WorldWideScience

Sample records for energy technology lab

  1. Congress moves to reorganize Department of Energy labs

    International Nuclear Information System (INIS)

    Hanson, D.J.

    1993-01-01

    Two bills that would transform the missions and practices of the Department of Energy's research laboratories are moving forward in both branches of Congress. Each of the two is crafted to improve cooperative research between DOE and private industry, but the House bill goes further by making fundamental changes in lab administration. H.R. 1432 provides a clear statement of purpose for the labs. The eight missions outlined in the bill are as follows: Enhance the nation's understanding of energy production and use, with a goal of reducing reliance on imported sources of fuels; Advance nuclear science and technology for national security purposes; Assist with dismantlement of nuclear weapons and work to curb nuclear arms proliferation; Conduct fundamental research in energy-related science and technology; Assist in development of technologies for disposal of hazardous wastes, particularly nuclear waste; Work with private industry to develop generic green technologies; Conduct technology-transfer activities; and Work to improve the quality of science, math, and engineering education in the U.S

  2. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  3. Technology Roadmap: Lab-on-a-Chip

    OpenAIRE

    Pattharaporn Suntharasaj; Tugrul U Daim

    2010-01-01

    With the integration of microfluidic and MEMS technologies, biochips such as the lab-on-a-chip (LOC) devices are at the brink of revolutionizing the medical disease diagnostics industries. Remarkable advancements in the biochips industry are making products resembling Star Trek.s "tricorder" and handheld medical scanners a reality. Soon, doctors can screen for cancer at the molecular level without costly and cumbersome equipments, and discuss treatment plans based on immediate lab results. Th...

  4. The History of Science and Technology at Bell Labs

    Science.gov (United States)

    Bishop, David

    2008-03-01

    Over the last 80 years, Bell Labs has been one of the most scientifically and technologically productive research labs in the world. Inventions such as the transistor, laser, cell phone, solar cell, negative feedback amplifier, communications satellite and many others were made there. Scientific breakthroughs such as discovery of the Big Bang, the wave nature of the electron, electron localization and the fractional quantum hall effect were also made there making Bell Labs almost unique in terms of large impacts in both science and technology. In my talk, I will discuss the history of the lab, talk about the present and give some suggestions for how I see it evolving into the future.

  5. Living labs an arena for development and testing Ambient Assisted living technology

    DEFF Research Database (Denmark)

    Lassen, Anna Marie; Bangshaab, Jette

    everyday activities. Conclusion: Based on staff and end user interviews, the study were able to conclude that independence is the main motivation for using AAL-technology. Application to Practice: The results are now used at the municipality level in several areas. The project has provided a more user......Background: This gives an example of Living labs as an arena for development/testing Ambient Assisted Living technology (AAL-technology). The selected Living lab is part of an EU-supported development project in collaboration with practice and concerns a Living lab that has developed...... an implementation model for an AAL-technology – toilets with douche and drying. (2) Method: The study involves Living lab as location for technology development/testing as well as user-driven approaches to obtain initial data. (1) Moreover, the study is based on process interviews, qualitative research interviews...

  6. Solar Energy Technologies Program Newsletter - Fourth Quarter 2009

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Program

    2009-12-31

    The Fourth Quarter 2009 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  7. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    OpenAIRE

    Jaime Irurzun; Olga Dziabenko; Pablo Orduña; Diego Lopez-de-Ipiña; Ignacio Angulo; Javier García-Zubia; Unai Hernandez-Jayo

    2010-01-01

    Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  8. Outreach Science Education: Evidence-Based Studies in a Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2014-01-01

    Nowadays, outreach labs are important informal learning environments in science education. After summarizing research to goals outreach labs focus on, we describe our evidence-based gene technology lab as a model of a research-driven outreach program. Evaluation-based optimizations of hands-on teaching based on cognitive load theory (additional…

  9. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    Directory of Open Access Journals (Sweden)

    Jaime Irurzun

    2010-09-01

    Full Text Available Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  10. A visual dashboard for moving health technologies from "lab to village".

    Science.gov (United States)

    Masum, Hassan; Singer, Peter A

    2007-10-22

    New technologies are an important way of addressing global health challenges and human development. However, the road for new technologies from "lab to village" is neither simple nor straightforward. Until recently, there has been no conceptual framework for analyzing and addressing the myriad forces and issues involved in moving health technologies from the lab to those who need them. Recently, based on empirical research, we published such a model. In this paper, we focus on extending the model into a dashboard and examine how this dashboard can be used to manage the information related to the path from lab to village. The next step will be for groups interested in global health, and even the public via the Internet, to use the tool to help guide technologies down this tricky path to improve global health and foster human development.

  11. NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem

    Science.gov (United States)

    Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

    2011-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

  12. German lab wins linear collider contest

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    Particle physicists have chosen to base the proposed International Linear Collider on superconducting technology developed by an international collaboration centred on the DESY lab in Germany. The superconducting approach was chosen by an internatinal panel ahead of a rival technology developed at Stanford in the US and the KEK lab in Japan. The eagerly-awaited decision was announced at the International Conference on High Energy Physics in Beijing today (½ page)

  13. Software Energy Footprint Lab (SEFlab). Towards the use of energy efficient software applications; Software Energy Footprint Lab (SEFlab). Naar toepassing van energiezuinige softwareapplicaties

    Energy Technology Data Exchange (ETDEWEB)

    Merkus, B.; Hoekstra, E.; Van den Hoed, R. [Hogeschool van Amsterdam HvA, Amsterdam (Netherlands)

    2012-12-15

    The Energy Footprint Software Lab (SEFLab) allows researchers to give a detailed overview of the energy consumption of the hardware and software with a combination of advanced techniques in a controlled environment. The project comprised four main activities: (1) professionalization of measurement setup and test protocol; (2) Concrete calculation of two software applications as case studies; (3) an (internal) stakeholder analysis; and (4) dissemination of results [Dutch] Het Software Energy Footprint Lab (SEFLab) stelt onderzoekers in staat met een combinatie van geavanceerde technieken in een gecontroleerde omgeving een gedetailleerd beeld van het energieverbruik van de hardware n.a.v. software-gebruik te meten. Binnen het project stonden vier activiteiten centraal: (1) professionalisering van meetopstelling en testprotocol; (2) concrete doorrekening van twee softwareapplicaties als cases; (3) een (interne) stakeholder-analyse; en (4) disseminatie van resultaten.

  14. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new

  15. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  16. Providing Learning Computing Labs using Hosting and Virtualization Technologies

    Directory of Open Access Journals (Sweden)

    Armide González

    2011-05-01

    Full Text Available This paper presents a computing hosting system to provide virtual computing laboratories for learning activities. This system is based on hosting and virtualization technologies. All the components used in its development are free software tools. The computing lab model provided by the system is a more sustainable and scalable alternative than the traditional academic computing lab, and it requires lower costs of installation and operation.

  17. Reducing radiation exposure in an electrophysiology lab with introduction of newer fluoroscopic technology

    Directory of Open Access Journals (Sweden)

    Munish Sharma

    2017-09-01

    Full Text Available The use of fluoroscopic devices exposes patients and operators to harmful effects of ionizing radiation in an electrophysiology (EP lab. We sought to know if the newer fluoroscopic technology (Allura Clarity installed in a hybrid EP helps to reduce prescribed radiation dose. We performed radiation dose analysis of 90 patients who underwent various procedures in the EP lab at a community teaching hospital after the introduction of newer fluoroscopic technology in June of 2016.Watchman device insertion, radiofrequency ablation procedures, permanent pacemaker (PPM/implantable cardioverter defibrillator (ICD placement and battery changes were included in the study to compare radiation exposure during different procedures performed commonly in an EP lab. In all cases of watchman device placement, radiofrequency ablation procedures, PPM/ICD placement and battery changes, there was a statistically significant difference (<0.05 in radiation dose exposure. Significant reduction in radiation exposure during various procedures performed in an EP lab was achieved with aid of newer fluoroscopic technology and better image detection technology.

  18. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  19. DOE EiR at Oakridge National Lab 2008/09

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Michael

    2012-11-30

    This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOE's premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting in five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however it's performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.

  20. Revisiting lab-on-a-chip technology for drug discovery.

    Science.gov (United States)

    Neuži, Pavel; Giselbrecht, Stefan; Länge, Kerstin; Huang, Tony Jun; Manz, Andreas

    2012-08-01

    The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.

  1. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2014-01-01

    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  2. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics.

    Science.gov (United States)

    Erickson, David; O'Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh

    2014-09-07

    The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260 M active smartphones in the US and millions of health accessories and software "apps" running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings.

  3. The Lab of the Future: Using Technology to Teach Foreign Language.

    Science.gov (United States)

    Underwood, John H.

    1993-01-01

    Describes the role of technology in teaching foreign languages. Offers a brief history of language lab technologies, including computer use for drill-and-practice, text reconstruction, and simulations and games. Discusses tool programs, intelligent systems, video technology, satellite television, videodisc and interactive video, hypertext and…

  4. Lab on a chip technologies for algae detection : a review

    NARCIS (Netherlands)

    Schaap, A.M.; Rohrlack, T.; Bellouard, Y.J.

    2012-01-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae

  5. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics

    Science.gov (United States)

    Erickson, David; O’Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh

    2014-01-01

    The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260M active smartphones in the US and millions of health accessories and software “apps” running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings. PMID:24700127

  6. The GreenLab Research Facility: A Micro-Grid Integrating Production, Consumption and Storage of Clean Energy

    Science.gov (United States)

    McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.

    2012-01-01

    There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility

  7. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region

    International Nuclear Information System (INIS)

    Sato, Yohei; Terauchi, Masami; Mukai, Masaki; Kaneyama, Toshikatsu; Adachi, Kenji

    2011-01-01

    The dielectric properties of LaB 6 crystals and the plasmonic behavior of LaB 6 nanoparticles, which have been applied to solar heat-shielding filters, were studied by high energy-resolution electron energy-loss spectroscopy (HR-EELS). An EELS spectrum of a LaB 6 crystal showed a peak at 2.0 eV, which was attributed to volume plasmon excitation of carrier electrons. EELS spectra of single LaB 6 nanoparticles showed peaks at 1.1-1.4 eV depending on the dielectric effect from the substrates. The peaks were assigned to dipole oscillation excitations. These peak energies almost coincided with the peak energy of optical absorption of a heat-shielding filter with LaB 6 nanoparticles. On the other hand, those energies were a smaller than a dipole oscillation energy predicted using the dielectric function of bulk LaB 6 crystal. It is suggested that the lower energy than expected is due to an excitation at 1.2 eV, which was observed for oxidized LaB 6 area. -- Highlights: → The dielectric properties of LaB 6 nanoparticles applied to solar heat-shielding filters were studied by HR-EELS. → Plasmon peak energies of the LaB 6 nanoparticles were almost equal to optical absorption energy of a heat-shielding filter. → From this result, near-infrared optical absorption of the filter is due to the surface dipole mode of the nanoparticles.

  8. Usage of DNA Fingerprinting Technology for Quality Control in Molecular Lab Bench Work.

    Science.gov (United States)

    McIntosh, Linda Y; Lal, Janella E; Qin, Dahui

    2018-01-01

    One of the major quality assurance (QA) goals in many molecular laboratories is to avoid sample pipetting errors on the lab bench; especially when pipetting into multiwell plates. A pipetting error can cause a switch in patient samples, which can lead to recording the wrong results for the patient samples involved. Such pipetting errors are difficult to identify when it happens in lab bench work. DNA fingerprinting is a powerful tool in determining sample identities. Our laboratory has explored the usage of this technology in our QA process and successfully established that DNA fingerprinting can be used to monitor possible sample switch in gene rearrangement lab bench work. We use florescent light to quench the florescence in the gene rearrangement polymerase chain reaction products. After that, DNA fingerprinting technology is used to identify the sample DNA in the gene rearrangement polymerase chain reaction plate. The result is compared with the corresponding patient's blood sample DNA to determine whether there is a sample switch during the lab bench work.

  9. Energy technologies at Sandia National Laboratories: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  10. Using collaborative technologies in remote lab delivery systems for topics in automation

    Science.gov (United States)

    Ashby, Joe E.

    Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative

  11. Designing inquiry learning spaces for online labs in the Go-Lab platform

    NARCIS (Netherlands)

    de Jong, Ton; Gillet, Dennis; Sotiriou, Sofoklis; Agogi, Ellinogermaniki; Zacharia, Zacharias

    2015-01-01

    The Go-Lab project (http://www.go-lab-project.eu/) aims to enable the integration of online labs through inquiry-based learning approaches into science classrooms. Through the use of an advanced plug and play technological solution the Go-Lab project opens up remote science laboratories, data

  12. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  13. Dissemination of information about the technologies of the Vision Research Lab through the World Wide Web

    Science.gov (United States)

    Dorais, Christopher M.

    2004-01-01

    The Vision Research Lab at NASA John Glenn Research Center is headed by Dr. Rafat Ansari. Dr. Ansari and other researchers have developed technologies that primarily use laser and fiber optics to non-invasively detect different ailments and diseases of the eye. One of my goals as a LERCIP intern and ACCESS scholar for the 2004 summer is to inform other NASA employees, researchers and the general public about these technologies through the development of a website. The website incorporates the theme that the eye is a window to the body. Thus by investigating the processes of the eye, we can better understand and diagnosis different ailments and diseases. These ailments occur in not only earth bound humans, but astronauts as well as a result of exposure to elevated levels of radiation and microgravity conditions. Thus the technologies being developed at the Vision Research Lab are invaluable to humans on Earth in addition to those astronauts in space. One of my first goals was to research the technologies being developed at the lab. The first several days were spent immersing myself in the various articles, journals and reports about the theories behind Dynamic Light Scattering, Laser Doppler Flowmetry, Autofluoresence, Raman Spectroscopy, Polarimetry and Oximetry. Interviews with the other researchers proved invaluable to help understand these theories as well gain hands on experience with the devices being developed using these technologies. The rest of the Vision Research Team and I sat down and discussed how the overall website should be presented. Combining this information with the knowledge of the theories and applications of the hardware being developed, I worked out different ideas to present this information. I quickly learned Paint Shop Pro 8 and FrontPage 2002, as well as using online tutorials and other resources to help design an effective website. The Vision Research Lab website incorporates the anatomy and physiology of the eye, different diseases

  14. Empirically Determined Response Matrices for On-Line Orbit and Energy Correction at Jefferson Lab

    International Nuclear Information System (INIS)

    Leigh Harwood; Alicia Hofler; Michele Joyce; Valeri Lebedev; David Bryan

    2001-01-01

    Jefferson Lab uses feedback loops (less than 1 hertz update rate) to correct drifts in CEBAF's electron beam orbit and energy. Previous incarnations of these loops used response matrices that were computed by a numerical model of the machine. Jefferson Lab is transitioning this feedback system to use empirically determined response matrices whereby the software introduces small orbit or energy deviations using the loop's actuators and measures the system response with the loop's sensors. This method is in routine use for orbit correction. This paper will describe the orbit correction system and future plans to extend this method to energy correction

  15. Could dark energy be measured in the lab?

    International Nuclear Information System (INIS)

    Beck, Christian; Mackey, Michael C.

    2005-01-01

    The experimentally measured spectral density of current noise in Josephson junctions provides direct evidence for the existence of zero-point fluctuations. Assuming that the total vacuum energy associated with these fluctuations cannot exceed the presently measured dark energy of the universe, we predict an upper cutoff frequency of ν c =(1.69+/-0.05)x10 12 Hz for the measured frequency spectrum of zero-point fluctuations in the Josephson junction. The largest frequencies that have been reached in the experiments are of the same order of magnitude as ν c and provide a lower bound on the dark energy density of the universe. It is shown that suppressed zero-point fluctuations above a given cutoff frequency can lead to 1/f noise. We propose an experiment which may help to measure some of the properties of dark energy in the lab

  16. Performance report of the U.S. Department of Energy's Jefferson Lab

    International Nuclear Information System (INIS)

    Jefferson Lab

    1999-01-01

    Jefferson Lab, the newest of the US Department of Energy's 16 national laboratories, has been functioning effectively since its inception in 1984, first during construction and later during operations. As shown in this report, JLab aligns itself directly with DOE's strategic planning, both in terms of laboratory visions and plans and in terms of actual laboratory performance. Most importantly, JLab contributes significantly to DOE's Science and Technology mission in the area of nuclear physics, under the Office of Science. The laboratory practices continuous improvement and has made a number of important effectiveness and efficiency enhancements in recent years. Laboratory performance has been demonstrated by completion of the construction phase on cost and schedule, by exceeding technical specifications when coming on-line for physics research, and then - during operations in the mid- and late- 1990's - by the application of the performance measures in the laboratory's performance-based contract with DOE

  17. Innovation Incubator: Whisker Labs Technical Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frank, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, Lieko [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scheib, Jennifer G. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-01

    The Wells Fargo Innovation Incubator (IN2) is a program to foster and accelerate startup companies with commercial building energy-efficiency and demand management technologies. The program is funded by the Wells Fargo Foundation and co-administered by the National Renewable Energy Laboratory (NREL). Whisker Labs, an Oakland, California-based company, was one of four awardees in the first IN2 cohort and was invited to participate in the program because of its novel electrical power sensing technology for circuit breakers. The stick-on Whisker meters install directly on the front face of the circuit breakers in an electrical panel using adhesive, eliminating the need to open the panel and install current transducers (CTs) on the circuit wiring.

  18. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  19. Lab-On-a-Chip Application Development (LOCAD): Bridging Technology Readiness for Exploration

    Science.gov (United States)

    Spearing, Scott F.; Jenkins, Andy

    2004-01-01

    At Marshall Space Flight Center we have established a capability to investigate the use of microfluidics for space flight. The Lab-On-a-Chip Application Development (LOCAD) team has created a program for advancing Technology Readiness Levels (TRL) of 1 and 2 to TRL 6 and 7, quickly and economically for Lab-On-a-Chip (LOC) applications. Scientists and engineers can utilize LOCAD'S process to efficiently learn about microfluidics and determine if microfluidics is applicable to their needs. Once the applicability has been determined, LOCAD can then perform tests to develop the new fluidic protocols which are different from macro-scale chemical reaction protocols. With this information new micro-fluidic devices can be created and tested. Currently, LOCAD is focused on using microfluidics for both Environmental Monitoring & Control, and Medical Systems. Eventually, handheld portable units utilizing LOC technology will perform rapid tests to determine water quality, and microbial contamination levels. Since LOC technology is drastically reduced in physical size, it thereby reduces power, weight, volume, and sample requirements, a big advantage considering the resource constraints associated with spaceflight. Another one of LOCAD's current activities is the development of a microfluidic system to aid in the search for life on Mars.

  20. Energy and technology review, July--August, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K. (ed.)

    1990-01-01

    This report highlights various research programs conducted at the Lab to include: defense systems, laser research, fusion energy, biomedical and environmental sciences, engineering, physics, chemistry, materials science, and computational analysis. It also contains a statement on the state of the Lab and Laboratory Administration. (JEF)

  1. Optics and optics-based technologies education with the benefit of LabVIEW

    Science.gov (United States)

    Wan, Yuhong; Man, Tianlong; Tao, Shiquan

    2015-10-01

    The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.

  2. Department of Energy Photovoltaics Technology Plan (2003-2007)

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    This 10-page brochure provides the R&D targets in 10 technical areas within the DOE Solar Energy Technologies Program's PV Subprogram for 2003 to 2007. This R&D work is set in the context of the progress made in PV during the last 50 years, as shown in a timeline. The brochure briefly describes the basic focus within each of the technical areas. The last section explains aspects of managing the DOE work, including the use of partnerships with industry, universities, and national labs, as well as the development of a systems-driven approach for directing various activities.

  3. PD Lab

    Directory of Open Access Journals (Sweden)

    Marcel Bilow

    2015-08-01

    Full Text Available PD Lab explores the applications of building sector related product development.  PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  4. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  5. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m...

  6. Hands-On Open Access Broadband Wireless Technology Lab Mapping Course Outcomes to Lab Experiments

    Directory of Open Access Journals (Sweden)

    Yazan Alqudah

    2012-10-01

    Full Text Available The unprecedented growth in wireless communication is offering opportunities and challenges for educators. Thanks to technology advances and job opportunities, more and more students are interested in wireless communications courses. However, bridging the gap between classroom and real-world experience remains a challenge. Advanced undergraduate communications courses typically focus more on theory. Some courses are given online, and lack hands-on experiments. Driven by feedback from industry and students, we propose practical laboratory experiments that attempt to bridge the gap between classroom and real world. The laboratory exercises take advantage of the infrastructure of deployed wireless networks and allow students to measure, and analyze data, as well as to interact. The proposed labs can be used even in online courses. This paper describes the experiments proposed, the procedures and typical results. The experiments are tied to course objective.

  7. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Nuno Miguel Matos Pires

    2014-08-01

    Full Text Available The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a study of the compatibility of conventional instrumentation with microfluidic structures, and (b integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  8. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    Science.gov (United States)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  9. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    Science.gov (United States)

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  10. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  11. GeneLab: Open Science For Exploration

    Science.gov (United States)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  12. Exploratory study of the acceptance of two individual practical classes with remote labs

    Science.gov (United States)

    Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel

    2018-03-01

    Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote laboratories a technology accepted by students, two remote labs different yet similar educational conditions in laboratories are used. A sample of 98 undergraduate students from a degree course in Energy Engineering was used for this study; 57 of these students ran experiments in a laboratory of electrical machines and 41 in a photovoltaic systems laboratory. The data suggest using conditions that facilitate the proximity of the laboratory and the autonomy in the realisation of the experiment; in both laboratories the experience was positively valued by the students. Also, data suggest that the types of laboratory and experiment have influences on usability - autonomy and lab proximity - perceived by students.

  13. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy - Technology Summary

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; McKellar, M.G.; Harvego, E.A.; Sohal, M.S.; Condie, K.G.

    2010-01-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  14. Role of national labs in energy and environmental R ampersand D: An industrial perspective

    International Nuclear Information System (INIS)

    Vaz, N.

    1995-01-01

    The perceived role of national laboratories in energy and environmental research and development is examined from an industrial perspective. A series of tables are used to summarize issues primarily related to the automotive industry. Impacts of policy on energy, environment, society, and international competition are outlined. Advances and further needs in automotive efficiency and pollution control, and research roles for national labs and industry are also summarized. 6 tabs

  15. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    .S. Department of Energy's National Laboratories, and provide the first quantitative evidence that technology transfer agreements at the Labs lead to greatly increased rates of innovation spillovers. This chapter also makes a key methodological contribution by introducing a technique to utilize automated text analysis in an empirical matching design that is broadly applicable to other types of social science studies. This work has important implications for how policies should be designed to maximize the social benefits of the $125 billion in annual federal funding allocated to research and development and the extent to which private firms can benefit from technology partnerships with the government. The final chapter of this dissertation explores the effectiveness of international policy to facilitate the deployment of low-emitting energy technologies in developing countries. Together with Joern Huenteler, I examine wind energy deployment in China supported through international climate finance flows under the Kyoto Protocol's Clean Development Mechanism. Utilizing a project-level financial model of wind energy projects parameterized with high-resolution observations of Chinese wind speeds, we find that the environmental benefits of projects financed under the Clean Development Mechanism are substantially lower than reported, as many Chinese wind projects would have been built without the Mechanism's support, and thus do not represent additional clean energy generation. Together, the essays in this dissertation suggest several limitations of energy technology innovation policy and areas for reform. Public funds for energy research and development could be made more effective if decision making approaches were better grounded in available technical expertise and developed in framework that captures the important interactions of technologies in a research and development portfolio. The first chapter of this dissertation suggests a politically feasible path towards this type of

  16. The Design:Lab as platform in participatory design research

    DEFF Research Database (Denmark)

    Binder, Thomas; Brandt, Eva

    2008-01-01

    The notion of laboratory or simply 'lab' has become popular in recent years in areas outside science and technology development. Learning Labs, Innovation Labs, Usability Labs, Media and Communication Labs and even Art Labs designate institutions or fora dedicated to change and experimentation...... as others have frequently used other metaphors like workshop, studio or atelier in design research. In this article we will argue that the laboratory metaphor is particularly suitable and useful for the design:lab, and we will give examples of how we have worked with the design:lab as a platform...

  17. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  18. Energy efficiency programs for niche markets: The Labs21 program as an exemplar

    Energy Technology Data Exchange (ETDEWEB)

    Wirdzek, Phillip; Lintner, William; Mathew, Paul; Carlisle, Nancy

    2004-06-01

    Most federal programs that promote energy efficiency and environmental sustainability in the building industry focus on the larger market segments such as offices, residential buildings, etc. Niche markets such as laboratories are often overlooked and beyond the scope of such programs, for at least two reasons: (a) by definition, niche markets are a relatively small ''wedge'' of the overall energy consumption ''pie''; and (b) laboratories have health and safety concerns, complex flexibility requirements and are perceived to be less amenable to broadly applicable strategies. Nevertheless, laboratories and other ''high-tech'' buildings demand the attention of the energy efficiency and sustainable design community for several reasons: (1) They are a growing segment of the building sector. (2) They are very energy and resource intensive laboratories on average are four to six times as energy intensive as office buildings, and five to ten times as expensive to build. (3) There are significant opportunities for efficiency and conservation, especially when compared to other buildings. In this paper, we describe how the Labs21 program, a joint program of the US EPA and US DOE, is structured to meet these needs recognizing that laboratories require very specialized engineering and design knowledge not addressed in academia or industry, and not readily shared to a level commensurate with the needs of this building sector. While Labs21 is focused on one niche market, we also highlight some experiences from this program applicable to other specialized building types.

  19. Towards a Manifesto for Living Lab Co-creation

    Science.gov (United States)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  20. Promoting renewable energy technologies

    International Nuclear Information System (INIS)

    Grenaa Jensen, S.

    2004-06-01

    Technologies using renewable energy sources are receiving increasing interest from both public authorities and power producing companies, mainly because of the environmental advantages they procure in comparison with conventional energy sources. These technologies can be substitution for conventional energy sources and limit damage to the environment. Furthermore, several of the renewable energy technologies satisfy an increasing political goal of self-sufficiency within energy production. The subject of this thesis is promotion of renewable technologies. The primary goal is to increase understanding on how technological development takes place, and establish a theoretical framework that can assist in the construction of policy strategies including instruments for promotion of renewable energy technologies. Technological development is analysed by through quantitative and qualitative methods. (BA)

  1. Energy Innovations: Science & Technology at NREL, Fall 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-09-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  2. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cheesbrough, Kate; Bader, Meghan

    2016-08-26

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing access to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.

  3. The 4th Generation Light Source at Jefferson Lab

    International Nuclear Information System (INIS)

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-01-01

    A number of 'Grand Challenges' in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources

  4. High Temperature Electrolysis for Hydrogen Production from Nuclear EnergyTechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  5. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  6. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  7. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  8. UniSchooLabs Toolkit: Tools and Methodologies to Support the Adoption of Universities’ Remote and Virtual Labs in Schools

    Directory of Open Access Journals (Sweden)

    Augusto Chioccariello

    2012-11-01

    Full Text Available The UniSchooLabs project aims at creating an infrastructure supporting web access to remote/virtual labs and associated educational resources to engage learners with hands-on and minds-on activities in science, technology and math in schools. The UniSchooLabs tool-kit supports the teacher in selecting a remote or virtual lab and developing a lab activity based on an inquiry model template. While working with the toolkit the teacher has access to three main features: a a catalogue of available online laboratories; b an archive of activities created by other users; c a tool for creating new activities or reusing existing ones.

  9. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  10. Wind Energy Technology: Training a Sustainable Workforce

    Science.gov (United States)

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  11. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  12. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  13. LabVIEW A Developer's Guide to Real World Integration

    CERN Document Server

    Fairweather, Ian

    2011-01-01

    LabVIEW(t) has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEW(t): A Developer's Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies c

  14. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  15. Energy Innovations: Science & Technology at NREL, Winter 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  16. Energy Innovations: Science & Technology at NREL, Winter 2010 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-02-01

    The Energy Innovations newsletter serves as a key outreach tool for NREL to tout the lab's accomplishments, progress, and activities to key stakeholders who can impact the lab's level of funding and potential resources. Audiences include VIP visitors to NREL, current and potential partners in our work, and key decision makers who want to know about NREL's R&D directions and the quality and significance of our results.

  17. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  18. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities during Experimentation in an Outreach Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-01-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused…

  19. A Well-Maintained Lab Is a Safer Lab. Safety Spotlight

    Science.gov (United States)

    Walls, William H.; Strimel, Greg J.

    2018-01-01

    Administration and funding can cause Engineering/Technology Education (ETE) programs to thrive or die. To administrators, the production/prototyping equipment and laboratory setting are often viewed as the features that set ETE apart from other school subjects. A lab is a unique gift as well as a responsibility. If an administrator can see that…

  20. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  1. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  2. A study of energy-size relationship and wear rate in a lab-scale high pressure grinding rolls unit

    Science.gov (United States)

    Rashidi Dashtbayaz, Samira

    This study is focused on two independent topics of energy-size relationship and wear-rate measurements on a lab-scale high pressure grinding rolls (HPGR). The first part of this study has been aimed to investigate the influence of the operating parameters and the feed characteristics on the particle-bed breakage using four different ore samples in a 200 mm x 100 mm lab-scale HPGR. Additionally, multistage grinding, scale-up from a lab-scale HPGR, and prediction of the particle size distributions have been studied in detail. The results obtained from energy-size relationship studies help with better understanding of the factors contributing to more energy-efficient grinding. It will be shown that the energy efficiency of the two configurations of locked-cycle and open multipass is completely dependent on the ore properties. A test procedure to produce the scale-up data is presented. The comparison of the scale-up factors between the data obtained on the University of Utah lab-scale HPGR and the industrial machine at the Newmont Boddington plant confirmed the applicability of lab-scale machines for trade-off studies. The population balance model for the simulation of product size distributions has shown to work well with the breakage function estimated through tests performed on the HPGR at high rotational speed. Selection function has been estimated by back calculation of population balance model with the help of the experimental data. This is considered to be a major step towards advancing current research on the simulation of particle size distribution by using the HPGR machine for determining the breakage function. Developing a technique/setup to measure the wear rate of the HPGR rolls' surface is the objective of the second topic of this dissertation. A mockup was initially designed to assess the application of the linear displacement sensors for measuring the rolls' weight loss. Upon the analysis of that technique and considering the corresponding sources of

  3. Energy technology evaluation report: Energy security

    Science.gov (United States)

    Koopman, R.; Lamont, A.; Schock, R.

    1992-09-01

    Energy security was identified in the National Energy Strategy (NES) as a major issue for the Department of Energy (DOE). As part of a process designed by the DOE to identify technologies important to implementing the NES, an expert working group was convened to consider which technologies can best contribute to reducing the nation's economic vulnerability to future disruptions of world oil supplies, the working definition of energy security. Other working groups were established to deal with economic growth, environmental quality, and technical foundations. Energy Security working group members were chosen to represent as broad a spectrum of energy supply and end-use technologies as possible and were selected for their established reputations as experienced experts with an ability to be objective. The time available for this evaluation was very short. The group evaluated technologies using criteria taken from the NES which can be summarized for energy security as follows: diversifying sources of world oil supply so as to decrease the increasing monopoly status of the Persian Gulf region; reducing the importance of oil use in the US economy to diminish the impact of future disruptions in oil supply; and increasing the preparedness of the US to deal with oil supply disruptions by having alternatives available at a known price. The result of the first phase of the evaluation process was the identification of technology groups determined to be clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were mostly within the high leverage areas of oil and gas supply and transportation demand but also included hydrogen utilization, biomass, diversion resistant nuclear power, and substitute industrial feedstocks.

  4. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  5. Finnish energy technology programmes 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Finnish Technology Development Centre (Tekes) is responsible for the financing of research and development in the field of energy production technology. A considerable part of the financing goes to technology programmes. Each technology programme involves major Finnish institutions - companies, research institutes, universities and other relevant interests. Many of the energy technology programmes running in 1998 were launched collectively in 1993 and will be completed at the end of 1998. They are complemented by a number of other energy-related technology programmes, each with a timetable of its own. Because energy production technology is horizontal by nature, it is closely connected with research and development in other fields, too, and is an important aspect in several other Tekes technology programmes. For this reason this brochure also presents technology programmes where energy is only one of the aspects considered but which nevertheless contribute considerably to research and development in the energy production sector

  6. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  7. Technology Innovation at the National Renewable Energy Laboratory (Text

    Science.gov (United States)

    the Technology Innovation at NREL video. [intro music] The video opens with a blue background and the scientific discoveries that are coming out of the lab and transfer them to industry to get products on the screen. [exit music

  8. Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage

    International Nuclear Information System (INIS)

    Jou, Hurng-Liahng; Chang, Yi-Hao; Wu, Jinn-Chang; Wu, Kuen-Der

    2015-01-01

    Highlights: • The operation strategy for grid-connected PV generation system integrated with battery energy storage is proposed. • The PV system is composed of an inverter and two DC-DC converter. • The negative impact of grid-connected PV generation systems on the grid can be alleviated by integrating a battery. • The operation of the developed system can be divided into nine modes. - Abstract: The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DC–DC boost converter, an isolated bidirectional DC–DC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance

  9. Creative Science Teaching Labs: New Dimensions in CPD

    Science.gov (United States)

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  10. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  11. Online labs and the MARVEL experience

    Directory of Open Access Journals (Sweden)

    Dieter Mueller

    2005-06-01

    Full Text Available MARVEL is a Leonardo da Vinci project that provides a framework to analyse the pedagogic effectiveness of online labs in various heterogeneous areas that include solar energy, robotics, electronics and electro-pneumatics. It is also used as a test bench to compare the implementation of purely remote labs, where all devices are real, versus mixed-reality environments, where real devices work together with simulation models. This paper describes the basic concepts underlying the implementation of such online labs and presents two case studies (which are openly available to the public. A final section discusses the main pedagogical implications of online labs and presents the research directions that are being considered as a follow-up from this project.

  12. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  13. Magnetic Tools for Lab-on-a-chip Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pekas, Nikola Slobodan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This study establishes a set of magnetics-based tools that have been integrated with microfluidic systems. The overall impact of the work begins to enable the rapid and efficient manipulation and detection of magnetic entities such as particles, picoliter-sized droplets, or bacterial cells. Details of design, fabrication, and theoretical and experimental assessments are presented. The manipulation strategy has been demonstrated in the format of a particle diverter, whereby micron-sized particles are actively directed into desired flow channels at a split-flow junction by means of integrated microelectromagnets. Magnetic detection has been realized by deploying Giant Magnetoresistance (GMR) sensors--microfabricated structures originally developed for use as readout elements in computer hard-drives. We successfully transferred the GMR technology to the lab-on-a-chip arena, and demonstrated the versatility of the concept in several important areas: real-time, integrated monitoring of the properties of multiphase droplet flows; rapid quantitative determination of the concentration of magnetic nanoparticles in droplets of ferrofluids; and high-speed detection of individual magnetic microparticles and magnetotactic bacteria. The study also includes novel schemes for hydrodynamic flow focusing that work in conjunction with GMR-based detection to ensure precise navigation of the sample stream through the GMR detection volume, therefore effectively establishing a novel concept of a microfabricated magnetic flow cytometer.

  14. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  15. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO 2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  16. Energy and technology review

    International Nuclear Information System (INIS)

    Quirk, W.J.; Bookless, W.A.

    1994-05-01

    The Lawrence Livermore National Laboratory, operated by the University of California for the United States Department of Energy, was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, in response to new national needs, we have added other major programs, including technology transfer, laser science (fusion, isotope separation, materials processing), biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computing science and technology, engineering, and physics. The Laboratory also carries out a variety of projects for other federal agencies. Energy and Technology Review is published monthly to report on unclassified work in all our programs. This issue reviews work performed in the areas of modified retoring for waste treatment and underground stripping to remove contamination

  17. Moving-part-free microfluidic systems for lab-on-a-chip

    International Nuclear Information System (INIS)

    Luo, J K; Fu, Y Q; Du, X Y; Flewitt, A J; Milne, W I; Li, Y; Walton, A J

    2009-01-01

    Microfluidic systems are part of an emerging technology which deals with minute amounts of liquids (biological samples and reagents) on a small scale. They are fast, compact and can be made into a highly integrated system to deliver sample purification, separation, reaction, immobilization, labelling, as well as detection, thus are promising for applications such as lab-on-a-chip and handheld healthcare devices. Miniaturized micropumps typically consist of a moving-part component, such as a membrane structure, to deliver liquids, and are often unreliable, complicated in structure and difficult to be integrated with other control electronics circuits. The trend of new-generation micropumps is moving-part-free micropumps operated by advanced techniques, such as electrokinetic force, surface tension/energy, acoustic waves. This paper reviews the development and advances of relevant technologies, and introduces electrowetting-on-dielectrics and acoustic wave-based microfluidics. The programmable electrowetting micropump has been realized to dispense and manipulate droplets in 2D with up to 1000 addressable electrodes and electronics built underneath. The acoustic wave-based microfluidics can be used not only for pumping, mixing and droplet generation but also for biosensors, suitable for single-mechanism-based lab-on-a-chip applications

  18. 2011 NDIA Advanced Research Projects Agency - Energy/DoD Workshop

    Science.gov (United States)

    2011-09-12

    for Handoffs Advanced Research Projects Agency • Energy Portfolio of Projects UNIVERSITY/ LAB SMALL BUSINESS CORPORATION Fuel-Free Isothermal...2011 Present Programs • Agile Delivery of Electrical Power Technology (ADEPT) • Batteries for Electrical Energy Storage in Transportation ( BEEST ...Technologies for Energy (REACT) • Solar Agile Delivery of Electrical Power Technology (Solar – ADEPT) The BEEST : An Overview of ARPA-E’s Program in Ultra-High

  19. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    Science.gov (United States)

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  20. LAB building a home for scientists

    CERN Document Server

    Fishman, Mark C

    2017-01-01

    Laboratories are both monasteries and space stations, redolent of the great ideas of generations past and of technologies to propel the future. Yet standard lab design has changed only little over recent years. Here Mark Fishman describes how to build labs as homes for scientists, to accommodate not just their fancy tools, but also their personalities. This richly illustrated book explores the roles of labs through history, from the alchemists of the Middle Ages to the chemists of the 19th and 20th centuries, and to the geneticists and structural biologists of today, and then turns to the special features of the laboratories Fishman helped to design in Cambridge, Shanghai, and Basel. Anyone who works in, or plans to build a lab, will enjoy this book, which will encourage them to think about how this special environment drives or impedes their important work.

  1. The community FabLab platform: applications and implications in biomedical engineering.

    Science.gov (United States)

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  2. Promoting renewable energy technologies

    DEFF Research Database (Denmark)

    Olsen, O.J.; Skytte, K.

    2004-01-01

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies....

  3. Moonlight project promotes energy-saving technology

    Science.gov (United States)

    Ishihara, A.

    1986-01-01

    In promoting energy saving, development of energy conservation technologies aimed at raising energy efficiency in the fields of energy conversion, its transportation, its storage, and its consumption is considered, along with enactment of legal actions urging rational use of energies and implementation of an enlightenment campaign for energy conservation to play a crucial role. Under the Moonlight Project, technical development is at present being centered around the following six pillars: (1) large scale energy saving technology; (2) pioneering and fundamental energy saving technology; (3) international cooperative research project; (4) research and survey of energy saving technology; (5) energy saving technology development by private industry; and (6) promotion of energy saving through standardization. Heat pumps, magnetohydrodynamic generators and fuel cells are discussed.

  4. Towards a European Energy Technology Policy - The European Strategic Energy Technology Plan (Set-Plan)

    International Nuclear Information System (INIS)

    Mercier, A.; Petric, H.; Peteves, E.

    2008-01-01

    The transition to a low carbon economy will take decades and affect the entire economy. There is a timely opportunity for investment in energy infrastructure. However, decisions to invest in technologies that are fully aligned with policy and society priorities do not necessarily come naturally, although it will profoundly affect the level of sustainability of the European energy system for decades to come. Technology development needs to be accelerated and prioritized at the highest level of the European policy agenda. This is the essence of the European Strategic Energy Technology Plan (SET-Plan). The SET-Plan makes concrete proposals for action to establish an energy technology policy for Europe, with a new mind-set for planning and working together and to foster science for transforming energy technologies to achieve EU energy and climate change goals for 2020, and to contribute to the worldwide transition to a low carbon economy by 2050. This paper gives an overview of the SET-Plan initiative and highlights its latest developments. It emphasises the importance of information in support of decision-making for investing in the development of low carbon technologies and shows the first results of the technology mapping undertaken by the newly established Information System of the SET-Plan (SETIS).(author)

  5. Innovative Educational Practice: Using Virtual Labs in the Secondary Classroom

    Directory of Open Access Journals (Sweden)

    Marcel Satsky Kerr, PhD

    2004-07-01

    Full Text Available Two studies investigated the effectiveness of teaching science labs online to secondary students. Study 1 compared achievement among students instructed using hands-on Chemistry labs versus those instructed using virtual Chemistry labs (eLabs. Study 2 compared the same groups of students again while both teachers instructed using hands-on Chemistry labs to determine whether teacher or student characteristics may have affected Study 1’s findings. Participants were high school Chemistry students from a Central Texas Independent School District. Results indicated that: students learn science effectively online, schools may experience cost savings from delivering labs online, and students gain valuable technology skills needed later in college and in the workplace.

  6. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  7. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  8. Inter-technology knowledge spillovers for energy technologies

    International Nuclear Information System (INIS)

    Nemet, Gregory F.

    2012-01-01

    Both anecdotal evidence and the innovation literature indicate that important advances in energy technology have made use of knowledge originating in other technological areas. This study uses the set of U.S. patents granted from 1976 to 2006 to assess the role of knowledge acquired from outside each energy patent's technological classification. It identifies the effect of external knowledge on the forward citation frequency of energy patents. The results support the claim above. Regression coefficients on citations to external prior art are positive and significant. Further, the effect of external citations is significantly larger than that of other types of citations. Conversely, citations to prior art that is technologically near have a negative effect on forward citation frequency. These results are robust across several alternative specifications and definitions of whether each flow of knowledge is external. Important energy patents have drawn heavily from external prior art categorized as chemical, electronics, and electrical; they cite very little prior art from computers, communications, and medical inventions.

  9. Photovoltaic cell and array technology development for future unique NASA missions

    Science.gov (United States)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; hide

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  10. Study on the communication technology of instrument based on LabVIEW

    International Nuclear Information System (INIS)

    Jiang Wei; Lai Qinggui; Zhang Xiaobo

    2012-01-01

    The hardware and software structure of communication of universal instrument is discussed based on LabVIEW, the several realization of remote communication is compared too. In the control and measure system of LIA, using LabVIEW, the communication is realized among the plenty of instruments which have the various interfaces, in this paper the frame of hardware and software about instrument communication is showed. (authors)

  11. New energy technologies. Report

    International Nuclear Information System (INIS)

    2004-01-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  12. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, H.; Augustson; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel,m spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the U. S./Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC ampersand A) program, VNIINM is providing evaluation, certification, and implementation of measurement methods for such materials. In 1966, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and heir storage facility. This paper describes the status of this work and anticipated progress in 1996

  13. Soft Energy Paths Revisited: Politics and Practice in Energy Technology Transitions

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2016-10-01

    Full Text Available This paper argues that current efforts to study and advocate for a change in energy technologies to reduce their climate and other environmental impacts often ignore the political, social, and bodily implications of energy technology choices. Framing renewable energy technologies exclusively in terms of their environmental benefits dismisses important questions about how energy infrastructures can be designed to correspond to democratic forms of socio-politics, forms of social organization that involve independence in terms of meeting energy needs, resilience in terms of adapting to change, participatory decision making and control, equitable distribution of knowledge and efficacy, and just distribution of ownership. Recognizing technological choices as political choices brings explicit attention to the kinds of socio-political restructuring that could be precipitated through a renewable energy technology transition. This paper argues that research on energy transitions should consider the political implications of technological choices, not just the environmental consequences. Further, emerging scholarship on energy practices suggests that social habits of energy usage are themselves political, in that they correspond to and reinforce particular arrangements of power. Acknowledging the embedded politics of technology, as the decades’ old concept of soft path technologies encourages, and integrating insights on the politics of technology with insights on technological practices, can improve future research on energy policy and public perceptions of energy systems. This paper extends insights regarding the socio-political implications of energy paths to consider how understandings of energy technologies as constellations of embedded bodily practices can help further develop our understanding of the consequences of energy technologies, consequences that move beyond environmental implications to the very habits and behaviors of patterned energy

  14. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  15. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  16. Hydrogen Technology and Energy Curriculum (HyTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Barbara

    2013-02-28

    The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three days of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.

  17. Awakening interest in the natural sciences - BASF's Kids' Labs.

    Science.gov (United States)

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  18. Technology data for energy plants. Individual heating plants and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The present technology catalogue is published in co-operation between the Danish Energy Agency and Energinet.dk and includes technology descriptions for a number of technologies for individual heat production and energy transport. The primary objective of the technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for the work with energy planning and the development of the energy sector, including future outlooks, scenario analyses and technical/economic analyses. The technology catalogue is thus a valuable tool in connection with energy planning and assessment of climate projects and for evaluating the development opportunities for the energy sector's many technologies, which can be used for the preparation of different support programmes for energy research and development. The publication of the technology catalogue should also be viewed in the light of renewed focus on strategic energy planning in municipalities etc. In that respect, the technology catalogue is considered to be an important tool for the municipalities in their planning efforts. (LN)

  19. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  20. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  1. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  2. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  3. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    Okorokov, V.R.

    1990-02-01

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  4. Compact and energy saving magnet technology for particle accelerators

    International Nuclear Information System (INIS)

    Baurichter, A.

    2013-01-01

    Despite the fact that funding agencies and industrial users of particle accelerators get more and more alerted about costs of civil engineering, installation and operation, only little effort has been put into development of sustainable, energy and cost saving accelerator technology. In order to reduce the total-cost-of ownership of accelerator magnets, operating at high electrical power for twenty years or more, permanent magnet based Green Magnet technology has been developed at a consortium around Danfysik's R and D team. Together with our partners from ISA, Aarhus University, the Aarhus School of Engineering, the company Sintex and Aalborg University all obstacles in applying permanent magnet technology as e.g. thermal drift and inhomogeneities of magnetic fields have been overcome. The first Green Magnet has now been operated for more than half a year in an Accelerator Mass Spectrometry facility at the ETH in Zurich. The performance of this B=0.43T 90 deg. H-type bending magnet and the most recently builtB=1T, 30 deg. C-type Green Magnet for the synchrotron light source ASTRID2 at ISA in Aarhus will be presented. Danfysik also is designing, manufacturing and testing 60 compact magnet systems, developed at MAX-Lab for the new MAXIV 3.0 GeV synchrotron light source. In addition, 12 for the 1.5 GeV light source and another 12 for the new SOLARIS light source in Krakow, Poland are buying built. Up to a dozen or more magnet functions have been integrated into one yoke of these compact magnet systems, which makes the new MAXIV light sources compact, energy saving and at the same time very bright. Test results and design concepts of the new MAXIV and SOLARIS magnets will be presented. (author)

  5. Virtual Lab for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    PICOVICI, D.

    2008-06-01

    Full Text Available This article details an experimental system developed to enhance the education and research in the area of wireless networks technologies. The system referred, as Virtual Lab (VL is primarily targeting first time users or users with limited experience in programming and using wireless sensor networks. The VL enables a set of predefined sensor networks to be remotely accessible and controlled for constructive and time-efficient experimentation. In order to facilitate the user's wireless sensor applications, the VL is using three main components: a a Virtual Lab Motes (VLM, representing the wireless sensor, b a Virtual Lab Client (VLC, representing the user's tool to interact with the VLM and c a Virtual Lab Server (VLS representing the software link between the VLM and VLC. The concept has been proven using the moteiv produced Tmote Sky modules. Initial experimental use clearly demonstrates that the VL approach reduces dramatically the learning curve involved in programming and using the associated wireless sensor nodes. In addition the VL allows the user's focus to be directed towards the experiment and not towards the software programming challenges.

  6. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gelman, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomberlin, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bain, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  7. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  8. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  9. ESIP Lab: Supporting Development of Earth Sciences Cyberinfrastructure through Innovation Commons

    Science.gov (United States)

    Burgess, A. B.; Robinson, E.

    2017-12-01

    The Earth Science Information Partners (ESIP) is an open, networked community that brings together science, data and information technology practitioners from across sectors. Participation in ESIP is beneficial because it provides an intellectual commons to expose, gather and enhance in-house capabilities in support of an organization's own mandate. Recently, ESIP has begun to explore piloting activities that have worked in the U.S. in other countries as a way to facilitate international collaboration and cross-pollination. The newly formed ESIP Lab realizes the commons concept by providing a virtual place to come up with with new solutions through facilitated ideation, take that idea to a low stakes development environment and potentially fail, but if successful, expose developing technology to domain experts through a technology evaluation process. The Lab does this by supporting and funding solution-oriented projects that have discrete development periods and associated budgets across organizations and agencies. In addition, the Lab provides access to AWS cloud computing resources, travel support, virtual and in-person collaborative platform for distributed groups and exposure to the ESIP community as an expert pool. This cycle of ideation to incubation to evaluation and ultimately adoption or infusion of Earth sciences cyberinfrastructure empowers the scientific community and has spawned a variety of developments like community-led ontology portals, ideas for W3C prov standard improvement and an evaluation framework that pushes technology forward and aides in infusion. The Lab is one of these concepts that could be implemented in other countries and the outputs of the Lab would be shared as a commons and available across traditional borders. This presentation will share the methods and the outcomes of the Lab and seed ideas for adoption internationally.

  10. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  11. Virtual Labs in proteomics: new E-learning tools.

    Science.gov (United States)

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  13. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  14. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  15. eComLab: remote laboratory platform

    Science.gov (United States)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  16. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  17. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.

  18. Energy Technology Perspectives 2012: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Energy Technology Perspectives (ETP) is the International Energy Agency's most ambitious publication on new developments in energy technology. It demonstrates how technologies -- from electric vehicles to smart grids -- can make a decisive difference in achieving the objective of limiting the global temperature rise to 2 C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  19. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  20. Evaluation of Cellular Shades in the PNNL Lab Homes

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Merzouk, Massine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-01

    This report examines the energy performance of cellular shade window coverings in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The 1500-square-foot homes were identical in construction and baseline performance, which allowed any difference in energy and thermal performance between the baseline home and the experimental home to be attributed to the retrofit technology installed in the experimental home. To assess the performance of high efficiency window attachments in a residential retrofit application, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2015 -2016 winter heating and summer cooling seasons. Hunter Douglas Duette® Architella® Trielle™ opaque honeycomb “cellular” shades were installed over double-pane clear-glass, aluminum-frame primary windows in the experimental home and were compared to identical primary windows with no window coverings and with standard typical white vinyl horizontal blind window coverings in the baseline home.

  1. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  2. Teaching Information Systems Technologies: a New Approach based on Virtualization and Hosting Technologies

    Directory of Open Access Journals (Sweden)

    Carmelo R. García

    2012-11-01

    Full Text Available This paper describes how to provide suitable computing systems for information systems technologies learning using virtualization and hosting technologies. The main functionalities and components of an university learning lab based on these technologies are presented. All the software components used in its development are open source. Also, the use of this lab, providing the computing systems required for the learning activities of different matters related to the information systems technologies, is illustrated. The model of computing lab proposed is a more sustainable and scalable alternative than the traditional academic computing lab.

  3. Innovative energy technologies in energy-economy models: assessing economic, energy and environmental impacts of climate policy and technological change in Germany.

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, K.

    2007-04-18

    Energy technologies and innovation are considered to play a crucial role in climate change mitigation. Yet, the representation of technologies in energy-economy models, which are used extensively to analyze the economic, energy and environmental impacts of alternative energy and climate policies, is rather limited. This dissertation presents advanced techniques of including technological innovations in energy-economy computable general equilibrium (CGE) models. New methods are explored and applied for improving the realism of energy production and consumption in such top-down models. The dissertation addresses some of the main criticism of general equilibrium models in the field of energy and climate policy analysis: The lack of detailed sectoral and technical disaggregation, the restricted view on innovation and technological change, and the lack of extended greenhouse gas mitigation options. The dissertation reflects on the questions of (1) how to introduce innovation and technological change in a computable general equilibrium model as well as (2) what additional and policy relevant information is gained from using these methodologies. Employing a new hybrid approach of incorporating technology-specific information for electricity generation and iron and steel production in a dynamic multi-sector computable equilibrium model it can be concluded that technology-specific effects are crucial for the economic assessment of climate policy, in particular the effects relating to process shifts and fuel input structure. Additionally, the dissertation shows that learning-by-doing in renewable energy takes place in the renewable electricity sector but is equally important in upstream sectors that produce technologies, i.e. machinery and equipment, for renewable electricity generation. The differentiation of learning effects in export sectors, such as renewable energy technologies, matters for the economic assessment of climate policies because of effects on international

  4. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  5. Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs

    Science.gov (United States)

    Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy

    2010-10-01

    With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.

  6. Energy & Technology Review, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.; Van Dyke, P. [eds.

    1994-03-01

    This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide better healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.

  7. International energy technology collaboration: benefits and achievements

    International Nuclear Information System (INIS)

    1996-01-01

    The IEA Energy Technology Collaboration Programme facilitates international collaboration on energy technology research, development and deployment. More than 30 countries are involved in Europe, America, Asia, Australasia and Africa. The aim is to accelerate the development and deployment of new energy technologies to meet energy security, environmental and economic development goals. Costs and resources are shared among participating governments, utilities, corporations and universities. By co-operating, they avoid unproductive duplication and maximize the benefits from research budgets. The IEA Programme results every year in hundreds of publications which disseminate information about the latest energy technology developments and their commercial utilisation. The IEA Energy Technology Collaboration Programme operates through a series of agreements among governments. This report details the activities and achievements of all 41 agreements, covering energy technology information centres and Research and Development projects in fossil fuels, renewable energy efficient end-use, and nuclear fusion technologies. (authors). 58 refs., 9 tabs

  8. Microelectronics in energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Oeding, D; Jesse, G

    1984-07-01

    This meeting, which will take place on the 16th and 17th of October 1984 at the Old Opera House at Frankfurt on Main, in the context of the VDE Congress, will consist of 14 lectures on the state of the application of microelectronics to energy technology, and give its participants information on and a chance for discussion of this subject. The meeting will cover the following subjects: Microelectronics in energy supply undertakings; Microelectronics in the automation of power stations; Microelectronics in switchgear and transmission networks; Microelectronics in measurement technology; Microelectronics in lighting technology; Microelectronics in drive technology; Microelectronics in railway technology. The following shortened versions of these lectures are intended to motivate people to visit this event and to prepare contributions to and questions for the discussions.

  9. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Ghaffour, Noreddine; Lattemann, Sabine; Missimer, Thomas; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary

    2014-01-01

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m 3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW h e /m 3 ). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h e /m 3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source

  10. Future implications of China's energy-technology choices

    International Nuclear Information System (INIS)

    Larson, E.D.; Wu Zongxin; DeLaquil, Pat; Chen Wenying; Gao Pengfei

    2003-01-01

    This paper summarizes an assessment of future energy-technology strategies for China that explored the prospects for China to continue its social and economic development while ensuring national energy-supply security and promoting environmental sustainability over the next 50 years. The MARKAL energy-system modeling tool was used to build a model of China's energy system representing all sectors of the economy and including both energy conversion and end-use technologies. Different scenarios for the evolution of the energy system from 1995 to 2050 were explored, enabling insights to be gained into different energy development choices. The analysis indicates a business-as-usual strategy that relies on coal combustion technologies would not be able to meet all environmental and energy security goals. However, an advanced technology strategy emphasizing (1) coal gasification technologies co-producing electricity and clean liquid and gaseous energy carriers (polygeneration), with below-ground storage of some captured CO 2 ; (2) expanded use of renewable energy sources (especially wind and modern biomass); and (3) end-use efficiency would enable China to continue social and economic development through at least the next 50 years while ensuring security of energy supply and improved local and global environmental quality. Surprisingly, even when significant limitations on carbon emissions were stipulated, the model calculated that an advanced energy technology strategy using our technology-cost assumptions would not incur a higher cumulative (1995-2050) total discounted energy system cost than the business-as-usual strategy. To realize such an advanced technology strategy, China will need policies and programs that encourage the development, demonstration and commercialization of advanced clean energy conversion technologies and that support aggressive end-use energy efficiency improvements

  11. Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations.

    Science.gov (United States)

    Amrhein, Sven; Schwab, Marie-Luise; Hoffmann, Marc; Hubbuch, Jürgen

    2014-11-07

    Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides

  12. Residential/commercial market for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M M

    1979-08-01

    The residential/commercial market sector, particularly as it relates to energy technologies, is described. Buildings account for about 25% of the total energy consumed in the US. Market response to energy technologies is influenced by several considerations. Some considerations discussed are: industry characteristics; market sectors; energy-consumption characeristics; industry forecasts; and market influences. Market acceptance may be slow or nonexistent, the technology may have little impact on energy consumption, and redesign or modification may be necessary to overcome belatedly perceived market barriers. 7 figures, 20 tables.

  13. Energy, technology, development

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [Ministerio da Educacao, Brasilia (Brazil)

    1992-02-01

    Energy and technology are essential ingredients of development, it is only through their use that it became possible to sustain a population of almost 5 billion on Earth. The challenges to eradicate poverty and underdevelopment in developing countries in the face of strong population increases can only be successfully met with the use of advanced technology, leapfrogging the path followed in the past by today's industrialized countries. It is shown in the paper that energy consumption can be decoupled from economic development. Such possibility will contribute significantly in achieving sustainable development. 10 refs., 4 figs., 3 tabs.

  14. Technological Aspects of Russian Energy Diplomacy

    Directory of Open Access Journals (Sweden)

    Stanislaw Z. Zhiznin

    2016-01-01

    Full Text Available In the present study we examined the impact of technology on the development of world energy in the world, as well as on the development of international energy relations. The important role of international cooperation in the field of energy technologies as a key factor in the development and global deployment of energy technologies in the industry. The most effective technology in the world of multilateral cooperation under the auspices of the International Energy Agency (IEA and other international organizations. It allows the joint efforts of the countries concerned to develop new technologies, test them and implement in production. For Russia, it is very important, because at the moment our country is not only a leading exporter of energy resources, but also has a significant impact on global energy security. At the same time Russia's FEC requires urgent and serious modernization through the development and introduction of innovative technologies on the basis of the study of international experience. Therefore the question of modernization of Russian fuel and energy complex has an international character. One way to accelerate the process of modernization of the organization is a public-private partnership that will largely depend on the nature and possibilities of Russian energy diplomacy, given the geopolitical and economic realities in connection with the sanctions imposed by Western countries against our country.

  15. Technologies for power and thermal energy generation. Bring our energies together

    International Nuclear Information System (INIS)

    2014-05-01

    On behalf of ADEME, the DREAL and the Region of Brittany and produced by ENEA, consulting company in energy and sustainable development, this brochure presents main technologies for power and thermal energy generation in an effort to maintain objectivity (efficiency, intrinsic features of each technology and key figures as regards power and energy). If most of the technologies are operational or in development in Brittany, such as ocean energy, the scope has been extended to encompass all existing technologies in France in order to give useful references. The French Brittany is a peninsula, with regards to both its geographic situation and its energy context. The region has decided to investigate energy and climate issue through the Brittany Energy Conference and to commit for energy transition. Discussions which have taken place since 2010 at the regional level as well as the national debate on energy transition in 2013 have highlighted the need for educational tools for the main energy generation technologies. Thus, the purpose of this brochure is to share energy stakes with a broad audience

  16. Impacts of FDI Renewable Energy Technology Spillover on China’s Energy Industry Performance

    Directory of Open Access Journals (Sweden)

    Weiwei Liu

    2016-08-01

    Full Text Available Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.

  17. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  18. The Habitation Lab: Using a Design Approach to Foster Innovation for Sustainable Living

    Directory of Open Access Journals (Sweden)

    Paula Femenías

    2013-11-01

    Full Text Available This article describes a first step towards a strategy for using living labs as a means to foster innovation and develop new concepts of sustainable living from an architectural point of view. The overall aim is to enable truly sustainable living through radically reduced energy and resource use thus addressing both environmental and social aspects of sustainability. Earlier research has shown that contemporary housing developments, including those with a sustainable profile, do not profoundly question modern lifestyles and consumption, which is a necessity to overcome limitations of a technological focus on environmental efficiency in construction. Thus, we see an opportunity for the discipline of architecture to engage in current investments in living lab facilities in order to push innovation in the field of sustainable housing. We introduce the concept of a "Habitation Lab", which will provide an arena for radical and high-risk design experimentation between users, building-sector actors, and academia, and we describe a case study of a planned Habitation Lab within a living lab facility where traditional solutions for daily living and habitation are questioned and new architectural innovations are explored and evaluated. The idea of using experimental activities in the field of housing is not new, and we argue that new investments should build on earlier experiences to avoid perpetuating misconceptions and repeating past failures. Furthermore, to ensure the dissemination and uptake of results, the design of the Habitation Lab should consider the innovation and learning trajectories of the building sector. We propose a transdisciplinary setting to provide a neutral arena for value creation and to increase the distribution of experiences.

  19. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  20. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  1. A new approach to standardize multicenter studies: mobile lab technology for the German Environmental Specimen Bank.

    Science.gov (United States)

    Lermen, Dominik; Schmitt, Daniel; Bartel-Steinbach, Martina; Schröter-Kermani, Christa; Kolossa-Gehring, Marike; von Briesen, Hagen; Zimmermann, Heiko

    2014-01-01

    Technical progress has simplified tasks in lab diagnosis and improved quality of test results. Errors occurring during the pre-analytical phase have more negative impact on the quality of test results than errors encountered during the total analytical process. Different infrastructures of sampling sites can highly influence the quality of samples and therewith of analytical results. Annually the German Environmental Specimen Bank (ESB) collects, characterizes, and stores blood, plasma, and urine samples of 120-150 volunteers each on four different sampling sites in Germany. Overarching goal is to investigate the exposure to environmental pollutants of non-occupational exposed young adults combining human biomonitoring with questionnaire data. We investigated the requirements of the study and the possibility to realize a highly standardized sampling procedure on a mobile platform in order to increase the required quality of the pre-analytical phase. The results lead to the development of a mobile epidemiologic laboratory (epiLab) in the project "Labor der Zukunft" (future's lab technology). This laboratory includes a 14.7 m(2) reception area to record medical history and exposure-relevant behavior, a 21.1 m(2) examination room to record dental fillings and for blood withdrawal, a 15.5 m(2) biological safety level 2 laboratory to process and analyze samples on site including a 2.8 m(2) personnel lock and a 3.6 m2 cryofacility to immediately freeze samples. Frozen samples can be transferred to their final destination within the vehicle without breaking the cold chain. To our knowledge, we herewith describe for the first time the implementation of a biological safety laboratory (BSL) 2 lab and an epidemiologic unit on a single mobile platform. Since 2013 we have been collecting up to 15.000 individual human samples annually under highly standardized conditions using the mobile laboratory. Characterized and free of alterations they are kept ready for retrospective

  2. A new approach to standardize multicenter studies: mobile lab technology for the German Environmental Specimen Bank.

    Directory of Open Access Journals (Sweden)

    Dominik Lermen

    Full Text Available Technical progress has simplified tasks in lab diagnosis and improved quality of test results. Errors occurring during the pre-analytical phase have more negative impact on the quality of test results than errors encountered during the total analytical process. Different infrastructures of sampling sites can highly influence the quality of samples and therewith of analytical results. Annually the German Environmental Specimen Bank (ESB collects, characterizes, and stores blood, plasma, and urine samples of 120-150 volunteers each on four different sampling sites in Germany. Overarching goal is to investigate the exposure to environmental pollutants of non-occupational exposed young adults combining human biomonitoring with questionnaire data. We investigated the requirements of the study and the possibility to realize a highly standardized sampling procedure on a mobile platform in order to increase the required quality of the pre-analytical phase. The results lead to the development of a mobile epidemiologic laboratory (epiLab in the project "Labor der Zukunft" (future's lab technology. This laboratory includes a 14.7 m(2 reception area to record medical history and exposure-relevant behavior, a 21.1 m(2 examination room to record dental fillings and for blood withdrawal, a 15.5 m(2 biological safety level 2 laboratory to process and analyze samples on site including a 2.8 m(2 personnel lock and a 3.6 m2 cryofacility to immediately freeze samples. Frozen samples can be transferred to their final destination within the vehicle without breaking the cold chain. To our knowledge, we herewith describe for the first time the implementation of a biological safety laboratory (BSL 2 lab and an epidemiologic unit on a single mobile platform. Since 2013 we have been collecting up to 15.000 individual human samples annually under highly standardized conditions using the mobile laboratory. Characterized and free of alterations they are kept ready for

  3. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.

  4. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.

  5. Los Alamos National Lab: National Security Science

    Science.gov (United States)

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Museum New Hires Publications Research Library Mission Science & Innovation Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Lab Organizations Science Programs

  6. How might renewable energy technologies fit in the food-water-energy nexus?

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various

  7. Current work in energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report describes the work performed at Berkeley Lab most recently. One of the Labs accomplishments is the publication of Scenarios of US Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the US. This analysis is described and played a key role in shaping the US position on climate change in the Kyoto Protocol negotiations. The Labs participation in the fundamental characterization of the climate change issue by the IPCC is described. Described also is a study of leaking electricity, which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of US residential electricity currently expended on standby losses. The 54 vignettes contained in the report summarize results of research activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national Energy Star{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China.

  8. Energy. Economics - politics - technology. Energie. Wirtschaft - Politik - Technik

    Energy Technology Data Exchange (ETDEWEB)

    Kruppa, A; Mielenhausen, E; Kallweit, J H; Schlueter, H; Schenkel, J; Vohwinkel, F; Streckel, S; Brockmann, H W

    1978-01-01

    The themes of the various aspects of the energy sector collected in this volume and discussed by different authors are: Energy policy, energy demand-research and forecasts, energy supplies, new technologies for future energy supply, generation of electrical energy by nuclear power stations, effect on the environment of energy plants, legal problems of site planning, and the authorisation of energy plants.

  9. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  10. Fiscal 1999 survey report on long-term energy technological strategies and the like. Long-term energy technological strategy survey (Medium-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (chuki energy gijutsu senryaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Energy strategies to be implemented under the New Sunshine Program by around 2010 have been compiled, with nation's industrial technological strategies, long-term energy outlook, and the like taken into consideration. The present survey aims to work out medium-term energy technological strategies. In Chapter 2, by conducting studies on the state of energy strategies in the national industry technological strategies as primarily compiled, long-term energy supply and demand outlook, and the history so far of the New Sunshine Program, and social conditions surrounding energy/environmental technologies and energy conditions are arranged in order and then analyzed with a view to deriving social needs. In Chapter 3, in view of the derived social needs, medium-term energy technological strategies are broken down into strategic target details, based on the important regions and major and minor strategic targets of the national industry technological strategies. In Chapter 4, medium-term energy technological strategies are worked out. In Chapter 5, 'basic ideas,' 'measures for promoting technology development,' 'return of the fruits to society' are mentioned as the methods of realizing the strategies. In Chapter 6, surveys and researches are summarized, and future development is predicted. (NEDO)

  11. Economic aspects of advanced energy technologies

    International Nuclear Information System (INIS)

    Ramakumar, R.; Rodriguez, A.P.; Venkata, S.S.

    1993-01-01

    Advanced energy technologies span a wide variety of resources, techniques, and end-user requirements. Economic considerations are major factors that shape their harnessing and utilization. A discussion of the basic factors in the economic arena is presented, with particular emphasis on renewable energy technologies--photovoltaics, solar-thermal, wind-electric conversion, biomass utilization, hydro, and tidal and wave energy systems. The following are essential to determine appropriate energy system topologies: proper resource-need matching with an eye on the quality of energy requirements, integrated use of several resources and technologies, and a comprehensive consideration which includes prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and subsequent waste management aspects. A few case studies are included to apprise the reader of the status of some of the key technologies and systems

  12. New energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Kuester, W J; Wagner, H F

    1977-01-01

    In the Federal Republic of Germany, analyses and forecasts of the energy supply and energy consumption have revealed five major sectors in which extensive R and D activities should be carried out: nuclear energy, coal technology, the utilization of solar energy, techniques for the economical use of energy, and nuclear fusion. Of these sectors, only nuclear energy will be able to make a major contribution to our energy supply both in the near future and over a longer period. The available capacity for mining the large deposits of coal in the Federal Republic of Germany can be increased only gradually and will therefore not make an appreciable contribution until a later date. Another fact to be considered is that a rapidly expanding utilization of this source of energy entails very heavy pollution of the environment. The utilization of solar energy in Central Europe will probably be possible only for supplying warm water for industry and for heating buildings. In the long term, solar energy will contribute only a small percentage of energy to the supply required by the Federal Republic of Germany. Intensive efforts are being made to develop technologies for the more economical use of energy. The priorities in this sector are the installation of district heating systems using waste heat from power stations, and the improved heat insulation of houses. It is not anticipated that the technical utilization of nuclear fusion will be introduced before the end of this century. Nonetheless, this source of energy still constitutes a possibility offering an extremely great potential in the long term, with the result that every effort is being made to put it to good use. The work being carried out in this field in the Federal Republic of Germany is being closely coordinated with the relevant activities undertaken by the other member countries of the European Community.

  13. Solar Energy Technologies Office Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-13

    The U.S. Department of Energy Solar Energy Technologies Office (SETO) supports early-stage research and development to improve the affordability, reliability, and performance of solar technologies on the grid. The office invests in innovative research efforts that securely integrate more solar energy into the grid, enhance the use and storage of solar energy, and lower solar electricity costs.

  14. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    Science.gov (United States)

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  15. The new energy technologies in Australia; Les nouvelles technologies de l'energie en Australie

    Energy Technology Data Exchange (ETDEWEB)

    Le Gleuher, M.; Farhi, R

    2005-06-15

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  16. Smart City Energy Interconnection Technology Framework Preliminary Research

    Science.gov (United States)

    Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu

    2018-01-01

    to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.

  17. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  18. Fiscal 1999 survey report on long-term energy technological strategies and the like. Long-term energy technological strategy survey (Medium-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (chuki energy gijutsu senryaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Energy strategies to be implemented under the New Sunshine Program by around 2010 have been compiled, with nation's industrial technological strategies, long-term energy outlook, and the like taken into consideration. The present survey aims to work out medium-term energy technological strategies. In Chapter 2, by conducting studies on the state of energy strategies in the national industry technological strategies as primarily compiled, long-term energy supply and demand outlook, and the history so far of the New Sunshine Program, and social conditions surrounding energy/environmental technologies and energy conditions are arranged in order and then analyzed with a view to deriving social needs. In Chapter 3, in view of the derived social needs, medium-term energy technological strategies are broken down into strategic target details, based on the important regions and major and minor strategic targets of the national industry technological strategies. In Chapter 4, medium-term energy technological strategies are worked out. In Chapter 5, 'basic ideas,' 'measures for promoting technology development,' 'return of the fruits to society' are mentioned as the methods of realizing the strategies. In Chapter 6, surveys and researches are summarized, and future development is predicted. (NEDO)

  19. From the lab to the marketplace: Making America`s buildings more energy efficient

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for energy-efficiency studies of advanced building technologies. That investment has helped spawn a $2.4-billion US market for key products -- energy-efficient lighting and advanced window coatings -- and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 the authors estimate that the products of that investment will save consumers $16 billion annually. But LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. They analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. They develop planning and demand-management methodologies for electric and gas utilities. They identify technologies and analytical methods for improving human comfort and the quality of indoor air. They contribute to the information superhighway. They focus on the special problems and opportunities presented by energy use in the public sector. And they do all these things at the local, national, and international levels. At LBL, they are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. They also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  20. From the lab to the marketplace: Making America`s buildings more energy efficient

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for development of advanced energy-efficient building technologies, software, and standards. That investment has helped spawn a $2.4-billion U.S. market for key products-energy-efficient lighting and advanced window coatings-and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 we estimate that the products of that investment will save consumers $16 billion annually. LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. We analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. We develop planning and demand-management methodologies for electric and gas utilities. We identify technologies and analytical methods for improving human comfort and the quality of indoor air. We contribute to the information superhighway. We focus on the special problems and opportunities presented by energy use in the public sector. And we do all these things at the local, national, and international levels. At LBL, we are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. We also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  1. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  2. IEA Energy Technology Essentials: Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Nuclear power is the topic covered in this edition.

  3. IEA Energy Technology Essentials: Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Fuel cells is the topic covered in this edition.

  4. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  5. Energy, environment and technological innovation

    Directory of Open Access Journals (Sweden)

    Fernando José Pereira da Costa

    2015-08-01

    Full Text Available The development problems can not be addressed without taking account of the environmental and energy issues, as well as the intimate relationship and the intense interaction between the two. In fact, the energy issue can not be analyzed separately from environmental issues, nor the advances in technological innovation, integrating dynamic-systemic way and so positioning address the issue of the development model to set the bulge the transition process experienced by the world since the seventies of the twentieth century. This transition, in turn, implies the passage of Paradigm of Fossil Fuels to Renewable Energy also called the Paradigm of renewable sources of energy, not just holding the energy problem, but towards to environmental and technological components. It is within this relatively slow and long process, instigator of high levels of volatility, turbulence inducing and motor of technological innovation, which is (re raises the question of the development model that defines how a new model/style development.

  6. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials. Revision 1

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, Hiroshi; Augustson, R.; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel, spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the US/Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC and A) program, VNIINM is providing support for measurements of nuclear materials in bulk forms by developing specifications, test and evaluation, certification, and implementation of measurement methods for such materials. In 1996, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and their storage facility. The paper will describe the status of this work and anticipated progress in 1996

  7. Energy technology and American democratic values

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.M.

    1988-01-01

    Today, the benefits of liberal democracy have increasingly been cast into doubt. The debate over alternative energy policies illustrates the problems associated with liberal democracy. For many, it is the realization that energy choices and the selection of social and political values amount to much the same thing. Simply put, energy policy decisions, and the concomitant energy technologies, carry implications of an ethical, social and political nature. The argument of the social and political effects of energy technology flows from the more general thesis that all forms of technological practice condition social and political relations. That is, technological systems, beyond performing the specific functions for which they were designed, act upon and influence social and political arrangements. Seen in this light, energy technologies are as important to the promotion and preservation of this country's political values as are its institutions and laws. Further, there is evidence to suggest that this country's cherished democratic value of freedom is slowly being eclipsed by the values attendant to corporate capitalism and its singular pursuit of growth. It is this dominance of economic values over political values which provides the environment within which the technological debate is waged. Ultimately, tracing the historic linkage between property and liberty, it is concluded that the preservation of our freedom require new thinking regarding the present configuration of ownership patterns. The questions surrounding energy policy serve to illuminate these concerns.

  8. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  9. Timing properties and pulse shape discrimination of LAB-based liquid scintillator

    International Nuclear Information System (INIS)

    Li Xiaobo; Xiao Hualin; Cao Jun; Li Jin; Heng Yuekun; Ruan Xichao

    2011-01-01

    Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power. (authors)

  10. Market penetration of energy supply technologies

    Science.gov (United States)

    Condap, R. J.

    1980-03-01

    Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.

  11. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  12. Social assessment on fusion energy technology

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1981-01-01

    In regard to the research and development for fusion energy technologies which are still in the stage of demonstrating scientific availability, it is necessary to accumulate the demonstrations of economic and environmental availability through the demonstration of technological availability. The purpose of this report is to examine how the society can utilize the new fusion energy technology. The technical characteristics of fusion energy system were analyzed in two aspects, namely the production techniques of thermal energy and electric energy. Also on the social characteristics in the fuel cycle stage of fusion reactors, the comparative analysis with existing fission reactors was carried out. Then, prediction and evaluation were made what change of social cycle fusion power generation causes on the social system formalized as a socio-ecological model. Moreover, the restricting factors to be the institutional obstacles to the application of fusion energy system to the society were analyzed from three levels of the decision making on energy policy. Since the convertor of fusion energy system is steam power generation system similar to existing system, the contents and properties of the social cycle change in the American society to which such new energy technology is applied are not much different even if the conversion will be made in future. (Kako, I.)

  13. A THIRD WAY: ONLINE LABS INTEGRATED WITH PRINT MATERIALS

    Directory of Open Access Journals (Sweden)

    Roger Falmer

    2012-07-01

    Full Text Available Abstract: The use of ICT in language education to enhance classroom-based instruction is examined in reference to blended learning. A blended model of integrating technological advances via an online lab with a face-to-face classroom environment is presented. The example of this operating in practice is iZone, a four-level print-digital series designed with the online component called MyiZoneLab at its heart, forming a cohesive and inseparable whole with its accompanying texts. Overcoming the limitations of classroom-only instruction is a particular strength of advances in computer technology. Delivering a unified body of content through different mediums is in effect a third way, neither just online nor simply in class, and this newer model has the capability to fully exploit and reinforce the advantages of each separate medium. Online access via a web browser may make good on the promise of studying whenever the learner desires, wherever they happen to be. To this movement towards flexibility in time and place is added a further ingredient, that of choice in self-study or learning with others, and of matching the time the individual spends on tasks to their needs. Integration and inseparability are inherent in this blended model, unleashing the potentiality of technological developments in language education while seeking to transcend the either online or face-to-face learning dichotomy. Keywords: ICT (Information and Communications Technology, blended learning; online labs, F2F (face-to-face, integration

  14. Learning in renewable energy technology development

    International Nuclear Information System (INIS)

    Junginger, M.

    2005-01-01

    The main objectives of this thesis are: to investigate technological change and cost reduction for a number of renewable electricity technologies by means of the experience curve approach; to address related methodological issues in the experience curve approach, and, based on these insights; and to analyze the implications for achieving the Dutch renewable electricity targets for the year 2020 within a European context. In order to meet these objectives, a number of research questions have been formulated: What are the most promising renewable electricity technologies for the Netherlands until 2020 under different technological, economic and environmental conditions?; To what extent is the current use of the experience curve approach to investigate renewable energy technology development sound, what are differences in the utilization of this approach and what are possible pitfalls?; How can the experience curve approach be used to describe the potential development of partially new energy technologies, such as offshore wind energy? Is it possible to describe biomass fuel supply chains with experience curves? What are the possibilities and limits of the experience curve approach when describing non-modular technologies such as large (biomass) energy plants?; What are the main learning mechanisms behind the cost reduction of the investigated technologies?; and How can differences in the technological progress of renewable electricity options influence the market diffusion of renewable electricity technologies, and what implications can varying technological development and policy have on the implementation of renewable electricity technologies in the Netherlands? The development of different renewable energy technologies is investigated by means of some case studies. The possible effects of varying technological development in combination with different policy backgrounds are illustrated for the Netherlands. The thesis focuses mainly on the development of investment

  15. Risoe energy report 9. Non-fossil energy technologies in 2050 and beyond

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2010-11-01

    This Risoe Energy Report, the ninth in a series that began in 2002, analyses the long-term outlook for energy technologies in 2050 in a perspective where the dominating role of fossil fuels has been taken over by non-fossil fuels, and CO 2 emissions have been reduced to a minimum. Against this background, the report addresses issues like: 1) How much will today's non-fossil energy technologies have evolved up to 2050? 2) Which non-fossil energy technologies can we bring into play in 2050, including emerging technologies? 3) What are the implications for the energy system? Further, Volume 9 analyses other central issues for the future energy supply: 4) The role of non-fossil energy technologies in relation to security of supply and sustainability 5) System aspects in 2050 6) Examples of global and Danish energy scenarios in 2050 The report is based on the latest research results from Risoe DTU, together with available international literature and reports. (Author)

  16. Risoe energy report 9. Non-fossil energy technologies in 2050 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2010-11-15

    This Risoe Energy Report, the ninth in a series that began in 2002, analyses the long-term outlook for energy technologies in 2050 in a perspective where the dominating role of fossil fuels has been taken over by non-fossil fuels, and CO{sub 2} emissions have been reduced to a minimum. Against this background, the report addresses issues like: 1) How much will today's non-fossil energy technologies have evolved up to 2050? 2) Which non-fossil energy technologies can we bring into play in 2050, including emerging technologies? 3) What are the implications for the energy system? Further, Volume 9 analyses other central issues for the future energy supply: 4) The role of non-fossil energy technologies in relation to security of supply and sustainability 5) System aspects in 2050 6) Examples of global and Danish energy scenarios in 2050 The report is based on the latest research results from Risoe DTU, together with available international literature and reports. (Author)

  17. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research

    International Nuclear Information System (INIS)

    Bergeron, Mélanie; Cadorette, Jules; Beaudoin, Jean-François; Lecomte, Roger; Tétrault, Marc-André; Leroux, Jean-Daniel; Fontaine, Réjean

    2014-01-01

    The LabPET is an avalanche photodiode (APD) based digital PET scanner with quasi-individual detector read-out and highly parallel electronic architecture for high-performance in vivo molecular imaging of small animals. The scanner is based on LYSO and LGSO scintillation crystals (2×2×12/14 mm 3 ), assembled side-by-side in phoswich pairs read out by an APD. High spatial resolution is achieved through the individual and independent read-out of an individual APD detector for recording impinging annihilation photons. The LabPET exists in three versions, LabPET4 (3.75 cm axial length), LabPET8 (7.5 cm axial length) and LabPET12 (11.4 cm axial length). This paper focuses on the systematic characterization of the three LabPET versions using two different energy window settings to implement a high-efficiency mode (250–650 keV) and a high-resolution mode (350–650 keV) in the most suitable operating conditions. Prior to measurements, a global timing alignment of the scanners and optimization of the APD operating bias have been carried out. Characteristics such as spatial resolution, absolute sensitivity, count rate performance and image quality have been thoroughly investigated following the NEMA NU 4-2008 protocol. Phantom and small animal images were acquired to assess the scanners' suitability for the most demanding imaging tasks in preclinical biomedical research. The three systems achieve the same radial FBP spatial resolution at 5 mm from the field-of-view center: 1.65/3.40 mm (FWHM/FWTM) for an energy threshold of 250 keV and 1.51/2.97 mm for an energy threshold of 350 keV. The absolute sensitivity for an energy window of 250–650 keV is 1.4%/2.6%/4.3% for LabPET4/8/12, respectively. The best count rate performance peaking at 362 kcps is achieved by the LabPET12 with an energy window of 250–650 keV and a mouse phantom (2.5 cm diameter) at an activity of 2.4 MBq ml −1 . With the same phantom, the scatter fraction for all scanners is about

  18. FY 1974 report on the results of the Sunshine Project. Technology assessment of hydrogen energy technology; 1974 nendo suiso energy gijutsu no technology assessment seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-04-30

    This is aimed at studying the relation between the technology development of hydrogen energy and the society. In Chapter 1, a meaning of technology assessment was examined. When applying it to the hydrogen energy technology, the paper presented what content it has. In Chapter 2, the needs for hydrogen energy in society were made clear in comparison with the energy supply/demand structure in Japan and characteristics of hydrogen energy. In Chapter 3, the paper showed what kinds of technology are being developed to meet the needs in this society and arranged viewpoints for evaluating the effectiveness of the technology. In Chapter 4, the paper studied the positioning of hydrogen energy technology in the future society, and presented as examples more than one hydrogen energy/system plans which become the base to describe the impact of the technology on the society. If taking technology assessment as a part of the communication activities between the technology development and the society as did in this study, these system plans are something like the ring for people in each field to talk with. In Chapter 5, the study made from each aspect was arranged. (NEDO)

  19. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  20. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  1. Living lab: Format for rehearsing a new (service) practice

    DEFF Research Database (Denmark)

    Yndigegn, Signe; Aakjær, Marie Kirstejn

    Citizen engagement and the citizens as a resource are key concepts in rethinking the Danish welfare system to meet the challenges of delivering better services for the elderly, while simultaneously reducing the cost of healthcare. In this method paper, we address how the co-design of new digital...... service platforms takes place in the format of living labs. We characterize living labs as the design of experiential spaces where ‘what is’ and ‘what could be’ are explored over a longer period of engagement. The labs are staged to integrate multiple stakeholders’ issues and resources and to create new...... technologies, concepts, or service designs. This paper unpacks the practices of living labs with questions of what is being produced, not only in terms of products, but also in terms of changes in practices, roles, and relations. To analyze and discuss this question the authors report about their engagement...

  2. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  3. Recent advances in lab-on-a-chip for biosensing applications

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Jönsson, Alexander; Senkbeil, Silja

    2016-01-01

    The marriage of highly sensitive biosensor designs with the versatility in sample handling and fluidic manipulation offered by lab-on-a-chip systems promises to yield powerful tools for analytical and, in particular, diagnostic applications. The field where these two technologies meet is rapidly...... improvements to existing methods. Recent examples, showing a staggering variety of lab-on-a-chip systems for biosensing applications, are presented, tabularized for overview, and briefly discussed....

  4. Dynamic magnetic particle actuation for integrated lab-on-chip biosensing

    NARCIS (Netherlands)

    Jong, de A.M.; Reenen, van A.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop innovative lab-on-chip technologies for in-vitro diagnostic testing. We study the use of magnetic particles actuated by magnetic fields to perform different microfluidic handling steps of an integrated

  5. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  6. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  7. Remote and Virtual Labs @ exp.at’11

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2012-03-01

    Full Text Available exp.at’11, the first event of Experiment@, a new International Conference series devoted to online experimentation, had as scope to contribute to the world capabilities in online experimentation and in particular in remote and virtual labs, fostering the collaborative work in emergent technologies.

  8. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, NorEddine; Lattemann, Sabine; Missimer, Thomas M.; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary L.

    2014-01-01

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group's contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  9. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  10. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  11. New energy technologies part 2, storage and low emission technologies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2007-01-01

    After a first volume devoted to renewable energy sources, this second volume follows the first one and starts with a detailed presentation of energy storage means and technologies. This first chapter is followed by a prospective presentation of innovative concepts in the domain of nuclear energy. A detailed analysis of cogeneration systems, which aim at optimizing the efficiency of heat generation facilities by the adjunction of a power generation unit, allows to outline the advantages and limitations of this process. The next two chapters deal with the development of hydrogen industry as energy vector and with its application to power generation using fuel cells in several domains of use. Content: - forewords: electric power, the new paradigm, the decentralized generation, the energy conversion means; - chapter 1: energy storage, applications in relation with the electricity vector (energy density, storage problems, storage systems); - chapter 2: nuclear fission today and tomorrow, from rebirth to technological jump (2006 energy green book, keeping all energy options opened); nuclear energy in the world: 50 years of industrial experience; main actors: common needs, international vision and strategic instruments; at the eve of a technological jump: research challenges and governmental initiatives; generation 2 (today): safety of supplies and respect of the environment; generation 3 (2010): rebirth with continuous improvements; generation 4 (2040): technological jump to satisfy new needs; education and training: general goals; conclusion: nuclear power as part of the solution for a sustainable energy mix; - chapter 3: cogeneration (estimation of cogeneration potential, environmental impact, conclusions and perspectives); - chapter 4: hydrogen as energy vector (context, energy vector of the future, hydrogen generation, transport, distribution and storage; applications of hydrogen-energy, risks, standards, regulations and acceptability; hydrogen economics; hydrogen

  12. Perspectives on Industrial Innovation from Agilent, HP, and Bell Labs

    Science.gov (United States)

    Hollenhorst, James

    2014-03-01

    Innovation is the life blood of technology companies. I will give perspectives gleaned from a career in research and development at Bell Labs, HP Labs, and Agilent Labs, from the point of view of an individual contributor and a manager. Physicists bring a unique set of skills to the corporate environment, including a desire to understand the fundamentals, a solid foundation in physical principles, expertise in applied mathematics, and most importantly, an attitude: namely, that hard problems can be solved by breaking them into manageable pieces. In my experience, hiring managers in industry seldom explicitly search for physicists, but they want people with those skills.

  13. Fiscal 1999 survey report on survey of long-term strategy on energy technology. Long-term energy technological strategy survey (Long-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (choki energy gijutsu senryaku chosa))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To enhance still more effectively the research and development of energy-related/environmental technologies, research and development strategies have to be worked out from a long-term view point and policy resources such as investment in research and development should be optimally distributed after clarifying and defining the course to follow toward the achievement of research and development goals. This project aims to conduct studies, and to show the course to follow in the future, towards the establishment of a long-term energy technological strategy by investigating energy systems for around 2050, interim energy systems at the intermediate stage, and innovative energy technologies for realizing such energy systems. In Chapter 1, the position of the survey and its purpose and prerequisites are shown. In Chapter 2, the history of social and economic conditions surrounding energy/environmental technologies and of energy situation up to the present time is compiled, and the outlook is analyzed and predicted. In Chapter 3, formulation of a long-term energy technological strategy is discussed. In Chapter 5, how to embody such a strategy is shown. (NEDO)

  14. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  15. Energy technology programmes 1993-1998. Evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    In the late 1980s Finland`s Ministry of Trade and Industry (KTM) initiated a series of research and development (R and D) programmes in the field of energy technology. Subsequently, in 1993, it launched a further suite of eleven Energy Technology Programmes scheduled to run over the period 1993-1998. Aimed at the development of efficient and environmentally sound energy technologies intended to be competitive in the international marketplace, the programmes sought to involve the research, industrial and public sectors in some FIM 1.2 billion of research and development activity. The technology areas spanned: Combustion and gasification techniques Bioenergy, Advanced energy systems and technologies (e.g. wind, solar energy), Fusion, Energy and environmental technology, Energy and the environment in transportation, Energy use in buildings, Energy in steel and metal production, Energy in paper and board production, District heating, Electricity distribution automation. In early 1995, the Technology Development Centre of Finland (Tekes) assumed responsibility for the funding, management and administration of the programmes. As the final year of activities began, Tekes commissioned Technopolis to assemble a team to conduct a major review of all eleven programmes over the course of 1998. The broad aim of the exercise was to review the experience of the eleven technology R and D programmes and to make suggestions for the future. In particular, the intention was to cover a number of distinct levels. Most important were the Programme and Portfolio levels. At the individual Programme level, the review was to comment on the relevance, calibre and impact of programmes, concentrating in particular on the following: Relevance - were programme and project level goals in line with Finnish interests and comparable agendas in other countries; Efficiency - how well were the programmes implemented and managed; Quality - how did the scientific and technological quality of the work

  16. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  17. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  18. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  19. Sustainable electric energy supply by decentralized alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A., E-mail: Ahmad.Zahedi@jcu.edu.au [James Cook University, Queensland (Australia). School of Engineering and Physical Sciences

    2010-07-01

    The most available and affordable sources of energy in today's economic structure are fossil fuels, namely, oil, gas, and coal. Fossil fuels are non-renewable, have limited reserves, and have serious environmental problems associated with their use. Coal and nuclear energy are used in central and bulky power stations to produce electricity, and then this electricity is delivered to customers via expensive transmission lines and distribution systems. Delivering electric power via transmission and distribution lines to the electricity users is associated with high electric power losses. These power losses are costly burdens on power suppliers and users. One of the advantages of decentralized generation (DG) is that DG is capable of minimizing power losses because electric power is generated at the demand site. The world is facing two major energy-related issues, short term and long term. These issues are (i) not having enough and secure supplies of energy at affordable prices and (ii) environmental damages caused by consuming too much energy in an unsustainable way. A significant amount of the current world energy comes from limited resources, which when used, cannot be replaced. Hence the energy production and consumption do not seem to be sustainable, and also carries the threat of severe and irreversible damages to the environment including climate change.The price of energy is increasing and there are no evidences suggesting that this trend will reverse. To compensate for this price increase we need to develop and use high energy efficient technologies and focusing on energy technologies using renewable sources with less energy conversion chains, such as solar and wind. The world has the potential to expand its capacity of clean, renewable, and sustainable energy to offset a significant amount of greenhouse gas emissions from conventional power use. The increasing utilization of alternative sources such as hydro, biomass, geothermal, ocean energy, solar and

  20. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  1. A Remote Direct Sequence Spread Spectrum Communications Lab Utilising the Emona DATEx

    Directory of Open Access Journals (Sweden)

    Cosmas Mwikirize

    2012-12-01

    Full Text Available Remote labs have become popular learning aids due to their versatility and considerable ease of utilisation as compared to their physical counterparts. At Makerere University, the remote labs are based on the standard Massachusetts Institute of Technology (MIT iLabs Shared Architecture (ISA - a scalable and generic platform. Presented in this paper is such a lab, addressing the key practical aspects of Direct Sequence Spread Spectrum (DSSS communication. The lab is built on the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS with the Emona Digital and Analog Telecommunications Experimenter (DATEx add-on board. It also incorporates switching hardware. The lab facilitates real-time control of the equipment, with users able to set, manipulate and observe signal parameters in both the frequency and the time domains. Simulation and data Acquisition modes of the experiment are supported to provide a richer learning experience.

  2. Energy resources and usage. Charles Kolling Research Lab. technical note ER-2

    Energy Technology Data Exchange (ETDEWEB)

    George, D W

    1973-02-01

    From maximum utilization of industrial enengy conference; Sydney, Australia (21 Feb 1973). The overall picture shows that Australia faces no foreseeable energy problems. Such an assumption ignores many technological and environmental problems associated with the inefficient or thoughtless use of invaluable energy resources. Energy wasted is irrecoverable whereas energy un- used has a potentially individual and national good either in subsequent usage or in export to some less-favorably placed country. No rushed or ill-considered decision need be made, and with the advent of nuclear power or an export decision to be made, the decisions may be well planned. Issues such as Lake Pedder, the Clutha controversy, and the forthcoming public inquiry into environmental aspects of the proposed Moomba--Sydney natural gas pipeline give an indication of the pattern of the future, and an informed public interest in such matters should be welcomed by all concerned. National planning and coordiation are correlated with technological advances for the optimum decisions to be made involving energy. (24 references) (MCW)

  3. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2011-01-01

    This paper describes a method to model the influence by global policy scenarios, particularly spillover of technology learning, on the energy service demand of the non-energy sectors of the national economy. It is exemplified by Norway. Spillover is obtained from the technology-rich global Energy Technology Perspective model operated by the International Energy Agency. It is provided to a national hybrid model where a national bottom-up Markal model carries forward spillover into a national top-down CGE model at a disaggregated demand category level. Spillover of technology learning from the global energy technology market will reduce national generation costs of energy carriers. This may in turn increase demand in the non-energy sectors of the economy because of the rebound effect. The influence of spillover on the Norwegian economy is most pronounced for the production level of industrial chemicals and for the demand for electricity for residential energy services. The influence is modest, however, because all existing electricity generating capacity is hydroelectric and thus compatible with the low emission policy scenario. In countries where most of the existing generating capacity must be replaced by nascent energy technologies or carbon captured and storage the influence on demand is expected to be more significant. - Highlights: → Spillover of global technology learning may be forwarded into a macroeconomic model. → The national electricity price differs significantly between the different global scenarios. → Soft-linking global and national models facilitate transparency in the technology learning effect chain.

  4. Stimulating R and D of industrial energy-efficient technology. Policy lessons--impulse technology

    International Nuclear Information System (INIS)

    Luiten, Esther; Blok, Kornelis

    2004-01-01

    Stimulating research and development (R and D) of innovative energy-efficient technologies for industry is an attractive option for reducing greenhouse gas emissions. Impulse technology, an innovative papermaking technology, is always included in studies assessing the long-term potential of industrial energy efficiency. Aim of this article is to analyse the R and D trajectory of impulse technology in order to explore how government can stimulate the development of industrial energy-efficient technology. The concept of 'momentum' is used to characterise the network of actors and to understand the effect of government R and D support in this particular case study. The network analysis convincingly shows that although marketed as an energy-efficient technology, other benefits were in fact driving forces. Researchers at various national pulp and paper research institutes were successful in attracting government R and D support by claiming an improved energy efficiency. The momentum of the technology network was modest between 1980 and 1990. Therefore, government R and D support accelerated the development of impulse technology in this period. However, when the perspectives of the technology deteriorated--momentum decreased--researchers at national research institutes continued to attract government R and D support successfully. But 25 years of R and D--and over 15 years government R and D support--have not yet resulted in a proven technology. The case study illustrates the risk of continuing R and D support too long without taking into account actors' drivers to invest in R and D. Once momentum decreased, government should have been more circumspect in evaluating the (energy efficiency) promise of impulse technology. The major policy lesson is that government has to look beyond claimed energy efficiencies; government has to value (qualitative) information on (changing) technology networks in deciding upon starting, continuing or pulling out financial R and D support to

  5. Renewable Energy: Markets and Prospects by Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This information paper accompanies the IEA publication Deploying Renewables 2011: Best and Future Policy Practice (IEA, 2011a). It provides more detailed data and analysis, and explores the markets, policies and prospects for a number of renewable energy technologies. This paper provides a discussion of ten technology areas: bioenergy for electricity and heat, biofuels, geothermal energy, hydro energy, ocean energy, solar energy (solar photovoltaics, concentrating solar power, and solar heating), and wind energy (onshore and offshore). Each technology discussion includes: the current technical and market status; the current costs of energy production and cost trends; the policy environment; the potential and projections for the future; and an analysis of the prospects and key hurdles to future expansion.

  6. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions

  7. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  8. Energy Systems and Technologies for the coming Century

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy production technologies such as clean coal technologies, CCS and nuclear - Renewable energy for the transport sector......Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies...... and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011....

  9. Socio-economic research for innovative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Kashiwa, Chiba (Japan); Okano, Kunihiko [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2006-10-15

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  10. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  11. Technology and energy at school

    International Nuclear Information System (INIS)

    Hawkes, N.

    1994-01-01

    The teaching of technology and energy in schools requires more than simply the transfer of information. Public attitudes towards technology often contain unacknowledged contradictions, and research has shown that programmes for greater public understanding of science depend for their success on context, motivation, and on the source of the information. Exploration of the methods of science, its motivations and its limitations, should provide the basis for teaching nuclear energy in schools

  12. Commercialisation of Renewable Energy Technologies for Various Consumption Needs

    Energy Technology Data Exchange (ETDEWEB)

    Jiahua Pan [Chinese Academy of Social Sciences (China)

    2005-12-15

    Can renewable energy technologies meet various consumption needs? It may be argued that without commercial viability, renewable energy technologies cannot compete with conventional energy technologies in this respect. The following issues are to be examined in this paper: (1) the types of renewable energy technologies needed in relation to consumption needs; (2) whether these technologies are commercially viable; (3) the extent to which these technologies can supply the energy needed for industrialisation and economic development in developing countries; (4) policy implications of commercialising renewable energy technologies; and, (5) the role of Asia-Europe cooperation on technological development, diffusion and transfer. The evaluation will concentrate on market potential rather than technological potential, as some of the renewable energy technologies are yet to be commercial. This examination will be made in the context of the specific consumption needs of a major developing country like China in its current period of high economic growth rates and rapid industrialisation. Asia-Europe co-operation on renewable energy technologies can speed up the process of commercialisation through demonstration, direct investment, joint venture, Build-Operate-Transfer (BOT), financial aid and capacity building (both technological know-how and institutional)

  13. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  14. Market introduction of renewable energy technologies

    International Nuclear Information System (INIS)

    1997-01-01

    On 11 and 12 November 1997 the VDI Society for Energy Technology (VDI-GET) held a congress in Neuss on the ''Market introduction of renewable energy technologies'' The focal topics of the congress were as follows: market analyses for renewable energy technologies, the development of markets at home and abroad, and the framework conditions governing market introduction. Specifically it dealt with the market effects of national and international introduction measures, promotion programmes and their efficiency, the legal framework conditions governing market introduction, advanced and supplementary training, market-oriented research (e.g., for cost reduction), and improved marketing [de

  15. Fiscal 1975 Sunshine Project research report. Technology assessment on hydrogen energy technology. Part 2; 1975 nendo suiso energy gijutsu no technology assessment seika hokokuksho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    This research assesses the impact of development of practical hydrogen energy technology on the economy, society and environment in Japan, and proposes some effective countermeasures, the required technical development target and a promising promotion system. The example of technology assessment assuming practical technology several tens years after is hardly found. Hydrogen energy technology is in the first stage among (1) initial planning stage, (2) technical research and development stage, (3) practical technology stage and (4) service operation stage. In the first fiscal year, as the first stage of determination of the communication route between society and technology, study was made on the concrete system image of practical technology. In this fiscal year, study was made entirely on preparation of the scenario for imaging the future economy and society concretely, modifying the planning of the hydrogen energy system. Through comparison of the scenario and system, the meaning and problem of the hydrogen energy technology were clarified. (NEDO)

  16. Expanding the Role of an Earth Science Data System: The GHRC Innovations Lab

    Science.gov (United States)

    Conover, H.; Ramachandran, R.; Smith, T.; Kulkarni, A.; Maskey, M.; He, M.; Keiser, K.; Graves, S. J.

    2013-12-01

    The Global Hydrology Resource Center is a NASA Earth Science Distributed Active Archive Center (DAAC), managed in partnership by the Earth Science Department at NASA's Marshall Space Flight Center and the University of Alabama in Huntsville's Information Technology and Systems Center. Established in 1991, the GHRC processes, archives and distributes global lightning data from space, airborne and ground based observations from hurricane science field campaigns and Global Precipitation Mission (GPM) ground validation experiments, and satellite passive microwave products. GHRC's close association with the University provides a path for technology infusion from the research center into the data center. The ITSC has a long history of designing and operating science data and information systems. In addition to the GHRC and related data management projects, the ITSC also conducts multidisciplinary research in many facets of information technology. The coupling of ITSC research with the operational GHRC Data Center has enabled the development of new technologies that directly impact the ability of researchers worldwide to apply Earth science data to their specific domains of interest. The GHRC Innovations Lab will provide a showcase for emerging geoinformatics technologies resulting from NASA-sponsored research at the ITSC. Research products to be deployed in the Innovations Lab include: * Data Albums - curated collections of information related to a specific science topic or event with links to relevant data files from different sources. * Data Prospecting - combines automated data mining techniques with user interaction to provide for quick exploration of large volumes of data. * Provenance Browser - provides for graphical exploration of data lineage and related contextual information. In the Innovations Lab, these technologies can be targeted to GHRC data sets, and tuned to address GHRC user interests. As technologies are tested and matured in the Innovations Lab, the

  17. Renewable energy technology acceptance in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Kardooni, Roozbeh; Yusoff, Sumiani Binti; Kari, Fatimah Binti

    2016-01-01

    Despite various policies, renewable energy resources have not been developed in Malaysia. This study investigates the factors that influence renewable energy technology acceptance in Peninsular Malaysia and attempts to show the impact of cost and knowledge on the perceived ease of use and perceived usefulness of renewable energy technology. The results show that cost of renewable energy has an indirect effect on attitudes towards using renewable energy through the associated impact on the perceived ease of use and perceived usefulness. The results also indicate that public knowledge in Peninsular Malaysia does not affect perceived ease of use, although the positive impact of knowledge on perceived usefulness is supported. Furthermore, our results show that the current business environment in Peninsular Malaysia does not support the adoption of renewable energy technology, and thus, renewable energy technology is not commercially viable in Peninsular Malaysia. Additionally, the population of Peninsular Malaysia associates the use of renewable energy with a high level of effort and therefore has a negative attitude towards the use of renewable energy technology. There is, therefore, a definite need to pay more attention to the role of public perception and awareness in the successes and failures of renewable energy policy. - Highlights: • Public acceptance is an essential element in the diffusion of renewable energy. • Perceived ease of use and perceived usefulness affect intention to use renewables. • It is important to reduce the cost of renewable energy, particularly for end users. • Renewable energy policies should address issues of public perception and awareness.

  18. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L [eds.

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  19. The new energy technologies in Australia

    International Nuclear Information System (INIS)

    Le Gleuher, M.; Farhi, R.

    2005-06-01

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  20. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  1. Automation technology saves 30% energy; Automatisierungstechnik spart 30% Energie ein

    Energy Technology Data Exchange (ETDEWEB)

    Klinkow, Torsten; Meyer, Michael [Wago Kontakttechnik GmbH und Co. KG, Minden (Germany)

    2013-04-01

    A systematic energy management is in more demand than ever in order to reduce the increasing energy costs. What used to be a difficult puzzle consisting of different technology components in the early days is today easier to solve by means of a standardized and cost-effective automation technology. With its IO system, Wago Kontakttechnik GmbH and Co. KG (Minden, Federal Republic of Germany) supplies a complete and coordinated portfolio for the energy efficiency.

  2. Appendix A: Energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  3. Energy and the environment: Technology assessment and policy options

    International Nuclear Information System (INIS)

    Silveira, M.P.W.

    1990-01-01

    While the energy crisis of the 1970s stimulated technological innovation in developed countries, it often had the opposite effect in the third world. However, developing countries can be considered to have two types of energy systems: ''connected'' and ''disconnected''. The connected system is affected by changes in the price of commercial energy, but the disconnected system is usually rural and remote. Commercial forms of energy may be needed in the disconnected system, but they are largely unavailable. In some of the developing countries, new energy technologies have therefore been developed which adapt traditional technologies still existing in the disconnected sector. In this article some of the work of the United National Centre for Science and Technology for Development is described. Through its ATAS (Advance Technology Alert System) programme, international and regional workshops are held to discuss policy questions arising in regard to new technologies and developments. Workshops have been held in Moscow on new energy technologies in the industry subsystem (connected), in Guatemala City on new energy technologies and the disconnected system, and in Ottawa on new energy technologies, transportation and development. Initial assessments made by or through these workshops are outlined here. A fourth workshop will be held in June 1990 in Saarbrucken on energy technologies and climate change. (author). 3 figs

  4. Prospective of the nuclear energy, technological tendency

    International Nuclear Information System (INIS)

    Cruz F, G. De la; Salaices A, M.

    2004-01-01

    The world's concern about the energy supply in the near future, has had as an answer diverse proposals in which two multinational initiatives are highlighted, that of the International Project on Nuclear Innovative Reactors and Fuel Cycles (INPRO) and that of the Generation-l V International Forum (GIF). Both initiatives direct their efforts to the development of new technologies in nuclear energy that would satisfy the energy requirements of the future. In this article, an analysis based on a) the available information on these technologies, b) a joint study (IEA/OECD/IAEA) on the new technologies regarding its capacity to confront the current challenges of the nuclear energy, and c) the authors' experience and knowledge about the phenomenology, design and security of nuclear facilities, is presented. Moreover, the technologies that, in the authors' opinion, will have the better possibilities to compete successfully in the energy markets and could be one of the viable options to satisfy the energy demands of the future, are described. (Author)

  5. Designing virtual science labs for the Islamic Academy of Delaware

    Science.gov (United States)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  6. Use of tablets for instruction and learning in microbiology labs

    DEFF Research Database (Denmark)

    Møller, Karen Louise; Jelsbak, Vibe Alopaeus; Georgsen, Marianne

    of this project are to develop a technological infrastructure to support students’ work in the lab and to develop teaching and learning resources. Our research question is: How is teaching and learning in the laboratory influenced by the tablets and the following multimodal teaching and learning materials...... and taken notes by hand. Use of tablets in the lab offers new opportunities. In September 2012, nine tablets were introduced into one of the labs of the college. Groups of students use the tablets to access documents, watch video instructions, and to document results and procedures digitally. The objectives......? The empirical part of the project has been documented through field observations in the lab (in writing and with photos). We have found the following to be characteristic of the work of the students: the students use the tablets collaboratively, take more photos than requested, use the video based instructions...

  7. The Study on Virtual Medical Instrument based on LabVIEW.

    Science.gov (United States)

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  8. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  9. Are Statistics Labs Worth the Effort?--Comparison of Introductory Statistics Courses Using Different Teaching Methods

    Directory of Open Access Journals (Sweden)

    Jose H. Guardiola

    2010-01-01

    Full Text Available This paper compares the academic performance of students in three similar elementary statistics courses taught by the same instructor, but with the lab component differing among the three. One course is traditionally taught without a lab component; the second with a lab component using scenarios and an extensive use of technology, but without explicit coordination between lab and lecture; and the third using a lab component with an extensive use of technology that carefully coordinates the lab with the lecture. Extensive use of technology means, in this context, using Minitab software in the lab section, doing homework and quizzes using MyMathlab ©, and emphasizing interpretation of computer output during lectures. Initially, an online instrument based on Gardner’s multiple intelligences theory, is given to students to try to identify students’ learning styles and intelligence types as covariates. An analysis of covariance is performed in order to compare differences in achievement. In this study there is no attempt to measure difference in student performance across the different treatments. The purpose of this study is to find indications of associations among variables that support the claim that statistics labs could be associated with superior academic achievement in one of these three instructional environments. Also, this study tries to identify individual student characteristics that could be associated with superior academic performance. This study did not find evidence of any individual student characteristics that could be associated with superior achievement. The response variable was computed as percentage of correct answers for the three exams during the semester added together. The results of this study indicate a significant difference across these three different instructional methods, showing significantly higher mean scores for the response variable on students taking the lab component that was carefully coordinated with

  10. World Energy Resources and New Technologies

    Science.gov (United States)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  11. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    International Nuclear Information System (INIS)

    Fetterly, K

    2014-01-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalities include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care

  12. Energy Technology Perspectives 2012: Executive Summary [Italian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  13. Energy Technology Perspectives 2012: Executive Summary [French version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  14. Energy Technology Perspectives 2012: Executive Summary [Spanish version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  15. Energy Technology Perspectives 2012: Executive Summary [Arabic version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  16. Energy Technology Perspectives 2012: Executive Summary [Portuguese version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  17. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  18. Energy technology review, July--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.C. (ed.)

    1991-01-01

    This issue of Energy Technology Review'' gives the annual review of the programs at Lawrence Livermore National Laboratory. This State of the Laboratory issue includes discussions of all major programs: Defense Systems; Laser Research; Magnetic Fusion Energy; Energy and Earth Sciences; Environmental Technology Program; Biomedical and Environmental Science; Engineering; Physics; Chemistry and Materials Science; Computations; and Administrative and Institutional Services. An index is also given of the 1991 achievements with contact names and telephone number.

  19. Nordic energy technology scoreboard. Full version

    Energy Technology Data Exchange (ETDEWEB)

    Kiltkou, Antje; Iversen, Eric; Scortato, Lisa

    2010-07-01

    The Nordic Energy Technology Scoreboard provides a tool for understanding the state of low-carbon energy technology development in the Nordic region. It assesses the five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden, alongside reference countries and regions including: The United Kingdom, Germany, Spain, Portugal, France, Italy, the Netherlands, Austria, USA, Japan and the EU 27. It focuses on five low-carbon energy technologies: Wind, photovoltaic (PV) solar, bio-fuels, geothermal, and carbon capture and storage (CCS). This scoreboard was developed as a pilot project with a limited scope of technologies, countries and indicators. In addition to providing a tool for decision-makers, it aimed to act as a catalyst for the future development of scoreboards and a vehicle to promote better data collection. Low-carbon energy technologies are not easy to measure. This is due to a variety of factors that much be kept in account when developing scoreboards for this purpose. Many low-carbon technologies are still at immature stages of development. Sound comparable data requires common definitions and standards to be adopted before collection can even take place. This process often lags behind the development of low-carbon technologies, and there are therefore considerable data availability and categorisation issues. The diversity of technologies and their different stages of development hamper comparability. The IEA classifies low-carbon technologies into three categories. The most mature includes hydropower, onshore wind, biomass CHP, and geothermal energy, the second most mature includes PV solar and offshore wind power, while the least mature includes concentrating solar power, CCS and ocean energy. This is problematic as less mature technologies are underrepresented in later stages of the innovation system. Many low-carbon technologies are systemic, meaning progress in developing one technology may hinge on developments in a connected technology

  20. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  1. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  2. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  3. Heterogeneous policies, heterogeneous technologies: The case of renewable energy

    International Nuclear Information System (INIS)

    Nicolli, Francesco; Vona, Francesco

    2016-01-01

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main finding is that, compared to privatisation and unbundling, reducing entry barriers is a more significant driver of renewable energy innovation, but that its effect varies across technologies and is stronger in technologies characterised by potential entry of small, independent power producers. In addition, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, ratification of the Kyoto protocol, which determined a more stable and less uncertain policy framework, amplifies the inducement effect of both energy policy and market liberalisation. - Highlights: • We study the effect of market regulation and energy policy on renewable technologies. • Reducing entry barriers is a significant driver of renewable energy innovation. • The Kyoto protocol amplifies the effect of both energy policy and liberalisation. • These effects are heterogeneous across technologies and stronger for wind.

  4. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  5. Lab-on-a-Chip Based Protein Crystallization

    Science.gov (United States)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  6. Analysis on functions of mobile nuclear emergency monitoring lab

    International Nuclear Information System (INIS)

    Lai Yongfang; Wang Yonghong; Gao Jing; Sun Jian

    2012-01-01

    According to the fundamental purpose and mission of nuclear emergency monitoring and based on technological aspects, this paper discusses and analyses the functions and basic requirements on equipment in mobile radiation measurement lab in nuclear emergency response. (authors)

  7. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  8. Technological trends in energy industry

    International Nuclear Information System (INIS)

    Martin Moyano, R.

    1995-01-01

    According to the usual meaning, technological trends are determined by main companies and leading countries with capacity for the development and marketing of technology. Presently, those trends are addressed to: the development of cleaner and more efficient process for fossil fuels utilization (atmospheric and pressurized fluidized beds, integrated gasification in combined cycle, advanced combined cycles, etc), the development of safer and more economic nuclear reactors; the efficiency increase in both generation and utilisation of energy, including demand side management and distribution automation; and the reduction of cost of renewable energies. Singular points of these trends are: the progress in communication technologies (optical fibre, trucking systems, etc.); the fuel cells; the supercritical boilers; the passive reactors; the nuclear fusion; the superconductivity; etc. Spain belongs to the developed countries but suffer of certain technology shortages that places it in a special situation. (Author)

  9. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model......In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies...... marginal technology? How is the marginal technology identified and used today? What is the consequence of not using energy system analy- sis for identifying the marginal energy technologies? The use of the methodology is examined from three angles. First, the marginal electricity technology is identified...

  10. Energy management under policy and technology uncertainty

    International Nuclear Information System (INIS)

    Tylock, Steven M.; Seager, Thomas P.; Snell, Jeff; Bennett, Erin R.; Sweet, Don

    2012-01-01

    Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base. Highlights: ► Incorporate disparate criteria with uncertain performance. ► Analyze decisions with contrasting stakeholder positions. ► Interactively compare alternatives based on uncertain weighting. ► User friendly multi-criteria decision analysis (MCDA) tool.

  11. On promotion of base technologies of atomic energy. Aiming at breakthrough in atomic energy technologies in 21st century

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.).

  12. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  13. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Balachandra, P.; Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara

    2010-01-01

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  14. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  15. Finnish energy technologies for the future

    International Nuclear Information System (INIS)

    2007-01-01

    The global energy sector is going through major changes: the need for energy is growing explosively, while at the same time climate change is forcing US to find new, and cleaner, ways to generate energy. Finland is one of the forerunners in energy technology development, partly because of its northern location and partly thanks to efficient innovations. A network of centres of expertise was established in Finland in 1994 to boost the competitiveness and internationalisation of Finnish industry and, consequently, that of the EU region. During the expertise centre programme period 2007-2013, substantial resources will be allocated to efficient utilisation of top level expertise in thirteen selected clusters of expertise. The energy cluster, focusing on developing energy technologies for the future, is one of these

  16. New technologies of the energy 1. The renewable energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.

    2006-01-01

    This book, devoted to the renewable energies, is the first of three volumes taking stock on the new technologies of the energy situation. The first part presents the solar energy (thermal photovoltaic and thermodynamic), completed by a chapter on the wind energy. An important part is devoted to new hydraulic energies with the sea energies and the very little hydroelectricity and in particular the exploitation of the energy of the drinking water and wastes water pipelines. (A.L.B.)

  17. The SPARC-LAB Thomson source

    International Nuclear Information System (INIS)

    Vaccarezza, C.; Alesini, D.; Anania, M.P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A.; Chiadroni, E.; Croia, M.; Curcio, A.; Delogu, P.; Giovenale, D. Di; Domenico, G. Di; Pirro, G. Di; Drebot, I.; Ferrario, M.; Filippi, F.

    2016-01-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  18. The SPARC-LAB Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C., E-mail: cristina.vaccarezza@lnf.infn.it [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Alesini, D.; Anania, M.P. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Bacci, A. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Biagioni, A.; Bisesto, F.; Bellaveglia, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Cardarelli, P. [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Cardelli, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); Cianchi, A. [University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Chiadroni, E.; Croia, M.; Curcio, A. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Delogu, P. [University of Pisa and INFN-PI, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Giovenale, D. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Domenico, G. Di [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Pirro, G. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Drebot, I. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Ferrario, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Filippi, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); and others

    2016-09-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  19. Energy technology perspectives - scenarios and strategies to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-03

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  20. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  1. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  2. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO 2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  3. Emerging energy technologies impacts and policy implications

    International Nuclear Information System (INIS)

    Grubb, M.

    1992-01-01

    Technical change is a key factor in the energy world. Failure to recognize the potential for technical change, and the pace at which it may occur, has limited the accuracy and usefulness of past energy projections. conversely, programs to develop and deploy advanced energy technologies have often proved disappointing in the face of technical and commercial obstacles. This book examines important new and emerging energy technologies, and the mechanisms by which they may develop and enter the market. The project concentrates on the potential and probable role of selected energy technologies-which are in existence and likely to be of rapidly growing importance over the next decade-and the way in which market conditions and policy environment may affect their implementation

  4. Energy poverty: A special focus on energy poverty in India and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bhide, Anjali; Monroy, Carlos Rodriguez [Department of Business Administration, School of Industrial Engineering, Technical University of Madrid, Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)

    2011-02-15

    As a large percentage of the world's poor come from India, development in India is a key issue. After the establishment of how access to energy enhances development and the achievement of the millennium development goals, energy poverty has become a major issue. In India there is a great interest in addressing the subject of energy poverty, in order to reach development goals set by the Government. This will imply an increase in India's energy needs. In a climate of change and environmental consciousness, sustainable alternatives must be considered to address these issues. Renewable energy technologies could provide a solution to this problem. The Government of India has been focussing in implementing electricity policies as well as on promoting renewable energy technologies. The focus of this article is to bring to light the problems faced in India in terms of energy consumption as well as the hindrances faced by renewable-based electrification networks. Government policies aimed at addressing these issues, as well as the current state of renewable energy technologies in India are discussed, so as to analyse the possibility of a solution to the problems of finding a sustainable method to eradicate energy poverty in India. The research reveals that the Government of India has been unable to meet some of its unrealistic development goals, and in order to achieve the remaining goals it will have to take drastic steps. The Government will have to be more aggressive in the promotion of renewable energy technologies in order to achieve sustainable development in India. (author)

  5. Promoting clean energy technology entrepreneurship: The role of external context

    International Nuclear Information System (INIS)

    Malen, Joel; Marcus, Alfred A.

    2017-01-01

    This study examines how political, social and economic factors influence clean energy technology entrepreneurship (CETE). Government policies supporting clean energy technology development and the development of markets for clean energy create opportunities for CETE. However, the extent to which such opportunities lead to the emergence of new clean energy businesses depends on a favorable external context promoting CETE. This study employs a novel dataset combining indicators of the policy and social context of CETE with information on clean energy technology startup firms in the USA to provide empirical evidence that technological and market conditions supporting clean energy induce more extensive CETE under contexts where local attention to clean energy issues and successful firms commercializing clean energy technologies are more prominent. By establishing that CETE is contingent upon a supportive local environment as well as technology and market opportunities, the study holds relevance for policy makers and clean energy technology firms. - Highlights: • Influence of political, social and economic factors on clean energy technology entrepreneurship (CETE). • CETE more prominent with clean energy technology availability. • Greater when local attention interacts with technology availability and market opportunities. • Greater when local firms successfully commercialize technologies. • Novel dataset and Arellano-Bond dynamic panel estimation.

  6. Energy Technology Initiatives - Implementation Through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    New technologies will be critical in addressing current global energy challenges such as energy security. More must be done, however, to push forward the development and deployment of the technologies we need today and will need in the future. Government leaders have repeatedly underlined the crucial role of industry and businesses in advancing energy technologies and the importance of strong collaboration among all stakeholders to accelerate technology advances. To attain these goals, increased co-operation between industries, businesses and government energy technology research is indispensable. The public and private sectors must work together, share burdens and resources, while at the same time multiplying results and outcomes. The 42 multilateral technology initiatives (Implementing Agreements) supported by the IEA are a flexible and effective framework for IEA member and non-member countries, businesses, industries, international organisations and non-government organisations to research breakthrough technologies, to fill existing research gaps, to build pilot plants, to carry out deployment or demonstration programmes -- in short to encourage technology-related activities that support energy security, economic growth and environmental protection. This publication highlights the significant accomplishments of the IEA Implementing Agreements.

  7. Soft energy technology hope or illusion

    International Nuclear Information System (INIS)

    Seifritz, W.

    1980-01-01

    Both in the press and in TV, increasingly more voices are calling to turn away from large technology, especially to do without nuclear energy. Well-known representatives of this movement are A. Lovins in the USA, R. Jungk and K. Traube in the Federal Republic of Germany. They make attempts to convince the public that the future problems of energy supply can be solved by saving energy and utilizing alternative energy sources such as solar energy and wind energy. They fight against the 'hard' technology and its main representatives, the large industry because these, in their opinion, desise growth and material wealth at the cost of a healthy environment thus causing a progressing intellectual, cultural, and emotional impoverishment of mankind. Instead of these, they want to use a 'smooth' technology which is thought to lead to a deceuhalisation with more humanity, liberality, and justice. The author shows here that, as far as the potential and the effects of a utilization of alternative energy sources are concerned, these people wake expectations which cannot be fulfilled for technical reasons. But there is something even worse: These utopic expectations lead to an ideology which might result in destroying the fundaments of utilizing the doubtlessly existing potential of the alternative energy sources, especially the often praised renewability of solar energy utilization. (orig.) [de

  8. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  9. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  10. Personalised learning spaces and federated online labs for STEM Education at School

    NARCIS (Netherlands)

    Gillet, Dennis; de Jong, Anthonius J.M.; Sotirou, Sofoklis; Salzmann, Christophe

    2013-01-01

    The European Commission is funding a large-scale research project on federated online laboratories (Labs) for education in Science, Technology, Engineering, and Mathematics (STEM) at School. The main educational focus is on inquiry learning and the main technological one is on personalized learning

  11. Energy prices, technological knowledge and green energy innovation. A dynamic panel analysis of patent counts

    International Nuclear Information System (INIS)

    Kruse, Juergen; Wetzel, Heike; Koeln Univ.

    2014-01-01

    We examine the effect of energy prices and technological knowledge on innovation in green energy technologies. In doing so, we consider both demand-pull effects, which induce innovative activity by increasing the expected value of innovations, and technology-push effects, which drive innovative activity by extending the technological capability of an economy. Our analysis is conducted using patent data from the European Patent Office on a panel of 26 OECD countries over the period 1978-2009. Utilizing a dynamic count data model for panel data, we analyze 11 distinct green energy technologies. Our results indicate that the existing knowledge stock is a significant driver of green energy innovation for all technologies. Furthermore, the results suggest that energy prices have a positive impact on innovation for some but not all technologies and that the e.ect of energy prices and technological knowledge on green energy innovation becomes more pronounced after the Kyoto protocol agreement in 1997.

  12. SuperFormLab: showing SuperFormLab

    DEFF Research Database (Denmark)

    2013-01-01

    bachelor program, followed by two years of master studies. The courses are offered equally to students from other design disciplines, e.g. industrial design. Teaching is mainly in English as the program is attended by a relatively large group of non-Danish students, who seek exactly this combination......3D-printing in clay and ceramic objects shaped by your own sounds and movements! Digital form transferred via CNC-milling to ornamental ceramic wall-cladding. Brave New World… Students and their teacher at SuperFormLab, the new ceramic workshop of the School of Design at the Royal Danish Academy...... of Fine Arts in Copenhagen, will be showing results of their investigations into the potential of combining digital technologies with ceramic materials. It is now possible to shape the most complex mathematical, virtual 3D objects through the use of advanced software-programs. And more than that – you can...

  13. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  14. Norwegian focus on new energy technology

    International Nuclear Information System (INIS)

    Bull-Hansen, Eivind

    2001-01-01

    Norsk Hydro Technology Ventures, a venture capital fund recently set up by Norsk Hydro, will raise equity capital to companies that are developing promising new projects on new energy technology or to investment funds promoting such projects. Norsk Hydro will withdraw from the investments when the projects have reached commercialization or are listed on the stock exchange. There is a well-developed market for venture capital in the energy sector and a strong international competition for investments in good projects. The sharp environmental focus on fossil fuels and climate gases has boosted the research on new energy technologies. Another and more important factor is the fact that modern society with its heavy dependence on the computer is vulnerable to power failure

  15. Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present

    Science.gov (United States)

    Arble, Chris; Jia, Meng; Newberg, John T.

    2018-05-01

    Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.

  16. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  17. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  18. Imaging high energy photons with PILATUS II at the tagged photon beam at MAX-lab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V. [School of Physics, University of Melbourne, Parkville 3010 (Australia)], E-mail: leev@physics.unimelb.edu.au; Peake, D.J.; Sobott, B. [School of Physics, University of Melbourne, Parkville 3010 (Australia); Schroeder, B. [MAX-lab, Lund University, Lund (Sweden); Broennimann, Ch. [DECTRIS Ltd., Baden (Switzerland); Henrich, B. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Hansen, K. [MAX-lab, Lund University, Lund (Sweden); O' Keefe, G.J. [Centre for PET, Austin Hospital, Heidelberg, Victoria 3084 (Australia); School of Physics, University of Melbourne, Parkville 3010 (Australia); Taylor, G.N. [School of Physics, University of Melbourne, Parkville 3010 (Australia); Boland, M.J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); School of Physics, University of Melbourne, Parkville 3010 (Australia); Thompson, M.N.; Rassool, R.P. [School of Physics, University of Melbourne, Parkville 3010 (Australia)

    2009-05-21

    In photonuclear experiments precise location of the photon beam relative to the experimental sample is critical. Previously used techniques such as using photographic film to identify the position, intensity and centroid of the beam is time-consuming and a faster method is required. PILATUS is a single-photon-counting pixel detector developed at the Paul Scherrer Institute (PSI), Switzerland. It is a silicon-based, two-dimensional detector with a large dynamic range and zero readout noise. Designed as an X-ray detector, its optimal quantum efficiency is between 3 and 30 keV. This paper reports measurements carried out at the MAX-lab tagged photon facility in Lund, Sweden. The beam endpoint energy of approximately 200 MeV is far above the designed optimal energy detection range of PILATUS, and provides a critical test of the use of PILATUS under high energy conditions. The detector was placed in the photon beam and images were taken both downstream of other experiments, and in close range of a 19 mm collimator. The successful measurements demonstrate the versatility and robustness of the detector and provide an effective way of quickly and accurately monitoring beam position and profile in real time.

  19. Performance of renewable energy technologies in the energy-environmental-economic continuum

    International Nuclear Information System (INIS)

    Guthrie, B.M.; Birkenheier, T.L.

    1993-01-01

    Projected cost-performance data are used to calculate the Canadian commercial potential of selected renewable energy technologies to the year 2010. Based on projected market penetration, the extent to which renewable energy can contribute to environmental initiatives is also examined. The potential for renewable energy to contribute to the Canadian electricity supply is limited neither by the state of the technology nor the extent of the resource available. Barriers to acceptance of renewables include high initial capital costs, intermittent nature of much of the energy supply, land requirements, onerous requirements for environmental assessments and licensing, and lack of government policies which consider the externalities involved in new energy supply. Environmental benefits which will drive the adoption of renewables in Canada include the sustainable nature of renewable resources, low environmental impacts, and suitability for integrated resource planning. In addition, the cost performance of renewable technologies is improving rapidly. Under base-case scenarios, at current buyback rates, only small hydro and biomass of the five renewable technologies examined has significant commercial potential in Canada. At buyback rates that reflect currently projected avoided costs plus an additional 2 cents per kWh as an environmental premium, all five renewable technologies except for photovoltaics have appreciable commercial potential achievable by 2010. The quantity of electrical energy displaced under this latter scenario is estimated at 49 TWh/y, or 7% of the projected total generation in Canada. 2 figs., 2 tabs

  20. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  1. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rutter, A. [Sustainability Solutions LLC (Guam); Briggs, D. [Naval Base Guam, Santa Rita (Guam)

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  2. Science Lab Restructuring of a Public School Elementary and High School

    Directory of Open Access Journals (Sweden)

    Elisiane da Costa Moro

    2016-02-01

    Full Text Available This paper presents the process of restructuring the science lab of a state school in Caxias do Sul, whose main objective was to create a space where teachers could develop practical and experimental activities with their students. The restructuring of the science lab this school, was only possible through the project "More and Better Students and Teachers in Science, Mathematics, Engineering and Technologies" Initiation Program in Science and Mathematics, Engineering, Creative Technologies and Letters - PICMEL sponsored jointly by the University of Caxias do Sul, the SEDUC-RS, FAPERGS and CAPES. The project was developed at school by a teacher of physics and three high school students. Through the restructuring of the science lab, practical activities were developed and workshops where students had the opportunity to be more active in the process of teaching and learning. With the development of such activities was observed that the students were more willing to learn Science and Mathematics and could relate scientific knowledge to their daily lives, giving greater meaning to their learning.

  3. Market penetration rates of new energy technologies

    International Nuclear Information System (INIS)

    Lund, Peter

    2006-01-01

    The market penetration rates of 11 different new energy technologies were studied covering energy production and end-use technologies. The penetration rates were determined by fitting observed market data to an epidemical diffusion model. The analyses show that the exponential penetration rates of new energy technologies may vary from 4 up to over 40%/yr. The corresponding take-over times from a 1% to 50% share of the estimated market potential may vary from less than 10 to 70 years. The lower rate is often associated with larger energy impacts. Short take-over times less than 25 years seem to be mainly associated with end-use technologies. Public policies and subsides have an important effect on the penetration. Some technologies penetrate fast without major support explained by technology maturity and competitive prices, e.g. compact fluorescent lamps show a 24.2%/yr growth rate globally. The penetration rates determined exhibit some uncertainty as penetration has not always proceeded close to saturation. The study indicates a decreasing penetration rate with increasing time or market share. If the market history is short, a temporally decreasing functional form for the penetration rate coefficient could be used to anticipate the probable behavior

  4. Microfluidics and Lab-on-a-Chip Devices

    DEFF Research Database (Denmark)

    Castillo, Jaime

    2015-01-01

    The rapid advances in microfabrication and nanofabrication in combination with the synthesis and discovery of new materials have propelled the drive to develop new technological devices such as smartphones, personal and tablet computers. These devices have changed the way humankind interacts......TAS technologies need to join forces with those behind the new communication devices which provide sources of power, detection and data transmission complementing the features that lab-on-a-chip and microTAS platforms can offer. An increasing number of microfluidic-based devices, developed both in small start...

  5. Applying living lab methodology to enhance skills in innovation

    CSIR Research Space (South Africa)

    Herselman, M

    2010-07-01

    Full Text Available and which is also inline with the South African medium term strategic framework and the millennium goals of the Department of Science and Technology. Evidence of how the living lab methodology can enhance innovation skills was made clear during various...

  6. Heterogeneous Policies, Heterogeneous Technologies: The Case of Renewable Energy

    International Nuclear Information System (INIS)

    Nicolli, Francesco; Vona, Francesco

    2014-07-01

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main findings show that lowering entry barriers is a more significant driver of renewable energy innovation than privatisation and un-bundling, but its effect varies across technologies, being stronger in technologies characterised by the potential entry of small, independent power producers. Additionally, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, the ratification of the Kyoto protocol - determining a more stable and less uncertain policy framework - amplifies the inducement effect of both energy policy and market liberalisation. (authors)

  7. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  8. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  9. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  10. Teaching mathematics in the PC lab - the students' viewpoints

    Science.gov (United States)

    Schmidt, Karsten; Köhler, Anke

    2013-04-01

    The Matrix Algebra portion of the intermediate mathematics course at the Schmalkalden University Faculty of Business and Economics has been moved from a traditional classroom setting to a technology-based setting in the PC lab. A Computer Algebra System license was acquired that also allows its use on the students' own PCs. A survey was carried out to analyse the students' attitudes towards the use of technology in mathematics teaching.

  11. Energy technology monitoring - New areas and in-depth investigations

    International Nuclear Information System (INIS)

    Rigassi, R.; Eicher, H.; Steiner, P.; Ott, W.

    2005-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered

  12. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  13. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  14. The Role of Energy Reservoirs in Distributed Computing: Manufacturing, Implementing, and Optimizing Energy Storage in Energy-Autonomous Sensor Nodes

    Science.gov (United States)

    Cowell, Martin Andrew

    The world already hosts more internet connected devices than people, and that ratio is only increasing. These devices seamlessly integrate with peoples lives to collect rich data and give immediate feedback about complex systems from business, health care, transportation, and security. As every aspect of global economies integrate distributed computing into their industrial systems and these systems benefit from rich datasets. Managing the power demands of these distributed computers will be paramount to ensure the continued operation of these networks, and is elegantly addressed by including local energy harvesting and storage on a per-node basis. By replacing non-rechargeable batteries with energy harvesting, wireless sensor nodes will increase their lifetimes by an order of magnitude. This work investigates the coupling of high power energy storage with energy harvesting technologies to power wireless sensor nodes; with sections covering device manufacturing, system integration, and mathematical modeling. First we consider the energy storage mechanism of supercapacitors and batteries, and identify favorable characteristics in both reservoir types. We then discuss experimental methods used to manufacture high power supercapacitors in our labs. We go on to detail the integration of our fabricated devices with collaborating labs to create functional sensor node demonstrations. With the practical knowledge gained through in-lab manufacturing and system integration, we build mathematical models to aid in device and system design. First, we model the mechanism of energy storage in porous graphene supercapacitors to aid in component architecture optimization. We then model the operation of entire sensor nodes for the purpose of optimally sizing the energy harvesting and energy reservoir components. In consideration of deploying these sensor nodes in real-world environments, we model the operation of our energy harvesting and power management systems subject to

  15. Ab initio calculations of the electronic structure and bonding characteristics of LaB6

    International Nuclear Information System (INIS)

    Hossain, Faruque M.; Riley, Daniel P.; Murch, Graeme E.

    2005-01-01

    Lanthanum hexaboride (LaB 6 , NIST SRM-660a) is widely used as a standard reference material for calibrating the line position and line shape parameters of powder diffraction instruments. The accuracy of this calibration technique is highly dependent on how completely the reference material is characterized. Critical to x-ray diffraction, this understanding must include the valence of the La atomic position, which in turn will influence the x-ray form factor (f) and hence the diffracted intensities. The electronic structure and bonding properties of LaB 6 have been investigated using ab initio plane-wave pseudopotential total energy calculations. The electronic properties and atomic bonding characteristics were analyzed by estimating the energy band structure and the density of states around the Fermi energy level. The calculated energy band structure is consistent with previously reported experimental findings; de Haas-van Alphen and two-dimensional angular correlation of electron-positron annihilation radiation. In addition, the bond strengths and types of atomic bonds in the LaB 6 compound were estimated by analyzing the Mulliken charge density population. The calculated result revealed the coexistence of covalent, ionic, and metallic bonding in the LaB 6 system and partially explains its high efficiency as a thermionic emitter

  16. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    Bates, J.; Watkiss, P.; Thorpe, T.

    1997-01-01

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO 2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  17. Energy systems and technologies for the coming century. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L; Larsen, Hans [eds.

    2011-05-15

    Risoe International Energy Conference 2011 took place 10 - 12 May 2011. The conference focused on: 1) Future global energy development options, scenarios and policy issues. 2) Intelligent energy systems of the future, including the interaction between supply and end-use. 3) New and emerging technologies for the extended utilisation of sustainable energy. 4) Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal. 5) Centralised energy production technologies such as clean coal technologies, CCS and nuclear. 6) Renewable energy for the transport sector and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011. (Author)

  18. Kinematic Labs with Mobile Devices

    Science.gov (United States)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  19. Developing a framework for energy technology portfolio selection

    Science.gov (United States)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  20. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  1. Scientific challenges in sustainable energy technology

    Science.gov (United States)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  2. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  3. TECHNOLOGICAL CHANGE during the ENERGY TRANSITION

    NARCIS (Netherlands)

    van der Meijden, Gerard; Smulders, Sjak

    2018-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a nonrenewable resource and an alternative energy source in a market economy model of endogenous growth

  4. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  5. On the economics of technology diffusion and energy efficiency

    International Nuclear Information System (INIS)

    Mulder, P.

    2003-01-01

    Energy is an essential factor that fuels economic growth and serves human well-being. World energy use has grown enormously since the middle of the 19th century. This increase in the scale of energy demand comes at a certain price, including environmental externalities, such as the enhanced greenhouse effect. Notwithstanding the need for renewable energy sources, these environmental problems also necessitate further improvements in energy efficiency. Technological change plays a crucial role in realizing energy efficiency improvements and, hence, in ameliorating the conflict between economic growth and environmental quality. At the same time, it is known that not only innovation, but also diffusion of new technologies is a costly and lengthy process, and that many firms do not invest in best-practice technologies. This study aims to contribute to a better understanding of the inter. play between economic growth, energy use and technological change, with much emphasis on the adoption and diffusion of energy-saving technologies. The thesis presents a mix of theoretical and empirical analyses inspired by recent developments in economic theorizing on technological change that stress the role of accumulation and distribution of knowledge (learning), uncertainty, path dependency and irreversibility. The theoretical part of the study examines how several characteristics of technological change as well as environmental policy affect the dynamics of technology choice. The empirical part of the study explores long-run trends in energy- and labour productivity performance across a range of OECD countries at a detailed sectoral level

  6. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  7. Future Scientific Opportunities At Jefferson Lab

    International Nuclear Information System (INIS)

    Thomas, Anthony

    2007-01-01

    Nuclear physics requires at least one major facility world-wide which is capable of fully exploiting the properties of the electro-weak force to investigate precisely the structure of strongly interacting systems. At its current maximum energy of 6 GeV Jefferson Lab has provided a wealth of important information on the structure of nucleons and nuclei. However, the plans to double the energy over the next seven years promise to open new frontiers in nuclear and particle physics. We briefly describe the plans for the 12 GeV Upgrade and the associated physics opportunities.

  8. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  9. Where Does the Energy Go?

    Science.gov (United States)

    Stoeckel, Marta R.

    2018-01-01

    Along-standing energy lab involves dropping bouncy balls and measuring their rebound heights on successive bounces. The lab demonstrates a situation in which the mechanical energy of a system is not conserved. Although students enjoyed the lab, the author wanted to deepen their thinking about energy, including the connections to motion, with a new…

  10. How to Incorporate Technology with Inquiry-Based Learning to Enhance the Understanding of Chemical Composition; How to Analyze Unknown Samples

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2017-02-01

    Full Text Available The use of technology in teaching offers numerous amounts of possibilities and can be challenging for physics, chemistry and geology content courses. When incorporating technology into a science content lab it is better to be driven by pedagogy than by technology in an inquiry-based lab setting. Students need to be introduced to real-world technology in the beginning of first year chemistry or physics course to ensure real-world technology concepts while assisting with content such as periodic trends on the periodic table. This article will describe the use of technology with Raman Spectroscopy and Energy Dispersive XRay Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR to research chemical compositions in the real world of unknown samples. Such unknown samples utilized in this lab were clamshell (parts of clams that look like shark teeth versus shark teeth. The data will be shared to show how the students (pre-service teachers and in-service teachers solved the problem using technology while learning important content that will assist in the next level of chemistry, physics and even geology.

  11. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  12. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua

    2015-01-01

    be advantageous if an ELN was Integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to Open......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management......, thus making Open-Lab Framework more attractive for laboratories that seek to increase productivity through electronic data management....

  13. Energy dispersive X-ray spectroscopy with microcalorimeters

    International Nuclear Information System (INIS)

    Hollerith, C.; Wernicke, D.; Buehler, M.; Feilitzsch, F. von; Huber, M.; Hoehne, J.; Hertrich, T.; Jochum, J.; Phelan, K.; Stark, M.; Simmnacher, B.; Weiland, W.; Westphal, W.

    2004-01-01

    Shrinking feature sizes in semiconductor device production as well as the use of new materials demand innovation in device technology and material analysis. X-ray spectrometers based on superconducting sensor technology are currently closing the gap between fast energy dispersive spectroscopy (EDS) and high-resolution wavelength dispersive spectroscopy (WDS). This work reports on the successful integration of iridium/gold transition edge sensors in the first industrially used microcalorimeter EDS. The POLARIS microcalorimeter system is installed at the failure analysis lab FA5 at Infineon Technologies AG in Neuperlach (Munich) and is used in routine analysis

  14. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    Greene, D.L.; Boudreaux, P.R.; Dean, D.J.; Fulkerson, W.; Gaddis, A.L.; Graham, R.L.; Graves, R.L.; Hopson, J.L.; Hughes, P.; Lapsa, M.V.; Mason, T.E.; Standaert, R.F.; Wilbanks, T.J.; Zucker, A.

    2010-01-01

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO 2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  15. Microalgae based biorefinery: evaluation of oil extraction methods in terms of efficiency, costs, toxicity and energy in lab-scale

    Directory of Open Access Journals (Sweden)

    Ángel Darío González-Delgado

    2013-06-01

    Full Text Available Several alternatives of microalgal metabolites extraction and transformation are being studied for achieving the total utilization of this energy crop of great interest worldwide. Microalgae oil extraction is a key stage in microalgal biodiesel production chains and their efficiency affects significantly the global process efficiency. In this study, a comparison of five oil extraction methods in lab-scale was made taking as additional parameters, besides extraction efficiency, the costs of method performing, energy requirements, and toxicity of solvents used, in order to elucidate the convenience of their incorporation to a microalgae-based topology of biorefinery. Methods analyzed were Solvent extraction assisted with high speed homogenization (SHE, Continuous reflux solvent extraction (CSE, Hexane based extraction (HBE, Cyclohexane based extraction (CBE and Ethanol-hexane extraction (EHE, for this evaluation were used the microalgae strains Nannochloropsis sp., Guinardia sp., Closterium sp., Amphiprora sp. and Navicula sp., obtained from a Colombian microalgae bioprospecting. In addition, morphological response of strains to oil extraction methods was also evaluated by optic microscopy. Results shows that although there is not a unique oil extraction method which excels in all parameters evaluated, CSE, SHE and HBE appears as promising alternatives, while HBE method is shown as the more convenient for using in lab-scale and potentially scalable for implementation in a microalgae based biorefinery

  16. Technological Change during the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, J.A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  17. Technological Change During the Energy Transition

    NARCIS (Netherlands)

    van der Meijden, G.C.; Smulders, Sjak A.

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth

  18. Integration of energy efficient technologies in UK supermarkets

    International Nuclear Information System (INIS)

    Ochieng, E.G.; Jones, N.; Price, A.D.F.; Ruan, X.; Egbu, C.O; Zuofa, T.

    2014-01-01

    The purpose of this paper is twofold: to determine if the integration of energy efficient technologies in UK supermarkets can determine consumer behaviour, and to establish if such activities can help satisfying the environmental elements of the clients corporate social responsibilities (CSR) in an attempt to create a competitive advantage. A literature review of existing material considered the history and drivers of sustainability, the types of energy efficient technologies and factors concerning CSR and consumer behaviour in relation to the supermarket industry. Interviews with 15 senior store managers were recorded and transcribed. The opinions of the senior store managers were then sought and analysed using qualitative research software NVivo software. Validity of the data was achieved at a later stage through workshops. The results of this paper suggested that there is a definite lack of awareness and knowledge amongst customers regarding energy efficient technologies. From the findings, it was further established that the key driver for retailers who integrate energy efficient technologies is fiscal incentives, although it was suggested some retailers use CSR strategies to report there are environmental achievements it was ultimately found that cost savings were the primary driver. - Highlights: • The effect of sustainability towards consumer behaviour was explored. • Majority of consumers are unaware of energy efficient technologies. • Energy efficient technologies do not determine or create shifts in paradigm in consumer actions. • Stores are driven to integrate energy efficient technologies more by government legislation. • Participants were clear in making the point that their image and reputation was based on trust

  19. Frequency spectrum analysis of 252Cf neutron source based on LabVIEW

    International Nuclear Information System (INIS)

    Mi Deling; Li Pengcheng

    2011-01-01

    The frequency spectrum analysis of 252 Cf Neutron source is an extremely important method in nuclear stochastic signal processing. Focused on the special '0' and '1' structure of neutron pulse series, this paper proposes a fast-correlation algorithm to improve the computational rate of the spectrum analysis system. And the multi-core processor technology is employed as well as multi-threaded programming techniques of LabVIEW to construct frequency spectrum analysis system of 252 Cf neutron source based on LabVIEW. It not only obtains the auto-correlation and cross correlation results, but also auto-power spectrum,cross-power spectrum and ratio of spectral density. The results show that: analysis tools based on LabVIEW improve the fast auto-correlation and cross correlation code operating efficiency about by 25% to 35%, also verify the feasibility of using LabVIEW for spectrum analysis. (authors)

  20. Long-term energy futures: the critical role of technology

    International Nuclear Information System (INIS)

    Grubler, A.

    1999-01-01

    The paper briefly reviews the results of a 5-year study conducted by IIASA jointly with the World Energy Council (WEC) on long term-energy perspectives. After summarizing the study's main findings, the paper addresses the crucial role of technological change in the evolution of long-term energy futures and in responding to key long-term uncertainties in the domains of energy demand growth, economics, as well as environmental protection. Based on most recent empirical and methodological findings, long-term dynamics of technological change portray a number of distinct features that need to be taken account of in technology and energy policy. First, success of innovation efforts and ultimate outcomes of technological are uncertain. Second, new, improved technologies are not a free good, but require continued dedicated efforts. Third, technological knowledge (as resulting from R and D and accumulation of experience, i.e. technological learning) exhibits characteristics of (uncertain) increasing returns. Forth, due to innovation - diffusion lags, technological interdependence, and infrastructure needs (network externalities), rates of change in large-scale energy systems are necessarily slow. This implies acting sooner rather than later as a contigency policy to respond to long-term social, economic and environmental uncertainties, most notably possible climate change. Rather than picking technological 'winners' the results of the IIASA-WEC scenario studies are seen most appropriate to guide technology and R and D portfolio analysis. Nonetheless, robust persistent patterns of technological change invariably occur across all scenarios. Examples of primising groups of technologies are given. The crucial importance of meeting long-energy demand in developing countries, assuring large-scale infrastructure investments, maintaining a strong and diversified R AND D protfolio, as well as to dvise new institutional mechnisms for technology development and diffusion for instance

  1. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  2. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  3. Gas and energy technology 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    Norway has a long tradition as an energy producing nation. No other country administers equally large quantities of energy compared to the number of inhabitants. Norway faces great challenges concerning the ambitions of utilizing natural gas power and living up to its Kyoto protocol pledges. Tekna would like to contribute to increased knowledge about natural gas and energy, its possibilities and technical challenges. Topics treated include carrying and employing natural gas, aspects of technology, energy and environment, hydrogen as energy carrier, as well as other energy alternatives, CO{sub 2} capture and the value chain connected to it.

  4. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  5. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Energy, society and environment. Technology for a sustainable future

    International Nuclear Information System (INIS)

    Elliott, D.

    1997-04-01

    Energy, Society and Environment examines energy and energy use, and the interactions between technology, society and the environment. The book is clearly structured to examine; Key environmental issues, and the harmful impacts of energy use; New technological solutions to environmental problems; Implementation of possible solutions, and Implications for society in developing a sustainable approach to energy use. Social processes and strategic solutions to problems are located within a clear, technological context with topical case studies. (UK)

  7. Thermal Energy for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  8. National Renewable Energy Laboratory: 35 Years of Innovation (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    This brochure is an overview of NREL's innovations over the last 35 years. It includes the lab's history and a description of the laboratory of the future. The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency. NREL's work focuses on advancing renewable energy and energy efficiency technologies from concept to the commercial marketplace through industry partnerships. The Alliance for Sustainable Energy, LLC, a partnership between Battelle and MRIGlobal, manages NREL for DOE's Office of Energy Efficiency and Renewable Energy.

  9. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  10. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  11. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  12. Comparing Waste-to-Energy technologies by applying energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Lund, Henrik

    2010-01-01

    Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows...... potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research...

  13. Energy and technology review

    International Nuclear Information System (INIS)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K.

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices

  14. Miniature stick-packaging--an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems.

    Science.gov (United States)

    van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix

    2013-08-07

    Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.

  15. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  16. Bringing solutions to big challenges. Energy - climate - technology (ECT)

    International Nuclear Information System (INIS)

    2008-01-01

    The conference contains 45 presentations within the sections integrated policy and strategic perspectives on energy, climate change and technology, energy efficiency with prospects and measures, climate change and challenges for offshore energy and technology, possibilities for technology utilization, nuclear technology developments including some papers on thorium utilization, ethics of energy resource use and climate change, challenges and possibilities for the Western Norway and sustainability and security in an ECT-context. Some economic aspects are discussed as well. 16 of the 45 papers have been indexed for the database (tk)

  17. On promotion of base technologies of atomic energy

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.)

  18. Invocation of Grid operations in the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Bartyński, T.; Malawski, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    This paper presents invocation of grid operations within the ViroLab Virtual Laboratory. Virtual laboratory enables users to develop and execute experiments that access computational resources on the Grid exposed via various middleware technologies. An abstraction over the Grid environment is

  19. Department of energy technology

    International Nuclear Information System (INIS)

    1983-04-01

    The general development of the Department of Energy Technology at Risoe during 1982 is presented, and the activities within the major subject fields are described in some detail. List of staff, publications and computer programs are included. (author)

  20. Rational use of energy. Finnish technology cases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This publication has been produced within the THERMIE B project `Interactive Promotion of Energy Technologies between Finland and Other EUCountries and to Estonia` (STR-0622-95-FI) as carried out for DG XVII of the European Commission. MOTIVA of Finntech Finnish Technology Ltd Oy has acted as the project co-ordinating body, with Ekono B.E., Ekono Energy Ltd and Friedemann and Johnson Consultants GmbH as partners. The main aim of the second phase of the project, as documented here, was to produce a publication in English on Finnish energy technologies, primarily in the building, industry and traffic sectors. The target distribution for this publication is primarily the EU countries through public and commercial information networks. During the work, the latest information on Finnish energy technologies has been collected, reviewed, screened and analysed in relation to the THERMIE programme. The following presentation consists of descriptions of case technologies; their background, technical aspects and energy saving potentials where applicable. The three RUE sectors; buildings, industry and traffic, are put forward in separate chapters. The building sector concentrates mostly in different control systems. New lighting and heating systems increase energy savings both in the large industrial sites and in private homes. In the industry sector new enhanced processes are introduced along with new products to increase energy efficiency. Traffic sector concentrates in traffic control and reducing exhaust gas emissions by new systems and programmes. The aim in Finland is to reduce exhaust gas emissions both by controlling the traffic efficiently and by developing fuels with lower emission levels. A lot is being done by educating the drivers and the public in efficient driving methods

  1. Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN

    DEFF Research Database (Denmark)

    Münster, Marie

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste......-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows...... the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also...

  2. A Nuclear Scale System Based on LabVIEW

    International Nuclear Information System (INIS)

    Liu Shixing; Gu Qindong

    2009-01-01

    Nuclear mass scales measure the weight of materials which absorb and attenuate the nuclear radiation when the low energy γ-ray through it and is a non-contact continuous measurement device with simple structure and reliable operation. LabVIEW as a graphical programming language is a standard data acquisition and instrument control software. Based on the principle of nuclear mass scale measuring system, monitoring software for nuclear scale system is designed using LabVIEW programming environment. Software architecture mainly composed of three basic modules which include the monitoring software, databases and Web services. It achieves measurement data acquisition, status monitoring, and data management and has networking functions. (authors)

  3. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  4. Public Lab: Community-Based Approaches to Urban and Environmental Health and Justice.

    Science.gov (United States)

    Rey-Mazón, Pablo; Keysar, Hagit; Dosemagen, Shannon; D'Ignazio, Catherine; Blair, Don

    2018-05-03

    This paper explores three cases of Do-It-Yourself, open-source technologies developed within the diverse array of topics and themes in the communities around the Public Laboratory for Open Technology and Science (Public Lab). These cases focus on aerial mapping, water quality monitoring and civic science practices. The techniques discussed have in common the use of accessible, community-built technologies for acquiring data. They are also concerned with embedding collaborative and open source principles into the objects, tools, social formations and data sharing practices that emerge from these inquiries. The focus is on developing processes of collaborative design and experimentation through material engagement with technology and issues of concern. Problem-solving, here, is a tactic, while the strategy is an ongoing engagement with the problem of participation in its technological, social and political dimensions especially considering the increasing centralization and specialization of scientific and technological expertise. The authors also discuss and reflect on the Public Lab's approach to civic science in light of ideas and practices of citizen/civic veillance, or "sousveillance", by emphasizing people before data, and by investigating the new ways of seeing and doing that this shift in perspective might provide.

  5. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  6. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  7. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Science.gov (United States)

    2010-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  8. The relationship between agricultural technology and energy demand in Pakistan

    International Nuclear Information System (INIS)

    Zaman, Khalid; Khan, Muhammad Mushtaq; Ahmad, Mehboob; Rustam, Rabiah

    2012-01-01

    The purpose of this study was two fold: (i) to investigate the casual relationship between energy consumption and agricultural technology factors, and (ii) electricity consumption and technological factors in the agricultural sector of Pakistan. The study further evaluates four alternative but equally plausible hypotheses, each with different policy implications. These are: (i) Agricultural technology factors cause energy demand (the conventional view), (ii) energy demand causes technological factors, (iii) There is a bi-directional causality between the two variables and (iv) Both variables are causality independent. By applying techniques of Cointegration and Granger causality tests on energy demand (i.e., total primary energy consumption and electricity consumption) and agricultural technology factors (such as, tractors, fertilizers, cereals production, agriculture irrigated land, high technology exports, livestock; agriculture value added; industry value added and subsides) over a period of 1975–2010. The results infer that tractor and energy demand has bi-directional relationship; while irrigated agricultural land; share of agriculture and industry value added and subsides have supported the conventional view i.e., agricultural technology cause energy consumption in Pakistan. On the other hand, neither fertilizer consumption and high technology exports nor energy demand affect each others. Government should form a policy of incentive-based supports which might be a good policy for increasing the use of energy level in agriculture. - Highlights: ► Find the direction between green technology factors and energy demand in Pakistan. ► The results indicate that there is a strong relationship between them. ► Agriculture machinery and energy demand has bi-directional relationship. ► Green technology causes energy consumption i.e., unidirectional relationship. ► Agriculture expansion is positive related to total primary energy consumption.

  9. Achievement report for fiscal 1998 on development of wide-area energy utilization network system. Eco-energy urban system (Research of systematization technology and evaluation technology out of energy system designing technology researches); Koiki energy riyo network system kaihatsu (eko energy toshi system) 1998 nendo seika hokokusho. Energy system sekkei gijutsu no kenkyu no uchi system ka gijutsu hyoka gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the realization of urban society respecting enhanced energy efficiency and environmental protection, cities and surrounding industrial facilities are investigated for the development of element technologies involving energy recovery, conversion, transportation, storage, delivery, utilization, etc., and for the compounding of urban energy systems. In the study of the effect of introduction, assumption is made of delivery of heat to an urban heat accumulation district from a plant equivalent to a district air-conditioning system which is covered by the existing technologies. Also assumed are the delivery of exhaust heat to the said plant utilizing eco-energy element technologies and the replacement of existing technologies by eco-energy element technologies. Comparison is established in terms of energy efficiency, environmental protection, and economy, and then it is found that the eco-energy element technologies for the utilization of exhaust heat are in all cases superior to the conventional technologies as far as energy efficiency and environmental protection are concerned. It is found, however, that they are inferior from the economic viewpoint. The energy efficiency technology in heat transportation is superior to the existing technology in energy efficiency and environmental protection but roughly equal to the existing ones in economy. (NEDO)

  10. Productivity effects of technology diffusion induced by an energy tax

    International Nuclear Information System (INIS)

    Walz, R.

    1999-01-01

    In the political discussion, the economy-wide effects of an energy tax have gained considerable attention. So far, macroeconomic analyses have focused on either (positive or negative) costs triggered by an energy tax, or on the efficiency gains resulting from new energy taxes combined with lower distortionary taxes. By contrast, the innovative effects of climate protection measures have not yet been thoroughly analysed. This paper explores the productivity effects of a 50 per cent energy tax in the German industry sector employing a technology-based, three-step bottom-up approach. In the first step, the extensive IKARUS database is used to identify the technological adjustments arising from an energy tax. In the second step, the technologies are classified into different clusters. In the third step, the productivity effects generated by the technological adjustments are examined. The results imply that an energy tax induces mainly sector-specific and process-integrated technologies rather than add-on and cross-cutting technologies. Further, it is shown that the energy-saving technologies tend to increase productivity. This is particularly the case for process-integrated, sector specific technologies. (author)

  11. ImSET: Impact of Sector Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  12. The idea factory: Bell Labs and the great age of American innovation

    National Research Council Canada - National Science Library

    Gertner, Jon

    2012-01-01

    This work highlights achievements of Bell Labs as a leading innovator, exploring the role of its highly educated employees in developing new technologies while considering the qualities of companies...

  13. Scenarios for a Clean Energy Future: Interlaboratory Working Group on Energy-Efficient and Clean-Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-12-18

    This study estimates the potential for public policies and R and D programs to foster clean energy technology solutions to the energy and environmental challenges facing the nation. These challenges include global climate change, air pollution, oil dependence, and inefficiencies in the production and use of energy. The study uses a scenario-based approach to examine alternative portfolios of public policies and technologies. Although the report makes no policy recommendations, it does present policies that could lead to impressive advances in the development and deployment of clean energy technologies without significant net economic impacts. Appendices are available electronically at: www.nrel.gov/docs/fy01osti/29379appendices.pdf (6.4 MB).

  14. Methane mitigation timelines to inform energy technology evaluation

    Science.gov (United States)

    Roy, Mandira; Edwards, Morgan R.; Trancik, Jessika E.

    2015-11-01

    Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.

  15. Methane mitigation timelines to inform energy technology evaluation

    International Nuclear Information System (INIS)

    Roy, Mandira; Edwards, Morgan R; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane (CH 4 ) and carbon dioxide (CO 2 ) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH 4 -emitting technologies prior to an optimal switching year, followed by CH 4 -light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH 4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers. (letter)

  16. The final technical report of the CRADA, 'Medical Accelerator Technology'

    International Nuclear Information System (INIS)

    Chu, W.T.; Rawls, J.M.

    2000-01-01

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation

  17. Federal Labs and Research Centers Benefiting California: 2017 Impact Report for State Leaders.

    Energy Technology Data Exchange (ETDEWEB)

    Koning, Patricia Brady [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-12-01

    Sandia National Laboratories is the largest of the Department of Energy national laboratories with more than 13,000 staff spread across its two main campuses in New Mexico and California. For more than 60 years, the Sandia National Laboratories campus in Livermore, California has delivered cutting-edge science and technology solutions to resolve the nation’s most challenging and complex problems. As a multidisciplinary laboratory, Sandia draws from virtually every science and engineering discipline to address challenges in energy, homeland security, cybersecurity, climate, and biosecurity. Today, collaboration is vital to ensuring that the Lab stays at the forefront of science and technology innovation. Partnerships with industry, state, and local governments, and California universities help drive innovation and economic growth in the region. Sandia contributed to California’s regional and statewide economy with more than $145 million in contracts to California companies, $92 million of which goes to California small businesses. In addition, Sandia engages the community directly by running robust STEM education programs for local schools and administering community giving programs. Meanwhile, investments like the Livermore Valley Open Campus (LVOC), an innovation hub supported by LLNL and Sandia, help catalyze the local economy.

  18. Energy and technology review

    International Nuclear Information System (INIS)

    Carr, R.B.; McCleb, C.S.; Prono, J.K.

    1976-01-01

    Brief discussions of research progress on the following topics are given: (1) lasers and laser applications, (2) advanced energy systems, (3) science and technology, and (4) national security. Some experiments on the in-flight laser irradiation of ammonia pellets are discussed

  19. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K. (eds.)

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices.

  20. Digital media labs in libraries

    CERN Document Server

    Goodman, Amanda L

    2014-01-01

    Families share stories with each other and veterans reconnect with their comrades, while teens edit music videos and then upload them to the web: all this and more can happen in the digital media lab (DML), a gathering of equipment with which people create digital content or convert content that is in analog formats. Enabling community members to create digital content was identified by The Edge Initiative, a national coalition of leading library and local government organizations, as a library technology benchmark. Surveying academic and public libraries in a variety of settings and sharing a

  1. Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Dentz, J. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Barker, G. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Rath, P. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States); Dadia, D. [Advanced Residential Integrated Energy Solutions (ARIES) Collaboration, New York, NY (United States)

    2016-03-01

    Three side-by-side lab houses were built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The lab houses in Russellville, Alabama compared the performance of three homes built to varying levels of thermal integrity and HVAC equipment: a baseline HUD-code home equipped with an electric furnace and a split system air conditioner; an ENERGY STAR manufactured home with an enhanced thermal envelope and traditional split system heat pump; and a house designed to qualify for Zero Energy Ready Home designation with a ductless mini-split heat pump with transfer fan distribution system in place of the traditional duct system for distribution. Experiments were conducted in the lab houses to evaluate impact on energy and comfort of interior door position, window blind position and transfer fan operation. The report describes results of tracer gas and co-heating tests and presents calculation of the heat pump coefficient of performance for both the traditional heat pump and the ductless mini-split. A series of calibrated energy models was developed based on measured data and run in three locations in the Southeast to compare annual energy usage of the three homes.

  2. Renewable energy technologies: costs and markets

    International Nuclear Information System (INIS)

    Nitsch, J.; Langniss, O.

    1997-01-01

    A prominent feature of renewable energy utilisation is the magnitude of renewable energy that is physically available worldwide. The present paper attempts an economic valuation of development strategies for renewable energy sources (RES) on the basis of the past development of RES markets. It comes to the conclusion that if current energy prices remain largely unchanged, it will be necessary to promote RES technologies differentially according to the technique and type of energy employed or to provide start-up funding. The more probable a long-term increase in energy prices becomes, the greater will be the proportion of successfully promoted technologies. Energy taxes on exhaustible or environmentally harmful energy carriers and other instruments to this end would contribute greatly to the attractivity of RES investment both in terms of national economy and from the viewpoint of the private investor. Renewable energies will play an important role in the hardware and services sectors of the energy market in the decades to come. Long-term promotion of market introduction programmes and unequivocal energy-political aims on the part of the government are needed if the German industry is to have a share in this growing market and be able to offer internationally competitive products [de

  3. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  4. Lab-on a-Chip

    Science.gov (United States)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  5. Active Learning in Introductory Economics: Do MyEconLab and Aplia Make Any Difference?

    Science.gov (United States)

    Nguyen, Trien; Trimarchi, Angela

    2010-01-01

    This paper reports experiment results of teaching large classes of introductory economics with modern learning technology such as MyEconLab or Aplia. This new technology emerges partially in response to the enrollment pressure currently facing many institutions of higher education. Among other things, the technology provides an integrated online…

  6. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  7. Living Labs: overview of ecological approaches for health promotion and rehabilitation.

    Science.gov (United States)

    Korman, M; Weiss, P L; Kizony, R

    2016-01-01

    The term "Living Lab" was coined to reflect the use of sensors to monitor human behavior in real life environments. Until recently such measurements had been feasible only within experimental laboratory settings. The objective of this paper is to highlight research on health care sensing and monitoring devices that enable direct, objective and accurate capture of real-world functioning. Selected articles exemplifying the key technologies that allow monitoring of the motor-cognitive activity of persons with disabilities during naturally occurring daily experiences in real-life settings are discussed in terms of (1) the ways in which the Living Lab approach has been used to date, (2) limitations related to clinical assessment in rehabilitation settings and (3) three categories of the instruments most commonly used for this purpose: personal technologies, ambient technologies and external assistive systems. Technology's most important influences on clinical practice and rehabilitation are in a shift from laboratory-based to field-centered research and a transition between in-clinic performance to daily life activities. Numerous applications show its potential for real-time clinical assessment. Current technological solutions that may provide clinicians with objective, unobtrusive measurements of health and function, as well as tools that support rehabilitation on an individual basis in natural environments provide an important asset to standard clinical measures. Until recently objective clinical assessment could not be readily performed in a client's daily functional environment. Novel technologies enable health care sensing and monitoring devices that enable direct, objective and accurate capture of real-world functioning. Such technologies are referred to as a "Living Lab" approach since they enable the capture of objective and non-obtrusive data that clinicians can use to assess performance. Research and development in this field help clinicians support maintain

  8. The Impact of Sustainable Development Technology on a Small Economy-The Case of Energy-Saving Technology.

    Science.gov (United States)

    Chen, Xiding; Huang, Qinghua; Huang, Weilun; Li, Xue

    2018-02-08

    We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology's displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different.

  9. SRF Accelerator Technology Transfer Experience from the Achievement of the SNS Cryomodule Production Run

    CERN Document Server

    Hogan, John; Daly, Edward; Drury, Michael A; Fischer, John; Hiatt, Tommy; Kneisel, Peter; Mammosser, John; Preble, Joseph P; Whitlatch, Timothy; Wilson, Katherine; Wiseman, Mark

    2005-01-01

    This paper will discuss the technology transfer aspect of superconducting RF expertise, as it pertains to cryomodule production, beginning with the original design requirements through testing and concluding with product delivery to the end user. The success of future industrialization, of accelerator systems, is dependent upon a focused effort on accelerator technology transfer. Over the past twenty years the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has worked with industry to successfully design, manufacture, test and commission more superconducting RF cryomodules than any other entity in the United States. The most recent accomplishment of Jefferson Lab has been the successful production of twenty-four cryomodules designed for the Spallation Neutron Source (SNS). Jefferson Lab was chosen, by the United States Department of Energy, to provide the superconducting portion of the SNS linac due to its reputation as a primary resource for SRF expertise. The successful partnering with, and d...

  10. From e-manufacturing to Internet Product Process Development (IPPD) through remote – labs

    International Nuclear Information System (INIS)

    Nieto, Ernesto Córdoba; Parra, Paulo Andres Cifuentes; Díaz, Juan Camilo Parra

    2014-01-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as L aboratorio Fabrica Experimental ) . This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A

  11. Analysis on energy saving and emission reduction of clean energy technology in ports

    Science.gov (United States)

    Zhu, Li; Qin, Cuihong; Peng, Chuansheng

    2018-02-01

    This paper discusses the application of clean energy technology in ports. Using Ningbo port Co. Ltd. Beilun second container terminal branch as an example, we analyze the effect of energy saving and emission reduction of CO2 and SO2 by clean energy alternative to fuel oil, and conclude that the application of clean energy technology in the container terminal is mature, and can achieve effect of energy-saving and emission reduction of CO2 and SO2. This paper can provide as a reference for the promotion and application of clean energy in ports.

  12. New energy technologies report

    International Nuclear Information System (INIS)

    2004-01-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  13. Recent skyshine calculations at Jefferson Lab

    International Nuclear Information System (INIS)

    Degtyarenko, P.

    1997-01-01

    New calculations of the skyshine dose distribution of neutrons and secondary photons have been performed at Jefferson Lab using the Monte Carlo method. The dose dependence on neutron energy, distance to the neutron source, polar angle of a source neutron, and azimuthal angle between the observation point and the momentum direction of a source neutron have been studied. The azimuthally asymmetric term in the skyshine dose distribution is shown to be important in the dose calculations around high-energy accelerator facilities. A parameterization formula and corresponding computer code have been developed which can be used for detailed calculations of the skyshine dose maps

  14. Lab-on-a-Chip: Frontier Science in the Classroom

    Science.gov (United States)

    Wietsma, Jan Jaap; van der Veen, Jan T.; Buesink, Wilfred; van den Berg, Albert; Odijk, Mathieu

    2018-01-01

    Lab-on-a-chip technology is brought into the classroom through development of a lesson series with hands-on practicals. Students can discover the principles of microfluidics with different practicals covering laminar flow, micromixing, and droplet generation, as well as trapping and counting beads. A quite affordable novel production technique…

  15. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  16. Climate-smart technologies. Integrating renewable energy and energy efficiency in mitigation and adaptation responses

    Energy Technology Data Exchange (ETDEWEB)

    Leal Filho, Walter; Mannke, Franziska; Schulte, Veronika [Hamburg Univ. of Applied Sciences (Germany). Faculty of Life Sciences; Mohee, Romeela; Surroop, Dinesh (eds.) [Mauritius Univ., Reduit (Mauritius). Chemical and Environmental Engineering Dept.

    2013-11-01

    Explores the links between climate change and technologies. Relates to the links between renewable energy and climate change. Documents and promotes a collection of experiences from island nations. Has a strong international focus and value to developing countries. The book addresses the perceived need for a publication with looks at both, climate smart technologies and the integration of renewable energy and energy efficiency in mitigation and adaptation responses. Based on a set of papers submitted as part of the fifth on-line climate conference (CLIMATE 2012) and a major conference on renewable energy on island States held in Mauritius in 2012, the book provides a wealth of information on climate change strategies and the role of smart technologies. The book has been produced in the context of the project ''Small Developing Island Renewable Energy Knowledge and Technology Transfer Network'' (DIREKT), funded by the ACP Science and Technology Programme, an EU programme for cooperation between the European Union and the ACP region.

  17. Likely market-penetrations of renewable-energy technologies

    International Nuclear Information System (INIS)

    Probert, S.D.; Mackay, R.M.

    1998-01-01

    The learning-curve concept is considered to be an important tool for predicting the future costs of renewable-energy technology systems. This paper sets out the underlying rationale for learning-curve theory and the potential for its application to renewable technologies, such as photovoltaic-module and wind-power generator technologies. An indication of the data requirements for carrying out learning-curve projections is given together with an assessment of the requirements necessary for an analysis to be undertaken of the application of learning curves to other renewable-energy technologies. The paper includes a cost comparison and a figure-of-merit criterion applicable to photovoltaic-module and wind-power-turbine technologies. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hendrik Hamann, Levente Klein

    2012-06-28

    . Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

  19. Reusable Handheld Electrolytes and Lab Technology for Humans (rHEALTH Sensor), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the rHEALTH sensor is to provide rapid, low-cost, handheld complete blood count (CBC), cell differential counts, electrolyte measurements, and other lab...

  20. Energy Technology Investments: Maximizing Efficiency Through a Maritime Energy Portfolio Interface and Decision Aid

    Science.gov (United States)

    2012-02-09

    Investment (ROI) and Break Even Point ( BEP ). These metrics are essential for determining whether an initiative would be worth pursuing. Balanced...is Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy...Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy Efficiency 4

  1. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  2. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  3. Advanced Grid Control Technologies Workshop Series | Energy Systems

    Science.gov (United States)

    : Smart Grid and Beyond John McDonald, Director, Technical Strategy and Policy Development, General Control Technologies Workshop Series In July 2015, NREL's energy systems integration team hosted workshops the Energy Systems Integration Facility (ESIF) and included a technology showcase featuring projects

  4. Innovation of Energy Technologies: the role of taxes

    OpenAIRE

    Copenhagen Economics

    2011-01-01

    The study deals with the links between energy taxation and innovation and presents also new empirical evidence on the impact of energy taxes on patenting activities related to energy technologies. The study suggests that while taxation is a very effective driver of innovation, it can be usefully complemented with other public policy tools, such as public research grants and other technology policies.

  5. The design of video and remote analysis system for gamma spectrum based on LabVIEW

    International Nuclear Information System (INIS)

    Xu Hongkun; Fang Fang; Chen Wei

    2009-01-01

    For the protection of analyst in the measurement,as well as the facilitation of expert to realize the remote analysis, a solution of live video combined with internet access and control is proposed. DirectShow technology and the LabVIEW'S IDT (Internet Develop Toolkit) module are used, video and analysis pages of the gamma energy spectrum are integrated and published in the windows system by IIS (Internet Information Sever). We realize the analysis of gamma spectrum and remote operations by internet. At the same time, the system has a friendly interface and easily to be put into practice. It also has some reference value for the related radioactive measurement. (authors)

  6. Development of alternative energy technologies. Entrepreneurs, new technologies, and social change

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R

    1985-01-01

    This paper discusses the introduction and development of several alternative energy technologies in countries where the innovation process has enjoyed some measure of success: solar water heating (California, Israel), windmills (Denmark), wood and peat for co-generation (Northern New England, Finland) and geo-thermal power (California) as well as heat pumps designed to save energy (West Germany). It is argued that the introduction and development of new technologies - and the socio-technical systems which utilize these technologies - depend on the initiatives of entrepreneurs and social change agents. They engage in adapting and matching technology and social structure (laws, institutions, norms, political and economic forces and social structure generally). Successful developments - as well as blocked or retarded developments - are discussed in terms of such ''compatibility analysis''. Policy implications are also discussed. (orig.).

  7. A Living Lab as a Service: Creating Value for Micro-enterprises through Collaboration and Innovation

    Directory of Open Access Journals (Sweden)

    Anna Ståhlbröst

    2013-11-01

    Full Text Available The need to innovate is increasingly important for all types and sizes of organizations, but the opportunities for innovation differ substantially between them. For micro-, small,- and medium-sized enterprises, innovation activities are both crucial and demanding because of limited resources, competencies, or vision to innovate their offerings. To support these organizations, the concept of living labs as a service has started to emerge. This concept refers to living labs offering services such as designing the idea-generation processes, planning or carrying out real-world tests of innovations, and pre-market launch assessments. In this article, we will present the findings from a study of micro-enterprises operating in the information technology development sector, including the experienced value of services provided to the companies by a research-based living lab. We share experiences from Botnia, our own living lab in northern Sweden. In this living lab, our aim of creating value for customers is of key importance. Our study shows that using a living lab as a service can generate three different types of value: improved innovations, the role the living lab can play, and the support the living lab offers.

  8. Achievement report for fiscal 1976 on Sunshine Program. Technology assessment of hydrogen energy technologies III; 1976 nendo suiso energy gijutsu no technology assessment. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-31

    This report contains the ultimate results of the 3-year research endeavor on 'Technology assessment of hydrogen energy technologies.' The scientists engaged in the project express their impressions at the conclusion of the research, stating: 'In the development of hydrogen energy technologies, what is the most important at the present stage is to define the formation of the energy more clearly - in what shape or at what place - so that various activities in this connection will be organized.' They say also: 'Although the type of research effort of looking into technological possibilities is quite important naturally, yet such should been carried out with a sense of purpose which is definite and concrete.' Before what are stated above may be complied with, of course, systems for development have to be arranged allowing the scientists to act in the above-suggested way. This report consists of a general discussion part and an itemized discussion part. The former summarizes the intention, aim, premise, contents, findings, opinions, etc., concerning the research work; and the latter carries a gist of the 'Hydrogen energy system concept (draft)' which constitutes the foundation on which the above-mentioned details are discussed in the former. (NEDO)

  9. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  10. Innovation, Diffusion, and Regulation in Energy Technologies

    Science.gov (United States)

    Fetter, Theodore Robert

    The innovation and diffusion of new technologies is one of the central concerns of economics. New inventions or technological combinations do not spring fully formed into the world; as firms encounter and learn about new technologies they experiment, refine, and learn about them, improving productivity (and sometimes earning economic rents). Understanding the processes by which firms learn, and how these processes interact with regulations, is fundamental to understanding the emergence of new technologies, their contribution to growth, and the interaction of innovation and regulation. This dissertation addresses how firms learn and respond to regulations in the context of emerging technologies. Within this framework, I address several questions. When production inputs are socially controversial, do firms respond to disclosure laws by voluntarily constraining their inputs? Do these public disclosure laws facilitate knowledge transmission across firms, and if so, what are the implications for public welfare - for instance, do the gains from trade outweigh any effects of reduced incentives for innovation? I study these questions in the context of hydraulic fracturing, though the results offer insight for more general settings. Panning out to a much broader view, I also explore how energy-related technologies - in both generation and consumption - diffuse across national boundaries over time, and whether innovation and diffusion of energy-efficient technologies has led to more or less energy-efficient economic growth. In my first paper, I contribute to improved understanding of the conditions in which information-based regulations, which are increasingly common in multiple policy domains, decrease externalities such as environmental pollution. Specifically, I test whether information disclosure regulations applied to hydraulic fracturing chemicals caused firms to decrease their use of toxic inputs. Prior to these mandatory disclosure laws, some operators voluntarily

  11. Energy conservation employing membrane-based technology

    International Nuclear Information System (INIS)

    Narayanan, C.M.

    1993-01-01

    Membranes based processes, if properly adapted to industrial processes have good potential with regard to optimisation and economisation of energy consumption. The specific benefits of MBT (membrane based technology) as an energy conservation methodology are highlighted. (author). 6 refs

  12. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    Science.gov (United States)

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  13. Lab at Home: Hardware Kits for a Digital Design Lab

    Science.gov (United States)

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  14. Towards the Realization of the ICT Education Living Lab – The TechTeachers.co.za Success Story

    Directory of Open Access Journals (Sweden)

    Albertus A. K. Buitendag

    2015-06-01

    Full Text Available This paper presents the success story of the intuitive vision of an Information and Communication Technology (ICT high school educator in South Africa. The growth and evolution of a Community of Practice towards a full-fledged living lab is investigated. A grounded theory study analyses the living lab concept and highlights some of the current challenges secondary high school ICT education face within the South African educational landscape. Some of the concepts, ideas, best practices, and lessons learned in the establishment and running of two web based technologies to support secondary school ICT subjects is discussed. The researchers present a motivation for the use of living labs to address some of the issues identified and highlights how the existing platforms fits into bigger design.

  15. Technology and the diffusion of renewable energy

    International Nuclear Information System (INIS)

    Popp, David; Hascic, Ivan; Medhi, Neelakshi

    2011-01-01

    We consider investment in wind, solar photovoltaic, geothermal, and electricity from biomass and waste across 26 OECD countries from 1991 to 2004. Using the PATSTAT database, we obtain a comprehensive list of patents for each of these technologies throughout the world, which we use to assess the impact of technological change on investment in renewable energy capacity. We consider four alternative methods for counting patents, using two possible filters: weighting patents by patent family size and including only patent applications filed in multiple countries. For each patent count, we create knowledge stocks representing the global technological frontier. We find that technological advances do lead to greater investment, but the effect is small. Investments in other carbon-free energy sources, such as hydropower and nuclear power, serve as substitutes for renewable energy. Comparing the effectiveness of our four patent counts, we find that both using only patents filed in multiple countries and weighting by family size improve the fit of the model.

  16. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development

    Directory of Open Access Journals (Sweden)

    Ellen B. Van Oosten

    2017-12-01

    Full Text Available Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women’s leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  17. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development.

    Science.gov (United States)

    Van Oosten, Ellen B; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women's leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  18. A Virtual PV Systems Lab for Engineering Undergraduate Curriculum

    Directory of Open Access Journals (Sweden)

    Emre Ozkop

    2014-01-01

    Full Text Available Design and utilization of a Virtual Photovoltaic Systems Laboratory for undergraduate curriculum are introduced in this paper. The laboratory introduced in this study is developed to teach students the basics and design steps of photovoltaic solar energy systems in a virtual environment before entering the field. The users of the proposed virtual lab will be able to determine the sizing by selecting related parameters of the photovoltaic system to meet DC and AC loading conditions. Besides, the user will be able to analyze the effect of changing solar irradiation and temperature levels on the operating characteristics of the photovoltaic systems. Common DC bus concept and AC loading conditions are also included in the system by utilizing a permanent magnet DC motor and an RLC load as DC and AC loading examples, respectively. The proposed Virtual Photovoltaic Systems Laboratory is developed in Matlab/Simulink GUI environment. The proposed virtual lab has been used in Power Systems Lab in the Department of Electrical and Electronics Engineering at Karadeniz Technical University as a part of undergraduate curriculum. A survey on the students who took the lab has been carried out and responses are included in this paper.

  19. NASA energy technology applications program

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-05

    The NASA Energy Technology Applications Program is reviewed. This program covers the following points: 1. wind generation of electricity; 2. photovoltaic solar cells; 3. satellite power systems; 4. direct solar heating and cooling; 5. solar thermal power plants; 6. energy storage; 7. advanced ground propulsion; 8. stationary on-site power supply; 9. advanced coal extraction; 10. magnetic heat pump; 11. aeronautics.

  20. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

  1. Energy and technology review

    International Nuclear Information System (INIS)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers

  2. Integrating the Technology Acceptance Model and Diffusion of Innovation: Factors Promoting Interest in Energy Efficient and Renewable Energy Technologies at Military Installations, Federal Facilities and Land-Grant Universities

    Science.gov (United States)

    Dudik, C. E. Jane

    2017-01-01

    Energy managers are tasked with identifying energy savings opportunities and promoting energy independence. Energy-efficient (EE) and renewable-energy (RE) technology demonstrations enable energy managers to evaluate new energy technologies and adopt those that appear most effective. This study examined whether energy technology demonstrations…

  3. 4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.; Lu, X.; Iacoviello, F.; Millichamp, J.; Brett, D. J. L.; Shearing, P. R.

    2018-05-01

    Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularly in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.

  4. Integration with Energy Harvesting Technology

    Directory of Open Access Journals (Sweden)

    S. Williams

    2012-11-01

    Full Text Available This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.

  5. Technology assessment of solar energy utilization

    Science.gov (United States)

    Jaeger, F.

    1985-11-01

    The general objectives and methods of Technology Assessment (TA) are outlined. Typical analysis steps of a TA for solar energy are reviewed: description of the technology and its further development; identification of impact areas; analysis of boundary conditions and definition of scenarios; market penetration of solar technologies; projection of consequences in areas of impact; and assessment of impacts and identification of options for action.

  6. Feed-in tariffs for promotion of energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Krajacic, Goran, E-mail: Goran.Krajacic@fsb.h [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10002 Zagreb (Croatia); Duic, Neven, E-mail: Neven.Duic@fsb.h [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10002 Zagreb (Croatia); Instituto Superior Tecnico, Lisbon (Portugal); Tsikalakis, Antonis, E-mail: atsikal@corfu.power.ece.ntua.g [National Technical University of Athens, Athens (Greece); Zoulias, Manos, E-mail: mzoulias@cres.g [Centre for Renewable Energy Sources and Savings (CRES), Pikermi (Greece); Caralis, George, E-mail: gcaralis@central.ntua.g [National Technical University of Athens, Athens (Greece); Panteri, Eirini, E-mail: panteri@rae.g [Regulatory Authority for Energy (RAE), Athens (Greece); Carvalho, Maria da Graca, E-mail: mariadagraca.carvalho@europarl.europa.e [Instituto Superior Tecnico, Lisbon (Portugal)

    2011-03-15

    Faster market integration of new energy technologies can be achieved by use of proper support mechanisms that will create favourable market conditions for such technologies. The best examples of support mechanisms presented in the last two decades have been the various schemes for the promotion of renewable energy sources (RES). In the EU, the most successful supporting schemes are feed-in tariffs which have significantly increased utilisation of renewable energy sources in Germany, Spain, Portugal, Denmark and many other EU countries. Despite the successful feed-in tariffs for RES promotion, in many cases RES penetration is limited by power system requirements linked to the intermittency of RES sources and technical capabilities of grids. These problems can be solved by implementation of energy storage technologies like reversible or pumped hydro, hydrogen, batteries or any other technology that can be used for balancing or dump load. In this paper, feed-in tariffs for various energy storage technologies are discussed along with a proposal for their application in more appropriate regions. After successful application on islands and outermost regions, energy storage tariffs should be also applied in mainland power systems. Increased use of energy storage could optimise existing assets on the market. - Research highlights: {yields} Feed-in tariffs will promote development and use of energy storage technologies. {yields} Energy storage effectively increases RES penetration. {yields} Pumped Hydro Storage: an efficient solution for RES integration in islands. {yields} Remuneration of Batteries and Inverters as a service can increase RES Penetration. {yields} Desalination, apart from water can help in more efficient RES integration.

  7. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  8. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  9. Integrated lab-on-chip biosensing systems based on magnetic particle actuation : a comprehensive review

    NARCIS (Netherlands)

    Reenen, van A.; Jong, de A.M.; Toonder, den J.M.J.; Prins, M.W.J.

    2014-01-01

    The demand for easy to use and cost effective medical technologies inspires scientists to develop inno-vative lab-on-chip technologies for in-vitro diagnostic testing. To fulfill the medical needs, the tests should be rapid, sensitive, quantitative, miniaturizable, and need to integrate all steps

  10. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  11. The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology

    Directory of Open Access Journals (Sweden)

    Xiding Chen

    2018-02-01

    Full Text Available We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology’s displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different.

  12. The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology

    Science.gov (United States)

    Huang, Qinghua; Huang, Weilun; Li, Xue

    2018-01-01

    We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology’s displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different. PMID:29419788

  13. FOREWORD: Jefferson Lab: A Long Decade of Physics

    Science.gov (United States)

    Montgomery, Hugh

    2011-04-01

    Jefferson Lab Jefferson Lab was created in 1984 and started operating in about 1996. 2011 is an appropriate time to try to take a look at the results that have appeared, what has been learned, and what has been exciting for our scientific community. Rather than attempt to construct a coherent view with a single author or at least a small number, we have, instead, invited small groups of people who have been intimately involved in the work itself to make contributions. These people are accelerator experts, experimentalists and theorists, staff and users. We have, in the main, sought reviews of the actual sub-fields. The primary exception is the first paper, which sets the scene as it was, in one person's view, at the beginning of Jefferson Lab. In reviewing the material as it appeared, I was impressed by the breadth of the material. Major advances are documented from form factors to structure functions, from spectroscopy to physics beyond the standard model of nuclear and particle physics. Recognition of the part played by spin, the helicities of the beams, the polarizations of the targets, and the polarizations of final state particles, is inescapable. Access to the weak interaction amplitudes through measurements of the parity violating asymmetries has led to quantification of the strange content of the nucleon and the neutron radius of lead, and to measurements of the electroweak mixing angle. Lattice QCD calculations flourished and are setting the platform for understanding of the spectroscopy of baryons and mesons. But the star of the game was the accelerator. Its performance enabled the physics and also the use of the technology to generate a powerful free electron laser. These important pieces of Jefferson Lab physics are given their place. As the third Director of Jefferson Lab, and on behalf of the other physicists and others presently associated with the lab, I would like to express my admiration and gratitude for the efforts of the directors, chief

  14. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  15. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  16. Deployment of energy efficient technologies in developing countries

    International Nuclear Information System (INIS)

    Koch, H.J.

    2000-01-01

    Efficient and reliable power generation and power distribution represent the engine for economic growth in developing countries. A vast majority of the population in these countries does not have access to electricity, and those that do are often faced with an unreliable power distribution system. Now is the ideal time to transfer efficient energy technologies which also adhere to environmental standards. There are a myriad of inexpensive ways to avoid energy losses, such as cogeneration, the addition of natural gas turbines to coal-fired heating boilers. Even power generation itself can be more efficient. These improvements would encourage the financing world to pay closer attention and invest more rapidly in projects aimed at improving efficient power generation. The International Energy Agency was created in 1974 with the participation of 25 countries, and its mandate was expanded to include the deployment of clean and efficient energy technologies in developing countries. Technology transfer involves more than the shipping of equipment combined with some expert assistance. It involves the active participation of several partners, from the private sector, governments, non-governmental organizations (NGO), and academic institutions. The objective is to empower the recipient population, thereby reducing the need for imports. It is a joint international effort where the results benefit all participants. The author also discussed the Climate Technology Initiative (CTI) with the aim of disseminating information concerning climate change in the hope of reducing global emissions of greenhouse gases. Discussions to assist countries in the examination of avenues open to them in the field of energy are also fostered. Training in energy efficient technologies represents an important aspect of the role of CTI. It applies to decision makers to help them establish appropriate guidelines and regulations with regard to these technologies. Sustainable development can be achieved

  17. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  18. Status of the C-band RF System for the SPARC-LAB high brightness photo-injector

    CERN Document Server

    Boni, R.; Bellaveglia, M.; Di Pirro, G.; Ferrario, M.; Gallo, A.; Spataro, B.; Mostacci, A.; Palumbo, L.

    2013-01-01

    The high brightness photo-injector in operation at the SPARC-LAB facility of the INFN-LNF, Italy, consists of a 150 MeV S-band electron accelerator aiming to explore the physics of low emittance high peak current electron beams and the related technology. Velocity bunching techniques, SASE and Seeded FEL experiments have been carried out successfully. To increase the beam energy so improving the performances of the experiments, it was decided to replace one S-band travelling wave accelerating cavity, with two C-band cavities that allow to reach higher energy gain per meter. The new C-band system is in advanced development phase and will be in operation early in 2013. The main technical issues of the C-band system and the R&D activities carried out till now are illustrated in detail in this paper.

  19. First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R.; Conradie, J.; Delsink, H.; Du Plessis, H.; Fourie, D.; Klopp, M.; Kohler, I.; Lussi, C.; McAlister, R.; Ntshangase, S.; Sakildien, M. [iThemba LABS, P.O Box 722, Somerset West 7130 (South Africa); Hitz, D. [CEA/DRFMC, 17 Av. Des Martyrs, 38054, Grenoble Cedex 9 (France); Kuechler, D. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2012-02-15

    iThemba Laboratory for Accelerator Based Science (iThemba LABS) is a multi-disciplinary accelerator facility. One of its main activities is the operation of a separated-sector cyclotron with a K-value of 200, which provides beams of various ion species. These beams are used for fundamental nuclear physics research in the intermediate energy region, radioisotope production, and medical physics applications. Due to the requirements of nuclear physics for new ion species and higher energies, the decision was made to install a copy of the so-called Grenoble test source (GTS) at iThemba LABS. In this paper, we will report on the experimental setup and the first results obtained with the GTS2 at iThemba LABS.

  20. First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    International Nuclear Information System (INIS)

    Thomae, R.; Conradie, J.; Delsink, H.; Du Plessis, H.; Fourie, D.; Klopp, M.; Kohler, I.; Lussi, C.; McAlister, R.; Ntshangase, S.; Sakildien, M.; Hitz, D.; Kuechler, D.

    2012-01-01

    iThemba Laboratory for Accelerator Based Science (iThemba LABS) is a multi-disciplinary accelerator facility. One of its main activities is the operation of a separated-sector cyclotron with a K-value of 200, which provides beams of various ion species. These beams are used for fundamental nuclear physics research in the intermediate energy region, radioisotope production, and medical physics applications. Due to the requirements of nuclear physics for new ion species and higher energies, the decision was made to install a copy of the so-called Grenoble test source (GTS) at iThemba LABS. In this paper, we will report on the experimental setup and the first results obtained with the GTS2 at iThemba LABS.

  1. Jefferson Lab: A Long Decade of Physics

    International Nuclear Information System (INIS)

    Montgomery, Hugh

    2011-01-01

    Jefferson Lab was created in 1984 and started operating in about 1996. 2011 is an appropriate time to try to take a look at the results that have appeared, what has been learned, and what has been exciting for our scientific community. Rather than attempt to construct a coherent view with a single author or at least a small number, we have, instead, invited small groups of people who have been intimately involved in the work itself to make contributions. These people are accelerator experts, experimentalists and theorists, staff and users. We have, in the main, sought reviews of the actual sub-fields. The primary exception is the first paper, which sets the scene as it was, in one person's view, at the beginning of Jefferson Lab. In reviewing the material as it appeared, I was impressed by the breadth of the material. Major advances are documented from form factors to structure functions, from spectroscopy to physics beyond the standard model of nuclear and particle physics. Recognition of the part played by spin, the helicities of the beams, the polarizations of the targets, and the polarizations of final state particles, is inescapable. Access to the weak interaction amplitudes through measurements of the parity violating asymmetries has led to quantification of the strange content of the nucleon and the neutron radius of lead, and to measurements of the electroweak mixing angle. Lattice QCD calculations flourished and are setting the platform for understanding of the spectroscopy of baryons and mesons. But the star of the game was the accelerator. Its performance enabled the physics and also the use of the technology to generate a powerful free electron laser. These important pieces of Jefferson Lab physics are given their place. As the third Director of Jefferson Lab, and on behalf of the other physicists and others presently associated with the lab, I would like to express my admiration and gratitude for the efforts of the directors, chief scientists

  2. Health risks of energy technologies

    International Nuclear Information System (INIS)

    Travis, C.C.; Etnier, E.L.

    1983-01-01

    This volume examines occupational, public health, and environmental risks of the coal fuel cycle, the nuclear fuel cycle, and unconventional energy technologies. The 6 chapters explore in detail the relationship between energy economics and risk analysis, assess the problems of applying traditional cost-benefit analysis to long-term environmental problems (such as global carbon dioxide levels), and consider questions about the public's perception and acceptance of risk. Also included is an examination of the global risks associated with current and proposed levels of energy production and comsumption from all major sources. A separate abstract was prepared for each of the 6 chapters; all are included in Energy Abstracts for Policy Analysis (EAPA) and four in Energy Research Abstracts

  3. Exploring linear algebra labs and projects with Mathematica

    CERN Document Server

    Arangala, Crista

    2014-01-01

    Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...

  4. NEDO's white paper on renewable energy technologies

    International Nuclear Information System (INIS)

    2010-01-01

    This document proposes a synthesis of a 'white paper' published by the Japanese institution NEDO (New Energy and Industrial Technology Development Organization) on the development of technologies in the field of renewable energies. For the various considered energies, this report gives indications of the world market recent evolutions, of Japanese productions and objectives in terms of productions and costs. The different energies treated in this report are: solar photovoltaic, wind, biomass, solar thermal, waves, seas, hydraulic, geothermal, hot springs, snow and ice, sea currents, electricity production by thermo-electrical effect or by piezoelectric modules, reuse of heat produced by factories, use of the thermal gradient between air and water, intelligent communities and networks

  5. Sandia Technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.

  6. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    Science.gov (United States)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  7. VIBA-LAB2: a virtual ion beam analysis laboratory software package incorporating elemental map simulations

    International Nuclear Information System (INIS)

    Zhou, S.J.; Orlic, I.; Sanchez, J.L.; Watt, F.

    1999-01-01

    The software package VIBA-lab1, which incorporates PIXE and RBS energy spectra simulation has now been extended to include the simulation of elemental maps from 3D structures. VIBA-lab1 allows the user to define a wide variety of experimental parameters, e.g. energy and species of incident ions, excitation and detection geometry, etc. When the relevant experimental parameters as well as target composition are defined, the program can then simulate the corresponding PIXE and RBS spectra. VIBA-LAB2 has been written with applications in nuclear microscopy in mind. A set of drag-and-drop tools has been incorporated to allow the user to define a three-dimensional sample object of mixed elemental composition. PIXE energy spectra simulations are then carried out on pixel-by-pixel basis and the corresponding intensity distributions or elemental maps can be computed. Several simulated intensity distributions for some 3D objects are demonstrated, and simulations obtained from a simple IC are compared with experimental results

  8. Tidal energy - a technology review

    International Nuclear Information System (INIS)

    Price, R.

    1991-01-01

    The tides are caused by gravitational attraction of the sun and the moon acting upon the world's oceans. This creates a clean renewable form of energy which can in principle be tapped for the benefit of mankind. This paper reviews the status of tidal energy, including the magnitude of the resource, the technology which is available for its extraction, the economics, possible environmental effects and non-technical barriers to its implementation. Although the total energy flux of the tides is large, at about 2 TW, in practice only a very small fraction of this total potential can be utilised in the foreseeable future. This is because the energy is spread diffusely over a wide area, requiring large and expensive plant for its collection, and is often available remote from centres of consumption. The best mechanism for exploiting tidal energy is to employ estuarine barrages at suitable sites with high tidal ranges. The technology is relatively mature and components are commercially available now. Also, many of the best sites for implementation have been identified. However, the pace and extent of commercial exploitation of tidal energy is likely to be significantly influenced, both by the treatment of environmental costs of competing fossil fuels, and by the availability of construction capital at modest real interest rates. The largest projects could require the involvement of national governments if they are to succeed. (author) 8 figs., 2 tabs., 19 refs

  9. Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution

    Science.gov (United States)

    Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.

    2009-12-01

    The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre

  10. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    Mitigating climate change and achieving stabilisation of greenhouse gas atmospheric concentrations will require deep reductions in global emissions of energy-related carbon dioxide emissions. Developing and disseminating new, low-carbon energy technology will thus be needed. Two previous AIXG papers have focused on possible drivers for such a profound technological change: Technology Innovation, Development and Diffusion, released in June 2003, and International Energy Technology Collaboration and Climate Change Mitigation, released in June 2004. The first of these papers assesses a broad range of technical options for reducing energy-related CO2 emissions. It examines how technologies evolve and the role of research and development efforts, alternative policies, and short-term investment decisions in making long-term options available. It considers various policy tools that may induce technological change, some very specific, and others with broader expected effects. Its overall conclusion is that policies specifically designed to promote technical change, or 'technology push', could play a critical role in making available and affordable new energy technologies. However, such policies would not be sufficient to achieve the Convention's objective in the absence of broader policies. First, because there is a large potential for cuts that could be achieved in the short run with existing technologies; and second, the development of new technologies requires a market pull as much as a technology push. The second paper considers the potential advantages and disadvantages of international energy technology collaboration and transfer for promoting technological change. Advantages of collaboration may consist of lowering R and D costs and stimulating other countries to invest in R and D; disadvantage may include free-riding and the inefficiency of reaching agreement between many actors. This paper sets the context for further discussion on the role of

  11. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  12. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    International Nuclear Information System (INIS)

    Podwin, Agnieszka; Dziuban, Jan A

    2017-01-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO 2 —a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells. (paper)

  13. Energy and technology review

    International Nuclear Information System (INIS)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P.

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs

  14. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    A brief examination into the energy storage techniques currently available for the integration of fluctuating renewable energy was carried out. These included Pumped Hydroelectric Energy Storage (PHES), Underground Pumped Hydroelectric Energy Storage (UPHES), Compressed Air Energy Storage (CAES...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  15. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    Science.gov (United States)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  16. Teaching Mathematics in the PC Lab--The Students' Viewpoints

    Science.gov (United States)

    Schmidt, Karsten; Kohler, Anke

    2013-01-01

    The Matrix Algebra portion of the intermediate mathematics course at the Schmalkalden University Faculty of Business and Economics has been moved from a traditional classroom setting to a technology-based setting in the PC lab. A Computer Algebra System license was acquired that also allows its use on the students' own PCs. A survey was carried…

  17. Renewable energy systems the earthscan expert guide to renewable energy technologies for home and business

    CERN Document Server

    Jenkins, Dilwyn

    2013-01-01

    This book is the long awaited guide for anyone interested in renewables at home or work. It sweeps away scores of common misconceptions while clearly illustrating the best in renewable and energy efficiency technologies. A fully illustrated guide to renewable energy for the home and small business, the book provides an expert overview of precisely which sustainable energy technologies are appropriate for wide-spread domestic and small business application. The sections on different renewable energy options provide detailed descriptions of each technology along with case studies, installatio

  18. Applications of electron beam technology for healthcare and environment

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2013-01-01

    Radiation technology has matured from lab scale to industrial scale in many areas of interests to industry, healthcare, agriculture and environment. Some of the well established applications include radiation sterilization, wires and cable, composites for automobiles, radiation surface curing, nanomaterials, hydrogels and special materials for nuclear and aerospace industry, radiation treatment of effluents, sewage sludge etc. These applications are as a result of characteristics of high energy radiation like gamma and electron beams which are able to deliver energy directly at molecular level. Unlike nuclear based radiations, electron beam accelerator technology is amenable to easy acceptance by public as well has capability to manipulate processes and product treatment to produce varieties of advanced/smart materials for healthcare and environment. Faster dose rates and depth profiling are the important characteristics of electron beam technology which gives it an edge over gamma radiation processing. Department of Atomic Energy has an ambitious program to indigenously develop accelerator technology and utilize them for national progress. In the presentation some important applications of radiation technology will be discussed. (author)

  19. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Alazard-Toux, N.; His, S.; Douard, F.; Duplan, J.L.; Monot, F.; Jaudin, F.; Le Bel, L.; Labeyrie, P.

    2007-01-01

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  20. An Intelligent Lighting Control System (ILCS) using LabVIEW ...

    African Journals Online (AJOL)

    An Intelligent Lighting Control System (ILCS) was proposed and designed by considering ergonomic setting and energy efficiency. The integration of CompactRIO as a main hardware and National Instrument Laboratory Virtual Instrument Engineering Workbench (NI LabVIEW) 2012 as a platform to design an interactive ...

  1. Noise-control needs in the developing energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  2. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  3. Energy technologies and the environment: environmental information handbook

    International Nuclear Information System (INIS)

    1981-06-01

    This manual draws together information on the environmental consequences of energy technologies that will be in use in the United States during the next 20 years. We hope it will prove useful to planners, policymakers, legislators, researchers, and environmentalists. The information on environmental issues, control technologies, and energy production and conservation processes should also be a convenient starting point for deeper exploration. Published references are given for the statements, data, and conclusions so that the interested reader can obtain more detailed information where necessary. Environmental aspects of energy technologies are presented in a form suitable for government and public use and are intended to assist decisionmakers, researchers, and the public with basic information and references that can be relied upon through changing policies and changing world energy prices

  4. Evaluating Internal Technological Capabilities in Energy Companies

    Directory of Open Access Journals (Sweden)

    Mingook Lee

    2016-03-01

    Full Text Available As global competition increases, technological capability must be evaluated objectively as one of the most important factors for predominance in technological competition and to ensure sustainable business excellence. Most existing capability evaluation models utilize either quantitative methods, such as patent analysis, or qualitative methods, such as expert panels. Accordingly, they may be in danger of reflecting only fragmentary aspects of technological capabilities, and produce inconsistent results when different models are used. To solve these problems, this paper proposes a comprehensive framework for evaluating technological capabilities in energy companies by considering the complex properties of technological knowledge. For this purpose, we first explored various factors affecting technological capabilities and divided the factors into three categories: individual, organizational, and technology competitiveness. Second, we identified appropriate evaluation items for each category to measure the technological capability. Finally, by using a hybrid approach of qualitative and quantitative methods, we developed an evaluation method for each item and suggested a method to combine the results. The proposed framework was then verified with an energy generation and supply company to investigate its practicality. As one of the earliest attempts to evaluate multi-faceted technological capabilities, the suggested model can support technology and strategic planning.

  5. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  6. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  8. Energy technology perspectives: scenarios and strategies to 2050 [Russian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  9. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  10. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  11. Power Technologies Energy Data Book - Third Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2005-04-01

    This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  12. On the economic attractiveness of renewable energy technologies

    International Nuclear Information System (INIS)

    Jaegemann, Cosima

    2014-01-01

    The competitiveness of wind and solar power technologies is often evaluated in public debates by comparing levelized costs of electricity. This is, however, incorrect, as doing so neglects the economic value of technologies. Similarly, renewable energy support schemes are often designed to incentivize investors to only account for the marginal economic costs (MEC) but not for the marginal economic value (MEV el ) of renewable energy technologies, i.e., the revenue from selling electricity on the wholesale market during the unit's technical lifetime. In this paper, it is shown that the net marginal economic costs per kWh (NMEC) - defined as the difference between the MEC and the MEV el per kWh - should serve as the reference when discussing the economic attractiveness of renewable energy technologies. Moreover, renewable energy support schemes should incentivize investments in technologies and regions with the lowest net marginal economic costs per kWh (NMEC), as otherwise excess costs occur. This is demonstrated using the example of Germany and its technology- and region-specific wind and solar power targets for 2020. By applying a linear electricity system optimization model, Germany's technology- and region-specific wind and solar power targets for 2020 are found to cause excess costs of more than 6.6 bn Euro 2010 . These are driven by comparatively high NMEC (low economic attractiveness) of offshore wind and solar power in comparison to onshore wind power in Germany up to 2020.

  13. From road to lab to math: the co-evolution of technological, regulatory, and organizational innovations for automotive crash testing.

    Science.gov (United States)

    Leonardi, Paul M

    2010-04-01

    Today, in the midst of economic crisis, senior executives at US automakers and influential industry analysts frequently reflect on the progression that safety testing has taken from the crude trials done on the road, to controlled laboratory experiments, and to today's complex math-based simulation models. They use stories of this seemingly linear and natural sequence to justify further investment in simulation technologies. The analysis presented in this paper shows that change in the structures of automakers' organizations co-evolved with regulations specifying who was at fault in vehicle impacts, how vehicles should be built to withstand the force of an impact, and how testing should be done to assure that vehicles met those requirements. Changes in the regulatory environment were bolstered by new theories about crash test dynamics and changing technologies with which to test those theories. Thus, as new technological and regulatory innovations co-evolved with innovations in organizational structuring, ideas about how to best conduct crash tests shifted and catalyzed new cycles of technological, regulatory, and organizational innovation. However, this co-evolutionary story tells us that the move from road to lab to math was not natural or linear as today's managerial rhetoric would have us believe. Rather, the logic of math-based simulation was the result of technological, regulatory and organizational changes that created an industry-wide ideology that supported the move toward math while making it appear natural within the shifting structure of the industry.

  14. Electrical Power and Illumination Systems. Energy Technology Series.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  15. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  16. Comparison of Remote Labs in Different Technologies

    OpenAIRE

    Christian Mergl

    2006-01-01

    Recently several possibilities arose to conduct electronic measurement experiments via remote control. Now a comparison of the latest different technologies should bring some answers to interested people, so that they can choose the best technology for them under their criteria. Criteria in this case are, the up-to-dateness of the technology, the development-time, the system-independency of the client in terms of the operating system and internet browser as well as other necessary installatio...

  17. Bringing optics to Fab Labs in Europe

    Science.gov (United States)

    Adam, Aurèle; Zuidwijk, Thim; Urbach, Paul

    2017-08-01

    The Optics Group of Delft University of Technology plays a major role in teaching optics to bachelor and master students. In addition, the group has a long record of introducing, demonstrating and teaching optics to quite diverse groups of people from outside of the university. We will describe some of these activities and focus on a recently started project funded by the European Commission called Phablabs 4.0, which aims to bring photonics to European Fab labs.

  18. Reforming Cookbook Labs

    Science.gov (United States)

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  19. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  20. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret

    2017-05-25

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.

  1. Values and Technologies in Energy Savings

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    2000-01-01

    of this saving can cause what is called the rebound effect, which reduces the savings obtained from the technology. Ways to avoid this effect are suggested, and they require value changes, primarly around frugality, consumption, and hard-working. There are indications that some of the necessary changes are well......The chapter is based on the assumption, that technology improvement is not sufficient to achieve a sustainable world community. Changes in people´s values are necessary. A simple model suggest how values, together with basic needs and with the environmental and societal frames, determine people......´s behavioural pattern and lifestyles. Deliberate changes in social values are illustrated by a historical example. From the side of technology the basic principles in the economy of energy savings are briefly described. The marginally profitable energy savings provides an economic saving. The application...

  2. Attracting STEM talent: do STEM students prefer traditional or work/life-interaction labs?

    Science.gov (United States)

    DeFraine, William C; Williams, Wendy M; Ceci, Stephen J

    2014-01-01

    The demand for employees trained in science, technology, engineering, and mathematics (STEM) fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view - lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49) and desire to participate in (d = 1.33) the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these findings for STEM

  3. Technology Road-map - Nuclear Energy. 2015 edition

    International Nuclear Information System (INIS)

    Houssin, Didier; Dujardin, Thierry; Cameron, Ron; Tam, Cecilia; Paillere, Henri; Baroni, Marco; Bromhead, Amos; Baritaud, Manual; Cometto, Marco; Gaghen, Rebecca; Herzog, Antoine; Remme, Uwe; Urso, Maria-Elena; Vance, Robert

    2015-01-01

    Since the release in 2010 of Technology Road-map: Nuclear Energy (IEA/NEA, 2010), a number of events have had a significant impact on the global energy sector and on the outlook for nuclear energy. They include the Fukushima Daiichi nuclear power plant (NPP) accident in March 2011, the global financial and economic crises that hit many industrialised countries during the period 2008-10 and failings in both electricity and CO 2 markets. Despite these additional challenges, nuclear energy still remains a proven low-carbon source of base-load electricity, and many countries have reaffirmed the importance of nuclear energy within their countries' energy strategies. To achieve the goal of limiting global temperature increases to just 2 deg. C by the end of the century, a halving of global energy-related emissions by 2050 will be needed. A wide range of low-carbon energy technologies will be needed to support this transition, including nuclear energy. This edition of the nuclear road-map prepared jointly by the IEA and NEA take into account recent challenges facing the development of this technology. The 2015 edition of the Nuclear Energy Technology Road-map aims to: Outline the current status of nuclear technology development and the need for additional R and D to address increased safety requirements and improved economics. Provide an updated vision of the role that nuclear energy could play in a low-carbon energy system, taking into account changes in nuclear policy in various countries, as well as the current economics of nuclear and other low-carbon electricity technologies. Identify barriers and actions needed to accelerate the development of nuclear technologies to meet the Road-map vision. Share lessons learnt and good practices in nuclear safety and regulation, front- and back-end fuel cycle practices, construction, decommissioning, financing, training, capacity building and communication. Key findings: Nuclear power is the largest source of low

  4. Technology transfer program of Microlabsat

    Science.gov (United States)

    Nakamura, Y.; Hashimoto, H.

    2004-11-01

    A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.

  5. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    Science.gov (United States)

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the following…

  6. The Portuguese Contribution for lab2go - pt.lab2go

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2013-01-01

    Full Text Available Online experimentation provides innovative and valuable tools for use in academy, in high schools, in industry and in medical areas. It has also become a precious tool for educational and training purposes in any of those areas. Looking at online experimentation as a pure distance learning tool it represents a very efficient way of sharing hands-on capabilities, for example with developing countries. In Portugal a new consortium of online experimentation was created for fostering the national potential, using the Portuguese version of lab2go web platform, pt.lab2go. The authors pretend to demonstrate some of capabilities of the consortium in sharing online labs.

  7. Comparing energy technology alternatives from an environmental perspective

    International Nuclear Information System (INIS)

    House, P.W.; Coleman, J.A.; Shull, R.D.; Matheny, R.W.; Hock, J.C.

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity

  8. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  9. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  10. Bacteriocinogenic LAB Strains for Fermented Meat Preservation: Perspectives, Challenges, and Limitations.

    Science.gov (United States)

    Favaro, Lorenzo; Todorov, Svetoslav Dimitrov

    2017-12-01

    Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and "healthy" fermented meat products.

  11. Comparison of Remote Labs in Different Technologies

    Directory of Open Access Journals (Sweden)

    Christian Mergl

    2006-11-01

    Full Text Available Recently several possibilities arose to conduct electronic measurement experiments via remote control. Now a comparison of the latest different technologies should bring some answers to interested people, so that they can choose the best technology for them under their criteria. Criteria in this case are, the up-to-dateness of the technology, the development-time, the system-independency of the client in terms of the operating system and internet browser as well as other necessary installations on the client.

  12. Technology Roadmaps: How2Guide for Wind Energy Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Whether in OECD, emerging or developing country economies, governments are increasingly looking to diversify their energy mix beyond simply fossil fuels. While wind energy is developing towards a mainstream, competitive and reliable technology, a range of barriers can delay progress, such as financing, grid integration, social acceptance and aspects of planning processes. National and regional technology roadmaps can play a key role in supporting wind energy development and implementation, helping countries to identify priorities and pathways tailored to local resources and markets. Recognising this, the IEA has started the How2Guides - a new series co-ordinated by the International Low-Carbon Energy Technology Platform to address the need for more focused guidance in the development of national roadmaps, or strategies, for specific low-carbon technologies. This builds on the success of the IEA global technology roadmap series and responds to a growing number of requests for IEA guidance to adapt the findings of the IEA global technology roadmaps to national circumstances. A successful roadmap contains a clear statement of the desired outcome, followed by a specific pathway for reaching it. The How2Guide for Wind Energy builds on the IEA well established methodology for roadmap development and shares wind specific recommendations on how to address the four phases to developing and implementing a wind energy roadmap: Planning; Visioning; Development; and Implementation. The manual also offers menus of recommendations on policy and technical options for deployment of utility-scale wind energy installations. A matrix of barriers-versus-realistic solutions options is cross-listed with considerations such as planning, development, electricity market and system, infrastructure, and finance and economics. Drawing on several case studies from around the globe, as well as on the IEA Technology Roadmap for Wind Energy, the How2Guide for Wind Energy it is intended as a

  13. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    Costantini, Valeria; Crespi, Francesco

    2008-01-01

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  14. Risoe energy report 2. New and emerging bioenergy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H; Kossmann, J; Soenderberg Petersen, L [eds.

    2003-11-01

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  15. Technology data for energy plants

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in March 2005. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The ambition of the present publication has been to reduce the level of inconsistency to a minimum without compromising the fact that the real world

  16. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  17. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  18. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  19. Energy perspectives of France by 2020-2050. Technological evolutions

    International Nuclear Information System (INIS)

    2007-09-01

    The different technologies in phase of research and development and concerning the energy production or storage, are examined and presented in function of their probability of emergence at the industrial level: the projects which are going to appear in planed time on the market, the projects based on known technologies which should appear but at non predicted date and the possible projects but based on a new technology. The different type of energy, from the fossil fuels to the renewable energies are concerned. (A.L.B.)

  20. Prediction of energy-related technology for next 30 years

    Energy Technology Data Exchange (ETDEWEB)

    Hashiguchi, Isao; Kondo, Satoru

    1987-12-01

    The report outlines major results of a survey concerning technologies expected to emerge during the next 30 years that was carried out by the Japan's Science and Technology Agency using the DELPHI method. The survey covered 51 technical issues in energy-related areas including fossil energy, nucler energy, natural energy, biomass and energy utilization techniques, and process-related areas including exploration, collection/extraction, transportation/storage, power generation, resources conversion and substitution. For each technical issue, investigation is made on its importance, time of realization, restrictions, procedure and responsible organization for promoting research and development, and government policy. Results show that the importance of nuclear energy will continue to increase and that diversification of energy sources, such as shift to coal, will also become more important. It is indicated that technological breakthroughs, such as the development of new superconducting materials, will accelerate the development of other techniques in related areas and simultaneously increase the importance of such techniques. The survey provides valuable basic data serving for predicting future social changes that may be caused by technical innovation or a shift in view on technology in the economic areas or in the society. (2 figs, 1 tab)