during post-processing. The primary purpose of employing constraints for these free energy methods is to increase the phase space overlap between ensembles, which is required for accuracy and convergence. The free energy costs of applying or removing constraints are calculated as additional explicit steps in the free energy cycle. The new techniques focus on hard degrees of freedom and use both gradients and Hessian estimation. Enthalpy, vibrational entropy, and Jacobian free energy terms are considered. We demonstrate the utility of this method with simple classical systems involving harmonic and anharmonic oscillators, four-atomic benchmark systems, an alchemical mutation of ethane to methanol, and free energy simulations between alanine and serine. The errors for the analytical test cases are all below 0.0007kcal/mol, and the accuracy of the free energy results of ethane to methanol is improved from 0.15 to 0.04kcal/mol. For the alanine to serine case, the phase space overlaps of the unconstrained simulations range between 0.15 and 0.9%. The introduction of constraints increases the overlap up to 2.05%. On average, the overlap increases by 94% relative to the unconstrained value and precision is doubled. The approach reduces errors arising from constraints by about an order of magnitude. Free energy simulations benefit from the use of constraints through enhanced convergence and higher precision. The primary utility of this approach is to calculate free energies for systems with disparate energy surfaces and bonded terms, especially in multi-scale molecular mechanics/quantum mechanics simulations. This article is part of a Special Issue

  3. Interacting entropy-corrected new agegraphic dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Sorouri, Arash, E-mail: KKarami@uok.ac.i [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2010-08-15

    Here, we consider the entropy-corrected version of the new agegraphic dark energy (NADE) model in the non-flat Friedmann-Robertson-Walker universe. We derive the exact differential equation that determines the evolution of the entropy-corrected NADE density parameter in the presence of interaction with dark matter. We also obtain the equation of state and deceleration parameters and present a necessary condition for the selected model to cross the phantom divide. Moreover, we reconstruct the potential and the dynamics of the phantom scalar field according to the evolutionary behavior of the interacting entropy-corrected new agegraphic model.

  4. Universal law for the increase of hadronic cross sections at high energies

    International Nuclear Information System (INIS)

    Barut, A.O.; Boukraa, S.

    1987-01-01

    We show that all known total cross sections can be well described by a simple universal formula σ/sub tot/ = σ 0 +A/s/sup 1/2/+0.388 ln 2 (s/44.44) mb (s in GeV 2 ). The constant σ 0 is the same for the reactions ab and a-barb. A number of further predictions are given, and a dynamical model for the high-energy logarithmic increase is suggested. The second term is due to exchange processes

  5. Support of experimental high energy physics research at the University of South Carolina, 1992--1994

    International Nuclear Information System (INIS)

    Purohit, M.V.; Rosenfeld, C.; Wilson, J.R.

    1997-01-01

    This brief report summarizes the activities of the University of South Carolina's high energy physics group during the three-year period of DE-FG02-92ER40719. The activities of the group began in 1980 under a predecessor grant from DOE, and continue today under a successor grant. The retirements of one grant in favor of another were for reasons of administrative convenience or necessity. The characterization of the report as open-quotes finalclose quotes is not reflective of the group's projects, which by-and-large continue with support from the successor grant

  6. The University of Rochester Atomic Energy Project quarterly report, April 1, 1950--June 30, 1950

    Energy Technology Data Exchange (ETDEWEB)

    Blair, H.A.

    1950-12-31

    This quarterly progress report gives an overview of the University of Rochester Atomic Energy Project for April 1, 1950 thru June 30, 1950. Sections included are entitled (1) Biological Effects of External Radiation (X-rays and gamma rays), (2) Biological Effects of External Radiation (Infra-red and ultraviolet), (3) Biological effects of radioactive materials (polonium, radon, thoron, and miscellaneous project materials), (4) Uranium, (5) Beryllium, (7) thorium, (8) fluoride, (9) zirconium, (10) special materials, (11) Isotopes, (12) Outside services, (12) Project health, (13) Health physics, (14) Special Clinical Service, and (15) Instrumentation (Spectroscopy, electron microscopy, x-ray and nuclear radiation detectors, x-ray diffraction, and electronics).

  7. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    Science.gov (United States)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  8. Introducing renewable energy and industrial restructuring to reduce GHG emission: Application of a dynamic simulation model

    International Nuclear Information System (INIS)

    Song, Junnian; Yang, Wei; Higano, Yoshiro; Wang, Xian’en

    2015-01-01

    Highlights: • Renewable energy development is expanded and introduced into socioeconomic activities. • A dynamic optimization simulation model is developed based on input–output approach. • Regional economic, energy and environmental impacts are assessed dynamically. • Industrial and energy structure is adjusted optimally for GHG emission reduction. - Abstract: Specifying the renewable energy development as new energy industries to be newly introduced into current socioeconomic activities, this study develops a dynamic simulation model with input–output approach to make comprehensive assessment of the impacts on economic development, energy consumption and GHG emission under distinct levels of GHG emission constraints involving targeted GHG emission reduction policies (ERPs) and industrial restructuring. The model is applied to Jilin City to conduct 16 terms of dynamic simulation work with GRP as objective function subject to mass, value and energy balances aided by the extended input–output table with renewable energy industries introduced. Simulation results indicate that achievement of GHG emission reduction target is contributed by renewable energy industries, ERPs and industrial restructuring collectively, which reshape the terminal energy consumption structure with a larger proportion of renewable energy. Wind power, hydropower and biomass combustion power industries account for more in the power generation structure implying better industrial prospects. Mining, chemical, petroleum processing, non-metal, metal and thermal power industries are major targets for industrial restructuring. This method is crucial for understanding the role of renewable energy development in GHG mitigation efforts and other energy-related planning settings, allowing to explore the optimal level for relationships among all socioeconomic activities and facilitate to simultaneous pursuit of economic development, energy utilization and environmental preservation

  9. Energy deposition by a {sup 106}Ru/{sup 106}Rh eye applicator simulated using LEPTS, a low-energy particle track simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense, 28040 Madrid (Spain); Williart, A. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica (Portugal); Borge, M.J.G.; Tengblad, O. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G., E-mail: g.garcia@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid (Spain); Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040 Madrid (Spain)

    2011-09-15

    The present study introduces LEPTS, an event-by-event Monte Carlo programme, for simulating an ophthalmic {sup 106}Ru/{sup 106}Rh applicator relevant in brachytherapy of ocular tumours. The distinctive characteristics of this code are the underlying radiation-matter interaction models that distinguish elastic and several kinds of inelastic collisions, as well as the use of mostly experimental input data. Special emphasis is placed on the treatment of low-energy electrons for generally being responsible for the deposition of a large portion of the total energy imparted to matter. - Highlights: > We present the Monte Carlo code LEPTS, a low-energy particle track simulation. > Carefully selected input data from 10 keV to 1 eV. > Application to an electron emitting Ru-106/Rh-106 plaque used in brachytherapy.

  10. Development of a two-dimensional simulation code (koad) including atomic processes for beam direct energy conversion

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.

    1987-01-01

    A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code

  11. Opportunities for Fundamental University-Based Research in Energy and Resource Recovery

    Science.gov (United States)

    Zoback, M. D.; Hitzman, M.; Tester, J. W.

    2012-12-01

    In this talk we present, from a university perspective, a few examples of fundamental research needs related to improved energy and resource recovery. One example of such a research need is related to the fact that it is not widely recognized that meeting domestic and worldwide energy needs with renewables such as wind and solar will be materials intensive. If widely deployed, the elements required by renewable technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. Unfortunately, there is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology in the context of securing sufficient energy critical elements to undertake large-scale renewable energy development. Another option for transitioning away from our current hydrocarbon-based energy system to non-carbon based sources, is geothermal energy - from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in ground source heat pumps, most of the emphasis in the US has been generating electricity. To this end, there is a need for research, development and demonstration in five important areas - estimating the magnitude and distribution of recoverable geothermal resources, establishing requirements for extracting and utilizing energy from EGS reservoirs the including drilling, reservoir design and stimulation, exploring end use options for district heating, electricity generation and co

  12. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 17. Development of Education Programs at Indonesian Universities

    Energy Technology Data Exchange (ETDEWEB)

    Wijnker, M. [Eindhoven University of Technology TUE, Eindhoven (Netherlands)

    2011-08-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. All five Indonesian partner universities managed to develop and implement an education program within the timeline of the CASINDO project. UMY (Muhammadiyah University of Yogyakarta, Indonesia), UNRAM (University of Mataram, Mataram, Indonesia) and UNCEN (Cenderawasih University, Jayapura, Papua, Indonesia) have chosen to develop a certificate program. UNDIP (Diponegoro University in Semarang, Java, Indonesia) and USU (University of Sumatra Utara, Medan, Indonesia) have both developed a master program in sustainable energy. UNDIP has already discussed the proposal of their master program with the Ministry of Education and will have to make some improvements. USU will first start the program as a specialisation within the Mechanical Engineering department and in some time continues to make it an independent master program. At all universities both contact persons and lecturers have put a lot of effort in developing the programs and succeeded. Additionally, through CASINDO a network of lecturers between the universities has developed, which will ease future cooperation, after the CASINDO project will have finished.

  13. Serious simulation game development for energy transition education using integrated framework game design

    Science.gov (United States)

    Destyanto, A. R.; Putri, O. A.; Hidayatno, A.

    2017-11-01

    Due to the advantages that serious simulation game offered, many areas of studies, including energy, have used serious simulation games as their instruments. However, serious simulation games in the field of energy transition still have few attentions. In this study, serious simulation game is developed and tested as the activity of public education about energy transition which is a conversion from oil to natural gas program. The aim of the game development is to create understanding and awareness about the importance of energy transition for society in accelerating the process of energy transition in Indonesia since 1987 the energy transition program has not achieved the conversion target yet due to the lack of education about energy transition for society. Developed as a digital serious simulation game following the framework of integrated game design, the Transergy game has been tested to 15 users and then analysed. The result of verification and validation of the game shows that Transergy gives significance to the users for understanding and triggering the needs of oil to natural gas conversion.

  14. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, KIRAMS, Seoul (Korea, Republic of); Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol [Jeonbuk Department of Inhalation Research, Korea Institute of toxicology, KRICT, Jeongeup (Korea, Republic of)

    2016-12-15

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  15. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin; Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol

    2016-01-01

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  16. TAUOLA for simulation of tau decay and production: perspectives for precision low energy and LHC applications

    International Nuclear Information System (INIS)

    Was, Z.

    2011-01-01

    The status of Monte Carlo system for the simulation of τ-lepton production and decay in high-energy accelerator experiments is reviewed. Since the previous τ-lepton conference in 2008 some practical modifications have been introduced: (i) For the TAUOLA Monte Carlo generator of τ-lepton decays, automated and simultaneous use of many versions of form-factors for the calculation of optional weights for fits was developed and checked to work in the Belle and BaBar software environment. Work on alternative parametrizations of hadronic decays is advanced. (ii) the TAUOLA universal interface based on HepMC (the C++ event record) is now public. A similar interface for PHOTOS is now also public. (iii) Extension of the PHOTOS Monte Carlo for QED bremsstrahlung in decays featuring kernels based on complete first order matrix element are gradually becoming widely available thanks to properties of the new, HepMC based interface. (iv) Systematic tests of the programs with the help of MC-TESTER are now available for FORTRAN and C++ users. The results presented here illustrate the status of the projects performed in collaboration with Nadia Davidson, Piotr Golonka, Gizo Nanava, Tomasz Przedzinski, Olga Shekhovtsova, Elzbieta Richter-Was, Pablo Roig, Qingjun Xu and others.

  17. Final performance report to the Department of Energy by Prairie View A ampersand M University High Energy Physics

    International Nuclear Information System (INIS)

    Judd, D.J.

    1992-01-01

    The High Energy Physics (HEP) group at Prairie View A ampersand M University is a collaboratory with Fermi National Accelerator Laboratory (Fermilab), and the universities listed below. The purpose of this collaboration is to contribute to the understanding of heavy quark hadroproduction. Our efforts began in the early 1980's at Fermilab with the study of the charmonium states, J/ψ and χ, (DE-FG-86ER-40297) and presently with the continued studies of the charmonium system and direct photon production (Fermilab experiment E705) and new studies on bottom production (Fermilab experiment E771) in the High Intensity Laboratory (Proton-West Area) of Fermilab. The Prairie View group will, as a part of their task, be directly responsible for a major part of the PWC system upgrade by developing the electronics for the readouts of the PWC pad chambers. Six in all, these chambers, are a part of new multilevel triggering scheme and represents a departure from the triggering methodology of the previous trigger processors in earlier experiments. The Prairie View group is also involved with the Bottom Collider Detector (BCD) Collaboration which is proposing to study bottom production at the Fermilab Collider and at the Superconducting Super Collider (SSC)

  18. Universal transport characteristics of multiple topological superconducting wires with large charging energy

    Energy Technology Data Exchange (ETDEWEB)

    Kashuba, Oleksiy; Trauzettel, Bjoern [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Timm, Carsten [Institut fuer Theoretische Physik, TU Dresden, 01062 Dresden (Germany)

    2016-07-01

    The system with multiple Majorana states coupled to the normal lead can potentially support the interaction between Majorana fermions and electrons. Such system can be implemented by several floating topological superconducting wires with large charging energy asymmetrically coupled to two normal leads. The analysis of the renormalization flow shows that there is a single fixed point - the strong coupling limit of isotropic antiferromagnetic Kondo model. The topological Kondo-like interaction leads also to the selective renormalization of the tunneling coefficients, strongly enhancing one component and suppressing others. Thus, charging energy crucially changes the transport properties of the system leading to the universal single-channel conductance independently from the values of the initial leads-wires coupling.

  19. Indiana University high-energy physics group. Technical progress report, December 1, 1982-October 31, 1983

    International Nuclear Information System (INIS)

    Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Heinz, R.M.; Martin, H.J.; Ogren, H.O.

    1983-01-01

    The Indiana University High-Energy Physics Group has been actively involved in a variety of research programs during the current contract period. These programs are associated with major experiments conducted by our group at SLAC, Fermilab, Brookhaven and CERN. The physics areas under investigation include studies of psi meson production in hadron interactions (CERN WA-11), a study of low-p/sub t/ and high-p/sub t/ collisions utilizing the Multiparticle Spectrometer at Fermilab (E110/557/672), a glueball search (Brookhaven E771), and a high resolution study of e + e - interactions at high energy at SLAC (PEP HRS experiment). The status of the various efforts are discussed

  20. Quadratic interaction effect on the dark energy density in the universe

    International Nuclear Information System (INIS)

    Deveci, Derya G; Aydiner, Ekrem

    2017-01-01

    In this study, we deal with the holographic model of interacting dark components of dark energy and dark matter quadratic case of the equation of state parameter (EoS). The effective equations of states for the interacting holographic energy density are derived and the results are analyzed and compared with the solution of the linear form in the literature. The result of our work shows that the value of interaction term between dark components affects the fixed points at far future in the DE-dominated universe in the case of quadratic EoS parameter; it is a different result from the linear case in the theoretical results in the literature, and as the Quintom scenario the equations of state had coincidence at the cosmological constant boundary of –1 from above to below. (paper)